Show simple item record

dc.contributor.advisorRaines, Brian Edward, 1975-
dc.contributor.authorHamilton, Brent (Brent A.)
dc.date.accessioned2011-09-14T12:45:18Z
dc.date.available2011-09-14T12:45:18Z
dc.date.copyright2011-08
dc.date.issued2011-09-14
dc.identifier.urihttp://hdl.handle.net/2104/8216
dc.description.abstractWe study asymptotic behavior arising in inverse limit spaces of dendrites. In particular, the inverse limit is constructed with a single unimodal bonding map, for which points have unique itineraries and the critical point is periodic. Using symbolic dynamics, sufficient conditions for two rays in the inverse limit space to have asymptotic parameterizations are given. Being a topological invariant, the classification of asymptotic parameterizations would be a useful tool when determining if two spaces are homeomorphic.en_US
dc.language.isoen_USen_US
dc.publisheren
dc.rightsBaylor University theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. Contact librarywebmaster@baylor.edu for inquiries about permission.en_US
dc.subjectTopology.en_US
dc.subjectContinuum theory.en_US
dc.subjectInverse limits.en_US
dc.subjectDendrites.en_US
dc.titleAsymptotic arc-components in inverse limits of dendrites.en_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.rights.accessrightsWorldwide accessen_US
dc.contributor.departmentMathematics.en_US
dc.contributor.schoolsBaylor University. Dept. of Mathematics.en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record