Show simple item record

dc.contributor.advisorDuren, Russell Walker.
dc.contributor.authorDark, Stephen L.
dc.contributor.otherBaylor University. Dept. of Electrical and Computer Engineering.en
dc.date.accessioned2011-01-05T19:37:14Z
dc.date.available2011-01-05T19:37:14Z
dc.date.copyright2010-12
dc.date.issued2011-01-05T19:37:14Z
dc.identifier.urihttp://hdl.handle.net/2104/8076
dc.descriptionIncludes bibliographical references (p. ).en
dc.description.abstractTwo ways to improve algorithm performance in hardware are increasing the speed of each operation, or performing multiple operations simultaneously. However, the percent speed-up for the latter depends upon not only system constraints but also design decisions. When using multiple FPGAs as the implementation target, creating an optimal configuration requires the designer to be aware of many potential issues. A neural network inversion case study is presented in order to give future FPGA algorithm designers insight into the possible problems arising from parallel FPGA implementations. Initial work is performed implementing a large Neural Network and finding its inversion via Particle Swarm Optimization on a single FPGA. This algorithm is later broken up and performed in parallel with multiple FPGAs using several strategies on various hardware and software architectures. At the end, a discussion of the potential issues that arose during these implementations is presented along with some generalized guidelines.en
dc.description.statementofresponsibilityby Stephen L. Dark.en
dc.format.extent221329 bytes
dc.format.extent5064358 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen
dc.rightsBaylor University theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. Contact librarywebmaster@baylor.edu for inquiries about permission.en
dc.subjectFPGA.en
dc.subjectParallel processing.en
dc.subjectHardware architectures.en
dc.subjectLabVIEW.en
dc.subjectEDK.en
dc.subjectNeural network.en
dc.subjectParticle swarm.en
dc.titleIncreased computation using parallel FPGA architectures.en
dc.typeThesisen
dc.description.degreeM.S.E.C.Een
dc.rights.accessrightsWorldwide accessen
dc.contributor.departmentEngineering.en


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record