Show simple item record

dc.contributor.advisorHenderson, Johnny.
dc.contributor.authorGray, Michael Jeffery.
dc.contributor.otherBaylor University. Dept. of Mathematics.en
dc.date.accessioned2006-07-29T16:00:19Z
dc.date.available2006-07-29T16:00:19Z
dc.date.copyright2006-05-13
dc.date.issued2006-07-29T16:00:19Z
dc.identifier.urihttp://hdl.handle.net/2104/4185
dc.descriptionIncludes bibliographical references (p. 53-56).en
dc.description.abstractFor the third order ordinary differential equation, $y'''=f(x,y,y',y'')$, it is assumed that, for some $m\geq 4$, solutions of nonlocal boundary value problems satisfying \[y(x_1)=y_1,\ y(x_2)=y_2,\] \[y(x_m)-\sum_{i=3}^{m-1} y(x_{i})=y_3,\] $a<x_1<x_2<\cdots<x_m<b$, and $y_1,y_2,y_3\in\mathbb{R}$, are unique when they exist. It is proved that, for all $3\leq k \leq m$, solutions of nonlocal boundary value problems satisfying \[y(x_1)=y_1,\ y(x_2)=y_2,\] \[y(x_k)-\sum_{i=3}^{k-1} y(x_{i})=y_3,\] $a<x_1<x_2<\cdots<x_k<b$, and $y_1,y_2,y_3\in\mathbb{R}$, are unique when they exist. It is then shown that solutions do indeed exist.en
dc.description.statementofresponsibilityby Michael Jeffery Gray.en
dc.format.extentiv, 56 p.en
dc.format.extent299906 bytes
dc.format.extent109885 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen
dc.rightsBaylor University theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. Contact librarywebmaster@baylor.edu for inquiries about permission.en
dc.subjectBoundary value problems -- Research.en
dc.subjectDifferential equations -- Research.en
dc.titleUniqueness implies uniqueness and existence for nonlocal boundary value problems for third order ordinary differential equations.en
dc.typeThesisen
dc.description.degreePh.D.en
dc.rights.accessrightsWorldwide access.en
dc.rights.accessrightsAccess changed 5/24/11.
dc.contributor.departmentMathematics.en


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record