
ABSTRACT

Asynchronous Image Reconstruction

Zongqi Ritchie Cai, Ph.D.

Mentor: Keith Schubert, Ph.D.

Algebraic Reconstruction Technique, also known as ART, is the go-to method

for medical image reconstruction. For more than 50 years, since the original paper

about ART is published, various reconstruction methods based on ART emerged

for faster runtime performance. These methods are designed to suit different types

of hardware. However, none of these methods is ART equivalent. In this work, I

introduce a new implementation method that is ART equivalent, has a very fast

runtime performance, and is very scalable on today and future hardware. It opens a

brand new door to how we should implement ART in the future.

Asynchronous Image Reconstruction

by

Zongqi Ritchie Cai, B.S., M.S.

A Dissertation

Approved by the Department of Electrical and Computer Engineering

Kwang Y. Lee, Ph.D., Chairperson

Submitted to the Graduate Faculty of
Baylor University in Partial Fulfillment of the

Requirements for the Degree
of

Doctor of Philosophy

Approved by the Dissertation Committee

Keith Schubert, Ph.D., Chairperson

Robert J Marks II, Ph.D.

Reinhard Schulte, M.D.

Jeffrey S. Olafsen, Ph.D.

Accepted by the Graduate School
December 2021

J. Larry Lyon, Ph.D., Dean

Page bearing signatures is kept on file in the Graduate School.

Copyright © 2021 by Zongqi Ritchie Cai

All rights reserved

TABLE OF CONTENTS

LIST OF FIGURES . vii

LIST OF TABLES . ix

ACKNOWLEDGMENTS . xi

DEDICATION . xii

1 Introduction . 1

1.1 Projection Methods . 1

1.1.1 Algebraic Reconstruction Technique 2

1.1.2 Block Iterative Algorithm . 2

1.1.3 String Averaging . 8

1.1.4 Summary . 11

1.2 Concurrency . 11

1.2.1 Concurrency vs Parallelism 11

1.2.2 Processes . 12

1.2.3 Locks . 15

1.2.4 Data Structures . 16

1.2.5 Concurrencies in ART Algorithms 17

2 Theory . 19

2.1 Asynchronous Art Algorithm . 19

2.2 * . 21

2.3 Theoretical Speedup . 24

iv

2.3.1 Data Distribution . 24

2.3.2 Time Complexity . 27

3 Implementation . 28

3.1 Dataset . 28

3.2 Sorting . 32

3.3 Index Tree . 32

3.4 Language and Environment . 32

3.5 Async Grid . 36

3.5.1 Channels . 37

3.5.2 Blocking vs Parking . 37

3.5.3 Async Node . 38

3.5.4 Grid Generation . 39

3.5.5 Grid Operation . 47

4 Experiment . 54

4.1 Introduction . 54

4.2 Hardware . 54

4.3 Dataset . 54

4.4 Experiments . 55

4.4.1 CTP404 Sensitometry Phantom 56

4.4.2 George Phantom 2.5mm thickness 57

4.4.3 George Phantom 1mm thickness 58

5 Discussion . 62

5.1 Performance . 62

v

5.1.1 Theoretical Speedup . 62

5.1.2 Timing Data . 62

5.2 Scalability . 66

5.2.1 Scale Over Multi-cores . 66

5.2.2 Scale Over Network . 66

5.3 Improvements . 67

6 Conclusion . 70

6.1 Future Direction . 71

APPENDICES . 72

APPENDIX A Testing Scripts . 73

A.1 CTP404 Phantom . 73

A.2 George 2.5mm . 75

A.3 George 1mm . 77

APPENDIX B CTP404 Phantom History Counts 79

APPENDIX C George 2.5mm History Counts 81

APPENDIX D George 1mm History Counts 83

BIBLIOGRAPHY . 88

vi

LIST OF FIGURES

1.1 ART projection paths . 3

1.2 BIP algorithm convergence . 5

1.3 Cimmino project . 6

1.4 SAP path 1 . 9

1.5 SAP path 2 . 9

1.6 SAP path 3 . 10

1.7 Average of three paths . 10

1.8 Process states . 13

1.9 Immutable Data Structure . 17

1.10 Concurrency in ART . 18

1.11 Concurrency in BIP . 18

1.12 Concurrency in SAP . 18

2.1 ART concurrency stack . 20

2.2 Experimental data distribution per block 25

3.1 3D images . 29

3.2 Data Format . 30

3.3 Art Concurrency Blocks . 31

3.4 Data Format . 33

3.5 Index tree structure . 34

3.6 Java thread life cycle . 35

3.7 Reconstruction steps for different types of threads. 40

vii

3.8 Async nodes connection in a grid 41

3.9 Blocks and layers of the grid . 42

3.10 Iterators . 45

3.11 Head and tail region in the grid . 46

3.12 Format used by sent messages . 48

3.13 Testing a grid with 16 slices and depth = 5 50

3.14 Grid with slices = 16, depth = 5 . 51

3.15 Threaded version of async reconstruction 53

4.1 Reconstruction of CTP404 phantom 2mm thickness, iteration 6 . . . 57

4.2 Reconstruction of George phantom with 2mm thickness, iteration 6 59

4.3 Reconstruction of George phantom with 1mm thickness, iteration 6 61

5.1 Block partition across multiple machines 68

5.2 Thread abstraction layer . 68

viii

LIST OF TABLES

2.1 Theoretical Speed up for sample dataset 26

4.1 Configurations of computers used for performance testing. 54

4.2 Dataset differences . 55

4.3 CTP404 dataset history distribution over slice depth 56

4.4 George 2.5mm dataset history distribution over slice depth 58

4.5 George 1mm dataset history distribution over slice depth 60

5.1 Theoretical Speed up for CTP404 dataset 63

5.2 Theoretical Speed up for George 2.5mm dataset 63

5.3 Theoretical Speed up for George 1mm dataset 64

5.4 Timing for tests performed for dataset CTP404 on pb005 65

5.5 Timing for tests performed for dataset CTP404 on lm001 65

5.6 Timing for tests performed for dataset george 2.5mm on pb005 . . . 65

5.7 Timing for tests performed for dataset george 2.5mm on lm001 . . . 65

5.8 Timing for tests performed for dataset george 1mm on pb005 65

5.9 Timing for tests performed for dataset george 1mm on lm001 65

B.1 History count for CTP404 dataset slice 0-4 79

B.2 History count for CTP404 dataset slice 5-9 79

B.3 History count for CTP404 dataset slice 10-14 80

C.1 History count for george 2.5mm dataset slice 0-4 81

C.2 History count for george 2.5mm dataset slice 5-9 81

C.3 History count for george 2.5mm dataset slice 10-14 82

ix

C.4 History count for george 2.5mm dataset slice 15-19 82

C.5 History count for george 2.5mm dataset slice 20-24 82

D.1 History count for george 1mm dataset slice 0-6 83

D.2 History count for george 1mm dataset slice 7-13 84

D.3 History count for george 1mm dataset slice 14-20 84

D.4 History count for george 1mm dataset slice 21-27 85

D.5 History count for george 1mm dataset slice 28-34 85

D.6 History count for george 1mm dataset slice 35-41 86

D.7 History count for george 1mm dataset slice 42-48 86

D.8 History count for george 1mm dataset slice 49-55 87

D.9 History count for george 1mm dataset slice 56-62 87

x

ACKNOWLEDGMENTS

First and foremost, I would like to thank my mother for her unconditional

love and support, without which I certainly would not have finished this work.

I am also extremely grateful to my aunt, who made working toward Ph.D.

possible by bringing me overseas to study abroad when I was 16. Ph.D. certainly

wasn’t on the map at that time, but her support made it a possibility down the road.

She is undoubtedly the world’s greatest aunt for sure!

To my great friend, mentor, and advisor Dr. Schubert, I would like to say

thank you for always being a light in the darkness. Whenever I’m lost and depressed,

talking to you has always given me some hope and direction. I greatly appreciate

your understanding and the freedom you’ve provided to me. I think I could only do

what I have done under your guidance.

Last but not least, I would like to express my deep and sincere appreciation

for the efforts Brian S itton has p rovided i n finishing th is wo rk. Without th e access

and technical support to those computing nodes he made available, I would not have

come close to finishing this work.

xi

DEDICATION

To my Dad.

xii

CHAPTER ONE

Introduction

The subject of this dissertation is computing medical image reconstruction us-

ing iterative projection methods efficiently on modern many-core CPU architecture

by exploring data concurrency. This chapter will examine projection methods used

for reconstructions and their implementations, techniques used when implementing

multi-threaded programs, and the proposed computation technique for this type of re-

construction. Reviews of projection methods and their implementations are presented

in section 1.1. An overview of some implementation techniques for multi-threaded

programs is in section 1.2. Finally, an overview of the proposed computation tech-

nique is explained in section 1.3.

1.1 Projection Methods

This section covers some brief overviews of current iterative projection methods

for image reconstructions in pCT. These algorithms uses projections onto sets while

relying on the general principle that when a family of (usually closed and convex)

sets is present, then projections onto the given indivisual sets are easier to perform

than projection onto other sets (intersections, image sets under some transformation,

etc.) that are derived from the given indiviual sets. This is definitely the case in

pCT reconstruction, where the sets to be projected on in the iterative process are the

hyperplance Hi defined by the i-th row of the m × n linear system Ax = b, namely,

Hi =
{
x ∈ Rn|

⟨
ai, x

⟩
= bi

}
for i = 1, 2, . . . ,m (1.1)

Where Rn is Euclidean n-dimensional space, ai is the i-th row of A, bi is the i-th

element of b. In pCT, a j
i correspond to the length of intersection of the i-th proton

1

history with the j-th voxel, x is the the unknown relative electron density image

vector and bi is the integral relative electron density corresponding to the enery lost

by the i-th proton along its path.

1.1.1 Algebraic Reconstruction Technique

Given xk, xk+1 can be computed by

xk+1 = xk + λk
bi − ⟨ai, xk⟩
∥ai∥2

aT
i (1.2)

where ai is the i-th row of A and bi is the i-th element of b. Initial value, x0 ∈ Rn,

can be a random valued vector. It is considered a full iteration when all the rows of

A are used once. Typically, it takes multiple iterations to converge to a acceptable

result. Although not specified, the order of ai used can greatly impact the speed of

the convergence. Figure 1.1 demonstrates that two very different ordering of the same

set of data can produce drastically different result in one iteration.

This method is also known as ART and is considered to be the standard

projection method for pCT image reconstruction. All other methods reviewed here

are either derived from it for computational efficiency purpose, or very closely related.

The mathematical description of the algorithm is very sequential since xk+1 depends

on previous result xk. However, this flaw could also be considered as an advantage.

Since every projection is using the result of all previous projections, xk has maximized

the information gain on given data.

1.1.2 Block Iterative Algorithm

Block iterative projection methods, also known as BIP, divides all the hyper-

planes available into blocks. For each projection step, BIP projects all the hyperplanes

in one block at the same time. The number of blocks, their size, and the assignments

of the hyperplanes Hi to the blocks may all vary, provided that the weights attached to

2

x1

x3

x0

x2

x4

x5

x6

a0

a1

a2

a3

a4

a5

(a) sub-optimal projection sequence

x1

x3

x0

x2x4

x5

x6

a0

a1

a2

a3

a4

a5

(b) a much better projection sequence

Figure 1.1: ART projection paths

3

the hyperplanes fulfills the condition of constituting a fair sequence, which is defined

as follows,

Let I = 1, 2, . . . ,m, and let Hi|i ∈ I be a finite family of hyperplanes with

nonempty intersection H = ∩i∈IHi. Denoting the nonnegative ray of the real line

by R+, introduce a mapping w : I → R+, called a weight vector, with the property∑
i∈I w(i) = 1. A sequence {wk}∞k=0 of weight vectors is called fair if, for every i ∈ I,

there exists infinity many values for k for which wk(i) > 0.

The general form of BIP algorithm can be express in the following form:

xk+1 = xk + λk

∑
i∈It(k)

wk(i)
bi − ⟨ai, xk⟩
∥ai∥2

aT
i

 (1.3)

The advantage of BIP is that multiple hyperplanes can be used for computing xk+1

instead of just 1 in ART. The projections of these hyperplanes can be calculated at

the same time using available hardware features to speed up the computation for each

iteration. The convergence of BIP algorithm can be shown in Figure 1.2.

Although each iteration is calculated faster, the rate of convergence tends to be

inferior to the ART algorithm. This is because the projection of each hyperplanes used

in Equation 1.3 does not take other hyperplanes in the same step into consideration,

because they are computed in parallel.

The following sections will discuss several variations of BIP algorithm. ART

can be considered as a special case of BIP where each group contains only one hyper-

plane.

1.1.2.1 Cimmino. Like ART, Cimmino is another extreme variation of BIP

where all hyperplanes are grouped into one single block.

xk+1 = xk +
1
m

m∑
i=1

(
λk

bi − ⟨ai, xk⟩
∥ai∥2

aT
i

)
(1.4)

4

x0

x1

a0

a1

a2

a3

a4

a5

(a) BIP block 1

x0

x1

x2

a0

a1

a2

a3

a4

a5

(b) BIP block 2

Figure 1.2: BIP algorithm convergence

5

x0

x1

a0

a1

a2

a3

a4

a5

Figure 1.3: Cimmino project

Figure 1.3 show how Cimmino algorithm converges. Theoretically, if there is available

hardware resources available, all projections can be computed simutaneously before

summing altogether. However, this makes the result at the end of each iteration less

accurate. It takes more iterations to converge to a desired result.

1.1.2.2 Block Iterative Component Averaging. The block-iterative compo-

nent averaging (BICAV) algorithm is a special variant of BIP that incorporates

component-related weighting in the vectors wk. BICAV also differs in the method of

projection onto the individual hyperplanes, making use of generalized oblique projec-

tions, as opposed to orthogonal projections. For a detailed discussion of the conse-

quences of this on the projection algorithm see [1]. The iterative step in BICAV is

6

defined as follows:

xk+1 = xk + λk

∑
i∈It(k)

bi − ⟨ai, xk⟩∑n
l=1 st(k)

l

(
ai

l

)2 ai
j (1.5)

where {st
l}nl=1 is the number of non-zero element at

l , 0 in the l-th column of the t-th

block of the matrix A given by

at =

att1

att2

...

attm(t)

(1.6)

and {λk}∞k=0 is a sequence of user-determined relaxation parameters.

1.1.2.3 The Diagnally Relaxed Orthogonal Projections Algorithm. DROP,

also known as Diagnally Relaxed Orthogonal Projections, is a component averaging

technique that makes use of orthogonal projections onto hyperplanes rather than the

generalized oblique projections employed in the BICAV algorithm. It is proposed in

[2].

xk+1 = xk + λkUt(k)

∑
i∈It(k)

wk(i)
bi − ⟨ai, xk⟩
∥ai∥2

aT
i

 (1.7)

where Ut(k) = diag(min(1, 1/st
l)) with st

l as defined in BICAV and {λk}∞k=0 is a sequence

of user-determined relaxation parameters.

Both the DROP and BICAV algorithms are computationally more expensive

than the BIP method because of the need to calculate the st
l’s prior to any image

updates. However, it is the goal of component-dependent weighting to markedly

improve the initial convergence pattern of the algorithm, which may compensate for

time spent on extra calculations.

7

1.1.2.4 Simultaneous Algebraic Reconstruction Technique. [3] developed a

block-iterative technique called simultaneous algebraic reconstruction technique (SART).

The authors suggested the use of SART with blocks, which the authors called “sub-

sets”, made up of image projection rays from a single projection angle and in doing

so, found that SART was able to deal well with noisy data. The algorithm was de-

veloped in such a way that it was equally applicable to subsets, or blocks, of any

composition as it was to subsets comprised of rays from a single projection angle.

This block-iterative form, called ordered subsets simultaneous algebraic reconstruc-

tion technique (OS-SART) by [], is as follows.

xk+1 = xk + λk

(
1∑
i∈It(k)

) ∑
i∈It(k)

bi − ⟨ai, xk⟩∑n
j=1 ai

j

ai
j (1.8)

where {λk} is a sequence of user-determined relaxation parameters.

1.1.3 String Averaging

Similar to BIP, SAP arrange all hyperplanes into blocks, here we call string.

However, for each blocks, SAP perform serial ART algorithms. The results of each

blocks then averged to produce a final result.

y j+1 = y j + λ j
bi − ⟨ai, y j⟩
∥ai∥2

aT
i (1.9)

xk+1 =

M∑
t=1

wtyi (1.10)

The convergence behavior is shown in Figure 1.4, Figure 1.5, Figure 1.6 and

Figure 1.7.

1.1.3.1 The Component-Averaged Row Projections Algorithm. This algo-

rithm, also known as CARP, is developed by []. It differs with SAP in the way

8

a0

a1

a2

a3

a4

a5

x0

Figure 1.4: SAP path 1

a0

a1

a2

a3

a4

a5

x0

Figure 1.5: SAP path 2

9

a0

a1

a2

a3

a4

a5

x0

Figure 1.6: SAP path 3

a0

a1

a2

a3

a4

a5

x0

x1

Figure 1.7: Average of three paths

10

averaging different yi. Instead of weighted average in Equation 1.10, CARP uses the

following scheme:

xk+1
j =

1
st

j

M∑
t=1

yt
j (1.11)

where st
j is the number of strings which contain at least one equation with a nonzero

coefficient of x j.

1.1.4 Summary

Overall, ART is the basic version of the projection methods here, while others

are derived from ART and are suitable for different platforms. For example SAP is

suitable for running on multi-core machines due to its long “string” block, while BIP

is more suitable on modern GPU due to its multi-projecting feature. However, ART

still have a advanage over both of these class of methods because every projection

of ART take in all previous projection into consideration. So if done correctly, ART

should be able converge faster in one iteration.

1.2 Concurrency

Concurrency is composition of independently executing processes, it is about

dealing with a lot of things at once. These processes may or may not be related,

and may or may not be running simultaneously. Concurrency gives you a way to

structure program into independent pieces, and then you have to coordinate those

pieces. To make that work, you need some form of communication. Communications

are essential in a concurrent structure, in order for concurrency to work, you must

have communication.

1.2.1 Concurrency vs Parallelism

Parallelism is simultaneous execution of multiple things (processes), possibly

related, possibly not, it is about doing a lot of things at once. In terms of runtime

11

performance, parallelism determines how much faster a program can execute when

more computing resources are available. This is very important because CPU clock

speed has not improved much over the last decade. However, the number of cores on

both CPU and GPU has increased dramatically. So the more computing resources a

program can use effectively and efficiently, the more performance it can obtain from

modern day hardware.

Concurrency and parallelism are related but seperate ideas. One is about

structure, and the other is about execution. Concurrency is a way to structure things

so that you can, maybe, use parallelism to do a better job. Parallelism is not a goal

of concurrency. Concurrency’s goal is a good structure.

A good way to solve problem is to break problem down into independent

components that you can seperate and get right then compose and solve the problem

altogether. Don’t worry about parallelism. If the concurrency is right, the parallelism

is just a free variable we can adjust.

1.2.2 Processes

A good example of concurrency is the processes running in a computer. In a

running computer, usually there are hundreds of running process. There are much

more running process than available CPU. Each process has a virutal memory space

that it can see and address to. On a 64-bit operating system, regardless of the size of

the real memory, each process has about 256TB (48-bits) of virtual memory space.

This space split into pages of 4K bytes and mapped into the physical memory. Each

process and only access what is in their memory space, it cannot see what’s outside its

memory space. Therefore, each process are virutally independent of each other, the

concurrency here is pretty simple. Since only one process can run at a time per CPU,

each process is also associated with a process state for OS to manage. Figure 1.8

shows how processes transit between different states. When a process is loaded in

ready to run in the main memory, there are three important states:

12

Figure 1.8: Process states

Running Only running processes can be in this state.

Blocked Processes are waiting on resources to be available in order to continue to

run.

Waiting Processes is ready to start or continue to run.

1.2.2.1 Threads. Conceptually, a thread is an independent worker dedi-

cated to work on one or a sequence of tasks. In a more computer science technical

term, a thread is referring to a sequence of programmed instructions that can be man-

aged independently by a scheduler, which is typically a part of the operating system.

Threads is one of the most fundamental tool implement parallelism in concurrency.

One thread means there is only one thread of execution of instruction, which indicates

all the instructions are issued in sequential order. There still may be some instruc-

tions are exectued at the same time or out of order due to some optimizations by

compiler or accelerations by the hardware, but for the most part they are sequential.

13

On the other hand, multi-threaded means there are multiple threads of execution are

happening.

1.2.2.2 Context Switch. Context switch is referring to the activities taking

place when a process transit from running to not running, either blocked or waiting.

During context switch, it usually involves swapping register states, invalidates caches

lines and if two threads, and if two threads that are swapping belongs to two different

processes, it also means flushing the translation lookahead buffers(TLB) which is used

to translate between virtual memory address and physical memory address.

1.2.2.3 Parking. Parking is term used to describe context switch between

“green threads”. Green threads, also called “light weight thread”, are threads or

tasks managed by a runtime environment. To avoid, expensive OS context switch,

the runtime swapping in and out tasks on a running OS thread. When a green thread

is swapped out of a running OS thread, it’s called parking.

1.2.2.4 Process vs Thread. A process is an instance of a computer program

that is being executed by the operating system. It sits in the memory with other

components, such as kernel and library codes, in a virtual memory space that runs

from 0 to the maximum limit supported. We call this memory space ”virtual” because

it does not represent the actual physical memory location. The virtual memory is

mapped to physical memory by the operating system. Every program has the same

virtual memory layout, e.g., kernel space, text (instructions), data, stack, heap, etc.,

and they can only access data or instructions in their own virtual memory space.

There are several ways to communicate between processes, but they all have to go

through series of system calls and quite expensive, definitely not something that

should be done frequently. Especially on a multi or many core system, since there is

only one kernel running, too many system calls for different programs or processes

may become a bottleneck for them in terms of performances.

14

Operating system’s process management is a good example of concurrency

model. There are many processes are being executed at the same time, only a few

running depending number processors available.

On the other hand, there are threads. Threads are different segments of code

from the same virtual addressing space but have their own execution stack. Each

thread can run on a different CPU core independently, and since they all share the

same addressing space, they can understand each other’s data much easier and more

efficiently. For example, an object can be shared between threads without copying

by simply passing the reference around.

1.2.3 Locks

In computer science, a lock is a mechanism that guards access to a resource

with mutable state. The goal of this mechanism is the achieve mutual exclusion,

so that no two threads are modifying a resources at the same time. Modifying a

resources by multiple threads can cause unpredictable result. Typically, a lock is

declared together with a resource it’s trying to guard. Every thread that that tries

to use the resource must try to acquire the lock first. As soon as the task on the

resource is finish, the lock is released. When acquiring the lock, if the lock is already

acquired by another thread, the thread acquiring the lock need to wait for the lock

to be available.

There are various wait behaviors. A thread can simply loop until the lock

becomes available. This is called spinlock, it is often used when the tasks on the

resources are known to take very short time to finish. Alternatively, if the operation

time on the resource is long or unknonw, the thread acquiring the lock will be sus-

pended and put into a wait queue. This behavior is called blocking and the lock is

called monitor, first create by [4].

In concurrent programming, locks are used every where, implicitly or explicitly

to make sure the consistency and correctness of the program running with multiple

15

threads. Synchronization is an example of using locks implicitly, [5] discusses syn-

chronization with locks in extensive details.

1.2.4 Data Structures

1.2.4.1 Immutable Data Structure. Locks are only used when there is po-

tential race condition. One way to avoid race condition is to eliminate write. If a

variable state is not modified during it’s life time, nothing changes, therefore it is

impossible to have inconsistency unless there is a hardware failure. Immutable data

structure is a way to make all variables declared immutable even if you try to modify

it. An example of this can be illustrated using a linked list with Figure 1.9. Varible

A is an immutable linked list with value of 1, 2, 3 ,4 ,5 as shown in the figure. There

is not write operation that can modify the list itself; However, there are operations

that can give you a new list with desired effects. Calls to update the first element will

return a new list with head updated without modifying original list. So the request

of updating 1 to 100 on variable A will return a new variable, let’s call it B shown in

Figure 1.9. Part of B and A are shared, while the first element of the two lists are

distinct, and the most importantly variable A is untouched. So the update requrest

can come from a different thread, both threads get to keep their own version of the

data with minimal modification. The concept can be extend from this simple linked

list to tree which is used in implementing most immutable data structures.

The obvious draw back of immutable data structure is that they are not as

fast as there are much more overhead when updating. Also read speed is also a bit

slower due the much more complicated structure can have performance impact when

navigating the data structure.

1.2.4.2 Concurrent Data Structures. Another commonly used data struc-

ture is so called synchronized data structure. They are thread safe version of single

16

1 2 3 4 5

10 20

A

B

Figure 1.9: Immutable Data Structure

threaded data structure. For example, on JVM, java.util.concurrent contains a lot

concurrent data structure corresponding to the ones can be found java.util.

1.2.4.3 Channel. Channel is used when passing data between threads, first

introduced in [6]. It has the following features

• Basic behavior of a channel is that of a queue, first in first out. Only the

item at the beginning of the channel is available for access.

• There is a customizable but limited capacity on each channel.

• To use an item, it must be removed from the channel.

• Any thread that has the channel can put or take from the channel. Put

means adding a new item to the channel, take means remove an item from

the channel.

• If a thread try to put a new item into a channel taht is already full, or try

to take from an empty channel, the thread will block. It will continue when

another thread performs a take or put so that the blocked operation can

continue.

The communication between threads is a form of message passing.

1.2.5 Concurrencies in ART Algorithms

As an example, Figure 1.10, Figure 1.11 and Figure 1.10. Illustrates concur-

rency nature in ART, BIP and SAP respectively. Bubbles in these figures, can be

17

x0 . . .

x1
xM−1

Figure 1.10: Concurrency in ART

x0

.

.

.

∑
x1

.

.

.

∑ ∑
. . . xM−2

.

.

.

xM−1

Figure 1.11: Concurrency in BIP

considered as a thread, while arrows indicates workflow. Although ART is a

sequen-tial algorithm, you can still use concurrency to describe its workflow nature.

Figure 1.12: Concurrency in SAP

. . .

. . .

. . .

. . .

x0 x1

. . .

. . .

. . .

. . .

. . . xM−2 xM−1

18

CHAPTER TWO

Theory

2.1 Asynchronous Art Algorithm

We are proposing a implementation of ART algorithm by exploring concur-

rency features in PCT dataset. The proton histories used in PCT dataset should

always travel consecutive 3D image slices, i.e. there should be no skips, no slice se-

quce such as 1, 2, 4. For those histories that do skip slices, they should be considered

as errornous, and not used for reconstruction. We can then group all the histories

based on length and stack them up as shown in Figure 2.1, and perform reconstruction

based on the order indicated in the same figure as well.

In Figure 2.1, |a| is the length of a proton history in term of 3D image slices,

i.e. the number of slices a proton beam has traveled. Arrows indicate the order

reconstructions. For example, both a[0] and a[1] have an arrow points to a[0, 1].

This indicates that in order to perform reconstruction using data from histories that

goes through slice 0 and 1, reconstruction using histories from slice 0 and 1 must be

completed first. For blocks that are on the same rows in Figure 2.1, they are not

depend on each other, reconstructions using these blocks can be performed in any

order relative to each other. During run time, a dedicated thread of reconstruction

for all the blocks will be launched simultaneously. Each thread will need to resolve

dependency first before begin reconstruction on its data block. The final result will

be collected from the threads handling |a| = 1.

So the algorithm can be described with the two parts:

(1) Setup

(a) Sort all the histories by their history length in terms of 3D image slices.

(b) Stack them as shown in Figure 2.1 and setup the dependencies.

19

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

a[0, 1] a[2, 3] a[4, 5] a[6, 7]

a[1, 2] a[3, 4] a[5, 6] a[7, 8]

a[0, 1, 2] a[3, 4, 5] a[6, 7, 8]

a[1, 2, 3] a[4, 5, 6] a[7, 8, 9]

a[2, 3, 4] a[5, 6, 7] a[8, 9, 10]

a[0, 1, 2, 3] a[4, 5, 6, 7]

a[1, 2, 3, 4] a[5, 6, 7, 8]

a[2, 3, 4, 5] a[6, 7, 8, 9]

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

|a| = 1

|a| = 2

|a| = 3

|a| = 4

Figure 2.1: ART concurrency stack

20

(c) Launch one reconstruction thread per block

(2) Threads

(a) Wait for only threads based on the block’s dependencies to finish.

(b) Once dependencies have finished their reconstructions, proceed with lo-

cal reconstruction using only the data block assigned to this thread.

(c) Back to step 2a for more iterations until the desired number of iterations

have completed.

2.2 *

Proof In this section, we are going to show that the asynchronous art imple-

ment is strictly equivalent to sequential art implementation.

Algebraic reconstruction technique (ART):

xk+1 = xk + λk
bi − ⟨ai, xk⟩
∥ai∥2

aT
i (2.1)

We propose an order of {a0, a1, . . . , an−1} for ART, where parts of the set can be pro-

jected out of order.

Lemma 1 Any two adjacent rows in the order of projection, can be computed inde-

pendently if the two rows are orthognal to each other.

Proof:

xk+1 = xk + λk
bi − ⟨ai, xk⟩
∥ai∥2

aT
i

xk+2 = xk+1 + λk+1
bi+1 − ⟨ai+1, xk+1⟩

∥ai+1∥2
aT

i+1

= xk + λk
bi − ⟨ai, xk⟩
∥ai∥2

aT
i + λk+1

bi+1 − ⟨ai+1, xk+1⟩
∥ai+1∥2

aT
i+1 (2.2)

21

where

⟨ai+1, xk+1⟩ =
⟨
ai+1, xk + λk

bi − ⟨ai, xk⟩
∥ai∥2

aT
i

⟩
= ⟨ai+1, xk⟩ +

⟨
ai+1, λk

bi − ⟨ai, xk⟩
∥ai∥2

aT
i

⟩

Since

λk
bi − ⟨ai, xk⟩
∥ai∥2

= K

where K is a scalar

⟨ai+1, xk+1⟩ = ⟨ai+1, xk⟩ + K⟨ai+1, aT
i ⟩

If ai and ai+1 are orthognal to each other, then

⟨ai, aT
i+1⟩ = 0

⟨ai+1, xk+1⟩ = ⟨ai+1, xk⟩ + K0 = ⟨ai+1, xk⟩

So, Equation 2.2 becomes

xk+2 = xk + λk
bi − ⟨ai, xk⟩
∥ai∥2

aT
i + λk+1

bi+1 − ⟨ai+1, xk⟩
∥ai+1∥2

aT
i+1 (2.3)

22

Now if we split xk into xk
1 and xk

2, so that

xk
1 + xk

2 = xk⟨
xk

1, x
k
2

T⟩
= 0⟨

ai, xk
1

⟩
=

⟨
ai, xk

⟩
⟨
ai, xk

2

⟩
= 0⟨

ai+1, xk
2

⟩
=

⟨
ai+1, xk

⟩
⟨
ai+1, xk

1

⟩
= 0

Then Equation 2.3 becomes

xk+2 = xk
1 + xk

2 + λk
bi − ⟨ai, xk

1⟩
∥ai∥2

aT
i + λk+1

bi+1 − ⟨ai+1, xk
2⟩

∥ai+1∥2
aT

i+1

=

(
xk

1 + λk
bi − ⟨ai, xk

1⟩
∥ai∥2

aT
i

)
+

(
xk

2 + λk+1
bi+1 − ⟨ai+1, xk

2⟩
∥ai+1∥2

aT
i+1

)
(2.4)

In this form we can calculate xk+2 by calculating projection of xk
1 to ai and xk

2 to ai+1

independently and then sum them up. ■

Lemma 2 Any group of adjacent rows in the order of projection, can be computed

out of order if they are mutually orthognal to each other.

Proof:

If a group of adjacent rows are mutually orthognal to each other, that means

any two rows are orthognal to each other as well. Any permutation of order of

execution of this group can be obtained by sequence of swapping two adjacent rows,

thus the resulting permutation should also be the same as any other permutation of

this group. ■

Theorem 1 Any group of projections can be executed independently or in any order

if they are mutually orthognal to each other.

23

Proof: Since any two adjacent groups are mutually orthognal to each other,

using Lemma 2, we can shuffle the group order by swapping two group at a time.

We shall obtain any order we want this way. Thus, every group can be executed

independently. ■

2.3 Theoretical Speedup

2.3.1 Data Distribution

The theoretical speedup can be measured based on data distrubtion over dif-

ferent layers. Figure 2.2 shows how a sample dataset could distribute over various

layers. The speedup for each layer in Figure 2.2 can be assumed as n, where n is the

number of concurrent blocks on that layer. But the contribution of speed up from

that layer depends on that percentage of histories on that layer. Thus, the speed up

of Figure 2.2, can be can be computed as follows:

speedup = 0.3442 × 15

+ 0.2446 × 8 + 0.2317 × 7

+ 0.0599 × 5 + 0.0458 × 5 + 0.0438 × 4

+ 0.0089 × 4 + 0.0078 × 3 + 0.0070 × 3 + 0.0062 × 3

= 9.5

So roughly 9.5 times speedup without considering communication overhead. For

convenience, Figure 2.2 will be shown as Table 2.1.

However, this “theoretical speedup” is simply an estimation for the potential of

concurrent underlying structure. The basic assumption when calculate this speedup

is that in each layer, data are distributed evenly across the blocks in that layer.

The true distribution varies and can be observed from the history count data in the

24

1
,6
4
2
,1
5
9

1
,0
3
0
,4
7
7

1
,1
4
8
,9
4
3

1
,2
3
0
,9
9
2

1
,3
1
6
,5
5
0

1
,4
9
7
,9
8
2

1
,4
6
4
,8
9
9

1
,5
3
4
,9
2
3

1
,5
9
0
,8
0
3

1
,6
4
0
,2
2
8

1
,6
6
9
,1
8
0

1
,6
8
7
,5
5
9

1
,6
9
0
,9
5
2

1
,6
7
6
,3
5
1

1
,8
3
1
,6
7
6

0

2
,8
5
6
,8
4
2

2
,1
1
3
,2
6
2

2
,2
7
6
,4
8
4

2
,2
1
4
,8
7
8

2
,2
2
0
,3
6
0

2
,2
1
0
,4
3
8

4
0
,7
5
7

2
,1
6
7
,2
1
8

2
,0
4
4
,9
7
9

2
,1
6
9
,6
1
2

2
,2
0
4
,9
0
8

2
,2
1
4
,2
5
6

2
,2
1
7
,7
8
1

2
,1
9
3
,4
3
0

2
,2
0
4
,0
3
0

1
,1
8
1
,8
1
1

8
5
7
,0
2
3

7
1
9
,6
2
6

6
2
1
,0
4
6

5
6
3
,3
0
5

9
2
9
,0
1
5

8
0
8
,3
9
9

6
7
6
,8
0
0

5
9
6
,8
4
0

1
,6
0
0

9
0
2
,0
5
9

7
6
3
,6
8
8

6
4
5
,5
1
4

5
7
4
,6
5
5

3
0
0
,8
4
2

1
7
1
,6
9
5

1
1
5
,9
2
1

7
9

2
5
2
,6
9
5

1
5
2
,7
4
6

1
0
5
,8
6
0

2
2
4
,5
9
0

1
4
1
,8
9
6

9
7
,1
1
0

1
9
0
,6
4
6

1
2
6
,4
0
9

9
0
,3
8
9

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

S
lic
e

D
e
p
th

L
a
y
e
rs

1 2 3 4

0 0 1 0 1 2 0 1 2 3

2
2
,6
5
3
,6
7
4

1
6
,1
0
0
,2
3
9

1
5
,2
4
8
,9
9
6

3
,9
4
2
,8
1
1

3
,0
1
2
,6
5
4

2
,8
8
5
,9
1
6

5
8
8
,5
3
7

5
1
1
,3
0
1

4
6
3
,5
9
6

4
0
7
,4
4
4

6
5
,8
1
5
,1
6
8

S
u
b
to
ta
l

0
.6
2
%

0
.7
0
%

0
.7
8
%

0
.8
9
%

4
.3
8
%

4
.5
8
%

5
.9
9
%

2
3
.1
7
%

2
4
.4
6
%

3
4
.4
2
%

P
e
rc
e
n
ta
g
e

T
o
ta
l

H
is
to
ri
e
s

x
1
5

S
p
e
e
d
u
p

x
8

x
7

x
5

x
5

x
4

x
4

x
3

x
3

x
3

x
9
.5

T
o
ta
l

S
p
e
e
d
u
p

Fi
gu

re
2.
2:

Ex
pe

rim
en
ta
ld

at
a
di
st
rib

ut
io
n
pe

r
bl
oc
k

25

Table 2.1: Theoretical Speed up for sample dataset

layer index subtotal % blocks speedups
(1 0) 22,653,674 34.42% 15 5.16
(2 0) 16,100,239 24.46% 8 1.96
(2 1) 15,248,996 23.17% 7 1.62
(3 0) 3,942,811 5.99% 5 0.30
(3 1) 3,012,654 4.58% 5 0.23
(3 2) 2,885,916 4.38% 4 0.18
(4 0) 588,537 0.89% 4 0.04
(4 1) 511,301 0.78% 3 0.02
(4 2) 463,596 0.70% 3 0.02
(4 3) 407,444 0.62% 3 0.02

speedup 9.5

Appendix sections. Another implied assumption is that every history’s projection

computation takes the same among of time. This might not be the case, histories

that have different depths might varies quite a bit. The major overhead that could

prevent the real speedup to be anywhere close to the theoretical speedup would be

the commnunication delay and context switch between threads, this delay is on the

Operation System level, very hard to predict. Also, as dataset gets larger and larger,

the depth of the async grid could get deeper as well. The deeper the grid, the narrower

the bottleneck at the bottom of the grid gets, which limit the performance as well.

On the plus side, the algorithm is inherently asynchronous because the progress

between layers are not fully synchronous. For every block of computation to start, it

does not need to wait for the previous layer to fully finished, it only needs to wait for

related blocks from that layer. This asynchronous nature balances out with some of

the overheads.

Overall, “theoretical speedup” is a summary of the potential of a grid config-

uration.

26

2.3.2 Time Complexity

For a linear ART computation, assuming each slice has n voxels, time com-

plexity should take the following factor into considerations:

• According to [7], it is estimated that we needed approximately 20 histories

per voxels in order to construct a reasonable good image. Therefore, the

histories we have per slices is roughly Kn, where K is a constatnt and K > 20.

• Since each history is a line through a slice, the number of voxels is roughly

in the order of
√

n.

Since each projection of ART

xk+1 = xk + λk
bi − ⟨ai, xk⟩
∥ai∥2

aT
i

is depending on the length of the history, so each projection calculation is O
(
n

1
2

)
. A

full iteration of ART requires linearly iterate and compute projection of all histories,

the time complexity of a full iteration should be O
(
n

1
2 × Kn × M

)
where M is a con-

stant representing the number of slices. So the time complexity of ART should be

O
(
n

3
2

)
.

27

CHAPTER THREE

Implementation

3.1 Dataset

ART can be considered as an iterative solver of a system of linear equations

Ax = b, where

• A is a sparse m × n matrix who’s rows are proton histories.

• x represent the voxels in the reconstructed 3D image, arrranged as a vector

• b is a vector of corresponding proton energy detected for each proton history,

i.e. rows in matrix A.

Since we are reconstructing a 3D image, each history of a proton is a path the

proton has travel the in the 3D space. The history is represented by a series of voxels.

Figure 3.1, and Figure 3.2 demonstration how a 3D path is marked, seralized and

stored in a sparse format. The example demonstrate a history that passes through

only 1 slice. It’s also very common for a history to pass through multiple consecutive

slices.

We group the histories by their starting index and the length in terms of

number of slices it traveled through and put them into an index tree as shown in Fig-

ure 3.5. The index tree is essentially a two dimensional structure with first dimension

is mapped the the starting index of histories and the second dimension is mapped to

the slice length the each history. Every entry is a group of histories with the same

length and starting index. This way a block can easily be referenced with minimal

search time.

Figure 3.3 is an implementation of the concurrency illustrated in Figure 2.1

with total number of slices equals to 16 with maximum history length equals 5.

28

1 1

1 1

1 1

1

1

1 1

1 1

1 1

1 1

.

Figure 3.1: 3D images

29

1 1

1 1

1 1

1

1

1 1

1 1

1 1

1 1

10 11 21 22 32 33 44 55 65 66 76 77 87 88 98 99Local index:

310 311 321 322 332 333 344 355 365 366 376 377 387 388 398 399Global index:

+ slice offsets = + 3 x 10 x 10

1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Value

Index

Serialize

1 1 1

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Value

Index

1 1 1

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

Value

Index

1 1 1 1 1 1

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

Value

Index

Sparse Format

Figure 3.2: Data Format

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0, 1 2, 3 4, 5 6, 7 8, 9 10, 11 14, 1512, 13

1, 2 3, 4 5, 6 7, 8 9, 10 11, 12 13, 14

0, 1, 2 3, 4, 5 6, 7, 8 9, 10, 11 12, 13, 14

1, 2, 3 4, 5, 6 7, 8, 9 10, 11, 12 13, 14, 15

2, 3, 4 5, 6, 7 8, 9, 10 11, 12, 13

0, 1, 2, 3 4, 5, 6, 7 8, 9, 10, 11 12, 13, 14, 15

1, 2, 3, 4 5, 6, 7, 8 9, 10, 11, 12

2, 3, 4, 5 6, 7, 8, 9 10, 11, 12, 13

3, 4, 5, 6 7, 8, 9, 10 11, 12, 13, 14

1, 2, 3, 4, 5 6, 7, 8, 9, 10 11, 12, 13, 14, 15

0, 1, 2, 3, 4 5, 6, 7, 8, 9 10, 11, 12, 13, 14

2, 3, 4, 5, 6 7, 8, 9, 10, 11

3, 4, 5, 6, 7 8, 9, 10, 11, 12

4, 5, 6, 7, 8 9, 10, 11, 12, 13

Block ID Layer ID

0

0

1

0

1

2

0

1

2

3

0

1

2

3

4

0

1

2

3

4

Figure 3.3: Art Concurrency Blocks

31

The max history length can go as deep as necessary but in our case 5 is enough to

reconstruct a very good quality image.

Every block shown in Figure 3.3 is an asynchronous node used to construct

the asynchronous grid. Every node must has at least following properties:

• Slices the node represent.

• A channel that accept data from upstream nodes

• A channel that can send data to downstream nodes.

• A channel that can send out final result.

3.2 Sorting

For testing this algorithm, before the reconstruction starts, dataset must be

loaded from disk to memory and organized into a index tree which will be described

in Section 3.3. Sorting structure is described in Figure 3.4. One thread is dedicated

reading from disk and dispatch read data into a work queue. Worker threads queue

on the work queue to fetch and work on tagging raw dataset.

3.3 Index Tree

The CTP404 dataset was used in this work is used in previous work [8], pro-

vided by Dr. Paniz Karbasi. They are stored in files in local storage. Dataset are

loaded into the memory before reconstruction starts to simulate a real life scenario

since, realistically, data will always be passed in memory rather than from disk IO.

The final final format of the data sorted in memory is shown in Figure 3.5.

All histories are grouped by their starting slice index and the length of the history

in term of slices. Within each group, i.e. histories that have the same starting index

and number of slices, data are stored as an unsorted vector.

3.4 Language and Environment

The choice of language to implementation is Clojure. There are several reasons

for this choice.

32

Distributor

Queue

Worker Worker Worker Worker.

Collector

send

fetch

thread

Figure 3.4: Data Format

33

0

0, 1

0, 1, 2

0, 1, 2, 3

0, 1, 2, 3, 4

.

.

.

.

Length = 1

Length = 2

Length = 3

Length = 4

Length = 5

Length = 6

1

1, 2

1, 2, 3

1, 2, 3, 4

1, 2, 3, 4, 5

.

.

.

.

Length = 1

Length = 2

Length = 3

Length = 4

Length = 5

Length = 6

First slice = 0

First slice = 1

.

.

.

.

Level 0 Level 1 Level 2

Figure 3.5: Index tree structure

34

Runable

new
Blocked

Waiting

time
waiting

terminated

runout m
ethod

sta
rt

ac
qu

iri
ng

 a
 lo

ck

lo
ck

 a
cq

ui
re

d

Waiting for
notification

Notification acquired

w
aiting for tim

eout

notification

tim
eout or notification

occurred

Figure 3.6: Java thread life cycle

First, Clojure is a language that runs on Java Virtual Machine (JVM). JVM

has a very sophiscated system that handles multithreading. For instance, every object

in JVM is implicitly associated with a monitor lock which can be used for synchro-

nization. Also, JVM has a very advanced thread management system. JVM threads

have a number of states, similar to the OS processes, except they are managed by

the JVM instead of the Operating System. JVM state transitions sare shown in

Figure 3.6.

Apart from the multithreading features, JVM also provides a very diverse and

versatile ecosystem. There are a lot of useful libraries available on JVM. Everything

that can run on JVM can also be used in Clojure as well.

Second, Clojure is desgined with concurrency in mind. It’s fundamental con-

tainer data structures are all immutable, which means any write operation on a im-

mutable data structure is operated on top of the original data without modifying

them. For example, when you are trying to add items to a immutable list, you will

35

get reference to a new list combining the original list and the new item, and the

original list remain untouched. This model makes sharing data between threads are

much more simpler.

Third, Clojure is one of the few langauges that has very good support for CSP

model. CSP stand for Communicating Sequential Processes, it’s a mathematical

process calculus for concurrency modeling. It is described by Tony Hoare in 1978.

The basic idea behind CSP is that there are a number of independent processes that

each execute some ordered sequence of steps. These processes can communicate with

each other by sending or receiving messages over channels. When a process wants to

read a message from a channel, it blocks until a message is available, then it consumes

the message and moves on. A process can also place a message on a channel either

synchronously or asynchronously. By using communication over channels, multiple

processes can synchronize such that one process waits for a specific input from another

before proceeding. The “process” referred in the concurrency model is an abstract

conceptual idea, in an implementation they can be either Operating System processes

or threads of a running program. In our case, we are using threads provided by the

JVM environment for the process.

Fourth, Clojure provides a very dynamic developing environment making de-

veloping alorigthms with large dataset much easier. With Clojure, I’m able to start

up a developing environment on a remote server that has large enough memory to

handle the dataset I’m experimenting and load the dataset. I can then connect to the

server remotely from my much less powerful laptop and send updated algorithm to

run on server remotely. Without this feature, I would have been much more difficult

to progress the development of this algorithm.

3.5 Async Grid

To setup the concurrency we have described in our algorithm, we are going to

setup a grid that represent the connections or dependencies in the graph.

36

3.5.1 Channels

A channel is an important concept in CSP. It is a conduit that can carry a

value to one CSP process to another CSP process. In CSP, a process is a fundemental

object. It is simply an anonymous (unnamed) piece of code that can execute a

number of steps in order, potentially with its own control flow. Code in a process

always runs synchronously - that is, the process will not proceed on to the next step

until the previous step completes. So the CSP process is essentially a thread in our

implementation here. And channels are used to communiate between threads. A put

action is when a thread is trying to put a data onto the channel. A take action is

when a thread is trying to take, or consume, a data from a channel. When a thread

is trying to put but the channel is full or trying to take when the channel is empty,

the thread can either be blocked or parked.

3.5.2 Blocking vs Parking

There are two types of threads in Clojure’s core.async library. core.async

thread create threads from JVM’s CachedThreadPool, while go thread create threads

from JVM’s FixedThreadPool. CachedThreadPool create new threads as needed, but

will reuse previously constructed threads when they are available. FixedThreadPool

reuses a fixed numbr of threads operating off a shared unbouned queue. At any

point, at most nThreads threads will be active processing tasks. If additional tasks

are submitted when all threads are active, they will wait in the queue until a thread

is available.

CachedThreadPool is used for performance intensive threads, e.g. threads

that are doing reconstructions; while FixedThreadPool is used for background utility

threads, doing works such as multiplexing values from one channel to other channels.

37

3.5.3 Async Node

An async node is a data structure that hold some essential data for a thread

to execute independently without doing any global lookup or request. It includes the

following attributes:

• List of slice indices: Indicate which slices this block / thread is handling.

• Key: A keyword generated from list of slice indices. It is used as a identifier

for the data sent downstream. Can also be used as key for the look up table

in the grid.

• Unused: Slices that are used by downstream nodes.

• Input channel: A channel a thread will listen on in order to get partially

reconstructed data segment from feeding threads.

• Output channel: A channel a thread will send its partially reconstructed

result to downstream threads

• Result channel: A channel that head threads will send their final recon-

structed segment out.

• Mux: A multiplexing object that will move data from output channel to

downstreams’ input channels.

• Downstreams: Keep track of nodes that are listening on output channel, used

for setting up connections.

• Upstreams: Keep track of nodes input channel is listening to.

• Local offsets map: A hashmap that maps keys of upstream nodes to relative

position need to be used for local reconstruction

• Global Offset: Offset information used to copy data from and to global data.

• Type: There are two types of async node:

∗ Head: These are nodes control the start and finish of reconstruction.

They will grab data segmant from global data based on ’Global Offset’,

38

initiate the reconstruction, then propegate partially reconstructed data

to other nodes.

∗ body: These are nodes continuously applies reconstructions as long as

there are data sent.

When reconstruction starts, each node will be assigned with a thread created

from CachedThreadPool. Each thread will follow a slightly different steps based

on their type as shown in Figure 3.7. Both type will fetch data from global index

tree using keys derived from their “list of slice indices”, and shuffle them first before

reconstruction starts. The head nodes will apply reconstruction algorithm before

sending data to the downstreams, while body nodes will have to wait for the data

from upstream before applying first iteration of reconstruction. The head nodes will

also apply additional filters at the end of each iteration, while the body nodes do not.

At the end of the reconstruction, the final results will be collected from head nodes.

3.5.4 Grid Generation

The grid is a interconnected async node. Each node will have a set of upstream

nodes and downstream nodes. A node receives data from upstream nodes and send

data to downstream nodes. There are many possible configurations of the grid, we

choose the one that is described in Figure 3.8 where arrows indicate the direction of

data flow.

When generating the grid, there are two major steps. First, we generate all

the nodes we are going to use; then we iterate through all the nodes to make sure

they are all conneceted in a desired way.

3.5.4.1 Gride Nodes Generation. Nodes are generated block by block. Each

block contains all the nodes that covers the same number of continuous slices. Within

each block, there are 1 or more rows. Each row contains maximum nodes that have

no overlapping slices. An expected pattern is shown in Figure 3.9.

39

Fetch data based on node info

Initial setup

Apply reconstruction algorithm

Reached
Max

Iteration?

Send final result

Finish & Clean up

Send data to downstream

Wait for data from
upstream

Yes

Fetch data based on node info

Initial setup

Finish & Clean up

Wait for data from
upstream

Apply reconstruction algorithm

Reached
Max

Iteration?

Send data to downstream

No

Apply Filters (optional, e.g. TVS)

(a) Head Node Reconstruction Steps (b) Body Node Reconstruction Steps

Figure 3.7: Reconstruction steps for different types of threads.

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3.8: Async nodes connection in a grid

41

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0, 1 2, 3 4, 5 6, 7 8, 9 10, 11 14, 1512, 13

1, 2 3, 4 5, 6 7, 8 9, 10 11, 12 13, 14

0, 1, 2 3, 4, 5 6, 7, 8 9, 10, 11 12, 13, 14

1, 2, 3 4, 5, 6 7, 8, 9 10, 11, 12 13, 14, 15

2, 3, 4 5, 6, 7 8, 9, 10 11, 12, 13

0, 1, 2, 3 4, 5, 6, 7 8, 9, 10, 11 12, 13, 14, 15

1, 2, 3, 4 5, 6, 7, 8 9, 10, 11, 12

2, 3, 4, 5 6, 7, 8, 9 10, 11, 12, 13

3, 4, 5, 6 7, 8, 9, 10 11, 12, 13, 14

1, 2, 3, 4, 5 6, 7, 8, 9, 10 11, 12, 13, 14, 15

0, 1, 2, 3, 4 5, 6, 7, 8, 9 10, 11, 12, 13, 14

2, 3, 4, 5, 6 7, 8, 9, 10, 11

3, 4, 5, 6, 7 8, 9, 10, 11, 12

4, 5, 6, 7, 8 9, 10, 11, 12, 13

Block ID Layer ID

0

0

1

0

1

2

0

1

2

3

0

1

2

3

4

0

1

2

3

4

Figure 3.9: Blocks and layers of the grid

42

The pattern can be generated using snippet from Listing 3.1.

Listing 3.1: Generating all slice sequences
(let [length 16]

(for [block−size (range 1 6)]
(for [start−idx (range 0 block−size)]

(partition block−size (range start−idx 16)))))

Two functions used here:

(range start end) returns a sequence of number from start (inclusive) to end (ex-

clusive)

(partition n coll) returns a sequence of lists of partitions, n iterms each, without

overlapping.

The exact result of Listing 3.1 is shown in Listing 3.2. Comparing it to Fig-

ure 3.9 they are identical in term of grouped slice indices.

Listing 3.2: Generated sequence
((((0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)))
(((0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15))
((1 2) (3 4) (5 6) (7 8) (9 10) (11 12) (13 14)))

(((0 1 2) (3 4 5) (6 7 8) (9 10 11) (12 13 14))
((1 2 3) (4 5 6) (7 8 9) (10 11 12) (13 14 15))
((2 3 4) (5 6 7) (8 9 10) (11 12 13)))

(((0 1 2 3) (4 5 6 7) (8 9 10 11) (12 13 14 15))
((1 2 3 4) (5 6 7 8) (9 10 11 12))
((2 3 4 5) (6 7 8 9) (10 11 12 13))
((3 4 5 6) (7 8 9 10) (11 12 13 14)))

(((0 1 2 3 4) (5 6 7 8 9) (10 11 12 13 14))
((1 2 3 4 5) (6 7 8 9 10) (11 12 13 14 15))
((2 3 4 5 6) (7 8 9 10 11))
((3 4 5 6 7) (8 9 10 11 12))
((4 5 6 7 8) (9 10 11 12 13))))

A slightly different pattern can be generated using Listing 3.3, and result is

shown in Listing 3.4

Listing 3.3: Generating all slice sequences
(let [length 16]

(for [block−size (range 1 6)
start−idx (range 0 block−size)]

(partition block−size (range start−idx 16))))

Listing 3.4: Alternative sequence
(((0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15))
((0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15))
((1 2) (3 4) (5 6) (7 8) (9 10) (11 12) (13 14))
((0 1 2) (3 4 5) (6 7 8) (9 10 11) (12 13 14))
((1 2 3) (4 5 6) (7 8 9) (10 11 12) (13 14 15))
((2 3 4) (5 6 7) (8 9 10) (11 12 13))
((0 1 2 3) (4 5 6 7) (8 9 10 11) (12 13 14 15))

43

((1 2 3 4) (5 6 7 8) (9 10 11 12))
((2 3 4 5) (6 7 8 9) (10 11 12 13))
((3 4 5 6) (7 8 9 10) (11 12 13 14))
((0 1 2 3 4) (5 6 7 8 9) (10 11 12 13 14))
((1 2 3 4 5) (6 7 8 9 10) (11 12 13 14 15))
((2 3 4 5 6) (7 8 9 10 11))
((3 4 5 6 7) (8 9 10 11 12))
((4 5 6 7 8) (9 10 11 12 13)))

Either format would work, with format in Listing 3.2 much easier to query for

a particular row when testing and examing async node data manually.

In order to generate async nodes instead of just lists of slice indices, we simply

just apply a function that generate async from given slice indices. Snippet is shown

in Listing 3.5

Listing 3.5: Generating all async nodes
(let [length 16]

(for [block−size (range 1 6)]
(for [start−idx (range 0 block−size)]

(map newAsyncNode
(partition block−size (range start−idx 16))))))

3.5.4.2 Grid Connection Setup. There are a few basic rules when connecting

nodes in the grid

(1) Every node do not connect to any other nodes in the same row, since they

are not supposed to have any overlapping slices.

(2) Every node only try to connect with nodes from rows above it, a.k.a upstream,

with the exception of top row when making loop back connections.

Since there is no previous row to connect to for the first row, we start making

connection from the second row. When making connection for each row, we keep

track of three variables:

• An iterator to the current row

• An iterator to the parent row which is the row immediately above current

row

• An iterator to a stack of previous rows

Whenever we finished with a row, that row will be pushed onto a stack. So

when working on the next row, the parent row for that row is always the first row on

44

0, 1 2, 3 4, 5 6, 7 8, 9 10, 11 14, 1512, 13

1, 2 3, 4 5, 6 7, 8 9, 10 11, 12 13, 14

Parent

Current

Figure 3.10: Iterators

stack. The current row iterator and parent row iterator relationship can be shown in

Figure 3.10. The basic idea is to try to make connections between parent node and

current node, if success and current node is not full yet, move the parent node; if the

current node is full, or connection failed, move the current node. They keep moving

until current row iterator reaches the end. Both iterators are moving from left to

right as indicated in the figure.

When a downstream node (receiving node) is making connection with an up-

stream node (sending node), the following things will happen:

• Determine continuous overlapping slices between downstream node’s slices

and upstream node’s unused slices. If there is none, no connection will be

made and nothing will be changed in neither nodes.

• Overlapping slices will be added to upstream node’s downstream map, and

downstream node’s upstream map.

• Downstream node’s input channel will be added to upstream node’s output

multiplexer.

• Overlapping slices will be removed from upstream node’s unused list.

One of the challenges when making connections are when there are gaps of

coverages between rows, as shown in Figure 3.11, at both beginning and end of some

rows. So when traversing through a row when making connections, we classify the

whole path into three sections:

45

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0, 1 2, 3 4, 5 6, 7 8, 9 10, 11 14, 1512, 13

1, 2 3, 4 5, 6 7, 8 9, 10 11, 12 13, 14

0, 1, 2 3, 4, 5 6, 7, 8 9, 10, 11 12, 13, 14

1, 2, 3 4, 5, 6 7, 8, 9 10, 11, 12 13, 14, 15

2, 3, 4 5, 6, 7 8, 9, 10 11, 12, 13

0, 1, 2, 3 4, 5, 6, 7 8, 9, 10, 11 12, 13, 14, 15

1, 2, 3, 4 5, 6, 7, 8 9, 10, 11, 12

2, 3, 4, 5 6, 7, 8, 9 10, 11, 12, 13

3, 4, 5, 6 7, 8, 9, 10 11, 12, 13, 14

1, 2, 3, 4, 5 6, 7, 8, 9, 10 11, 12, 13, 14, 15

0, 1, 2, 3, 4 5, 6, 7, 8, 9 10, 11, 12, 13, 14

2, 3, 4, 5, 6 7, 8, 9, 10, 11

3, 4, 5, 6, 7 8, 9, 10, 11, 12

4, 5, 6, 7, 8 9, 10, 11, 12, 13

Head Tail

Figure 3.11: Head and tail region in the grid

46

Head At the beginning of each row, after making connection with the first parent

node, the current node would travse through the stack of previous rows to

try to make connections with skipped slices.

Body This is the “normal” operation, where current node and parent node try to

make connection, if anyone is saturated, iterator will move to the next item.

Tail At the end of each row, if parent nodes are depleted, and the current node is

still not yet saturated, the current node would travese through the stack of

previous rows again to try to make connections with skipped slices at the end

of each previous rows until the current node is fully saturated.

The head and tail regions are marked with red circle in Figure 3.11.

At the end, nodes from the last block containing slices that have not yet used

by any down stream will connect with corresponding head node from the very first

row of the grid.

3.5.5 Grid Operation

3.5.5.1 Message Format and Protocol. The general format of messages sent,

shown in Figure 3.12, is a tag followed by message content. Tag is used to specify

the type. With the current setup, there are two types. One is used to specify the

source of the message, the other is used to signal downtream thread that the upstream

thread has stopped. Also, as shown in Figure 3.12, case 1 is only used for sending

data between async nodes, and case 3 is only used for head nodes to send result

for additional threads to collect. Case 3 is used in both inter-nodes and external

communications.

3.5.5.2 Asynchronous Operation. The grid purpose is to allow different

nodes work on different part of the dataset concurretly without breaking any data

dependency rules by creating a dependency network and sharing local data with only

relevent nodes. Sharing node send its data as a vector of two elements. The first

47

tag

0

message

1Vector index:

Vector

:0-1-2-3

0

array data

1Vector index:

Vector

:stop

0Vector index:

Vector

:3

0

data

1Vector index:

Vector

array data offsets

General Format:

Case 1, sending data downstream

Case 2, signaling termination

Case 3, head nodes sending result

global offset length local offset

Figure 3.12: Format used by sent messages

element is the key of the sending node, and the second element is the reference of

shared data. When downstream node, i.e. receiving node, reveiving the data, it will

need to copy the section of data needed to local data. Since the data is an array, the

copy usually involves the following parameters:

Length The number of elements should be copied from source array to destination

array.

Source offset From which index source array should be copied.

Destination offset To which index of destination array source array should be

copied.

Since we know the slice coverage of each node, we can calculate these param-

eters right after all the nodes are connected. The length is simply the number of

overlapping slices times the number of pixels of each slice, the sources offset is dif-

ference between the first index of overlapping slices and the first index of upstream

48

node slices, and the destination offset is the difference between the first index of over-

lapping slices and the first index of downstream node slices. These information are

stored in a map on downstream nodes where key is the key of the upstream node and

the value to the a vector of source offset, length and destination offset. With this

setup, whenever we get an value from an upstream node, we just need to do a quick

lookup with that upstream node’s key, and the value we get can be used to call java’s

“arraycopy” function to copy received data to local array segment.

3.5.5.3 Grid Connection Verification. One of the simplest operation we can

do with the grid is to verify the connectivity and consistency. For a grid with n slices,

a zero array with length n is passed to the grid.

(1) First layer of the grid will fetch the array data based on its index, and operate

on it. Then pass the result to is downstream nodes defined by the grid

connectivity.

(2) Threads corresponding to each block will wait for data defined by their up-

stream connection. Once all data are collected, combine them, and operate

on them. Results are send to downstreams.

(3) Once First layer of the grid got the result back, they will combine their results

as a new array and returns.

The operation used for testing could be as simple as “+1” to each element.

Figure 3.13 illustrate testing the a grid described in Figure 3.11 by adding 1

to a zero array, and expected result.

3.5.5.4 Blocking Asynchronous Reconstruction. The general process of asyn-

chronous reconstruction using async grid works as follows:

(1) All the histories are added to a index tree that is sorted based on their starting

slice and history length as shown in Figure 3.5.

49

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5 9 12 14 15 15 15 15 15 15 15 15 14 12 9 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

index

value

index

value

Every node +1 to elements

it’s responsible

Figure 3.13: Testing a grid with 16 slices and depth = 5

(2) Setup async grid based on the dimension of the dataset. For example, for a

dataset with 16 slices, one possible setup is shown in Figure 3.14.

(3) Launch “Head Node” threads, as seen in Figure 3.7 (a), for nodes in the first

layer of the grid.

(4) Launch “Body Node” threads, as seen in Figure 3.7 (b), for the rest of the

node son the grid.

(5) Launch a seperate collector thread to collect final result from “Head Nodes”

threads.

This version of algorithm will be referred as “Blocking” for the fact that major-

ity of the running threads are blocked due to nodes dependency. There is no limits on

the number of threads a process can have in the OS, but too many blocking threads

will make Operation System’s scheduling task more difficult and it will add to the

overall overhead time.

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0, 1 2, 3 4, 5 6, 7 8, 9 10, 11 12, 13 14, 15

1, 2 3, 4 5, 6 7, 8 9, 10 11, 12 13, 14

0, 1, 2 3, 4, 5 6, 7, 8 9, 10, 11 12, 13, 14

1, 2, 3 4, 5, 6 7, 8, 9 10, 11, 12 13, 14, 15

2, 3, 4 5, 6, 7 8, 9, 10 11, 12, 13

0, 1, 2, 3 4, 5, 6, 7 8, 9 ,10, 11 12, 13, 14, 15

1, 2, 3, 4 5, 6, 7, 8 9, 10, 11, 12

2, 3, 4, 5 6, 7, 8, 9 10, 11, 12, 13

3, 4, 5, 6 7, 8, 9, 10 11, 12, 13, 14

0, 1, 2, 3, 4 5, 6, 7, 8, 9 10, 11, 12, 13, 14

1, 2, 3, 4, 5 6, 7, 8, 9, 10 11, 12, 13, 14, 15

2, 3, 4, 5, 6 7, 8, 9, 10, 11

3, 4, 5, 6, 7 8, 9, 10, 11, 12

4, 5, 6, 7, 8 9, 10, 11, 12, 13

Figure 3.14: Grid with slices = 16, depth = 5

51

3.5.5.5 Threaded Asynchronous Reconstruction. One way, potentially could

ease the scheduling mess for the OS is to combine some head and body threads into

one thread. In Figure 3.14, threads, or blocks, that have dependencies vertically will

never run at the same time. One strategy to combine threads, is based on their

corresponding first slice id, for example, thread 0, (0, 1), (0, 1, 2) and so on, can

be combined into one thread. This is shown in Figure 3.15, in which threads that

have the same starting slice id have the same color, it’s an indication that they are

combined into one thread. When combined into one thread, there no need to com-

municate through channel. The data can be simply passed through memory.

52

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0, 1 2, 3 4, 5 6, 7 8, 9 10, 11 12, 13 14, 15

1, 2 3, 4 5, 6 7, 8 9, 10 11, 12 13, 14

0, 1, 2 3, 4, 5 6, 7, 8 9, 10, 11 12, 13, 14

1, 2, 3 4, 5, 6 7, 8, 9 10, 11, 12 13, 14, 15

2, 3, 4 5, 6, 7 8, 9, 10 11, 12, 13

0, 1, 2, 3 4, 5, 6, 7 8, 9 ,10, 11 12, 13, 14, 15

1, 2, 3, 4 5, 6, 7, 8 9, 10, 11, 12

2, 3, 4, 5 6, 7, 8, 9 10, 11, 12, 13

3, 4, 5, 6 7, 8, 9, 10 11, 12, 13, 14

0, 1, 2, 3, 4 5, 6, 7, 8, 9 10, 11, 12, 13, 14

1, 2, 3, 4, 5 6, 7, 8, 9, 10 11, 12, 13, 14, 15

2, 3, 4, 5, 6 7, 8, 9, 10, 11

3, 4, 5, 6, 7 8, 9, 10, 11, 12

4, 5, 6, 7, 8 9, 10, 11, 12, 13

Figure 3.15: Threaded version of async reconstruction

53

CHAPTER FOUR

Experiment

4.1 Introduction

This chapter describes the experiments used to measure the time performance

of the proposed algorithm. Experiments are run on two different hardwares over three

different datasets to demonstrate the performance and how the performance scales

over different data size and hardware configurations.

4.2 Hardware

The two machines used for these experiments are listed in Table 4.1. The major

difference between pb005 and lm001 is the number of CPUs. lm001 has almost

twice number of CPUs than pb005. Although lm001 has significant more memory

than pb005, runtime memory is kept under 240GB. So the additional memory did

not have any impact on the performance.

4.3 Dataset

Two different phantoms are used in experiments. They are

• CTP404 Sensitometry Phantom

• George Phantom

Table 4.1: Configurations of computers used for performance testing.

Machine Name pb005 lm001
CPU Model Xeon E5-2690 v2 Xeon Gold 6140

Base Frequency 3.0 GHz 2.30 GHz
Max Turbo Frequency 3.6 GHz 3.7 GHz

Physical Cores 20 36
L3 Cache 25 MB 24.75 MB

Memory Size 252 GB 755 GB
Memory bus speed 1866 MT/s (DD3) 2666 MT/s (DDR4)

54

Table 4.2: Dataset differences

Dataset Thickness Number of Slices Number of Histories
CTP404 2.5 mm 16 66,123,545

George 2.5mm 2.5 mm 34 122,381,720
George 1mm 1 mm 64 123,832,929

There are 3 different datasets used for experiments, they are listed as follows

CTP404 A scan of CTP404 phantom, histories are computed with 2.5mm slice thick-

ness.

George 2.5mm A scan of George phantom, histories are computed with 2.5mm slice

thickness.

George 1mm This is the same scan of George 2.5mm dataset, histories are com-

puted with 1mm slice thickness.

The scan of CTP404 phantom is much smaller in both dimention and the

number of histories. By comparing CTP404 phantom dataset with george phantom

2.5mm thickness history set, as shown in Table 4.2, we can say that the george

phantom 2.5mm dataset is about twice as big as CTP404 2.5mm dataset. On the

other hand, we can see that george phantom 1mm dataset is about the same size

as george phantom 2.5mm dataset in term of number of histories, while has almost

twice the amount of slices. These datasets should provide a good indication of how

the algorithm scales as dataset increases.

4.4 Experiments

On each computing node, the following procedure is used to run the perfor-

mance test

(1) Start a Clojure runtime

(2) Load a dataset

(3) Setup an async grid using configuration specific to each dataset.

(4) Run sequential version using the grid for 5 times.

55

Table 4.3: CTP404 dataset history distribution over slice depth

Depth History count % Accumulated count acc %
1 22,653,674 34.26% 22,653,674 34.26%
2 31,349,235 47.41% 54,002,909 81.67%
3 9,841,381 14.88% 63,844,290 96.55%
4 1,970,878 2.98% 65,815,168 99.53%
5 268,949 0.41% 66,084,117 99.94%
6 29,719 0.04% 66,113,836 99.99%
7 4,874 0.01% 66,118,710 99.99%
8 2,044 0.00% 66,120,754 100.00%
9 1,222 0.00% 66,121,976 100.00%
10 758 0.00% 66,122,734 100.00%
11 443 0.00% 66,123,177 100.00%
12 231 0.00% 66,123,408 100.00%
13 101 0.00% 66,123,509 100.00%
14 32 0.00% 66,123,541 100.00%
15 4 0.00% 66,123,545 100.00%
16 0 0.00% 66,123,545 100.00%

(5) Run blocked version, (see Section 3.5.5.4), using the grid for 5 times.

(6) Run threaded version, (see Section 3.5.5.5) using the grid for 5 times.

(7) Exit the Clojure runtime.

The exact procedure is used for every dataset on every computing node.

4.4.1 CTP404 Sensitometry Phantom

4.4.1.1 Setup. The proton history counts of dataset CTP404 across differ-

ent starting slice and slice depth are listed in appendix Tables B.1, Table B.2 and

Table B.3. A summary of those tables are shown in Table 4.3.

Due to the thickness of the slice is 2.5mm, slice depth of 4 means there are up

to 10mm deviation from the original intented direction. Although some deviation is

necessary to obtain some cross slice information, too much of is an indication of noisy

data. So a cutoff point is set at slice depth 4. Also notice that at slice depth 5, the

amount of data to be included is less than 1%. With this cutoff point, there are still

99.53% histories included. The cut-off point can be seen in table 4.3.

56

Figure 4.1: Reconstruction of CTP404 phantom 2mm thickness, iteration 6

4.4.1.2 Reconstructioned Image. The reconstruction image after 6 itera-

tions is shown in Figure 4.1. All the features of the phantom can be identified. The

detailed quality is not of concern here, since appropriate parameters can be adjusted

to obtain images with much better quality.

4.4.2 George Phantom 2.5mm thickness

4.4.2.1 Setup. The proton history counts of dataset CTP404 across dif-

ferent starting slice and slice depth are listed in appendix Tables C.1, Tables C.2,

Tables C.3, Tables C.4 and Tables C.5. A summary of those tables are shown in table

Tables 4.4.

57

Table 4.4: George 2.5mm dataset history distribution over slice depth

Depth History count % Accumulated count acc %
1 39,809,087 32.53% 39,809,087 32.53%
2 58,399,290 47.72% 98,208,377 80.25%
3 19,608,018 16.02% 117,816,395 96.27%
4 4,013,844 3.28% 121,830,239 99.55%
5 512,695 0.42% 122,342,934 99.97%
6 37,322 0.03% 122,380,256 100.00%
7 1,446 0.00% 122,381,702 100.00%
8 18 0.00% 122,381,720 100.00%
9 0 0.00% 122,381,720 100.00%

The distribution is very similar to dataset CTP404. A cutoff point is also

set at slice depth 4. The number of histories include for computation in terms of

percentage is very similar to that of CTP404 dataset, also turns out ot be 99.55%.

This is probably due the fact that both dataset are computed with 2.5mm thickness.

4.4.2.2 Reconstructioned Image. Recontructed image of 12th slice after 6

iteraations is shown in Figure 4.2. All the important features are clearly identifiable

in the image.

4.4.3 George Phantom 1mm thickness

4.4.3.1 Setup. The proton history counts of dataset CTP404 across differ-

ent starting slice and slice depth are listed in appendix Tables D.1, Tables D.2, Ta-

bles D.3, Tables D.4, Tables D.5, Tables D.6, Tables D.7, Tables D.8 and Tables D.9

A summary of those tables are shown in Tables 4.5.

Due to the thickness of each slice is 1mm, the slice depth of proton histories

tends to be much deeper in terms of number of slices. Although it’s temping to set

the slice depth to be 10 so that slice depth in terms of mm is the same as george

2.5mm dataset, Tables 4.5 shows that histories with depth of 9 is less than 1% (still

less than 1% even after add depth of 10). Also, at slice depth of 8, there are more

58

Figure 4.2: Reconstruction of George phantom with 2mm thickness, iteration 6

59

Table 4.5: George 1mm dataset history distribution over slice depth

Depth History count % Accumulated count acc %
1 13,566,575 10.96% 13,566,575 10.96%
2 36,215,913 29.25% 49,782,488 40.20%
3 28,174,841 22.75% 77,957,329 62.95%
4 19,405,078 15.67% 97,362,407 78.62%
5 12,258,448 9.90% 109,620,855 88.52%
6 7,108,926 5.74% 116,729,781 94.26%
7 3,813,738 3.08% 120,543,519 97.34%
8 1,883,364 1.52% 122,426,883 98.86%
9 851,217 0.69% 123,278,100 99.55%
10 354,999 0.29% 123,633,099 99.84%
11 134,812 0.11% 123,767,911 99.95%
12 45,933 0.04% 123,813,844 99.98%
13 14,068 0.01% 123,827,912 100.00%
14 3,853 0.00% 123,831,765 100.00%
15 918 0.00% 123,832,683 100.00%
16 195 0.00% 123,832,878 100.00%
17 48 0.00% 123,832,926 100.00%
18 3 0.00% 123,832,929 100.00%
19 0 0.00% 123,832,929 100.00%

histories included than george 2.5mm dataset at depth of 4. So depth of 8 for this

dataset should be sufficient for this dataset.

4.4.3.2 Reconstructioned Image. A reconstructed middle slice, slice #38,

after 6 iterations is shown in Figure 4.3.

4.4.3.3 Timing. Performance data are shown in Table 5.8 and Table 5.9.

On pb005, the speedup over sequential algorithm is up to 16, while on lm001 speedup

is about 10-11, which is also pretty impressive. Part of the reason that pb005, a

machine with less core and memory bandwidth can achieve much more speed up is

probably due the face that the concurrent version of reconstruction algorithm is close

to its maximum potential on that machine. This also indicates that on lm001, it can

take on a much larger dataset without having too much performance impact.

60

Figure 4.3: Reconstruction of George phantom with 1mm thickness, iteration 6

61

CHAPTER FIVE

Discussion

5.1 Performance

5.1.1 Theoretical Speedup

Base on the cut-off depths described in Section 4.4.1.1, Section 4.4.2.1 and

Section 4.4.3.1, together with history count data from Appendix B, Appendix C and

Appendix D, speedup info are extracted shown in Table 5.1, Table 5.2 and Table 5.3.

5.1.2 Timing Data

The timing data from experiments on the three datasets are shown in Table 5.4,

Table 5.5, Table 5.6, Table 5.7, Table 5.8 and Table 5.9

Note that the difference between “blocked” and “threaded” version is not big,

but for the most of the result, they do beat out the “blocked” version. The “threaded”

algoirthm’s timing data do have a a very stable timing result, while “blocked” version’s

timing data varies quite a bit. This improvement is mostly likely due to less threads

to be scheduled by the OS. Overall the difference between the two versions are not

huge.

The dataset size from CTP404 to Geroge phantom 2.5mm is almost doubled,

with the same grid depth, but the time increase is only about (71.62− 55.43)/55.43 =

0.29, which is 29%. So this algorithm does seem to scale well with problem size.

Also when the dataset is broken down into more slices, as seen from George 2.5mm

to George 1mm, the timing does gets better. Although not by much, only (71.62 −

60.13)/60.13 = 0.19, 19%. The small increase is due to the increase in the depth of

the grid, as well as different data distribution over the grid.

62

Table 5.1: Theoretical Speed up for CTP404 dataset

layer index subtotal % blocks speedups
(1 0) 22653674 34.42% 15 5.16
(2 0) 16100239 24.46% 8 1.96
(2 1) 15248996 23.17% 7 1.62
(3 0) 3942811 5.99% 5 0.30
(3 1) 3012654 4.58% 5 0.23
(3 2) 2885916 4.38% 4 0.18
(4 0) 588537 0.89% 4 0.04
(4 1) 511301 0.78% 3 0.02
(4 2) 463596 0.70% 3 0.02
(4 3) 407444 0.62% 3 0.02

speedup 9.5

Table 5.2: Theoretical Speed up for George 2.5mm dataset

layer index subtotal % blocks speedups
(1 0) 39809087 32.68% 25 8.17
(2 0) 29516558 24.23% 13 3.15
(2 1) 28882732 23.71% 12 2.84
(3 0) 6624510 5.44% 8 0.43
(3 1) 7002776 5.75% 8 0.46
(3 2) 5980732 4.91% 8 0.39
(4 0) 1141320 0.94% 6 0.06
(4 1) 1083321 0.89% 6 0.05
(4 2) 820886 0.67% 6 0.04
(4 3) 968317 0.79% 5 0.04

speedup 15.6

63

Table 5.3: Theoretical Speed up for George 1mm dataset

layer index subtotal % blocks speedups
(1 0) 13566575 11.08% 62 6.87
(2 0) 17983653 14.69% 32 4.70
(2 1) 18232260 14.89% 31 4.62
(3 0) 9449985 7.72% 21 1.62
(3 1) 9180979 7.50% 21 1.57
(3 2) 9543877 7.80% 20 1.56
(4 0) 4847964 3.96% 16 0.63
(4 1) 4867948 3.98% 15 0.60
(4 2) 4699673 3.84% 15 0.58
(4 3) 4989493 4.08% 15 0.61
(5 0) 2381373 1.95% 12 0.23
(5 1) 2552439 2.08% 12 0.25
(5 2) 2409686 1.97% 12 0.24
(5 3) 2489053 2.03% 12 0.24
(5 4) 2425897 1.98% 12 0.24
(6 0) 1114473 0.91% 10 0.09
(6 1) 1359706 1.11% 10 0.11
(6 2) 1280376 1.05% 10 0.10
(6 3) 1223912 1.00% 10 0.10
(6 4) 1068627 0.87% 10 0.09
(6 5) 1061832 0.87% 9 0.08
(7 0) 525082 0.43% 9 0.04
(7 1) 565009 0.46% 9 0.04
(7 2) 528424 0.43% 8 0.03
(7 3) 530334 0.43% 8 0.03
(7 4) 548112 0.45% 8 0.04
(7 5) 564999 0.46% 8 0.04
(7 6) 551778 0.45% 8 0.04
(8 0) 178049 0.15% 8 0.01
(8 1) 254212 0.21% 7 0.01
(8 2) 264364 0.22% 7 0.02
(8 3) 271022 0.22% 7 0.02
(8 4) 259018 0.21% 7 0.01
(8 5) 241960 0.20% 7 0.01
(8 6) 215590 0.18% 7 0.01
(8 7) 199149 0.16% 7 0.01

speedup 25.5

64

Table 5.4: Timing for tests performed for dataset CTP404 on pb005

algorithm run 1 run 2 run 3 run 4 run 5 Average Speedup
sequential 374.01s 392.72s 392.18s 385.93s 389.88s 386.94s 1.0
blocked 58.46s 57.56s 54.40s 53.48s 53.86s 55.55s 7.0
threaded 53.82s 54.12s 53.88s 54.19s 53.97s 54.00s 7.1

Table 5.5: Timing for tests performed for dataset CTP404 on lm001

algorithm run 1 run 2 run 3 run 4 run 5 Average Speedup
sequential 410.32s 341.22s 332.89s 322.01s 322.56s 345.80s 1.0
blocked 56.41s 55.83s 56.35s 54.56s 53.04s 55.24s 6.3
threaded 55.27s 53.77s 57.35s 54.24s 56.53s 55.43s 6.2

Table 5.6: Timing for tests performed for dataset george 2.5mm on pb005

algorithm run 1 run 2 run 3 run 4 run 5 Average Speedup
sequential 861.19s 853.65s 860.00s 861.40s 858.13s 858.87s 1.0
blocked 78.79s 77.59s 83.43s 71.62s 71.73s 76.63s 11.2
threaded 76.33s 70.74s 70.85s 69.51s 70.31s 71.55s 12.0

Table 5.7: Timing for tests performed for dataset george 2.5mm on lm001

algorithm run 1 run 2 run 3 run 4 run 5 Average Speedup
sequential 726.65s 638.74s 652.73s 643.70s 643.80s 661.12s 1.0
blocked 75.12s 74.23s 73.56s 71.63s 69.85s 72.88s 9.0
threaded 69.70s 71.96s 70.85s 71.89s 73.71s 71.62s 9.2

Table 5.8: Timing for tests performed for dataset george 1mm on pb005

algorithm run 1 run 2 run 3 run 4 run 5 Average Speedup
sequential 1092.69s 1089.82s 1103.35s 1090.50s 1120.40s 1099.35s 1.0
blocked 71.25s 70.62s 65.95s 69.69s 66.68s 68.84s 16.0
threaded 69.81s 67.24s 66.70s 66.24s 67.25s 67.45s 16.3

Table 5.9: Timing for tests performed for dataset george 1mm on lm001

algorithm run 1 run 2 run 3 run 4 run 5 Average Speedup
sequential 711.15s 654.76s 655.19s 650.07s 682.13s 670.66s 1.0
blocked 62.68s 60.14s 58.05s 75.72s 60.97s 63.51s 10.6
threaded 62.08s 60.60s 59.42s 59.92s 58.64s 60.13s 11.2

65

All reconstruction ran in these tests are with 6 iterations. 6 iterations used

because in [8], it is shown that with right parameters, it’s possible to get a good

quality image with 6 iterations. Even though, in this setup, ART was applied instead

of DROP, which was used in [8], this asynchronous method mathematically does not

conflict with existing reconstruction algorithms. This asynchronous algorithm can be

integrated with any existing reconstruction.

Sorting histories into index tree is not part of the timing test. The reason for

this is that sorting existing data into index tree involves a lot unnecessary overheads.

The sorting can be incorporated with proton history preprocessing which requires

further testing.

5.2 Scalability

5.2.1 Scale Over Multi-cores

The asynchronous nature of the algorithm makes it flexible over number of

cores. With 63 slices of data, 20 cores is able to do almost as well as 36 cores

compute node. This is due to the fact that the top section of the grid only gets run

simultaneously only during the first iteration when they are starting almost at the

same time. By the end of the first iteration, due to dependencies, threads progress

differently. Threads resides on the outside area of the grids tends to progress faster.

So the throughput is not determined by the number of slices, which is the nubmer

of blocks on the top of the grid, but the number of blocks of the last layers of the

grid. This suggest that if we can find out exactly how many data we can trim off

without impact the quality of the images reconstructed, we can probably improved

the performance by having a shallower grid.

5.2.2 Scale Over Network

The method we have described and demonstrated here is very flexible and

scalable. Let’s assume we have a total 32 slices to reconstruct and each machine can

66

only work on 16 slices at a time. Full partitions of 32 slices are shown in Figure 5.1.

White blocks have all the slices on machine A, gray blocks have all the blocks on

machine B while the yellow blocks have slices on both machines. In this situation, we

can assign all the white blocks to machine A, gray blocks to machine B. Both white

and yellow blocks are normal grid blocks but on different machines. Yellow blocks can

treaded as a abstract block. They will be inserted to the both grids on machina A and

machine B to ensure normal blocks function as normal, i.e. abstract blocks will be

connected as upstream or downstream, and normal blocks that are connected to them

are expecting data sent from them or will send them their data. This configuration

can be shown in Figure 5.2. The difference between a normal block and a abstract

block is that a normal block will work on reconstruction algorithm for the slices it’s

assigned to, while abstract blocks may or may not. For every pair of abstract blocks,

only one of them need to work on the actual reconstruction, the other will be mostly

responsible for data transmission. Take block 13-14-15-16 shown in Figure 5.2 for

example:

(1) Block 13-14-15-16 on machine B will send the missing data from slice 16 to

machine A

(2) Block 13-14-15-16 on machine A work on the reconstruction

(3) Block 13-14-15-16 on machine A send the result to machine B

5.3 Improvements

The implementation is done in JVM environment for the ease of exploring

some of the the concurrent features of the data and the algorithm. However, if

implemented in a languge with better runtime performance, the timing result should

be much better.

This is algorithm does not conflict with exist reconstructions algorithms such

as BIP or SAP. Rather, it can be combine BIP or SAP to have even better perfor-

mance.

67

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0, 1 2, 3 4, 5 6, 7 8, 9 10, 11 14, 1512, 13

1, 2 3, 4 5, 6 7, 8 9, 10 11, 12 13, 14

0, 1, 2 3, 4, 5 6, 7, 8 9, 10, 11 12, 13, 14

1, 2, 3 4, 5, 6 7, 8, 9 10, 11, 12 13, 14, 15

2, 3, 4 5, 6, 7 8, 9, 10 11, 12, 13

0, 1, 2, 3 4, 5, 6, 7 8, 9, 10, 11 12, 13, 14, 15

1, 2, 3, 4 5, 6, 7, 8 9, 10, 11, 12

2, 3, 4, 5 6, 7, 8, 9 10, 11, 12, 13

3, 4, 5, 6 7, 8, 9, 10 11, 12, 13, 14

1, 2, 3, 4, 5 6, 7, 8, 9, 10 11, 12, 13, 14, 15

0, 1, 2, 3, 4 5, 6, 7, 8, 9 10, 11, 12, 13, 14

2, 3, 4, 5, 6 7, 8, 9, 10, 11

3, 4, 5, 6, 7 8, 9, 10, 11, 12

4, 5, 6, 7, 8 9, 10, 11, 12, 13

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

16!17 18!19 20!21 22!23 24!25 26!27 30!3128!29

17!18 19!20 21!22 23!24 25!26 27!28 29!30

16!17!18 19!20!21 22!23!24 25!26!27 28!29!30

17!18!19 20!21!22 23!24!25 26!27!28 29!30!31

18!19!20 21!22!23 24!25!26 27!28!29

16!17!18!19 20!21!22!23 24!25!26!27 28!29!30!31

17!18!19!20 21!22!23!24 25!26!27!28

18!19!20!21 22!23!24!25 26!27!28!29

19!20!21!22 23!24!25!26 27!28!29!30

17!18!19!20!21 22!23!24!25!26 27!28!29!30!31

16!17!18!19!20 21!22!23!24!25 26!27!28!29!30

18!19!29!21!22 23!24!25!26!27

19!20!21!22!23 24!25!26!27!28

20!21!22!23!24 25!26!27!28!29

15, 16

14, 15, 16

15, 16, 17

13, 14, 15, 16

14, 15, 16, 17

15, 16, 17, 18

15, 16, 17, 18, 19

12, 13, 14, 15, 16

13, 14, 15, 16, 17

14, 15, 16, 17, 18

Blocks on Machine A

Blocks on Machine B

Shared Blocks

Figure 5.1: Block partition across multiple machines

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0, 1 2, 3 4, 5 6, 7 8, 9 10, 11 14, 1512, 13

1, 2 3, 4 5, 6 7, 8 9, 10 11, 12 13, 14

0, 1, 2 3, 4, 5 6, 7, 8 9, 10, 11 12, 13, 14

1, 2, 3 4, 5, 6 7, 8, 9 10, 11, 12 13, 14, 15

2, 3, 4 5, 6, 7 8, 9, 10 11, 12, 13

0, 1, 2, 3 4, 5, 6, 7 8, 9, 10, 11 12, 13, 14, 15

1, 2, 3, 4 5, 6, 7, 8 9, 10, 11, 12

2, 3, 4, 5 6, 7, 8, 9 10, 11, 12, 13

3, 4, 5, 6 7, 8, 9, 10 11, 12, 13, 14

1, 2, 3, 4, 5 6, 7, 8, 9, 10 11, 12, 13, 14, 15

0, 1, 2, 3, 4 5, 6, 7, 8, 9 10, 11, 12, 13, 14

2, 3, 4, 5, 6 7, 8, 9, 10, 11

3, 4, 5, 6, 7 8, 9, 10, 11, 12

4, 5, 6, 7, 8 9, 10, 11, 12, 13

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

16!17 18!19 20!21 22!23 24!25 26!27 30!3128!29

17!18 19!20 21!22 23!24 25!26 27!28 29!30

16!17!18 19!20!21 22!23!24 25!26!27 28!29!30

17!18!19 20!21!22 23!24!25 26!27!28 29!30!31

18!19!20 21!22!23 24!25!26 27!28!29

16!17!18!19 20!21!22!23 24!25!26!27 28!29!30!31

17!18!19!20 21!22!23!24 25!26!27!28

18!19!20!21 22!23!24!25 26!27!28!29

19!20!21!22 23!24!25!26 27!28!29!30

17!18!19!20!21 22!23!24!25!26 27!28!29!30!31

16!17!18!19!20 21!22!23!24!25 26!27!28!29!30

18!19!29!21!22 23!24!25!26!27

19!20!21!22!23 24!25!26!27!28

20!21!22!23!24 25!26!27!28!29

15, 16

14, 15, 16

15, 16, 17

13, 14, 15, 16

14, 15, 16, 17

15, 16, 17, 18

15, 16, 17, 18, 19

12, 13, 14, 15, 16

13, 14, 15, 16, 17

14, 15, 16, 17, 18

15, 16

15, 16, 17

14, 15, 16

13, 14, 15, 16

14, 15, 16, 17

15, 16, 17, 18

15, 16, 17, 18, 19

12, 13, 14, 15, 16

13, 14, 15, 16, 17

14, 15, 16, 17, 18

Blocks on Machine A

Blocks on Machine B

Shared Blocks

Figure 5.2: Thread abstraction layer

68

During the test, computing nodes’s hyperthreading feature is turned on. Turn-

ing them off, might help to have better performance since running two threads on a

single core could impact cache performance.

69

CHAPTER SIX

Conclusion

In this work, we have introduced a new algorithm that can be used for medical

image reconstruction using projection methods, such as ART. This algorithm is ca-

pable of generating significant speedup for multi-sliced 3D image reconstruction over

its sequential counterpart. Our testing data suggest that it can move the reconstruc-

tion time frame into clinical usage requirements. The speedup mostly comes from

exploring the nature of data concurrency in this type of image reconstruction.

The algorithm is asynchronous in nature due to the architecture is based on

data concurrency. The asynchronousness allows many parts of the reconstruction to

run at the same time. Modern-day hardware is moving toward a many-core future.

On the machine we have tested this algorithm on, there are a total of 36 physical

CPU cores, while we were only able to use 15 of them at most due to the size of the

dataset. If the dataset were to double the number of slices and preserve the average

number of history per voxel, this algorithm is able to scale with the dataset without

any time increase. Also, due to the advance in hardware, 36 CPU per is a relatively

small size. As of this dissertation is written, 96 CPU computing machine with two

sockets, i.e. 96 cores are composed of two 48 core CPUs, is available. Amazon’s AWS

is providing such computing resources. AMD currently has a 64 core desktop CPU

on the market and has a 96 core CPU coming out the next year. ARM also released

its road map for the next couple of years that includes 192 core computing nodes. All

this information means that we can scale our reconstruction from the current 15 slices

to 100 slices with very little time loss on JVM. For more than 100 slices, we have

suggested an asynchronous communication scheme that can scale across multiple JVM

70

or compute nodes with minimum time loss while still maintaining the the structure

and consistency of the algorithm.

The structure of the algorithm also allows for different projection methods to

be used. In our experiments, we have used only the original ART projection method.

For even more speedup, a string averaging variant can be used. It would give more

threads per block, thus decrease the time of each iteration.

Overall, this new algorithm introduced a new approach to 3D medical image

reconstruction. So far, we have demonstrated that CPU implementation of this sug-

gested method can come very close to the fastest GPU-based reconstruction method

with more flexibility and scalability.

6.1 Future Direction

A larger dataset across multiple compute nodes still needs to be studied. The

effects of asynchronous communication on the timing are unclear at this point. Also,

due to the asynchronous and structural constraints, one thread per slice is only needed

at the very beginning of the reconstruction. From then on, only half of the threads

are needed. So it is interesting the see that as the number of slices becomes more

significant than the number of CPUs cores, how the overall computation time would

be affected. This could show even more potential and advantages of the asynchronous

design.

71

APPENDICES

72

APPENDIX A

Testing Scripts

A.1 CTP404 Phantom

Listing A.1: Testing script for CTP404 Dataset
(defn generate−lambdas

[^long layers f]
{:pre [(and (int? layers) (pos? layers))]}
(into (sorted−map)

(mapv (fn [^long i]
(let [i (unchecked−inc i)] [i (f i)]))

(range layers))))

(def dataset−name "exp_CTP404")
(def base−dir (format "datasets /%s" dataset−name) #_"datasets/

George−02272019−Run23−interpolated/output−2 .5mm/B_1280000_L_1 .000000")
(def dataset−config {: min−len 75

:batch−size 100000
:style :new
:count? false
:global? false
:phantom "CTP404"
:thickness "2.5mm"})

(if (. isDirectory (clojure.java.io/file base−dir))
(do (timbre/info (format "Loading %s dataset ... " dataset−name))

(def data_CTP404 (with−open [dataset ^PCTDataset (pct.data.io/newPCTDataset
base−dir "MLP_paths_r =1. bin" "WEPL.bin")]

{:x0 (.x0 dataset)
:rows (.rows dataset)
:cols (.cols dataset)
:slice−count (. slices dataset)
:slice−offset (pct.data.io/slice−offset dataset)
:index (pct.data.io/load−dataset dataset

dataset−config)})))
(timbre/info (format "Path [%s] does not exist or is not a folder." base−dir)))

(def x0 (:x0 data_CTP404))
(def ^{:tag 'long} _rows (long (:rows data_CTP404)))
(def ^{:tag 'long} _cols (long (:cols data_CTP404)))
(def ^{:tag 'long} offset (∗ _rows _cols))
(def ^{:tag 'long} slices 16)
(def samples [7 8 9])
(def history−index (:index data_CTP404))
(def ^{:tag 'long} depth 4)
(def regions test/George−regions)
(def recon−opts {: iterations 6

:lambda (generate−lambdas 10 (fn [i] (/ 0.00025 (double i))))
:tvs? true
:tvs−alpha 0.75
:tvs−N 5
:dump true
:grid−depth depth
:dataset dataset−config })

(def ^{:tag 'int} test−runs 5)
(def recon−type :blocked)

(spec/def :: recon−types #{: blocked :threaded :sequential })
(spec/def :: sample−range−check (spec/coll−of (spec/and pos? #(< % slices))))

(defn run
([] (run test−runs recon−type))
([^ long n] (run n recon−type))
([^ long test−runs recon−type]
{:pre [(int? test−runs)

73

(spec/valid? :: recon−types recon−type)
(spec/valid? :: sample−range−check samples)]}

(let [s (format "Running test for %s x%d" recon−type test−runs)]
(println s)
(timbre/info s))

(def grid nil)
(def result nil)
(loop [i (int 0)]

(when (< i test−runs)
(cond

(= recon−type :blocked)
(do (def result−folder (format "results /%s/blocked" dataset−name))

(def grid (pct.async.node/newAsyncGrid slices (range 1 (inc depth))
:connect? true :slice−offset offset))

(def result (recon/async−art−blocked grid history−index x0 recon−opts
)))

(= recon−type :threaded)
(do (def result−folder (format "results /%s/threaded" dataset−name))

(def grid (−> (pct.async.node/newAsyncGrid slices (range 1 (inc depth
)) :connect? true :slice−offset offset)

(. trim−connections)))
(def result (recon/async−art−threaded grid history−index x0

recon−opts)))

(= recon−type :sequential)
(do (def result−folder (format "results /%s/sequential" dataset−name))

(def grid (pct.async.node/newAsyncGrid slices (range 1 (inc depth))
:connect? true :slice−offset offset))

(def result (recon/seq−art grid history−index x0 recon−opts)))

:else
(do (timbre/info (format "Unknown recon−type: [%s]" recon−type))

(def result nil)))
(when result

(let [stats (−>> result
(mapv (fn [[k v]]

(when (int? k)
[k (test/series−stats (first v) [_rows _cols

slices] regions samples)])))
(remove nil?)
(into (sorted−map))
(#(assoc % 0 (test/series−stats x0 [_rows _cols slices]

regions samples))))]
(pct.data.io/save−result result _rows _cols slices recon−opts

{:type :all
:folder result−folder
:result {: samples samples :stats stats }}))

(recur (unchecked−inc−int i)))))))

;; (run 5 :blocked)
;; (run 5 :threaded)
;; (run 5 :sequential)

74

A.2 George 2.5mm

Listing A.2: Testing script for George 2.5mm Dataset
(defn generate−lambdas

[^long layers f]
{:pre [(and (int? layers) (pos? layers))]}
(into (sorted−map)

(mapv (fn [^long i]
(let [i (unchecked−inc i)] [i (f i)]))

(range layers))))

(def dataset−name "george−2 .5mm")
(def base−dir (format "datasets /%s" dataset−name) #_"datasets/

George−02272019−Run23−interpolated/output−2 .5mm/B_1280000_L_1 .000000")
(def dataset−config {: min−len 75

:batch−size 100000
:style :new
:count? false
:global? false
:phantom "george"
:thickness "2.5mm"})

(if (. isDirectory (clojure.java.io/file base−dir))
(do (timbre/info (format "Loading %s dataset ... " dataset−name))

(def data_george_2p5mm (with−open [dataset ^PCTDataset (pct.data.io/
newPCTDataset base−dir "MLP_paths_r =0. bin")]

{:x0 (.x0 dataset)
:rows (.rows dataset)
:cols (.cols dataset)
:slice−count (. slices dataset)
:slice−offset (pct.data.io/slice−offset dataset)
:index (pct.data.io/load−dataset dataset

dataset−config)})))
(timbre/info (format "Path [%s] does not exist or is not a folder." base−dir)))

(def x0 (:x0 data_george_2p5mm))
(def ^{:tag 'long} _rows (long (:rows data_george_2p5mm)))
(def ^{:tag 'long} _cols (long (:cols data_george_2p5mm)))
(def ^{:tag 'long} offset (∗ _rows _cols))
(def ^{:tag 'long} slices 25)
(def samples (range 12 17))
(def history−index (:index data_george_2p5mm))
(def ^{:tag 'long} depth 4)
(def regions test/George−regions)
(def recon−opts {: iterations 6

:lambda (generate−lambdas 10 (fn [i] (/ 0.00025 (double i))))
:tvs? true
:tvs−alpha 0.75
:tvs−N 5
:dump true
:grid−depth depth
:dataset dataset−config })

(def ^{:tag 'int} test−runs 5)
(def recon−type :blocked)

(spec/def :: recon−types #{: blocked :threaded :sequential })
(spec/def :: sample−range−check (spec/coll−of (spec/and pos? #(< % slices))))

(defn run
([] (run test−runs recon−type))
([^ long n] (run n recon−type))
([^ long test−runs recon−type]
{:pre [(int? test−runs)

(spec/valid? :: recon−types recon−type)
(spec/valid? :: sample−range−check samples)]}

(let [s (format "Running test for %s x%d" recon−type test−runs)]
(println s)
(timbre/info s))

(def grid nil)
(def result nil)
(loop [i (int 0)]

(when (< i test−runs)
(cond

(= recon−type :blocked)
(do (def result−folder (format "results /%s/blocked" dataset−name))

75

(def grid (pct.async.node/newAsyncGrid slices (range 1 (inc depth))
:connect? true :slice−offset offset))

(def result (recon/async−art−blocked grid history−index x0 recon−opts
)))

(= recon−type :threaded)
(do (def result−folder (format "results /%s/threaded" dataset−name))

(def grid (−> (pct.async.node/newAsyncGrid slices (range 1 (inc depth
)) :connect? true :slice−offset offset)

(. trim−connections)))
(def result (recon/async−art−threaded grid history−index x0

recon−opts)))

(= recon−type :sequential)
(do (def result−folder (format "results /%s/sequential" dataset−name))

(def grid (pct.async.node/newAsyncGrid slices (range 1 (inc depth))
:connect? true :slice−offset offset))

(def result (recon/seq−art grid history−index x0 recon−opts)))

:else
(do (timbre/info (format "Unknown recon−type: [%s]" recon−type))

(def result nil)))
(when result

(let [stats (−>> result
(mapv (fn [[k v]]

(when (int? k)
[k (test/series−stats (first v) [_rows _cols

slices] regions samples)])))
(remove nil?)
(into (sorted−map))
(#(assoc % 0 (test/series−stats x0 [_rows _cols slices]

regions samples))))]
(pct.data.io/save−result result _rows _cols slices recon−opts

{:type :all
:folder result−folder
:result {: samples samples :stats stats }}))

(recur (unchecked−inc−int i)))))))

;; (run 5 :blocked)
;; (run 5 :threaded)
;; (run 5 :sequential)

76

A.3 George 1mm

Listing A.3: Testing script for George 1mm Dataset
(defn generate−lambdas

[^long layers f]
{:pre [(and (int? layers) (pos? layers))]}
(into (sorted−map)

(mapv (fn [^long i]
(let [i (unchecked−inc i)] [i (f i)]))

(range layers))))

(def dataset−name "george−1mm")
(def base−dir (format "datasets /%s" dataset−name) #_"datasets/

George−02272019−Run23−interpolated/output−2 .5mm/B_1280000_L_1 .000000")
(def dataset−config {: min−len 75

:batch−size 100000
:style :new
:count? false
:global? false
:phantom "george"
:thickness "1mm"})

(if (. isDirectory (clojure.java.io/file base−dir))
(do (timbre/info (format "Loading %s dataset ... " dataset−name))

(def data_george_1mm (with−open [dataset ^PCTDataset (pct.data.io/
newPCTDataset base−dir "MLP_paths_r =0. bin")]

{:x0 (.x0 dataset)
:rows (.rows dataset)
:cols (.cols dataset)
:slice−count (. slices dataset)
:slice−offset (pct.data.io/slice−offset dataset)
:index (pct.data.io/load−dataset dataset

dataset−config)})))
(timbre/info (format "Path [%s] does not exist or is not a folder." base−dir)))

(def x0 (:x0 data_george_1mm))
(def ^{:tag 'long} _rows (long (:rows data_george_1mm)))
(def ^{:tag 'long} _cols (long (:cols data_george_1mm)))
(def ^{:tag 'long} offset (∗ _rows _cols))
(def ^{:tag 'long} slices 64)
(def samples (range 30 40))
(def history−index (:index data_george_1mm))
(def ^{:tag 'long} depth 8)
(def regions test/George−regions)
(def recon−opts {: iterations 6

:lambda (generate−lambdas 10 (fn [i] (/ 0.00025 (double i))))
:tvs? true
:tvs−alpha 0.75
:tvs−N 5
:dump true
:grid−depth depth
:dataset dataset−config })

(def ^{:tag 'int} test−runs 5)
(def recon−type :blocked)

(spec/def :: recon−types #{: blocked :threaded :sequential })
(spec/def :: sample−range−check (spec/coll−of (spec/and pos? #(< % slices))))

(defn run
([] (run test−runs recon−type))
([^ long n] (run n recon−type))
([^ long test−runs recon−type]
{:pre [(int? test−runs)

(spec/valid? :: recon−types recon−type)
(spec/valid? :: sample−range−check samples)]}

(let [s (format "Running test for %s x%d" recon−type test−runs)]
(println s)
(timbre/info s))

(def grid nil)
(def result nil)
(loop [i (int 0)]

(when (< i test−runs)
(cond

(= recon−type :blocked)
(do (def result−folder (format "results /%s/blocked" dataset−name))

77

(def grid (pct.async.node/newAsyncGrid slices (range 1 (inc depth))
:connect? true :slice−offset offset))

(def result (recon/async−art−blocked grid history−index x0 recon−opts
)))

(= recon−type :threaded)
(do (def result−folder (format "results /%s/threaded" dataset−name))

(def grid (−> (pct.async.node/newAsyncGrid slices (range 1 (inc depth
)) :connect? true :slice−offset offset)

(. trim−connections)))
(def result (recon/async−art−threaded grid history−index x0

recon−opts)))

(= recon−type :sequential)
(do (def result−folder (format "results /%s/sequential" dataset−name))

(def grid (pct.async.node/newAsyncGrid slices (range 1 (inc depth))
:connect? true :slice−offset offset))

(def result (recon/seq−art grid history−index x0 recon−opts)))

:else
(do (timbre/info (format "Unknown recon−type: [%s]" recon−type))

(def result nil)))
(when result

(let [stats (−>> result
(mapv (fn [[k v]]

(when (int? k)
[k (test/series−stats (first v) [_rows _cols

slices] regions samples)])))
(remove nil?)
(into (sorted−map))
(#(assoc % 0 (test/series−stats x0 [_rows _cols slices]

regions samples))))]
(pct.data.io/save−result result _rows _cols slices recon−opts

{:type :all
:folder result−folder
:result {: samples samples :stats stats }}))

(recur (unchecked−inc−int i)))))))

;; (run 5 :blocked)
;; (run 5 :threaded)
;; (run 5 :sequential)

78

APPENDIX B

CTP404 Phantom History Counts

Table B.1: History count for CTP404 dataset slice 0-4

depth slice 0 1 2 3 4
1 1,642,159 1,030,477 1,148,943 1,230,992 1,316,550
2 2,856,842 2,044,979 2,113,262 2,169,612 2,276,484
3 1,181,811 929,015 902,059 857,023 808,399
4 300,842 252,695 224,590 190,646 171,695
5 50,851 41,961 32,638 27,295 23,005
6 6,210 4,381 3,599 2,998 2,526
7 795 639 559 505 462
8 287 262 235 265 220
9 161 168 171 170 169
10 131 104 144 108 108
11 77 86 99 91 87
12 48 62 58 62 1
13 27 31 42 1 0
14 17 15 0 0 0
15 4 0 0 0 0
16 0 0 0 0 0

Table B.2: History count for CTP404 dataset slice 5-9

depth slice 5 6 7 8 9
1 1,497,982 1,464,899 1,534,923 1,590,803 1,640,228
2 2,204,908 2,214,878 2,214,256 2,220,360 2,217,781
3 763,688 719,626 676,800 645,514 621,046
4 152,746 141,896 126,409 115,921 105,860
5 19,763 19,031 16,528 14,473 12,543
6 2,374 2,287 1,919 1,789 1,590
7 486 454 484 450 40
8 240 222 288 25 0
9 177 193 13 0 0
10 159 4 0 0 0
11 3 0 0 0 0
12 0 0 0 0 0

79

Table B.3: History count for CTP404 dataset slice 10-14

depth slice 10 11 12 13 14
1 1,669,180 1,687,559 1,690,952 1,676,351 1,831,676
2 2,210,438 2,193,430 2,167,218 2,204,030 40,757
3 596,840 574,655 563,305 1,600 0
4 97,110 90,389 79 0 0
5 10,816 45 0 0 0
6 46 0 0 0 0
7 0 0 0 0 0

80

APPENDIX C

George 2.5mm History Counts

Table C.1: History count for george 2.5mm dataset slice 0-4

depth slice 0 1 2 3 4
1 1,081,058 592,589 674,088 765,324 845,562
2 1,907,515 1,602,711 1,741,590 1,836,658 1,878,442
3 1,019,720 1,051,590 1,092,503 1,083,198 1,073,829
4 312,601 368,148 382,656 363,161 342,514
5 45,124 72,406 75,281 70,359 52,024
6 2,404 7,327 8,445 6,413 1,123
7 35 378 503 115 67
8 0 7 1 1 0

Table C.2: History count for george 2.5mm dataset slice 5-9

depth slice 5 6 7 8 9
1 956,191 1,029,353 1,119,870 2,112,609 1,228,058
2 2,014,972 2,079,991 2,192,622 3,157,349 2,559,367
3 1,043,761 825,561 1,284,260 1,003,066 955,706
4 249,941 93,984 288,890 193,615 184,932
5 9,352 16,992 37,885 20,210 18,889
6 894 2,260 2,141 1,162 1,018
7 13 103 72 38 39
8 3 1 3 0 0

81

Table C.3: History count for george 2.5mm dataset slice 10-14

depth slice 10 11 12 13 14
1 1,651,904 1,747,187 1,831,990 1,911,923 1,979,197
2 2,680,669 2,704,703 2,729,118 2,738,467 2,738,757
3 902,951 852,751 805,054 759,610 720,412
4 164,907 145,035 127,270 113,215 101,080
5 15,528 12,903 10,971 9,170 7,830
6 813 640 542 399 309
7 21 17 9 10 5
8 0 0 1 0 0

Table C.4: History count for george 2.5mm dataset slice 15-19

depth slice 15 16 17 18 19
1 2,037,981 2,068,774 2,085,402 2,094,368 2,083,990
2 2,722,657 2,718,509 2,693,248 2,675,493 2,644,146
3 687,370 660,356 642,092 625,924 618,529
4 92,112 84,297 80,819 78,028 79,119
5 7,054 6,276 5,896 5,916 6,058
6 308 253 245 301 325
7 5 2 6 8 0
8 1 0 0 0 0

Table C.5: History count for george 2.5mm dataset slice 20-24

depth slice 20 21 22 23 24
1 2,058,314 2,013,123 1,957,086 1,883,763 1,999,383
2 2,608,122 2,568,175 2,520,825 2,605,006 80,178
3 617,814 621,977 651,651 8,333 0
4 81,023 86,266 231 0 0
5 6,571 0 0 0 0
6 0 0 0 0 0

82

APPENDIX D

George 1mm History Counts

Table D.1: History count for george 1mm dataset slice 0-6

depth slice 0 1 2 3 4 5 6
1 0 86,801 51,791 56,376 57,506 61,631 67,973
2 121,642 285,603 230,390 250,046 264,480 270,611 283,112
3 82,040 378,826 266,466 283,459 301,416 308,898 310,546
4 62,260 378,072 267,947 267,582 277,081 289,932 290,252
5 35,811 307,974 229,689 232,137 230,430 235,491 243,874
6 16,969 213,626 174,622 177,208 172,565 174,041 178,860
7 6,283 133,732 120,576 120,045 118,723 116,936 119,557
8 1,889 70,844 73,219 73,582 72,441 73,000 73,538
9 454 27,539 38,754 39,178 39,924 41,602 39,730
10 95 7,957 16,433 19,201 20,281 20,600 20,433
11 5 1,856 5,708 8,828 8,735 9,144 9,523
12 1 354 1,630 3,042 3,500 3,748 3,863
13 0 46 338 969 1,210 1,342 1,512
14 0 1 63 264 383 472 426
15 0 0 11 52 106 145 136
16 0 0 0 13 18 37 38
17 0 0 0 3 8 4 4
18 0 0 0 0 0 0 0

83

Table D.2: History count for george 1mm dataset slice 7-13

depth slice 7 8 9 10 11 12 13
1 73,685 79,618 84,442 89,215 93,265 97,389 107,468
2 297,746 309,880 324,858 337,911 337,908 366,718 381,597
3 315,170 326,113 333,040 334,783 339,337 361,711 366,963
4 293,638 293,741 293,688 291,453 296,282 309,939 308,294
5 243,084 240,618 235,761 232,457 238,857 239,646 237,089
6 179,794 178,035 171,778 170,366 171,275 169,063 166,440
7 120,862 116,248 115,043 112,342 111,383 109,179 104,710
8 71,359 70,825 69,317 66,952 65,814 62,514 57,416
9 39,790 39,064 37,015 36,889 34,796 32,394 20,093
10 19,933 19,389 19,148 17,724 16,459 10,549 3,184
11 8,889 8,835 8,438 7,845 5,163 1,445 727
12 3,737 3,348 3,348 2,264 711 369 577
13 1,301 1,192 984 305 146 187 198
14 447 323 95 80 63 68 34
15 121 35 26 23 20 12 4
16 9 11 6 4 4 0 0
17 2 9 0 2 0 1 0
18 1 0 0 0 0 0 0

Table D.3: History count for george 1mm dataset slice 14-20

depth slice 14 15 16 17 18 19 20
1 110,541 116,049 122,265 127,043 134,481 137,760 197,312
2 390,950 401,828 411,511 427,216 438,171 440,601 838,474
3 368,045 375,472 382,978 387,475 387,727 533,666 878,047
4 307,648 309,964 308,786 303,254 321,362 517,547 650,350
5 235,493 231,358 221,084 199,144 230,094 388,892 327,468
6 161,221 152,042 117,512 97,866 146,502 206,983 184,562
7 97,416 66,048 41,904 55,350 81,852 106,866 100,261
8 37,592 18,048 18,683 30,494 42,971 54,087 48,672
9 6,937 6,381 11,706 12,654 20,800 25,818 21,112
10 2,294 4,241 3,941 5,744 10,885 9,794 8,465
11 1,575 1,572 1,137 2,775 4,288 3,374 3,074
12 563 267 500 1,318 1,285 1,129 1,026
13 109 57 203 431 362 315 326
14 12 26 115 130 96 94 82
15 0 15 24 22 24 17 19
16 1 10 4 3 3 10 5
17 2 0 0 0 0 3 0
18 0 0 1 0 1 0 0

84

Table D.4: History count for george 1mm dataset slice 21-27

depth slice 21 22 23 24 25 26 27
1 269,692 215,854 149,511 201,735 212,991 220,850 227,530
2 671,346 392,340 521,640 604,861 622,902 638,205 650,630
3 590,766 367,448 482,683 501,091 506,423 513,536 512,025
4 362,474 302,700 365,627 360,460 358,851 355,933 356,434
5 239,867 209,954 243,007 232,706 227,363 226,915 220,028
6 138,983 129,760 145,162 136,260 134,186 128,837 126,027
7 75,604 69,879 77,040 72,746 68,501 67,651 64,463
8 37,022 32,952 37,447 33,653 32,403 30,920 29,140
9 15,845 14,144 15,399 14,233 13,567 12,369 12,159
10 6,424 5,377 5,851 5,422 4,980 4,741 4,168
11 2,162 1,777 2,100 1,778 1,800 1,552 1,396
12 706 590 618 574 508 488 442
13 238 145 200 153 145 146 112
14 62 41 42 57 35 45 31
15 16 7 8 6 6 6 10
16 3 1 1 1 2 0 1
17 2 2 1 0 0 1 1
18 0 0 0 0 0 0 0

Table D.5: History count for george 1mm dataset slice 28-34

depth slice 28 29 30 31 32 33 34
1 237,132 241,363 250,354 256,739 261,831 272,019 274,392
2 662,593 671,627 683,735 693,022 703,816 714,112 718,507
3 521,990 519,172 521,896 527,955 524,723 529,308 534,848
4 352,676 349,775 350,541 345,135 341,971 345,917 335,754
5 217,845 214,360 210,258 207,891 203,438 198,677 195,619
6 121,910 118,363 115,353 113,073 107,592 105,433 103,372
7 61,165 60,122 57,267 53,917 52,612 50,666 48,496
8 27,724 26,390 24,958 23,867 22,448 21,600 20,486
9 11,043 10,412 9,990 9,006 8,815 8,248 7,670
10 4,024 3,769 3,552 3,312 3,168 2,975 2,715
11 1,328 1,220 1,161 1,157 993 949 853
12 399 368 327 312 289 261 243
13 121 111 100 79 77 63 71
14 23 14 20 22 11 16 18
15 9 1 1 3 1 3 3
16 2 0 1 1 0 0 0
17 0 0 0 0 0 1 0
18 0 0 0 0 0 0 0

85

Table D.6: History count for george 1mm dataset slice 35-41

depth slice 35 36 37 38 39 40 41
1 278,302 291,109 288,392 298,249 304,757 299,916 314,481
2 732,469 737,126 739,667 750,709 748,899 760,759 760,276
3 525,581 535,164 528,526 524,786 536,254 521,922 535,384
4 334,699 335,391 327,221 330,939 322,294 319,908 330,008
5 193,133 190,220 188,809 181,778 182,132 181,103 177,784
6 100,088 99,894 94,276 92,690 93,003 88,178 88,412
7 47,161 44,609 43,386 42,925 41,106 39,910 39,619
8 19,089 18,722 17,966 17,009 16,619 16,312 15,277
9 7,338 6,958 6,558 6,306 6,075 5,745 5,654
10 2,546 2,401 2,277 2,156 2,146 2,024 1,946
11 781 789 728 671 712 632 571
12 218 193 209 187 180 163 203
13 56 46 40 39 53 47 41
14 12 7 18 14 5 8 5
15 4 2 3 2 2 1 2
16 0 0 2 1 1 0 0
17 0 1 0 0 1 0 0
18 0 0 0 0 0 0 0

Table D.7: History count for george 1mm dataset slice 42-48

depth slice 42 43 44 45 46 47 48
1 303,096 307,761 316,488 308,379 321,262 311,170 310,353
2 749,659 765,980 761,331 762,986 764,668 754,726 761,454
3 530,415 518,682 532,675 519,263 523,035 523,793 513,423
4 316,431 316,449 317,429 311,619 317,681 307,380 308,273
5 176,330 172,777 172,841 172,763 168,348 167,384 169,291
6 86,518 85,165 86,065 82,883 81,939 82,923 82,075
7 37,663 37,756 37,145 36,293 36,360 35,823 36,350
8 15,171 14,789 14,405 14,728 14,006 14,525 14,199
9 5,325 5,400 5,296 5,332 5,098 5,232 5,335
10 1,891 1,739 1,744 1,799 1,680 1,830 1,809
11 686 580 598 567 612 603 634
12 201 180 164 168 169 194 191
13 58 31 45 40 66 52 60
14 4 6 14 9 12 8 9
15 1 1 0 3 1 3 1
16 0 0 1 0 0 1 0
17 0 0 0 0 0 0 0

86

Table D.8: History count for george 1mm dataset slice 49-55

depth slice 49 50 51 52 53 54 55
1 318,318 305,259 310,432 303,797 302,372 305,859 289,986
2 755,031 746,721 746,145 736,190 739,020 727,817 715,005
3 518,607 509,544 510,014 509,584 500,553 504,566 492,406
4 311,088 305,949 306,960 301,757 304,341 303,708 300,440
5 167,476 168,221 163,556 165,240 168,061 167,489 165,947
6 82,566 82,219 80,661 82,230 83,702 82,979 83,597
7 36,121 36,424 36,063 36,716 37,575 37,968 38,322
8 14,277 14,645 14,521 14,540 15,438 15,535 17,284
9 5,308 5,617 5,407 5,595 5,857 6,247 4
10 1,791 1,946 1,902 1,954 2,190 0 0
11 589 635 592 670 0 0 0
12 196 199 213 0 0 0 0
13 62 38 0 0 0 0 0
14 11 0 0 0 0 0 0
15 0 0 0 0 0 0 0

Table D.9: History count for george 1mm dataset slice 56-62

depth slice 56 57 58 59 60 61 62
1 293,070 284,276 280,599 276,956 262,933 262,008 272,391
2 711,625 699,614 695,862 678,282 661,411 670,867 21,025
3 496,819 485,895 482,322 480,247 525,910 13,429 0
4 300,972 293,414 301,375 349,062 6,970 0 0
5 166,069 166,940 197,679 2,698 0 0 0
6 84,533 95,894 795 0 0 0 0
7 42,807 191 0 0 0 0 0
8 40 0 0 0 0 0 0
9 0 0 0 0 0 0 0

87

BIBLIOGRAPHY

[1] Y. Censor, D. Gordon, and R. Gordon, “Bicav: a block-iterative parallel algo-
rithm for sparse systems with pixel-related weighting,” IEEE Transactions
on Medical Imaging, vol. 20, no. 10, pp. 1050–1060, 2001.

[2] Y. Censor, T. Elfving, G. T. Herman, and T. Nikazad, “On diagonally
relaxed orthogonal projection methods,” SIAM Journal on Scientific
Computing, vol. 30, no. 1, pp. 473–504, 2008. [Online]. Available:
https://doi.org/10.1137/050639399

[3] A. Andersen and A. Kak, “Simultaneous algebraic reconstruction technique
(sart): A superior implementation of the art algorithm,” Ultrasonic
Imaging, vol. 6, no. 1, pp. 81–94, 1984. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/0161734684900087

[4] C. A. R. Hoare, “Monitors: An operating system structuring concept,”
Commun. ACM, vol. 17, no. 10, p. 549–557, oct 1974. [Online]. Available:
https://doi.org/10.1145/355620.361161

[5] E. Gomez, K. E. Schubert, and R. Cai, “A model for entropy of parallel ex-
ecution,” in 2016 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2016, pp. 555–560.

[6] C. A. R. Hoare, “Communicating sequential processes,” Communications
of the ACM, vol. 21, no. 8, pp. 666–677, 1978. [Online]. Available:
https://doi.org/10.1145/359576.359585

[7] M. Witt, B. E. Schultze, R. W. Schulte, K. E. Schubert, and E. Gomez, “A
proton simulator for testing implementations of proton CT reconstruction
algorithms on GPGPU clusters,” in Proceedings of the IEEE Nuclear Sci-
ence Symposium & Medical Imaging Conference (NSS/MIC) 2012, 2012,
pp. 4329–4334.

[8] P. Karbasi, R. Cai, B. Schultze, H. Nguyen, J. Reed, P. Hall, V. Giacometti,
V. Bashkirov, R. Johnson, N. Karonis, J. Olafsen, C. Ordonez, K. E. Schu-
bert, and R. W. Schulte, “A highly accelerated parallel multi-gpu based
reconstruction algorithm for generating accurate relative stopping powers,”
in 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference
(NSS/MIC), 2017, pp. 1–4.

88

https://doi.org/10.1137/050639399
https://www.sciencedirect.com/science/article/pii/0161734684900087
https://www.sciencedirect.com/science/article/pii/0161734684900087
https://doi.org/10.1145/355620.361161
https://doi.org/10.1145/359576.359585

[9] R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction
techniques (art) for three-dimensional electron microscopy and x-ray
photography,” Journal of Theoretical Biology, vol. 29, no. 3, pp. 471–481,
1970. [Online]. Available: https://doi.org/10.1016/0022-5193(70)90109-8

[10] S. Penfold, R. Schulte, Y. Censor, V. Bashkirov, S. McAllister, K. Schubert, and
A. Rosenfeld, “Block-iterative and string-averaging projection algorithms in
proton computed tomography image reconstruction,” 2010.

[11] P. Karbasi, B. Schultze, V. Giacometti, T. Plautz, K. Schubert, R. Schulte, and
V. Bashkirov, “Incorporating robustness in diagonally-relaxed orthogonal
projections method for proton computed tomography,” 2015 IEEE Nuclear
Science Symposium and Medical Imaging Conference (NSS/MIC), pp. 1–4,
2015.

[12] M. Jiang and G. Wang, “Convergence of the simultaneous algebraic
reconstruction technique (sart),” IEEE Transactions on Image Processing,
vol. 12, no. 8, pp. 957–961, 2003. [Online]. Available: https:
//doi.org/10.1109/tip.2003.815295

[13] Y. Censor and E. Tom, “Convergence of string-averaging projection schemes
for inconsistent convex feasibility problems,” Optimization Methods and
Software, vol. 18, no. 5, pp. 543–554, 2003. [Online]. Available:
https://doi.org/10.1080/10556780310001610484

[14] K. E. Schubert, R. Cai, E. Gomez, and P. J. Boston, “Using
extremophile behavior to identify biological targets of opportunity,” in
2017 6th International Conference on Space Mission Challenges for
Information Technology (SMC-IT), 9 2017, p. nil. [Online]. Available:
https://doi.org/10.1109/smc-it.2017.13

[15] H. Heaton and Y. Censor, “Asynchronous sequential inertial iterations for
common fixed points problems with an application to linear systems,”
Journal of Global Optimization, vol. 74, no. 1, pp. 95–119, 2019. [Online].
Available: https://doi.org/10.1007/s10898-019-00747-4

[16] L. Elsner, I. Koltracht, and M. Neumann, “Convergence of sequential
and asynchronous nonlinear paracontractions,” Numerische Mathematik,
vol. 62, no. 1, pp. 305–319, 1992. [Online]. Available: https:
//doi.org/10.1007/bf01396232

[17] R. Wilson, “Radiological use of fast protons,” Radiology, pp. 487–491, 1946.

89

https://doi.org/10.1016/0022-5193(70)90109-8
https://doi.org/10.1109/tip.2003.815295
https://doi.org/10.1109/tip.2003.815295
https://doi.org/10.1080/10556780310001610484
https://doi.org/10.1109/smc-it.2017.13
https://doi.org/10.1007/s10898-019-00747-4
https://doi.org/10.1007/bf01396232
https://doi.org/10.1007/bf01396232

[18] J. Hu, X. Zhao, and F. Wang, “An extended simultaneous algebraic
reconstruction technique (e-sart) for x-ray dual spectral computed
tomography,” Scanning, vol. 38, no. 6, pp. 599–611, 2016. [Online].
Available: https://doi.org/10.1002/sca.21306

[19] A. Kak and M. Slaney, Principles of Computerized Tomographic Imaging,
ser. Classics in Applied Mathematics. Society for Industrial and
Applied Mathematics, 2001, ch. 7, pp. 275–296. [Online]. Available:
https://books.google.com/books?id=Z6RpVjb9_lwC

[20] Paul Alcorn, “Arm details neoverse v1 and n2 platforms, new
mesh design,” 2021, [Online; accessed 3-July-2021]. [Online]. Avail-
able: https://www.tomshardware.com/news/arm-details-neoverse-v1-and-
n2-platforms-new-mesh-design

[21] Hassan Mujtaba, “Amd epyc genoa cpu platform detailed – up to 96
zen 4 cores, 192 threads, 12-channel ddr5-5200, 128 pcie gen 5 lanes,
sp5 ‘lga 6096’ socket,” 2021, [Online; accessed 3-July-2021]. [Online].
Available: https://wccftech.com/amd-epyc-genoa-cpu-platform-detailed-
up-to-96-zen-4-cores-12-channel-ddr5-5200-sp5-lga-6096-socket/

[22] Chris Bergey, SVP and GM, Infrastructure Line of Business, Arm, “Transform-
ing compute for next-generation infrastructure,” 2021, [Online; accessed
3-July-2021]. [Online]. Available: https://www.arm.com/company/news/
2021/04/transforming-compute-for-next-generation-infrastructure

[23] Y. Censor, D. Gordon, and R. Gordon, “Component averaging: an efficient
iterative parallel algorithm for large and sparse unstructured problems,”
Parallel Computing, vol. 27, no. 6, pp. 777–808, 2001. [Online]. Available:
https://doi.org/10.1016/s0167-8191(00)00100-9

[24] D. Gordon, “The cimmino-kaczmarz equivalence and related results,” Applied
Analysis & Optimization, vol. 2, no. 2, pp. 253–370, 2018. [Online].
Available: http://yokohamapublishers.jp/online2/opaao/vol2/p253.html

[25] D. Fischer, “Paradoxes in parallel processing (abstract),” in Proceedings of the
1990 ACM annual conference on Cooperation - CSC ’90, - 1990, p. nil.
[Online]. Available: https://doi.org/10.1145/100348.100462

[26] L. Gubin, B. Polyak, and E. Raik, “The method of projections for finding
the common point of convex sets,” USSR Computational Mathematics and
Mathematical Physics, vol. 7, no. 6, pp. 1–24, 1967. [Online]. Available:
https://doi.org/10.1016/0041-5553(67)90113-9

[27] L. Bregman, “The method of successive projections for finding a common point
of convex sets,” Soviet Mathematics Doklady, vol. 6, pp. 688–692, 1965.

90

https://doi.org/10.1002/sca.21306
https://books.google.com/books?id=Z6RpVjb9_lwC
https://www.tomshardware.com/news/arm-details-neoverse-v1-and-n2-platforms-new-mesh-design
https://www.tomshardware.com/news/arm-details-neoverse-v1-and-n2-platforms-new-mesh-design
https://wccftech.com/amd-epyc-genoa-cpu-platform-detailed-up-to-96-zen-4-cores-12-channel-ddr5-5200-sp5-lga-6096-socket/
https://wccftech.com/amd-epyc-genoa-cpu-platform-detailed-up-to-96-zen-4-cores-12-channel-ddr5-5200-sp5-lga-6096-socket/
https://www.arm.com/company/news/2021/04/transforming-compute-for-next-generation-infrastructure
https://www.arm.com/company/news/2021/04/transforming-compute-for-next-generation-infrastructure
https://doi.org/10.1016/s0167-8191(00)00100-9
http://yokohamapublishers.jp/online2/opaao/vol2/p253.html
https://doi.org/10.1145/100348.100462
https://doi.org/10.1016/0041-5553(67)90113-9

[28] H. Kong and J. Pan, “An improved ordered-subset simultaneous algebraic re-
construction technique,” in 2009 2nd International Congress on Image and
Signal Processing, 2009, pp. 1–5.

[29] G. Wang and M. Jiang, “Ordered-subset simultaneous algebraic reconstruction
techniques (os-sart),” Journal of X-ray Science and Technology, vol. 12,
no. 3, pp. 169–177, 2004.

[30] C. Tschalär, “Straggling distributions of extremely large energy losses,” Nucl.
Instrum. Methods, vol. 61, pp. 141–156, 1968.

[31] International Commission on Radiation Units and Measurements, “Stopping
powers and ranges for protons and alpha particles,” ICRU Report, vol. 49,
1993.

[32] W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, 2nd ed.
Springer, 1994.

[33] B. Schaffner and E. Pedroni, “The precision of proton range calculations in
proton radiotherapy treatment planning: experimental verification of the
relation between CT-HU and proton stopping power,” Phys. Med. Bio.,
vol. 43, pp. 1579–1592, 1998.

[34] Y. Chen, E. Gomez, R. F. Hurley, Y. Nie, K. E. Schubert, and R. W. Schulte,
“Accurate proton beam localization,” in Proceedings of The 2012 Inter-
national Conference on Bioinformatics and Computational Biology (BIO-
COMP’12), 2012, pp. 213–217.

[35] C.-A. C. Fekete, P. Doolan, M. F. Dias, L. Beaulieu, and J. Seco,
“Developing a phenomenological model of the proton trajectory within
a heterogeneous medium required for proton imaging,” Phys. Med.
Bio., vol. 60, no. 13, pp. 5071–5082, 2015. [Online]. Available:
http://stacks.iop.org/0031-9155/60/i=13/a=5071

[36] G. N. Hounsfield, “Method of and apparatus for examining a body by radiation
such as X or gamma radiation,” U.S. Patent and Trademark Office, no. US
3919552, Nov 1975.

[37] ——, “Method of and apparatus for examining a body by radiation such as X
or gamma radiation,” U.S. Patent 3 919 552, Nov 11, 1975.

[38] G. Coutrakon, J. Hubbard, J. Johanning, G. Maudsley, T. Slaton, and P. Mor-
ton, “A performance study of the loma linda proton medical accelerator,”
Med. Phys., vol. 21, pp. 1691–1701, 1994.

91

http://stacks.iop.org/0031-9155/60/i=13/a=5071

[39] M. Bruzzi, N. Blumenkrantz, J. Feldt, J. Heimann, H. F.-W. Sadrozinski,
A. Seiden, D. Williams, V. A. Bashkirov, R. W. Schulte, D. Menichelli,
M. Scaringella, G. Cirrone, G. Cuttone, N. Randazzo, V. Sipala, and D. L.
Presti, “Prototype tracking studies for proton CT,” IEEE Transactions on
Nuclear Science, vol. 54, pp. 140–145, Feb 2007.

[40] G. Cuttone, G. Cirrone, G. Candiano, F. D. Rosa, G. Russo, N. Randazzo,
V. Sipala, S. L. Nigro, D. L. Presti, J. Feldt, J. Heimann, H. F.-W. Sadrozin-
ski, A. Seiden, D. Williams, V. A. Bashkirov, R. W. Schulte, M. Bruzzi, and
D. Menichelli, “Monte Carlo studies of a proton computed tomography sys-
tem,” IEEE Transactions on Nuclear Science, vol. 54, pp. 1487–1491, Oct
2007.

[41] J. Missaghian, R. F. Hurley, V. A. Bashkirov, B. Colby, V. Rykalin,
S. Kachigiun, D. Fusi, R. W. Schulte, M. F. Martinez, H. F.-W. Sadrozinski,
and S. N. Penfold, “Beam test results of a csi calorimeter matrix element,”
JINST, vol. 5, p. P06001, 2010.

[42] R. F. Hurley, R. W. Schulte, V. A. Bashkirov, G. Coutrakon, H. F.-W. Sadrozin-
ski, and B. Patyal, “The phase i proton CT scanner and test beam results
at llumc,” Trans. Am. Nucl. Soc., vol. 106, pp. 63–66, 2012.

[43] R. F. Hurley, R. W. Schulte, V. A. Bashkirov, A. Wroe, A. Ghebremedhin,
H. F.-W. Sadrozinski, V. Rykalin, G. Coutrakon, P. Koss, and B. Patyal,
“Water-equivalent path length calibration of a prototype proton CT scan-
ner,” Med. Phys., vol. 39, pp. 2438–2446, 2012.

[44] R. W. Schulte, V. A. Bashkirov, R. P. Johnson, H. F.-W. Sadrozinski, and K. E.
Schubert, “Overview of the llumc/ucsc/csusb phase 2 proton CT project,”
in Trans. Am. Nucl. Soc., vol. 106, 2012, pp. 59–62.

[45] H. F.-W. Sadrozinski, R. P. Johnson, S. Macafee, A. Plumb, D. Steinberg,
A. Zatserklyaniy, V. A. Bashkirov, R. F. Hurley, and R. W. Schulte, “De-
velopment of a head scanner for proton CT,” Nucl. Instrum. Methods Phys.
Res. A, vol. 699, pp. 205–210, 2013.

[46] M. Scaringella, M. Bruzzi, M. Bucciolini, M. Carpinelli, G. A. P. Cirrone,
C. Civinini, G. Cuttone, D. L. Presti, S. Pallotta, C. Pugliatti, N. Randazzo,
F. Romano, V. Sipala, C. Stancampiano, C. Talamonti, E. Vanzi, and
M. Zani, “A proton computed tomography based medical imaging system,”
Journal of Instrumentation, vol. 9, no. 12, p. C12009, 2014. [Online].
Available: http://stacks.iop.org/1748-0221/9/i=12/a=C12009

92

http://stacks.iop.org/1748-0221/9/i=12/a=C12009

[47] V. A. Bashkirov, R. P. Johnson, H. F.-W. Sadrozinski, and R. W.
Schulte, “Development of proton computed tomography detectors
for applications in hadron therapy,” Nucl. Instrum. Methods Phys.
Res. A, vol. 809, pp. 120–129, 2016. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0168900215009274

[48] T. E. Plautz, V. A. Bashkirov, V. Giacometti, R. F. Hurley, R. P. Johnson,
P. Piersimoni, H. F.-W. Sadrozinski, R. W. Schulte, and A. Zatserklyaniy,
“An evaluation of spatial resolution of a prototype proton CT scanner,”
Med. Phys., vol. 43, no. 12, pp. 6291–6300, Dec 2016. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5097050/

[49] R. P. Johnson, V. A. Bashkirov, G. Coutrakon, V. Giacometti, P. Karbasi,
N. T. Karonis, C. Ordoñez, M. Pankuch, H. F.-W. Sadrozinski, K. E.
Schubert, and R. W. Schulte, “Results from a prototype proton-CT head
scanner,” Conference on the Application of Accelerators in Research and
Industry, CAARI 2016, 30 October - 4 November 2016, Ft. Worth, TX,
USA, Jul 2017. [Online]. Available: https://arxiv.org/pdf/1707.01580

[50] R. P. Johnson, V. A. Bashkirov, L. DeWitt, V. Giacometti, R. F. Hurley,
P. Piersimoni, T. E. Plautz, H. F.-W. Sadrozinski, K. E. Schubert, R. W.
Schulte, B. E. Schultze, and A. Zatserklyaniy, “A fast experimental scanner
for proton CT: Technical performance and first experience with phantom
scans,” IEEE Transactions on Nuclear Science, vol. 63, pp. 52–60, 2016.

[51] R. W. Schulte, S. N. Penfold, J. Tafas, and K. E. Schubert, “A maximum
likelihood proton path formalism for application in proton computed to-
mography,” Med. Phys., vol. 35, pp. 4849–4856, Nov 2008.

[52] V. A. Bashkirov, R. W. Schulte, G. Coutrakon, B. Erdelyi, K. Wong, H. F.-W.
Sadrozinski, S. N. Penfold, A. B. Rosenfeld, S. A. McAllister, and K. E.
Schubert, “Development of Proton Computed Tomography for Applications
in Proton Therapy,” in Application of Accelerators in Research and Indus-
try: Twentieth International Conference, F. D. McDaniel and B. L. Doyle,
Eds., vol. AIP Conference Proceedings Volume 1099. Fort Worth (Texas):
American Institute of Physics, Aug 10-15 2008, pp. 460–463, iSBN: 978-0-
7354-0633-9.

[53] S. N. Penfold, A. B. Rosenfeld, R. W. Schulte, and K. E. Schubert, “A more
accurate reconstruction system matrix for quantitative proton computed
tomography,” Med. Phys., vol. 36, no. 10, pp. 4511–4518, Oct 2009.

[54] S. A. McAllister, K. E. Schubert, R. W. Schulte, and S. N. Penfold, “General
purpose graphics processing unit speedup of integral relative electron density
calculation for proton computed tomography,” in Proceedings of the IEEE
High Performance Medical Imaging Workshop 2009, 2009.

93

http://www.sciencedirect.com/science/article/pii/S0168900215009274
http://www.sciencedirect.com/science/article/pii/S0168900215009274
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5097050/
https://arxiv.org/pdf/1707.01580

[55] K. N. Kutulakos and S. M. Seitz, “A theory of shape by space carving,” in
Proceedings of the Seventh International Conference on Computer Vision
(ICCV), 1999, pp. 307–314.

[56] ——, “A theory of shape by space carving,” International Journal of Computer
Vision, vol. 38, no. 3, pp. 199–218, Marr Prize Special Issue 2000.

[57] S. Vedula, S. Baker, S. Seitz, and T. Kanade, “Shape and motion carving in
6d,” in Proceedings of Computer Vision and Pattern Recognition Conference
(CVPR), 2000.

[58] W. Niem, “Robust and fast modelling of 3D natural objects from multiple
views,” in SPIE Proceedings Image and Video Processing, vol. 2182, no. II,
1994, pp. 388–397.

[59] ——, “Error analysis for silhouette-based 3D shape estimation from multiple
views,” in Proceedings of International Workshop on Synthetic-Natural Hy-
brid Coding and Three-Dimensional Imaging, 1997, pp. 143–146.

[60] J. Canny, “A computational approach to edge detection,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679–698,
Nov 1986.

[61] B. E. Schultze, M. Witt, K. E. Schubert, and R. W. Schulte, “Space carving and
filtered back projection as preconditioners for proton computed tomography
reconstruction,” in Proceedings of the IEEE Nuclear Science Symposium &
Medical Imaging Conference (NSS/MIC) 2012, 2012, pp. 4335–4340.

[62] B. E. Schultze, M. Witt, Y. Censor, K. E. Schubert, and R. W. Schulte, “Per-
formance of hull-detection algorithms for proton computed tomography re-
construction,” in Infinite Products of Operators and Their Applications,
ser. Contemporary Mathematics, S. Reich and A. Zaslavski, Eds., vol. 636.
American Mathematical Society, 2015, pp. 211–224.

[63] J. Radon, “Uber due bestimmung von funktionen durch ihre intergralwerte
langsgewisser mannigfaltigkeiten (on the determination of functions from
their integrals along certain manifolds),” Berichte Saechsische Akademie
der Wissenschaften, vol. 29, pp. 262–277, 1917.

[64] R. Bracewell and A. Riddle, “Inversion of fan beam scawns in radio astronomy,”
Astrophysics Journal, vol. 150, pp. 427–434, 1967.

[65] G. Ramanchandran and A. Lakshminarayanan, “Three dimensional reconstruc-
tions from radiographs and electron micrographs: Application of convolu-
tion instead of Fourier transforms,” Proc. Natl. Acad. Sci., vol. 68, pp.
2236–2240, 1971.

94

[66] A. Lakshminarayanan, “Reconstruction from divergent ray data,” Department
of Computer Science, State University of New York at Buffalo, Tech. Rep.,
1975.

[67] L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam algorithms,” J. Opt.
Soc. Am., vol. A1, pp. 612–619, 1984.

[68] L. Shepp and B. Logan, “The Fourier reconstruction of a head section,” IEEE
Transactions on Nuclear Science, vol. NS-21, pp. 21–43, 1974.

[69] A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging.
New York: IEEE Press, 1988.

[70] Y. Censor, T. Elfving, G. T. Herman, and T. Nikazad, “On diagonally relaxed
orthogonal projection methods,” SIAM J. Sci. Comput., vol. 30, no. 1, pp.
473–504, 2008. [Online]. Available: https://doi.org/10.1137/050639399

[71] G. T. Herman and R. Davidi, “Image reconstruction from a small number of
projections,” Inverse Problems, vol. 24, no. 4, p. 045011, 2008. [Online].
Available: http://stacks.iop.org/0266-5611/24/i=4/a=045011

[72] S. N. Penfold, R. W. Schulte, Y. Censor, V. A. Bashkirov, S. A. McAllister,
K. E. Schubert, and A. B. Rosenfeld, “Block-iterative and string-averaging
projection algorithms in proton computed tomography image reconstruc-
tion,” in Biomedical Mathematics: Promising Directions in Imaging, Ther-
apy Planning and Inverse Problems, Y. Censor, M. Jiang, and G. Wang,
Eds., The Huangguoshu International Interdisciplinary Conference. Madi-
son, WI, USA: Med. Phys., 2010, pp. 347–367.

[73] S. N. Penfold, “Image Reconstruction and Monte Carlo Simulations in the De-
velopment of Proton Computed Tomography for Applications in Proton Ra-
diation Therapy,” Ph.D. dissertation, University of Wollongong, Australia,
2010.

[74] S. N. Penfold and Y. Censor, “Techniques in iterative proton CT image
reconstruction,” Sensing and Imaging, vol. 16, no. 1, Oct 2015. [Online].
Available: https://doi.org/10.1007/s11220-015-0122-3

[75] M. Bruzzi, C. Civinini, M. Scaringella, D. Bonanno, M. Brianzi, M. Carpinelli,
G. Cirrone, G. Cuttone, D. L. Presti, G. Maccioni, S. Pallotta, N. Randazzo,
F. Romano, V. Sipala, C. Talamonti, and E. Vanzi, “Proton computed
tomography images with algebraic reconstruction,” Nucl. Instrum. Methods
Phys. Res. A, vol. 845, pp. 652–655, May 2017, Proceedings of
the Vienna Conference on Instrumentation 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0168900216304454

95

https://doi.org/10.1137/050639399
http://stacks.iop.org/0266-5611/24/i=4/a=045011
https://doi.org/10.1007/s11220-015-0122-3
http://www.sciencedirect.com/science/article/pii/S0168900216304454

[76] B. E. Schultze, P. Karbasi, V. Giacometti, T. E. Plautz, K. E. Schubert, and
R. W. Schulte, “Reconstructing highly accurate relative stopping powers in
proton computed tomography,” in Proceedings of the IEEE Nuclear Science
Symposium & Medical Imaging Conference (NSS/MIC) 2015, Oct 2015, pp.
1–3.

[77] R. P. Johnson, “Review of medical radiography and tomography with proton
beams,” Reports on Progress in Physics, vol. 81, no. 1, p. 016701, 2018.
[Online]. Available: http://stacks.iop.org/0034-4885/81/i=1/a=016701

[78] R. Davidi, G. T. Herman, and Y. Censor, “Perturbation-resilient block-
iterative projection methods with application to image reconstruction
from projections,” International Transactions in Operational Research,
vol. 16, no. 4, pp. 505–524, 2009. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-3995.2009.00695.x

[79] G. T. Herman, E. Garduño, R. Davidi, and Y. Censor, “Superiorization: An
optimization heuristic for medical physics,” Med. Phys., vol. 39, no. 9, pp.
5532–5546, 2012. [Online]. Available: http://dx.doi.org/10.1118/1.4745566

[80] Y. Censor, “Weak and strong superiorization: Between feasibility-seeking and
minimization,” Analele Stiintifice ale Universitatii Ovidius Constanta, Seria
Matematica, vol. 23, pp. 41–54, Oct 2014.

[81] Y. Censor, R. Davidi, and G. T. Herman, “Perturbation resilience and superi-
orization of iterative algorithms,” Inverse problems, vol. 26, p. 65008, Jun
2010.

[82] Y. Censor, R. Davidi, G. T. Herman, R. W. Schulte, and L. Tetruashvili,
“Projected subgradient minimization versus superiorization,” Journal of
Optimization Theory and Applications, vol. 160, no. 3, pp. 730–747, Mar
2014. [Online]. Available: https://doi.org/10.1007/s10957-013-0408-3

[83] Y. Censor, G. T. Herman, and M. Jiang, “Superiorization: Theory and
applications,” Special Issue of Inverse Problems, vol. 33, no. 4, p.
040301, 2017. [Online]. Available: http://stacks.iop.org/0266-5611/33/i=
4/a=040301

[84] A. Chambolle, V. Caselles, M. Novaga, D. Cremers, and T. Pock, “An intro-
duction to total variation for image analysis,” in Theoretical Foundations
and Numerical Methods for Sparse Recovery, De Gruyter, 2010.

[85] Y. Censor, “Can linear superiorization be useful for linear optimization
problems?” Inverse Problems, vol. 33, no. 4, p. 044006, 2017. [Online].
Available: http://stacks.iop.org/0266-5611/33/i=4/a=044006

96

http://stacks.iop.org/0034-4885/81/i=1/a=016701
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-3995.2009.00695.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-3995.2009.00695.x
http://dx.doi.org/10.1118/1.4745566
https://doi.org/10.1007/s10957-013-0408-3
http://stacks.iop.org/0266-5611/33/i=4/a=040301
http://stacks.iop.org/0266-5611/33/i=4/a=040301
http://stacks.iop.org/0266-5611/33/i=4/a=044006

[86] T. Humphries, J. Winn, and A. Faridani, “Superiorized algorithm
for reconstruction of CT images from sparse-view and limited-angle
polyenergetic data,” Phys. Med. Bio., vol. 62, no. 16, pp. 6762–6783, 2017.
[Online]. Available: http://stacks.iop.org/0031-9155/62/i=16/a=6762

[87] E. Helou, M. Zibetti, and E. Miqueles, “Superiorization of incremental
optimization algorithms for statistical tomographic image reconstruction,”
Inverse Problems, vol. 33, no. 4, p. 044010, 2017. [Online]. Available:
http://stacks.iop.org/0266-5611/33/i=4/a=044010

[88] E. Garduño and G. T. Herman, “Computerized tomography with total variation
and with shearlets,” Inverse Problems, vol. 33, no. 4, p. 044011, 2017.
[Online]. Available: http://stacks.iop.org/0266-5611/33/i=4/a=044011

[89] Q. Yang, W. Cong, and G. Wang, “Superiorization-based multi-energy CT
image reconstruction,” Inverse Problems, vol. 33, no. 4, p. 044014, 2017.
[Online]. Available: http://stacks.iop.org/0266-5611/33/i=4/a=044014

[90] O. Langthaler, “Incorporation of the superiorization methodology into
biomedical imaging software,” Sep 2014, 76 pages. [Online]. Avail-
able: https://static1.squarespace.com/static/559921a3e4b02c1d7480f8f4/
t/585c49d6725e25be085071c7/1482443225511/Langthaler.pdf

[91] B. Prommegger, “Verification and evaluation of superiorized algo-
rithms used in. biomedical imaging: Comparison of iterative al-
gorithms with and without superiorization for image reconstruc-
tion from projections,” Oct 2014, 84 pages. [Online]. Avail-
able: https://static1.squarespace.com/static/559921a3e4b02c1d7480f8f4/
t/585c49bc8419c2c4f892861b/1482443201138/Prommegger.pdf

[92] C. Havas, “Revised implementation and empirical study of maximum
likelihood expectation maximization algorithms with and without superi-
orization in image reconstruction,” Oct 2016, 49 pages. [Online]. Avail-
able: https://static1.squarespace.com/static/559921a3e4b02c1d7480f8f4/
t/596c97aad1758e1c6808c0fa/1500288944245/Havas+Clemens_615.pdf

[93] S. N. Penfold, R. W. Schulte, Y. Censor, and A. B. Rosenfeld, “Total variation
superiorization schemes in proton computed tomography image reconstruc-
tion,” Med. Phys., vol. 37, pp. 5887–5895, 2010.

[94] D. Butnariu, R. Davidi, G. T. Herman, and I. G. Kazantsev, “Stable con-
vergence behavior under summable perturbations of a class of projection
methods for convex feasibility and optimization problems,” IEEE Journal
of Selected Topics in Signal Processing, vol. 1, no. 4, pp. 540–547, Dec 2007.

97

http://stacks.iop.org/0031-9155/62/i=16/a=6762
http://stacks.iop.org/0266-5611/33/i=4/a=044010
http://stacks.iop.org/0266-5611/33/i=4/a=044011
http://stacks.iop.org/0266-5611/33/i=4/a=044014
https://static1.squarespace.com/static/559921a3e4b02c1d7480f8f4/t/585c49d6725e25be085071c7/1482443225511/Langthaler.pdf
https://static1.squarespace.com/static/559921a3e4b02c1d7480f8f4/t/585c49d6725e25be085071c7/1482443225511/Langthaler.pdf
https://static1.squarespace.com/static/559921a3e4b02c1d7480f8f4/t/585c49bc8419c2c4f892861b/1482443201138/Prommegger.pdf
https://static1.squarespace.com/static/559921a3e4b02c1d7480f8f4/t/585c49bc8419c2c4f892861b/1482443201138/Prommegger.pdf
https://static1.squarespace.com/static/559921a3e4b02c1d7480f8f4/t/596c97aad1758e1c6808c0fa/1500288944245/Havas+Clemens_615.pdf
https://static1.squarespace.com/static/559921a3e4b02c1d7480f8f4/t/596c97aad1758e1c6808c0fa/1500288944245/Havas+Clemens_615.pdf

[95] Y. Censor, “Superiorization and perturbation resilience of algo-
rithms: A bibliography compiled and continuously updated,”
http://math.haifa.ac.il/yair/bib-superiorization-censor.html.

[96] U. Linz, Ion Beam Therapy: Fundamentals, Technologies, and Clinical Ap-
plications, ser. Biological and Medical Physics, Biomedical Engineering.
Springer, 2012, vol. 320.

[97] R. R. Wilson, “Radiological use of fast protons,” Radiology, vol. 47, no. 5, pp.
487–491, 1946, pMID: 20274616.

[98] A. M. Cormack, “Representation of a function by its line integrals, with some
radiological applications,” Journal of Applied Physics, vol. 34, no. 9, pp.
2722–7, Sep 1963.

[99] ——, “Representation of a function by its line integrals, with some radiological
applications. ii,” Journal of Applied Physics, vol. 35, no. 10, pp. 2908–13,
Oct 1964.

[100] A. Cormack and A. Koehler, “Quantitative proton tomography: preliminary
experiments,” Phys. Med. Bio., vol. 21, no. 4, pp. 560–569, 1976. [Online].
Available: http://stacks.iop.org/0031-9155/21/i=4/a=007

[101] K. M. Hanson, J. N. Bradbury, T. M. Cannon, R. L. Hutson, D. B. Laubacher,
R. Macek, M. A. Paciotti, and C. A. Taylor, “The application of protons
to computed tomography,” IEEE Transactions on Nuclear Science, vol. 25,
no. 1, pp. 657–660, Feb 1978.

[102] K. M. Hanson, “Proton computed tomography,” IEEE Transactions on Nuclear
Science, vol. 26, no. 1, pp. 1635–1640, Feb 1979.

[103] K. M. Hanson, J. N. Bradbury, T. M. Cannon, R. L. Hutson, D. B. Laubacher,
R. J. Macek, M. A. Paciotti, and C. A. Taylor, “Computed tomography
using proton energy loss,” Phys. Med. Bio., vol. 26, no. 6, pp. 965–983,
1981. [Online]. Available: http://stacks.iop.org/0031-9155/26/i=6/a=001

[104] G. Dedes, L. D. Angelis, S. Rit, D. Hansen, C. Belka, V. A. Bashkirov,
R. P. Johnson, G. Coutrakon, K. E. Schubert, R. W. Schulte,
K. Parodi, and G. Landry, “Application of fluence field modulation
to proton computed tomography for proton therapy imaging,” Phys.
Med. Bio., vol. 62, no. 15, pp. 6026–6043, 2017. [Online]. Available:
http://stacks.iop.org/0031-9155/62/i=15/a=6026

98

http://stacks.iop.org/0031-9155/21/i=4/a=007
http://stacks.iop.org/0031-9155/26/i=6/a=001
http://stacks.iop.org/0031-9155/62/i=15/a=6026

[105] G. Dedes, R. P. Johnson, M. Pankuch, N. Detrich, W. M. A. Pols, S. Rit, R. W.
Schulte, K. Parodi, and G. Landry, “Experimental fluence modulated proton
computed tomography by pencil beam scanning,” Med. Phys., vol. 45, pp.
3287–3296, May 2018.

[106] S. Agostinelli, J. Allison, K. Amako et al., “Geant4 - a simulation toolkit,”
Nucl. Instrum. Methods Phys. Res. A, vol. 506, no. 3, pp. 250–303,
2003. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0168900203013688

[107] H. Jiang and H. Paganetti, “Adaptation of geant4 to Monte Carlo dose
calculations based on CT data,” Med. Phys., vol. 31, no. 10, pp. 2811–2818,
2004. [Online]. Available: https://aapm.onlinelibrary.wiley.com/doi/abs/
10.1118/1.1796952

[108] V. Giacometti, V. A. Bashkirov, P. Piersimoni, S. Guatelli, T. E. Plautz, H. F.-
W. Sadrozinski, R. P. Johnson, A. Zatserklyaniy, T. Tessonnier, K. Parodi,
A. B. Rosenfeld, and R. W. Schulte, “Software platform for simulation of a
prototype proton CT scanner,” Med. Phys., vol. 44, no. 3, pp. 1002–1016,
2017. [Online]. Available: http://dx.doi.org/10.1002/mp.12107

[109] A. Mustafa and D. Jackson, “The relation between x-ray CT numbers and
charged particle stopping powers and its significance for radiotherapy treat-
ment planning,” Phys. Med. Bio., vol. 28, no. 2, pp. 169–176, Feb 1983.

[110] N. Matsufuji, H. Tomura, Y. Futami, H. Yamashita, A. Higashi, S. Minohara,
M. Endo, and T. Kanai, “Relationship between CT number and electron
density, scatter angle and nuclear reaction for hadron-therapy treatment
planning,” Phys. Med. Bio., vol. 43, pp. 3261––3275, 1998.

[111] A. Smith, “Vision 20/20: proton therapy,” Med. Phys., vol. 36, pp. 556–568,
2009.

[112] H. Paganetti, “Range uncertainties in proton therapy and the role of Monte
Carlo simulations,” Phys. Med. Bio., vol. 57, no. 11, pp. R99––R117, May
2012.

[113] C. Civinini, D. Bonanno, M. Brianzi, M. Carpinelli, G. Cirrone, G. Cuttone,
D. L. Presti, G. Maccioni, S. Pallotta, N. Randazzo, M. Scaringella,
F. Romano, V. Sipala, C. Talamonti, E. Vanzi, and M. Bruzzi,
“Proton computed tomography: iterative image reconstruction and dose
evaluation,” Journal of Instrumentation, vol. 12, no. 01, p. C01034, 2017.
[Online]. Available: http://stacks.iop.org/1748-0221/12/i=01/a=C01034

99

http://www.sciencedirect.com/science/article/pii/S0168900203013688
http://www.sciencedirect.com/science/article/pii/S0168900203013688
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.1796952
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.1796952
http://dx.doi.org/10.1002/mp.12107
http://stacks.iop.org/1748-0221/12/i=01/a=C01034

[114] R. I. MacKay, “Image guidance for proton therapy,” Clin. Oncol. (R.
Coll. Radiol.), vol. 30, no. 5, pp. 293–298, 2018. [Online]. Available:
http://iopscience.iop.org/article/10.1088/1361-6633/aa8b1d/meta

[115] U. Schneider and E. Pedroni, “Proton radiography as a tool for quality control in
proton therapy,” Med. Phys., vol. 22, no. 4, pp. 353–363, Apr 1995. [Online].
Available: https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.597470

[116] A. C. Society, “Cancer facts and figures 2013,” American Cancer Society At-
lanta, Tech. Rep., 2013.

[117] A. S. for Therapeutic Radiology (ASTRO), “Fast facts about ra-
diation oncology,” https://www.astro.org/News-and-Media/Media-
Resources/FAQs/Fast-Facts-About-Radiation-Therapy/Index.aspx, Nov
2012.

[118] C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T.
Arena, and K. W. Eliceiri, “Imagej2: Imagej for the next generation of
scientific image data,” BMC Bioinformatics, vol. 18, no. 1, p. 529, Nov
2017. [Online]. Available: https://doi.org/10.1186/s12859-017-1934-z

[119] K. M. Crowe, T. F. Budinger, J. L. Cahoon, V. P. Elischer, R. H. Huesman,
and L. L. Kanstein, “Axial scanning with 900 mev alpha particles,” IEEE
Transactions on Nuclear Science, vol. 22, no. 3, pp. 1752–1754, Jun 1975.

[120] G. Poludniowski, N. M. Allinson, and P. M. Evans, “Proton radiography
and tomography with application to proton therapy,” The British Journal
of Radiology, vol. 88, p. 20150134, Jun 2015. [Online]. Available:
https://doi.org/10.1259/bjr.20150134

[121] K. M. Hanson, J. N. Bradbury, R. A. Koeppe, R. J. Macek, D. R.
Machen, R. Morgado, M. A. Paciotti, S. A. Sandford, and V. W.
Steward, “Proton computed tomography of human specimens,” Phys.
Med. Bio., vol. 27, no. 1, pp. 25–36, Jan 1982. [Online]. Available:
https://doi.org/10.1088/0031-9155/27/1/003

100

http://iopscience.iop.org/article/10.1088/1361-6633/aa8b1d/meta
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.597470
https://www.astro.org/News-and-Media/Media-Resources/FAQs/Fast-Facts-About-Radiation-Therapy/Index.aspx
https://www.astro.org/News-and-Media/Media-Resources/FAQs/Fast-Facts-About-Radiation-Therapy/Index.aspx
https://doi.org/10.1186/s12859-017-1934-z
https://doi.org/10.1259/bjr.20150134
https://doi.org/10.1088/0031-9155/27/1/003

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	DEDICATION
	Introduction
	Projection Methods
	Algebraic Reconstruction Technique
	Block Iterative Algorithm
	String Averaging
	Summary

	Concurrency
	Concurrency vs Parallelism
	Processes
	Locks
	Data Structures
	Concurrencies in ART Algorithms

	Theory
	Asynchronous Art Algorithm
	*
	Theoretical Speedup
	Data Distribution
	Time Complexity

	Implementation
	Dataset
	Sorting
	Index Tree
	Language and Environment
	Async Grid
	Channels
	Blocking vs Parking
	Async Node
	Grid Generation
	Grid Operation

	Experiment
	Introduction
	Hardware
	Dataset
	Experiments
	CTP404 Sensitometry Phantom
	George Phantom 2.5mm thickness
	George Phantom 1mm thickness

	Discussion
	Performance
	Theoretical Speedup
	Timing Data

	Scalability
	Scale Over Multi-cores
	Scale Over Network

	Improvements

	Conclusion
	Future Direction

	APPENDICES
	APPENDIX Testing Scripts
	CTP404 Phantom
	George 2.5mm
	George 1mm

	APPENDIX CTP404 Phantom History Counts
	APPENDIX George 2.5mm History Counts
	APPENDIX George 1mm History Counts
	BIBLIOGRAPHY

