Show simple item record

dc.contributor.authorMaurer
dc.date.accessioned2011-05-13T15:28:18Z
dc.date.available2011-05-13T15:28:18Z
dc.date.issued2011-05-13T15:28:18Z
dc.identifier.urihttp://hdl.handle.net/2104/8184
dc.description.abstractThe problem of detecting virtually any type of symmetry is shown to be co-NP-complete. We start with totally symmetric functions, then extend the result to partially symmetric functions, then to more general cofactor relations, and finally to generic permutation-group symmetries. We also show that the number of types of symmetry grows substantially with the number of inputs, compounding the complexity of an already difficult problem.en
dc.format.extent71194 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectSymmetric Boolean Functionsen
dc.subjectNP-Completenessen
dc.subjectConjugate Symmetryen
dc.subjectGeneralized Symmetryen
dc.titleWhy is Symmetry So Hard?en
dc.licenseGPLen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record