Browsing by Author "Dugas, Manfred."
Now showing items 14 of 4

Finitary incidence algebras.
Wagner, Bradley M. (, 20140611)Let P be an arbitrary partially ordered set and I(P) its incidence space. Then F(P) is the finitary incidence algebra and I(P) is a bimodule over it. Consequently we can form D(P) = FI(P) ⊕ I(P) the idealization of I(P). ... 
Local automorphisms of finitary incidence algebras.
Courtemanche, Jordan D. 1989 (20170707)Let $R$ be a commutative, indecomposable ring with identity and let $(P,\le)$ be a locally finite partially ordered set. Let $FI(P)$ denote the finitary incidence algebra of $(P,\le)$ over $R$. In this case, the finitary ... 
On a ring associated to F[x].
Aceves, Kelly Fouts. (, 20130924)For a ﬁeld F and the polynomial ring F [x] in a single indeterminate, we deﬁne Ḟ [x] = {α ∈ End_F(F [x]) : α(ƒ) ∈ ƒF [x] for all ƒ ∈ F [x]}. Then Ḟ [x] is naturally isomorphic to F [x] if and only if F is inﬁnite. If F ... 
On rings with distinguished ideals and their modules.
Buckner, Joshua. (20070523)Let S be an integral domain, R an S algebra, and F a family of left ideals of R. Define End(R, F) = {φ ∈ End(R+) : φ(X ) ⊆ X for all X ∈ F }. In 1967, H. Zassenhaus proved that if R is a ring such that R+ is free of finite ...