
ABSTRACT

Initial Systematic Investigations of the Weakly Coupled Free Fermionic Heterotic
String Landscape Statistics

Timothy Renner, Ph.D.

Advisor: Gerald B. Cleaver, Ph.D.

A C++ framework was constructed with the explicit purpose of systemati-

cally generating string models using the Weakly Coupled Free Fermionic Heterotic

String (WCFFHS) method. The software, optimized for speed, generality, and ease

of use, has been used to conduct preliminary systematic investigations of WCFFHS

vacua. Documentation for this framework is provided in the Appendix. After an

introduction to theoretical and computational aspects of WCFFHS model build-

ing, a study of ten-dimensional WCFFHS models is presented. Degeneracies among

equivalent expressions of each of the known models are investigated and classified.

A study of more phenomenologically realistic four-dimensional models based on the

well known “NAHE” set is then presented, with statistics being reported on gauge

content, matter representations, and space-time supersymmetries. The final study

is a parallel to the NAHE study in which a variation of the NAHE set is system-

atically extended and examined statistically. Special attention is paid to models

with “mirroring” — identical observable and hidden sector gauge groups and matter

representations.

Initial Systematic Investigations of the Weakly Coupled Free Fermionic Heterotic
String Landscape Statistics

by

Timothy Renner, B.S.

A Dissertation

Approved by the Department of Physics

Gregory A. Benesh, Ph.D., Chairperson

Submitted to the Graduate Faculty of
Baylor University in Partial Fulfillment of the

Requirements for the Degree
of

Doctor of Philosophy

Approved by the Dissertation Committee

Gerald B. Cleaver, Ph.D., Chairperson

Jay R. Dittmann, Ph.D.

Lorin S. Matthews, Ph.D.

David J. Ryden, Ph.D.

Anzhong Wang, Ph.D.

Accepted by the Graduate School
August 2011

J. Larry Lyon, Ph.D., Dean

Page bearing signatures is kept on file in the Graduate School.

Copyright c© 2011 by Timothy Renner

All rights reserved

TABLE OF CONTENTS

LIST OF FIGURES viii

LIST OF TABLES xiii

LIST OF ABBREVIATIONS xix

ACKNOWLEDGMENTS xx

DEDICATION xxiii

1 Introduction 1

1.1 String Theory . 1

1.1.1 Bosonic Strings . 2

1.1.2 Superstrings . 10

1.1.3 Heterotic Strings . 17

1.2 Weakly Coupled Free Fermionic Heterotic Strings 17

1.3 The String Vacuum Landscape . 28

2 Constructing Free Fermionic Heterotic String Models 32

2.1 Introduction . 32

2.2 Inputs . 32

2.2.1 Anatomy of a Basis Vector . 33

2.2.2 The kij Matrix . 41

2.3 Generating States . 43

2.3.1 ~αB’s . 43

2.3.2 ~α’s . 44

2.3.3 States . 45

iii

2.3.4 GSO Projection . 51

2.4 ST SUSY . 52

2.5 Gauge Groups . 53

2.6 Matter Representations . 58

2.7 Summary . 61

3 Challenges in Systematic WCFFHS Searches 62

3.1 The Scale of Systematic WCFFHS Searches 62

3.2 Uniqueness in WCFFHS Models . 64

4 Redundancies in Explicitly Constructed Ten Dimensional Heterotic String

Models 68

4.1 D = 10 Heterotic String Models in the Free Fermionic Construction . 68

4.2 Searches With One Basis Vector . 70

4.3 Combinations with Two Order-2 Layers 83

4.3.1 Varying kij’s . 83

4.3.2 Fixed kij’s . 84

4.3.3 Relation to Order 4 Basis Vectors 84

4.4 The Full D=10, Level-1 Heterotic Landscape 88

4.5 Conclusions . 91

5 Preliminary Systematic NAHE Investigations 95

5.1 The NAHE Set . 95

5.2 Statistics for Order-2 Layer-1 . 98

5.2.1 With ~S . 98

5.2.2 Without ~S . 104

5.3 Statistics for Order-3 Layer-1 . 108

5.3.1 With ~S . 109

5.3.2 Without ~S . 113

iv

5.4 Models With GUT Groups . 115

5.4.1 E6 Models . 119

5.4.2 SO(10) Models . 122

5.4.3 SU(5)⊗ U(1) Models . 126

5.4.4 Pati-Salam Models . 131

5.4.5 Left-Right Symmetric Models 135

5.4.6 MSSM-like Models . 141

5.4.7 ST SUSYs . 144

5.5 Three Generation Models With a Geometric Interpretation 146

5.5.1 A Three Generation SU(5)⊗ U(1) Model 148

5.5.2 A Three Generation Left-Right Symmetric Model 150

5.6 Conclusions . 151

6 Preliminary Systematic NAHE Variation Extensions 155

6.1 The NAHE Variation . 155

6.2 Order 2, Layer 1 Extensions . 157

6.3 Order 3, Layer 1 Extensions . 161

6.4 Models with GUT Groups . 165

6.4.1 E6 . 167

6.4.2 SO(10) . 167

6.4.3 SU(5)⊗ U(1) . 176

6.4.4 Pati-Salam . 179

6.4.5 Left-Right Symmetric . 182

6.4.6 MSSM-like Models . 185

6.4.7 ST SUSYs . 188

6.5 Models with Mirroring . 193

6.6 Conclusions . 196

v

APPENDIX

A FF Framework Documentation 199

A.1 Introduction . 199

A.2 FF Framework Classes . 199

A.2.1 Format of class information 199

A.2.2 FF Alpha.hh . 200

A.2.3 FF Alpha Boson.hh . 201

A.2.4 FF Alpha Builder.hh . 202

A.2.5 FF Alpha Fermion.hh . 206

A.2.6 FF Alpha SUSY.hh . 208

A.2.7 FF Basis Alpha.hh . 209

A.2.8 FF Basis Alpha Builder.hh . 211

A.2.9 FF Basis Vector.hh . 213

A.2.10 FF Fermion Mode Map Builder.hh 215

A.2.11 FF Group Representation.hh . 223

A.2.12 FF GSO Coefficient Matrix.hh 225

A.2.13 FF GSO Coefficient Matrix Builder.hh 226

A.2.14 FF GSO Projector.hh . 234

A.2.15 FF Gauge Group.hh . 237

A.2.16 FF Gauge Group Identifier.hh . 245

A.2.17 FF Gauge Group Name.hh . 261

A.2.18 FF Math.hh . 262

A.2.19 FF Matter State.hh . 263

A.2.20 FF Model.hh . 264

A.2.21 FF Model Builder.hh . 268

A.2.22 FF Modular Invariance Checker.hh 281

A.2.23 FF State.hh . 282

vi

A.2.24 FF State Builder.hh . 284

A.2.25 FF State LM Builder.hh . 289

A.2.26 FF State RM Builder.hh . 293

A.3 FF Framework Class Inheritance Structure 301

A.3.1 Alpha Class Inheritance . 301

A.3.2 State Class Inheritance . 302

A.4 Using the Makefile . 302

A.4.1 Directory Structure . 302

A.4.2 Creating Executables . 303

A.4.3 Debugging and Optimization 303

A.4.4 Other Makefile Functions . 304

BIBLIOGRAPHY 305

vii

LIST OF FIGURES

1.1 The five consistent ten-dimensional string theories and the dualities
that relate them. 30

2.1 The Dynkin diagram for E6. Notice that exchanging roots 1 and 5 or
roots 2 and 4 result in the same relative configurations. Symmetries
of this sort allows for complex representations. 59

2.2 The Dynkin diagram for D4, in which exchanging roots 1, 3, and 4
results in the same relative configurations. This property is called
triality. 60

4.1 Plotted here are the number of unique models produced vs the order
of the basis vectors that produced those models. 71

4.2 The number of distinct models against the number of space-time su-
persymmetries for D = 6,4 O3,O5 L1. The number of distinct models
with and without space-time SUSY are equal. The models themselves
are also equal. 82

4.3 A schematic showing the systematic search for two basis vectors of
order 2. The columns are models that are produced by different basis
vectors, while the rows represent the possible kij inputs. The lines
indicate two models that were produced by the same basis vector set,
but different kij matrices. Therefore, a model with two lines was built
by two different sets of basis vectors that produced different models
when kij was changed. 83

4.4 A schematic diagram of the O3O2 systematic search. The differ-
ent columns represent different basis vectors, while the different rows
represent possible kij matrix configurations. Lines connect models
produced by the same basis vector, but different kij matrices. 90

4.5 A schematic diagram of the O2O2O2 search. As with the other di-
agrams, the different columns indicate different basis vectors, while
different rows represent different kij’s. Lines indicate models produced
by identical basis vectors, but different kij matrices. 93

5.1 The number of gauge group factors for each model in the NAHE +
O2L1 data set. 101

viii

5.2 The number of ST SUSYs for the NAHE + O2L1 data set. 102

5.3 The number of U(1) factors for the NAHE + O2L1 data set. 104

5.4 The number of non-Abelian singlets in the NAHE + O2L1 data set. . 105

5.5 Statistics for the NAHE + O2L1 data set without ~S. 108

5.6 The number of gauge group factors per model in the NAHE + O3L1
data set. 112

5.7 The ST SUSYs for the NAHE + O3L1 data set. 113

5.8 The number of U(1) factors for the NAHE + O3L1 data set. 114

5.9 The number of non-Abelian singlets for the NAHE + O3L1 data set. 114

5.10 Statistics for the NAHE + O3L1 data set without ~S. 117

5.11 Statistics related to the chiral matter generations for E6 models in
the NAHE + O3L1 data set. 120

5.12 Statistics for the models containing E6 in the NAHE + O3L1 data set.122

5.13 Statistics for the chiral matter generations of the SO(10) models in
the NAHE + O2L1 and NAHE + O3L1 data sets. 124

5.14 The number of observable sector charged exotics for SO(10) models
in the NAHE + O2L1 and NAHE + O3L1 data sets. 126

5.15 Statistics for the SO(10) models in the NAHE + O2L1 data set. . . . 127

5.16 Statistics for the SO(10) models in the NAHE + O3L1 data set. . . . 128

5.17 Statistics related to observable matter for the SU(5) ⊗ U(1) models
in the NAHE + O3L1 data set. 129

5.18 Statistics for the SU(5)⊗ U(1) models in the NAHE + O3L1 data set.131

5.19 The number of observable sector charged exotics from Pati-Salam
models in the NAHE + O2L1 data set. 133

5.20 Statistics related to observable matter in the Pati-Salam models from
the NAHE + O3L1 data set. 135

ix

5.21 Statistics for the Pati-Salam models in the NAHE + O2L1 data set. . 136

5.22 Statistics for the Pati-Salam models in the NAHE + O3L1 data set. . 137

5.23 Observable matter statistics for the Left-Right Symmetric models in
the NAHE + O3L1 data set. 138

5.24 Statistics for the Left-Right Symmetric models in the NAHE + O3L1
data set. 140

5.25 Observable matter related statistics for the MSSM models in the
NAHE + O3L1 data set. 143

5.26 Statistics for MSSM models in the NAHE + O3L1 data set. 144

5.27 The distributions of ST SUSYs for the NAHE + O2L1 GUT group
data sets. 145

5.28 Some of the distributions of ST SUSYs for the NAHE + O3L1 GUT
group data sets. 146

5.29 The remaining distributions of ST SUSYs for the NAHE + O3L1
GUT group data sets. 147

6.1 The number of gauge group factors in the NAHE variation + O2L1
data set. 159

6.2 The number of U(1) factors for the NAHE variation + O2L1 data set. 160

6.3 The number of ST SUSYs in the NAHE variation + O2L1 data set. . 161

6.4 The number of non-Abelian singlets in the NAHE variation + O2L1
data set. 163

6.5 The number of gauge group factors in the NAHE variation + O3L1
data set. 164

6.6 The number of U(1) factors in the NAHE variation + O3L1 data set. 164

6.7 The number of ST SUSYs in the NAHE variation + O3L1 data set. . 166

6.8 The number of non-Abelian singlets in the NAHE variation + O3L1
data set. 166

x

6.9 The number of chiral matter generations and charged exotics for E6

models in the NAHE variation + O2L1 data set. 170

6.10 Statistics for the E6 models in the NAHE variation + O2L1 data set. 171

6.11 Statistics for the E6 models in the NAHE variation + O3L1 data set. 172

6.12 Statistics related to the observable sector in the SO(10) NAHE vari-
ation models. 175

6.13 Statistics for the NAHE variation + O2L1 SO(10) models. 176

6.14 Statistics for the NAHE variation + O3L1 SO(10) models. 177

6.15 The number of observable sector charged exotics for the flipped-SU(5)⊗
U(1) models in the NAHE variation + O3L1 data set. 179

6.16 Statistics for the SU(5)⊗U(1) models in the NAHE variation + O3L1
data set. 180

6.17 The number of observable sector charged exotics in the NAHE varia-
tion + O3L1 data set. 182

6.18 Statistics for the Pati-Salam models in the NAHE variation + O3L1
data set. 183

6.19 The number of observable sector charged exotics in the NAHE varia-
tion + O3L1 Left-Right Symmetric models. 185

6.20 Statistics for the Left-Right Symmetric models in the NAHE variation
+ O3L1 data set. 186

6.21 The number of observable sector charged exotics in the NAHE varia-
tion + O3L1 data set. 188

6.22 Statistics for the MSSM models in the NAHE variation + O3L1 data
set. 189

6.23 The distributions of ST SUSYs for the NAHE variation + O2L1 GUT
group data sets. 190

6.24 The distributions of ST SUSYs for the NAHE variation + O3L1 GUT
group data sets. 191

xi

6.25 The distributions of ST SUSYs for the NAHE variation + O3L1 GUT
group data sets. 192

A.1 The recursion tree for the Alpha Builder class. 207

A.2 A schematic of the algorithm for determining the dimension and tri-
ality (if needed) of a group representation. 240

A.3 A schematic of the algorithm used to find the simple roots of a gauge
group. 251

A.4 A schematic of the process used to build the gauge groups. 277

A.5 A schematic of the recursive algorithm used to apply the ~F operator
to the LM of a state. 292

A.6 A schematic for the algorithm which selects ~F for a state’s RM. . . . 298

A.7 The inheritances of the Alpha-type classes. 302

xii

LIST OF TABLES

2.1 The possibe charge states produced by the sector (2.46). 46

2.2 Possible charge states produced by (2.49). To make these massless,
additional fractional elements from other modes in the states are needed. 49

2.3 This table presents information pertinent to the identification of Lie
groups from their nonzero roots. From the left, the columns are the
Cartan classification, the colloquial name, the dimension of the ad-
joint representation, the number of nonzero positive roots, the num-
ber of positive short roots, and the Dynkin diagram. The Dynkin
diagrams give the simple roots and their dot products with other
simple roots. Short roots are filled in, while long roots are empty.
The lines represent the angles between the simple roots in the root
space, which are essentially the normalized dot products. Because of
the normalizations, the number of lines directly corresponds to the
ratio of lengths-squared of the two roots connected by the lines. . . . 55

2.4 The maximal ranks of the gauge groups based on the number of large
space-time dimensions. 56

2.5 Gauge groups with different ranks and/or classes, but the same num-
ber of nonzero positive roots. 57

3.1 Two models illustrating the inherent difficulty in comparing WCFFHS
models. 65

3.2 Matter representation classes of the “toy” models. 66

3.3 Another “toy” model, declared non-existant by the conjecture about
matter representation classes. 67

4.1 These are all possible D = 10, level-1 models that can be constructed
using the methods detailed. The dimensions of the non-Abelian mat-
ter representations are given underneath the respective gauge groups
under which they transform. Abelian charges were not computed. . . 69

xiii

4.2 Order-3 models with six and four large space-time dimensions and
massless left movers. This table provides evidence for a conjecture
that single basis vectors with odd order right movers always have the
maximal number of space-time supersymmetries. Note also that only
half of the kij matrix is specified. The other half is constrained by
modular invariance, and is therefore not a true degree of freedom for
WCFFHS models. The basis vectors are presented in a real basis. . . 73

4.3 A sample of order-5 models with six and four large space-time dimen-
sions and massless left movers. All of them have the maximal number
of space-time supersymmetries. The basis vectors are presented in a
real basis. 74

4.4 The possible gravitino states in 10, 6, and 4 large space-time dimen-
sions. A + represents a charge value of 1

2
, while a – represents a charge

value of −1
2
. The dot products for both of the GSOP constraints are

in this case identical. Note that the yi, wi values can also be periodic
and thus can vary, but permutations of xi, yi, wi produce identical
models when there is only one basis vector with a massless left mover.
The states are presented in a complex basis. 76

4.5 Comparison of the results between the searches in which the kij matrix
was and was not varied for two order-2 basis vectors. The inputs on
the left were generated with multiple kij’s, while the inputs on the
right were generated with a fixed kij. 85

4.6 This table contains each model with the respective pair of order-2
and order-4 basis vectors, as well as the corresponding kij’s. Note
that not all of the models can be produced from each data set. The
basis vectors in this table are presented in a real basis. 87

4.7 The models along with the inputs from each data set that produced
that model. The basis vectors are presented in a real basis. Note that
some of the order-6 basis vectors are actually order-3. Specifically,
the SO(32), N = 1 model is produced by the same order-3 basis vec-
tors. The additional order-2 basis vector’s contribution is completely
projected out. 89

4.8 The models along with the inputs from each data set producing that
model. The basis vectors are expressed in a real basis. 92

xiv

5.1 The basis vectors and GSO coefficients of the NAHE set arranged into
sets of matching boundary conditions. NR is the order of the right

mover. The elements ψ, ψ
i
, η i, and φ

i
are expressed in a complex

basis, while xi, yi, wi, y i, and w i are expressed in a real basis. . . . 96

5.2 The particle content of the model produced by the NAHE set. 97

5.3 The frequency of the individual gauge groups amongst the unique
models for the NAHE + O2L1 data set. Gauge groups at Kač-Moody
level higher than 1 are denoted with a superscript indicating the Kač-
Moody level. 99

5.4 The number of unique models containing GUT groups for the NAHE
+ O2L1 data set. 101

5.5 A basis vector and kij matrix row which produces an enhanced ST
SUSY when added the NAHE set. 102

5.6 The particle content of the N = 2 ST SUSY NAHE based model. . . 103

5.7 The gauge content of the NAHE + O2L1 data set without ~S. 106

5.8 A side-by-side comparison of the gauge content for NAHE + O2L1
with and without ~S. 107

5.9 The number of unique models containing GUT groups for the NAHE
+ O2L1 data set without ~S. 109

5.10 The gauge group content of the NAHE + O3L1 data set. 111

5.11 The number of unique models containing GUT groups for the NAHE
+ O3L1 data set. 112

5.12 The gauge group content of the NAHE + O3L1 data set without ~S. . 116

5.13 The occurrances of the GUT groups for the NAHE + O3L1 data set
without ~S. 118

5.14 The hidden sector gauge group content of models containing E6 within
the NAHE + O3L1 data set. 121

5.15 Hidden sector gauge groups for SO(10) models in the NAHE + O2L1
data set. 123

xv

5.16 Hidden sector gauge groups for SO(10) models in the NAHE + O3L1
data set. 125

5.17 The hidden sector gauge groups of the SU(5) ⊗ U(1) models in the
NAHE + O3L1 data set. 130

5.18 The hidden sector gauge group content in Pati-Salam models from
the NAHE + O2L1 data set. 133

5.19 The hidden sector gauge group content of the Pati-Salam models in
the NAHE + O3L1 data set. 134

5.20 The hidden sector gauge group content of the Left-Right Symmetric
models in the NAHE + O3L1 data set. 139

5.21 The hidden sector gauge group content of the MSSM models in the
NAHE + O3L1 data set. 142

5.22 A basis vector and kij matrix row which produces a three-generation
SU(5)⊗ U(1) model. 148

5.23 Particle content for the three-generation SU(5) ⊗ U(1) model. This
model also has five U(1) groups and N = 1 ST SUSY. 149

5.24 Observable sector matter states without hidden sector charges for the
three-generation SU(5)⊗ U(1) model. 150

5.25 A basis vector and kij matrix row which produces a three-generation
Left-Right Symmetric model. 151

5.26 The particle content of the three-generation Left-Right Symmetric
Model. This model also has 7 U(1)’s and N = 1 ST SUSY. 152

5.27 The observable matter content of the three-generation Left-Right Sym-
metric Model. 153

5.28 A summary of the GUT group study with regard to the number of
chiral fermion generations in the NAHE set investigation. 154

6.1 The basis vectors and GSO coefficients of the NAHE variation ar-
ranged into sets of matching boundary conditions. The elements ψ,

ψ
i
, ηi, and φ

i
are expressed in a complex basis. xi, yi, wi, yi, and wi

are expressed in a real basis. 156

xvi

6.2 The particle content for the NAHE variation model. The model also
has five U(1) groups and N = 1 ST SUSY. 157

6.3 The gauge group content of the NAHE variation + O2L1 data set. . . 158

6.4 The GUT group content of the NAHE variation + O2L1 data set. . . 160

6.5 The gauge group content of the NAHE variation + O3L1 data set. . . 162

6.6 The GUT group content of the NAHE variation + O3L1 data set. . . 165

6.7 The hidden sector gauge group content for the NAHE variation +
O2L1 E6 models. 168

6.8 The hidden sector gauge groups for the NAHE variation + O3L1 E6

models. 169

6.9 Hidden sector gauge content of the NAHE variation + O2L1 SO(10)
models. 173

6.10 Hidden sector gauge content of the NAHE variation + O3L1 SO(10)
models. 174

6.11 The hidden sector gauge group content of the SU(5) ⊗ U(1) models
in the NAHE variation + O3L1 data set. 178

6.12 The hidden sector gauge group content for the Pati-Salam models in
the NAHE variation + O3L1 data set. 181

6.13 The hidden sector gauge group content of the Left-Right Symmetric
models in the NAHE variation + O3L1 data set. 184

6.14 The hidden sector gauge groups for the MSSM models in the NAHE
variation + O3L1 data set. 187

6.15 The basis vector and kij row of the NAHE variation extension pro-
ducing the SO(11)⊗ SO(11)⊗ SO(10)⊗ U(1)5 mirrored model. . . . 193

6.16 The particle content of the SO(11)⊗ SO(11)⊗ SO(10)⊗ U(1)5 mir-
rored model. The model has N = 0 ST SUSY. 194

6.17 The basis vector and kij row of the NAHE variation extension pro-
ducing the SO(10)⊗ SO(10)⊗ SO(14)⊗ U(1)5 mirrored model. . . . 195

xvii

6.18 The particle content of the SO(10)⊗SO(10)⊗SO(14)⊗U(1)5 model.
This model has N = 0 ST SUSY. 195

6.19 The basis vector and kij row of the NAHE variation extension pro-
ducing the E6 ⊗ E6 ⊗ SO(14)⊗ U(1)3 mirrored model. 195

6.20 The particle content of the E6 ⊗ E6 ⊗ SO(14) ⊗ U(1)3 model. This
model has N = 2 ST SUSY. 196

6.21 A summary of the GUT group study with regard to the number of
chiral fermion generations in the NAHE variation investigation. . . . 197

xviii

LIST OF ABBREVIATIONS

ST: Space-time.

WS: World Sheet.

SUSY: Supersymmetry.

GUT: Grand unified theory.

WCFFHS: Weakly Coupled Free Fermionic Heterotic String. A method of con-
structing heterotic string models.

VEV: Vacuum expectation value.

SU(N+1): Group of special unitary matrices of dimension N + 1. Corresponds to
the Cartan classification AN .

SO(2N+1): Group of special orthogonal matrices of odd dimension 2N +1. Corred-
sponds to the Cartan classification BN .

Sp(2N): Group of symplectic matrices of dimension 2N . Corresponds to the
Cartan classification CN .

SO(2N): Group of special orthogonal matrices of even dimension 2N . Corre-
sponds to the Cartan classification DN .

E6,7,8, F4, G2: Exceptional groups which only exist with certain dimensions. Their
Cartan classification is their colloquial name.

KM: Kač-Moody.

GSOP: GSO (Gliozzi, Scherk, Olive) projection. In WCFFHS models, an equa-
tion each state in the model must satisfy for the Hilbert space of states
to be invariant under modular transformations.

ABK: Antoniadis, Bachas, Kounnas. Group authoring one of the first WCFFHS
model construction papers.

AB: Antoniandis, Bachas. Group which extended the work of ABK to in-
clude modes with any rational phase.

KLT: Kawai, Lewellen, Tye. Group authoring one of the first WCFFHS model
construction papers.

NAHE: Nanopoulos, Antoniadis, Hagelin, Ellis. Group authoring the initial pa-
pers on quasi-realistic WCFFHS model building. Discovered a set of
five order-2 basis vectors which serve as a basis from which phenomeno-
logically realistic WCFFHS models are constructed.

xix

ACKNOWLEDGMENTS

I would like first and foremost to thank my advisor, Professor Gerald Cleaver.

His kind demeanor and cheerful disposition made even the toughest problems seem

solvable. He has always let me address and solve the challenges thoughout my

graduate career in my own way, lending a nearly inexhaustible breadth of knowledge

to guide my next steps. For that, he has my utmost gratitude and respect.

I would like to thank all of the professors that have impacted my education

through exemplary teaching: Professors Lorin Matthews, Yumei Wu, Bennie Ward,

Gerald Cleaver, David Ryden, Anzhong Wang, Ken Park, and Jeff Olafsen. I would

also like to thank the professors who have taken the time to serve on my defense

committee: Professors Gerald Cleaver, Jay Dittmann, Lorin Matthews, Anzhong

Wang, and David Ryden. I thank the Baylor Physics Department for allowing me

to teach for them. My time teaching for the department has been excellent, and

I am grateful to have had that opportunity. In particular I want to thank those

who have supervised me as a teaching assistant: Drs. Tibra Ali and Ray Nazzario,

Mr. Randy Hall, and especially Dr. Linda Kinslow. Finally, I thank Mrs. Marian

Nunn-Graves and Mrs. Chava Baker for all of their assistance.

I owe a great deal to the members, past and present, of the EUCOS group:

Jared Greenwald, Kristen Pechan, Erik Remkus, Yanbin Deng, and especially Doug

Moore. Doug has been a seemingly endless font of knowledge regarding nearly every

question I can think to ask. His assistance has been crucial both to the EUCOS

group, as well as my own research. I owe him a great debt.

I would like to thank the String Vacuum Project for funding my travel to their

conferences and allowing me to present my work there.

I would also like to thank my family for their constant love and support. My

father Steve has taught me that there are a great many valuable things in life that

xx

cannot be quantified. He fostered in me a love of literature and poetry that has

both guided me and echoed throughout my scientific endeavors. My mother Alice

has been a model of strength and persistence. Through a great many difficulties

— lupus, back surgery, breast cancer, and (possibly the most difficult) life with my

father — she has always remained a constant source of laughter and encouragement.

I would like to thank my sister Sara, as she has been a model of excellence in her

academic and spiritual pursuits. Giving up is a thought she has clearly never had,

and I will always benefit from that example. Altogether my family has taught me

a skill that will continue to make my life wonderful: laughter. Never unwilling to

miss a chance at laughter, and never unwilling to let a humbling moment escape my

attention, they have shown me that the best way to enjoy life is to laugh, especially

at myself.

My friends have always been a source of strength and encouragement, as well

as an excellent source of knowledge (most of the time). In particular, my “formative”

years were shaped by the presence of Drs. Andreas Tziolas and Richard Obousy,

for better or worse. They made me feel welcome during the exceedingly difficult

first years of graduate school, making the transition here much easier. I also want

to thank Jay Murphree, BJ Enzweiler, Jonathan Perry, Dr. Victor Land, Anne

Land-Zandstra, Dr. Victor Guerrero, Dr. Sammy Joseph, Doug Moore, and V.H.

Satheeshkumar for their continuing support. My friends outside the department

also have my thanks — Andy and Tamee Ryan, Norbert Trimmer, Amanda Piccolo,

Sarah Hutchins, Rev. Dr. Robert Flowers, and Jojo Percy.

The members of the Central Christian Church Chancel Choir also have my

gratitude. My Wednesday nights have been filled not only with laughter, but also

with reminders to call my mother. I thank Sarah Daniels and Chris Diamond for

allowing me to sing with such a wonderful, fun group of people.

xxi

I also want to acknowledge my two closest friends in graduate school: Dr.

Martin Frank and James Creel. The trials, tribulations, and discussions Martin and

I have been part of would make an outstanding piece of epic poetry. I am convinced

that with enough malted beverages and chicken wings, Martin and I could solve a

great deal of the world’s problems. James has been a close friend and confidant

throughout my time here at Baylor. His generosity and loyalty are something for

which I will always be grateful.

Finally, I would like to thank my partner, Cindy Calvert. Cindy has been by

my side through most of the graduate school process, and her love has kept me going

through the most difficult parts of it. Her understanding and patience are traits that

I truly admire. She has put aside a great deal of her personal goals to allow me to

complete graduate school, and I hope to repay that debt someday.

It is to all of my friends that I dedicate this dissertation.

xxii

For my friends

CHAPTER ONE

Introduction

1.1 String Theory

Currently the Standard Model (SM) of particle physics describes the universe

up to the electroweak scale MW = 246 GeV [1], but has several shortcomings.

Firstly, the interactions of the fundamental particles described by the symmetry

groups SU(3)C ⊗ SU(2)L ⊗ U(1)Y where C, L, and Y denote the color force, weak

isospin, and electroweak hypercharge, respectively, are only valid when the gauge

bosons are massless. At low energies W± and Z0, the electroweak bosons, become

massive. This discrepancy is solved via the Higgs mechanism through a process

called spontaneous symmetry breaking. Such a mechanism introduces new scalar

bosons (denoted Higgs bosons), which have yet to be observed experimentally.

Additionally, the SM coupling constants for the three forces renormalize1 at

high energies to nearly the same value, but do not all intersect at one point. Such an

intersection would mean that the fundamental forces are different manifestations of

the same unified force. Introducing supersymmetry (SUSY) allows this to happen.

SUSY is a symmetry in which each known fermion has a bosonic superpartner, and

each known boson has a fermion superpartner. Such a mechanism forces cancella-

tions to occur in the renormalization of the couplings that allows all three couplings

to approach one common value around 2.5× 1016 GeV.

The SM also requires around twenty free parameters to describe itself, many

of which must be fine tuned. This lack of simplicity suggests that the SM is a low

energy projection of a higher energy theory with fewer free parameters.

1 Renormalization is a process that stabilizes the UV limits of interaction cross sections. Cou-
plings, masses, and the fields themselves all must be renormalized to produce mathematically
consistent results.

1

Perhaps the greatest shortcoming of the SM is the lack of a gravitational force.

The mathematical framework of the Standard Model, called quantum field theory

(QFT), cannot properly describe the gravitational interaction. In contrast to the

SM forces, renormalizing gravity results is an infinite cross section that must be fine

tuned at every interaction order to be finite.

A more encompassing description must therefore be explored to fully explain

the universe at the fundamental level, and one such option is string theory. String

theory describes the fundamental interactions of physics not with point particles,

as QFT does, but with one-dimensional objects denoted as “strings.” A string with

certain (quantum mechanical) vibration modes will have a low energy projection of

one particle while a string with different vibration modes will produce a completely

different particle. Thus, rather than a theory with a large number of fundamentally

different particles, string theory uses a single object (the string) vibrating at different

modes to describe the universe. While there are some aspects of string theory that

may seem initially unappealing (to be described later), many of these can be used

in a way that produces a supersymmetric, unified description of the universe.

1.1.1 Bosonic Strings

The first string theory put forward was an initial attempt to explain the sym-

metry of the strong nuclear force, but was found to be inferior to quantum chro-

modynamics (QCD). It became of interest again when it was realized that certain

spin-2 closed string states that could not be eliminated from the theory described

quantum mechanical carriers of the gravitational force, gravitons. Thus, this first

attempt at string theory necessarily included quantum gravity. Unfortunately, this

theory lacked a crucial component of the universe: matter. There are no space-time

fermion modes in what became known as bosonic string theory, and thus this frame-

work cannot be used to fully describe the universe. Nevertheless, bosonic strings

2

are used as a component in string theories with space-time fermions (specifically,

the heterotic string theories), and should be discussed. The discussion to follow

summarizes the approach in refs. [2, 3].

A classical bosonic string is described by the Polyakov action.

SP =
1

4πα′

∫
Σ

d2ξ
√
hhab∂aX

µ∂bXµ, (1.1)

where Σ is the two-dimensional surface a string creates as it moves through space-

time, or world-sheet, ξ0, ξ1 are world sheet coordinates, Xµ are the Minkowski space-

time coordinates of the string, α′ is the string tension, and hab is the intrinsic world

sheet metric. The Euler-Lagrange equations yield the following equation of motion.

∂α(
√
−hhαβ∂βXµ) = 0 (1.2)

These equations are solved by the following mode expansions:

Xµ = Xµ
L +Xµ

R (1.3)

where

Xµ
L =

1

2
xµ + α′pµ(ξ0 − ξ1) + i

√
α′

2

∑
n 6=0

1

n
αµne

−2in(ξ0−ξ1) (1.4)

and

Xµ
R =

1

2
xµ + α′pµ(ξ0 + ξ1) + i

√
α′

2

∑
n6=0

1

n
αµne

−2in(ξ0+ξ1) (1.5)

Thus,

Xµ = xµ + 2α′pµξ0 + i

√
α′

2

∑
n6=0

1

n
e−2inξ0(αµne

2inξ1 + αµne
−2inξ1) (1.6)

Varying the Polyakov action with respect to Ẋµ yields the conjugate momentum P µ.

P µ =
1

2πα′
∂Xµ

∂ξ0
=
pµ

π
+

1

π
√

2α′

∑
n6=0

e−2inξ0(αµne
2iξ1 + αµne

−2iξ1). (1.7)

With expressions for the conjugate momentum pµ and the field Xµ in place, one can

write the commutation relations in anticipation of quantization

[P µ(ξ1, ξ0), P ν(ξ1′ , ξ0)] = [Xµ(ξ1, ξ0), Xν(ξ1′ , ξ0)] = 0, (1.8)

3

[P µ(ξ1, ξ0), Xν(ξ1′ , ξ0)] = iηµνδ(ξ1 − ξ1′). (1.9)

Rewriting this in terms of the excitation mode operators, αµn, α
µ
n,

[αµn, α
ν
m] = 0, (1.10)

[αµn, α
ν
m] = [αµn, α

ν
m] = mηµνδm+n,0. (1.11)

Redefining the excitation mode operators allows them to be expressed as a rais-

ing/lowering algebra for harmonic oscillators...

aµm =
1√
m
αµm, (1.12)

aµ†m =
1√
m
αµ−m. (1.13)

The commutation relations (1.11) become

[aµm, a
ν†
n] = [aµm, a

ν†
n] = ηµνδmn (1.14)

for m,n > 0. An expression for the Hamiltonian that will be useful for future

calculations is

H =

∫ π

0

(ẊµP
µ
0 − L)dξ1. (1.15)

Inserting the mode expansion (1.6) results in

H =
∞∑

n=−∞

(α−n · αn + α−n · αn). (1.16)

Varying the Polyakov action with respect to the intrinsic metric h yields the following

equations for the energy-momentum tensor:

Tαβ = ∂αX
µ∂βXµ −

1

2
hαβh

γδ∂γX
µ∂δXµ = 0, (1.17)

where hαβ is the intrinsic metric. These equations are better expressed and solved

in light cone coordinates, defined by

ξ± = ξ0 ± ξ1. (1.18)

4

The wave equation for the string (1.2) becomes

∂+∂−X
µ = 0. (1.19)

The closed string mode expansions (1.4, 1.5) become

XL =
1

2
xµ + α′pµξ− + i

√
α′

2

∑
n 6=0

1

n
αµne

−2inξ− , (1.20)

XR =
1

2
xµ + α′pµξ+ + i

√
α′

2

∑
n6=0

1

n
αµne

−2inξ+ . (1.21)

The equations (1.17) for the energy-momentum tensor then become

T++ = ∂+X
µ∂+Xµ = 0, (1.22)

T−− = ∂−X
µ∂−Xµ = 0. (1.23)

Placing the mode expansions (1.20, 1.21) into (1.22, 1.23) gives the following equa-

tions for the energy-momentum tensor:

T−− = 2α′
∞∑

m=−∞

∞∑
n=−∞

αm−n · αne−2imξ− = 4α′
∞∑

m=−∞

Lme
−2imξ− = 0, (1.24)

T++ = 2α′
∞∑

m=−∞

∞∑
n=−∞

αm−n · αne−2imξ+ = 4α′
∞∑

m=−∞

Lme
−2imξ+ = 0 (1.25)

Lm, Lm are called Virasoro operators. They are defined as follows:

Lm =
1

2

∞∑
n=−∞

αm−n · αn (1.26)

Lm =
1

2

∞∑
n=−∞

αm−n · αn. (1.27)

Quantum mechanically, to eliminate infinities, normal ordering must be imposed on

the Virasoro operators. This means that the lowering operators appear to the right

of the raising operators.

:Lm: =
1

2

∞∑
n=−∞

:αm−n · αn: (1.28)

:Lm: =
1

2

∞∑
n=−∞

:αm−n · αn: (1.29)

5

The only Virasoro operators affected by the ordering prescription are L0 and L0.

This is due to the commutation relations for the α and α operators. Explicitly,

:L0: =
1

2
α2

0 +
∞∑
n=1

α−n · αn (1.30)

:L0: =
1

2
α2

0 +
∞∑
n=1

α−n · αn (1.31)

A constant is needed to encode the arbitrary nature of the normal ordering. In

general,

:L0: = L0 + a, (1.32)

:L0: = L0 + a, (1.33)

where :L0: and :L0: are the quantum mechanical Virasoro operators, L0 and L0 are

classical, and a is the normal ordering constant, which will be solved for later.

The Hamiltonian (1.16) can be expressed in terms of the Virasoro operators.

H =
∞∑

n=−∞

α−n · αn + α−n · αn = 2(:L0: + :L0:) (1.34)

The commutation relations for the Virasoro operators can be determined using the

commutators for the α operators. They are

[Lm, Ln] = (m− n)Lm+n +
D

12
m(m2 − 1)δm+n,0, (1.35)

[Lm, Ln] = (m− n)Lm+n +
D

12
m(m2 − 1)δm+n,0, (1.36)

where D is the number of space-time dimensions. The term involving D is called a

central extension to the Virasoro algebra, and is a quantum mechanical correction of

the form A(m)δm+n. Solving for A(m) involves using the Jacobi identity to develop

a recursion relation, then using the expectation value of the commutators.

The Virasoro operators can also be used to derive the mass shell condition for

the string. Starting with the relativistic mass expression,

M2 = −pµpµ, (1.37)

6

the total momentum of the string is

pµ =

∫ π

0

dξ1Ẋµ(ξ1). (1.38)

Due to the bounds of this integral, only the zero modes contribute. This implies

p2 =
1

α′
(α2

0 + α2
0). (1.39)

Thus, the Virasoro operator expression for the zero modes (1.30, 1.31) using the

energy-momentum conditions (1.25, 1.24) is

:L0: + :L0: =
∞∑
n=1

(α−n · αn + α−n · αn) +
α′

2
p2 + 2a = 0. (1.40)

Substituting the momentum term in the above equation with the relativistic mo-

mentum (1.37), then solving for the mass, results in

M2 =
2

α′

∞∑
n=1

(α−n · αn + α−n · αn)− 2a. (1.41)

Altogether, these equations give a mass shell condition for the string,

:L0: |φ〉 = (L0 − a)|φ〉 = 0, (1.42)

:L0: |φ〉 = (L0 − a)|φ〉 = 0, (1.43)

where |φ〉 is any physical on-shell state in the theory. Additionally, the mass-shell

condition imposes a constraint between the left and right moving zero mode Virasoro

operators.

(:L0: − :L0:)|φ〉 = (L0 − L0)|φ〉 = 0. (1.44)

This is known as the level matching condition.

In the light cone gauge, it can be shown that the values of D, the space-time

dimension, and a, the normal ordering constant, cannot be arbitrary. This is a

result of maintaining Lorentz invariance. Begin by writing the mode expansions of

7

the (normal ordered) L0 and L0 operators in the light cone gauge:

L0 =
1

2
α2

0 +
1

2

D−2∑
i=1

∑
n6=0

αi−nα
i
n, (1.45)

L0 =
1

2
α2

0 +
1

2

D−2∑
i=1

∑
n6=0

α1
−nα

i
n. (1.46)

These expansions are not yet normal ordered. Imposing normal ordering leads to

the following expressions

:L0: =
1

2
α2

0 +
D−2∑
i=1

∞∑
n=1

αi−nα
i
n + (

D − 2

2
)
∞∑
n=1

n, (1.47)

:L0: =
1

2
α2

0 +
D−2∑
i=1

∞∑
n=1

αi−nα
i
n + (

D − 2

2
)
∞∑
n=1

n. (1.48)

Using the identity
∞∑
n=1

n = ζ(−1) = − 1

12
, (1.49)

where ζ(n) is the Riemann zeta function, the following expressions are produced for

the Virasoro operators

:L0: =
1

2
α2

0 +
D−2∑
i=1

∞∑
n=1

αi−nα
i
n −

D − 2

24
, (1.50)

:L0: =
1

2
α2

0 +
D−2∑
i=1

∞∑
n=1

αi−nα
i
n −

D − 2

24
. (1.51)

The normal ordering constant a can now be written as a function of D.

a =
D − 2

24
(1.52)

Additionally, the expressions for the normal ordered operators defined by (1.50,

1.51) can be used to solve for the mass. Firstly, compute L0 + L0,

:L0: + :L0: = −α
′

2
M2 +

D−2∑
i=1

∞∑
n=1

(αi−nα
i
n + αi−nα

i
n)− D − 2

12
= 0. (1.53)

8

Defining the number operators, N and N , which count the number of excitations

for a given state, as follows

N =
D−2∑
i=1

∞∑
n=1

αi−nα
i
n, (1.54)

N =
D−2∑
i=1

∞∑
n=1

αi−nα
i
n, (1.55)

leads to a simpler expression for the mass-shell of the string:

:L0: + :L0:= −
α′

2
M2 +N +N − D − 2

12
= 0. (1.56)

Solved for the mass, this expression relates the mass of the string to the number of

excited states N and N and the number of space-time dimensions D:

α′

2
M2 = N +N − D − 2

12
. (1.57)

Note that the level matching condition (1.44) becomes, in terms of the number

operators

L0 = L0 → N = N. (1.58)

This means that there must be the same number of excitations on the right as

there are on the left. For N = N = 0, the mass formula (1.57) gives a negative

mass squared, so that state is tachyonic. The next excited state, N = N = 1,

is massless by Lorentz invariance. The space-time dimension D and the normal

ordering constant a can now be solved for

D = 26, (1.59)

a = 1. (1.60)

26 is considered to be the critical dimension for bosonic string theory, which leaves

it at a disadvantage, as there are only four observed space-time dimensions. As

will be shown shortly, introducing supersymmetry reduces the number of required

space-time dimensions to 10.

9

1.1.2 Superstrings

The only currently known way to produce a massless ST fermion spectrum in

string theory is to impose a world sheet supersymmetry on the action. The discussion

to follow summarizes the approach in refs. [4, 5]. For a curved background, the

generalized supersymmetric Polyakov action is

S =
1

4πα′

∫
d2ξ
√
−γ
[
γab∂aX

µ∂bX
ν + iψ̄µγa∇aψ

ν

−2χ̄aγ
bγaψµ∂bX

ν − 1

2
ψ̄µψνχ̄aγ

bγaχb

]
ηµν ,

(1.61)

where ξ is the world sheet coordinate, γab is the world sheet metric, Xµ, Xν are real

boson fields, ψ̄µ, ψν are real fermion fields, γa is a two-dimensional Dirac matrix

defined on a curved space, ∇a is a covariant spinor derivative, χ̄a is a vector-spinor

“gravitino” field needed to ensure local supersymmetry, and ηµν is the space-time

Minkowski metric. Local symmetries of this action allow a gauge to be chosen in

which the following are true:

γab = ηab, (1.62)

χa = 0, (1.63)

where ηab is the flat world sheet metric. The action (1.61) then becomes the Ramond-

Neveu-Schwarz (RNS) superstring action, defined by

S =
1

4πα′

∫
d2ξηab(∂aX

µ∂bX
ν + iψ̄µγa∂bψ

ν)ηµν . (1.64)

The first term is a kinetic term for the boson fields, and is identical to the kinetic

term in the bosonic string action, (1.1). The second term is a kinetic term for

the fermion fields, ψ̄µ, ψν . The equations of motion for (1.61) are also affected by

choosing the conformal gauge. Varying the generalized SUSY action, then imposing

the gauge symmetry results in the following equations of motion for the boson and

10

fermion fields,

ηab∂a∂bX
µ = 0, (1.65)

ηabγa∂bψ
µ = 0. (1.66)

Additionally, varying the action with respect to the χ̄a and γa fields result in con-

straints on the energy momentum tensor Tab and world-sheet supercurrent Ja:

Tab = ∂aX
µ∂bXµ +

i

2
ψ̄µγ(a∂b)ψ

µ − 1

2
γab(∂iX

µ∂iXµ +
i

2
ψ̄µγi∂

iψµ) = 0, (1.67)

Ja = γbγaψµ∂bXµ = 0. (1.68)

The formalism can be greatly simplified by introducing light cone coordinates defined

by equation (1.18), as was done with the bosonic string. It is also convenient to define

Majorana-Weyl spinors for the fermion fields.

1

2
(1 + γ3)ψµ =

 ψµ−

0

 , (1.69)

1

2
(1− γ3)ψµ =

 0

ψµ+

 (1.70)

where γ3 is defined as a chirality operator such that

γ3 = γ0γ1 (1.71)

and the following equations are satisfied

γ3ψµ± = ±ψµ±. (1.72)

The chirality states correspond now to handedness, so ψ− is a left moving mode and

ψ+ is a right moving mode.

Rewriting the RNS string action (1.64) in this coordinate system results in

S =
1

4πα′

∫
d2ξ(∂+X

µ∂−Xµ +
i

2
ψµ+∂−ψ+µ +

i

2
ψµ−∂+ψ−µ). (1.73)

11

The equations of motion for the bosonic fields are identical to the nonsupersymmetric

boson field equations of motion (1.19). The fermion fields obey the equations

∂−ψ
µ
+ = 0, (1.74)

∂+ψ
µ
− = 0, (1.75)

and the energy-momentum tensor components become

T++ = ∂+X
µ∂+Xµ +

i

2
ψµ+∂+ψ+µ = 0, (1.76)

T−− = ∂−X
µ∂−Xµ +

i

2
ψµ−∂−ψ−µ = 0. (1.77)

The supercurrent condition (1.68) becomes

J+ = ψµ+∂+Xµ = 0, (1.78)

J− = ψµ−∂−Xµ = 0. (1.79)

The condition imposed when varying the action with respect to the fermion

fields can be satisfied with two separate worldsheet boundary conditions: periodic

boundary conditions (referred to as Ramond boundary conditions) and antiperiodic

boundary conditions (referred to as Neveu-Schwarz boundary conditions). Closed

superstrings, then, can have all possible combinations of Ramond (R) and Neveu-

Schwarz (NS) boundary conditions for the left and right moving modes. The mode

expansion solutions to the equations of motion (1.74, 1.75) for each of the modes

and boundary conditions are as follows

ψµ− =
√
α′

∞∑
n=−∞

dµne
−2in(τ−σ) R, (1.80)

ψµ+ =
√
α′

∞∑
n=−∞

d
µ

ne
−2in(τ+σ) R, (1.81)

ψµ− =
√
α′

∞∑
n=−∞

bµ
n+ 1

2

e−2i(n+ 1
2

)(τ−σ) NS, (1.82)

ψµ+ =
√
α′

∞∑
n=−∞

b
µ

n+ 1
2
e−2i(n+ 1

2
)(τ+σ) NS, (1.83)

12

where dµn, b
µ

n+ 1
2

are Fourier coefficients for a left mover and d
µ

n, b
µ

n+ 1
2

are Fourier

coefficients for a right mover.

To impose the conditions (1.76, 1.77) it is convenient, as was the case with the

bosonic string, to introduce Virasoro operators, defined here by

Lm = LXm + Lψm, (1.84)

Lm = L
X

m + L
ψ

m, (1.85)

where the superscript indicates the bosonic or fermionic part of the operator. The

bosonic part of the operator is identical to the Virasoro operator of the bosonic

string for left and right moving fields, (1.26, 1.27). As with the bosonic string, the

chief concern in using these operators is the derivation of the quantum theory’s mass

shell condition, which is determined from the normal ordering constant imposed on

the L0 and L0 operators. The fermion field L0 and L0 operators, expressed in terms

of their respective Fourier coefficients, are as follows

Lψ,R0 =
1

2

∞∑
n=−∞

ndµ−ndn,µ, (1.86)

L
ψ,R

0 =
1

2

∞∑
n=−∞

nd
µ

−ndn,µ, (1.87)

Lψ,NS0 =
1

2

∞∑
n=−∞

(
n+

1

2

)
bµ−n− 1

2

bn+ 1
2
,µ, (1.88)

L
ψ,NS

0 =
1

2

∞∑
n=−∞

(
n+

1

2

)
b
µ

−n− 1
2
bn+ 1

2
,µ. (1.89)

To quantize this theory, the same normal ordering condition as the bosonic string is

applied, leading to the mass shell conditions

(L0 − δ)|ψ〉 = 0, (1.90)

(L0 − δ)|ψ〉 = 0. (1.91)

13

For the bosonic string, the α+
m and α+

m were set to zero via the light cone gauge.

Similarly, the longitudinal raising and lowering operators for fermions can also be

set to zero:

d+
m = 0, (1.92)

d
+

m = 0, (1.93)

b+
n+ 1

2

= 0, (1.94)

b
+

n+ 1
2

= 0. (1.95)

For the bosonic ladder operators, the commutation relations (1.11) are imposed. For

the fermionic ladder operators, anticommutation relations must be imposed

{dµm, dνn} = −ηµνδm+n,0, (1.96){
d
µ

m, d
ν

n

}
= −ηµνδm+n,0, (1.97){

bµ
m+ 1

2

, bν
n+ 1

2

}
= −ηµνδm+n+1,0, (1.98){

b
µ

m+ 1
2
, b
ν

n+ 1
2

}
= −ηµνδm+n+1,0. (1.99)

These anticommutation relations can be used to rewrite the zero mode fermionic

Virasoro operators defined by equations (1.86, 1.87, 1.88, 1.89) in terms of number

operators. The number operators are defined as follows:

Nψ
R =

∞∑
n=0

ndi−nd
i
n, (1.100)

N
ψ

R =
∞∑
n=0

nd
i

−nd
i

n, (1.101)

Nψ
NS =

∞∑
n+ 1

2
=0

(
n+

1

2

)
bi−n− 1

2
bi
n+ 1

2
, (1.102)

N
ψ

NS =
∞∑

n+ 1
2

=0

(
n+

1

2

)
b
i

−n− 1
2
b
i

n+ 1
2

=0, (1.103)

where the index i goes only over the transverse directions of space-time. Notice that

for nonzero values, the eigenvalues for NS modes are half integer. In terms of the

14

number operators, the zero mode fermion Virasoro operators become

Lψ,R0 = −Nψ
R −

D − 2

24
, (1.104)

L
ψ,R

0 = −Nψ

R −
D − 2

24
, (1.105)

Lψ,NS0 = −Nψ
NS +

D − 2

48
, (1.106)

L
ψ,NS

0 = −Nψ

NS +
D − 2

48
, (1.107)

where D is the number of space-time dimensions. From these newly expressed

operators as well as the zero mode Virasoro operators for the bosonic fields, the

mass shell conditions and “level matching” conditions for a closed superstring can

be derived. For the R−R superstring, these conditions are

α′M2 = 2(NX +Nψ
R +N

X
+N

ψ

R), (1.108)

NX +Nψ
R = N

X
+N

ψ

R, (1.109)

where NX and N
X

are the left and right moving bosonic number operators, defined

in equations (1.54, 1.55). For the NS −NS superstring,

α′M2 = 2

(
NX +Nψ

NS +N
X

+N
ψ

NS −
D − 2

8

)
, (1.110)

NX +Nψ
NS = N

X
+N

ψ

NS. (1.111)

For the R−NS superstring,

α′M2 = 2

(
NX +Nψ

R +N
X

+N
ψ

NS −
D − 2

16

)
, (1.112)

NX +Nψ
R = N

X
+N

ψ

NS −
D − 2

16
. (1.113)

Finally, for the NS −R superstring

α′M2 = 2

(
NX +Nψ

NS +N
X

+N
ψ

R −
D − 2

16

)
, (1.114)

NX +Nψ
NS = N

X
+N

ψ

R +
D − 2

16
. (1.115)

15

To obtain the critical dimension, one can consider the NS − NS mass shell condi-

tion. The lowest value for NX , N
X

is 0, while the lowest (non-tachyonic) value for

Nψ
NS, N

ψ

NS is 1
2
. Placing these values into the NS−NS mass shell condition results

in

M2 =
1

α′

(
1− D − 2

8

)
. (1.116)

The only value of D for which the ground state is massless is

Dc = 10, (1.117)

thus establishing that superstrings must exist in ten space-time dimensions. The

ordering parameters δ, δ in equations (1.90, 1.91), are then

δR = 0, (1.118)

δNS =
1

2
. (1.119)

There is still a problem regarding the Nψ
NS number operator eigenvalue. Notice

that, because the eigenvalue could be 0 in addition to the half integers, this implies

α′M2 = −1 (1.120)

which is a tachyon state. Removing this state from the spectrum is vital to a

consistent theory.2 To proceed, one must introduce a projection operator which

projects out states according to the following criteria:

• Any NS state created from the vacuum with an even number of creation

operators bi−n− 1
2

, b
i

−n− 1
2

is projected out.

• No R state can have spinor components of both chiralities, making the sur-

viving states Majorana-Weyl spinors.

The projection operator is referred to as the GSO (Gliozzi, Scherk, Olive) projection,

and must be present in any superstring theory for physical consistency.

2 There are also other inconsistencies, such as an inexact space-time supersymmetry, which
must be addressed. However all such inconsistencies with the formalism are resolved in the same
fashion.

16

1.1.3 Heterotic Strings

The above formalisms describe the consistent massless physical states for a

closed superstring. However, absent from the theory is a means of inserting gauge

content into closed strings in ten dimensions. One way in which this is done is by

creating what is called a heterotic string. The heterotic string is an oriented closed

string in which all of the left moving modes are superstring modes in ten space-time

dimensions and all of the right moving modes are bosonic string modes in twenty

six space-time dimensions. The additional sixteen dimensions for the right moving

modes are compactified through periodic identification and form a lattice in which

gauge charges are placed.

Writing the action for a heterotic theory can be done in two ways. Firstly,

the additional sixteen boson fields can remain as bosons, leaving the theory with

two different expressions for space-time. The other, more common way, is to express

the additional bosonic degrees of freedom as Majorana-Weyl fermions λ
A

, where A

indexes the degrees of freedom the fermion modes have. The action (in the conformal

gauge) of the fermion based heterotic construction is

S =
1

4πα′

∫
d2ξ

(
∂aX

µ∂aXµ + 2iψµ∂+ψ−,µ + 2i
32∑
A=1

λ
A
∂−λ

A

)
. (1.121)

While it is possible to quantize this action as was done before, placing additional

constraints for quantum mechanical consistency on the compactification of the ad-

ditional sixteen dimensions yields simplified methods of extracting gauge related

information. Therefore discussion of the possible states and gauge charges will be

deferred to the next section.

1.2 Weakly Coupled Free Fermionic Heterotic Strings

While the above formalism is useful for deriving some basic information about

a theory and its mathematical consistency, phenomenology requires further devel-

opment. Specifically, the goal of string phenomenology is to extract the massless

17

spectrum of vacuum states at the string scale and examine their properties. This

study focuses on a particular method dubbed the “Weakly Coupled Free Fermionic

Heterotic String”. This method was pioneered simultaneously by two groups, ABK

[6, 7] and KLT [8]. The bosonic modes in the heterotic action (1.121) are re-expressed

as non-interacting fermion modes. In this method, toroidal compactifications are ini-

tially assumed (though they can be later deformed through specific types of bound-

ary conditions) with radii at the self-dual radius (R = 1 in Planck units), which

enhances the symmetries of the left moving fermions and the right moving fermions

corresponding to compact directions. The massless vacuum spectrum is ultimately

determined by choosing the phases the fermion modes gain when transported around

non-contractible loops of space-time.

Before making any assumptions about fermion coupling and the compactifica-

tion radius, the ten boson modes for the left mover as well as the corresponding ten

boson modes for the right mover can be expressed as fermions as follows:

∂aX
µ∂aXµ → iψ∗µ∂aψµ + iψ

∗µ
∂aψµ − hψ∗ψψ

∗
ψ, (1.122)

where h is called the Thirring coupling. The Thirring coupling is a function of the

radius of compactification, R, and is taken to zero for the self-dual radius [9]. That

is, ψ and ψ are free fermions. To directly express the fields (ψ, ψ) in terms of

(X, X), one introduces the Mandelstam operators

ψ = :e−iaX:, (1.123)

ψ = :eiaX:, (1.124)

where the normal ordering is with respect to the X, X creation and annihilation

operators (except for the zero modes).

Furthermore, transformations for the boson modes have a different interpre-

tation when they are converted to fermions. As bosons, the fields can undergo

18

translations (that conserve momentum). Looking at the zero modes,

X0 =
1

2
(χ0 + χ̃0), (1.125)

X0 =
1

2
(χ0 − χ̃0), (1.126)

where χ0 corresponds to a center of mass translation and χ̃0 corresponds to a trans-

lation that has no obvious physical meaning, but nonetheless conserves the momen-

tum. It can be shown that shifts of χ0 are quantized on a circle of radius R, while

shifts of χ̃0 are quantized on a circle of radius 1/2R. Shifting χ0 by 2πR, where R

is the compactification radius (infinity for large space-time dimensions), yields the

following general transformations3

ψ → ψe−i2πR/z, (1.127)

ψ → ψe+i2πR/z. (1.128)

Shifting χ̃0 by π/R yields the following general transformations

ψ → ψe−iπz/R, (1.129)

ψ → ψe−iπz/R, (1.130)

where z is dependent on the Thirring coupling h as follows

h =
1

2

(
z − 1

z

)
. (1.131)

As previously mentioned, free fermions have h = 0, which corresponds to z = 1.

This reduces the fermion mode transformations to phase shifts dependent on the

radius R:

3 A general heterotic string also allows coupling between the left and right moving boson modes.
This causes the left moving fermion phases to be dependent on the gauge content of the theory.
This coupling is not considered here.

19

ψ → ψe−i2πR, (1.132)

ψ → ψe+i2πR, (1.133)

ψ → ψe−iπ/R, (1.134)

ψ → ψe−iπ/R. (1.135)

Additionally, setting R = 1 or R = 1
2

for each compactification yields the same

transformation rules. This is a manifestation of T-duality, where R → 1/R leaves

the action invariant. It will be shown that this property reduces the number of

phases needed to specify a model.

For heterotic strings, the phase transformations of the additional sixteen boson

modes coming from the bosonic string must also be examined. The boson modes

must span a self-dual even lattice to preserve modular invariance. Thus, they must

transform in the following manner

X → X + 2παk, (1.136)

where αk is the kth root of a gauge group that makes up the model. This means

that the fermionized versions of these modes will transform according to the phase

shift

ψ → ψe−2πiαk . (1.137)

It is now apparent that specifying which phase shifts leave these sixteen boson modes

with the correct transformation properties defines the gauge group under which they

transform. The phase shifts of the remaining modes determine other properties such

as global world sheet charge, supercharge, and spin.

The allowable phases the fermion modes can gain is constrained by world

sheet supersymmetry and modular invariance. The supercharge for the world sheet

supersymmetry is given by

J = ψµ∂Xµ + fIJKx
IxJxK (1.138)

20

where fIJK are the structure constants of a semi-simple Lie group with a number

of generators dependent upon the number of large space-time dimensions and xI,J,K

are real compact fermion modes. The allowable choices for the Lie group defined by

the structure constants fIJK are very constrained. In particular, the dimension of

the group must be 3(10 −D), where D is the number of large ST dimensions [10].

It is common to choose the simplest Lie group for the world-sheet supersymmetry,

SU(2)10−D, and that will be the group for the remainder of this study. Other

possibilities for D = 4 are SU(3) ⊗ SO(5) and SU(2) ⊗ SU(4), all other even

dimensions are products of SU(2). This limits the phase values available to left

moving modes. Specifically, these phases can be only either 0 or 1.

Additionally, the action requires that real fermions be placed into complex

pairs. However, fermion modes corresponding to compactified superstring dimen-

sions common to the left and right movers may be paired. This pairing is referred

to as “rank-cutting,” as it removes a U(1) charge from the gauge lattice thereby

reducing the total gauge group rank.

The phases gained by all fermion modes when parallel transported around

non-contractible loops of space-time define the model. However, modular invariance

constrains the allowable values these phases can take (in addition to the constraints

placed on the left movers by world-sheet supersymmetry). To derive these con-

straints, the phases are placed in a vector. For toroidal compactifications, two phase

vectors ~α, ~β are needed to specify the spin(phase)-structure for each of the two

non-contractible loops of the torus, though this will eventually be reduced to one

phase vector per torus. It will be shown that modular invariance requires the sets

of phase vectors {~α}, {~β} be equal, implying that only one set be chosen. The

following discussion will be restricted to the case of rational phases within the range

−1 < αi ≤ 1. Though some work has been done for deriving the construction rules

21

of non-rational phases, not all of the consistency requirements for that case have

been derived.

Modular invariance is first placed on the vacuum-to-vacuum amplitude. This

amplitude (including only the spin-structure dependent terms) is

Zg =

∫
Mg

[DΩ]
∑

spin structures

c

 ~α1 ~α2 ... ~αg

~β1
~β2 ... ~βg

×
∏
real f

Θ1/2

 α1(f)...αg(f)

β1(f)...βg(f)

 (0,Ω)×
∏

complex f

Θ

 α1(f)...αg(f)

β1(f)...βg(f)

 (0,Ω),

(1.139)

where c

 ~α1 ~α2 ... ~αg

~β1
~β2 ... ~βg

 are the spin-structure coefficients to be constrained by

modular invariance momentarily, Ω is the period matrix of the surface encoding the

geometry of the g-torus. The summation over the spin-structures accounts for all

possible ways to weigh the different phase vectors ~αi, ~βi. The products are indexed

by the individual fermion modes in each phase vector. Θ

 ε1...εg

ε′1...ε
′
g

 (0,Ω) is the

Jacobi theta function defined by

Θ

 ε1...εg

ε′1...ε
′
g

 (z,Ω) =
∑
~n∈Zg

exp

{
iπ

(
~n+

1

2
~ε

)
Ω

(
~n+

1

2
~ε

)

+2iπ

(
~n+

1

2
~ε

)
·
(
~z +

1

2
~ε ′
)
− iπ

2
~ε · ~ε ′

}
,

(1.140)

where ~ε, ~ε ′ are the vectors of the individual numbers εi, ε
′
i, Ω is the same period

matrix in (1.139), and ~n is a vector denoting the possible energy configurations

for the Zg torus. The theta functions essentially evaluate the energy contributions

from the towers of possible states for the fermion mode f , sometimes expressed

as Verma modules.4 To summarize, the integration accounts for the degrees of

freedom available to the geometry of the torus, the summation of the spin-structures

4 Verma modules are stacks of weights for a semisimple Lie algebra. The groups represented by
each Verma module depend on the gauge content of the model.

22

correspond to weighing the contributions of the phases, and the theta functions

account for the energy contributions of the Verma modules for each fermion mode

f . Additionally, the spin-structure coefficients must also factorize in certain limits

of the worldsheet geometry. That is,

c

 ~α1 ~α2 ... ~αg

~β1
~β2 ... ~βg

 = c

 ~α1

~β1

× c
 ~α2

~β2

× ... × c

 ~αg

~βg

 , (1.141)

which implies that all spin-structure coefficients can be expressed in terms of one-

loop spin-structure coefficients. The spin-structure coefficients can be constrained

by demanding equation (1.139) be invariant under the following transformations.

Ω→ Ω + 1, (1.142)

Ω→ 1

Ω
, (1.143)

Ω→ Ω−

 0 1

1 0

 . (1.144)

The first two conditions are transformations that leave the 1-torus topologically

invariant. The third is a non-trivial transformation of a genus 2 torus. Forcing the

vacuum-to-vacuum amplitude to be invariant under these transformations imposes

the following constraints on the spin-structure coefficients.

c

 ~α

~β

 = exp
{
iπ(~α · ~α + ~1 · ~1)/4

}
c

 ~α

~β − ~α + ~1

 (1.145)

c

 ~α

~β

 = exp
{
iπ(~α · ~β)/2

}
c

 ~β

−~α

 (1.146)

c

 ~α

~β

× c
 ~α′

~β′

 = δ~αδ~α′ exp {−iπ(~α · ~α′)/2}

c

 ~α

~β + ~α′

× c
 ~α′

~β′ + ~α

(1.147)

23

where δ~α is ±1, depending on the values of the space-time fermion modes corre-

sponding to large space-time dimensions, ~1 is a vector of all periodic phases, and

the dot products are Lorentz dot products in which the dot product of the right

moving modes is subtracted from the dot product of the left moving modes. Ad-

ditionally, real fermion modes are weighed half compared to the complex fermion

modes. Equations (1.146, 1.147) can be combined to show

c

 ~α

~β

× c
 ~α

~γ

 = δ~αδ~γc

 ~α

~β + ~γ

× c
 ~γ

~0

 . (1.148)

This implies that if ~β = ~γ = ~0, then

c

 ~α

~0

 =

0

δ~αc

 ~0

~0

 , (1.149)

where c

 ~0

~0

 can be normalized to one. Grouping the set of ~α’s for which the

spin-structure is nonzero,

Ξ =

~α|c
 ~α

0

 , (1.150)

it can be shown that the elements of Ξ form an additive group. Moreover, it can

also be shown that for c

 ~α

~β

 to be nonzero, ~α, ~β ∈ Ξ. This implies that the phase

vectors ~α and ~β need not be generated in pairs; specifying all of the ~α’s for a string

vacuum will also include the ~β’s. Moreover, since Ξ form an additive group, it can

be decomposed into a direct sum of integer factors. Therefore, there exists a basis

{~αB1 , ..., ~αBk } that generates Ξ such that

m1~α
B
1 + ...+mk~α

B
k = 0 (mod 2) (1.151)

The construction restricts itself to bases with ~αB1 = ~1 as an element of Ξ. In general

this element can vary and has its own constraints, but the models constructed herein

24

(and nearly all WCFFHS models constructed to date) will use ~1. The constraints

on the spin-structure (1.145, 1.146, 1.147) can be rewritten as constraints on the

basis vectors ~αBi . Proof of these constraints is tedious and has already been well

documented elsewhere. Here they will simply be presented.

Theorem 1.1.

(1) Each model must have the all-periodic vector ~1.

(2) Nij~α
B
i · ~αBj = 0 (mod 4)

(3) Ni~α
B
i · ~αBi = 0 (mod 8) (for Ni even)

(4) The number of simultaneously periodic boundary conditions for any three

~αB’s is even.

where Nij is the least common multiple of Ni, Nj. Modular invariance also

constrains the allowable values of the spin-structure coefficients. Those are given as

follows.

Theorem 1.2.

(1) c

 ~αBi

~αBi

 = exp
{
iπ~αBi · ~αBi + ~1 · ~1/4

}
c

 ~αBi

~1

Ni/2

,

(2) c

 ~αBi

~αBj

 = exp
{
iπ~αBi · ~αBj /2

}
c

 ~αBj

~αBi

∗

.

Additionally, constraints are needed to ensure that world-sheet supersymmetry

is realized amongst the left movers. To that end, a final condition is needed.

Theorem 1.3.

The boundary conditions for the left movers must obey the Lie algebra for the world-

sheet supercharges.

25

Together, theorems (1.1, 1.2, 1.3) make up the rules for the allowable boundary

conditions that can make up a consistent WCFFHS vacuum. To build the model,

sectors must be constructed from linear combinations of the basis of ~αB’s. Each

sector produces its own set of massless states. The Hilbert space of all possible

states from massless sectors does not have modular invariance, however. Modular

invariance is derived from the GSO projection, which keeps only a combination of

states which leave the vacuum-to-vacuum amplitude invariant under the modular

transformations (1.142, 1.143, 1.144).

The states are constructed by applying integral oscillator frequencies to the

vacuum fermion mode phases. All such combinations of oscillator frequencies that

create zero mass states are checked against the GSO projection. For the weakly

coupled free fermionic heterotic string, the oscillator frequencies contribute to the

number operator N in the mass shell conditions. Additionally, the fermion modes

themselves, even in the vacuum state, also contribute to the mass squared, since in

the bosonic language they are momenta. The oscillator frequencies and the phases

are combined to form a state vector ~Q, defined by U(1) charges. It will be explicitly

stated shortly. The mass shell conditions for a free fermionic heterotic string are

M2
L =

~Q2
L

2
− 1

2
(1.152)

M2
R =

~Q2
R

2
− 1 (1.153)

where ~QL, ~QR are the left and right moving parts of the states, respectively. The

states themselves are created by adding oscillator frequencies (similar to a rais-

ing/lowering operator) to the modes. The modes contribute one-half their phase

value to the mass squared, so the phase values of the sector are divided by two.

~Q =
1

2
~α + ~F (1.154)

where the ~α here is not necessarily a member of the basis set, but is a linear combi-

nation of members of the basis set. ~F can only be combinations of ±1 and 0, since it

26

corresponds to anticommuting fermionic raising and lowering operators. Raising by

more than that will either cause the state to be massive or prevent it from coupling

to the gauge content.

As mentioned previously, the initial set of possible states { ~Qi} do not have

modular invariance. To enforce this, the GSO projections must be applied to all of

the states. They depend on the spin-structure coefficients and the basis vectors.

exp
{
iπ ~Q · ~αBi

}
− δ~αc

 ~α

~αBi

 = 0 (mod 2) (1.155)

where ~α is the sector that produced the state. The above equation must hold for all

members of the basis set ~αBi . Note that there is a choice in the spin-structure coeffi-

cients which affects the states that pass the GSO projections. This means identical

basis vectors can, with different spin-structure choices, result in different models.

Additionally, using the c

 ~αBi

~αBj

 constraints on the spin-structure are computation-

ally cumbersome. This can be remedied by transforming them into rational values.

This is done by rewriting c

 ~αBi

~αBj

 as

c

 ~αBi

~αBj

 = (−1)si+sj exp {iπkij} exp
{
−iπ~αBi · ~αBj

}
, (1.156)

where si(j) is 0 if ~αBi(j) is a space-time boson (antiperiodic space-time modes ψµ)

and 1 if it is a space-time fermion (periodic space-time modes ψµ). The modular

invariance constraints on the spin-structure can now be rewritten as constraints on

kij.

Njkij = 0 (mod 2), (1.157)

kij + kji =
1

2
~αBi · ~αBj (mod 2), (1.158)

kii + ki1 =
1

4
~αBi · ~αBi − si (mod 2), (1.159)

27

where si is defined as above, and Nj is the order of the jth ~αB in the basis set of

phases. The GSOPs can also be rewritten in terms of kij,

~αBj · ~Q~α =
∑
i

kjiai + sj (mod 2) (1.160)

where si is defined again as above, and ai are the coefficients of ~αB’s for the sector ~α

that produced the state ~Q~α. The two groups who created the WCFFHS formalism,

ABK and KLT, use c

 ~α

~β

 and kij, respectively. The studies herein will use the

more computationally advantageous kij formalism.

1.3 The String Vacuum Landscape

Thus far, three general types of string theories have been discussed: the bosonic

string, the superstring, and the heterotic string. However, there are theoretical de-

tails that outline different formalisms amongst the superstrings and heterotic strings.

For the non-heterotic superstring theories, the main differences lie in the “orienta-

tion” — a quantum mechanical quantity that distinguishes two otherwise identical

strings — the chirality of the left and right movers, and the number of world-sheet

supercharges that generate supersymmetry. While the details are numerous, the

basic differences amongst the non-heterotic theories can be laid out as follows.

The superstring theory that has open and closed non-oriented strings and

16 WS supercharges (giving N = 1 WS SUSY) is called the Type I superstring

theory. Two other superstring theories exist, both with 32 WS supercharges which

generate N = 2 WS SUSY. They are both theories of oriented strings, and the

formal difference between the two is that one is non-chiral, while the other is chiral.

They are called Type IIA and Type IIB, respectively.

There are two formally different heterotic string theories as well, the difference

between them being the gauge group of the lattice making up additional sixteen

28

dimensions the bosonic right mover has. They are denoted SO(32) and E8 ⊗ E8

heterotic theories.5

For a time, these five string theories presented a dilemma: if there is more

than one way to solve a problem, what makes one solution different than another

if all of them are physically and mathematically consistent? That was answered

when it was shown that by examining certain dualities and adding an additional

dimension (from 10 to 11), all of the five string theories are actually low energy

projections of a larger theory, called M-theory. There are two dualities that relate

the theories amongst each other. S-duality inverts the coupling strength of the

string, meaning that one theory’s strong coupling limit is its S-dual’s weak coupling

limit. This is useful because weak coupling allows perturbative methods to be used

to make phenomenological calculations. The other duality inverts the radius (in

Planck scale units), so that a theory compactified with radius R will have a T-dual

theory with compactified radius 1/R. Combined with low energy projections, these

dualities are all that is needed to combine the five superstring theories into one

large theory. These dualities are summarized in figure 1.1. While this is the (nearly)

complete string theory picture in ten dimensions, compactifying six of the space-time

dimensions to obtain the necessary four that describe the physical universe leads to

a multitude of different configurations of gauge groups, matter states, space-time

supersymmetries, and cosmological constants, all of which are consistent with the

rules of string theory. It was for a time thought that on the order of a hundred

trillion geometric configurations (called Calabi-Yau manifolds) were consistent.

In an attempt to show how the proper cosmological constant could be ex-

plained from string theory, it was discovered that the compactified dimensions can

have field fluxes through them and still remain stable. These fluxes are quantized,

5 The WCFFHS method of constructing string models does not distinguish between which
heterotic theory is being used, since the compactifications are at the self-dual radius. Rather, these
two gauge groups appear, along with a few other models with different gauge groups, by choosing
certain phases for the right mover. More details will be presented regarding this connection later.

29

M-Theory

E8 ⊗ E8Type IIAType IIB SO(32) Type I

T-DualityS-Duality T-Duality S-Duality

Figure 1.1: The five consistent ten-dimensional string theories and the dualities that
relate them.

but very numerous, and have been described as forming a “discrete continuum” or

“discretum”[11]. Later work revealed that though the number of stable geometries

with fluxes is finite, the number of configurations (and thus the number of string

vacua) is extremely high. Rough estimates put this number at approximately 10500

different configurations per Calabi-Yau manifold [12]. The vast number of stable,

consistent string vacua has come to be known as the “string vacuum landscape.”

The dualities between the five classes of string theories has led to a concerted

effort in locating patterns amongst large numbers of explicitly constructed string

models for all construction methods. Doing this has required a large scale effort

involving multiple disciplines including not only physics and mathematics but also

computer science. Two organizations, each called the “String Vacuum Project” have

formed in the United States and Europe as a way of centralizing the research needed

to explore the string theory landscape.

Work has already been done in exploring possible WCFFHS vacua statistically

[13, 14, 15, 16]. However, these searches have been random. Random searches include

several difficulties involving correlations that change as a function of sample size [17].

Additionally, though the construction has been worked out for any rational phase,

the large scale searches to date have basis vectors with only periodic/antiperiodic

30

modes. Presented here is the first in a series of investigations in which the basis

vectors and GSO coefficient matrices are investigated completely and systematically.

Specialized software optimized for speed, generality, and ease of use has been built

from scratch for this purpose.

The ultimate goal of examining string vacua is to find the proper geometry

that describes the universe. Statistical studies are used to draw correlations between

the geometric inputs and particle spectra. These correlations will aid in finding

phenomenologically viable “patches” of the landscape, and hopefully to a complete

string-derived description of the universe.

31

CHAPTER TWO

Constructing Free Fermionic Heterotic String Models

2.1 Introduction

WCFFHS models have produced some of the most phenomenologically realistic

effective field theories resulting from a string model [18, 19, 20, 21, 22, 23, 24, 25,

26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,

49, 50, 51, 52, 53] . The ease at which these models can be generated by a computer

enhances the appeal. This document outlines the steps needed to create WCFFHS

models without explicitly referencing any one piece of software. The discussion here

will be limited to models with four large space-time dimensions, though the process

can be easily generalized to models with fewer large space-time dimensions.

2.2 Inputs

This section details the elements needed to specify a WCFFHS model. There

are two inputs which are needed: a set of 64 component basis vectors and an L×L

matrix (where L is the number of basis vectors), called the kij matrix. The basis

vectors represent phases that real fermion modes gain when parallel transported

around non-contractible loops of space-time. These essentially specify the “geom-

etry” of the model. That is, the phases occur due to boundary conditions on the

world sheet, so when the phases are specified, the boundary conditions are also spec-

ified. Sometimes these vectors are called boundary vectors for this reason. The fact

that these basis vectors have 64 elements is a result of the number of space-time

compactifications, six in this case. Different numbers of compactified directions will

result in different basis vector sizes. The kij matrix is a matrix of coefficients used

in the GSO (Gliozzi, Scherk, Olive) projection equations. These are sometimes re-

32

ferred to as GSO coefficients, and there are other equivalent ways to express these

coefficients besides the kij matrix.

2.2.1 Anatomy of a Basis Vector

There’s a little bit of terminology needed before proceeding forward. The order

specifies the range of values the basis vector can take, starting with zero. So an order

N basis vector can have elements up to N-1. Since these are phases, the physical

values (in units of π) are fractional. However, fractions are not ideal for computer

coding, so they are often coded into integers in the following way:

αBi =
2mi

N
,−1 < αBi ≤ 1, (2.1)

where αBi is the physical value of the phase which has been adjusted to fit the limits

described. mi is the integer code which is typically used to describe the vector in

computer programs. The range of mi is 0 to N − 1.

A model can have any number of basis vectors, and each basis vector making

up the model is also referred to in generic discussions as a layer.

A basis vector in four large ST dimensions is made up of 64 components,

but different components in the vector mean different things and have different

rules and constraints. The first 20 elements are referred to as the left moving part,

and they represent the supersymmetric side of the heterotic string. Supersymmetry

(SUSY) here refers to world-sheet (WS) supersymmetry. Space-time supersymmetry

is determined by the basis vectors and the GSO coefficients. The number of large

ST dimensions in the theory determines the number of real ST fermions (ψ1,...).

The number of compactified directions specifies the number of real fermions and

their bosonic superpartners corresponding to those directions. These are written

as a triplet, since the fermion (x1,..., sometimes written as χ1,...) and the boson field

expressed as two fermions (y1,..., w1,..., sometimes written as y1,..., ω1,...) all correspond

to the same compactified direction. From this point forward, the phases in the basis

33

alphas will be denoted by the name of the field acquiring the phase. Thus in this

notation the statement ψ1 = 1 means the field ψ1 gains a phase equal to one. This

makes the discussion of basis alpha elements less cumbersome.

The equations which give the number of ψ1,..., x1,...and y1,..., w1,... (in light-cone

gauge) are as follows:

Number of Real ST Fermions, ψ1,... = D − 2, (2.2)

Number of Real Fermion Triplets, (x, y, w)1,.. = 10−D. (2.3)

Thus, for D = 4, there are two space-time fermions, and six real fermion triplets.

Schematically, then, the left mover looks like:

(ψ1 ψ1
c), (x y w)1, (x y w)2, (x y w)3, (x y w)4, (x y w)5, (x y w)6, (2.4)

where the superscript on the triplets is an index. Note that the (ψ1 ψ1
c) are labeled

with the same index. The reason for this is that the two real space-time fermions

form a complex pair, meaning:

ψ1 = ψ1
c (2.5)

in every basis vector. These two could be, and often are, expressed as a single

element in the vector. In this document they are expressed as two real, but always

equal, fermion modes. Physically these elements, when present in a state (discussed

later), determine whether that state will be a space-time boson (ψ1 = ψ1∗ = 0) or

a space-time fermion (ψ1 = ψ1∗ = 1). These elements also play a role in equations

for the GSO coefficient matrix and the GSO projection, which will also be discussed

later. In addition, there are rules that must also be followed for the (x y w) triplets.

The first rule is that the xi form complex pairs also,

x1 = x2, (2.6)

x3 = x4, (2.7)

x5 = x6, (2.8)

34

Again, these could have been written as three fermions to reduce the elements, but

this loses the geometric significance of the schematic (2.4). As mentioned in the first

chapter, the WS SUSY can be a representation of one of several Lie algebras [10].

However, not all of these can yield models with N = 1 ST SUSY [54]. Most models

use the simplest, SU(2)6, the superscript in this case indicating the number of tensor

products. A consequence of selecting this SUSY generator is that the x values must

be paired as in equations (2.6, 2.7, 2.8). Another consequence of this selection is

that the left movers are either periodic (αBi = 1) or anti-periodic (αBi = 0). That is,

the left mover is order 2. Other choices for the WS supercurrent’s symmetry may

result in higher order LM modes.

The other rule to follow is one of spin. The ST fermion modes being com-

pactified into triplets are real fermions. In order to preserve their spin, another rule

must be imposed upon the allowable phases of the modes in a compact triplet.

The number of periodic modes within a given triplet is odd. (2.9)

The remaining 44 elements1 are referred to as the right moving part of the

basis vector. These describe the bosonic side of the heterotic string, so there is

no world sheet SUSY here. Instead, there are more space-time dimensions (since

bosonic string theories have 26 space-time dimensions as opposed to 10). The 44

elements are split into three categories for convenience: observable, compactified,

hidden. The observable and the hidden elements are mirrors of one another, and

each contains 16 of the RM real fermion modes. Here is a schematic of each:

Obs: (ψ̄1 ψ̄1
c ψ̄

2 ψ̄2
c ψ̄

3 ψ̄3
c ψ̄

4 ψ̄4
c ψ̄

5 ψ̄5
c η̄

1 η̄1
c η̄

2 η̄2
c η̄

3 η̄3
c), (2.10)

Hid: (φ̄1 φ̄1
c φ̄

2 φ̄2
c φ̄

3 φ̄3
c φ̄

4 φ̄4
c φ̄

5 φ̄5
c φ̄

6 φ̄6
c φ̄

7 φ̄7
c φ̄

8 φ̄8
c). (2.11)

1 There are space-time boson models in WCFFHS models which are used to generate the
graviton. Gravity is not the primary concern of the present study. Thus, the right moving space-
time boson elements are not included in the basis vectors.

35

The elements η̄1, ..., η̄3
c are notated as such because they are often (but not always)

associated with the xi, xic values on the LM side. These are, as the notation indicates,

complex pairs, so the following is true:

ψ̄i = ψ̄ic, (2.12)

η̄i = η̄ic, (2.13)

φ̄i = φ̄ic, (2.14)

for i = 1, ..., 8 for ψ̄, φ̄ and i = 1, ..., 3 for η̄.

Recall that the heterotic string without compactifications has only two possible

gauge groups that are consistent with modular invariance: SO(32) and E8 ⊗ E8.

There are differences between the two constructions at the string scale, but the low

energy effective field theories (for nine and lower large ST dimensions) resulting

from the two are indistinguishable. Since that is the primary concern of this type

of model building, either construction will serve the same purpose. The reason the

RMs are classified here as observable and hidden is due to the split between the 16

real fermion modes that make up each E8 in the E8⊗E8 model.2 This is convenient

because there are a lot of elements to keep track of, and splitting them according

to the E8 ⊗ E8 makes it easier. The terms “observable” and “hidden” are relative

as well. When models were constructed individually, the observable sector gauge

group was placed with the ψ̄1,...,5 elements. Generically, the observable sector gauge

group can be generated by any of the right moving elements that form complex

pairs. The observable and hidden modes are complex, (equations 2.12, 2.13, 2.14),

and thus expressible as two sets of eight. For clarification they are kept in the real

basis throughout this chapter.

2 The matter states charged under the subgroups of each E8 are often independent. This
effectively splits the ten dimensional RM modes into separate groups of sixteen. The notation is
an artifact of that independence.

36

The compactified elements are a result of the six compactifications. Recall

that each compactification generates a fermion and a boson (expressed as two real

fermions) on the LM side of the vector. The right side gains only the boson, since it

is a bosonic string. Therefore, while the number of observable and hidden complex

fermions remains at 32 for any compactification, the number of compactified real

fermions change according to the following rule:

Number of real compactified RM fermions, ȳi w̄i = 2(10−D). (2.15)

These compactified real fermions are notated as ȳi and w̄i and are schematically

written as follows:

Compact: (ȳ1 ȳ2 ȳ3 ȳ4 ȳ5 ȳ6 w̄1 w̄2 w̄3 w̄4 w̄5 w̄6). (2.16)

The notation here indicates two things: firstly, these are the right mover versions

of the left moving boson parts of the compactified triplets. Hence they are given

the same variable name with a bar over it. In addition, these are not placed into

complex pairs by construction. They follow a different rule:

Compactified real RM fermions may be paired with either LM or RM modes.

(2.17)

This is followed up by another set of statements.

Each real fermion mode can only be paired once. (2.18)

All real fermion modes must be paired.3 (2.19)

This means that there are no fermion modes which are not paired with another

fermion. It’s obvious that the left moving ST fermions and the x modes follow both

of these conditions, as well as the Observable and the Hidden parts of the RM modes.

The pairings amongst the yi wi ȳi w̄i must be consistent with (2.19). In summary,

then, the total schematic for a right mover is as follows:

(ψ̄1 ψ̄1
c ... ψ̄

5 ψ̄5
c η̄

1η̄1
c ...η̄

3η̄3
c ȳ

1 ... ȳ6 w̄1 ... w̄6 φ̄1 φ̄1
c ... φ̄

8 φ̄8
c) (2.20)

37

The pairings of matching fermion modes must match for all basis vectors in a given

model. Obviously this is true for the ST fermions, the x’s, and the observable and

hidden parts. For the y, w, ȳ, w̄ this acts as a constraint for allowed basis vectors.

This is most easily seen with an example. Consider the following elements of a few

basis vectors.

y1 y2 w5 w6 ȳ1 ȳ2 w̄5 w̄6

b1 (1 1 1 1 1 1 1 1)

b2 (1 0 1 0 1 0 0 1)

b3 (1 0 0 0 0 1 1 1)

Taking a look at the pairings starting with b1, the following elements have matching

boundary conditions:

{y1 y2 w5 w6 || ȳ1 ȳ2 w̄5 w̄6}.

By default it is assumed that the adjacent elements are paired, meaning that if b1

is the only basis vector in the model, the following elements would be paired:

{y1 y2} {w5 w6} {ȳ1 ȳ2} {w̄5 w̄6}.

When b2 is added, this splits the set of eight elements as follows:

{y1 w5 || ȳ1 w̄6} {y2 w6 || ȳ2 w̄5}.

Therefore, if b1 and b2 are the only basis vectors in the model, the following elements

would be paired:

{y1 w5} {ȳ1 w̄6} {y2 w6} {ȳ2 w̄5}.

Adding b3 to the model puts the simultaneous matching boundary conditions into

pairs, thus completely determining the pairings:

{y1 w̄6} {w5 ȳ1} {y2 w6} {ȳ2 w̄5}.

38

Now suppose another basis vector, b4, is added.

y1 y2 w5 w6 ȳ1 ȳ2 w̄5 w̄6

b1 (1 1 1 1 1 1 1 1)

b2 (1 0 1 0 1 0 0 1)

b3 (1 0 0 0 0 1 1 1)

b4 (1 1 0 0 0 0 0 0)

Only the following can be paired in each basis vector:

{w5 ȳ1} {ȳ2 w̄5}.

y1 and y2 match for basis vector b4, but not for b3. The same is true for w6 and w̄6.

There is no choice for pairing these elements such that all of them are paired for

each basis vector. Therefore, this model is inconsistent by (2.19).

There is an ordering redundancy for parts of the basis vector as well. Consider

the following two order 2 basis vectors b1 and b2.

φ̄1 φ̄1
c φ̄2 φ̄2

c φ̄3 φ̄3
c φ̄4 φ̄4

c φ̄5 φ̄5
c φ̄6 φ̄6

c φ̄7 φ̄7
c φ̄8 φ̄8

c

b1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)

b2 (1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0)

This is identical to the following model:

φ̄1 φ̄1
c φ̄2 φ̄2

c φ̄3 φ̄3
c φ̄4 φ̄4

c φ̄5 φ̄5
c φ̄6 φ̄6

c φ̄7 φ̄7
c φ̄8 φ̄8

c

b1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)

b2 (0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1)

This redundancy can be described with the following rule:

The ordering of a set of complex fermion modes does not affect the phenomenology

as long as the other basis vectors have identical boundary conditions for those modes.

(2.21)

Therefore, adding a third basis vector b3 of order 4 yields:

39

φ̄1 φ̄1
c φ̄2 φ̄2

c φ̄3 φ̄3
c φ̄4 φ̄4

c φ̄5 φ̄5
c φ̄6 φ̄6

c φ̄7 φ̄7
c φ̄8 φ̄8

c

b1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)

b2 (0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1)

b3 (3 3 2 2 0 0 1 1 1 1 0 0 3 3 2 2)

The model produced by this set of basis vectors is identical to the model produced

by the set of basis vectors:

φ̄1 φ̄1
c φ̄2 φ̄2

c φ̄3 φ̄3
c φ̄4 φ̄4

c φ̄5 φ̄5
c φ̄6 φ̄6

c φ̄7 φ̄7
c φ̄8 φ̄8

c

b1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)

b2 (0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1)

b3 (0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3)

Any other basis vectors added to b1, b2, b3 cannot be reordered because the b1, b2, b3

basis vectors have no matching boundary conditions for the complex fermions.

Basis vectors must have modular invariance, which is essentially a reparametriza-

tion invariance on the world sheet which prevents certain anomalies from appearing

in the theory. The equations/rules for this are straightforward:

Nij~α
B
i · ~αBj = 0 (mod 8) (2.22)

Nii~α
B
i · ~αBi = 0 (mod 16) (even orders only) (2.23)

The number of simultaneously periodic real fermions

for any three basis vectors is even.

(2.24)

where Nij is the lowest common multiple of the orders of the two basis vectors, Ni

and Nj. The modulus operations are chosen as such because the basis vectors are

are expressed in a real basis. In addition, odd ordered basis vectors ignore equation

(2.23) and instead use only equation (2.22). The third statement, (2.24), refers to

matching periodic boundary conditions amongst three basis vectors, and the three

basis vectors may contain multiple copies of basis vectors in the set for the model.

40

This ensures that all fermion modes are able to be paired. Thus, (2.19) is satisfied

as long as (2.24) is satisfied.

The dot products in equations (2.22) and (2.23) are referred to as Lorentz dot

products, which take the following form.

~αBi · ~αBj = ~αB,Li · ~αB,Lj − ~αB,Ri · ~αB,Rj , (2.25)

where the dot products on the right hand side of (2.25) are regular dot products.

Some write this as right-left, which is also consistent. This document always uses

the left-right convention. There are other “special” dot products used throughout

the construction process. These will be noted as they occur.

2.2.2 The kij Matrix

The kij matrix represents a degree of freedom that is granted by modular in-

variance, an essential component needed for a physically consistent WCFFHS model

(described in the section 2.2.1). It is an L × L matrix, where L is the number of

basis vectors in the model. Each row and column corresponds to a basis vector in

the model. Different choices for the kij coefficients will result in a different model.

These coefficients play into the GSO projection equations, which select the states

that can be simultaneously kept in a model. This will be covered in a later section.

There is essentially one basic rule for selecting kij values, and another for ensuring

that the kij matrix follows modular invariance:

Njkij = 0 (mod 2). (2.26)

In essence, this means that the order of the column of the kij matches the order of

the basis vector. Note that this is the order of the entire basis vector rather than

the right moving part. In addition, modular invariance also imposes constraints on

41

the values of kij relative to one another. The following two rules apply:

1

2
~αBi · ~αBj = kij + kji (mod 2) (2.27)

1

4
~αBi · ~αBi − si = kii + ki1 (mod 2) (2.28)

In these equations, ~αBi,j are the basis vectors associated with the rows and column

in question, and si is the space-time value of ~αBi . That is,

si =

 0 (~αBi is ST boson)

1 (~αBi is ST fermion)
(2.29)

These equations can be solved to constrain most of the kij matrix. Aside from the

k11 element, the diagonals and one half of the off-diagonal elements are determined

completely by the basis vectors and the other half of the off-diagonal elements.

In general, the k11 element as well as the lower off diagonal (below the diagonal)

elements are specified, and equations (2.27, 2.28) are solved for the other half. An

example for a model with five order-two basis vectors and one additional order four

basis vector would have an input for the kij matrix like this:

1 � � � � �

0 � � � � �

1 1 � � � �

1 1 1 � � �

1 1 1 1 � �

1 1 1 1 1 �

(2.30)

Here the � means an element determined by the above equations (2.27, 2.28). No-

tice the last column is completely determined, and is also order four. The modular

invariance equations (2.27, 2.28) for the kij matrix will ensure that the values for

the last column take on the proper values. In principle, any off-diagonal elements

42

(and any one diagonal element) could have been used as inputs so long as the cor-

responding element for each chosen in the equations (2.27, 2.28) does not violate

modular invariance. Had the upper half of the matrix been chosen, the only consis-

tent solutions would have the lower off-diagonal components be 0 or 1 (mod 2). In

(2.30) the lower off-diagonal elements are chosen as for convenience.

2.3 Generating States

This section will explain the mathematical details of obtaining the physical

states that a given set of ~αB’s generates. First, the full space must be built out of

the ~αB’s. These vectors are labeled simply ~α. Next, the states are generated using

the raising and lowering operators on the individual modes for each ~α. Finally, the

GSO projection equations will eliminate states which cannot simultaneously exist in

a theory.

2.3.1 ~αB’s

The ~αB’s form the basis of the space in which the states are built. Care must be

taken when building this basis, however, as the integer coding needs to be translated

to physical values per equation (2.1). For example, suppose there is an order 4 basis

vector with the following elements:

~v = (1 1)(1 0 0)6||(1 1 1 1 1 1 2 2 2 2 0 0 0 0 0 0 16 36 016). (2.31)

To convert this basis vector to its basis alpha form, consolidate the orders of the left

and right movers into the least common multiple between them, which is 4,

~αB = (1 1)(1 0 0)6||(1

2

1

2

1

2

1

2

1

2

1

2
1 1 1 1 0 0 0 0 0 0

1

2

6

− 1

2

6

016). (2.32)

The 3’s are converted to fit into the range −N < αBi ≤ N into –2’s. For an odd

order, such as 3, more care must be taken, since order 3 does not actually have

periodic modes. Consider the following:

~v = (1 1)(1 0 0)6||(1 1 1 1 1 1 2 2 2 2 0 0 1 1 2 2 06 16 016). (2.33)

43

First, convert the right moving side to fractions. 1 → 2
3

and 2 → −2
3
. Then find

the least common multiple of 2 and 3, which is 6. Scale the appropriate fractions

up to that order. For the left side, 1 → 2
2
→ 6

6
. For the right movers, 2

3
→ 4

6
and

−2
3
→ −4

6
. Thus, this basis vector is converted into the following basis alpha:

~αB = (1 1)(1 0 0)6||(2

3

2

3

2

3

2

3

2

3

2

3
− 2

3
− 2

3
− 2

3
− 2

3
0 0 − 2

3
− 2

3
06 2

3

6

016). (2.34)

2.3.2 ~α’s

To form the full space of ~α’s from the ~αB’s, take the linear combinations of

the ~αB’s.

~α =
m∑
i=1

ai~α
B
i , (2.35)

where the index i goes over all of the ~αBi ’s for the model, and ai is an integer coeffi-

cient with a range of values from 0 to Ni−1, where Ni is the full order (denominator)

of the ~αBi . The elements of the ~α must conform to the same value range as the ele-

ments of the ~αB, and often need to be converted to fit the proper range (2.1). This

formula is applied for each possible value of ai until the full space is built. It is

important when calculating the ~α’s that the ~αB’s have a common denominator as

well, since they are added as fractions together.

Once built, the ~α’s will then be used to generate the physical states of the

model. Not all ~α’s can produce massless states, however. To see which ~α’s can

produce massless states for a theory, the left and right moving lengths-squared must

be calculated as follows

~αL · ~αL ≤ 8, (2.36)

~αR · ~αR ≤ 16, (2.37)

where the limiting values are in the real basis. In a complex basis, the values are

halved. As will be described in section (2.3.3), any ~α’s which have lengths-squared

44

above the limits in (2.36) and (2.37) will not produce massless states, and can be

ignored.

The different states in a theory will come to represent different force, matter,

and SUSY partner particles. This is the rule for determining which ~α’s will produce

what types of states.

Fermion: LM ST modes are periodic. (2.38)

Boson: ~α2
L = 0. (2.39)

SUSY partner: ~α2
L = 8, ~α2

R = 0. (2.40)

Once the type of ~α is determined, the states can be built. There are many shortcuts

to producing the states based on which ~α serves as the generator for the states.

These shortcuts are outlined in the next section.

2.3.3 States

To build the physical states for the theory, the following equation is applied:

~Q =
~α

2
+ ~F , (2.41)

where ~Q is the state vector defining the charges and ~F is the raising or lowering

operator for a particular fermion mode in the state vector.

Fi = ±1 (2.42)

The physical states of the model are produced by applying the raising/lowering oper-

ator all possible ways such that the state is massless. Since the model is constructed

at string scale energy, anything massive at the string scale will be far too massive

to observe at standard model energy levels. Thus, only the massless states are con-

sidered in FFHS models. The masslessness conditions for the left and right movers

45

with regard to the states are

m2
L =

1

4
~Q2
L −

1

2
, (2.43)

m2
R =

1

4
~Q2
R − 1. (2.44)

This constrains the values of ~Q2 as follows:

~Q2
L = 2, ~Q2

R = 4. (2.45)

The above conditions are what provide the limits in equations (2.36, 2.37). It is also

important to note that the ~F operator applies to complex pairs in the same way,

since the complex fermion mode pairs must always be equal. The easiest way to

show how states are produced is with an example, so consider the following vector

of five right moving complex elements.

ψ̄1,...,5 = (0, ..., 0) (2.46)

The possible charge states produced by applying ~F to these elements are shown in

Table 2.1.

Table 2.1: The possibe charge states produced by the sector (2.46).

ψ̄1 ψ̄1
c ψ̄2 ψ̄2

c ψ̄3 ψ̄3
c ψ̄4 ψ̄4

c ψ̄5 ψ̄5
c

–1 –1 –1 –1 0 0 0 0 0 0

–1 –1 0 0 –1 –1 0 0 0 0

–1 –1 0 0 0 0 –1 –1 0 0

–1 –1 0 0 0 0 0 0 –1 –1

0 0 –1 –1 –1 –1 0 0 0 0

0 0 –1 –1 0 0 –1 –1 0 0

0 0 –1 –1 0 0 0 0 –1 –1

46

Table 2.1 continued.

ψ̄1 ψ̄1
c ψ̄2 ψ̄2

c ψ̄3 ψ̄3
c ψ̄4 ψ̄4

c ψ̄5 ψ̄5
c

0 0 0 0 –1 –1 –1 –1 0 0

0 0 0 0 –1 –1 0 0 –1 –1

0 0 0 0 0 0 –1 –1 –1 –1

–1 –1 1 1 0 0 0 0 0 0

–1 –1 0 0 1 1 0 0 0 0

–1 –1 0 0 0 0 1 1 0 0

–1 –1 0 0 0 0 0 0 1 1

0 0 –1 –1 1 1 0 0 0 0

0 0 –1 –1 0 0 1 1 0 0

0 0 –1 –1 0 0 0 0 1 1

0 0 0 0 –1 –1 1 1 0 0

0 0 0 0 –1 –1 0 0 1 1

0 0 0 0 0 0 –1 –1 1 1

1 1 –1 –1 0 0 0 0 0 0

1 1 0 0 –1 –1 0 0 0 0

1 1 0 0 0 0 –1 –1 0 0

1 1 0 0 0 0 0 0 –1 –1

0 0 1 1 –1 –1 0 0 0 0

0 0 1 1 0 0 –1 –1 0 0

0 0 1 1 0 0 0 0 –1 –1

0 0 0 0 1 1 –1 –1 0 0

0 0 0 0 1 1 0 0 –1 –1

0 0 0 0 0 0 1 1 –1 –1

1 1 1 1 0 0 0 0 0 0

47

Table 2.1 continued.

ψ̄1 ψ̄1
c ψ̄2 ψ̄2

c ψ̄3 ψ̄3
c ψ̄4 ψ̄4

c ψ̄5 ψ̄5
c

1 1 0 0 1 1 0 0 0 0

1 1 0 0 0 0 1 1 0 0

1 1 0 0 0 0 0 0 1 1

0 0 1 1 1 1 0 0 0 0

0 0 1 1 0 0 1 1 0 0

0 0 1 1 0 0 0 0 1 1

0 0 0 0 1 1 1 1 0 0

0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 1 1 1 1

It is important to note that the reordering redundancy for the basis vectors does

not apply here. Complex right moving charges in a state represent eigenvalues for

roots and weights in a representation of a symmetry group. Thus, the order of

these eigenvalues will play a role in which groups occur in a model after the GSO

projections. Producing charges for a state’s left mover is a little more simple. For

a state coming from a boson sector defined by (2.39), raising or lowering the space-

time fermion modes completely takes care of the mass contribution, as does raising

or lowering an internal LM mode. However, raising the internal modes produces ST

scalar particles, which are not tabulated in this study. For a state coming from a

fermion or SUSY sector, it can be easily shown that raising a periodic or zero mode

will make the state massive. Consider the following SUSY sector state:((
1
2

1
2

) (
1
2

0 0
) (

1
2

0 0
) (

1
2

0 0
) (

1
2

0 0
) (

1
2

0 0
) (

1
2

0 0
)
|| ~044

)
This state already satisfies (2.45), so raising a periodic or zero mode will make it

massive. Lowering, however, does the following: 1
2
→ −1

2
, which has no effect on

48

the state’s LM mass squared. Thus, sectors with already massive left movers cannot

produce massless states. For the left-right paired real fermion modes, there are a

couple of rules to consider.

Apply only the lowering operator to the right moving part of the mode. (2.47)

The RM mass gained by lowering a right moving real mode is weighted

the same as lowering a complex pair.

(2.48)

Both of the above rules are due to a redundancy in the states produced. Lowering the

left moving part of the pair produces a physically equivalent and indistinguishable

state as lowering the right moving part of the real fermion pair. (2.47, 2.48) are essen-

tially taking care of the redundancy without explicitly constructing the two states.

Consider as an example the following set of eight elements, (y1 y2 w5 w6 || ȳ1 ȳ2 w̄5 w̄6)(
1

2

1

2

1

2
0 || 0 0

1

2
0

)
(2.49)

The pairings are as follows: (y1 y2) (w5 || w̄5) (w6 || w̄6) (ȳ1 ȳ2)

The possible charge states, then, are:

Table 2.2: Possible charge states produced by (2.49). To make these massless,
additional fractional elements from other modes in the states are needed.

y1 y2 w5 w6 ȳ1 ȳ2 w̄5 w̄6

1
2

1
2

1
2

0 0 0 1
2

0

1
2

1
2

1
2

0 0 0 −1
2

0

1
2

1
2

1
2

0 0 0 1
2

–1

1
2

1
2

1
2

0 0 0 −1
2

–1

1
2

1
2

1
2

0 0 0 1
2

1

1
2

1
2

1
2

0 0 0 −1
2

1

49

Table 2.2 continued.

y1 y2 w5 w6 ȳ1 ȳ2 w̄5 w̄6

1
2

1
2

1
2

0 –1 –1 1
2

0

1
2

1
2

1
2

0 –1 –1 −1
2

0

1
2

1
2

1
2

0 1 1 1
2

0

1
2

1
2

1
2

0 1 1 −1
2

0

−1
2
−1

2
1
2

0 0 0 1
2

0

−1
2
−1

2
1
2

0 0 0 −1
2

0

−1
2
−1

2
1
2

0 0 0 1
2

–1

−1
2
−1

2
1
2

0 0 0 −1
2

–1

−1
2
−1

2
1
2

0 0 0 1
2

1

−1
2
−1

2
1
2

0 0 0 −1
2

1

−1
2
−1

2
1
2

0 –1 –1 1
2

0

−1
2
−1

2
1
2

0 –1 –1 −1
2

0

−1
2
−1

2
1
2

0 1 1 1
2

0

−1
2
−1

2
1
2

0 1 1 −1
2

0

Tables 2.1, 2.2 shown above are the possible states produced by certain segments of a

larger ~α. When all possibilities for the 64 component ~α are taken into consideration

the number of computations required becomes quite large, as are the number of states

produced. This step can take a long time to perform with a brute force computer

program algorithm, but luckily some observations allow for a more finessed approach

to be possible.

Application of an ~F operator cannot decrease the mass of the state. (2.50)

50

This is due to the range of the possible values for the elements of ~α, given by (2.1).

Before ~F is applied, the new range for the values of ~Q is:

−1

2
< Qi ≤

1

2
(2.51)

It is easy to see that adding positive or negative one to the element will increase

the value of the element squared unless it is equal to 1
2
, in which case lowering will

result in the same value of the element squared. This fact can be used to trim the

computing time required to produce the states for a model.

2.3.4 GSO Projection

Not all of the states in a model can be used simultaneously. Another degree

of freedom granted by modular invariance is that only certain states can be present

in a model together. This freedom is embodied by the GSO Projection equation.

The GSO Projection (GSOP) is present in all forms of string theory. In WCFFHS

models, the states which can simultaneously exist in a model are solutions to the

following equation:

1

2
~αBj · ~Q~α =

∑
i

kjiai + sj (mod 2), (2.52)

where ~Q~α is a state coming from a sector ~α, kji specifies an element of the GSO

coefficient matrix, ai is the coefficient on the ith ~αB which produced the sector

which produced the state. sj is, as in equation (2.28), 0 for a space-time boson

and 1 for a space-time fermion ~αBj . The dot product is a Lorentz dot product with

a special regard to real fermion modes, coming from the physical state degeneracy

mentioned in section 2.3.3.

~αB · ~Q~α = ~αBL · ~Q~α,L − ~αBR · ~Q~α,R +
1

2
(~αBL,real · ~Q~α,L,real − ~αBR,real · ~Q~α,R,real) (2.53)

All states which satisfy equation (2.52) for all j (each ~αB) can exist in a given

model. It is clear from equation (2.52) that the degrees of freedom specified by

the GSO coefficient matrix can drastically affect an WCFFHS model. There is one

51

simplification that can be applied to the GSOP for gauge boson states. Since the

ST left mover fermion modes are equal to 1, the dot product of the ~αB with ~Q is

equal to the value of sj, so they cancel. Thus only the right moving dot products

need be considered for gauge boson state GSOPs.

−1

2
~αBj,R · ~Q~α,R =

∑
i

kjiai (mod 2), (2.54)

where the subscript R signifies the right moving part of the vectors. The dot product

on the left side of the equation is the same as the dot product defined in equation

(2.53), except without left moving parts.

2.4 ST SUSY

WS SUSY is built into WCFFHS models, but ST SUSY is not. The number

of ST SUSYs is determined by counting the gravitinos, found by building all of the

states from the SUSY generating sector, defined by equation (2.40). For a SUSY

sector, only the left moving states need be considered. It may seem as though the

right mover isn’t massless (the length squared being zero, rather than 4), but for a

gravitino the right moving ST boson mode is considered to be raised, thus making

it massless. As mentioned earlier, the right moving ST boson modes are used to

produce gravitons. This occurs when the ST fermion modes are raised to ±1. When

the left mover comes from a SUSY sector and the right moving ST boson modes are

raised, a gravitino is produced. The number of gravitinos in a theory is equal to the

number of ST SUSYs.4 Once the states from the SUSY sector are built, the ones

which pass the GSOP become valid gravitino states.

4 This is true in models of D=10, 6, and 4 large space-time dimensions. For D=8 the number
of space-time supersymmetries is not equal to the number of gravitinos, as there are a different
number of bosons and fermions in those models. In odd dimensions the rules for constructing
matter states (including gravitinos) have not been fully worked out.

52

2.5 Gauge Groups

The gauge content is determined by states with ST modes equal to ±1 origi-

nating from a bosonic sector (2.39) which pass the GSOPs (2.54). The complex RM

modes (not paired with left moving modes) form the charge lattice for the gauge

groups. Dot products over the gauge charges are done as follows

~QGauge
i · ~QGauge

j =
∑

n=Complex RM

QGauge
i,n ×QGauge

j,N (2.55)

In group theoretic terminology, these states form the adjoint representation of a

group, which is in one-to-one correspondence with the generators of the group. The

complex modes form the eigenvalues of this representation with the exception of the

Cartan generators, which have eigenvalues of zero. These are not needed explicitly

in WCFFHS models, so they are not usually built. Additionally, for every positive5

root, there is an exact negative also in the representation. Thus, all of the group

properties of the model can be determined by the positive roots.

Even without the Cartan generators, the adjoint representations are enough to

identify the groups making up the model. To do this, the complete list of gauge boson

states must be split into sets which are orthogonal, meaning all of the members of

each set has a zero dot product (over the gauge charges only) with all of the states of

all other sets. Since the gauge groups of most models are tensor products of smaller

gauge groups, this allows the smaller groups to be identified.

Lie algebras fall into two categories based on the length squared of the roots

(the eigenvectors in the adjoint representation). Groups in which all of the roots

have the same length squared are called simply laced gauge groups, and they include

SU(N + 1), SO(2N), and E6,7,8 where N is the rank of the group. Groups in

which the roots have two different lengths (squared) are called non-simply laced,

and include SO(2N + 1), Sp(2N), F4, and G2.

5 Positivity in the root space is determined by convention to mean the sign of the first nonzero
element.

53

These Lie algebras are themselves embedded in Kač-Moody algebras of varying

“levels.” The full KM algebras have many different properties which distinguish them

mathematically from Lie algebras. The level of a KM algebra sets a limit to the

dimension of a Lie algebra, with the “usual” dimension of the Lie algebra being at

KM level 1. Higher level (above 1) KM algebra embeddings admit representations

with dimensions not seen by level-1 Lie algebras in models. Specifically, spin-1/2

adjoints that are not SUSY partners of gauge bosons appear as representations of

higher level KM algebra embeddings. Higher level KM algebra embeddings are

identified when all of the roots have a shorter length squared than those of other

groups in the model. The KM level of a gauge group is determined by

L = 2/l2max, (2.56)

where L is the KM level and l2max is the maximum length squared of the roots in the

group’s adjoint. Note that a set of roots with maximum length squared of 2 has a

Lie algebra embedded in a KM algebra of level 1.

The groups making up the model, once split into mutually orthogonal sets,

can then be classified by their KM level and whether or not they are simply laced.

Once that is established, the roots can be used to identify the class and rank of

the group. The properties of groups useful for identifying the rank and class are

listed in Table 2.3. Table 2.3 shows several ways in which the roots can be used

to identify the gauge groups using their adjoint representations. An additional fact

which aids this is the maximal rank achievable for a particular number of large space-

time dimensions. Those are charted in Table 2.4. Because there is a maximal rank

achievable, there are a finite number of available non-Abelian gauge groups which

can make up a model. This means that in many cases, inverting the formula for the

number of nonzero positive roots is a viable means of identification, particularly for

A and D class gauge groups. In general, inverting each formula will yield an integral

result for the rank of the group only if the correct class’s formula is used.

54

Table 2.3: This table presents information pertinent to the identification of Lie
groups from their nonzero roots. From the left, the columns are the Cartan

classification, the colloquial name, the dimension of the adjoint representation, the
number of nonzero positive roots, the number of positive short roots, and the
Dynkin diagram. The Dynkin diagrams give the simple roots and their dot

products with other simple roots. Short roots are filled in, while long roots are
empty. The lines represent the angles between the simple roots in the root space,
which are essentially the normalized dot products. Because of the normalizations,
the number of lines directly corresponds to the ratio of lengths-squared of the two

roots connected by the lines.

Class Name Dim NZPR Short Dynkin Diagram

AN SU(N + 1) N2 +N + 1 1
2
N(N + 1) 0

...

BN SO(2N + 1) N(2N + 1) N2 N
...

CN Sp(2N) N(2N + 1) N2 N(N − 1)
...

DN SO(2N) N(2N − 1) N(N − 1) 0
...

E6 E6 78 36 0

E7 E7 133 63 0

E8 E8 248 120 0

G2 G2 14 6 3

F4 F4 52 24 12

55

Table 2.4: The maximal ranks of the gauge groups based on the number of large
space-time dimensions.

Large ST Dimensions Maximum Gauge Group Rank

10 16

8 18

6 20

4 22

For example, suppose there is a set of 15 nonzero positive roots, all of length

squared 2. Because all of the roots are length squared 2, the group is simply laced

at KM level 1. Moreover, there are not enough nonzero positive roots to be an E

class group, so that leaves only A or D class possible. Inverting the formula for the

rank of a D class group in terms of the number of nonzero positive roots, NZPR,

yields

N =
1 +
√

1 + 4× NZPR

2
. (2.57)

Placing 15 into this equation yields a result of ∼ 4.41, not an integer. This means

the group must be A class. Inverting the formula in Table 2.3 to give the rank in

terms of the number of nonzero positive roots NZPR, gives the following equation:

N =
−1 +

√
1 + 8× NZPR

2
. (2.58)

Setting NZPR = 15 gives a result of exactly 5. Thus, the group is A5, or SU(6).

There are some instances where this method will not work. A few groups with

different class and rank which have the same number of nonzero positive roots. They

are listed in Table 2.5. Notice in Tables 2.5 and 2.3 that the BN and CN groups

have exactly the same number of nonzero positive roots. To determine one from the

other, counting the number of short roots will suffice. In the other cases shown in

Table 2.5, finding the simple roots may be necessary. This can be done by adding

and subtracting all of the roots from one another. Any root that can be expressed

56

Table 2.5: Gauge groups with different ranks and/or classes, but the same number
of nonzero positive roots.

Group Group NZPR

SU(9) E6 36

SU(16) E8 120

SU(21) SO(30) 210

SO(2N + 1) Sp(2N) N2

as the sum of other roots is not simple. The dot products between them can also

be used to build the Dynkin diagram, which also indicates the rank and class of

the group. Notice in Table 2.3 that the simple roots only ever take on negative or

zero dot products with another. The largest set of roots with negative or zero dot

products between them is the set of simple roots.

While the methods for gauge groups presented in the preceding paragraphs are

by no means exhaustive, they are the most common and efficient ways to accomplish

this task using a computer program.

Once the non-Abelian gauge groups have been identified, the number of Abelian

U(1)’s can be determined. This is done by counting the total non-Abelian rank and

subtracting it from the total rank. The maximum total ranks for each number of

large space-time dimensions are listed in Table 2.4. However, this can be reduced

if there are left-right real fermion pairs in the model. The total rank of the gauge

group can be found as follows

Total Rank = Max Rank− 1

2
×NLR, (2.59)

where NLR is the number of left-right pairs. For clarification, the equation for the

number of U(1)’s is given below:

NU(1) = Max Rank− 1

2
×NLR − RankNA. (2.60)

57

2.6 Matter Representations

Once the massless matter states have been determined by the GSO projections,

the next task for building the model is to determine the representation dimension

of each state under all of the gauge groups. The most efficient way to do this will

be identifying the highest weight states.

The weights of a given representation fit into stacks of eigenvalues. Shifting

from one to the next involves applying “raising” and “lowering” operators to them.

The operators are vectors of eigenvalues of the adjoint representation for the group.

The highest weight of a representation is the weight which cannot be raised without

leaving the representation. The importance of the highest weight is that there are

several ways of mapping it to the dimension of the representation. The two easiest

ways will be shown here.

The first is using Dynkin coefficients, sometimes referred to as Dynkin labels.

It is a vector of normalized dot products with the simple roots of a group. The

vector’s elements are built with the equation

Di =
2~Λ · ~Q sr

i

~Q sr
i · ~Q sr

i

, (2.61)

where Di is the ith Dynkin coefficient, ~Λ is the highest weight, and Q sr
i is the charge

vector of the ith simple root. Determining whether a state is the highest weight in

representation is easy using this method: any weight which has at least one negative

Dynkin coefficient is not the highest weight in a representation.

Each set of Dynkin coefficients provides a one-to-one correspondence to a rep-

resentation. There are some subtleties to this, however. The mapping requires the

simple roots to be placed and computed according to the arrangement of the Dynkin

diagram. Placing dot products in the incorrect order results in a different matter

representation being calculated. Moreover, the Dynkin diagrams themselves have

symmetries. This means that there can be relative differences between representa-

tions which have the same dimension. Representations that behave in this manner

58

1 2 3 4 5

6

Figure 2.1: The Dynkin diagram for E6. Notice that exchanging roots 1 and 5 or
roots 2 and 4 result in the same relative configurations. Symmetries of this sort
allows for complex representations.

are called complex representations. As an example, consider E6, whose Dynkin

diagram is presented in Figure 2.6. Consider the following pair of Dynkin labels.

(1,0,0,0,0,0)

(0,0,0,0,1,0)

The dimension of both representations is 27, yet the overall structure of the two rep-

resentations is different. Therefore, one is labeled 27, while the other is labeled 27. It

doesn’t matter which representation is barred since the differences are relative. The

bar only serves to distinguish the two when both are present in a model. The caveat

to this indistinguishability is that once the convention has been established, an ab-

solute ordering has been placed on the simple roots. All complex representations in

a model must follow the same ordering convention. If the Dynkin labels (1,0,0,0,0,0)

are chosen to map to the 27 dimensional representation, then the (0,0,0,1,0,0) repre-

sentation cannot be the 351, it must be the 351, since the Dynkin labels of the 27 fix

the ordering. One could also choose (1,0,0,0,0,0) to be the 27, and the (0,0,0,1,0,0)

to be the 351.

D4, or SO(8) has an even greater symmetry for its Dynkin diagram, shown in

Figure 2.6. Consider the following three Dynkin labels

(1,0,0,0) (0,0,1,0) (0,0,0,1)

All three of these have dimension 8, yet relative to one another these are distinct

representations; one is a vector representation while the others are spinor represen-

59

1 2

3

4

Figure 2.2: The Dynkin diagram for D4, in which exchanging roots 1, 3, and 4 results
in the same relative configurations. This property is called triality.

tations. As with E6, this only matters if more than one of the three 8’s is in the

model, up until the ordering of all simple roots has been fixed. Therefore, if the

vector rep has been set, but the spinor reps have not, then there is still a degree

of freedom in fixing which Dynkin labels map to the spinor, and which map to the

conjugate spinor.

The Dynkin diagram method of computing representation dimensions has the

advantage of being more intuitive. However, the simple roots making up the diagram

must be ordered correctly to obtain the correct result. There is another formula

which gives a representation dimension, called the Weyl dimension formula:

dim(~Λ) =
∏
~Qr
i

(~Λ + ~ρ) · ~Qr
i

~ρ · ~Qr
i

, (2.62)

where ~Λ is the weight vector, ~Qr
i is a nonzero positive root, and ~ρ is the Weyl vector,

defined by

~ρ =
1

2

∑
~Qr
i . (2.63)

This formula will give the dimension of the representation only if the weight vector ~Λ

is a highest weight. Otherwise, the product will be either non-integral or zero. While

this method does not require knowing the simple roots, it also does not distinguish

between the barred and unbarred representations for a group.

Both of these methods are viable ways to determine the dimension of a highest

weight for a particular gauge group. For the entire model, the representations must

be highest weights of all gauge groups to be a highest weight in the model.

60

2.7 Summary

The model building process begins by specifying the basis vectors for the

model, which can be any combination of orders and layers, and the GSO coefficient

matrix. Both of these must pass the modular invariance constraints to produce a

physically realistic model. If integer codes are used, the basis vectors and GSO

coefficient matrix values must be converted into phase values. The fermion phases

which are identical for all layers in the model are identified with special attention

to left-right pairs. Once that is done, linear combinations of the basis vectors are

then built, with coefficients depending on the order. These sectors are then classified

based on whether they will produce gravitinos, spin-1 gauge bosons, or spin-1/2 mat-

ter fermions. The massless states for each are then built using the raising/lowering

operator. Each massless state must pass the GSO projection constraints to remain

in the model. The states coming from gravitino generating sectors are counted to

determine the number of space-time supersymmetries in the model. Gauge states

coming from boson generating sectors are arranged into mutually orthogonal groups,

which are identified using the nonzero positive roots. The number of rank-cuts is

subtracted from the maximum rank, then the total rank of the non-Abelian gauge

groups is subtracted from this to determine the number of U(1) groups. The matter

content is identified by finding the dimensions of the highest weight states for all of

the gauge groups.

The above process will determine the non-Abelian gauge and matter content,

the number of U(1)’s, and the number of space-time SUSYs. More analysis must

be done for a model to be complete, however. The U(1) charges must be computed

next, then the superpotential can be built. With that, D- and F- flat direction

vacuum expectation values can be found. These VEVs can then be used to give

mass to non-MSSM exotics that were built in the model.

61

CHAPTER THREE

Challenges in Systematic WCFFHS Searches

Described in this chapter are the challenges to systematic searches of WCFFHS

models including model building speed, model data storage, and model comparison.

Many of these problems are being addressed through a new framework for WCFFHS

model construction. This framework, developed in C++, can be more than 100

times faster than the current FORTRAN 77 software. Moreover, as little as possible

has been “hard coded” into the framework- the core logic need not be changed for

searches of increasing complexity. This ensures that if the results of a search with

few inputs are valid, then the more complex searches will also be valid. It is also

object-oriented, allowing it to be easily adapted and expanded for new analyses for

future work.

3.1 The Scale of Systematic WCFFHS Searches

The scope of the systematic WCFFHS model searches can be limited by several

factors. The first, and most obvious, factor is that of model building speed. Because

the number of models to be built can get quite large, the speed at which they can

be built is essential. Baylor’s FORTRAN 77 software for WCFFHS model building

can construct a model in between five and ten seconds. A data set with 1,000,000

models would take about 277 hours, about eleven days. As the number of “layers”

of basis vectors in a model increases, the number of total models to build grows

exponentially; each of the 1,000,000 models now has on the order of 1,000,000 new

basis vectors (likely more than that) with modular invariance. Thus, the total

number of models in the data set of the next layer is an estimated 1012. At one

model every ten seconds, the layer-2 data set would be completed in approximately

320,000 years.

62

Several steps can be taken to reduce the time required for model construction,

both from an analytical and implementation standpoint. From the implementation

side, understanding optimization techniques when writing the model building soft-

ware is essential. Minimizing file and screen i/o, as well as the amount of copying

done in memory are crucial steps needed to reduce the computing time. This idea

has been central to the construction of the C++ framework. Use of a profiler for

finding key “choke points” in the model building process has aided in the imple-

mentation of these principles. The C++ framework can build between 10 and 20

models per second with the compiler optimization flags activated, more than 100

times faster than the FORTRAN 77 software. Not yet implemented are techniques

for distributed computing. Use of multinode processing can also speed up system-

atic searches. These features have yet to be added to the framework, but will be

incorporated at a later time.

Another computational concern is one of data storage. While a “master atlas”

of basis vectors and the models to which they map is desirable, it is not feasible.

The estimated average amount of space per model is 0.725 kB. For the 1,000,000

model data set, this amounts to 725 MB. The next layer would use approximately

725 × 103 TB, making a pure “atlas” of WCFFHS models unreasonable to pursue.

There are two solutions to this problem. One is to gather statistics as the models are

generated without keeping the models themselves in memory. While this approach is

less taxing on system resources, it does have disadvantages. In particular, one must

know the statistics to be gathered on the models prior to runtime. Any additional

statistics would require a second run. Moreover, the total model set would have to

be statistically analyzed, as opposed to the distinct models only, as the models are

not being kept in memory. Double-counts that result from the construction method

itself cannot be avoided with this approach. The other approach, implemented in

the C++ framework, is to count the distinct models only, writing those to a file

63

that serves as a small repository. While a full discussion of uniqueness in WCFFHS

models is discussed in the next section, it suffices to say there are disadvantages to

this approach as well. In particular, the definition of uniqueness in these models is

somewhat nebulous. Additionally, each unique model that is found must be com-

pared with the other unique models that have been constructed, making each model

require more computing time to complete.

Analytic techniques can also be used to reduce the number of redundant models

produced. As these techniques are related to uniqueness in WCFFHS phenomenol-

ogy, discussion of such analysis will be deferred until after uniqueness has been

addressed.

3.2 Uniqueness in WCFFHS Models

The previously described computational limitations force the analysis to be

only on models that are considered distinct. The definition of distinctness amongst

WCFFHS models is not clear. In particular the “amount” of phenomenology done

to distinguish the models from one another must be balanced with the amount of

computing time required to perform such analyses, as well as how easily the analyses

can be automated.

Consider two different basis vector sets producing the same gauge and non-

Abelian matter content. Even though the actual charge vectors and gauge group

eigenvalues for the two models are different, the overarching group structures are

identical. This could be due to a string-scale type symmetry within the construction

method itself, in which case there would be some sort of transformation that could

be applied to one of the basis vector sets to reproduce the other. The U(1) charges

of those two models, once diagonalized, would be the same. Such a symmetry in

the construction method could in principle be revealed through an analytic study.

However, it could also be the case that these models have completely different U(1)

64

Table 3.1: Two models illustrating the inherent difficulty in comparing WCFFHS
models.

QTY SU(4) SU(4) SU(4) SO(10) E8

1 4 4 1 1 1
1 4 1 4 1 1
1 1 4 4 1 1
2 1 6 1 10 1
2 1 1 6 10 1

QTY SU(4) SU(4) SU(4) SO(10) E8

1 4 4 1 1 1
1 4 1 4 1 1
1 1 4 4 1 1
2 6 1 1 10 1
2 1 1 6 10 1

structures, and that the GSOPs projected out the states that were different between

the models. Such models will not have identical superpotentials or D- and F-flat

directions, all of which have significant impact on the phenomenological viability of

a model. For the systematic searches in this study the U(1) charges of the matter

representations will not be considered. Thus, two models will be considered identical

if they have the same gauge and non-Abelian matter content.

This approach has a caveat, however. As the models become increasingly com-

plex, comparing two models becomes increasingly difficult to automate. Consider

the following two “toy” models whose particle content is presented in Tables 3.1. It

is clear that these two models are equivalent if two of the SU(4) groups are switched.

However, a simple boolean comparison of the gauge groups and matter states by a

computer program will result in these models being counted as distinct. The root of

the problem lies in the fact that the three SU(4) gauge groups are not identical —

there are different matter representations that transform under them. The most ob-

vious solution would be to perform brute force permutations on the identical gauge

groups and resorting the matter representations. Such an approach would work,

65

Table 3.2: Matter representation classes of the “toy” models.

QTY Model 1 Classes Model 2 Classes
SU(4), SU(4)

1 (4,4) (4,4)
1 (4,4) (4,4)
1 (4,4) (4,4)

SU(4), SO(10)

2 (6,10) (6,10)
2 (6,10) (6,10)

but takes a significant amount of computing time. Comparisons are the most called

operation in a systematic search, however, and thus need to be as fast as possible in

order for the search to be efficient.

The solution implemented in this study is to propose and use a conjecture

that defines uniqueness in a slightly stronger way. The conjecture is that identical

models will have matter that fits into the same “classes” of representations. These

matter representation classes are formed by removing the singlets and looking only

at the dimension of the representations and the groups under which they transform.

The classes of matter representations for the two example models are presented in

Table 3.2. Now it is clear the two models are equivalent.

To prove the conjecture, one would need to show that modular invariance

prevents models that have only one representation switched with another. Table 3.3

shows an example of such a model.

The model presented in Table 3.3 would be counted as identical to the models

in Table 3.1, as it has the same classes of matter representations. However, it could

not satisfy modular invariance according to the conjecture. More theoretical work

will need to be done to prove or disprove this conjecture.

66

Table 3.3: Another “toy” model, declared non-existant by the conjecture about
matter representation classes.

QTY SU(4) SU(4) SU(4) SO(10) E8

2 4 4 1 1 1
1 4 1 4 1 1
2 1 6 1 10 1
2 1 1 6 10 1

The conjecture does not fully remedy the problem of a preferred gauge group

ordering. Generally, matter representations are limited by the charges they carry

due to the masslessness constraints of the fermion states. Representations of larger

dimension tend to carry smaller dimensional charges under the other groups in the

model, if at all. Certain gauge groups produce representations of similar dimension,

however, which still place an ordering on the gauge groups within a class of matter

representation. In particular, the 4- and 5-dimensional representations of SO(5),

the 4- and 6- dimensional representations of SU(4), and the 2- and 3-dimensional

representations of SU(2)(2) can still cause double counting amongst models. To

completely remove the dependence on ordering in WCFFHS models, the problem

must be reduced to a counting problem. In addition to proving or disproving the

conjecture, the following possibility could also be explored.

Two models with identical gauge groups and ST SUSYs are identical if they have

the same total number of matter representation classes, the same number of

distinct matter representation classes, and the same number of total fermions.

This would remove the ordering dependence from the model comparison. Until it is

proven, however, there is a risk of undercounting the models. Rather than risking

this undercounting with the systematic studies presented herein, models in smaller

data sets were examined, and duplicates were removed by hand. This will provide a

systematic uncertainty estimate for statistics from larger data sets.

67

CHAPTER FOUR

Redundancies in Explicitly Constructed Ten Dimensional Heterotic String Models

The first of several systematic surveys of the heterotic string landscape pre-

sented is one in which models with ten large ST dimensions were constructed. As

they have fewer fermionic degrees of freedom, the searches are simpler and take less

computing time. Moreover, these models are well known and have been constructed

before. This serves as an error check for the WCFFHS model building software used

for this study, the FF Framework. The goal of the examination to follow is to search

for patterns that may lead to redundancies in the construction method itself. By

studying how the basis vector inputs map to the particle content outputs, conclu-

sions can be drawn regarding the WCFFHS method’s redundancies. Ultimately, this

information will be used for more efficient systematic searches.

4.1 D = 10 Heterotic String Models in the Free Fermionic Construction

The spectrum of D = 10 heterotic string models has been well tabulated

[55]. All of these are presented in detail in Table 4.1, except for an additional

heterotic model containing a single E8 at Kač-Moody level 2. In the free fermionic

construction, the latter model is constructed using real Ising fermions 1 [56, 57,

58, 59, 54, 60, 61, 62, 63, 64] , which have not been included in the present study.

The emphasis of the discussion to follow will be on the different manifestations of

the construction parameters that produced the D = 10, level-1 models. Such an

examination will provide clues as to the redundancies inherent to the free fermionic

heterotic construction, and will aid in more efficient systematic examinations of the

input parameters for models with fewer large space-time dimensions.

1 Higher level Kač-Moody algebras are possible with compact dimensions using left-right pair-
ings, sometimes referred to as rank-cutting. For models in this study, all modes are paired as
complex modes on the left and right moving parts of the basis vectors. Thus, higher level Kač-
Moody algebras will not appear in these data sets.

68

Table 4.1: These are all possible D = 10, level-1 models that can be constructed
using the methods detailed. The dimensions of the non-Abelian matter

representations are given underneath the respective gauge groups under which they
transform. Abelian charges were not computed.

Model ST SUSY Model ST SUSY

SO(32) 1 SO(32) 0

E8⊗E8
1

SO(16)⊗SO(16)

1 128
128 1
16 16

0

SO(8)⊗SO(24)

8 24
8 24

0

SO(16)⊗E8

128 1
128 1

0

SU(2)⊗SU(2)⊗E7⊗E7

1 2 1 56
1 2 56 1
2 1 1 56
2 1 56 1

0

SU(16)⊗U(1)

120
120
120
120

0

69

All of the searches have the following parameters fixed:

• The first basis vector, ~1, in each model is completely made up of periodic

modes (~1 8||~1 32), and serves as a canonical basis for the vectors. It is not

shown when describing the input for a model.

• The four left moving complex world-sheet fermions ψ1
c , ..., ψ

4
c (in light cone

gauge) with space-time indices have all periodic boundary conditions and

may contribute to the matter states in the model as well as the gauge states.

The orders specified will be for the right moving part of the basis vector only,

the left moving part will always be order 2. Thus, the total order remains

N for Neven, and 2N for Nodd.

• The number of ST SUSYs is found by counting gravitinos 2 .

4.2 Searches With One Basis Vector

For the searches with a single basis vector (beyond the all-periodic), the order

was increased with all possible basis vectors of that order investigated. Figure 4.1

shows the number of unique models vs the order of the basis vectors in the search.

Notice that for odd orders, there are only two unique models constructed. For each

of the odd orders, the models are SO(32) and E8⊗E8, both with N = 1 space-time

supersymmetry. These are the only supersymmetric models present in the D=10

heterotic landscape.

ST SUSY in WCFFHS models, as mentioned in section 4.1, is determined

by counting gravitinos. Computationally, this involves first picking out all gravitino

generating sectors as linear combinations of the basis vectors. This sector is identified

as having a massless left moving part and all zeros for the right moving part. The

only sector with this property is (~1 8||~0 32) (in ten large space-time dimensions). This

sector is produced from every basis vector with odd order due to the coefficients that

2 This method does not give exact results for D=8 models.

70

2 4 6 8 10 12 14

2

4

6

8

Order

U
n
iq

u
e

M
o
d
el

s

Figure 4.1: Plotted here are the number of unique models produced vs the order of
the basis vectors that produced those models.

multiply it. For example, an order 3 basis vector has allowable phases of 0, 2
3
, − 2

3

on the right side, and phases of 0, 1 on the left. Thus, the total order of the basis

vector is LCM(2, 3) = 6. The coefficients that multiply that basis vector when

constructing the sectors are 0 through 5. The right moving side has a Z3 symmetry,

which means that the values go through the following transformations:

±
(

2

3

)
−→×0 0 −→×1 ±

(
2

3

)
−→×2 ∓

(
2

3

)
−→×3 0 −→×4 ±

(
2

3

)
−→×5 ∓

(
2

3

)
(4.1)

The left moving side of the basis vector, however, has a Z2 symmetry, and its values

go though the following transformations:

1 −→×0 0 −→×1 1 −→×2 0 −→×3 1 −→×4 0 −→×5 1 (4.2)

Because the basis vector elements have the ZL2 ||ZR3 symmetry rather than a purely Z6

symmetry, the gravitino generating sector always emerges. More generally, for any

odd right moving order N , the basis vector (and consequently the associated sectors)

has a ZL2 ||ZRN symmetry, rather than a purely ZLCM(2,N) symmetry. Therefore all

basis vectors with odd right moving orders will produce a gravitino generating sector.

71

We now conjecture that any model of even dimension with a single basis vector of

odd order and massless left mover has the maximal number of space-time SUSYs.

Models matching these conditions are presented in Table 4.2. The table clearly

shows this conjecture to be true for D = 4 models and D = 6 models meeting these

criteria. The conjecture was tested for order-5 models in D = 4 and D = 6 large

space-time dimensions as well, with a sample of the relevant models (containing a

massless left mover only) presented in Table 4.3. All of those models (and the ones

not shown explicitly) contain the maximal number of space-time supersymmetries.

To prove this conjecture, one must consider how the gravitinos are created

from the sector. Applying the raising and lowering operator, ~F , according to the

following equation generates possible gravitinos:

~Q =
1

2
~α + ~F , (4.3)

where ~Q is the state, ~α is the sector that generated the state, and ~F is the rais-

ing/lowering operator. ~F is any vector consisting of 0,±1 such that the state is

massless3 . The GSO projections will then choose which possible states generated

by the ~F ’s in equation (4.3) is physically present in the model. The equation for the

GSO projections is

~vj · ~Q~α =
∑
i

aikji + sj (mod 2), (4.4)

where ~Q~α is the state coming from the sector ~α, ai are the coefficients that produced

the sector ~α, kji are elements of the GSO coefficient matrix, and si is equal to one if

~vj is a space-time fermion sector, and 0 if ~vj is a space-time boson sector. The dot

product in equation (4.4) and the other equations in this section is a Lorentz dot

product, where the dot products of the right movers are subtracted from the dot

3 With the modes expressed in a complex basis, The conditions for masslessness are that the
length squared of the left mover be equal to 1, while the length squared of the right mover be equal
to 2.

72

Table 4.2: Order-3 models with six and four large space-time dimensions and
massless left movers. This table provides evidence for a conjecture that single basis
vectors with odd order right movers always have the maximal number of space-time
supersymmetries. Note also that only half of the kij matrix is specified. The other

half is constrained by modular invariance, and is therefore not a true degree of
freedom for WCFFHS models. The basis vectors are presented in a real basis.

D BV kij Model N

6 (~1 4(1, 0, 0)4||~0 34(~2
3
)6) (1

0) SO(40) 2

6 (~1 4(1, 0, 0)4||~0 22(~2
3
)18) (1

0) SO(24) ⊗ E8
2

6 (~1 4(1, 0, 0)4||~0 16(~2
3
)24) (1

0) SO(16) ⊗ SO(24) 2

6 (~1 4(1, 0, 0)4||~0 10(~2
3
)30) (1

0) SU(16) ⊗ SO(10) 2

6 (~1 4(1, 0, 0)4||~0 4(~2
3
)36) (1

0) SU(2)3 ⊗ SU(18) 2

4 (~1 2(1, 0, 0)6||~0 38(~2
3
)6) (1

0) SO(44) 4

4 (~1 2(1, 0, 0)6||~0 26(~2
3
)18) (1

0) SO(28) ⊗ E8
4

4 (~1 2(1, 0, 0)6||~0 20(~2
3
)24) (1

0) SO(20) ⊗ SO(24) 4

4 (~1 2(1, 0, 0)6||~0 12(~2
3
)30) (1

0) SU(16) ⊗ SO(14) 4

4 (~1 2(1, 0, 0)6||~0 8(~2
3
)36) (1

0) SU(2) ⊗ SU(18) ⊗ SO(8) 4

4 (~1 2(1, 0, 0)6||~0 2(~2
3
)42) (1

0) SU(21) ⊗ U(1) ⊗ U(1) 4

73

Table 4.3: A sample of order-5 models with six and four large space-time
dimensions and massless left movers. All of them have the maximal number of
space-time supersymmetries. The basis vectors are presented in a real basis.

D BV kij Model N

6 (~1 4(1, 0, 0)4||~0 12(~2
5
)14(~4

5
)14) (1

0) SO(12)⊗E7⊗E7
2

6 (~1 4(1, 0, 0)4||~0 8(~2
5
)16(~4

5
)16) (1

0) SO(8)⊗SO(16)⊗SO(16) 2

6 (~1 4(1, 0, 0)4||~0 6(~2
5
)32(~4

5
)2) (1

0) SO(8)⊗SO(32) 2

6 (~1 4(1, 0, 0)4||~0 6(~2
5
)32(~4

5
)12) (1

0) SU(4)⊗SU(12)⊗E6
2

6 (~1 4(1, 0, 0)4||~0 4(~2
5
)18(~4

5
)18) (1

0) SU(2)2⊗SO(10)2 2

6 (~1 4(1, 0, 0)4||~0 2(~2
5
)24(~4

5
)14) (1

0) SU(12)⊗SO(14)⊗U(1)2 2

4 (~1 2(1, 0, 0)6||~0 16(~2
5
)14(~4

5
)14) (1

0) SO(16)⊗E7⊗E7
4

4 (~1 2(1, 0, 0)6||~0 10(~2
5
)22(~4

5
)12) (1

0) SU(12)⊗SO(10)⊗E6
4

4 (~1 2(1, 0, 0)6||~0 8(~2
5
)18(~4

5
)18) (1

0) SU(10)⊗SU(10)⊗SO(8) 4

4 (~1 2(1, 0, 0)6||~0 6(~2
5
)24(~4

5
)14) (1

0) SU(4)⊗SU(12)⊗SO(14)⊗U(1) 4

4 (~1 2(1, 0, 0)6||~0 4(~2
5
)30(~4

5
)10) (1

0) SU(2)2⊗SU(16)⊗SO(10) 4

4 (~1 2(1, 0, 0)6||~0 4(~2
5
)20(~4

5
)20) (1

0) SU(2)3⊗SU(10)⊗SU(10) 4

74

products of the left movers. Moreover, complex modes contribute twice as much to

the dot product as real modes.

In the case of gravitinos, the mass shell condition for the right movers is

ignored. For gravitinos, the space-time boson modes customarily left out of this

construction method to save computing resources are raised. When the space-time

boson modes are raised, none of the other right moving modes can be raised without

giving the state mass.

The masslessness condition for the left movers is already fulfilled when the

SUSY generating sector is produced. Since the raising operators will make the left

mover massive and the lowering operators do not change the mass, only the lowering

operators are applied. Lowering the space-time fermion modes will change the spin

state of the same gravitino (within its given helicity). Only one gravitino helicity

is allowed by the GSO projections per model in ten dimensions, while both can be

present in dimensions lower than ten. Lowering the compactified modes (in models

with less than ten large space-time dimensions) will create distinguishable gravitino

states. This is the reason that D=6 models have N = 2 space-time SUSY, while

D=4 models have N = 4.

The possible gravitino states can be categorized by which compact fermion

modes (and space-time modes for D=10) have been lowered with the ~F operator.

These fall into one of two categories based on their dot products in the GSO projec-

tions (4.4). The possible gravitino states for D = 10, 6, and 4 are listed in Table 4.4.

The GSO projection equations will reveal why models with a single odd ordered ba-

sis vector and a massless left mover always have the maximal number of space-time

SUSYs. For possible gravitino states, the equation (4.4) can be simplified.

• The coefficients producing the sector for this class of model is always (0, NR)

where NR is the order of the right mover.

75

Table 4.4: The possible gravitino states in 10, 6, and 4 large space-time dimensions.
A + represents a charge value of 1

2
, while a – represents a charge value of −1

2
. The

dot products for both of the GSOP constraints are in this case identical. Note that
the yi, wi values can also be periodic and thus can vary, but permutations of
xi, yi, wi produce identical models when there is only one basis vector with a

massless left mover. The states are presented in a complex basis.

D ψµ xi Dot

10 + + + + 0

10 + + + – 1

6 + + + + 0

6 + + + – 1

6 + + – + 1

6 + + – – 0

4 + + + + 0

4 + + + – 1

4 + + – + 1

4 + – + + 1

4 + + – – 0

4 + – + – 0

4 + – – + 0

4 + – – – 1

76

• sj is equal to 1 since the only basis vectors producing the model are ~1 and

~v.

The conjecture can be shown heuristically by noting that with only two possible

dot product values and two possible values for k~1~v, the space of potential gravitino

states can be divided into two parts. This gives a maximum space-time SUSY of

N = 1 for D = 10, N = 2 for D = 6, and N = 4 for D = 4, which is known to be

true. It can, with some effort, also be proven mathematically.

The GSOPs with the above conditions applied are

0 = NRk~1~v + 1 (mod 2), (4.5)

0 = NRk~v~v + 1 (mod 2), (4.6)

for “even” gravitinos (dot product is equal to zero mod 2). For “odd” gravitinos

(dot product equal to one mod 2) the GSOPs are

1 = NRk~1~v + 1 (mod 2), (4.7)

1 = NRk~v~v + 1 (mod 2). (4.8)

This constrains the possible values that k~1~v and k~v~v can take in order for the possible

gravitinos to survive the GSO projections.

NRk
e
~1~v

= NRk
e
~v~v = 1 (mod 2), (4.9)

NRk
o
~1~v

= NRk
o
~v~v = 0 (mod 2), (4.10)

where keij is the GSO coefficient required for the even gravitino to pass, and koij is the

GSO coefficient required for odd gravitinos to pass. These are the conditions that

must be proven to show that basis vectors with a massless left mover and odd ordered

right mover always produce the maximal number of space-time supersymmetries.

The conditions (4.9, 4.10) imply that choosing k~v~1 only ever eliminates half the

total possible states, giving the model the maximal number of gravitinos.

77

The proof will proceed as follows. The conditions (4.9, 4.10) will be rewritten

in terms of the order-2 GSO coefficient k~v~1 using the modular invariance constraints

for the GSO coefficient matrix

Njkij = 0 (mod 2), (4.11)

kij + kji =
1

2
~vi · ~vj (mod 2), (4.12)

kii + ki1 =
1

4
~vi · ~vi − si (mod 2), (4.13)

where si is defined as in equation (4.4). This places a condition on the dot products

of the basis vectors ~1 and ~v. A contradiction will be assumed and proven to be

logically inconsistent, thus proving the following generalization of (4.9, 4.10)

NRk~1~v = NRk~v~v (mod 2) (4.14)

which is sufficient to prove the conjecture.

Applying the modular invariance conditions to the above conditions results in

NRk~1~v = −NRk~v~1 −
NR

2
~1 · ~v (mod 2), (4.15)

NRk~v~v = −NRk~v~1 −
NR

4
~v · ~v −NR (mod 2). (4.16)

Combining these conditions implies

−NR

2
~1 · ~v = −NR

4
~v · ~v −NR (mod 2). (4.17)

Note that NR (mod 2) is one. Modular invariance of basis vectors constrains the

possible values for the dot products in the above equation. These constraints in

general are

Nij~vi · ~vj = 0 (mod 4), (4.18)

Nii~vi · ~vi = 0 (mod 8) (for even N), (4.19)

78

where Nij is the least common multiple of the orders of the basis vectors ~vi,j. For

the cases being considered, this implies

2NR
~1 · ~v = 0 (mod 4) =⇒ (4.20)

NR
~1 · ~v = 0 (mod 2), (4.21)

2NR~v · ~v = 0 (mod 8) =⇒ (4.22)

NR~v · ~v = 0 (mod 4). (4.23)

Thus, the dot product terms in (4.17) are integral. A contradiction can be used

since either side can only be zero or one.

Now the faulty assumption will be applied. Assume, instead of (4.17), that

the following is true

NR

2
~1 · ~v =

NR

4
~v · ~v (mod 2). (4.24)

Splitting the Lorentz dot products into left and right movers, this condition can be

further reduced by noting that ~1L · ~vL = ~vL · ~vL = 4. In terms of the right movers

only, the equation becomes

NR −
NR

2
~1R · ~vR = −NR

4
~vR · ~vR (mod 2), (4.25)

where NR = 1 (mod 2). The basis vector ~v can be split into its numerator and

denominator.

1− NR

2NR

~1NR · ~vNR = − NR

4N2
R

~vNR · ~vNR (mod 2) =⇒

1− 1

2
~1NR · ~vNR = − 1

4NR

~vNR · ~vNR (mod 2). (4.26)

The denominator of the right mover is NR due to the order of the right movers.

Additionally, the numerators are all even integers. This comes from the constraint

NR~vR = 0 (mod 2). (4.27)

79

The dot products can now be written as a summation.

1− 2

2

∑
i

mi = − 4

4NR

∑
i

m2
i (mod 2) =⇒

1−
∑
i

mi =
1

NR

∑
i

m2
i (mod 2), (4.28)

where mi is an integer and the sum is over the indices of the right mover. Changing

the basis to a multiplicative one, in which the value of the basis vector element is

the index and the number of elements with that value, Ni is summed over, we have

1−
bNR/2c∑
i=1

iNi =
1

NR

bNR/2c∑
i=1

i2Ni (mod 2) =⇒

1 =
1

NR

bNR/2c∑
i=1

i(i−NR)Ni (mod 2). (4.29)

Considering a case by case basis, assume i is even. This means i(i−NR)Ni is even.

If i is odd, then (i − NR) is even, so i(i − NR)Ni is also even. Therefore every

term in the sum is even, so the total sum is even. This implies that if the sum is a

multiple of NR, it is an even multiple of NR, and the right hand side of (4.29) is 0

(mod 2) which is logically inconsistent since the left hand side is 1 (mod 2). If the

sum is not a multiple of NR, then it is a non-integral rational number that is also

not equal to 1 (mod 2). Therefore (4.29) is impossible to satisfy, which shows the

faulty assumption (4.24) is logically impossible. This means (4.17) is true, and the

conditions for each (odd or even) gravitino sectors are always satisfied. This proves

the conjecture.

Moreover, it can be shown that one choice of k~v~1 selects the even gravitinos,

while the other choice selects the odd. Consider the modular invariance condition

(4.12) applied to this scenario

k~1~v + k~v~1 =
1

2
~1 · ~v (mod 2). (4.30)

By (4.11), k~v~1 can only have a value of 0 or 1, and k~1~v is a rational number with

denominator NR. Therefore evenness of the numerator determines whether NRk~1~v

80

(mod 2) is 0 or 1, passing either the odd or even gravitinos. Using this information,

it is clear that the two choices for k~v~1 yield

kN~1~v
NR

=
1

2
~1 · ~v (mod 2), (4.31)

kN~1~v +NR

NR

=
1

2
~1 · ~v (mod 2), (4.32)

where kNij is the numerator of the GSO coefficient. Noting that the right hand side

of each equation is an integer, combining them leads to

1

NR

(kN0
~1~v

+ kN1
~1~v

+ 1) = 0 (mod 2), (4.33)

with the superscript indicating the choice of k~v~1. This equation is only satisfied if

the quantity in parentheses is an even multiple of NR. This is true if and only if

kN0
~1~v
6= kN1

~1~v
(mod 2), which means

NRk
N0
~1~v
6= NRk

N1
~1~v

(mod 2). (4.34)

Ergo, choosing k~v~1 admits either the even or the odd gravitinos into the model.

In addition to the conjecture above, there are also models in each of the four

data sets with the exact same particle content without supersymmetry. The basis

vectors generating these models have the same right movers, but massive left movers4

. This removes the gravitino generating sector entirely from the model, leaving the

model without supersymmetry. This is shown in Figure 4.2, where the number of

unique models is plotted against the number of space-time supersymmetries. The

implications of the conclusions made in this section indicate that there is no correla-

tion between the number of space-time supersymmetries and the gauge content for

this class of models. More complicated models will need to be tested to determine

whether such a correlation will emerge.

4 This does not happen for D=10, since there are not enough left moving modes to give the
potential gravitino generating sector mass.

81

1 2

0

2

4

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

D=6 O3 L1

(a)

1 2

0

2

4

6

8

10

12

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

D=6 O5 L1

(b)

0 1 2 3 4

0

2

4

6

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

D=4 O3 L1

(c)

0 1 2 3 4

0

5

10

15

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

D=4 O5 L1

(d)

Figure 4.2: The number of distinct models against the number of space-time super-
symmetries for D = 6,4 O3,O5 L1. The number of distinct models with and without
space-time SUSY are equal. The models themselves are also equal.

82

SO(32), N = 1 SO(16)⊗ E8 E8 ⊗ E8 SU(2)2 ⊗ E2
7

SO(8)⊗ SO(24) SO(32), N = 0 SO(16)⊗ SO(16)

Figure 4.3: A schematic showing the systematic search for two basis vectors of order 2.
The columns are models that are produced by different basis vectors, while the rows
represent the possible kij inputs. The lines indicate two models that were produced
by the same basis vector set, but different kij matrices. Therefore, a model with two
lines was built by two different sets of basis vectors that produced different models
when kij was changed.

4.3 Combinations with Two Order-2 Layers

Presented in this section are the results of systematic searches with two order-2

basis vectors. In one of these searches, the kij matrix is varied whilst changing the

basis vectors, and in the other it is held fixed.

4.3.1 Varying kij’s

Figure 4.3 is a graphical representation of the basis vectors and the models

they map to. It can be viewed as a “summary” of the systematic search for this

order/layer combination. It is important to note that different basis vectors must

be used to build all of the models in the space; one cannot simply choose a basis set

and only vary the GSO coefficient matrix (henceforth referred to as the kij matrix)

and get all of the models for these layer/order combinations. It would be worthwhile

to find a set of basis vectors that produces all of the models by only varying the kij

matrix.

83

4.3.2 Fixed kij’s

Fixing the kij inputs to be equal to
(

1
1
1 1

)
does not prohibit solutions from

being found - all of the models in Figure 4.3 are present. The comparison of the

search results between these two methods are presented in Table 4.5. Notice that if

the kij matrix entries for either search have only one value (either all 0’s or all 1’s)

on the final row (the added basis vectors projecting onto the others in the GSOPs),

then the basis vectors from both searches match. If the kij matrix in the search on

the left had multiple values for kij matrix entries, then the corresponding fixed kij

basis vector has more “breaks” - regions with matching boundary conditions. This

suggests a relationship between the kij matrix “breaking” (meaning matching/non-

matching values) and basis vector “breaking.”

4.3.3 Relation to Order 4 Basis Vectors

One may naively think that a single order-4 basis vector will be able to mimic

the degrees of freedom available to two order-2 basis vectors, since 2 × 2 = 4.

However, closer examination makes it clear that the two data sets have different

degrees of freedom. These degrees of freedom are best considered in the context of

possible regions of matching boundary conditions, which determine the complexity

of the model5 . Consider first a single basis vector of order 2. Since there are

two values available for the basis vectors to acquire and, since all the boundary

conditions for the all-periodic basis vector are identical, reordering of the elements

(a redundancy for fermion modes that have matching boundary conditions in the

other basis vectors in the model) gives two regions of matching boundary conditions.

(~1 8 || (0, ..., 0) (1, ..., 1)) (4.35)

5 In some cases there are enhancements to the gauge symmetries, so some higher layer/order
models will actually produce fewer gauge groups of larger rank. These instances tend to be rare.

84

Table 4.5: Comparison of the results between the searches in which the kij matrix
was and was not varied for two order-2 basis vectors. The inputs on the left were
generated with multiple kij’s, while the inputs on the right were generated with a

fixed kij.

O2 O2, varying kij Model O2, O2, fixed kij

(~1 8||~0 32)

(~1 8||~0 24 ~1 8)

(
1
0
0 0

)
SO(32), N = 1 (~1 8||~0 32)

(~1 8||~0 24 ~1 8)

(
1
1
1 1

)

(~1 8||~0 32)

(~1 8||~0 24 ~1 8)

(
1
0
0 1

)
SO(8)⊗ SO(24) (~1 8||~0 24 ~1 8)

(~1 8||~0 20 ~1 4 ~0 4 ~1 4)

(
1
1
1 1

)

(~1 8||~0 32)

(~1 8||~0 16 ~1 16)

(
1
0
0 0

)
E8 ⊗ E8

(~1 8||~0 32)

(~1 8||~0 16 ~1 16)

(
1
1
1 1

)

(~1 8||~0 32)

(~1 8||~0 16 ~1 16)

(
1
0
0 1

)
SO(16)⊗ SO(16) (~1 8||~0 24 ~1 8)

(~1 8||~0 16 ~1 8~0 8)

(
1
1
1 1

)

(~1 8||~0 24 ~1 8)

(~1 8||~0 16 ~1 16)

(
1
0
0 0

)
SO(16)⊗ E8

(~1 8||~0 24 ~1 8)

(~1 8||~0 16 ~1 16)

(
1
1
1 1

)

(~1 8||~0 24 ~1 8)

(~1 8||~0 12 ~1 12 ~0 4 ~1 4)

(
1
0
0 0

)
SU(2)2 ⊗ E2

7
(~1 8||~0 24 ~1 8)

(~1 8||~0 12 ~1 12 ~0 4 ~1 4)

(
1
1
1 1

)

(~1 8||~0 16 ~1 16)

(~1 8||~0 8 ~1 24)

(
1
0
0 1

)
SO(32), N = 0 (~1 8||~0 8 ~1 24)

(~1 8||~0 4 ~1 4 ~0 4 ~1 20)

(
1
1
1 1

)

85

Adding a second order-2 basis vector splits the regions up into four sets of

matching boundary conditions.

(~1 8 || (0,, 0) (1,, 1))

(~1 8 || (0, ..., 0) (1, ..., 1) (0, ..., 0) (1, ..., 1))
(4.36)

For an order-4 basis vector, one assumes that there are still four regions of matching

boundary conditions, (0, 1
2
, 1,−1

2
). However, because the order-4 basis vector is the

first layer with complex (neither integer nor half-integer) phases, there is a symmetry

regarding the sign of the those phases. Effectively,

−1

2
≈ 1

2
(4.37)

for all complex phases in the basis vector. Thus, the regions of matching boundary

conditions for a single order-4 basis vector are

(~1 8 || (0, ..., 0) (1
2
, ..., 1

2
) (1, ..., 1)) (4.38)

Additionally, the presence of complex phases add sectors to the model that produce

fractional charge elements. Order-2 basis vectors produce only half-integer elements

in the charge vectors coming from twisted sectors, while an order-4 basis vector

produces not only the half integer twisted states, but also quarter integer twisted

states. These additional degrees of freedom granted to the state vectors may result

in additional symmetries that are unavailable to the sets of order-2 basis vectors.

Comparisons between these data sets have been tabulated in Table 4.6.

Note that the order-4 data set has the SU(16) ⊗ U(1) model, while it lacks

the E8 ⊗ E8 model. Untwisted boson sectors produce SO(32) gauge groups in ten

large space-time dimensions. These are broken by the GSO projections of the twisted

sectors into smaller SO(2n) and SU(n) groups. To produce SU(16), a rank 15 gauge

group, the twisted sectors must span the entire group charge space. In addition, the

twisted sectors must be independent - that is, the basis vectors that produced them

86

Table 4.6: This table contains each model with the respective pair of order-2 and
order-4 basis vectors, as well as the corresponding kij’s. Note that not all of the
models can be produced from each data set. The basis vectors in this table are

presented in a real basis.

O2O2 Model O4

(~1 8||~0 32)

(~1 8||~0 24~1 8)

(
1
0
0 0

)
SO(32), N = 1 (~1 8||(~2

4
)32) (1

0)

(~1 8||~032)

(~1 8||~0 24~1 8)

(
1
0
0 0

)
SO(8)⊗ SO(24) (~1 8||~0 22(~2

4
)8~1 2) (1

0)

(~1 8||~0 32)

(~1 8||~0 16~1 16)

(
1
0
0 0

)
E8 ⊗ E8 N/A N/A

(~1 8||~0 32)

(~1 8||~0 16~1 16)

(
1
0
0 1

)
SO(16)⊗ SO(16) (~1 8||~0 16(~2

4
)16) (1

0)

(~1 8||~0 24~1 8)

(~1 8||~0 16~1 16)

(
1
0
0 0

)
SO(16)⊗ E8 (~1 8||~0 14(~2

4
)8~1 10) (1

0)

(~1 8||~0 24~1 8)

(~1 8||~0 12~1 12~0 4~1 4)

(
1
0
0 0

)
SU(2)2 ⊗ E2

7 (~1 8||~0 12(~2
4
)16~1 4) (1

0)

(~1 8||~0 16~1 16)

(~1 8||~0 8~1 24)

(
1
0
0 1

)
SO(32), N = 0 (~1 8||~0 6(~2

4
)8~1 18) (1

0)

N/A N/A SU(16)⊗ U(1) (~1 8||~0 6(~2
4
)24~1 2) (1

0)

87

must be different - but not orthogonal. This independence allows for contributions

from one twisted sector to remove a root coming from the untwisted sector from the

possible simple roots of the gauge group, making it an SU(n) ⊗ U(1) group rather

than an SO(2n) group. A pair of order 2 basis vectors does not produce enough

independent twisted sectors to do this. The order 4 basis vector puts the weights of

the adjoint representation in a twisted basis with charges of 1
4
, −1

4
, 3

4
, −3

4
in addition

to the half-integer charges, so three independent twisted sectors are not needed if

there are more than half integer charges present in the model.

By contrast, the E8⊗E8 model does require the twisted sectors to be orthog-

onal and independent, which cannot be done with a single order-4 basis vector. In

an odd ordered model, the lack of half integer twists produces orthogonal sectors in

a twisted basis, allowing the E8⊗E8 model to appear for those, but not for order-4

models.

To summarize, the product of the orders does not determine the model spec-

trum - all possible combinations of orders must be investigated to fully map the

model space produced by the free fermionic heterotic construction.

4.4 The Full D=10, Level-1 Heterotic Landscape

The full spectrum of D = 10, level-1 models, as mentioned in section 4.1,

consists of the eight models presented in table 4.1. The lowest order for which all the

models were built out of a single basis vector was order 6. It is worth testing whether

one order-3 and one order-2 basis vector will also produce the full range of models,

since 2× 3 = 6. While similar reasoning was not true for order-4 and two order-2’s,

this is indeed the case here. The models, and the basis vectors that produced them,

are tabulated in Table 4.7. Schematically, the O3O2 search is summarized in Figure

4.4.

88

Table 4.7: The models along with the inputs from each data set that produced that
model. The basis vectors are presented in a real basis. Note that some of the

order-6 basis vectors are actually order-3. Specifically, the SO(32), N = 1 model is
produced by the same order-3 basis vectors. The additional order-2 basis vector’s

contribution is completely projected out.

O6 Model O3O2

(~1 8||~0 26(~2
3
)6) (1

0) SO(32), N = 1 (~1 8||~0 26(~2
3
)6)

(~1 8||~0 24 ~1 8)

(
1
1
0 0

)

(~1 8||~0 24(~1
3
)6 ~1 2) (1

0) SO(8)⊗ SO(24) (~1 8||~0 26(~2
3
)6)

(~1 8||~0 24 ~1 8)

(
1
0
0 0

)

(~1 8||~0 14(~1
3
)12~1 4) (1

0) SO(16)⊗ E8
(~1 8||~0 14(~2

3
)18)

(~1 8||~0 24 ~1 8)

(1
0
0 2

3

)

(~1 8||~0 14(~1
3
)16(~2

3
)2) (1

0)SO(16)⊗ SO(16) (~1 8||~026(~2
3
)6)

(~1 8||~0 16 ~1 16)

(
1
0
0 0

)

(~1 8||~0 14(~2
3
)18) (1

0) E8 ⊗ E8
(~1 8||~0 26(~2

3
)6)

(~1 8||~0 16 ~1 16)

(
1
1
0 0

)

(~1 8||~0 12(~1
3
)14(~2

3
)4~1 2) (1

0) SU(2)2 ⊗ E2
7

(~1 8||~0 14(~2
3
)18)

(~1 8||~0 12~1 2 ~0 12 ~1 6)

(
1
0
0 0

)

(~1 8||(~1
3
)22(~2

3
)2 ~1 2) (1

0) SU(16)⊗ U(1) (~1 8||~0 8(~2
3
) 24)

(~1 8||~0 6~1 2 ~0 18 ~1 6)

(
1
1
0 0

)

(~1 8||~0 8(~1
3
) 12 ~1 12) (1

0) SO(32), N = 0 (~1 8||~0 8(~2
3
)24)

(~1 8||~0 8 ~1 24)

(
1
1
1 0

)

89

SO(8)⊗ SO(24) SO(16)⊗ SO(16) SU(2)2 ⊗ E2
7 SO(32), N = 1

SO(16)⊗ E8

SO(16)⊗ SO(16)

SO(32), N = 1 E8 ⊗ E8 SU(16)⊗ U(1) SO(8)⊗ SO(24)

E8 ⊗ E8

SO(32), N = 0

SO(32), N = 1

Figure 4.4: A schematic diagram of the O3O2 systematic search. The different
columns represent different basis vectors, while the different rows represent possible
kij matrix configurations. Lines connect models produced by the same basis vector,
but different kij matrices.

90

Also of interest is whether the full D = 10, level-1 model spectrum can be

produced using only periodic/anti-periodic modes (order-2 basis vectors). It can

indeed, but only with sets of three basis vectors. They are tabulated adjacent to

their order-6 counterparts in table 4.8. Schematically, the search is summarized in

figure 4.5.

4.5 Conclusions

To conclude, we decided to examine the D = 10, level-1 heterotic models

to deduce redundancies in the WCFFHS construction method. We conjectured

and proved that for all models with a single basis vector, odd ordered right mover

and massless left mover, the maximum number of ST SUSYs were present. This

implies that searches of this sort in lower space-time dimensions will contain either

models with the maximum number of space-time SUSYs or models without space-

time supersymmetry. Specifically, in ten dimensions this means single basis vector

searches with odd ordered right movers will only have two models: SO(32) and

E8 ⊗ E8, both with N = 1 space-time supersymmetry.

For searches of two basis vector models, we showed that the basis vectors must

be varied to fully map out the model spectrum. The GSO coefficient matrix on the

other hand, does not necessarily need to be varied if the basis vectors can produce

enough sets of matching boundary conditions. We also showed that the product

of the orders across which the search is performed does not necessarily dictate the

model spectrum. In particular, we showed that all modular invariant combinations

of two order-2 basis vectors do not produce the same models as all possible order-4

basis vectors.

Finally, we showed that the lowest order for which all D = 10, level-1 models

could be produced from a single basis vector is 6. The lowest combination of orders

that produces all of the above mentioned from pairs of basis vectors is O3O2. The

91

Table 4.8: The models along with the inputs from each data set producing that
model. The basis vectors are expressed in a real basis.

O6 Model O2O2O2

(~1 8||~0 26(~23)6) (1
0) SO(32), N = 1

(~1 8||~0 32)

(~1 8||~0 24~1 8)

(~1 8||~0 20~1 4~0 4~1 4)

(
1
0
0 0
0 0 0

)

(~1 8||~0 24(~13)6~1 2) (1
0) SO(8)⊗ SO(24)

(~1 8||~0 32)

(~1 8||~0 24~1 8)

(~1 8||~0 20~1 4~0 4~1 4)

(
1
0
0 0
0 1 0

)

(~1 8||~0 16(~13)12~1 4) (1
0) SO(16)⊗ E8

(~1 8||~0 32)

(~1 8||~0 24~1 8)

(~1 8||~0 16~1 8~0 8)

(
1
0
0 1
0 1 0

)

(~1 8||~0 14(~13)16(~23)2) (1
0)SO(16)⊗ SO(16)

(~1 8||~0 32)

(~1 8||~0 24~1 8)

(~1 8||~0 16~1 8~0 8)

(
1
0
0 0
0 1 0

)

(~1 8||~0 14(~23)18) (1
0) E8 ⊗ E8

(~1 8||~0 32)

(~1 8||~0 24~1 8)

(~1 8||~0 16~1 8~0 8)

(
1
0
0 0
0 0 1

)

(~1 8||~0 12(~13)14(~23)4~1 2) (1
0) SU(2)2 ⊗ E2

7

(~1 8||~0 32)

(~1 8||~0 24~1 8)

(~1 8||~0 12~1 12~0 4~1 4)

(
1
0
0 1
0 0 0

)

(~1 8||~0 6(~13)22(~23)2~1 2) (1
0) SU(16)⊗ U(1)

(~1 8||~0 24~1 8)

(~1 8||~0 12~1 12~0 4~1 4)

(~1 8||~0 6~1 6~0 6~1 6~0 2~1 2~0 2~1 2)

(
1
0
0 0
0 0 0

)

(~1 8||~0 8(~13)12~1 12) (1
0) SO(32), N = 0

(~1 8||~0 24~1 8)

(~1 8||~0 16~1 16)

(~1 8||~0 8~1 8~0 8~1 8)

(
1
0
0 0
0 0 1

)

92

SO(32), N = 1 E8 ⊗ E8 SU(16)⊗ U(1) SO(8)⊗ SO(24)

E8 ⊗ E8 SO(32), N = 0

SO(8)⊗ SO(24) SO(16)⊗ SO(16) SO(16)⊗ E8

SO(8)⊗ SO(24)

SU(2)2 ⊗ E2
7

SO(16)⊗ E8

Figure 4.5: A schematic diagram of the O2O2O2 search. As with the other dia-
grams, the different columns indicate different basis vectors, while different rows
represent different kij’s. Lines indicate models produced by identical basis vectors,
but different kij matrices.

93

lowest number of order-2 basis vectors needed to produce all D=10, level-1 models

is three.

The ultimate conclusion of this study is that for simple models, it is very

possible to correlate the basis vector and GSO coefficient inputs with the particle

content output to a certain extent. These correlations make it possible to further

narrow searches by analytically and statistically isolating the properties of basis

vectors that give phenomenologically realistic results. Additional work in this area

will be to explicitly map out D=8 and D=6 heterotic string models, searching for

extra redundancies that occur when there are compact space-time dimensions.

94

CHAPTER FIVE

Preliminary Systematic NAHE Investigations

This chapter will outline the results of a few single layer extensions to the

NAHE set of basis vectors. The NAHE set consists of five order-2 basis vectors

which have phenomenology conducive to realistic heterotic string models. First,

this set will be discussed in detail, then statistics for systematic order-2 and order-3

extensions will be examined. After that, statistics for models with specific GUT

groups will be discussed. Special emphasis will be placed on the number of chiral

matter generations present for each GUT group model. Finally, models with three

chiral matter generations will be discussed. These are the first three-generation

models constructed which have a geometric interpretation.

5.1 The NAHE Set

The NAHE[65] set is a set of five order-2 basis vectors which have served as

a common basis set for phenomenologically realistic WCFFHS models. The basis

vectors which generate this set are given in Table 5.1. The massless particle spectrum

is given in Table 5.2. The NAHE set’s particle content, in addition to the particles

listed in Table 5.2, contains an N=1 ST SUSY. The observable sector of the NAHE

set is an SO(10) GUT group with three sixteen dimensional matter representations

serving as the generations of matter. Each generation is charged under a different

SU(4) gauge group, and there are two copies of each representation. There are two

distinct representations with SO(10) charge 16 and SU(4) charge 4, since the SU(4)

charge has a barred and unbarred representation. This brings the total number of

copies for each generation up to four. In addition, the dimension of the SU(4) charge

itself is counted as being a set of copies of each generation, so the total number of

copies of each generation is sixteen. There are no matter representations charged

95

Table 5.1: The basis vectors and GSO coefficients of the NAHE set arranged into
sets of matching boundary conditions. NR is the order of the right mover. The

elements ψ, ψ
i
, η i, and φ

i
are expressed in a complex basis, while xi, yi, wi, y i,

and w i are expressed in a real basis.

Sec NR ψ x12 x34 x56 ψ
1,...,5

η 1 η 2 η 3 φ
1,...,8

~1 2 1 1 1 1 1,...,1 1 1 1 1,...,1

~S 2 1 1 1 1 0,...,0 0 0 0 0,...,0
~b1 2 1 1 0 0 1,...,1 1 0 0 0,...,0
~b2 2 1 0 1 0 1,...,1 0 1 0 0,...,0
~b3 2 1 0 0 1 1,...,1 0 0 1 0,...,0

Sec NR y 1,2w 5,6||y 1,2w 5,6 y 3,...,6||y 3,...,6 w 1,...,4||w 1,...,4

~1 2 1,...,1 || 1,...,1 1,...,1 || 1,...,1 1,...,1 || 1,...,1

~S 2 0,...,0 || 0,...,0 0,...,0 || 0,...,0 0,...,0 || 0,...,0
~b1 2 0,...,0 || 0,...,0 1,...,1 || 1,...,1 0,...,0 || 0,...,0
~b2 2 1,...,1 || 1,...,1 0,...,0 || 0,...,0 0,...,0 || 0,...,0
~b3 2 0,...,0 || 0,...,0 0,...,0 || 0.,,,.0 1,...,1 || 1,...,1

kij =

~1 ~S ~b1
~b2

~b3

~1 1 0 1 1 1

~S 0 0 0 0 0
~b1 1 1 1 1 1
~b2 1 1 1 1 1
~b3 1 1 1 1 1

96

Table 5.2: The particle content of the model produced by the NAHE set.

QTY SU(4) SU(4) SU(4) SO(10) E8

2 4 1 1 16 1

2 1 4 1 16 1

2 1 1 4 16 1

2 1 1 4 16 1

1 1 1 6 10 1

2 1 4 1 16 1

1 1 6 1 10 1

1 1 6 6 1 1

2 4 1 1 16 1

1 6 1 1 10 1

1 6 1 6 1 1

1 6 6 1 1 1

under the E8 group, so it is the designated hidden sector for this model. Extensions of

the NAHE set do not necessarily keep the designated observable sectors in the model.

A model could, rather than break down the SO(10) gauge group, break the E8 into an

E6, producing an E6 observable sector. In the past, when models were constructed

individually, this was not common. Most individually constructed NAHE based

models broke the SO(10) gauge group into a Pati-Salam (SU(4)⊗ SU(2)⊗ SU(2))

group, SU(5) ⊗ U(1), or the MSSM gauge group (SU(3) ⊗ SU(2) ⊗ U(1)). The

present study takes a different approach; to start with the NAHE basis and build

all possible basis vectors with modular invariance for a given order and layer, then

examine the models statistically. The notation for the next sections will change

slightly; from here on the term layer will refer to the number of basis vectors after

the initial set of five NAHE vectors rather than the total number of basis vectors.

97

5.2 Statistics for Order-2 Layer-1

The first set of statistics to be reported here are for extensions to the NAHE set

with a single basis vector of order 2. The GSO coefficients were fixed for the NAHE

set to those presented in Table 5.1. The GSO coefficients for the extended basis

vector were systematically generated such that all possible combinations consistent

with modular invariance were built. This study was repeated for the NAHE set

without the ST SUSY generating basis vector ~S to determine its effect on the models

produced.

5.2.1 With ~S

There were 439 unique models produced out of 1,945,088 total consistent mod-

els. Approximately 9.5% of the models in the data set without rank-cuts were du-

plicates, and 13% of the models with rank-cuts were duplicates. All duplicates were

removed prior to the statistical analysis. The frequency of the individual groups

appearing in the unique models is presented in Table 5.3. The first item of note is

how many models retain at least one of the original gauge groups from the NAHE

set. Approximately 77% of the models kept at least one SU(4) gauge group, while

≈ 36% of the models kept their SO(10) and ≈ 33% kept their E8. The most com-

mon gauge group in this set is SU(2), which is expected. SU(2) is the lowest rank

non-Abelian gauge group attainable. About 17% have an SU(2)(2) gauge group. In

these models, this happens when a left moving mode is paired with a right mov-

ing mode. As mentioned earlier, left-right paired elements reduce the rank of the

gauge lattice of the model. Hence, left-right pairs are referred to as rank cuts. The

non-simply laced gauge group SO(5) also appears due to rank cuts.

Also of interest is the number of models with a U(1) gauge group, which for

this data set is quite high. U(1)’s can be problematic when dealing with deeper

phenomenology in a model. The more U(1)’s present in a model the more likely

98

Table 5.3: The frequency of the individual gauge groups amongst the unique
models for the NAHE + O2L1 data set. Gauge groups at Kač-Moody level higher

than 1 are denoted with a superscript indicating the Kač-Moody level.

Gauge Group Number of Unique Models % of Unique Models

SU(2) 365 83.14%

SU(2)(2) 73 16.63%

SU(4) 338 76.99%

SU(6) 2 0.4556%

SU(8) 2 0.4556%

SO(5) 155 35.31%

SO(8) 141 32.12%

SO(10) 160 36.45%

SO(12) 2 0.4556%

SO(14) 3 0.6834%

SO(16) 147 33.49%

SO(18) 1 0.2278%

SO(20) 2 0.4556%

SO(22) 1 0.2278%

SO(24) 1 0.2278%

SO(26) 1 0.2278%

E6 1 0.2278%

E7 142 32.35%

E8 144 32.8%

U(1) 332 75.63%

99

the model is to have anomalous charge. This anomalous charge must be dealt with

by finding D- and F-flat directions in the superpotential. However, the more U(1)

charges present, the more flat directions a model is likely to have, enabling more

flexibility when giving mass to observable sector charged exotics. As that particular

process is computationally intensive and has not been fully automated, discussion

of anomalous U(1) charges and flat directions is not present in this study.

Though most of the models have smaller individual gauge group components,

some models have gauge group enhancements. There are some models with SO(18),

SO(20), SO(22), SO(24), and SO(26) gauge groups. Those groups have rank 9, 10,

11, 12, and 13, respectively, making them higher rank than any one of the NAHE set

gauge groups. This occurs when an added basis vector bridges the gap between the

mutually orthogonal sets of states of the original five basis vectors, unifying the root

spaces of the individual groups into one larger group. For order-2 models, however,

it is clear this is not common.

Another way of measuring the enhancements that occur is looking at the num-

ber of gauge group factors in each model. Those are plotted in Figure 5.1. There is

a definite peak at nine gauge group factors, much higher than the five initial gauge

groups present in the NAHE set. Note that there are not many models with fewer

than five gauge group factors. This implies that though there are several enhanced

groups of higher rank than the initial NAHE set, the other gauge groups in the

model remain broken.

Relevant GUT groups and the number of unique models containing those

groups is presented in Table 5.4. The relatively low number of SU(n + 1) groups

(excluding SU(4)) explains the lack of GUT group models in this data set.

100

4 6 8 10 12 14

0

20

40

60

80

Number of Gauge Group Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

Figure 5.1: The number of gauge group factors for each model in the NAHE + O2L1
data set.

Table 5.4: The number of unique models containing GUT groups for the NAHE +
O2L1 data set.

GUT Group Number of Unique Models % of Unique Models

E6 1 0.2278%

SO(10) 160 36.45%

SU(5)⊗ U(1) 0 0%

SU(4)⊗ SU(2)⊗ SU(2) 243 55.35%

SU(3)⊗ SU(2)⊗ SU(2) 0 0%

SU(3)⊗ SU(2)⊗ U(1) 0 0%

101

0 1 2 3 4

0

50

100

150

200

223 215

1 0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

Figure 5.2: The number of ST SUSYs for the NAHE + O2L1 data set.

Table 5.5: A basis vector and kij matrix row which produces an enhanced ST SUSY
when added the NAHE set.

Sec O ψ x12 x34 x56 ψ
1,...,5

η 1 η 2 η 3 φ
1,...,8

~v 2 1 1 1 1 0,...,0 1 1 0 0,...,0

Sec O y 1,2w 5,6||y 1,2w 5,6 y 3,...,6||y 3,...,6 w 1,...,4||w 1,...,4

~v 2 0,0,1,1||1,1,1,1 0,0,1,1||1,1,1,1 0,...,0||0,...,0

k~v,j = (0, 0, 0, 1, 1)

The number of ST SUSYs are plotted against the number of unique models

in Figure 5.2. Many of the basis vector extensions did not alter the ST SUSY,

while about half reduced it. More interestingly, there is one model with enhanced

ST SUSY. The basis vector for that model is presented in Table 5.5. The particle

content of this model is presented in Table 5.6. The gauge groups of this model

are identical to those of the NAHE set, but with fewer matter representations, par-

ticularly with regard to the SU(4) charges. The enhanced ST SUSY comes from

a new gravitino generating sector ~b1 +~b2 + ~v, which contributes a single gravitino

102

Table 5.6: The particle content of the N = 2 ST SUSY NAHE based model.

QTY SU(4) SU(4) SU(4) SO(10) E8

1 1 4 1 16 1

1 1 4 1 16 1

1 1 1 4 16 1

1 1 1 4 16 1

1 1 1 4 16 1

1 1 1 4 16 1

1 1 4 1 16 1

1 1 4 1 16 1

2 1 6 6 1 1

2 6 1 1 10 1

state to the model. The other gravitino comes from ~S. This example highlights the

importance of systematic searches; the enhanced ST SUSYs come from very specific

basis vectors that combine with the NAHE set to provide unexpected phenomenol-

ogy. Though there are not a statistically significant number of models with this

property, these models can highlight subtleties in the WCFFHS formulation that

may go unnoticed in a random search.

The number of U(1) gauge groups are plotted against the number of unique

models in Figure 5.3. The greater number of U(1) factors present in the model the

greater that model’s capacity for carrying anomalous charge. There are relatively

few U(1)’s in the models of this class. This is likely the result of the basis vectors

having only periodic phases — nonzero, non-periodic phases break SO(2n) groups

into SU(n− 1)⊗U(1) groups in most cases. Thus, there are not many U(1) groups

expected or found in this data set.

Another phenomenological property which might have statistical significance is

the number of non-Abelian singlets, as non-Abelian singlets often carry observable

sector hypercharge. However, no such particle with this property has yet been

103

0 1 2 3 4
0

50

100

150

Number of U(1) Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

Figure 5.3: The number of U(1) factors for the NAHE + O2L1 data set.

observed. Additionally, singlet particles contribute to the mass-energy density of

the model. Too many non-Abelian singlets could result in a mass-energy density

higher than observed values, also producing bad phenomenology. The number of

non-Abelian singlets for this data set is plotted in Figure 5.2.1

5.2.2 Without ~S

Also of interest is the effect of the ~S vector in the set of NAHE basis vectors.

Not only does the ~S vector generate ST SUSY, it also adds a degree of freedom to

the kij matrix. It stands to reason that removing ~S will also have an effect on the

massless gauge and matter content in addition to the supersymmetry. There are

282 unique models in the set of 1,940,352 consistent models, in contrast to the 439

models in the data set with ~S. About 8.4% of the models without rank cuts had

duplicates, while 9.4% of the models with rank cuts were duplicates of other models

produced. All duplicates were removed from the statistics to follow. Moreover the

282 models in this set do not all belong to the N = 0 models in Figure 5.2. In

104

0 5 10 15 20 25

0

50

100

150

Number of NA Singlets

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

Figure 5.4: The number of non-Abelian singlets in the NAHE + O2L1 data set.

fact, the two data sets have only 8 models in common, implying that the presence

or non-presence of ~S has an effect on more than the ST SUSY.

The gauge content of the order-2 layer-1 NAHE extensions without the ~S

vector are presented in Table 5.7. A side-by-side comparison of the gauge group

content percentages is shown in Table 5.8. The similarities between the gauge content

of these two data sets are striking. It is tempting to assume that ignoring ST SUSYs

when determining uniqueness will result in the data sets being identical, since the

ST SUSY generator ~S is the only real difference between the data sets. This is

not the case. In fact, ignoring ST SUSYs when comparing the intersection of these

two sets of models gives the same number of models common to both sets: 8. This

implies that the matter representations are affected by whether ~S is in the set of

basis vectors making up a model. What is likely occurring in the models with ~S

is that the sector coming from ~S is contributing non-adjoint representations to the

matter states of the model. In other words, gravitinos are not the only fermion

states coming from ~S. In order to begin fully mapping the heterotic landscape the

full effect of leaving out the ~S vector should be examined, as its presence may affect

105

Table 5.7: The gauge content of the NAHE + O2L1 data set without ~S.

Gauge Group Number of Unique Models % of Unique Models

SU(2) 233 82.62%

SU(2)(2) 67 23.76%

SU(4) 212 75.18%

SU(6) 2 0.7092%

SU(8) 2 0.7092%

SO(5) 107 37.94%

SO(8) 89 31.56%

SO(10) 100 35.46%

SO(12) 2 0.7092%

SO(14) 3 1.064%

SO(16) 83 29.43%

SO(18) 1 0.3546%

SO(20) 2 0.7092%

SO(22) 1 0.3546%

SO(24) 1 0.3546%

SO(26) 1 0.3546%

E6 1 0.3546%

E7 95 33.69%

E8 98 34.75%

U(1) 209 74.11%

106

Table 5.8: A side-by-side comparison of the gauge content for NAHE + O2L1 with
and without ~S.

Gauge Group With ~S Without ~S

SU(2) 83.14% 82.62%

SU(2)(2) 16.63% 23.76%

SU(4) 76.99% 75.18%

SU(6) 0.4556% 0.7092%

SU(8) 0.4556% 0.7092%

SO(5) 35.31% 37.94%

SO(8) 32.12% 31.56%

SO(10) 36.45% 35.46%

SO(12) 0.4556% 0.7092%

SO(14) 0.6834% 1.064%

SO(16) 33.49% 29.43%

SO(18) 0.2278% 0.3546%

SO(20) 0.4556% 0.7092%

SO(22) 0.2278% 0.3546%

SO(24) 0.2278% 0.3546%

SO(26) 0.2278% 0.3546%

E6 0.2278% 0.3546%

E7 32.35% 33.69%

E8 32.8% 34.75%

U(1) 75.63% 74.11%

107

4 6 8 10 12 14

0

20

40

60

Number of Gauge Group Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(a)

0 1 2 3 4

0

100

200

300 281

1 0 0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b)

0 1 2 3 4
0

20

40

60

80

100

Number of U(1) Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c)

Figure 5.5: Statistics for the NAHE + O2L1 data set without ~S.

the likelihood of models with three chiral generations. Other statistics from this

data set will now be presented for completeness.

The number of gauge group factors, ST SUSYs, and U(1) factors are plotted

in Figure 5.5. None of the models had any non-Abelian singlets, suggesting that the

non-Abelian singlets may be coming from the ~S sector. The occurrances of GUT

groups are charted in Table 5.9.

5.3 Statistics for Order-3 Layer-1

The next set of statistics to be reported are for extensions to the NAHE set

with a single basis vector of right moving order 3. The order 3 basis vectors added

108

Table 5.9: The number of unique models containing GUT groups for the NAHE +
O2L1 data set without ~S.

GUT Group Number of Unique Models % of Unique Models

E6 1 0.3546%

SO(10) 100 35.46%

SU(5)⊗ U(1) 0 0%

SU(4)⊗ SU(2)⊗ SU(2) 156 55.32%

SU(3)⊗ SU(2)⊗ SU(2) 0 0%

SU(3)⊗ SU(2)⊗ U(1) 0 0%

are fermion sectors; the left movers are order-2. Since the orders of the left and right

movers are not the same, the total order of the basis vector extensions is 6. The

difference between order-3 basis vectors of this type and true order-6 basis vectors is

that all six possibilities for the phases will appear in an order-6 right mover, while

only three phases appear in an order-3 right mover. The coefficients generating the

sectors from these basis vectors still range from 0 to 5, however. This has interesting

effects on the fermion spectrum, particularly the gravitinos, as has already been

mentioned in the D=10 study. Statistics will be presented for models of this type

both with and without ~S.

5.3.1 With ~S

The presence of ~S in the NAHE set for this search causes any order-3 basis

vector with the same left mover as ~S to be inconsistent. This is due to the ZL2 ||ZR3

symmetries of the left and right mover. Adding ~S to three times the basis vector

extension results in a second ~0 sector, which means the set of basis vectors is not

linearly independent. Moreover, since the right mover does not have any periodic

109

phases, there can be no rank-cutting in these models. Non-simply laced gauge groups

and higher level Kač-Moody algebras are not present.

Despite having no linearly independent basis vectors with the same left movers

as ~S, this data set contains quite a bit more distinct models. There were 373,152

models in this set, but only 3,036 were unique. This relatively (compared to the

order-2 extension) high number of unique models suggests that the periodic/anti-

periodic phases of the order-2 models have a redundancy not present in models of

this type. Based on the double counting of the order-2 models without rank-cuts,

the estimated systematic uncertainty for the order-3 statistics is 10%. The gauge

content of these models is presented in Table 5.10. The most noticeable difference

between Table 5.10 and Table 5.3 is the number of SU(n + 1)-type gauge groups.

The GSO projections of the new sector break the untwisted (~0) sector from SO(44)

to smaller SO(2n)-type groups. Phases that are neither periodic nor anti-periodic

transform these groups from SO(2n) to SU(n) ⊗ U(1). Since all of the phases in

this set fall into that category, the SO(2n)-type groups appear when the states from

the added sector are projected out by certain kij matrix choices. The SU(n + 1)-

type groups are created when the contributions from the added sector are left in the

model. The number of gauge group factors per model are plotted in Figure 5.6. As

with Figure 5.1, there are still very few models which have less than five gauge group

factors. There are also peaks at 10, 11 and 12 gauge group factors, as opposed to

just a single peak at 9 in Figure 5.1.

Relevant GUT groups and number of unique models containing those groups

are presented in Table 5.11. The number of ST SUSYs for the order-3 data set is

plotted in Figure 5.7 Notice that a statistically significant number of models have

enhanced ST SUSY. This trend is expected, as every odd-ordered right mover with

a massless fermion left mover will produce an additional gravitino generating sector

in the model.

110

Table 5.10: The gauge group content of the NAHE + O3L1 data set.

Gauge Group Number of Unique Models % of Unique Models

SU(2) 2587 85.21%

SU(3) 923 30.4%

SU(4) 2241 73.81%

SU(5) 543 17.89%

SU(6) 735 24.21%

SU(7) 215 7.082%

SU(8) 460 15.15%

SU(9) 76 2.503%

SU(10) 76 2.503%

SU(11) 17 0.5599%

SU(12) 41 1.35%

SU(13) 3 0.09881%

SU(14) 5 0.1647%

SO(8) 860 28.33%

SO(10) 659 21.71%

SO(12) 400 13.18%

SO(14) 372 12.25%

SO(16) 260 8.564%

SO(18) 11 0.3623%

SO(20) 33 1.087%

SO(22) 5 0.1647%

SO(24) 15 0.4941%

SO(26) 3 0.09881%

E6 193 6.357%

E7 147 4.842%

E8 80 2.635%

U(1) 2955 97.33%

111

4 6 8 10 12 14 16

0

200

400

600

Number of Gauge Group Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

Figure 5.6: The number of gauge group factors per model in the NAHE + O3L1 data
set.

Table 5.11: The number of unique models containing GUT groups for the NAHE +
O3L1 data set.

GUT Group Number of Unique Models % of Unique Models

E6 193 6.36%

SO(10) 659 21.71%

SU(5)⊗ U(1) 543 17.89%

SU(4)⊗ SU(2)⊗ SU(2) 1648 54.28%

SU(3)⊗ SU(2)⊗ SU(2) 628 20.69%

SU(3)⊗ SU(2)⊗ U(1) 775 25.53%

112

0 1 2 3 4

0

500

1,000

1,500 1,445
1,305

286

0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

Figure 5.7: The ST SUSYs for the NAHE + O3L1 data set.

Table 5.10 also makes apparent the number of models containing U(1) gauge

groups. The number of U(1)’s per model are plotted in Figure 5.8. It is clear that

most models have multiple U(1) factors, and that there are more U(1) factors per

model for this data set than the O2L1 data set. The number of non-Abelian singlets

are plotted in Figure 5.9. As with the order-2 extensions, the distribution of non-

Abelian singlets drops off sharply after 0, indicating the NAHE-base single-layer

models do not have a tendency to produce many non-Abelian singlets.

5.3.2 Without ~S

Removing ~S from the NAHE set for the order-2 layer-1 extensions had interest-

ing consequences on the available matter sectors. For the order-3 layer-1 extensions

the effect is expected to be more drastic, as linear independence prevented any mod-

els with the same left mover as ~S to exist in a model. There should be less of

an impact on the ST SUSY, however, since order-3 basis vectors with massless left

movers always produce their own gravitino generating sector. The lower number of

113

0 2 4 6 8

0

200

400

600

800

Number of U(1) Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

Figure 5.8: The number of U(1) factors for the NAHE + O3L1 data set.

0 10 20 30 40 50

0

500

1,000

Number of NA Singlets

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

Figure 5.9: The number of non-Abelian singlets for the NAHE + O3L1 data set.

114

possibilities for kij values will also have an effect on the number of models in the

set.

There are 447 unique models in this set out of 870,688 consistent models, and

of those 146 models also belong to the data set with ~S. Based on the number of

duplicates in the O2L1 data set (without ~S), the estimated systematic uncertainty

for these statistics is 10%. There is significantly more overlap between the two sets,

yet there are also significantly fewer unique models. The gauge group content of the

NAHE+O3L1 without ~S is presented in Table 5.12. A brief comparison between

Tables 5.12 and 5.10 makes it clear the presence of ~S did not significantly affect the

gauge groups, as was the case with the order-2 extensions. For completeness the

occurances of the GUT groups and other relevant statistics for this data set will

be presented. The occurrances of the GUT groups in this data set are tabulated

in Table 5.13. The number of gauge group factors, U(1) factors, ST SUSYs, and

non-Abelian singlets are plotted in Figure 5.10.

5.4 Models With GUT Groups

The next several sections will outline statistics on models containing GUT

groups from the NAHE + O2L1 and NAHE + O3L1 data sets (with ~S). The GUT

groups to be examined are E6, SO(10), SU(5)⊗U(1), SU(4)⊗SU(2)⊗SU(2) (Pati-

Salam), SU(3)⊗SU(2)⊗SU(2) (Left-Right Symmetric), and SU(3)⊗SU(2)⊗U(1)

(MSSM). In addition to the spread of statistics presented in sections 5.2 and 5.3, the

number of chiral fermion generations will be counted, along with any exotics which

carry observable sector charge. These statistics will be gathered for all possible

observable sector configurations. Thus, if there is more than one copy of any GUT

group in a model (as is often the case), all possible choices for each group forming

the observable sector will be examined.

115

Table 5.12: The gauge group content of the NAHE + O3L1 data set without ~S.

Gauge Group Number of Unique Models % of Unique Models

SU(2) 368 82.33%

SU(3) 128 28.64%

SU(4) 313 70.02%

SU(5) 70 15.66%

SU(6) 96 21.48%

SU(7) 26 5.817%

SU(8) 71 15.88%

SU(9) 15 3.356%

SU(10) 14 3.132%

SU(11) 3 0.6711%

SU(12) 8 1.79%

SU(13) 1 0.2237%

SU(14) 1 0.2237%

SO(8) 124 27.74%

SO(10) 97 21.7%

SO(12) 53 11.86%

SO(14) 49 10.96%

SO(16) 42 9.396%

SO(18) 3 0.6711%

SO(20) 6 1.342%

SO(22) 1 0.2237%

SO(24) 2 0.4474%

SO(26) 1 0.2237%

E6 37 8.277%

E7 32 7.159%

E8 16 3.579%

U(1) 430 96.2%

116

4 6 8 10 12 14 16

0

20

40

60

80

Number of Gauge Group Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(a)

0 2 4 6 8

0

20

40

60

80

100

Number of U(1) Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b)

0 1 2 3 4

0

100

200

300
301

146

0 0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c)

0 10 20 30 40 50

0

50

100

150

200

250

Number of NA Singlets

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(d)

Figure 5.10: Statistics for the NAHE + O3L1 data set without ~S.

117

Table 5.13: The occurrances of the GUT groups for the NAHE + O3L1 data set
without ~S.

Gauge Group Number of Unique Models % of Unique Models

E6 37 8.277%

SO(10) 97 21.7%

SU(5)⊗ U(1) 70 15.66%

SU(4)⊗ SU(2)⊗ SU(2) 220 49.21%

SU(3)⊗ SU(2)⊗ SU(2) 81 18.12%

SU(3)⊗ SU(2)⊗ U(1) 100 22.37%

The definition of a chiral matter generation will be presented with each group

for clarity, and only the “net” chiral generations will be counted. That is, if there

are an equal number of barred and unbarred generations, the model will have no net

chiral generations. This is done because any barred and unbarred generations paired

together can be given VEVs at the GUT scale, thus removing them from the low

energy phenomenology. Any “net” generations which cannot be paired must remain

massless until the Higgs boson gains a VEV at the TeV scale. Such extra observable

sector generations would have been observed experimentally, so removing them from

the theory at the GUT scale is favorable for these models.

The statistics gathered on the chiral generations here are not enough to qual-

ify a model or set of models as being “realistic.” This study looks only to examine

the basic components that sometimes lead to realistic models. Actually determining

whether or not a model is realistic requires detailed analysis of the U(1) charges,

finding the superpotential, and finding the D- and F-flat directions. Progress is be-

ing made to automate the above steps and integrate the deeper phenomenological

components of WCFFHS model building into the FF Framework. For the present

118

analysis, however, discussion of these aspects of WCFFHS phenomenology is omit-

ted.

5.4.1 E6 Models

Each SM generation of fermions fits into a 27 dimensional representation of

E6, so the number of net chiral matter generations is given by

|N27 −N27|. (5.1)

Additionally, for large GUT groups, states which transform under the hidden sector

can be treated as being multiple copies of an observable generation. The hidden

sector groups can be broken somewhat easily by adding basis vectors, so for certain

GUT groups the dimension of the hidden sector charge is treated as the number of

duplicate observable generations.

Statistics will now be presented for E6 models coming from single layer exten-

sions to the NAHE set. There was only one model with an E6 group in the NAHE

+ O2L1 data set, but there were 193 models with E6 in the NAHE + O3L1 data

set. The number of net chiral fermion generations with and without hidden sec-

tor duplicates is plotted in Figure 5.11 along with the number of observable sector

charged exotics. The hidden sector gauge group content of these models is presented

in Table 5.14. Figures 5.11 shows that the distribution of net fermion generations

tends to be at zero; either no 27’s are produced, or every 27 is accompanied by a

27 for those models. For models with more than zero chiral fermion generations,

the number of generations per model is even both with and without hidden sector

duplicates. It is also apparent from Figure 5.11 that the E6 charged fermions do

not couple to the hidden sector in most of these models. These examinations make

it clear that, though most models do not contain exotic states, there are never the

correct number of chiral fermion generations to produce a realistic model.

119

0 5 10 15 20 25

0

50

100

150

200

Number of Chiral Matter Generations

N
u
m

b
er

of
D

is
ti

n
ct

O
b
se

rv
ab

le
S
ec

to
rs

(a) With Hidden Sector Duplicates

0 2 4 6 8

0

50

100

150

200

Number of Chiral Matter Generations

N
u
m

b
er

of
D

is
ti

n
ct

O
b
se

rv
ab

le
S
ec

to
rs

(b) Without Hidden Sector Duplicates

0 2 4 6 8 10 12

0

50

100

150

Number of Charged Exotics

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c)

Figure 5.11: Statistics related to the chiral matter generations for E6 models in the
NAHE + O3L1 data set.

120

Table 5.14: The hidden sector gauge group content of models containing E6 within
the NAHE + O3L1 data set.

Gauge Group Number of Unique Models % of Unique Models

SU(2) 165 85.49%

SU(3) 54 27.98%

SU(4) 113 58.55%

SU(5) 39 20.21%

SU(6) 43 22.28%

SU(7) 5 2.591%

SU(8) 10 5.181%

SO(8) 35 18.13%

SO(10) 41 21.24%

SO(12) 12 6.218%

SO(16) 19 9.845%

E8 11 5.699%

U(1) 193 100%

121

6 8 10 12

10

20

30

40

50

Number of Gauge Group Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(a)

1 2 3 4 5 6

0

20

40

60

Number of U(1) Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b)

0 1 2 3 4

0

20

40

60

80
81

48

64

0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c)

0 5 10 15

0

20

40

60

80

100

Number of NA Singlets

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(d)

Figure 5.12: Statistics for the models containing E6 in the NAHE + O3L1 data set.

For completeness the rest of the statistics for this data set will be presented.

The number of gauge group factors per model, the number of U(1) factors, the

number of ST SUSYs, and the number of non-Abelian singlets are presented in

Figure 5.12.

5.4.2 SO(10) Models

In the models containing SO(10), the chiral fermion generations are defined

to be in the 16 dimensional representations. Thus, the number of net chiral fermion

generations is given by

|N16 −N16|. (5.2)

122

Table 5.15: Hidden sector gauge groups for SO(10) models in the NAHE + O2L1
data set.

Gauge Group Number of Unique Models % of Unique Models

SU(2) 121 75.62%

SU(2)(2) 25 15.62%

SU(4) 111 69.38%

SO(5) 59 36.88%

SO(8) 1 0.625%

SO(14) 1 0.625%

SO(16) 56 35%

SO(20) 1 0.625%

SO(22) 1 0.625%

E7 51 31.87%

E8 51 31.87%

U(1) 102 63.75%

The NAHE + O2L1 data set has 160 models with SO(10), while the NAHE + O3L1

data set has 659 models. The number of chiral fermion generations with hidden

sector charges is plotted in Figure 5.13 for the NAHE + O2L1 and NAHE + O3L1

data sets. The number of chiral fermion generations without hidden sector charges

is also plotted in Figure 5.13 for the order-3 SO(10) models. There were no order-2

SO(10) models with more than zero chiral fermion generations. The hidden sector

gauge groups for the NAHE + O2L1 SO(10) models are presented in Table 5.15.

The NAHE + O3L1 SO(10) model hidden sector gauge groups are presented in

Table 5.16. The number of observable exotic states for these models is plotted in

Figure 5.14 for the order-2 and order-3 models. As with the E6 data sets, there

123

0 10 20 30 40 50

0

20

40

60

80

100

Number of Chiral Matter Generations

N
u
m

b
er

of
D

is
ti

n
ct

O
b
se

rv
ab

le
S
ec

to
rs

(a) NAHE + O2L1 with Hidden Sector
Duplicates

0 10 20 30 40 50

0

100

200

300

400

Number of Chiral Matter Generations
N

u
m

b
er

of
D

is
ti

n
ct

O
b
se

rv
ab

le
S
ec

to
rs

(b) NAHE + O3L1 with Hidden Sector
Duplicates

0 2 4 6 8 10 12

0

200

400

600

Number of Chiral Matter Generations

N
u
m

b
er

of
D

is
ti

n
ct

O
b
se

rv
ab

le
S
ec

to
rs

(c) NAHE + O3L1 without Hidden Sector
Duplicates

Figure 5.13: Statistics for the chiral matter generations of the SO(10) models in the
NAHE + O2L1 and NAHE + O3L1 data sets.

124

Table 5.16: Hidden sector gauge groups for SO(10) models in the NAHE + O3L1
data set.

Gauge Group Number of Unique Models % of Unique Models

SU(2) 570 86.49%

SU(3) 126 19.12%

SU(4) 456 69.2%

SU(5) 74 11.23%

SU(6) 132 20.03%

SU(7) 20 3.035%

SU(8) 64 9.712%

SU(9) 5 0.7587%

SU(10) 15 2.276%

SU(12) 12 1.821%

SO(8) 105 15.93%

SO(12) 75 11.38%

SO(14) 34 5.159%

SO(16) 69 10.47%

SO(20) 13 1.973%

SO(22) 5 0.7587%

E6 41 6.222%

E7 29 4.401%

E8 20 3.035%

U(1) 604 91.65%

125

0 5 10 15 20 25

0

10

20

30

Number of Charged Exotics

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(a) NAHE + O2L1

0 5 10 15

0

50

100

Number of Charged Exotics

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b) NAHE + O3L1

Figure 5.14: The number of observable sector charged exotics for SO(10) models in
the NAHE + O2L1 and NAHE + O3L1 data sets.

are no models with three chiral generations. The number of generations in any of

the models presented is either zero or even. The distribution of charged exotics is

more spread out than it was for the E6 models. This is an artifact of the NAHE

set gauge group; the SO(10) states in that set are charged under the three SU(4)

gauge groups. Most observable SO(10) states tend to keep some of those charges

under the hidden sector. The remaining statistics for these models are presented in

Figure 5.15 for the order-2 models. The remaining statistics for the order-3 models

with SO(10) are presented in Figure 5.16.

5.4.3 SU(5)⊗ U(1) Models

The (flipped) SU(5) ⊗ U(1) GUT group’s matter generations are split into

multiple representations of the SU(5) group. An anti-lepton doublet and the up-type

quarks are placed in a 5 representation, while the right-handed neutrino, the anti-

quark doublet, and the down-type quarks appear in a 10 dimensional representation

of SU(5). Thus, a generation is formed by pairing the 10-reps with the 5-reps. The

net number of generations for an SU(5)⊗ U(1) model is given by

|min(N10, N5)−min(N10, N5)|. (5.3)

126

4 6 8 10 12

0

10

20

30

Number of Gauge Group Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(a)

0 0.5 1 1.5 2 2.5 3

20

30

40

50

60

Number of U(1) Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b)

0 1 2 3 4

0

20

40

60

80
82

77

1 0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c)

0 2 4 6 8 10 12

0

20

40

60

Number of NA Singlets

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(d)

Figure 5.15: Statistics for the SO(10) models in the NAHE + O2L1 data set.

127

4 6 8 10 12 14

0

20

40

60

80

100

120

Number of Gauge Group Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(a)

0 2 4 6

50

100

150

Number of U(1) Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b)

0 1 2 3 4

0

100

200

300

318
294

47

0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c)

0 5 10 15 20 25 30

0

100

200

300

Number of NA Singlets

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(d)

Figure 5.16: Statistics for the SO(10) models in the NAHE + O3L1 data set.

128

0 5 10 15 20

0

50

100

150

200

Number of Chiral Matter Generations

N
u
m

b
er

of
D

is
ti

n
ct

O
b
se

rv
ab

le
S
ec

to
rs

(a) With Hidden Sector Duplicates

0 1 2 3 4

0

100

200

300

400

Number of Chiral Matter Generations

N
u
m

b
er

of
D

is
ti

n
ct

O
b
se

rv
ab

le
S
ec

to
rs

(b) Without Hidden Sector Duplicates

0 5 10 15 20 25

0

50

100

Number of Charged Exotics

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c)

Figure 5.17: Statistics related to observable matter for the SU(5)⊗ U(1) models in
the NAHE + O3L1 data set.

There were no order-2 NAHE based models containing SU(5)⊗U(1), but there were

543 order-3 models with this GUT group. The hidden sector gauge groups of those

models are presented in Table 5.17. The number of net chiral generations with and

without hidden sector duplicates are plotted in Figure 5.17, along with the number of

exotic states with observable sector charges. The most striking feature of this data

set is that there are models with three chiral generations both with and without

hidden sector duplicates. The significance of this finding is that these models do

not have rank cuts, and thus carry a geometric interpretation. This implies that

129

Table 5.17: The hidden sector gauge groups of the SU(5)⊗ U(1) models in the
NAHE + O3L1 data set.

Gauge Group Number of Unique Models % of Unique Models

SU(2) 449 82.69%

SU(3) 468 86.19%

SU(4) 284 52.3%

SU(6) 52 9.576%

SU(7) 50 9.208%

SU(8) 52 9.576%

SU(9) 22 4.052%

SU(10) 5 0.9208%

SO(8) 57 10.5%

SO(10) 74 13.63%

SO(12) 35 6.446%

SO(14) 72 13.26%

E6 39 7.182%

E7 10 1.842%

130

9 10 11 12 13 14 15

0

50

100

150

Number of Gauge Group Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(a)

3 4 5 6 7 8 9

0

50

100

150

200

Number of U(1) Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b)

0 1 2 3 4

0

100

200

262
243

38

0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c)

0 10 20 30 40

0

50

100

150

200

Number of NA Singlets

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(d)

Figure 5.18: Statistics for the SU(5)⊗ U(1) models in the NAHE + O3L1 data set.

these model may be written in another construction method, particularly that of

orbifolding. These are the first three-generation models of their kind. More analysis

will be done in Sec. 5.5 regarding this new class of three-generation models. Other

statistics for this data set are plotted in Figure 5.18.

5.4.4 Pati-Salam Models

Pati-Salam models consist of models with a gauge group SO(6)⊗SO(4), which

is isomorphic to the gauge group SU(4) ⊗ SU(2) ⊗ SU(2). The latter is the form

of this gauge group which appears in WCFFHS models. The quark and lepton

generations are in representations of (4,2,1), while the anti-quarks and anti-leptons

131

are in representations of (4,1,2). Because these data sets are formed by examining

all permutations of possible observable sectors, the same statistics will emerge when

the chiral generations and anti-generations are examined separately. As there are

no three-generation models in this data set, this case will not be considered. The

equation for the number of net chiral generations is

|N(4,2,1) −N(4,2,1)|. (5.4)

There are 243 unique models containing this gauge group in the order-2 NAHE

extensions, and there are 1,648 unique models with this gauge group in the order-3

NAHE extensions. The abundance of these models is expected; as they contain the

most common non-Abelian gauge group, SU(2), along with a group that the NAHE

set model already has.

No order-2 models with the Pati-Salam gauge group have net chiral matter

generations, but other statistics related to those models will be presented. Order-3

model statistics will also be presented.

For the order-2 models, the hidden sector gauge group content is presented in

Table 5.18. In this data set, both SU(2) at KM-level 1 and SU(2)(2) at KM-level 2

are included as possibilities for the observable Pati-Salam gauge group. The number

of charged exotics is presented in Figure 5.19. The hidden sector gauge group content

for the order-3 models is presented in Table 5.19. The number of chiral generations

and observable sector charged exotics for these models are plotted in Figure 5.20.

Note that the number of chiral generations is zero in most cases for the NAHE

+ O3L1 data set as well. This implies that the symmetry breaking to the two

SU(2) gauge groups splits the three distinct generations of the NAHE observable

sector evenly. The conclusion of this report is that three generation Pati-Salam

models may require more complicated basis vector sets. The remaning statistics are

132

Table 5.18: The hidden sector gauge group content in Pati-Salam models from the
NAHE + O2L1 data set.

Gauge Group Number of Unique Models % of Unique Models

SO(5) 60 24.69%

SO(8) 51 20.99%

SO(10) 61 25.1%

SO(12) 1 0.4115%

SO(16) 80 32.92%

SO(20) 2 0.823%

E7 86 35.39%

E8 75 30.86%

U(1) 185 76.13%

0 20 40 60

0

100

200

300

Number of Charged Exotics

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

Figure 5.19: The number of observable sector charged exotics from Pati-Salam models
in the NAHE + O2L1 data set.

133

Table 5.19: The hidden sector gauge group content of the Pati-Salam models in the
NAHE + O3L1 data set.

Gauge Group Number of Unique Models % of Unique Models

SU(3) 344 20.87%

SU(5) 174 10.56%

SU(6) 414 25.12%

SU(7) 116 7.039%

SU(8) 214 12.99%

SU(9) 30 1.82%

SU(10) 31 1.881%

SU(11) 5 0.3034%

SU(12) 24 1.456%

SO(8) 422 25.61%

SO(10) 332 20.15%

SO(12) 255 15.47%

SO(14) 163 9.891%

SO(16) 106 6.432%

SO(20) 33 2.002%

E6 81 4.915%

E7 56 3.398%

E8 15 0.9102%

U(1) 1615 98%

134

0 2 4 6 8

0

0.5

1

1.5

2

2.5

·104

Number of Chiral Matter Generations

N
u
m

b
er

of
D

is
ti

n
ct

O
b
se

rv
ab

le
S
ec

to
rs

(a)

0 10 20 30 40 50

0

500

1,000

1,500

2,000

Number of Charged Exotics

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b)

Figure 5.20: Statistics related to observable matter in the Pati-Salam models from
the NAHE + O3L1 data set.

presented in Figure 5.21. Statistics for the NAHE + O3L1 data set are presented in

Figure 5.22.

5.4.5 Left-Right Symmetric Models

The final GUT considered in this study is a derivative of the Pati-Salam GUT

group referred to as the Left-Right Symmetric group. It retails the dual-SU(2)

nature of the Pati-Salam GUT, but the SU(4) gauge group is broken into an SU(3)

group directly representing the strong force. The generations of quarks fit into

a (3,2,1)-dimensional representation while the generations of anti-quarks fit into

a (3,1,2)-dimensional representation. The lepton and anti-lepton generations are

placed in a (1,2,1) and (1,1,2) representation, respectively. As the quark generations

are usually more constraining in WCFFHS models, the term chiral matter generation

refers only to the quarks, while the term chiral anti-generation refers only to the anti-

quarks. Lepton generations will need to be taken into account when considering a

quasi-realistic model, but here statistics will be gathered only with respect to the

quark generations for simplicity.

135

6 8 10 12 14

0

20

40

60

Number of Gauge Group Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(a)

0 0.5 1 1.5 2 2.5 3

40

60

80

Number of U(1) Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b)

0 1 2 3 4

0

50

100

129

114

0 0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c)

0 2 4 6 8 10 12

0

20

40

60

80

100

Number of NA Singlets

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(d)

Figure 5.21: Statistics for the Pati-Salam models in the NAHE + O2L1 data set.

136

6 8 10 12 14 16

0

100

200

300

Number of Gauge Group Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(a)

0 2 4 6 8

0

100

200

300

400

Number of U(1) Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b)

0 1 2 3 4

0

200

400

600

800
794

730

124

0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c)

0 10 20 30 40

0

200

400

600

Number of NA Singlets

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(d)

Figure 5.22: Statistics for the Pati-Salam models in the NAHE + O3L1 data set.

137

0 2 4 6 8

0

2,000

4,000

6,000

8,000

Number of Chiral Matter Generations

N
u
m

b
er

of
D

is
ti

n
ct

O
b
se

rv
ab

le
S
ec

to
rs

(a)

0 10 20 30 40 50

0

200

400

600

Number of Charged Exotics

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b)

Figure 5.23: Observable matter statistics for the Left-Right Symmetric models in the
NAHE + O3L1 data set.

The number of net chiral (anti)generations is given by

|N(3,2,1) −N(3,2,1)|. (5.5)

Since the statistics loop over all possible observable sector configurations, the statis-

tical data on the net number of chiral generations and anti-generations are identical.

There are no models with the gauge group in the NAHE + O2L1 data set, as that

data set contains no models with SU(3) gauge groups. There are 628 distinct mod-

els in the NAHE + O3L1 data set with this gauge group. The hidden sector gauge

content of those models is presented in Table 5.20. The number of net chiral genera-

tions is presented in Figure 5.23 along with the number of observable sector charged

exotics. Like the SU(5)⊗U(1) data set, there are three-generation models present

here. There are 70 models with three net chiral generations. One such model will

be presented as an example at the end of the chapter. The remaining statistical

information on these models is presented in Figure 5.24.

138

Table 5.20: The hidden sector gauge group content of the Left-Right Symmetric
models in the NAHE + O3L1 data set.

Gauge Group Number of Unique Models % of Unique Models

SU(4) 344 54.78%

SU(5) 264 42.04%

SU(6) 112 17.83%

SU(7) 149 23.73%

SU(8) 84 13.38%

SU(9) 29 4.618%

SU(10) 10 1.592%

SU(11) 17 2.707%

SO(8) 89 14.17%

SO(10) 95 15.13%

SO(14) 53 8.439%

E6 41 6.529%

U(1) 628 100%

139

10 12 14 16

0

50

100

150

Number of Gauge Group Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(a)

3 4 5 6 7 8 9

0

50

100

150

200

Number of U(1) Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b)

0 1 2 3 4

0

100

200

300
304

278

46

0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c)

0 10 20 30 40

0

100

200

300

Number of NA Singlets

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(d)

Figure 5.24: Statistics for the Left-Right Symmetric models in the NAHE + O3L1
data set.

140

5.4.6 MSSM-like Models

The MSSM1 gauge group is SU(3)⊗SU(2)⊗U(1). A generation of quarks fit

in a (3,2) representation of these groups. The leptons fit in a (1,2) representation.

The generations of antimatter are charged differently, as the antiparticles do not

have isospin. A generation of antimatter consists of two (3,1) representations, one

for the “up”-type quarks and one for the “down”-type quarks. While the leptons fit

into a (1,2) representation, the anti-leptons are (1,1) singlets. As was the case with

Left-Right Symmetric models, the terms chiral generation and anti-generation refer

only to the quarks. While the lepton generations must also be considered, statistics

are only gathered for the quark generations, as they are more constraining.

The equation for the number of net chiral matter generations is

|N(3,2) −N(3,2)|, (5.6)

while the number of net chiral antimatter generations is

|N(3,1) −N(3,1)|. (5.7)

There are no models with this gauge group from the NAHE + O2L1 data set since

there are no SU(3) gauge groups. There are, however, 775 models in the NAHE +

O3L1 data set with the MSSM group. The hidden sector gauge group content of

models containing the MSSM gauge group is presented in Table 5.21. The number

of net chiral generations and anti-generations are presented in Figure 5.25. The

number of observable sector charged exotics is also plotted in Figure 5.25. There

are models with three chiral matter generations, as well as models with three anti-

generations. However, none of the models have three generations of quarks and

anti-quarks. While these findings are still significant due to their novelty, they do

not point towards phenomenologically realistic models as the SU(5)⊗U(1) and Left-

1 Here MSSM refers only to the gauge group content. Models with this gauge group may or
may not have ST SUSY.

141

Table 5.21: The hidden sector gauge group content of the MSSM models in the
NAHE + O3L1 data set.

Gauge Group Number of Unique Models % of Unique Models

SU(4) 412 53.16%

SU(5) 374 48.26%

SU(6) 112 14.45%

SU(7) 169 21.81%

SU(8) 112 14.45%

SU(9) 41 5.29%

SU(10) 10 1.29%

SU(11) 17 2.194%

SO(8) 97 12.52%

SO(10) 111 14.32%

SO(12) 35 4.516%

SO(14) 68 8.774%

E6 46 5.935%

142

0 2 4 6 8

0

1,000

2,000

3,000

Number of Chiral Matter Generations

N
u
m

b
er

of
D

is
ti

n
ct

O
b
se

rv
ab

le
S
ec

to
rs

(a) Quarks

0 2 4 6 8 10 12

0

1,000

2,000

3,000

Number of Chiral Matter Generations

N
u
m

b
er

of
D

is
ti

n
ct

O
b
se

rv
ab

le
S
ec

to
rs

(b) Anti-quarks

0 10 20 30 40 50

0

100

200

300

Number of Charged Exotics

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c)

Figure 5.25: Observable matter related statistics for the MSSM models in the NAHE
+ O3L1 data set.

143

10 12 14 16

0

50

100

150

200

250

Number of Gauge Group Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(a)

3 4 5 6 7 8 9

0

100

200

300

Number of U(1) Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b)

0 1 2 3 4

0

100

200

300

400 376
345

54

0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c)

0 10 20 30 40

0

100

200

300

Number of NA Singlets

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(d)

Figure 5.26: Statistics for MSSM models in the NAHE + O3L1 data set.

Right Symmetric models do. The remaining statistics for these models are presented

in Figure 5.26.

5.4.7 ST SUSYs

There is a trend regarding the number of ST SUSYs in GUT models — that

distributions of ST SUSYs for the most part do not change. Figure 5.27 contains the

ST SUSY distributions for the full data set, the SO(10) models, and the Pati-Salam

models. It is clear that the ST SUSY distributions are relatively even for each of the

sample sets of models. The same can be said of order-3 models, whose ST SUSY

distributions are presented in Figures 5.28 and 5.29. Only the E6 models display any

144

0 1 2 3 4

0

50

100

150

200

223 215

1 0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(a) Full data set

0 1 2 3 4

0

20

40

60

80
82

77

1 0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b) SO(10) models

0 1 2 3 4

0

50

100

129

114

0 0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c) Pati-Salam models

Figure 5.27: The distributions of ST SUSYs for the NAHE + O2L1 GUT group data
sets.

145

0 1 2 3 4

0

500

1,000

1,500 1,445
1,305

286

0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s
(a) Full data set

0 1 2 3 4

0

20

40

60

80
81

48

64

0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b) E6 models

0 1 2 3 4

0

100

200

300

318
294

47

0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c) SO(10) models

Figure 5.28: Some of the distributions of ST SUSYs for the NAHE + O3L1 GUT
group data sets.

sort of statistical coupling to the number of ST SUSYs, having significantly more

N=2 models than any other data set. The other samples, however, have nearly

identical distributions, suggesting that the number of ST SUSYs is not statistically

linked to the GUT group content.

5.5 Three Generation Models With a Geometric Interpretation

Several models containing three net chiral matter generations with SU(5) ⊗

U(1) and Left-Right Symmetric GUT groups were found in the NAHE + O3L1

data set. As previously mentioned, this finding is novel because these models do

not have rank-cuts, and thus have a geometric interpretation. The usual statistics

146

0 1 2 3 4

0

500

1,000

1,500 1,445
1,305

286

0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(a) Full data set

0 1 2 3 4

0

100

200

262
243

38

0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b) SU(5)⊗ U(1)

0 1 2 3 4

0

200

400

600

800
794

730

124

0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c) Pati-Salam models

0 1 2 3 4

0

100

200

300
304

278

46

0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(d) Left-Right Symmetric models

0 1 2 3 4

0

100

200

300

400 376
345

54

0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(e) MSSM models

Figure 5.29: The remaining distributions of ST SUSYs for the NAHE + O3L1 GUT
group data sets.

147

will be reported for these models, and a potentially realistic model from each gauge

group will be presented as an example. To determine the viability of these models,

more phenomenology must be done. In particular, finding the U(1) charges and

the superpotential would be the first step, then the D- and F-flat directions can be

found. If the flat directions can eliminate the anomalous U(1) charge in addition

to the observable sector charged exotic matter, then the model could be considered

a quasi-realistic model. As software for automating such analysis has not yet been

fully augmented, discussion of additional phenomenology must be deferred.

5.5.1 A Three Generation SU(5)⊗ U(1) Model

Presented in this section is an explicit example of a NAHE based three-

generation SU(5) ⊗ U(1) model with N = 1 ST SUSY. The gauge group for this

model is SU(3)2 ⊗ SU(4) ⊗ SU(5) ⊗ SU(6) ⊗ U(1)5. Table 5.22 shows the basis

Table 5.22: A basis vector and kij matrix row which produces a three-generation
SU(5)⊗ U(1) model.

Sec NR ψ x12 x34 x56 ψ
1,...,5

η 1 η 2 η 3 φ
1,...,8

~v 3 1 1 0 0 0,0,2
3
,...,2

3
2
3

0 2
3

0,0,2
3
, ..., 2

3

Sec O y 1,2w 5,6||y 1,2w 5,6 y 3,...,6||y 3,...,6 w 1,...,4||w 1,...,4

~v 3 0,0,1,1||0,0,0,0 0,0,0,0||2
3
, 2

3
, 2

3
, 2

3
0,0,1,1||2

3
,2
3
,2
3
, 2

3

k~v,j = (0, 1, 1, 0, 1)

vectors, and Table 5.23 shows the particle content. The observable sector matter

is tabulated in Table 5.24. There are no (10,5) generations and three (10,5) gen-

erations in this model, giving it three net chiral generations of matter2 . However,

counting the hidden sector charges as duplicates, there are 14 extra 5’s and 8 extra

2 Recall that the definition of barred and unbarred representations is arbitrary.

148

Table 5.23: Particle content for the three-generation SU(5)⊗ U(1) model. This
model also has five U(1) groups and N = 1 ST SUSY.

QTY SU(3) SU(3) SU(4) SU(5) SU(7)

2 3 1 1 1 1

3 3 1 1 1 7

3 3 3 1 1 1

1 1 3 1 1 7

1 1 3 1 1 1

1 1 3 1 1 7

2 1 3 1 5 1

6 1 1 6 1 1

2 1 1 4 1 1

1 1 1 4 5 1

2 1 1 1 5 1

2 1 1 1 1 21

6 1 1 1 1 1

1 1 1 1 1 21

3 1 1 1 5 1

2 1 1 4 1 1

1 1 1 4 5 1

2 1 3 1 5 1

1 1 3 1 1 7

2 1 3 1 1 1

1 3 3 1 1 1

1 3 1 1 10 1

2 3 1 1 5 1

1 3 1 1 1 7

2 3 1 1 1 1

149

Table 5.24: Observable sector matter states without hidden sector charges for the
three-generation SU(5)⊗ U(1) model.

QTY SU(3) SU(3) SU(4) SU(5) SU(7)

2 1 3 1 5 1

1 1 1 4 5 1

2 1 1 1 5 1

3 1 1 1 5 1

1 1 1 4 5 1

2 1 3 1 5 1

1 3 1 1 10 1

2 3 1 1 5 1

5’s. Because of the numerous U(1) charges, this model is ideal for future U(1)

and flat direction analysis.

5.5.2 A Three Generation Left-Right Symmetric Model

Presented in this section is an explicitly constructed three-generation Left-

Right Symmetric NAHE based model. The gauge group for this model is SU(2)2 ⊗

SU(3)2 ⊗ SU(5) ⊗ SO(10) ⊗ U(1)7, and it has N=1 ST SUSY. The basis vectors

for this model are presented in Table 5.25. The particle content of this model is

presented in Table 5.26, and the observable matter is presented in Table 5.27.

The left- and right-handed isospin groups are denoted SU(2)L and SU(2)R,

respectively. The QCD group is denoted SU(3)C . This model has three net gen-

erations of quarks, but no net generations of anti-quarks. Additionally there are

thirty left- and right-handed lepton doublets. Other exotics include a quark triplet

with left- and right-handed isospin, eight quark and ten anti-quark triplets without

isospin. Thus, this model is not a favorable candidate for a quasi-realistic three-

150

Table 5.25: A basis vector and kij matrix row which produces a three-generation
Left-Right Symmetric model.

Sec NR ψ x12 x34 x56 ψ
1,...,5

η 1 η 2 η 3 φ
1,...,8

~v 3 1 0 0 0 2
3
,...,2

3
2
3

2
3

2
3

0,...,0,2
3
, 2

3
, 2

3

Sec O y 1,2w 5,6||y 1,2w 5,6 y 3,...,6||y 3,...,6 w 1,...,4||w 1,...,4

~v 3 0,0,1,1||0,0,2
3
, 2

3
0,0,0,0||0,0,2

3
,2
3

0,0,1,1||2
3
,2
3
,2
3
,2
3

k~v,j = (0, 1, 0, 0, 0)

generation model. It does serve as a proof of concept that three generation models

can be built with single-layer extensions to the NAHE set, however.

5.6 Conclusions

The statistics presented in this chapter make it clear that the NAHE set does

serve its intended purpose as a basis for quasi-realistic WCFFHS models at a statis-

tical level. Three generation models were constructed from order-3 extensions to the

NAHE set. A summary of the GUT group analysis is presented in Table 5.28. Two

three-generation models were discussed - a flipped-SU(5) model and a Left-Right

Symmetric model. While they did have the requisite number of chiral matter genera-

tions, there were several unfavorable properties in both models that prevented them

from being considered quasi-realistic. They are a proof that three-generation models

with geometric interpretations can be built with order-3 basis vector extensions.

The distributions of ST SUSYs across the GUT group subsets remained largely

the same, save the E6 models, which displayed a greater statistical tendency for

ST SUSY enhancements. It was also shown that the presence of the ~S did not

significantly impact the gauge content. However, the matter content of the models

without ~S is affected, as the ~S sector produces states other than SUSY partners.

151

Table 5.26: The particle content of the three-generation Left-Right Symmetric
Model. This model also has 7 U(1)’s and N = 1 ST SUSY.

QTY SU(2)L SU(2)R SU(3)C SU(3) SU(5) SO(10)

1 2 2 3 1 1 1

2 2 1 3 1 1 1

2 2 1 1 3 1 1

3 2 1 1 1 1 1

3 2 1 1 1 5 1

1 2 1 1 3 1 1

1 2 1 3 1 1 1

2 1 2 1 3 1 1

2 1 2 1 1 5 1

3 1 2 1 1 1 1

1 1 2 1 1 5 1

1 1 2 1 3 1 1

3 1 2 3 1 1 1

2 1 1 3 3 1 1

4 1 1 3 1 1 1

2 1 1 3 3 1 1

3 1 1 1 3 1 1

2 1 1 1 1 10 1

1 1 1 1 1 5 1

1 1 1 1 1 1 16

3 1 1 1 1 1 10

9 1 1 1 1 1 1

3 1 1 1 1 1 16

5 1 1 1 1 5 1

1 1 1 1 3 10 1

1 1 1 3 3 1 1

1 1 1 3 1 5 1

152

Table 5.27: The observable matter content of the three-generation Left-Right
Symmetric Model.

QTY SU(2)L SU(2)R SU(3)C SU(3) SU(5) SO(10)

1 2 2 3 1 1 1

2 2 1 3 1 1 1

2 2 1 1 3 1 1

3 2 1 1 1 1 1

3 2 1 1 1 5 1

1 2 1 1 3 1 1

1 2 1 3 1 1 1

2 1 2 1 3 1 1

2 1 2 1 1 5 1

3 1 2 1 1 1 1

1 1 2 1 1 5 1

1 1 2 1 3 1 1

3 1 2 3 1 1 1

2 1 1 3 3 1 1

4 1 1 3 1 1 1

2 1 1 3 3 1 1

1 1 1 3 3 1 1

1 1 1 3 1 5 1

153

Table 5.28: A summary of the GUT group study with regard to the number of
chiral fermion generations in the NAHE set investigation.

GUT Net Chiral Generations? Three Generations?

O2L1 SO(10) Yes No

O2L1 Pati-Salam No No

O3L1 E6 Yes No

O3L1 SO(10) Yes No

O3L1 SU(5)⊗ U(1) Yes Yes

O3L1 Pati-Salam Yes No

O3L1 L-R Symmetric Yes Yes

O3L1 MSSM Yes Yes

154

CHAPTER SIX

Preliminary Systematic NAHE Variation Extensions

While there have been many quasi-realistic models constructed from the NAHE

basis, other bases can be used to create different classes of realistic and quasi-realistic

heterotic string models. In this chapter, one such basis will be discussed, called the

NAHE variation [52]. Like the NAHE set, the NAHE variation is a collection of five

order-2 basis vectors. However, the sets of matching boundary conditions are larger

than those of the NAHE set. This allows for a new class of models with “mirrored”

groups - that is, with gauge groups that occur in even factors. Some also have mir-

rored matter representations that do not interact with one another. This mirroring

means that the hidden sector content matches the observable sector content, making

the dark matter identical to the observable SM. Several scenarios with mirrored dark

matter have been presented as viable phenomenological descriptions of the universe

[66, 67, 68, 69]. The NAHE set does not have a tendency to produce mirrored mod-

els because the boundary conditions making up the SU(4)3 gauge groups break the

mirroring between the elements ψ, η and φ. As will be shown, the NAHE variation

keeps this mirroring, allowing for mirrored gauge groups and matter representations.

6.1 The NAHE Variation

The NAHE variation is a collection of five order-2 basis vectors that generate

a model with gauge group SO(22)⊗ E6 ⊗ U(1)5. The basis vectors making up this

set are presented in Table 6.1. The capacity for mirroring is clear from the basis

vectors: ψ
1,...,5

, along with w1,...,6 (when they are placed into complex pairs), all

have the boundary conditions as φ
1,...,8

. This allows the two parts of the basis vector

to mirror one another, and can allow for both mirrored gauge groups and matter

representations. The particle content of the NAHE variation model is presented in

155

Table 6.1: The basis vectors and GSO coefficients of the NAHE variation arranged

into sets of matching boundary conditions. The elements ψ, ψ
i
, ηi, and φ

i
are

expressed in a complex basis. xi, yi, wi, yi, and wi are expressed in a real basis.

Sec O ψ x12 x34 x56 ψ
1,...,5

η1 η2 η3 φ
1,...,8

~1 2 1 1 1 1 1,...,1 1 1 1 1,...,1

~S 2 1 1 1 1 0,...,0 0 0 0 0,...,0
~b1 2 1 1 0 0 1,...,1 1 0 0 0,...,0
~b2 2 1 0 1 0 1,...,1 0 1 0 0,...,0
~b3 2 1 0 0 1 1,...,1 0 0 1 0,...,0

Sec O y 12||y 12 y 34||y 34 y 56||y 56 w1,...,6||w1,...,6

~1 2 1||1 1||1 1||1 1,...,1||1,...,1

~S 2 0||0 0||0 0||0 0,...,0||0,...,0
~b1 2 0||0 1||1 1||1 0,...,0||0,...,0
~b2 2 1||1 0||0 1||1 0,...,0||0,...,0
~b3 2 1||1 1||1 0||0 0,...,0||0,...,0

kij =

~1 ~S ~b1
~b2

~b3

~S 0 0 0 0 0
~b1 1 1 1 1 1
~b2 1 1 1 1 1
~b3 1 1 1 1 1

156

Table 6.2: The particle content for the NAHE variation model. The model also has
five U(1) groups and N = 1 ST SUSY.

QTY SO(22) E6

30 22 1
15 1 27
90 1 1
15 1 27

Table 6.2. The observable sector is generally regarded as being the E6, as it is a

GUT group. However, additional observable sectors may come out of the SO(22) as

well. The large number of U(1) groups and non-Abelian singlets (when compared

to the NAHE set) is less phenomenologically favorable. However, the quantities of

both can reduce drastically, as will be seen shortly when the statistics for single layer

extensions are presented.

6.2 Order 2, Layer 1 Extensions

There were 309 unique models out of 1,315,328 total consistent models built

given the input parameters. Approximately 2% of the models in the data set without

rank cuts were duplicates, while none of the models with rank cuts had duplicates.

The gauge group content of those models is presented in Table 6.3. The most

common gauge group in this data set is U(1), while the most common non-Abelian

gauge group is SU(2). However, less than half of the models in the data set contain

SU(2). The other pertinent feature of these gauge groups is the presence of non-

simply laced gauge groups with high rank. The SO(2N + 1) groups range from

rank 2 up to rank 10. This is a feature unique to the NAHE variation extensions

(at least within this study). The NAHE set extensions do not have B-class gauge

groups with rank higher than 2. Finally, worth pointing out is how many models

retain their E6 symmetry — about one third. These models will be revisited later

157

Table 6.3: The gauge group content of the NAHE variation + O2L1 data set.

Gauge Group Number of Unique Models % of Unique Models

SU(2) 131 42.39%

SU(2)(2) 18 5.825%

SU(4) 33 10.68%

SU(6) 99 32.04%

SU(8) 1 0.3236%

SU(10) 1 0.3236%

SO(5) 18 5.825%

SO(7) 12 3.883%

SO(9) 18 5.825%

SO(11) 14 4.531%

SO(13) 18 5.825%

SO(15) 12 3.883%

SO(17) 18 5.825%

SO(19) 18 5.825%

SO(21) 18 5.825%

SO(8) 30 9.709%

SO(10) 125 40.45%

SO(12) 38 12.3%

SO(14) 33 10.68%

SO(16) 33 10.68%

SO(18) 38 12.3%

SO(20) 36 11.65%

SO(22) 31 10.03%

SO(24) 2 0.6472%

SO(32) 1 0.3236%

E6 101 32.69%

E7 3 0.9709%

E8 1 0.3236%

U(1) 304 98.38%

158

5 6 7 8 9 10

0

20

40

60

80

100

Number of Gauge Group Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

Figure 6.1: The number of gauge group factors in the NAHE variation + O2L1 data
set.

with the E6 treated as an observable sector gauge group, and the number of chiral

matter generations they have will be statistically examined.

Also of interest regarding the gauge group content of this data set is the number

of gauge group factors present in each model. Those are plotted in Figure 6.1. The

distribution of the number of gauge group factors across the unique models in this

data set have a peak around 8. This is close to the “initial” value (from the NAHE

variation alone) of 7. There are a few models in which some of the factors have

enhancements. These are likely the result of enhancements to the U(1) groups in

most cases.

Also related to the gauge group content is the distribution of the number of

U(1)’s in this data set. That is plotted in Figure 6.2. The distribution in Figure 6.2

has a clear peak at 5, implying that many of these order-2 extensions do not alter

the number of U(1)’s.

The frequencies of the GUT groups in this data set are tabulated in Table 6.4.

Regarding the matter content, the number of ST SUSYs is plotted in Figure 6.3,

159

0 2 4 6

0

50

100

Number of U(1) Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

Figure 6.2: The number of U(1) factors for the NAHE variation + O2L1 data set.

Table 6.4: The GUT group content of the NAHE variation + O2L1 data set.

GUT Group Number of Unique Models % of Unique Models

E6 101 32.69%

SO(10) 125 40.45%

SU(5)⊗ U(1) 0 0 %

SU(4)⊗ SU(2)⊗ SU(2) 0 0%

SU(3)⊗ SU(2)⊗ SU(2) 0 0%

SU(3)⊗ SU(2)⊗ U(1) 0 0%

160

0 1 2 3 4

0

50

100

150
157 151

1 0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

Figure 6.3: The number of ST SUSYs in the NAHE variation + O2L1 data set.

and the number of non-Abelian singlets is plotted in Figure 6.4. It is clear from

Figure 6.4 that the number of non-Abelian singlets can get quite high. While most

models have between 50 and 80, there can be up to 250 non-Abelian singlets in a

model. This implies that many models in this data set cannot be viable candidates

for quasi-realistic or realistic models.

6.3 Order 3, Layer 1 Extensions

As was the case with the NAHE set order-3 extensions, there are more distinct

models in the NAHE variation + O3L1 data set. Out of 442,272 models built 1,166

of them were unique. Based on the order-2 redundancies, the systematic uncertainty

for this data set is estimated to be 2%. Their gauge group content is tabulated in

Table 6.5. As was the case with the O2L1 data set, U(1) is the most common gauge

group. However, the percentage is significantly lower here, about 86% as opposed

to 98%. This suggests that some of the added basis vectors are unifying the five

U(1)’s in the NAHE variation into larger gauge groups. Also of note is the number

of models with gauge groups of higher rank than 11. In the O2L1 data set, there

161

Table 6.5: The gauge group content of the NAHE variation + O3L1 data set.

Gauge Group Number of Unique Models % of Unique Models

SU(2) 731 62.69%

SU(3) 128 10.98%

SU(4) 355 30.45%

SU(5) 165 14.15%

SU(6) 167 14.32%

SU(7) 75 6.432%

SU(8) 143 12.26%

SU(9) 164 14.07%

SU(10) 169 14.49%

SU(11) 137 11.75%

SU(12) 56 4.803%

SU(13) 4 0.3431%

SU(14) 1 0.08576%

SO(8) 376 32.25%

SO(10) 271 23.24%

SO(12) 151 12.95%

SO(14) 81 6.947%

SO(16) 106 9.091%

SO(18) 28 2.401%

SO(20) 69 5.918%

SO(22) 5 0.4288%

SO(24) 11 0.9434%

SO(28) 13 1.115%

SO(30) 1 0.08576%

SO(32) 2 0.1715%

SO(36) 1 0.08576%

E6 68 5.832%

E7 24 2.058%

E8 9 0.7719%

U(1) 1002 85.93%

162

0 50 100 150 200 250

0

10

20

30

Number of NA Singlets

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

Figure 6.4: The number of non-Abelian singlets in the NAHE variation + O2L1 data
set.

were only three models of this type, about 1%. In the O3L1 data set, there were

28 models with this property, about 2.4%. While it may seem from Tables 6.3 and

6.5 that the order-3 models are more prone to enhancements, Figure 6.5 makes it

clear that is not the case. The distribution of the number of gauge group factors

for a model peaks around 9-11 factors, as opposed to the peak around 8 factors for

the order-2 models. However, there are several models with enhancements, even

some models with as few as 2 distinct gauge group factors in them, something not

seen with the order-2 models. This implies there is a class of order-3 basis vectors

that greatly enhances the gauge group symmetries, while most order-3 models break

them.

The number of U(1) gauge groups per model is plotted in Figure 6.6. The

distribution of U(1) peaks between 5 and 7. More interestingly, a nontrivial number

of models do not have U(1) symmetries at all. This implies, when combined with

Figure 6.5, that in some models the U(1) are enhancing to larger (but still small

relative to SO(22) and E6) gauge groups. The mechanism producing this effect

163

2 4 6 8 10 12 14

0

100

200

Number of Gauge Group Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

Figure 6.5: The number of gauge group factors in the NAHE variation + O3L1 data
set.

0 2 4 6 8 10

0

50

100

150

200

250

Number of U(1) Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

Figure 6.6: The number of U(1) factors in the NAHE variation + O3L1 data set.

164

Table 6.6: The GUT group content of the NAHE variation + O3L1 data set.

GUT Group Number of Unique Models % of Unique Models

E6 68 5.832%

SO(10) 271 23.24%

SU(5)⊗ U(1) 165 14.15%

SU(4)⊗ SU(2)⊗ SU(2) 125 10.72%

SU(3)⊗ SU(2)⊗ SU(2) 61 5.232%

SU(3)⊗ SU(2)⊗ U(1) 63 5.403%

warrants further study, as it could be used to reduce the number of U(1) factors for

order-layer combinations that tend to produce too many U(1)’s. The frequency of

the GUT groups is presented in Table 6.6. The number of ST SUSYs is presented in

Figure 6.7. While there are a statistically significant number of enhanced ST SUSYs

(expected from models with odd-ordered right movers), the majority of these models

have N = 0 ST SUSY. The number of non-Abelian singlets is plotted in Figure 6.8.

The distribution of non-Abelian singlets indicates that a large number of models do

not have any non-Abelian singlets. It is possible that this is related to the number

of models with no U(1) factors.

6.4 Models with GUT Groups

As a parallel to the NAHE set extension study, the subsets of models containing

the GUT groups E6, SO(10), SU(5)⊗U(1), SU(4)⊗ SU(2)⊗ SU(2) (Pati-Salam),

SU(3)⊗SU(2)⊗SU(2) (Left-Right Symmetric), and SU(3)⊗SU(2)⊗U(1) (MSSM).

Like the NAHE study, the usual statistics will be reported along with the number

of net chiral generations for models containing the GUT groups in question. If there

165

0 1 2 3 4

0

200

400

600

800

1,000 915

190

61
0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

Figure 6.7: The number of ST SUSYs in the NAHE variation + O3L1 data set.

0 100 200 300 400

0

100

200

300

Number of NA Singlets

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

Figure 6.8: The number of non-Abelian singlets in the NAHE variation + O3L1 data
set.

166

is more than one way to configure an observable sector, each configuration will be

counted when tallying the charged exotics and net chiral generations.

6.4.1 E6

The equation for calculating the number of net chiral generations is given in

equation 5.1. There were 101 unique models containing E6 in the O2L1 data set,

while the O3L1 data set had only 68 unique models. The hidden sector gauge group

content for the O2L1 models is tabulated in Table 6.7. The hidden sector gauge

groups for the O3L1 models is presented in Table 6.8. The most noticeable feature

of both tables is that all of the models have U(1) gauge groups accompanying the E6.

Most do not have the SO(22) of the NAHE variation, however. Statistics related

to the number of net chiral fermion generations are presented in Figure 6.9 for the

O2L1 data set, along with the number of charged exotics. All of the models in the

O3L1 data set had no net chiral fermion generations or charged exotics. A vast

majority of the models in the O2L1 data set do not have observable sector charged

exotics or net chiral fermion generations, implying that the added basis vectors do

not often alter the matter content of the models. Statistics for the number of gauge

group factors, number of U(1) factors, the number of ST SUSYs, and the number of

non-Abelian singlets are presented in Figure 6.10 for the O2L1 data set and Figure

6.11 for the O3L1 data set.

6.4.2 SO(10)

The number of net chiral fermion generations for the SO(10) GUT group is

given by equation (5.2). There were 125 models with SO(10) in the O2L1 data

set and 271 models with SO(10) in the O3L1 data set. The hidden sector gauge

content is presented in Table 6.9 for the O2L1 models and Table 6.10 for the O3L1

models. Note that in both data sets all of the models with SO(10) also come

with a U(1) gauge group, implying the mechanism for reducing SO(22) (or more

167

Table 6.7: The hidden sector gauge group content for the NAHE variation + O2L1
E6 models.

Gauge Group Number of Unique Models % of Unique Models

SU(2) 14 13.86%

SU(2)(2) 8 7.921%

SU(4) 10 9.901%

SO(5) 6 5.941%

SO(7) 2 1.98%

SO(9) 6 5.941%

SO(11) 6 5.941%

SO(13) 6 5.941%

SO(15) 2 1.98%

SO(17) 6 5.941%

SO(19) 8 7.921%

SO(21) 6 5.941%

SO(8) 8 7.921%

SO(10) 14 13.86%

SO(12) 14 13.86%

SO(14) 9 8.911%

SO(16) 9 8.911%

SO(18) 14 13.86%

SO(20) 12 11.88%

SO(22) 8 7.921%

E8 1 0.9901%

U(1) 101 100%

168

Table 6.8: The hidden sector gauge groups for the NAHE variation + O3L1 E6

models.

Gauge Group Number of Unique Models % of Unique Models

SU(2) 31 45.59%

SU(3) 1 1.471%

SU(4) 12 17.65%

SU(6) 4 5.882%

SU(8) 6 8.824%

SU(9) 10 14.71%

SU(10) 8 11.76%

SU(11) 5 7.353%

SU(12) 4 5.882%

SU(13) 1 1.471%

SO(8) 9 13.24%

SO(10) 15 22.06%

SO(12) 12 17.65%

SO(14) 5 7.353%

SO(16) 3 4.412%

SO(18) 4 5.882%

SO(20) 2 2.941%

SO(22) 2 2.941%

E8 2 2.941%

U(1) 68 100%

169

0 5 10 15

0

20

40

60

80

Number of Chiral Matter Generations

N
u
m

b
er

of
D

is
ti

n
ct

O
b
se

rv
ab

le
S
ec

to
rs

(a) With Hidden Sector Duplicates

0 5 10 15

0

20

40

60

80

Number of Chiral Matter Generations

N
u
m

b
er

of
D

is
ti

n
ct

O
b
se

rv
ab

le
S
ec

to
rs

(b) Without Hidden Sector Duplicates

0 1 2 3 4

0

20

40

60

80

100

Number of Charged Exotics

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c)

Figure 6.9: The number of chiral matter generations and charged exotics for E6

models in the NAHE variation + O2L1 data set.

170

5 6 7 8 9

10

20

30

40

Number of Gauge Group Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(a)

2 3 4 5 6
0

10

20

30

40

Number of U(1) Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b)

0 1 2 3 4

0

20

40

52
49

0 0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c)

0 50 100 150

0

5

10

15

Number of NA Singlets

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(d)

Figure 6.10: Statistics for the E6 models in the NAHE variation + O2L1 data set.

171

5 6 7 8 9 10

0

10

20

Number of Gauge Group Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(a)

1 2 3 4 5 6
0

10

20

Number of U(1) Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b)

0 1 2 3 4

0

10

20

30

40

44

15

9

0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c)

0 50 100 150

0

5

10

15

Number of NA Singlets

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(d)

Figure 6.11: Statistics for the E6 models in the NAHE variation + O3L1 data set.

172

Table 6.9: Hidden sector gauge content of the NAHE variation + O2L1 SO(10)
models.

Gauge Group Number of Unique Models % of Unique Models

SU(2) 23 18.4%

SU(2)(2) 8 6.4%

SU(4) 10 8%

SU(6) 10 8%

SO(5) 6 4.8%

SO(7) 2 1.6%

SO(9) 6 4.8%

SO(11) 6 4.8%

SO(13) 6 4.8%

SO(15) 2 1.6%

SO(17) 6 4.8%

SO(19) 8 6.4%

SO(21) 6 4.8%

SO(8) 8 6.4%

SO(12) 35 28%

SO(14) 10 8%

SO(16) 10 8%

SO(18) 14 11.2%

SO(20) 12 9.6%

SO(22) 9 7.2%

E6 14 11.2%

E7 1 0.8%

U(1) 125 100%

173

Table 6.10: Hidden sector gauge content of the NAHE variation + O3L1 SO(10)
models.

Gauge Group Number of Unique Models % of Unique Models

SU(2) 155 57.2%

SU(3) 27 9.963%

SU(4) 59 21.77%

SU(5) 14 5.166%

SU(6) 59 21.77%

SU(7) 22 8.118%

SU(8) 24 8.856%

SU(9) 36 13.28%

SU(10) 26 9.594%

SU(11) 19 7.011%

SU(12) 11 4.059%

SU(13) 1 0.369%

SU(14) 1 0.369%

SO(8) 48 17.71%

SO(12) 35 12.92%

SO(14) 22 8.118%

SO(16) 10 3.69%

SO(18) 7 2.583%

SO(20) 2 0.738%

SO(22) 3 1.107%

E6 15 5.535%

E7 4 1.476%

E8 2 0.738%

U(1) 271 100%

174

0 5 10 15

0

50

100

Number of Chiral Matter Generations

N
u
m

b
er

of
D

is
ti

n
ct

O
b
se

rv
ab

le
S
ec

to
rs

(a) O2L1 with hidden sector duplicates.

0 5 10 15

0

50

100

Number of Chiral Matter Generations

N
u
m

b
er

of
D

is
ti

n
ct

O
b
se

rv
ab

le
S
ec

to
rs

(b) O2L1 without hidden sector duplicates.

0 2 4 6 8

0

20

40

60

80

100

Number of Charged Exotics

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c) O2L1.

0 1 2 3 4 5 6

0

50

100

150

200

Number of Charged Exotics

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(d) O3L1.

Figure 6.12: Statistics related to the observable sector in the SO(10) NAHE variation
models.

likely E6) is not unifying the U(1)’s into a larger group. The number of net chiral

fermion generations in the O2L1 data set with and without hidden sector duplicates

is presented in Figure 6.12. No models in the O3L1 data set had any net chiral

matter generations, but both data sets contained observable sector charged exotics.

Those are also plotted in Figure 6.12. Since most models in the O2L1 data set and

all of the models in the O3L1 data set had zero net chiral matter generations, it is

clear that more complicated basis vector sets — either higher order or more layers

— will be needed to produce quasi-realistic SO(10) GUT models. It is also clear

175

6 7 8 9 10

10

20

30

40

50

Number of Gauge Group Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(a)

3 4 5 6 7

10

20

30

40

50

Number of U(1) Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b)

0 1 2 3 4

0

20

40

60

66
59

0 0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c)

0 50 100 150 200 250

0

5

10

15

Number of NA Singlets

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(d)

Figure 6.13: Statistics for the NAHE variation + O2L1 SO(10) models.

that the number of observable sector charged exotics is peaked at zero. This would

be advantageous if more models had a net number of chiral fermion generations.

It is likely that the models without observable sector charged exotics do not have

any net chiral matter generations, thus limiting the phenomenological advantages of

having few exotics. The remaining statistics for the SO(10) models are presented in

Figure 6.13 for the O2L1 models and Figure 6.14 for the O3L1 models.

6.4.3 SU(5)⊗ U(1)

The number of net chiral matter generations in a flipped SU(5) model is

presented in equation (5.3). As was the case with the NAHE set, there were not

176

6 8 10 12

0

20

40

60

80

100

Number of Gauge Group Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(a)

2 4 6 8

0

20

40

60

80

Number of U(1) Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b)

0 1 2 3 4

0

50

100

150

200

216

44

11
0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c)

0 50 100 150 200 250

0

20

40

Number of NA Singlets

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(d)

Figure 6.14: Statistics for the NAHE variation + O3L1 SO(10) models.

177

Table 6.11: The hidden sector gauge group content of the SU(5)⊗ U(1) models in
the NAHE variation + O3L1 data set.

Gauge Group Number of Unique Models % of Unique Models

SU(2) 87 52.73%

SU(3) 19 11.52%

SU(4) 28 16.97%

SU(6) 8 4.848%

SU(7) 20 12.12%

SU(8) 23 13.94%

SU(9) 34 20.61%

SU(10) 35 21.21%

SU(11) 32 19.39%

SU(12) 1 0.6061%

SO(8) 22 13.33%

SO(10) 14 8.485%

SO(12) 7 4.242%

SO(14) 5 3.03%

NAHE variation based O2L1 extensions producing an SU(5) ⊗ U(1) gauge group.

The O3L1 extensions, however, produced 165 models containing SU(5)⊗U(1). The

hidden sector gauge content of those models is presented in Table 6.11. Most of

the models have the SU(5) GUT group accompanied by another SU(N + 1) gauge

group, a result of the models being built from an extension with an odd ordered

RM. The ranks of these SU(N + 1) groups can get quite large. This is likely due to

the additional twisted sector from the extension breaking the SO(22) group of the

NAHE variation into the SU(N + 1) groups. None of the models in this data set

178

0 10 20 30

0

10

20

30

40

50

Number of Charged Exotics

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

Figure 6.15: The number of observable sector charged exotics for the flipped-SU(5)⊗
U(1) models in the NAHE variation + O3L1 data set.

had net chiral matter generations. The number of observable sector charged exotics

is presented in Figure 6.15. Other statistics related to the SU(5)⊗ U(1) models in

the NAHE variation + O3L1 data set are presented in Figure 6.16.

6.4.4 Pati-Salam

The Pati-Salam gauge group is SO(6)⊗SO(4), which is isomorphic to SU(4)⊗

SU(2) ⊗ SU(2). The number of net chiral matter generations is given by equation

(5.4). As was the case with the NAHE investigations, the generations of matter

and anti-matter follow the same statistics, since all of the possible permutations of

observable sectors are counted. There are no models in the O2L1 data set containing

the Pati-Salam gauge group, but the O3L1 data set had 125 such models. The hidden

sector gauge content of those models is presented in Table 6.12. The hidden sector

gauge group appearing in the most models is U(1), which is expected. Additional

U(1) groups are common with basis vectors of fractional phases, such as the ones in

this data set. All of the models in this data set had zero net chiral matter generations,

suggesting more complex basis vectors should be used to construct quasi-realistic

179

9 10 11 12

20

40

60

Number of Gauge Group Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(a)

5 6 7 8 9

10

20

30

40

50

60

Number of U(1) Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b)

0 1 2 3 4

0

50

100

150 146

19

0 0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c)

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

Number of NA Singlets

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(d)

Figure 6.16: Statistics for the SU(5)⊗ U(1) models in the NAHE variation + O3L1
data set.

180

Table 6.12: The hidden sector gauge group content for the Pati-Salam models in
the NAHE variation + O3L1 data set.

Gauge Group Number of Unique Models % of Unique Models

SU(3) 12 9.6%

SU(5) 8 6.4%

SU(6) 25 20%

SU(8) 29 23.2%

SU(9) 24 19.2%

SU(10) 15 12%

SU(11) 3 2.4%

SU(12) 7 5.6%

SO(8) 9 7.2%

SO(10) 11 8.8%

SO(12) 22 17.6%

SO(14) 19 15.2%

SO(16) 4 3.2%

SO(20) 2 1.6%

E6 1 0.8%

U(1) 123 98.4%

181

0 20 40 60 80 100 120 140

0

20

40

60

Number of Charged Exotics

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

Figure 6.17: The number of observable sector charged exotics in the NAHE variation
+ O3L1 data set.

Pati-Salam models originating with this NAHE variation. The number of observable

sector charged exotics is presented in Figure 6.17, while remaining statistics for these

models is presented in Figure 6.18.

6.4.5 Left-Right Symmetric

The Left-Right Symmetric GUT group is a derivative of the Pati-Salam GUT,

replacing the SU(4) that governed lepton and quark generations to an SU(3), which

directly represents the QCD color force. As was the case with the NAHE extensions,

only the quark generations will be statistically examined in this study. The number

of net chiral quark generations is given by equation (5.5). There were no models

containing this gauge groups in the O2L1 data set (none contained SU(3)), but there

were 61 models in the O3L1 data set with this GUT group. The hidden sector gauge

group content is presented in Table 6.13. Note that all of the models in this subset

have U(1) factors. This means each of them also contains an MSSM gauge group as

well. Statistics on MSSM models will be presented in the next section.

182

6 8 10 12

0

10

20

30

40

Number of Gauge Group Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(a)

0 2 4 6 8

0

10

20

30

40

Number of U(1) Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b)

0 1 2 3 4

0

20

40

60

80

100 98

22

5
0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c)

0 50 100 150 200

0

10

20

30

Number of NA Singlets

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(d)

Figure 6.18: Statistics for the Pati-Salam models in the NAHE variation + O3L1
data set.

183

Table 6.13: The hidden sector gauge group content of the Left-Right Symmetric
models in the NAHE variation + O3L1 data set.

Gauge Group Number of Unique Models % of Unique Models

SU(4) 12 19.67%

SU(7) 14 22.95%

SU(8) 7 11.48%

SU(9) 9 14.75%

SU(10) 12 19.67%

SU(11) 17 27.87%

SU(12) 2 3.279%

SO(8) 8 13.11%

SO(10) 6 9.836%

U(1) 61 100%

184

0 20 40 60

0

10

20

30

Number of Charged Exotics

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

Figure 6.19: The number of observable sector charged exotics in the NAHE variation
+ O3L1 Left-Right Symmetric models.

As was the case with the Pati-Salam models, all of the models in this data set

have zero net quark generations. The number of observable sector charged exotics

is presented in Figure 6.19, and other statistics are presented in Figure 6.20.

6.4.6 MSSM-like Models

The MSSM1 gauge group is SU(3) ⊗ SU(2) ⊗ U(1). As with the NAHE

investigation, only the quark generations will be statistically examined. Thus, the

term chiral matter generation here refers only to quark generations. The equation

for the number of net chiral matter generations is given by equation (5.6), while the

number of net chiral anti-generations is given by equation (5.7). Due a lack of SU(3)

groups, no models in the NAHE variation + O2L1 data set contain the MSSM gauge

groups. The O3L1 data set has 63 models with the MSSM group. The hidden sector

gauge content of these models is presented in Table 6.14. A significant number of

these models contain higher rank SU(N + 1) gauge groups, while not many contain

1 As as the case with the NAHE investigation, MSSM here refers only to the gauge group.
Models with this gauge group may or may not have ST SUSY.

185

10 11 12 13 14

5

10

15

20

25

Number of Gauge Group Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(a)

5 6 7 8 9

10

15

20

Number of U(1) Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b)

0 1 2 3 4

0

20

40

60 57

4
0 0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c)

0 20 40 60 80 100
0

2

4

6

8

10

12

Number of NA Singlets

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(d)

Figure 6.20: Statistics for the Left-Right Symmetric models in the NAHE variation
+ O3L1 data set.

186

Table 6.14: The hidden sector gauge groups for the MSSM models in the NAHE
variation + O3L1 data set.

Gauge Group Number of Unique Models % of Unique Models

SU(4) 13 20.63%

SU(6) 1 1.587%

SU(7) 14 22.22%

SU(8) 7 11.11%

SU(9) 9 14.29%

SU(10) 12 19.05%

SU(11) 18 28.57%

SU(12) 3 4.762%

SO(8) 8 12.7%

SO(10) 6 9.524%

187

0 20 40 60

0

5

10

15

20

25

Number of Charged Exotics

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

Figure 6.21: The number of observable sector charged exotics in the NAHE variation
+ O3L1 data set.

higher ranking SO(2N) groups. None of them contain a group from the original

NAHE variation. More complicated basis vector sets will be needed to see if the

E6 group in the NAHE variation can be broken to the MSSM without breaking the

SO(22). None of the possible observable sector choices yielded net chiral matter

generations either. The number of observable sector charged exotics is presented in

Figure 6.21, while other statistics related to these models are presented in Figure

6.22.

6.4.7 ST SUSYs

The ST SUSY distributions across the GUT group subsets was examined in

the NAHE set investigations. It will be examined here as well. The distributions

of ST SUSYs for the full NAHE variation + O2L1 data set, the O2L1 E6 models,

and the O2L1 SO(10) models are plotted in Figure 6.23. The distributions of ST

SUSYs for the full NAHE variation + O3L1 data set, the E6 models, the SO(10)

models, the SU(5) ⊗ U(1) models, and the Pati-Salam models in the O3L1 data

set are plotted in Figure 6.24. The distributions of ST SUSYs for the full NAHE

188

8 9 10 11 12 13 14

0

10

20

Number of Gauge Group Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(a)

4 5 6 7 8 9

0

5

10

15

20

25

Number of U(1) Factors

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b)

0 1 2 3 4

0

20

40

60 57

5
1 0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c)

0 20 40 60 80 100
0

2

4

6

8

10

12

Number of NA Singlets

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(d)

Figure 6.22: Statistics for the MSSM models in the NAHE variation + O3L1 data
set.

189

0 1 2 3 4

0

50

100

150
157 151

1 0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(a) Full data set.

0 1 2 3 4

0

20

40

52
49

0 0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b) E6 Models.

0 1 2 3 4

0

20

40

60

66
59

0 0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c) SO(10) Models.

Figure 6.23: The distributions of ST SUSYs for the NAHE variation + O2L1 GUT
group data sets.

190

0 1 2 3 4

0

200

400

600

800

1,000 915

190

61
0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(a) Full data set.

0 1 2 3 4

0

10

20

30

40

44

15

9

0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b) E6 Models.

0 1 2 3 4

0

50

100

150

200

216

44

11
0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c) SO(10) models.

0 1 2 3 4

0

50

100

150 146

19

0 0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(d) SU(5)⊗ U(1) models.

0 1 2 3 4

0

20

40

60

80

100 98

22

5
0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(e) Pati-Salam models.

Figure 6.24: The distributions of ST SUSYs for the NAHE variation + O3L1 GUT
group data sets.

191

0 1 2 3 4

0

200

400

600

800

1,000 915

190

61
0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s
(a) Full data set.

0 1 2 3 4

0

20

40

60 57

4
0 0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(b) Left-Right Symmetric models.

0 1 2 3 4

0

20

40

60 57

5
1 0

Number of ST SUSYs

N
u
m

b
er

of
D

is
ti

n
ct

M
o
d
el

s

(c) MSSM models.

Figure 6.25: The distributions of ST SUSYs for the NAHE variation + O3L1 GUT
group data sets.

variation + O3L1 data set, the Left-Right Symmetric models, and the MSSM models

in the O3L1 data set are plotted in Figure 6.25. The O2L1 models all have the same

distributions regardless of which GUT is chosen. In these models, the gauge content

does not statistically couple to the ST SUSY. For the O3L1 models, however, some of

the GUT groups do appear to couple with the ST SUSY. In particular, the E6 models

have a greater percentage of models with N = 2 ST SUSY. The SU(5)⊗U(1) modes,

Left-Right Symmetric models, and the MSSM models have a lower percentage of

models with N = 1 ST SUSY as well. As all of the models containing these GUTs

192

Table 6.15: The basis vector and kij row of the NAHE variation extension
producing the SO(11)⊗ SO(11)⊗ SO(10)⊗ U(1)5 mirrored model.

Sec O ψ x12 x34 x56 ψ
1,...,5

η1 η2 η3 φ
1,...,8

~v 2 1 1 1 1 1,...,1 1,...,1 0,...,0,1,1,1

Sec O y 12||y 12 y 34||y 34 y 56||y 56 w1,...,6||w1,...,6

~v 2 0,0||0,0 1,1||1,1 0,1||0,1 0,0,1,1,0,1||0,1,1,1,1,1

k~v,j = (1,1,1,1,1)

have at least a single U(1), there could be a correlation between the number of

U(1)’s and the number of ST SUSYs.

6.5 Models with Mirroring

The larger sets of matching boundary conditions, seen in Table 6.1, are ex-

pected to lead to models with mirrored gauge groups and matter states. Only one

model in those discussed thus far exhibit full gauge mirroring, and the matter states

are not mirrored. Rather than examine that model, three models that appeared in

the first NAHE variation study [52] that have two mirrored gauge groups with a

single “shadow” gauge group will be discussed. They have mostly mirrored matter

representations as well, with limited coupling between the mirrored gauge groups

and the shadow group.

The first of these models is an order-2 extension to the NAHE variation with

a gauge groups SO(11) ⊗ SO(11) ⊗ SO(10) ⊗ U(1)5. The basis vector producing

this model are presented in Table 6.15, and the particle content is presented in

Table 6.16. The matter representations of the SO(11) gauge groups are completely

mirrored, but not decoupled. There is one (11,11,1) representation that couples the

representations of the two SO(11) groups. Neither of the SO(11) groups have a

representation charged under the shadow SO(10), however. Analysis of the U(1)

193

Table 6.16: The particle content of the SO(11)⊗ SO(11)⊗ SO(10)⊗ U(1)5

mirrored model. The model has N = 0 ST SUSY.

QTY SO(11) SO(11) SO(10)
2 32 1 1
1 11 11 1
16 11 1 1
2 1 32 1
16 1 11 1
8 1 1 16
12 1 1 10
88 1 1 1
12 1 1 16

charges will determine how “deep” the mirroring goes into the phenomenology. A

C++ class for U(1) analysis is currently being written, and will be implemented

soon.

Another model that shows a similar mirroring with a shadow gauge group

with gauge group SO(10)⊗ SO(10)⊗ SO(14)⊗ U(1)5 will be presented. The basis

vector making up this model are tabulated in Table 6.17, and the particle content

is tabulated in Table 6.18. This model is an order-3 model constructed from the

NAHE variation, but without the ~S sector generating the ST SUSY. The model

generates its own gravitino sector via the mechanism described in the D = 10 study.

In this model, the mirrored SO(10)’s do not couple to one another, but each has

a single (10,14) state that couples to the shadow SO(14). As was the case with the

mirrored SO(11) model, this model will be a good candidate for U(1) analysis.

The final mirrored model presented in this study has a gauge group E6⊗E6⊗

SO(14) ⊗ U(1). The basis vector producing this model is presented in Table 6.19,

and the particle content of this model is presented in Table 6.20. Each of the

gauge groups in this model is completely decoupled from the others. It is likely

this mirroring is more common amongst models with larger mirrored gauge groups;

194

Table 6.17: The basis vector and kij row of the NAHE variation extension
producing the SO(10)⊗ SO(10)⊗ SO(14)⊗ U(1)5 mirrored model.

Sec O ψ x12 x34 x56 ψ
1,...,5

η1 η2 η3 φ
1,...,8

~v 3 1 1 1 1 0,...,0 0 2
3

2
3

0,...,0,2
3
,2
3

Sec O y 12||y 12 y 34||y 34 y 56||y 56 w1,...,6||w1,...,6

~v 3 0,0||2
3
,2
3

0,0||2
3
,2
3

0,0||2
3
,2
3

0,0,0,0,0,0||2
3
,0,2

3
,2
3
,0,2

3

k~v,j = (1,1,1,1)

Table 6.18: The particle content of the SO(10)⊗ SO(10)⊗ SO(14)⊗ U(1)5 model.
This model has N = 0 ST SUSY.

QTY SO(10) SO(10) SO(14)
8 16 1 1
1 10 1 14
14 10 1 1
8 1 16 1
1 1 10 14
14 1 10 1
12 1 1 14
40 1 1 1
8 1 16 1
8 16 1 1

Table 6.19: The basis vector and kij row of the NAHE variation extension
producing the E6 ⊗ E6 ⊗ SO(14)⊗ U(1)3 mirrored model.

Sec O ψ x12 x34 x56 ψ
1,...,5

η1 η2 η3 φ
1,...,8

~v 3 1 1 0 0 2
3
,...,2

3
0 0 2

3
0,0,0,2

3
,...,2

3

Sec O y 12||y 12 y 34||y 34 y 56||y 56 w1,...,6||w1,...,6

~v 3 0,0||0,0 1,1||0,0 1,1||2
3
,2
3

0,0,0,0,0,0||0,0,0,0,0,0

k~v,j = (0,1,0,1,0)

195

Table 6.20: The particle content of the E6 ⊗ E6 ⊗ SO(14)⊗ U(1)3 model. This
model has N = 2 ST SUSY.

QTY SO(14) E6 E6

12 14 1 1
6 1 27 1
6 1 1 27
6 1 1 27
6 1 27 1

the masslessness conditions for the fermion states constrain the total dimensions of

transformation under the gauge groups.

While none of these models can serve as a quasi-realistic mirrored model, they

do serve to highlight the features of the NAHE variation that are conducive to

observable-hidden sector mirroring. Steps will be taken in future analysis to further

automate searches for mirrored models with a shadow sector.

6.6 Conclusions

Though there were many models containing GUTs in the data sets explored in

this study, a vast majority of them do not contain any net chiral fermion generations.

No three-generation models were found. These conculsions are summarized in Table

??. While there were more models with GUT gauge groups in the NAHE variation

+ O3L1 data set, none of them had any net chiral matter generations, implying that

the added basis vector produces the barred and unbarred generations in even pairs,

if at all. More complicated basis vector sets will need to be studied to see if any

NAHE variation based quasi-realistic models can be constructed.

The distributions of ST SUSYs across the subsets of GUT models was also

examined. It was concluded that, as was the case with the NAHE study, E6 has a

statistical coupling to enhanced ST SUSYs for order-3 models. Additionally, data

196

Table 6.21: A summary of the GUT group study with regard to the number of
chiral fermion generations in the NAHE variation investigation.

GUT Net Chiral Generations? Three Generations?
O2L1 E6 Yes No

O2L1 SO(10) Yes No
O3L1 E6 No No

O3L1 SO(10) No No
O3L1 SU(5)⊗ U(1) No No

O3L1 Pati-Salam No No
O3L1 L-R Symmetric No No

O3L1 MSSM No No

sets in which all of the models contained at least one U(1) factor had fewer models

with N = 1 ST SUSY.

Models with partial gauge group mirroring were also discussed, with three

cases presented: one in which the representations of the mirrored groups coupled to

one another, one in which they coupled with a third “shadow” gauge group, and one

in which they were completely decoupled. While a statistical search algorithm for

finding quasi-mirrored models has not yet been completed, it will be used in future

work to examine models with this property statistically.

197

APPENDICES

198

APPENDIX A

FF Framework Documentation

A.1 Introduction

Included here is the documentation for the FF Framework, a collection of C++

classes which serve as a tool set for constructing FFHS models. Details are presented

on each class regarding members and usage, with more difficult or complicated algo-

rithms detailed explicitly as needed. Detailed descriptions of class inheritances are

also included, as well as instructions for operating the makefile.

A.2 FF Framework Classes

A.2.1 Format of class information

The formatting for relevant information is printed as follows:

NAME: The name of the class

PURPOSE: What the class does within the FF Framework.

OBJECTS CREATED BY: Which classes in the framework create objects of

this type.

USED IN: Which classes in the framework use objects of this type.

MEMBERS: Descriptions of each of the members in the class.

CONSTRUCTORS: Descriptions of each of the constructors for the class. Copy

constructors are not included.

METHODS: Descriptions of each of the methods in the class.

In addition, each class will have an accessor and a setter for each member. Accessors

are const functions which return by value for fundamental C++ types and return by

199

const reference for C++ STL and FF Framework types. Setters are void functions

which take an argument of the same type as the accessor of the member which

is being set. Accessors are named the same as the member without the tailing

underscore, while setters are named with Set appended to the front of the member

name without the tailing underscore. Each class has a copy constructor, which

takes as an argument a const reference to an object of the same class and copies all

members of the new class onto *this. Each class also has a destructor which is empty,

allowing STL container destructors to handle memory deallocation.

A.2.2 FF Alpha.hh

NAME: Alpha

PURPOSE: Serves as a bridge between the Basis Alpha class and the Alpha Fermion,

Alpha Boson, and Alpha SUSY classes. It is used before the type and mass of

the alpha have been determined by the Model Builder class.

OBJECTS CREATED BY: Alpha Builder

USED IN: Model Builder, Alpha Builder

MEMBERS:

vector¡int¿ Coefficients The coefficients which produced *this in Alpha Builder.

CONSTRUCTORS:

Alpha() A default constructor. Does not initialize members.

Alpha(const vector¡int>& Numerator, int Denominator,

const vector<int>& Coefficients) Initializes members of the same name, some

of which are in the base class, whose constructor is also called.

METHODS:

200

int Mass Left() Returns the mass squared of the left moving part of *this.

int Mass Right() Returns the mass squared of the right moving part of *this.

virtual char Type() const Returns the character type of *this when called through

one of the inherited classes. For the Alpha class it returns ’n’.

bool operator<(const Alpha& Other Alpha) const Compares the

numerators using the STL vector < operator.

void Display Coefficients() const Prints the Coefficients member onto the screen

for debugging purposes.

A.2.3 FF Alpha Boson.hh

NAME: Alpha Boson

PURPOSE: Holds the data for a boson sector. It also has a character member

which indicates which subclass of Alpha is being passed to State Builder.

OBJECTS CREATED BY: Alpha Builder

USED IN: Model Builder, State Builder, Alpha Builder

MEMBERS: None.

CONSTRUCTORS:

Alpha Boson(const vector<int>& Numerator, int Denominator,

const vector<int>& Coefficients) All arguments are passed to the Alpha class’s

constructor.

METHODS:

char Type() const Returns the character ’b’. Used to determine which states

to build in State Builder.

201

A.2.4 FF Alpha Builder.hh

NAME: Alpha Builder

PURPOSE: Builds the linear combinations of alphas from a set of basis alphas with

matching denominators, checks whether or not they can produce massless

states, then classifies them as Alpha Boson, Alpha Fermion, or Alpha SUSY. It

also contains a boolean flag in the event that not all basis alphas are linearly

independent.

OBJECTS CREATED BY: Model Builder

USED IN: Model Builder

MEMBERS:

vector<Basis Alpha> Common Basis Alphas Used as a basis to build the Al-

phas.

vector<int> Coefficient Limits Holds the limits for the coefficients used to

produce the linear combinations of Common Basis Alphas .

set<Alpha Boson> Alpha Bosons Holds the boson sectors produced by Com-

mon Basis Alphas which are capable of producing massless states. The

container is an STL set rather than a vector or list because the recursive

algorithm used to build the linear combinations produces duplicates.

This is something which could be improved in future revisions.

set<Alpha Fermion> Alpha Fermions Holds the fermion sectors produced by

Common Basis Alphas which are capable of producing massless states.

The container is an STL set rather than a vector or list because the

recursive algorithm used to build the linear combinations produces du-

plicates. This is something which could be improved in future revisions.

202

set<Alpha SUSY> Alpha SUSYs Holds the SUSY sectors produced by Com-

mon Basis Alphas which are capable of producing massless gravitino

states. The container is an STL set rather than a vector or list be-

cause the recursive algorithm used to build the linear combinations

produces duplicates. This is something which could be improved in

future revisions.

bool Linearly Independent Alphas A boolean flag which is set to false if the

basis alphas are not linearly independent.

See the bool Linearly Independent Alpha(const Alpha& Last Alpha) method

for more details.

CONSTRUCTORS:

Alpha Builder(const vector<Basis Alpha>& Common Basis Alphas,

const vector<Basis Alpha>& Basis Alphas) This constructor first initializes the

Common Basis Alphas member with the value of Common Basis Alphas.

It then sets the Coefficient Limits member to the return value of the

Get Coefficient Limits(const vector<Basis Alpha>& Basis Alphas) method.

It also initializes the member Linearly Independent Alphas to a default

value of true.

METHODS:

void Build Alphas() This method serves as an interface for the class. Firstly,

it initializes an empty Alpha object with numerator, coefficients, and

denominator equal to zero. It then begins the recursion by calling the

Add Alphas(int Layer, Alpha Last Alpha) method with Layer = 0 and the

empty Alpha object.

void Display Common Basis Alphas() const Prints the Common Basis Alphas mem-

ber onto the screen for debugging purposes.

203

void Display Coefficient Limits() const Prints the Coefficient Limits member onto

the screen for debugging purposes.

void Display Alpha Bosons() const Prints the Alpha Bosons member onto the

screen for debugging purposes.

void Display Alpha Fermions() const Prints the Alpha Fermions member onto the

screen for debugging purposes.

void Display Alpha SUSYs() const Prints the Alpha SUSYs member onto the

screen for debugging purposes.

void Display All Alphas() const Calls Display Alpha Bosons(),

Display Alpha Fermions(), and Display Alpha SUSYs() functions sequentially

for debugging purposes.

vector<int> Get Coefficients(const vector<Basis Alpha>&

Basis Alphas) This method, called in the constructor, takes Basis Alphas as an

argument and extracts the denominator from each Basis Alpha object

in the container. Those denominators serve as limits on the possible

coefficients that can be used when producing the linear combinations

of Common Basis Alphas . The denominators are pushed onto the vector

Coefficient Limits and returned.

void Add Alphas(int Layer, Alpha Last Alpha) A recursive method which actu-

ally builds the sectors. It essentially nests for loops (representing the

coefficients which build the sectors) for each basis alpha in the model,

then categorizes each result based on the type of Alpha object which is

created. The method first checks if the variable Layer is less than the size

of Common Basis Alphas . If this statement evaluates to true, then the

builder has not yet nested all of the for loops needed to apply the range

of coefficients to build the space. It creates STL vectors representing the

204

numerator (New Numerator) and the coefficients (New Coefficients) of the

Alpha object to be built, initializing them to the values of each related

member in Last Alpha. It sets the element of the New Coefficients vector

at Layer (meaning the coefficient on the element of Common Basis Alphas

which goes into the linear combination) to the value in the loop. It then

adds the index of the for loop, which represents the coefficient value,

multiplied by the element of Common Basis Alphas to each element of

New Numerator. Once those values have been added to New Numerator,

the method then calls vector<int> Adjust Alpha Range(vector<int> Al-

pha Numerator) to adjust the values added to fit the the correct range

for phases. Finally, a new Alpha object is created from New Numerator

and New Coefficients, and is passed to Add Alphas along with an incre-

mented Layer variable, thereby invoking the recursion. If the (Layer

< Common Basis Alphas().size()) statement evaluates to false, then all of

the loops have been nested. The method sets a variable as the de-

nominator for the mass squared calculation, then calls the bool Lin-

early Independent Alpha(const Alpha& Last Alpha) method, passing it

Last Alpha. If that method returns false, then Linearly Independent Alphas

is set to false, indicating that this model is not consistent. Next, the

method determines which type of Alpha Last Alpha is. The method as-

signs values to variables Mass Left and Mass Right by calling the methods

of the same name for Last Alpha. A series of if statements are then used

to check the criterion first for Alpha SUSY, then Alpha Boson, and finally

Alpha Fermion. If the length squared of the left mover is equal to 8, the

length squared of the right mover is equal to 0, and the first element

(the ST fermion mode) is equal to zero, then it is an Alpha SUSY, and

Last Alpha is cast as an Alpha SUSY, then is inserted onto the mem-

205

ber variables Alpha SUSYs as well as Alpha Fermions , since the SUSY-

generating sector can also generate non-SUSY partner fermions. If the

left mover length squared is equal to zero, and the right mover length

squared is less than 16, then it is an Alpha Boson, and Last Alpha is cast

as an Alpha Boson type and inserted into the member Alpha Bosons . If

the left mover length squared is less than or equal to 8, the right mover

length squared is less than or equal to 16, and the first element (the

ST fermion mode) is not equal to zero, then it is an Alpha Fermion, and

Last Alpha is cast as an Alpha Fermion, then inserted into Alpha Fermions .

Schematically, the process is drawn out in Figure A.2.4.

vector<int> Adjust Alpha Range(vector<int> Alpha Numerator)

Once the basis alphas have been added with their coefficients, the values

of the elements need to be modded back into the range N
2

¡αi ≤ N
2

. This

function does that for each of the elements and returns the resulting

vector to be placed as an Alpha’s numerator.

bool Linearly Independent Alpha(const Alpha& Last Alpha)

Determines whether or not the given Last Alpha is the result of linearly

dependent Basis Alpha objects. This will occur if and only if the numer-

ator is all 0’s and the coefficients which produced that numerator are

not all 0’s. It first checks the numerator, then checks the coefficients,

but this could be optimized for more efficiency at some point.

A.2.5 FF Alpha Fermion.hh

NAME: Alpha Fermion

PURPOSE: Holds the data for a fermion sector. It also has a character member

which indicates which subclass of Alpha is being passed to State Builder.

OBJECTS CREATED BY: Alpha Builder

206

B
u

il
d

A
lp

h
a
s

A
d

d
A

lp
h

a
s

S
e
t

C
o
e
ffi

c
ie

n
ts

C
a
lc

u
la

te
L

M
,

R
M

m
a
ss

e
s

A
d

d
B

V
m

u
lt

ip
li

e
d

b
y

c
o
e
ffi

c
ie

n
ts

C
la

ss
if

y

A
d

ju
st

R
a
n

g
e
,

in
c
re

m
e
n
t

L
a
y
e
r

A
lp

h
a

F
e
rm

io
n

A
lp

h
a

B
o
so

n
A

lp
h

a
S

U
S

Y

N
es

te
d

in
fo

r
lo

op

N
es

ti
n
g

te
rm

in
at

es

F
ig

u
re

A
.1

:
T

h
e

re
cu

rs
io

n
tr

ee
fo

r
th

e
A

lp
h

a
B

u
il

d
e
r

cl
as

s.

207

USED IN: Model Builder, State Builder

MEMBERS: None.

CONSTRUCTORS:

Alpha Fermion(const vector<int>& Numerator, int Denominator,

const vector<int>& Coefficients) All arguments are passed to the Alpha class’s

constructor.

METHODS:

char Type() const Returns the character ’f’. Used to determine which states

to build in State Builder.

A.2.6 FF Alpha SUSY.hh

NAME: Alpha SUSY

PURPOSE: Holds the data for a SUSY generating sector. It also has a character

member indicating which subclass of Alpha is being passed to State Builder.

OBJECTS CREATED BY: Alpha Builder

USED IN: Model Builder, State Builder

MEMBERS: None.

CONSTRUCTORS: Alpha SUSY(const vector<int>& Numerator,

int Denominator, const vector<int>& Coefficients) All arguments are passed to

the Alpha class’s constructor.

METHODS:

char Type() const Returns the character ’s’. Used to determine which states

to build in State Builder.

208

A.2.7 FF Basis Alpha.hh

NAME: Basis Alpha

PURPOSE: Holds the physical phases which the fermion modes gain when parallel-

transported around the loops of space-time. A group of objects of this type

specify the basis set for the modes in consistent models.

OBJECTS CREATED BY: Basis Alpha Builder

USED IN: Basis Alpha Builder, Alpha Builder, Fermion Mode Map Builder,

GSO Coefficient Matrix Builder, GSO Projector

MEMBERS:

vector<int> Numerator The numerator values.

int Denominator The denominator.

int LM Size The number of elements in the left moving part of the

Basis Alpha. This is necessary when computing Lorentz dot products

and finding sets of matching boundary conditions.

int RM Compact Size The number of elements in the right moving compact

part of the Basis Alpha. This is necessary when finding sets of matching

boundary conditions.

CONSTRUCTORS:

Basis Alpha() This is a default constructor which does not initialize any vari-

ables. Its use is not recommended, but is needed for some of the other

objects in the framework to utilize this class.

Basis Alpha(const vector<int>& Numerator, int Denominator) This constructor ini-

tializes the Numerator and Denominator members respectively, then

calls the Calculate LM Size() and Calculate RM Compact Size() methods,

which initialize LM Size and RM Compact Size .

209

Basis Alpha(const vector<int>& Numerator, int Denominator,

const Basis Vector& BV) Initializes Numerator and Denominator with the ar-

guments of the same name. It then initializes LM Size to

BV.LM Size() and RM Compact Size to BV.RM Compact Size().

Basis Alpha(const vector<int>& Numerator, int Denominator,

int Large ST Dimensions) Initializes Numerator with Numerator and

Denominator with Denominator. Using the value of Large ST Dimensions,

LM Size and RM Compact Size are calculated with the following equa-

tions:

LM Size = 28− 2× Large ST Dimensions (A.1)

RM Size = 2× (10− Large ST Dimensions) (A.2)

METHODS:

int Lorentz Dot(const Basis Alpha& Basis Alpha 2) Returns the numerator of the

Lorentz dot product between *this and Basis Alpha 2, which is the dot

product of the left moving parts minus the dot product of the right

moving parts. One improvement that could be made to this function

is that it be made a friend rather than a member, as it behave as an

operator would.

void Display() const Displays onto the screen Denominator first, followed by a

colon, then the numerator, with two pipes separating the left moving

part from the right moving part.

void Calculate LM Size() Uses the size of Numerator to determine the size of

the left moving part of the Basis Alpha via the following equation:

LM Size =
(Numerator().size()− 24)

2
(A.3)

210

This method could be improved by giving it a return value and an

argument to prevent any possible calculation errors resulting from

Numerator not being initialized.

void Calculate RM Compact Size() This method first checks if LM Size has been

initialized. If it has not, the function calls Calculate LM Size() to initial-

ize it. Then the method must check (effectively) the number of large

space-time dimensions for the model. If there are 10 large space-time

dimensions there is no compactification, and RM Compact Modes is set

to zero. This occurs if and only if there are 40 elements in Numerator .

If there are greater than 40 elements in Numerator , the method deter-

mines and initializes RM Compact Size using the following equation.

RM Compact Size = LM Size()− 8 (A.4)

This method could be improved by giving it a return value and passing

LM Size and Numerator .size() as arguments, rather than calling them

from *this.

A.2.8 FF Basis Alpha Builder.hh

NAME: Basis Alpha Builder

PURPOSE: Takes the basis vectors (in integer coded form, as Basis Vector ob-

jects) and converts them to actual phase values (as Basis Alpha objects). It

builds them with and without a common denominator. Both are needed for

WCFFHS model construction.

OBJECTS CREATED BY: Model Builder

USED IN: Model Builder

MEMBERS:

211

vector<Basis Vector> Basis Vectors Holds the Basis Vector objects that are to

be converted into Basis Alpha objects.

vector<Basis Alpha> Basis Alphas Holds the Basis Alpha objects that do not

have a common denominator.

vector<Basis Alpha> Common Basis Alphas Holds the Basis Alpha objects that

have a common denominator.

CONSTRUCTORS:

Basis Alpha Builder(const Model& FFHS Model) Takes a Model object and gets

the basis vectors, placing them in the Basis Vectors member.

Basis Alpha Builder(const vector<Basis Vector>& Basis Vectors)

Initializes the Basis Vectors member to the argument.

METHODS:

void Build Basis Alphas() Converts the elements of Basis Vectors into their re-

spective Basis Alpha objects, pushing them onto Basis Alphas . The method

first computes the full order of the basis vector: if the basis vector has

a nonzero left mover and an odd (right moving) order, it’s true order

is the least common multiple between two and the right moving or-

der. This number is stored in the New Order variable. Next, the phase

value is computed. For the left movers, which are always either 0 or

1, the nonzero elements need only be set to the value of New Order.

For the right movers, a conversion factor is needed to adjust to the

new denominator for the phase value. That is done with the following

equation:

Numerator Conversion =
2× New Order

RM Order
. (A.5)

The two on the right hand side of the equation is present to This is

guaranteed to be an integer, because New Order is either a multiple of

212

RM Order for nonzero left movers, or equal to RM Order. Once all of

the right mover values have been multiplied by the conversion factor,

they need to be placed in the range given by the equation

−New Order

2
< αi ≤

New Order

2
. (A.6)

Once all of the elements have been calculated and converted, the final

result is cast into a Basis Alpha object and pushed onto Basis Alphas .

void Build Common Basis Alphas() Takes Basis Alphas and converts

them to a single common denominator. This step is needed to add them

together when creating the Alphas for the model. First the value of the

common denominator is calculated by computing the lowest common

multiples between all of the elements of Basis Alphas . Then, a conver-

sion factor is calculated for each of those elements using the following

equation:

Numerator Conversion =
Common Denom

Denominator
, (A.7)

where Common Denom is the value of the common denominator for all

of the Basis Alphas, and Denominator is the denominator of the Ba-

sis Alpha being converted.

void Display Basis Alphas() const Prints the elements of Basis Alphas onto the

screen for debugging purposes.

void Display Common Basis Alphas() const Prints the elements of

Common Basis Alphas onto the screen for debugging purposes.

A.2.9 FF Basis Vector.hh

NAME: Basis Vector

PURPOSE: Holds the integer coded information for the fermion mode phases, its

order, the number of left moving fermion modes, and the number of right

moving fermion modes.

213

OBJECTS CREATED BY: User.

USED IN: Basis Alpha, Basis Alpha Builder, Model, Model Builder

MEMBERS:

vector<int> BV Stores the integer coded values for the fermion mode phases.

int Order Stores the order of the basis vector’s right mover.

int LM Size Holds the number of left moving fermion modes.

int RM Compact Size Holds the number of compact right moving modes.

CONSTRUCTORS:

Basis Vector() A default constructor which does not initialize the members

of this class. It’s use is not recommended.

Basis Vector(const vector<int>& BV, int Order) Initializes BV with BV and Or-

der with Order. It calls Calculate LM Size(), then

Calculate RM Compact Size() to initialize LM Size and RM Compact Size ,

respectively.

Basis Vector(const vector<int>& BV, int Order,

int Large ST Dimensions) Initializes BV with BV and Order with Order. It

initializes LM Size and RM Size with the values of equations (A.1, A.2).

METHODS:

void Display() const Prints to screen order, followed by a colon, then the in-

teger coded phase values for the basis vector. A double pipe is placed

to separate the left moving part from the right moving part. For de-

bugging purposes.

214

void Calculate LM Size() Calculates the number of left moving modes using

equation (A.3). This method could be improved by giving the function

a return value, and making it take an argument.

void Calculate RM Compact Size() Calculates the number of right moving com-

pact modes using equation (A.4). Could be improved by giving the

function a return value and making it take an argument.

A.2.10 FF Fermion Mode Map Builder.hh

NAME: Fermion Mode Map Builder

PURPOSE: Finds the sets of simultaneously matching boundary conditions for a

set of basis alphas with a common denominator. Those boundary conditions

are placed into an STL map with the first fermion mode in the complex pair

as the key, and the second as the value.

OBJECTS CREATED BY: Model Builder

USED IN: Model Builder

MEMBERS:

int Large ST Dimensions Holds the number of large space-time dimensions.

map<int, int> Fermion Mode Map Holds the indices of the complex

fermion pairs. The index of the first mode in the pair is the key, the

index of second mode in the pair is the value.

bool Consistent Pairings A boolean flag which is set to false if the

Find All LR Pairs(vector<int> LR Chunk, const vector<Basis Alpha>& Com-

mon Basis Alphas) function finds that not all of the modes can be paired.

CONSTRUCTORS:

215

Fermion Mode Map Builder() The default constructor initializes the

Large ST Dimensions to zero, and the Consistent Pairings variable to true.

There are checks later to ensure that Large ST Dimensions initializes to

a value greater than zero.

Fermion Mode Map Builder(int Large ST Dimensions) Initializes the member

Large ST Dimensions to the argument Large ST Dimensions, and Consis-

tent Pairings to true.

METHODS:

void Build Fermion Mode Map(const vector<Basis Alpha>&

Common Basis Alphas) Interface function which initializes the

Fermion Mode Map member. It first determines whether or not

Large ST Dimensions has been initialized to something other than zero.

If it has not, it calls the Compute Large ST Dimensions(const Basis Alpha&

Common Basis Alpha) to initialize the member. It passes the first element

of Common Basis Alphas, as an argument for that function. Next, the

methods Map Complex LM Elements(const vector<Basis Alpha>&

Common Basis Alphas) and Map Complex RM Elements(const vector

<Basis Alpha>& Common Basis Alphas) are called to initialize the com-

plex elements of the map for the left and right moving parts. Those

elements are always paired together for the basis vectors used by the

FF Framework to construct models. The method then pushes onto a

vector (called LR Coordinates) the indices of the elements correspond-

ing to compact directions (y,w). This is accomplished by looping over

the (x, y, w) triplets and pushing the indices of only the y’s and w’s.

It does the same for the right moving compact modes (ȳ, w̄), start-

ing the loop at the left mover size plus 16 (the 16 being all complex

216

right moving modes) and ending at a point which satisfies the equation

(A.2). Once LR Coordinates has been filled, the method finishes by call-

ing Find All LR Pairs(vector<int> LR Chunk, const vector<Basis Alpha>&

Common Basis Alphas),

which either pairs up all of the compact modes, or sets Consistent Pairings

to false.

void Display Fermion Mode Map() const Prints the key then the value for each

pair in Fermion Mode Map to the screen for debugging purposes.

int Compute Large ST Dimensions(const Basis Alpha&

Common Basis Alpha) Uses the following equation to compute the number of

large space-time dimensions.

Large ST Dimensions = 14− LM Size

2
(A.8)

This method could be improved by changing the parameter to be an

integer representing the size of the left mover rather than passing a

reference to the entire Basis Alpha, which has more information than is

needed.

void Map Complex LM Elements(const vector<Basis Alpha>&

Common Basis Alphas) Initializes the key-value pairs of Fermion Mode Map for

the left moving modes which are always in a complex pair. This is done

first with the space-time fermion modes, then with the x values of the

triplets. The pairs are, by convention, taken to be the nearest modes in

the vector, so the pairs would be (x1, x2), (x3, x4), etc. This method

could be improved by either changing the parameter to an integer rep-

resenting the number of left moving modes, or removing the parameter

altogether and calculating LM Size from Large ST Dimensions . The en-

tire vector of Basis Alphas is not necessary.

217

void Map Complex RM Elements(const vector<Basis Alpha>&

Common Basis Alphas) Initializes the key-value pairs for the right moving

modes that are always in adjacent complex pairs, namely the ψ̄’s and

φ̄′s. It uses the LM Size() of the parameters passed to the function to

determine the indices of the modes, then puts those key-value pairs

into Fermion Mode Map .

void Find All LR Pairs(vector<int> LR Coordinates,

const vector<Basis Alpha>& Common Basis Alphas) First pairs the left movers

with the function Pair LMs(vector<int> LR Coordinates, const vector

<Basis Alpha>& Common Basis Alphas), assigning the return value (which

is the unpaired indices) to Unpaired LMs. It then pairs the right movers

with the function Pair RMs(vector<int> LR Coordinates, const vector

<Basis Alpha>&

Common Basis Alphas), assigning the return value (again the unpaired

indices) to Unpaired RMs. This ensures that priority is given to same

side pairings, which is convention for these models. The final step is to

build the left-right paired modes, done with the

Pair Mixed(vector<int> Unpaired LMs, vector<int> Unpaired RMs,

const vector<Basis Alpha>& Common Basis Alphas). The return value (un-

paired indices - there should be none for consistent models) is assigned

to Unpaired Mixed. If the size of Unpaired Mixed is greater than 0, then

there were boundary conditions which could not be paired, and the

model is inconsistent. Though the consistency of the pairings is checked

in other places in the framework, this check provides additional security

in case the other methods weren’t called.

vector<int> Pair LMs(vector<int> LR Coordinates,

218

const vector<Basis Alpha>& Common Basis Alphas) Pairs as many left moving

fermion modes as possible, loading them into Fermion Mode Map . First,

the indices for the left mover only (always exactly half the size of

LR Coordinates) are loaded into a two dimensional vector with a single

row, then passed to the Find Matching BCs(vector<vector<int> > Match-

ing BCs, const vector<Basis Alpha>& Common Basis Alphas) function. The

return value is placed in Final Matching BCs LM, which is then passed to

the function Add Pairs To Map(vector<vector<int> > Final Pairs). That

function returns the unpaired elements, which initialize Unpaired LMs,

which are then returned by this function. This function could be im-

proved by merging it with Pair RMs(vector<int> LR Coordinates, const

vector<Basis Alpha>&

Common Basis Alphas), and changing LR Coordinates into a reference.

vector<int> Pair RMs(vector<int> LR Coordinates,

const vector<Basis Alpha>& Common Basis Alphas) The parameters

passed to this method are an STL vector of integers holding the indices

of the left and right fermion modes which may be paired, and an STL

vector of Basis Alpha’s with a common denominator that hold the actual

boundary conditions for the model. It pairs as many right moving

compact modes together as possible, and returns any that cannot be

paired. First, the indices of the right movers in LR Chunk (always the

second half) are placed in a single row two dimensional vector. That

vector is passed as an argument, along with Common Basis Alphas to the

Find Matching BCs(vector<vector<int> > Matching BCs,

const vector<Basis Alpha>& Common Basis Alphas). That function re-

turns the sets of matching boundary conditions, but they have not yet

been placed into complex pairs. That is done with the

219

Add Pairs To Map(vector<vector<int> > Final Pairs) function,

which returns the indices of any modes which could not be placed into

a complex pair. Those modes are stored in Unpaired RMs, which are

returned.

vector<int> Pair Mixed(vector<int> Unpaired LMs,

vector<int> Unpaired RMs, const vector<Basis Alpha>&

Common Basis Alphas) The parameters passed to this method are two STL

vectors of integers holding the indices of the unpaired left moving and

right moving modes, as well as an STL vector of Basis Alpha objects

that contain the actual boundary conditions. This method takes the

indices of the modes which could not be paired left-left and right-right,

and puts them into left-right pairs. Firstly, it loads the indices of

the unpaired LMs and RMs into a two dimensional vector with one

row. It then passes that vector, along with Common Basis Alphas, to the

Find Matching BCs(vector<vector<int> > Matching BCs,

const vector<Basis Alpha>& Common Basis Alphas). The return

value of that function is placed into a two dimensional STL vector

named Final Matching BCs, which is then passed to the

Add Pairs To Map(vector<vector<int>> Final Pairs) function. The return

value of that function is assigned to Unpaired Mixed, which is in turn re-

turned by this function. Unpaired Mixed should be empty for consistent

models, but that is checked in Build Fermion Mode Map

(const vector<Basis Alpha>& Common Basis Alphas). This function could

be improved by merging it with Pair LMs(vector<int> LR Coordinates,

const vector<Basis Alpha>& Common Basis Alphas) and

220

Pair RMs(vector<int> LR Coordinates, const vector<Basis Alpha>& Com-

mon Basis Alphas). It might also be worthwhile to pass the Unpaired LMs

and Unpaired RMs parameters by const reference rather than by value.

vector<vector<int> > Find Matching BCs(vector<vector<int> >

Matching BCs, const vector<Basis Alpha>& Common Basis Alphas)

The Matching BCs parameter is the initial set of matching boundary

conditions, prior to the boundary vectors being added to the model.

Essentially, it should contain the indices of the compact left movers

(except the already complex x’s) and the indices of the compact right

movers. Common Basis Alphas contains the actual phase values for the

model with a common denominator. This function returns a two di-

mensional STL vector. Each row of that vector will be the indices of

matching boundary values for all of the phases in Common Basis Alphas.

The algorithm used is four nested loops. The first loop indexes

Common Basis Alphas, stepping through the layers of the model. Within

that loop, indexed by the variable CBA Row, a two dimensional vector

is created to hold the new matching boundary conditions. The sec-

ond nested loop is indexed by the variable MBC Row, and loops over

the first index of Matching Boundary Conditions. The next nested loop

is indexed by E Val, and loops over the possible values for the phases

of the model. This is the same for each row in Common Basis Alphas,

since they all have a common denominator. Not all of the values in-

dexed by E Val can be actual phases in the model since each layer can

have independent orders. However, this is the most complete, gen-

eral treatment for this algorithm at the moment. Within that loop, a

variable is created to load New Matching Boundary Conditions. The inner-

most nested loop goes over the actual indices in the MBC Row’th row

221

of Matching Boundary Conditions. If the value of the CBA Row’th row of

Common Basis Alphas at the position in Matching Boundary

Conditions specified by MBC Row, MBC Column match E Val, then the

index is pushed onto New Matching Boundary Conditions Loader.

When the innermost loop terminates, if the size of

New Matching Boundary Conditions Loader not zero, then the entire vec-

tor is pushed onto New Matching Boundary Conditions. When the loops

indexed by E Val and MBC Row terminate, the contents of Matching BCs

and New Matching Boundary Conditions are swapped. This ensures that

the matching fermion modes from each layer are taken into account

along the way. This is also why Matching BCs is not passed by refer-

ence. It would need to be copied at the beginning of the method for it to

work, so no time is saved here by passing the reference. To summarize

qualitatively what this method does: for each layer in the model, for

each set of matching boundary conditions from previous layers, group

the current layer indices according to the values of their phases for all

possible phase values. Pass these new groups to the next layer, and

repeat. The final step is to return the final set of matching boundary

conditions for all layers in the model. The biggest improvement that

could be made to this method would be to customize the loop indexed

by E Val to only go over the values possible for the layer specified by

CBA Row. This would speed up the algorithm by only looping over

phase values that are allowed for that layer in the model.

vector<int> Add Pairs To Map(vector<vector<int> > Final Pairs)

The parameter for this method is a two dimensional vector which con-

tains the indices of the matching sets of boundary conditions for the

model. It returns a vector of any values which were not able to be

222

paired. It steps through the rows and columns of Final Pairs, placing

adjacent indices into Fermion Mode Map as key-value pairs. If there

are any unpaired indices left, then they are pushed onto Unpaired BCs,

which is returned. A consistent model will always return an empty

vector, but the check for consistency in this class is in the

Find All LR Pairs(vector<int> LR Coordinates,

const vector<Basis Alpha>& Common Basis Alphas).

A.2.11 FF Group Representation.hh

NAME: Group Representation

PURPOSE: Holds the information for a group representation including the di-

mension, the triality (if it is a representation of SO(8)), and whether it is a

complex representation or not.

OBJECTS CREATED BY: Gauge Group

USED IN: Gauge Group, Matter State, Model Builder

MEMBERS:

int Dimension The dimension of the representation.

char Triality The triality of an SO(8) representation. The default value is

’ ’ for SO(8) spinor reps as well as non-SO(8) representations.

bool Is Complex A boolean flag set to true if the representation could be

complex, and false if it is not.

CONSTRUCTORS:

Group Representation() A default constructor. Not recommended for explicit

use.

223

Group Representation(int Dimension, char Triality) Initializes

Dimension to Dimension and Triality to Triality. Initializes Is Complex to

false.

Group Representation(int Dimension, char Triality,

bool Is Complex) Initializes Dimension to Dimension, Triality to

Triality, and Is Complex to Is Complex.

METHODS:

void Display() const Outputs Dimension followed by Triality to the screen for

debugging purposes.

friend bool operator<(const Group Representation&

Group Representation1, const Group Representation&

Group Representation2) Operator for comparing two

Group Representation objects. First compares the Dimension members

of Group Representation1 and Group Representation2. If they are not the

same value, the value of the integer < operator is returned. If they are

the same, the Triality members are compared. If

Group Representation2.Triality() is equal to ’v’ and

Group Representation1.Triality() is not, then the method returns true.

Otherwise, it returns false.

friend bool operator==(const Group Representation&

Group Representation1, const Group Representation&

Group Representation2) Returns true if and only if the Dimension and Trial-

ity members of Group Representation1 and Group Representation2 are the

same. Otherwise, it returns false.

224

A.2.12 FF GSO Coefficient Matrix.hh

NAME: GSO Coefficient Matrix

PURPOSE: Holds the GSO coefficient matrix for an FFHS model.

OBJECTS CREATED BY: User, GSO Coefficient Matrix Builder

USED IN: Model, Model Builder, State Builder,

GSO Coefficient Matrix Builder.

MEMBERS:

vector<vector<int> > Numerators Holds the numerators for the GSO coeffi-

cient values.

vector<int> Denominators Holds the denominators for the GSO coefficient

values. They are the orders of the basis vectors corresponding to the

columns of the matrix.

CONSTRUCTORS:

GSO Coefficient Matrix() The default constructor does not initialize the mem-

bers. Members are loaded through the interface functions

Load GSO Coefficient Matrix Row(const vector<int>& New Row)

and Load GSO Coefficient Matrix Order(int New Order).

GSO Coefficient Matrix(const vector<vector<int> >& Numerators,

const vector<int>& Denominators) Initializes Numerators with

Numerators, and Denominators with Denominators.

METHODS:

void Load GSO Coefficient Matrix Row(const vector<int>& New Row) Pushes

225

New Row onto Numerators . This does not push the order of the basis

vector onto the matrix, because the order corresponds to the column,

not the row.

void Load GSO Coefficient Matrix Order(int New Order) Pushes

New Order onto Denominators . New Order corresponds to the column of

the matrix, and the number of possible values for each column must

correspond to New Order (as the basis vector phase values would). This

method could be improved by putting error checking to make sure the

values in Numerators correspond to the proper orders. Currently this

checking is implemented in the GSO Coefficient Matrix Builder class.

void Display() const Prints Denominators onto the screen, then a line, then the

values of Numerators . Used for debugging.

A.2.13 FF GSO Coefficient Matrix Builder.hh

NAME: GSO Coefficient Matrix Builder

PURPOSE: Takes the half of the GSO coefficient matrix specified by the user

(the lower half by convention) in integer coded form, converts it to physical

values, then builds the other half according to the modular invariance con-

straints. Also checks the matrix to ensure proper physical values have been

built for the model. One improvement that could be made to this class would

be to pass Common Basis Alphas as a parameter to Build Complete GSO Matrix().

That would be less memory copying than having Common Basis Alphas as a

member initialized in the constructors.

OBJECTS CREATED BY: Model Builder

USED IN: Model Builder

MEMBERS:

226

GSO Coefficient Matrix Half GSO Matrix Holds the user specified

GSO Coefficient Matrix object for the model, which should only have the

lower half of the matrix present. If upper half values are present, they

will be overwritten.

vector<Basis Alpha> Common Basis Alphas Holds the phase values of the model

with common denominators. Used for constructing the upper half of

the GSO coefficient matrix using the modular invariance constraints.

vector<int> GSO Coefficient Orders Holds the orders of the basis vectors which

make up the model. Used to find a common denominator for the phys-

ical values, as well as to check the consistency of the values through

the modular invariance constraints.

GSO Coefficient Matrix Complete GSO Matrix Holds the complete, phase value

form of the GSO coefficient matrix for the model. It will satisfy all of

the modular invariance constraints, but may not have the proper val-

ues for the given orders. The member Consistent GSO Matrix indicates

whether or not the values are consistent with the orders of the basis

vectors which make up the model.

bool Consistent GSO Matrix A boolean flag which indicates whether or not

the values of Complete GSO Matrix are consistent with the orders of

the basis vectors. It is initialized to true in the constructors and it

flagged in the Complete Half GSO Matrix() method.

CONSTRUCTORS:

GSO Coefficient Matrix Builder(const GSO Coefficient Matrix&

Half GSO Matrix, const vector<Basis Alpha>& Common Basis Alphas) Initializes

Half GSO Matrix to Half GSO Matrix, Common Basis Alphas to

Common Basis Alphas, GSO Coefficient Orders to the denominators of

227

Half GSO Matrix, and Consistent GSO Matrix to true.

GSO Coefficient Matrix Builder(const Model& FFHS Model,

const vector<Basis Alpha>& Common Basis Alphas) Uses FFHS Model to initial-

ize Half GSO Matrix and GSO Coefficient Orders. Initializes

Common Basis Alphas to Common Basis Alphas, and Consistent GSO Matrix

to true.

GSO Coefficient Matrix Builder(const vector<int>&

Half Numerators, const vector<int>& Half Denominators,

const vector<Basis Alpha>& Common Basis Alphas) Builds and initializes

Half GSO Matrix using Half Numerators and Half Denominators.

Common Basis Alphas is initialized to Common Basis Alphas, and Consis-

tent GSO Matrix is initialized to true.

METHODS:

void Build Complete GSO Matrix() An interface method which first converts

the integer coded values of Half GSO Matrix into physical values with

a common denominator by calling

void Convert Half GSO Matrix(), then builds the other half of the matrix

by calling void Complete Half GSO Matrix().

void Display Half GSO Matrix() const A function which prints

Half GSO Matrix to the screen for debugging purposes.

void Display Common Basis Alphas() const A function which prints

Common Basis Alphas to the screen for debugging purposes.

void Display Complete GSO Matrix() const A function which prints

Complete GSO Matrix to the screen for debugging purposes.

228

void Convert Half GSO Matrix() This method converts the integer coded val-

ues of Half GSO Matrix to physical values with a common denominator.

The common denominator, stored in CommonDenom, is initialized to the

common denominator in Common Basis Alphas . Then, it loops over all

but the last value of GSO Coefficient Orders . Inside that loop, a new in-

dex is created for an internal loop over the column of Half GSO Matrix .

The columns are looped over because the order of the nth column of the

GSO coefficient matrix must match the order of the nth basis vector in

the model. That index, Column Start, is initialized to the index of the

outer loop if it is greater than zero, and 1 if it is zero. This sets the

starting point of the next loop such that it is the first user specified

element. Then the multiplicative factor which converts the integers to

phase values is initialized with the following equation:

Convert =
CommonDenom

GSO Coefficient Orders().at(a)
, (A.9)

where a is the outer loop index. It then multiplies the elements along

that column with Convert, and calls int Reset GSO Coefficient

Range(int Converted GSO Coefficient,

int Converted GSO Denominator), passing it 2 × N × Convert and Com-

monDenom, respectively. This puts the integer codes into the range of

physical values. The factor of two is done to satisfy the equation

kij =
2× kij,int

N
, (A.10)

where kij, int is the user specified integer code for the GSO coefficient

matrix, and N is the common denominator for the entire basis vector

set that specifies the model. When all of the user specified values of

the GSO coefficient matrix have been converted, Half GSO Matrix is

reinitialized to the new values.

229

void Complete Half GSO Matrix() Takes the physical phase values of the lower,

user specified half of the GSO coefficient matrix and uses the modular

invariance equations to generate the upper half and diagonal elements

of the GSO coefficient matrix, initializing

Complete GSO Matrix with all of the values. Two for loops are nested,

both spanning Half GSO Matrix().Numerators().size(). The number of row

in Half GSO Matrix will also equal the number of columns of Com-

plete GSO Matrix once the other elements are found. The elements are

all pushed onto a two dimensional vector

Complete GSO Numerators, which will be used to initialize

Complete GSO Matrix . A series of if statements are used to separate

three cases:

a<b || b==0 This is either the (0,0) element, or a lower half element,

specified by the user. It is added, unaltered, to

Complete GSO Numerator, which is a loader for

Complete GSO Numerators.

a==b This is a diagonal element (besides (0,0)). It is calculated through

the method int Compute Diagonal GSO Element(const

Basis Alpha& The Alpha, int First GSO Coefficient Row).

It passes the element of Common Basis Alphas which correspond to

the element being calculated, as well as the first GSO coefficient

element on the corresponding row. That element is always user

specified. The result of that function has its range reset with int

Reset GSO Coefficient Range(int Converted GSO Element,

int Converted GSO Denominator) and is then pushed onto

Complete GSO Numerator. The consistency of the element is

checked with bool Check GSO Element Consistency(int

230

GSO Element, int column) to make sure the new value meets the

requirements for physical consistency.

a>b An upper half element which is calculated by calling int

Compute Off Diagonal GSO Element(const Basis Alpha&

Alpha a, const Basis Alpha& Alpha b, intHalf GSO Element) and pass-

ing the two elements of

Common Basis Alphas corresponding to the row and column of the

element being generated, as well as the corresponding user spec-

ified lower half element (with row, column reversed). The re-

sult’s range is reset with int Reset GSO Coefficient Range(int Con-

verted GSO Element, int Converted GSO Denominator),

and it is pushed onto Complete GSO Numerator. The consistency of

the element is checked with bool Check GSO Element

Consistency(int GSO Element, int column) to make sure the new value

meets the requirements for physical consistency.

For each iteration of the outer loop, after the complete inner loop cy-

cle, Complete GSO Numerator is pushed onto Complete GSO Numerators

and cleared so that the next row can be converted and added. Fi-

nally, once all of the numerators have been adjusted and calculated,

Complete GSO Matrix is initialized with the results.

int Compute Diagonal GSO Element(const Basis Alpha& The Alpha,

int First GSO Coefficient Row) This method takes the Basis Alpha correspond-

ing to the diagonal element of the GSO coefficient matrix being com-

puted, as well as the first element of that row in the GSO coefficient

matrix. It then puts them through the equation

kii = ~αBi · ~αBi − ki1 − si (mod 2), (A.11)

231

where the dot product between the ~αBi ’s is a Lorentz dot product, and

si is 1 if ~αBi is a space-time fermion sector (first two elements equal 1)

and 0 if ~αBi is a space-time boson sector (first two elements equal 0).

This equation is performed step by step in the code for clarity. First,

the Lorentz dot product is computed, and the denominator multiplied

by 8 is divided out. Modular invariance of the ~αBi ’s guarantees this

to be an integer. There is an extra factor of 2 in the denominator of

this equation because it is done in the real, rather than complex, basis.

Then, the space time value and the first GSO coefficient on the row

are subtracted. Finally, the modulus is computed. While the equation

is done mod 2, the actual computation is done mod (2 × Denom), so

that every step in the equation results in an integral value. That way

the program makes no rounding errors.

int Compute Off Diagonal GSO Element(const Basis Alpha& Alpha a,

const Basis Alpha& Alpha b, int Half GSO Coefficient) The parameters for this

method are the two ~αB’s corresponding to the row and column of the

GSO coefficient being calculated, as well the coefficient’s the lower di-

agonal counterpart (reversed row and column indices). It returns the

upper diagonal GSO coefficient once it has been calculated. The ele-

ment is calculated according the the equation

kji = ~αBi · ~αBj − kij (mod 2). (A.12)

For clarity, this calculation is done step by step in the code. The dot

product is calculated and divided by 4 times the denominator. There is

an extra factor of 2 in the division to convert from the complex basis in

which the equation is typically presented to the real basis in which it is

implemented. Then the corresponding lower half element of the GSO

232

coefficient matrix is subtracted. Finally, the mod (2 ×Denominator)

is applied. While the equation is mod 2, the denominator is inserted

to keep the equation completely integral so that no rounding errors are

made during the calculation.

int Reset GSO Coefficient Range(int Converted GSO Coefficient,

int Converted GSO Denominator) Takes the converted, but not range

checked GSO coefficient and the denominator by which to set the range.

This function returns the same phase, but placed in the range

−N < kij ≤ N, (A.13)

where N is the denominator.

bool Check GSO Element Consistency(int GSO Element, int column) This function

takes the element to be checked, and the index of the column. It checks

and returns the validity of the equation

Njkij = 0 (mod 2), (A.14)

where Nj is the order of the column in the GSO coefficient matrix. In

this instance, the order cannot be the common denominator for the

GSO coefficients in physical form, because the values that they are

allowed to take are restricted to the same values of their associated

basis vectors. This method ensures that any calculated results still fit

into the right values for the possible GSO coefficients. The proper order

could be either the user specified order of the associated basis vector,

or the least common multiple between 2 and the order of the associated

basis vector. This is necessary because the user specifies only the order

of the right mover, as the left mover is fixed at 2. Thus, if the left

mover has nonzero elements, its order is LCM(2, Order). If the left

233

mover is all zeros (for gauge models), then the right moving order is

the order for the entire vector.

A.2.14 FF GSO Projector.hh

NAME: GSO Projector

PURPOSE: Performs the GSO projections on states coming from a specified sec-

tor through a boolean interface function. Different sectors require different

instances of GSO Projector.

OBJECTS CREATED BY: State Builder

USED IN: State Builder

MEMBERS:

vector<Basis Alpha> Common Basis Alphas Holds the physical values of the

basis vectors making up the model with a common denominator.

char Alpha Type Holds the character code specifying the sector from which

the states to be tested were generated; ‘f’ for a fermion sector, ‘s’ for a

SUSY sector, and ‘b’ for a boson sector.

GSO Coefficient Matrix k ij The GSO coefficient matrix for the model that

is being built.

vector<int> Coefficients The coefficients which produced the sector that pro-

duced the states being tested.

map<int, int> Fermion Mode Map The mapping of the fermion modes be-

tween their complex (for same side) or real (for opposite side) pairs.

This is needed for a correction to the GSOPs for the real fermion pairs.

234

CONSTRUCTORS:

GSO Projector() A default constructor which does not initialize any values.

Not recommended for explicit use.

GSO Projector(const vector<Basis Alpha>& Common Basis Alphas,

char Alpha Type, const GSO Coefficient Matrix& k ij,

const vector<int>& Coefficients, const map<int, int>&

Fermion Mode Map) Initializes Common Basis Alphas to

Common Basis Alphas, Alpha Type to Alpha Type, k ij to k ij,

Coefficients to Coefficients, and Fermion Mode Map to

Fermion Mode Map.

GSO Projector(const vector<Basis Alpha>& Common Basis Alphas,

const Alpha& The Alpha, const GSO Coefficient Matrix& k ij,

const map<int, int>& Fermion Map) Initializes Common Basis Alphas

to Common Basis Alphas, k ij to k ij, and Fermion Mode Map to

Fermion Mode Map. Coefficients and Alpha Type are initialized from

The Alpha, which is the sector that produced the states that are be-

ing tested by this instance of GSO Projector.

METHODS:

bool GSOP(const State& The State) const Performs the GSO projection on

The State and returns true if it passes and false if it doesn’t. If Al-

pha Type is a boson (’b’), then it calls GSOP Boson(const State& The State)

const. If Alpha Type is fermion (’f’) or SUSY (’s’), then it calls

GSOP Fermion(const State& The State) const, returning those results.

bool GSOP Boson(const State& The State) const Performs the GSO

235

projection equations optimized for boson states. Because the left movers

are always the same for boson states, the equations can be simplified

to save computing time. The simplified equation for boson states is∑
i

kjiai + ~αBjR · ~Q~αR = 0 (mod 2), (A.15)

where ~Q~αR is the right moving part of the state produced by the sector

~α and ai is the coefficient which produced the sector ~α. The implemen-

tation of this equation requires careful treatment. Any left-right paired

modes will contribute double to the dot product due to a redundancy

present in the creation of the states. In the program, this is done with

an additional correction term which repeats the dot products of those

modes and adds the result to the projection. The entire process is

wrapped in an if statement so that if any one of the j ~αBj produces a

failing result, the function will immediately return false without com-

puting the other GSOPs. The modulus and additions are done such

that all of the results are integral to reduce potential rounding errors.

This method will return true only if the GSO projections are passed for

all of the Common Basis Alphas .

bool GSOP Fermion(const State& The State) Performs the GSO projections on

the fermion and SUSY states. For those states, the equation for the

GSOPs is

~αBj · ~Q~α −
∑
i

kjiai − sj = 0 (mod 2), (A.16)

where ~Q~α is the state produced by the sector ~α, ai are the coefficients

of the Common Basis Alphas which produced ~α, and sj is 0 if ~αBj is a

space-time boson sector, and 1 if ~αBj is a space-time fermion sector.

The dot product is a Lorentz dot product with an additional factor for

the left-right paired modes. There is a redundancy in the construction

236

of states with left-right paired modes, and the GSOP dot product must

double count those modes. The process of computing the equation is

wrapped by an if statement so that if any of the j ~αBj s doesn’t allow

~Q~α to pass the GSOPs, then a false is immediately returned so that the

others are not calculated. This method will return true only if all of

the GSOPs are passed for the Common Basis Alphas .

A.2.15 FF Gauge Group.hh

NAME: Gauge Group

PURPOSE: Holds the information needed to completely specify the behavior of a

gauge group in the model. It also has a method for computing the dimension

of a matter state transforming under the gauge group.

OBJECTS CREATED BY: Model Builder

USED IN: Model Builder, Model, Gauge Group Identifier

MEMBERS:

list<State> Positive Roots Holds the positive, nonzero roots for the gauge

group.

State Weyl Vector Holds the Weyl vector, which is half the sum of the nonzero

positive roots. It is cast as a state to get access to the dot product op-

erator for State objects, though it does not signify a physical state.

Gauge Group Name Name The name of the gauge group.

list<State> Simple Roots The simple roots of the gauge group.

map<vector<int>, Group Representation> Dynkin Labels Holds the

Dynkin labels as the key, and the representation as the value.

237

set<int> Complex Rep Dimensions Holds the dimensions of any complex rep-

resentations the gauge group might have. Needed to set a sign conven-

tion for the complex representations.

CONSTRUCTORS:

Gauge Group(const list<State>& Positive Roots, Gauge Group Name

Name) Initializes Positive Roots to Positive Roots, and

Gauge Group Name to Gauge Group Name. It then calls

void Build Weyl Vector() to build Weyl Vector .

Gauge Group(const list<State>& Positive Roots, Gauge Group Name

Name, const list<State>& Simple Roots) Initializes Positive Roots

to Positive Roots, Name to Name, and Simple Roots to

Simple Roots. It then calls Build Weyl Vector() to initialize

Weyl Vector .

METHODS:

Group Representation Compute Rep Dimension(const State& Weight,

const map<int, int>& Fermion Mode Map) Computes the dimension of a rep-

resentation under the gauge group, returning a Group Representation ob-

ject. It takes as parameters a State object representing a weight in the

gauge group space, as well as Fermion Mode Map to distinguish the gauge

charges from the left-right pairs. It first calls Compute Dynkin Labels(const

State& Weight, const map<int, int>& Fermion Mode Map), storing the re-

sult in Weight Dynkin Labels. It then checks, via bool Not Highest Weight

(const vector<int>& Weight Dynkin Labels), whether these Dynkin labels

could produce a highest weight. If that returns false, then a value of 0

is returned as the representation dimension. The method calls the find

238

function for Weight Dynkin Labels, keeping the iterator. If the iterator

is not at the end of Dynkin Labels , then the value of that iterator is

returned. If it is, then Apply Weyl Formula(const State& Weight, const

map<int, int>& Fermion Mode Map) is called to compute the dimension

of the representation. Then, another check is made to ensure the Weyl

formula produced a valid representation dimension (meaning it is a

highest weight). If it is not a highest weight, the function returns

0. If the weight is a highest weight, then the method checks if the

representation is complex. First, an if statement is used to determine

whether the group can produce complex representations (AN , DN , E6).

It calls Is Barred Rep(int Rep Dimension). If that returns true, then the

dimension is multiplied by -1. The triality of the representation is also

declared. The method calls bool Is D4() to check whether or not the

triality needs to be computed. If bool Is D4() returns true, then char

Compute Triality

(const vector<int>& Weight Dynkin Labels) is called. It’s return value is

set to the triality of the representation. After that, Weight Dynkin Labels

and Rep Dimension are added to Dynkin Labels . A Group Representation

object initialized with Rep Dimension and Triality is then returned.

Schematically, this process is shown in figure A.2.

bool Is D4() const Calls the bool Is D4() const method from Name().

void Set Ordered(bool New Ordered) Sets the Ordered member of Name to the

value of New Ordered.

void Set V Ordered(bool New V Ordered) Sets the V Ordered member of Name

to the value of New V Ordered.

239

Compute Dynkin Labels

find Dynkin Labels

Not Highest Weight?

return 0 In Map?

return value Apply Weyl Formula

Is Highest Weight?

return 0Is Complex rep? return value

Is Barred Rep?Has Triality?

Multiply by -1Set triality

Add to Map

return value

Figure A.2: A schematic of the algorithm for determining the dimension and triality
(if needed) of a group representation.

240

void Display() const Calls the display function for Name . Outputs the class,

rank, and Kač-Moody level for debugging purposes.

void Display Positive Roots() const Displays Positive Roots on the screen by call-

ing Display() for each element in the list. For debugging purposes.

friend bool operator< (const Gauge Group& Gauge Group1,

const Gauge Group& Gauge Group2) const Compares the Name members of

Gauge Group1 and Gauge Group2. Used to put an ordering to the gauge

groups of a model for comparison purposes.

friend bool operator==(const Gauge Group& Gauge Group1,

const Gauge Group& Gauge Group2) Compares the Name members of

Gauge Group1 and Gauge Group2, returning true if they are equal and

false if they are not.

void Build Weyl Vector() Builds the Weyl vector for the gauge group, initial-

izing Weyl Vector . It is half the sum of the positive roots. This method

is called in the constructor after Positive Roots has been initialized.

int Apply Weyl Formula(const State& Weight,

const map<int, int>& Fermion Mode Map) This method takes a reference to

the state for which the representation dimension is to be determined,

and the map between fermion modes. The map is needed because the

dot products in the equation are only between the gauge charges; left-

right pairs must be excluded from this calculation. The method applies

the Weyl dimension formula for calculating the dimension of a highest

weight in a representation using the nonzero positive roots of the group.

The formula is

dim(V~λ) =
∏
~α

~λ · ~α + ~ρ · ~α
~ρ · ~α

, (A.17)

241

where ~λ is the highest weight of the representation V , ~α are the nonzero

positive roots of the group, and ~ρ is the Weyl vector, equal to half the

sum of the nonzero positive roots. The formula is implemented by

the method by first computing the dot products, done only over the

gauge charges, ignoring the left-right paired fermion modes in the state.

Because the states have a common denominator, the denominators of

the dot products cancel with the exception of an additional factor of 2

on ~λ · ~α because of the 1
2

on the Weyl vector’s sum. The numerator and

denominator of the entire equation are then multiplied by the previous

iteration of the loop. Then, the method checks to see if the numerator

and denominator of the formula can be reduced. If this is not done, the

numbers become too large for the computer to store, and the program

with throw an arithmetic or floating point exception. If the dimension

can be rounded to a perfect integer, it resets the values appropriately

and continues the loop. If the dimension ever becomes zero, then the

entire product is zero, so the method immediately returns that value to

save computing time. If the loop completes without terminating, then

the dimension result is checked to ensure it is positive. The method

returns 0 if the dimension is found to be negative, indicating the state is

not a highest weight. If the state is a highest weight, then the dimension

is returned.

int Gauge Dot(const State& State1, const State& State2,

const map<int, int>& Fermion Mode Map) const Takes the two states

for which the dot product is to be computed, as well as the fermion

mode map to ensure only gauge charges are included in the product.

The return value is the numerator of the dot product. This method

performs a dot product between State1 and State2’s gauge charges only.

242

It loops over the map starting with the right movers. Any right movers

in the first position of Fermion Mode Map is the first element in a pair of

right moving modes, which are gauge charges. Those modes in State1

and State2 are multiplied together, and added to the total dot product.

Only the first modes in the gauge pairs are multiplied, so there is no

need to correct for using a real basis when calling this method. This

method could be improved by making it a friend to the State class, rather

than keeping the code in Gauge Group.

vector<int> Compute Dynkin Labels(const State& Weight,

const map<int, int>& Fermion Mode Map) Takes a state whose dimension un-

der the group is to be determined, and the fermion mode map to pick

out gauge charges for dot products. It returns the Dynkin labels of

the state, which can indicate the dimension of its representation. This

method takes the dot products of the gauge charges between Weight and

Simple Roots , pushing them onto a vector. If at any point a gauge dot

product evaluates to a number less than zero, the vector is immediately

returned, since Weight is not the highest weight of a representation. If

the loop completes, then the vector is returned.

bool Is Barred Rep(vector<int>& Weight Dynkin Labels,

int Rep Dimension) Takes a vector of Dynkin labels and the dimension of a

representation and determines whether it is barred or unbarred. There

are three categories of gauge groups which admit complex representa-

tions: AN>1, DN , and E6. Each is treated differently in this method,

but all three use the fact that the simple roots are ordered in a spe-

cific way when the gauge group is created by Gauge Group Identifier.

See the documentation for that class to learn more about this spe-

243

cial ordering. For AN>1, Weight Dynkin Labels is reversed using the

STL reverse algorithm and assigned to a new variable, vector<int> Re-

versed Weight Dynkin Labels. If Weight Dynkin Labels and

Reversed Weight Dynkin Labels are not equal, then the representation is

complex, and the absolute value of Rep Dimension is inserted into Com-

plex Rep Dimensions . If Weight Dynkin Labels is less than

Reversed Weight Dynkin Labels, the representation is considered to be

barred, and the method returns true. Otherwise, it returns false. For

DN , the symmetry allowing for the complex representations is be-

tween the two “final” roots in the Dynkin diagram with the excep-

tion of SO(8). This method only identifies two of the three types of

complex SO(8) representations. The third type (defined to be the

vector rep) is identified in the char Compute Triality(const vector<int>&

Weight Dynkin Labels) method separately. A new vector of Dynkin la-

bels, called Reversed Weight Dynkin Labels is created which is identical

to Weight Dynkin Labels except that the second and third elements are

switched. The second and third elements are the roots which are sym-

metric in the Dynkin diagram, as ordered in Gauge Group Identifier. If

Weight Dynkin Labels is not equal to

Reversed Weight Dynkin Labels, the absolute value of Rep Dimension is in-

serted into Complex Rep Dimensions . If Weight Dynkin Labels is less than

Reversed Weight Dynkin Labels then the representation is considered to

be barred, and the method returns true. Otherwise, it returns false.

For E6 there are four roots which can be inverted to yield complex

representations. When the group is created, the simple roots are or-

dered such that the first two elements of Simple Roots are not the

roots which can yield complex representations. Weight Dynkin Labels

244

is inverted here by switching the third and fourth element as well

as the fifth and sixth element simultaneously, thus inverting the di-

agram. If Weight Dynkin Labels and Reversed Weight Dynkin Labels are

not equal, the the absolute value of Rep Dimension is inserted into Com-

plex Rep Dimensions . If Weight Dynkin Labels is less than

Reversed Weight Dynkin Labels the method returns true. Otherwise, it

returns false.

char Compute Triality(const vector<int>& Weight Dynkin Labels)

Since the spinor reps have already been checked in

bool Is Barred Rep(vector<int>& Weight Dynkin Labels,

int Rep Dimension), this method only identifies the complex representa-

tion that wasn’t checked in that method. Recall that bool Is Barred Rep

(vector<int>& Weight Dynkin Labels, intRep Dimension) inverts only the

second and third elements to check for a complex representation. For

SO(8), the fourth root must also be checked, as it can also give complex

representations. Thus, this method returns ’v’ (indicating the vector

rep) if the fourth element in Weight Dynkin Labels is nonzero, and ’ ’ if

it is zero.

bool Not Highest Weight(const vector<int>& Weight Dynkin Labels) Takes the

Dynkin labels of a state, and checks to see if any are negative. If there

is at least one Dynkin label that is negative, then it is not a highest

weight, and the method returns false. Otherwise, it returns true.

A.2.16 FF Gauge Group Identifier.hh

NAME: Gauge Group Identifier

PURPOSE: Takes the nonzero positive roots for a gauge group and identifies the

group’s class, rank, and Kač-Moody level. It also identifies the simple roots

245

of the gauge group, which are used to compute a matter representation’s

Dynkin labels, needed to identify the dimension of the representation.

OBJECTS CREATED BY: Model Builder

USED IN: Model Builder

MEMBERS:

list<State> Positive Roots Holds the nonzero positive roots of the

gauge group. Initialized in the constructor.

map<int, int> Fermion Mode Map Holds the paired fermion modes in key-

value pairs. Used for gauge charge dot products. Initialized in con-

structor.

list<State> Simple Roots Holds the simple roots for the gauge group. Ini-

tialized by void Find Simple Roots() or

void Find Simple Roots(char Gauge Group Class, int Rank).

int Long Root Length Num The numerator’s length squared of a long root

for the gauge group. For Kač-Moody level 1 algebras, this is 2. Higher

levels reduce this number by a factor of 1
2
. Initialized in

void Identify KM Level().

CONSTRUCTORS:

Gauge Group Identifier(const list<State>& Positive Roots,

const map<int, int>& Fermion Mode Map) Initializes Positive Roots

to Positive Roots and Fermion Mode Map to Fermion Mode Map.

Sets Long Root Length Num to 0. It will be reinitialized when void Iden-

tify KM Level() is called.

246

METHODS:

Gauge Group Get Group() Uses the members to identify, build, then return

a Gauge Group object. The method first calls Identify KM Level(), which

initializes the member Long Root Length Num . It then calls Identify Class()

to identify the class of the gauge group. After that, a switch statement

is called for the class of the group, A-G. Each case calls the appropriate

Gauge Group Build * Class Gauge Group() method, where * is the class.

void Display Positive Roots() const Displays Positive Roots onto

the screen by calling the void Display() const function of the State class

for each root. For debugging purposes.

void Display Simple Roots() const Displays Simple Roots onto the

screen by calling the void Display() const function of the State class for

each simple root. For debugging purposes.

void Identify KM Level() Identifies the Kač-Moody level of the gauge group

by finding the longest length (squared) of the roots in

Positive Roots . It steps through Positive Roots , looking at the length

squared, and comparing it to the previous maximum length squared

in the sets. The highest length squared is stored. If it is ever twice

the value of the denominator, then the group is a Kač-Moody level

1 group, and Long Root Length Num is immediately initialized and the

loop is broken since the length squared cannot be higher than 2. Such

a state is massive at the string scale, and will not affect the low energy

phenomenology. If the loop completes its scan of Positive Roots , then

Long Root Length Num is initialized to the maximum value.

char Identify Class() Identifies and returns the class of the gauge group. It

loops over Positive Roots , checking the length squared of each root

247

against the value of Long Root Length Num . If any root is shorter than

Long Root Length Num , then the gauge group is non-simply laced, and

char Identify BCGF() is called and returned. If all of the roots are the

same length, the gauge group is simply laced, and char Identify ADE()

is called and returned. The processes of identification for simply and

non-simply laced groups are different enough that they warrant their

own functions for identification.

char Identify ADE() Identifies a simply laced gauge group. First, it checks if

the number of nonzero positive roots is degenerate between any of the

groups. If the number of nonzero positive roots is degenerate, then char

Identify ADE Degeneracies() identifies the group, and that result is re-

turned. If the number of nonzero positive roots is nondegenerate, then

it sets the class to N and checks the rank by calling double A Class Rank().

If the integer cast is equal to the double precision result, then it is an in-

tegral result, and the class is A. Otherwise, the class must be D, since all

of the exceptional classes are checked in char Identify ADE Degeneracies().

char Identify BCGF() Identifies a non-simply laced gauge group. First, it

checks if the number of nonzero positive roots is degenerate by calling

char Identify BCGF Degeneracies(), which will return N if nondegenerate,

and the class if the group is degenerate. If the group’s nonzero positive

roots are nondegenerate, then it counts the short roots by calling int

Count Short Roots(). The number of long roots is the number of nonzero

positive roots minus the number of short roots, since any group can only

have two distinct root lengths. If there are more long roots, then it is

a B class group. If there are more short roots, it is a C class group.

If the number of short and long roots is the same, it is B2, which is

isomorphic to C2. The FF Framework defaults to B2 in this case.

248

char Identify ADE Degeneracies() Identifies the gauge group if the number of

nonzero positive roots corresponds to two different possible groups.

This is done with a switch statement on the number of nonzero positive

roots. If there are 36 nonzero positive roots, the gauge group could

be either E6 or A8. The method calls void Find Simple Roots(), which

initializes the member Simple Roots. If there are 6 simple roots, the

group is E6, and the method returns E. Otherwise, it is A8, and the

method returns A. If there are 63 nonzero positive roots, the group is

E7, and the method returns E. If there are 120 nonzero positive roots,

the group could be E8 or A15. In that case, the method calls void

Find Simple Roots(). If there are 8 simple roots, the group is E8 and the

method returns E, otherwise the group is A15 and the method returns

A. If there are 210 nonzero positive roots, then the group could be either

A20 or D15. The method calls void Find Simple Roots() to determine the

group’s rank. If there are 15 simple roots, the group is D15, and the

method returns D. Otherwise, the group is A20, and the method returns

A. If the number of nonzero positive roots are not equal to 36, 63, 120,

or 210, then it is nondegenerate, and the method returns N.

char Identify BCGF Degeneracies() This method is somewhat misnamed, be-

cause it only picks out the exceptional non-simply laced gauge groups.

If the group is F4 or G2, then this method will identify it. Otherwise,

char Identify BCGF() will count the number of short roots and identify

the group’s class that way. The number of nonzero positive roots is

placed in a switch statement. If there are 6 nonzero positive roots, then

the group is G2, and the method returns G. If there are 24 nonzero pos-

itive roots, the group is F4, and the method returns F. If the number

of nonzero positive roots is neither 6 nor 24, then the method returns

249

N. This method could be improved by renaming it - the method does

not actually resolve degeneracies.

void Find Simple Roots() Finds the simple roots of a gauge group given the

nonzero positive roots. This method finds the roots if the class of

group is unknown, which only occurs for simply-laced gauge groups.

Non simply-laced gauge groups need a more careful treatment when

finding the simple roots because the number of short roots affects the

validity of the simple roots that are chosen. That is done in void

Find Simple Roots(char Gauge Group Class, int Rank). This

method finds the simple roots by building the largest possible list of

mutually zero/negative dot products, making sure they are “connected”

-i.e. do not form orthogonal subsets. To do this, the sort function is

first called for Positive Roots . The order in which the nonzero positive

roots appear will affect the results of the algorithm, and ordering them

according the the < operator for the State class ensures the proper

results will be found. Then, for each State in Positive Roots , a list is

built by taking the dot product (gauge charges only, no left-right pairs)

of that state with all other states in Positive Roots , keeping only those

that are negative or zero. Then that list is looped over, starting with

the next state in the list, again taking the dot products over the gauge

charges and erasing any that are positive. That loop is repeated until

the only states left have negative or zero dot products between them. If

the states are connected (checked with bool Connected Simple Roots(const

list<State>& Simple Roots)) and there are more states than currently

stored in Simple Roots , then that list will replace Simple Roots . This is

repeated until every state in Positive Roots is used to build the initial

list. The process is summarized in Figure A.3.

250

Positive Root

Keep all non-positive dot products

Next positive root

Erase positive dot products

Increment inner loop

Check size and connectedness

Replace Simple Roots

Increment outer loop

Figure A.3: A schematic of the algorithm used to find the simple roots of a
gauge group.

251

void Find Simple Roots(char Gauge Group Class, int Rank) Finds

the simple roots of a gauge group when the class and rank are already

known, as for non-simply laced gauge groups. The number of short

and long simple roots matters for these groups, and this method en-

sures that the proper long and short roots get placed in Simple Roots .

It takes as parameters the gauge groups class and rank, as both are

needed to determine how many short and long roots belong in Sim-

ple Roots . It should be noted that this method will work with simply

laced gauge groups as well, but the extra checks for the short roots make

this method less efficient than void Find Simple Roots(). The method be-

gins first by sorting Positive Roots , then determining the number of

short roots, stored in the variable Short Root Count. For BN and G2,

the number of short roots in Simple Roots should be 1. For F4, the

number of short roots in Simple Roots should be 2. For CN , the num-

ber of short roots in Simple Roots should be one less than the rank of

the group. For a simply laced group, there are no short roots in Sim-

ple Roots . The sort() function is called because ordering Positive Roots

according to the < operator for the State class ensures the algorithm

will work properly, as the order of Positive Roots can affect the out-

come of the algorithm. The method functions in a similar way to void

Find Simple Roots(), but it also keeps track of the number of short roots

which have been added to the list. For each State in Positive Roots ,

a list is built of all states having a negative or zero gauge charge dot

product with the specified state. If the state used to first build the

list is a short root, then Short Roots Added is incremented. Addition-

ally, any short root with a negative or zero gauge charge dot product

also increments Short Roots Added. If Short Roots Added ever equals or

252

exceeds Short Root Count, then it is not added to this list. Once the

first list is built, it is looped over. Starting with the next state in

the list, take dot products of the gauge charges and erase any positive

dot products. That loop is repeated until all of the states have either

negative or zero dot products. When that is completed, three things

are checked before swapping the contents of Simple Roots with this new

list. Firstly, bool Connected Simple Roots(const list<State>& Simple Roots)

is called to make sure there weren’t any mutually orthogonal subsets of

simple roots found. Then, the number of short roots added must equal

the number of short roots that are supposed to be in Simple Roots . Fi-

nally, it must be larger than Simple Roots . If all of these conditions are

met, then Simple Roots is swapped with the new list. This process is

repeated with every root in Positive Roots as the starting point for the

list. This process is schematically identical to void Find Simple Roots(),

which is shown in figure A.3. The additional checks for short roots

are performed in the outer loop and only affect the initial list of non-

positive dot products.

bool Connected Simple Roots(const list<State>& Simple Roots)

Takes the list of potential simple roots and makes sure they are “con-

nected” - that is, it checks that the simple roots are not forming mu-

tually orthogonal subsets of simple roots. This is important because

Dynkin diagrams of all Lie algebras show that no irreducible group

has mutually orthogonal subsets of simple roots. To determine this,

the method first places all of the potential simple roots into a list

called Unconnected Simple Roots. It adds one root to another list, called

Connected Simple Roots, erasing that root from Unconnected Simple Roots.

The method then loops over Connected Simple Roots, and within that

253

loops over Unconnected Simple Roots. Inside the inner most loop, if the

current element of Connected Simple Roots has a nonzero dot product

with an element of Unconnected Simple Roots, then that root (from Un-

connected Simple Roots) is erased from that container, and added to Con-

nected Simple Roots. Both loops are done via C++ STL iterator s, which

allows the containers to change dynamically without invalidating the

loop limits. Each increment over Connected Simple Roots must find a

connection, or the outer loop terminates. To make sure they are all

connected, the method checks the size of Connected Simple Roots against

the size of the argument Simple Roots. If they match, it returns true. If

they do not match, the method returns false.

void Order Simple Roots(char Class) Imposes an ordering on Simple Roots that

is used by the Gauge Group’s method for finding a group representation’s

dimension. The general idea behind this method is that the “special”

roots are picked out. In the case of an A-class group (with rank greater

than 1), that is either end root. In the case of a D-class group or E6,

that root is the simple root with three nonzero dot products. The idea

is to pick the first root in the simple roots as an “anchor,” then find any

that have the proper symmetries to produce complex representations.

This ordering convention allows the gauge groups to perform the cor-

rect symmetry transformations on the Dynkin diagram to ensure the

correct complex representations are identified. For an A-class group,

this means simply finding the one of the end roots and building the

diagram from there. An outer for loop is initialized over Simple Roots .

A loop over Simple Roots inside of the outer loop is used to count the

number of nonzero dot products the simple root in the outer loop has

with the others. If that number evaluates to 1, the root in question is

254

erase from Simple Roots and the outer loop is broken. The end simple

root is stored in a variable called First Simple Root, which will be used

to order the others. To find First Simple Root for D-class groups and

E6, the same process is used with one exception; First Simple Root is

now initialized when there are 3 nonzero dot products with the other

simple roots. This puts a priority on the “junction” root in the D-

class and E6 Dynkin diagrams when ordering the simple roots. The

roots which have a nonzero dot product with First Simple Root are also

stored in a vector called Special Simple Roots. When the loop for ini-

tializing First Simple Root has terminated, First Simple Root is pushed

onto a new list, Ordered Simple Roots. If the method has also initialized

Special Simple Roots (for D-class and E6 groups), then Simple Roots is

looped over again, this time testing the dot products of the elements

in Special Simple Roots with the remaining Simple Roots (recall that the

“anchor” root has been erased from Simple Roots). Two of the roots

will be orthogonal to the other remaining roots if the group is D-class,

and one of the roots will be orthogonal to the remaining simple roots if

the group is E6. Those special roots which are orthogonal to the other

simple roots are pushed onto Ordered Simple Roots and erased from Sim-

ple Roots . Finally, Ordered Simple Roots is looped over, and any ele-

ments of Simple Roots which have a nonzero dot product with the root

indexed in Ordered Simple Roots is erased from Simple Roots and pused

onto Ordered Simple Roots. The final step in the method is swapping

Simple Roots with Ordered Simple Roots.

int Gauge Dot(const State& State1, const State& State2) This method computes

the dot products of the gauge charges of State1 and State2. It returns

the numerator of that dot product only. It picks out the gauge charges

255

using Fermion Mode Map . A right moving mode that is the first member

of a complex fermion pair (which is never true for left-right pairings)

is a gauge charge. This method only performs the dot product for the

first element in the fermion mode pair, so no corrections are needed for

the dot products due to the use of a real basis.

double A Class Rank() This method returns the projected rank of an A class

gauge group using the size of Positive Roots . If the return value can be

cast as an integer and not change, then the group is an A class (exclud-

ing redundancies with E and D class gauge groups) group. Otherwise

it is not. The formula for the rank of an A class gauge group given the

number of nonzero positive roots is given below:

Rank =
(
√

1 + 8× Positive Roots().size()− 1)

2
. (A.18)

int Count Short Roots() Counts and returns the number of roots in

Positive Roots which have length squared less than

Long Root Length Num .

Gauge Group Build A Class Group() Builds and returns an A class gauge group

once Positive Roots and Simple Roots have been initialized. First, the

Kač-Moody level must be calculated. This is done according to the

equation

KM Level =
2

L
, (A.19)

where L is the length squared of the longest root in the gauge group.

Since the length-squared of the numerator is stored in

Long Root Length Num , the equation is calculated using

KM Level =
2× Positive Roots().front().Denominator()2

Long Root Length Num
. (A.20)

Since the denominators of all the states in Positive Roots are the same,

the front of the list is used for its denominator. Once the Kač-Moody

256

level has been calculated, the method checks to see if Simple Roots

has been initialized. If they were needed to resolve a redundancy

in identifying the class of the group, then this will evaluate to true,

and a Gauge Group Name object will be created with the constructor

Gauge Group Name(char Class, int Rank, int KM Level), the rank being

the size of Simple Roots. If the rank is greater than 1, the simple

roots must be ordered to impose a convention for any complex mat-

ter representations in the model. This is done by calling void Or-

der Simple Roots(char Class), passing it ‘A’. This Gauge Group Name is

passed to the Gauge Group constructor Gauge Group(list<State> Posi-

tive Roots, Gauge Group Name Name, list<State> Simple Roots) along with

Positive Roots and Simple Roots . If Simple Roots has not been initial-

ized, then the method first calculates the rank of the group by calling

double A Class Rank(). It then calls void Find Simple Roots(char Class, int

Rank), passing it the class and the rank. If the rank is greater than

1, the simple roots are ordered via void Order Simple Roots(char Class).

Then, as above, the name is created and passed to the constructor for

Gauge Group. The Gauge Group object is then returned.

Gauge Group Build B Class Group() Uses Positive Roots and Simple Roots to

evaluate the group’s rank and Kač-Moody level. This is done according

to equations (A.19, A.20). Once that has been completed, the method

checks the size of Simple Roots to see if it has been initialized. It should

not be, but this is a safety check in case the code is altered in some

way. If Simple Roots has not been initialized, then the method calls

void Find Simple Roots(char Class, int Rank). A Gauge Group Name object is

then created by passing the constructor Gauge Group Name(char Class, int

Rank, int KM Level) the class, the square root of the size of Positive Roots

257

which is the formula for the rank, and the calculated Kač-Moody

level. The Gauge Group Name object is then passed to the constructor

Gauge Group(list<State> Positive Roots, Gauge Group Name Name,

list<State> Simple Roots). That Gauge Group object is returned.

Gauge Group Build C Class Gauge Group() Uses Positive Roots and Simple Roots

to compute the Kač-Moody level and rank of a gauge group, return-

ing a Gauge Group object of Cartan class CN . First, the Kač-Moody

level is calculated using equations (A.19, A.20). The rank is also

calculated, and is equal to the square root of the number of posi-

tive roots. A Gauge Group Name object is then created using the con-

structor Gauge Group Name(char Class, int Rank, int KM Level), passing it

‘C’, the calculated rank, and the calculated Kač-Moody level, respec-

tively. The method the checks to see if Simple Roots has been initial-

ized. In the current form, the program should not initialize it, but

if the code gets changed this check makes sure additional resources

are not used to find something which has already been initialized.

If Simple Roots has not been initialized, then the method calls void

Find Simple Roots(char Class, int Rank), passing it ‘C’ and the rank. When

that is completed the method creates a Gauge Group object using the

constructor Gauge Group(list<State> Positive Roots, Gauge Group Name

Name, list<State> Simple Roots), passing it Positive Roots , the

Gauge Group Name object created earlier, and Simple Roots . The

Gauge Group object is then returned.

Gauge Group Build D Class Group() Uses Positive Roots and Simple Roots to

calculate the rank and Kač-Moody level of a D class gauge group. It

creates said group and returns it. First, the method computes the

Kač-Moody level of the group using equations (A.19, A.20). It then

258

computes the rank from the number of positive roots using the formula

Rank =
1 +
√

1 + 4×NZPR
2

, (A.21)

where NZPR are the number of nonzero positive roots. Once the

rank and Kač-Moody level have been determined, the method cre-

ates a Gauge Group Name object using the Gauge Group Name(char Class,

int Rank, int KM Level), passing it ‘D’, the rank, and the Kač-Moody

level. After the Gauge Group Name has been created, the method then

checks to see if Simple Roots has been initialized. If it hasn’t, then

void Find Simple Roots(char Class, int Rank) is called with ‘D’ and the

rank passed as parameters, respectively. The simple roots are then

ordered using void Order Simple Roots(char Class). A Gauge Group object

is then created using the constructor Gauge Group(const list<State>&

Positive Roots, Gauge Group Name Name, const list<State>& Simple Roots),

passing it Positive Roots , the Gauge Group Name object created earlier,

and Simple Roots .

void Build E Class Group() Uses Positive Roots and Simple Roots to find an E

class gauge group’s rank and Kač-Moody level, then builds and returns

a Gauge Group object. The method starts by calculating the Kač-Moody

level of the group using equations (A.19, A.20). Since the group is ex-

ceptional, it can be only one of three possible ranks: 6,7, or 8. E6

and E8 are degenerate to other simply-laced groups (have the same

number of nonzero positive roots), so their simple roots were already

found to resolve the degeneracy. The method uses a switch statement

on the size of Simple Roots to determine the rank. The default value

is 7. If the switch evaluates to the default case, the method checks to

see if Simple Roots has been initialized. If that is not true, then void

259

Find Simple Roots(char Class, int Rank) is called, passing it E and 7, re-

spectively. If the switch evaluates to 8, then the rank is set accordingly.

If the switch evaluates to 6, the rank is set accordingly and void Or-

der Simple Roots(char Class) is called to impose an ordering for any com-

plex matter representations the group will have. Once the rank has

been established, a Gauge Group Name object is created using the con-

structor Gauge Group Name(char Class, int Rank, int KM Level), with E, the

rank, and the Kač-Moody level of the group. After that, a Gauge Group

object is created using the constructor Gauge Group(const list<State>&

Positive Roots, Gauge Group Name Name, const list<State>& Simple Roots),

passing Positive Roots , the Gauge Group Name created earlier, and Sim-

ple Roots . The Gauge Group is returned.

void Build F Class Group() Uses Positive Roots and Simple Roots to determine

the Kač-Moody level of the group F4, which is built and returned. The

Kač-Moody level is determined using equations (A.19, A.20). Since

the only F class group is F4, then a Gauge Group Name object is cre-

ated using the constructor Gauge Group Name(char Class, int Rank, int

KM Level), passing it F, 4, and the calculated Kač-Moody level. Af-

ter that, if Simple Roots has not been initialized, the method calls void

Find Simple Roots(char Class, int Rank), passing it F and 4, respectively.

Finally, the method creates the Gauge Group object using the construc-

tor Gauge Group(const list<State>& Positive Roots, Gauge Group Name Name,

const list<State>& Simple Roots), passing Positive Roots , the

Gauge Group Name object created earlier, and Simple Roots . The

Gauge Group object is returned.

void Build G Class Group() This method uses Positive Roots and Simple Roots

to determine the Kač-Moody level of the group G2, which is built and

260

returned. The Kač-Moody level is determined using equations (A.19,

A.20). Since there is only one G class group, G2, a Gauge Group Name

object is created using the constructor Gauge Group Name

(char Class, int Rank, int KM Level), passing it ‘G’, 2, and the calculated

Kač-Moody level. After that, if Simple Roots has not been initialized,

the method calls void Find Simple Roots(char Class, int Rank), passing it

‘G’ and 2. Then a Gauge Group object is created using the constructor

Gauge Group(const list<State>& Positive Roots, Gauge Group Name Name,

const list<State>& Simple Roots), passing Positive Roots , the previously

created Gauge Group Name object, and Simple Roots . The Gauge Group

object is then returned.

A.2.17 FF Gauge Group Name.hh

NAME: Gauge Group Name

PURPOSE: Holds the data needed to specify a gauge group’s name - the class (in

Cartan notation), the rank, and the Kač-Moody level. Also holds informa-

tion for catgorizing gauge groups for model comparison.

OBJECTS CREATED BY: Gauge Group Identifier

USED IN: Gauge Group Identifier, Gauge Group

MEMBERS:

char Class Holds the Cartan classification for the group name.

int Rank Holds the rank for the group name.

int KM Level Holds the Kač-Moody level for the group name.

bool Ordered A boolean flag indicating that the complex representations

have been ordered.

261

bool V Ordered A boolean flag indicating that the vector representations of

SO(8) have been ordered.

CONSTRUCTORS:

Gauge Group Name() Default constructor for this class. Sets Class to ‘N’,

Rank to 0, and KM Level to 0. Ordered and V Ordered are initialized

to false. Explicit use of this constructor is not recommended.

Gauge Group Name(char Class, int Rank, int KM Level) Initializes Class to Class,

Rank to Rank, and KM Level to KM Level. Ordered and V Ordered are

initialized to false.

METHODS:

bool Is D4() const Returns true if the group is D4, false otherwise.

void Display() const Displays the class, the rank, and the Kač-Moody level of

the group name onto the screen for debugging purposes.

bool operator<(const Gauge Group Name Gauge Group Name2) const Compares

*this to Gauge Group Name2 by first comparing the class, then the

rank, then the Kač-Moody level. This method could be improved by

making it a friend function rather than a member.

bool operator==(const Gauge Group Name Gauge Group Name2) const Returns

true if and only if the class, rank, and Kač-Moody level of *this match

those of Gauge Group Name2. This method could be improved by mak-

ing it a friend function rather than a member.

A.2.18 FF Math.hh

NAMESPACE: FF

PURPOSE: This file defines a namespace for basic mathematical functions needed

within the framework.

262

USED IN: Basis Alpha Builder, GSO Coefficient Matrix Builder, Model,

Modular Invariance Checker.

METHODS:

int GCD(int a, int b) Returns the greatest common divisor between a and b.

Uses Euclid’s algorithm.

int LCM(int a, int b) Returns the least common multiple of a and b according

to the formula

LCM =
a× b

GCD(a, b)
(A.22)

Where GCD(a, b) is the greatest common divisor between a and b.

A.2.19 FF Matter State.hh

NAME: Matter State

PURPOSE: Inherits from the State class, adding a member for holding the dimen-

sions of the group representations under which the state transforms.

OBJECTS CREATED BY: Model Builder

USED IN: Model, Model Builder

MEMBERS:

vector<Group Representation> Representations Holds the group representations

under which the state transforms.

CONSTRUCTORS:

Matter State() Default constructor which does not initialize any members.

Not recommended for explicit use.

Matter State(const vector<int>& Numerator, int Denominator, int LM Size,

263

vector<Group Representation>& Representations) Takes the numerator, denom-

inator, the size of the left mover, and the group representations un-

der which the state transforms. Initializes Representations to Repre-

sentations, and passes Numerator, Denominator, and LM Size to the base

class constructor State(const vector<int>& Numerator, int Denominator, int

LM Size).

METHODS:

void Display Representations() const Prints the contents of Representations to

the screen for debugging purposes.

bool operator<(const Matter State& Matter State2) const Compares the Represen-

tations member of *this to Matter State2. This method could be im-

proved by making it a friend function rather than a member function.

bool operator==(const Matter State& Matter State2) const Returns true if and

only if the Representations member of *this is identical to the Represen-

tations member of Matter State2. This method could be improved by

making it a friend function rather than a member function.

A.2.20 FF Model.hh

NAME: Model

PURPOSE: Holds the information needed to completely specify a free fermionic

heterotic string model. Also provides methods for loading the model with

inputs.

OBJECTS CREATED BY: Model Builder

USED IN: Basis Alpha Builder, Fermion Mode Map Builder,

GSO Coefficient Matrix Builder, Model Builder

264

MEMBERS:

vector<Basis Vector> BV Set The integer coded basis vectors for the model.

GSO Coefficient Matrix k ij The GSO coefficient matrix for the model.

vector<Gauge Group> Gauge Groups The gauge groups for the model.

list<Matter State> Matter States The matter states for a model.

list<State> SUSY States The gravitino states in a model, indicating the num-

ber of ST SUSYs for models in all but 8 large ST dimensions.

int U1 Factors The number of U(1) factors in a model.

bool NAHE Loaded A boolean flag indicating that the NAHE set or NAHE

variation have been loaded into the model. This flag activates certain

optimizations in the other classes for systematic searches. Ususally not

needed for individual model construction.

CONSTRUCTORS:

Model() Default constructor which does not initialize anything. Not recom-

mended for explicit use.

Model(int Large ST Dimensions) Calls void Load One Vector(int

Large ST Dimensions) to initialize the all periodic basis vector, then sets

NAHE Loaded to false. The other members are initialized either by

loader functions or through Model Builder.

METHODS:

void Load S Vector(int Large ST Dimensions) Uses the number of large space-

time dimensions (D) to build the gravitino generating basis vector,

usually labeled S. The D − 2 complex space-time fermions are initial-

ized first to periodic values, followed by the x values of the 10 − D

compactified triplets. The y and w values of those triplets are anti

265

periodic. The remaining 52 − 2D right movers are initialized to zero.

A Basis Vector object is created using the constructor Basis Vector(const

vector<int>& BV, int Order, int Large ST Dimensions), passing it the vector

created above, 2 for the order, and Large ST Dimensions. The Basis Vector

is then pushed onto BV Set using void Load BV Set(const Basis Vector&

New BV).

void Load BV Set(const Basis Vector& New BV) Pushes New BV onto BV Set .

Also calls void Load GSO Coefficient Matrix Order(int New Order) to add

the order of New BV to k ij .

void Load k ij Row(const vector<int>& New k ij Row) Calls

void Load GSO Coefficient Row(const vector<int>& New Row) to put

New k ij Row into k ij .

void Add Gauge Group(const Gauge Group& New Gauge Group) Pushes

New Gauge Group onto Gauge Groups .

void Sort Gauge Groups() Sorts the elements of Gauge Groups according to

their Name members (handled by Gauge Group and Gauge Group Name).

This is done with the STL algorithm sort function.

void Add Matter State(const Matter State& New Matter State) Adds

New Matter State to Matter States.

void Sort Matter States() Sorts the contents of Matter States by calling the

C++ list’s sort() function.

void Display BV Set() const Displays the contents of BV Set onto the screen

by calling the void Display() const member function of Basis Vector. For

debugging.

void Display k ij() const Displays k ij by calling void Display() const for the

GSO Coefficient Matrix class. For debugging.

266

void Display Gauge Groups() const Steps through Gauge Groups , calling void Dis-

play() const from the Gauge Group class for each element. For debugging.

void Display Matter Representations() const Displays the dimensions of the mat-

ter representations for the model, along with the number of copies of

each set of dimensions. The actual vectors are not displayed. Since

Matter States is ordered by charges, they must be placed in a form

which groups the states according to their representations. The method

declares a two dimensional vector holding the actual representations

(Representations), and a one dimensional vector for holding the num-

ber of copies of each representation (Duplicate Representations). Mat-

ter States is then looped over, and within that, Representations is looped

over to see if the current state in the outer loop is already present

in Representations. If it is, then the corresponding element of Dupli-

cate Representations is incremented. Otherwise, the Representations mem-

ber of the current state in the outer loop is added to Representations,

and a 1 is pushed onto Duplicate Representations. This is done only after

all of the elements of Representations have been checked. Once all of

Matter States has been counted, the results are displayed on the screen,

with the number of duplicates followed by a colon, then the dimensions

of the representations. For debugging.

void Display Particle Content() const Displays the information related to the

particle content of the model onto the screen. The method first calls

void Display Gauge Groups() const, followed by

void Display Matter Representations() const to output the force and matter

content of the model. The number of U(1) factors is then displayed,

followed by the number of space-time SUSYs, which corresponds to the

size of SUSY States .

267

void Load One Vector(int Large ST Dimensions) Pushes the all periodic basis vec-

tor onto BV Set . The size of the vector is determined from the number

of large space-time dimensions according to the formula

Size = 80− 4×D (A.23)

where D is the number of large space-time dimensions. The vector is

loaded using void Load BV Set(const Basis Vector& New BV).

A.2.21 FF Model Builder.hh

NAME: Model Builder

PURPOSE: Uses the classes of the FF Framework to construct a free fermionic

heterotic string model. Has an interface for setting the inputs, checking for

modular invariance, as well as constructing and altering the model.

OBJECTS CREATED BY: User.

USED IN: Main.

MEMBERS:

Model FFHS Model The Model object containing the data for the model itself.

bool Consistent Fermion Mode Pairs A boolean flag which is set to true when

all of the fermion modes can be formed into pairs, and set to false when

they cannot. This member is initialized in the constructor and flagged

in void Build Fermion Mode Map().

Linearly Independent Alphas A boolean flag which is set to true when the ba-

sis vectors are linearly independent, and set to false when they are

not. This member is initialized in the constructor and flagged in void

Build Alphas().

268

Consistent GSO Matrix A boolean flag which is set to true when the GSO

coefficient matrix is consistent, and false when it is not. This member

is initialized in the constructor and flagged in void Build k ij().

vector<Basis Alpha> Basis Alphas The ~αB’s for the model before the common

denominator is found.

vector<Basis Alpha> Common Basis Alphas The ~αB’s for the model, but with

a common denominator.

set<Alpha Boson> Alpha Bosons Holds the boson producing sectors for the

model.

set<Alpha Fermion> Alpha Fermions Holds the fermion producing sectors for

the model.

set<Alpha SUSY> Alpha SUSYs Holds the gravitino generating sectors for

the model.

map<int, int> Fermion Mode Map The map between fermion mode pairs for

the model.

list<State> SUSY States Holds the gravitino states for the model, the num-

ber of which correspond to the number of space-time supersymmetries

in all but 8 large space-time dimensions.

CONSTRUCTORS:

Model Builder(int Large ST Dimensions) Takes the number of large space-time

dimensions as a parameter. First creates a new Model object using the

constructor Model(int Large ST Dimensions), then sets FFHS Model equal

to that object. Next, Consistent Fermion Mode Pairs ,

Linearly Independent Alphas , and Consistent GSO Matrix are initialized to

true.

269

METHODS:

void Load S Vector(int Large ST Dimensions) Calls the void Load S Vector(int

Large ST Dimensions) member function for FFHS Model , passing it

Large ST Dimensions.

void Load Basis Vector(const Basis Vector& New Basis Vector) Calls the

void Load BV Set(const Basis Vector& New Basis Vector) member function

of FFHS Model , passing it New Basis Vector.

void Load k ij Row(const vector<int>& New k ij Row) Calls the

void Load k ij Row(const vector<int>& New k ij Row) member function of

FFHS Model , passing it New k ij Row.

void Load Default k ij() Loads a default value for the GSO coefficient matrix

consisting of all periodic values. Odd ordered modes default to the

nearest integer, since odd orders do not have periodic modes. The

method first loads a 1 into the upper left corder for the all periodic

vector, then loops over the remaining basis vectors in FFHS Model ’s

BV Set . A loop within that is placed to push the orders onto the row

according to the column. The inner loop’s size is designed to stay in the

lower half of the matrix. For example, a model with an order 4, order

3, and order 2 basis vector (in that order) would have the following

default kij matrix.

kDefaultij =

~1 O4 O3 O2

~1 1 � � �

O4 1 � � �

O3 1 2 � �

O2 1 2 1 �

270

The default kij matrix is not guaranteed to be consistent, so exercise

caution when using this function. Since this method uses BV Set , the

basis vectors need to be added before this method is called.

void Load NAHE Set() Loads the NAHE set into FFHS Model using the

NAHE Set Loader class, which is part of the Extended FF Framework.

This method is designed to optimize systematic and individual NAHE

extensions, and is not needed for general WCFFHS model construction.

void Load NAHE Variation() Loads the NAHE variation into FFHS Model us-

ing the NAHE Variation Loader class, which is part of the Extended FF

Framework. This method is designed to optimize systematic and indi-

vidual NAHE variation extensions, and is not needed for general FFHS

model construction.

bool Check Modular Invariance() Checks whether FFHS Model has modular in-

variance. First, the method checks whether Common Basis Alphas has

been initialized. If it has not, then it calls void Build Basis Alphas(). After

that, the method creates a Modular Invariance Checker object, returning

the value of that class’s bool Test Modular Invariance(const vector

<Basis Alpha>& Basis Alphas), with Common Basis Alphas passed to that

function as an argument.

bool Check Linear Independence() This method tests the inputs to ensure they

are linearly independent. If the inputs are not linearly independent,

then the model is inconsistent. It first checks to see if Basis Alphas

has been initialized, since the method needs Alphas to determine the

linear independence. If it has not been initialized, then it calls void

Build Basis Alphas() and void Build Alphas(). If Basis Alphas has been ini-

tialized, but Alpha Bosons , Alpha Fermions , and Alpha SUSYs have not,

271

then the method only calls void Build Alphas(). void Build Alphas() sets

the flag Linearly Independent Alphas , which is returned by this method.

bool Check k ij Consistency() Checks the consistency of the GSO coefficient

matrix in FFHS Model . The method first determines if

Common Basis Alphas has been initialized. If it has not, the method

calls void Build Alphas(). Then, the method checks whether the GSO

coefficient matrix in FFHS Model has been completed. This is done

by comparing the first row’s size with the number of rows. If they

are equal, then it is a square matrix, otherwise it has not yet been

completed. If the matrix hasn’t been completed, the method calls void

Build k ij(), which builds the GSO coefficient matrix and flags Consis-

tent GSO Matrix . That member is then returned.

bool Check Model Consistency() Checks the overall consistency of a model, ny

testing modular invariance, properly paired fermion modes, and a con-

sistent GSO coefficient matrix. It returns true if the model is con-

sistent, and false if it is not. It first checks if the model has modu-

lar invariance by calling bool Check Modular Invariance(). If it does not,

then the method returns false. If it does, then the method calls bool

Check k ij Consistency(). If that is false, then the method returns false.

If bool Check k ij Consistency() returns true, then

bool Check Linear Independence() is called, the result of which is returned.

void Build Gauge Group Model() Builds the gauge groups for a WCFFHS model.

First, it checks to see if Basis Alphas has been initialized. If it has not,

the method calls void Build Basis Alphas(). Then the method checks to

see if Alpha Bosons , Alpha Fermions , and Alpha SUSYs have been ini-

tialized. If they have not, then void Build Alphas() is called. Next, the

method checks if Fermion Mode Map has been initialized. If it has not,

272

then void Build Fermion Mode Map() is called. The last preliminary check

the method must do is ensure that the GSO coefficient matrix has been

completed. This is done by comparing the size of the first row to the

number of rows. If they are the same, then the matrix is square. If

they are not, then void Build k ij() is called. Once the necessary mem-

bers have been initialized, the method calls void Build Gauge Groups() to

build the gauge groups, and void Compute U1 Factors() to determine the

number of U(1) factors in the model.

void Build Model() Builds a WCFFHS model’s gauge and matter content.

The gauge content is constructed first via void Build Gauge Group Model(),

then the number of space-time SUSYs is determined by

void Build SUSY States(). Finally, the matter states are built using void

Build Matter States().

void Display Gauge Group Roots() const Displays the nonzero positive roots of

the gauge groups onto the screen. For each gauge group, void Display()

const is called for that object to output the name of the group, then

the positive roots are looped over, printing to screen. For debugging.

Model& rFFHS Model() This is a special accessor which returns a reference

(rather than a const reference) to FFHS Model . This allows for other

methods to access and alter FFHS Model . After the method is called,

the consistency of the model is not rechecked, so use caution when

calling this function.

void Build Basis Alphas() Constructs the basis alphas from the basis vectors.

It initializes Basis Alphas and Common Basis Alphas . The method be-

gins by creating a Basis Alpha Builder object using the constructor Ba-

sis Alpha Builder(const Model& FFHS Model), passing it FFHS Model . The

273

method then calls void Build Basis Alphas() and void Build Basis Alphas()

from the Basis Alpha Builder. It sets Basis Alphas to the Basis Alphas

member of the Basis Alpha Builder, and Common Basis Alphas to the Com-

mon Basis Alphas member of the Basis Alpha Builder.

void Build Alphas() Builds the sectors for the model, keeping only the sectors

which can produce massless states and placing them into Alpha Bosons ,

Alpha Fermions , and Alpha SUSYs as appropriate. It also sets the boolean

flag Linearly Independent Alphas . The method begins by declaring a Al-

pha Builder using the constructor Alpha Builder(const vector<Basis Alpha>&

Common Basis Alphas, const vector<Basis Alpha>& Basis Alphas). It then

calls the member function void Build Alphas() from the Alpha Builder. It

sets Alpha Bosons to the member Alpha Bosons of the Alpha Builder, Al-

pha Fermions to the member Alpha Fermions of the Alpha Builder, and Al-

pha SUSYs to the member Alpha SUSYs of the Alpha Builder. After that,

Linearly Independent Alphas is set to the member Linearly Dependent Alphas

of the Alpha Builder.

void Build Fermion Mode Map() Builds the map between fermion modes for

the model. Also sets the boolean flag Consistent Fermion Mode Pairs .

The method begins by creating a Fermion Mode Map Builder object using

the default constructor. The member function

void Build Fermion Mode Map(const vector<Basis Alpha>&

Common Basis Alphas) of Fermion Mode Map Builder is called with Com-

mon Basis Alphas as the argument. Then, Fermion Mode Map is set

equal to the member Fermion Mode Map of Fermion Mode Map Builder.

The boolean flag Consistent Fermion Mode Pairs is set to the member

Consistent Pairings of Fermion Mode Map Builder.

274

void Build k ij() Takes the lower half of the GSO coefficient matrix inputted

by the user and builds the upper triangle. Also sets the boolean flag

Consistent GSO Matrix . The method begins by creating a

GSO Coefficient Matrix Builder object using the constructor

GSO Coefficient Matrix Builder(const Model& FFHS Model, const

vector<Basis Alpha>& Common Basis Alphas), passing it FFHS Model and

Common Basis Alphas . Then the member function

void Build Complete GSO Matrix() of GSO Coefficient Matrix Builder is called.

Then the set method for k ij is used to put the member

Complete GSO Matrix of GSO Coefficient Matrix Builder into FFHS Model .

Finally, the boolean flag Consistent GSO Matrix is set to the member

Consistent GSO Matrix of the GSO Coefficient Matrix Builder object.

void Build Gauge Groups() Builds the states from Alpha Bosons and arranges

the positive states into mutually orthogonal sets. These sets form the

nonzero positive roots for the gauge groups in the model. Once the sets

of nonzero positive roots have been found, the groups are identified and

placed in FFHS Model . The method begins by first building the gauge

boson states and placing them in one large list, called Boson States. For

each element in Alpha Bosons , a State Builder object is created with the

constructor State Builder(const Alpha& The Alpha, const map<int, int>&

Fermion Mode Map, const vector<Basis Alpha>& Common Basis Alphas, const

GSO Coefficient Matrix& k ij), passing it the sector, Fermion Mode Map ,

Common Basis Alphas , and k ij. The member function void Build States()

of State Builder is then called, which builds the boson states from the

boson sector. Those states are then looped over with the intent of

adding them to Boson States. Before they are added, the method checks

275

if the state is positive using the bool Is Positive(const map<int, int>&

Fermion Mode Map) member function of the State class, passing it

Fermion Mode Map . If the state is positive, then the length squared of

the numerator is calculated using the State class member function void

Calculate Length Squared(const map<int, int>& Fermion Mode Map, passing

it Fermion Mode Map . Once all this is done (assuming the state is posi-

tive), the state is added to Boson States. This process is repeated for all

elements of Boson Sectors so that Boson States has only positive states

with Length Squared Numerator (a member of State) initialized. Now the

method groups the states into mutually orthogonal sets. To do this,

the method picks a state, pushing it onto a list called Positive Roots. It

then computes the gauge charge dot product of that state with each of

the states in Boson States, adding any that are nonzero to Positive Roots

and erasing them from Boson States. Then, a loop over Positive Roots

is started, repeating this process for all of the states in Positive Roots.

Since that loop is done via C++ STL iterator objects, the loop bounds

change as elements are added to Positive Roots. This is done until all

of the states left in Boson States are orthogonal to all of the states in

Positive Roots. Then, a Gauge Group Identifier object is created using

the constructor Gauge Group Identifier(const list<State>& Positive Roots,

const map<int, int>& Fermion Mode Map), passing it Positive Roots and

Fermion Mode Map . A Gauge Group object is then created using the

Get Group() member function of Gauge Group Identifier, which is passed

to the Model member function void Add Gauge Group(const Gauge Group&

New Gauge Group). The entire process is repeated until Boson States is

empty. A schematic of this process is given in figure A.4.

void Build SUSY States() Builds the gravitinos for the model, initializing

276

Boson States

Add State to Positive Roots

Compute Dot Product

Add State to Positive Roots

Erase from Boson States

Increment Positive Roots

Identify and Add Gauge Group

Increment Boson States

Figure A.4: A schematic of the process used to build the gauge groups.

277

SUSY States . This is done by looping over Alpha SUSYs . For each

SUSY generating sector, a State Builder object is created using the

constructor State Builder(const Alpha& The Alpha, const map<int, int>&

Fermion Mode Map, const vector<Basis Alpha>& Common Basis Alphas, const

GSO Coefficient Matrix& k ij), passing it the SUSY generating sector,

Fermion Mode Map , Common Basis Alphas , and k ij (from FFHS Model).

Then, the State Builder member function void Build States() is called.

Then, those states are added to SUSY States . This process is repeated

for the next SUSY generating sector.

void Build Matter States() Builds the matter states for the model, initializ-

ing Matter States in FFHS Model . The method begins by looping over

Alpha Fermions . For each fermion sector, a State Builder object is cre-

ated using the constructor State Builder(const Alpha& The Alpha, const

map<int, int>& Fermion Mode Map, const vector<Basis Alpha>&

Common Basis Alphas, const GSO Coefficient Matrix& k ij), passing it the

fermion sector, Fermion Mode Map , Common Basis Alphas , and k ij (in

FFHS Model). Once the states from the fermion sector are built, the

method then checks if the matter state is a supersymmetric partner to

a gauge boson using the member function bool Is SUSY Partner(const

State& New Matter State), passing it the state which was created by

State Builder. If the state is not a SUSY partner, then the method

must compute the dimensions of the group representations under which

the states transform. This is done by looping over the gauge groups

and calling int Compute Rep Dimension(const State& Weight, const map<int,

int>& Fermion Mode Map) for each group. Those dimensions are pushed

onto a vector. However, since only the highest weight states are needed

for the model, if int Compute Rep Dimension(const State& Weight, const

278

map<int, int>& Fermion Mode Map) returns 0, then the loop over the

gauge groups is broken since the state is not a highest weight in the rep-

resentation. Note that the special accessor Gauge Group& rGauge Group()

is used rather than a standard accessor. This is because the Gauge Group

member function int Compute Rep Dimension(const State& Weight, const

map<int, int>& Fermion Mode Map) alters the Gauge Group object. See

the Gauge Group class documentation for more details. Once the new

state has been determined as a non-SUSY partner, highest weight repre-

sentation for all of the gauge groups, a new Matter State object is created

using the constructor Matter State(const vector<int>& Numerator, int De-

nominator, int LM Size, const vector<int>& Representations), passing it the

Numerator , Denominator , and LM Size members of the fermion state, as

well as the vector containing the representation dimensions. That state

is added to Matter States in FFHS Model using void Add Matter State(const

Matter State& New Matter State). Once this has been done for all of the

states produced by all of the sectors, the void Sort Matter States() mem-

ber function of FFHS Model is called to sort the states according to

their matter representations.

void Compute U1 Factors() Computes the number of U(1) factors in the model,

setting the U1 Factors member of FFHS Model . First the maximal rank

of the gauge group product making the model is found. This is a func-

tion of the number of large space-time dimensions and, consequently,

the size of the basis vectors. It is given by the following formula

Total Rank =
Basis V ector Size

4
+ 6 (A.24)

After that, any rank-cuts made by left-right paired fermion modes are

then subtracted from this total. The number of rank-cuts are found

279

using the int Find Rank Cuts() function. Then, the total rank of the

non-Abelian gauge groups is summed. The number of U(1) factors in

a model is the maximal rank (after rank-cuts) minus the total rank of

the non-Abelian gauge groups. The U1 Factors member of FFHS Model

is then initialized to that value using it’s setter function.

int Gauge Dot(const State& State1, const State& State2) This method computes

the dot product of the gauge charges between State1 and State2. This is

done by starting a loop at the first right moving element, and computing

the dot product with only the first mode in a complex pair. It returns

only the numerator of the dot product. These dot products do not need

to be corrected for being in a real basis, since only the first fermion

mode in each complex pair is calculated.

bool Is SUSY Partner(const State& New Matter State) Determines whether

New Matter State is a fermionic superpartner to a gauge boson, returning

true if it is, and false if it is not. This method loops over each of the

SUSY states (gravitinos). Nested within that loop, there is a loop over

the left movers between New Matter State and the SUSY state. If the

left movers match exactly, then New Matter State is a SUSY partner,

and the method returns true. If they do not match, the inner loop is

immediately broken and the loop over SUSY States is incremented. If

none of the SUSY States have a matching left mover to New Matter State,

then New Matter State is not a SUSY partner, and the method returns

false.

int Find Rank Cuts() Finds and returns the number of rank-cuts a model has.

This is done by looping over Fermion Mode Map and counting how many

left-right pairs there are for the model. The number of rank-cuts for

the model is equal to half the number of left-right pairs.

280

A.2.22 FF Modular Invariance Checker.hh

NAME: Modular Invariance Checker

PURPOSE: Holds the functions for checking the modular invariance of a set of

basis vectors.

OBJECTS CREATED BY: Model Builder

USED IN: Model Builder

MEMBERS: None.

CONSTRUCTORS:

Modular Invariance Checker() A default constructor. Nothing is initialized,

since there are no member variables for this class.

METHODS:

bool Test Modular Invariance(const vector<Basis Alpha>& Basis Alpha Set) Checks

and returns whether Basis Alpha Set has modular invariance, return-

ing true if it does and false if it does not. There are two conditions

which must be checked to ensure Basis Alpha Set has modular invari-

ance. The first is a set of dot product conditions, checked by bool

Check Dot Products(const vector<Basis Alpha>& Basis Alpha Set). The other

condition is on the number of simultaneous periodic modes, and en-

sures that the fermion modes can all be paired. This is done with bool

Check Simultaneous Periodic Modes(const vector<Basis Alpha>&

Basis Alpha Set). Both of these functions must return true for

Basis Alpha Set to have modular invariance.

bool Check Dot Products(const vector<Basis Alpha>& Basis Alpha Set) Checks the

dot product conditions required for modular invariance for Basis Alpha Set.

281

Those equations are

Ni~α
B
i · ~αBi = 0 (mod 16) (even order), (A.25)

Ni~α
B
i · ~αBi = 0 (mod 8) (odd order), (A.26)

LCM(Ni, Nj)~α
B
i · ~αBj = 0 (mod 8), (A.27)

where Ni is the order, LCM(Ni, Nj) is the least common multiple be-

tween Ni and Nj, and ~αBi is the basis alpha for the model. The method

loops over Basis Alpha Set, testing all of the dot products for each of its

elements. If any of them fail, the function immediately returns false.

Otherwise, after the loops are completed, the method returns true.

bool Check Simultaneous Periodic Modes(const vector<Basis Alpha>&

Basis Alpha Set) Tests the condition that the number of simultaneous peri-

odic modes for any three ~αB’s be even. This condition ensures that

the fermion modes can all be paired. The method does this by loop-

ing over all three element combinations of Basis Alpha Set. The method

adds each set of modes together from the three basis alphas. If that

sum is equal to the sum of the denominators of those basis alphas, then

all three modes were periodic. The method counts how many times this

occurs, and if it is ever an odd number, immediately returns false. If

the loops complete without exiting, the method returns true.

A.2.23 FF State.hh

NAME: State

PURPOSE: Holds the information needed to specify and operate with a state in

the model.

OBJECTS CREATED BY: State Builder

282

USED IN: State Builder, GSO Projector, Matter State, Model Builder, Model, Gauge Group,

Gauge Group Identifier

MEMBERS:

vector<int> Numerator Holds the numerator for the state.

int Denominator Holds the denominator for the state.

int LM Size Holds the size of the left movers for the state.

int Length Squared Numerator The numerator for the length squared of the

state.

int Length Squared Denominator The denominator for the length squared of

the state.

CONSTRUCTORS:

State() The default constructor, which does not initialize any member vari-

ables. Not recommended for explicit use.

State(const vector<int>& Numerator, int Denominator, int LM Size) Initializes Nu-

merator to Numerator, Denominator to Denominator, and LM Size to

LM Size.

METHODS:

void Calculate Length Squared(const map<int, int>& Fermion Mode Map)

Computes the length squared of the gauge charges by taking

Fermion Mode Map and looping over the right moving modes which are

the first element in a complex pair, squaring each mode’s value. Ini-

tializes Length Squared Numerator to the numerator of the dot product,

and Length Squared Denominator to the denominator of the dot product.

bool Is Positive(const map<int, int>& Fermion Mode Map) Takes the map

283

between complex fermion modes and determines if the state is positive

in the gauge charge space. This is done by examining the first nonzero

right moving mode that is also the first element in a complex pair (i.e.

the first nonzero gauge charge). If that charge is positive, the method

returns true, otherwise it returns false.

virtual bool operator==(const State& State2) const Returns true if and only if

the numerators of *this and State2 are exactly equal. This method

could be improved by making it a friend function rather than a member

function.

virtual bool operator != (const State& State2) const Returns the opposite of vir-

tual bool operator==(const State& State2). This method could be im-

proved by making it a friend function rather than a member function.

virtual bool operator<(const State& State2) Returns true if the numerator of

*this is less than the numerator of State2, and returns false otherwise.

This method could be improved by making it a friend rather than a

member function.

A.2.24 FF State Builder.hh

NAME: State Builder

PURPOSE: Builds the physically consistent massless states from a specified sec-

tor for a model. First builds all massless states, then performs the GSO

projections.

OBJECTS CREATED BY: Model Builder

USED IN: Model Builder

284

MEMBERS:

Alpha The Alpha Holds the sector which produces the states. Since this

member is initialized by reference in the constructor, it could be any

of Alpha’s subclasses: Alpha Fermion, Alpha Boson, or Alpha SUSY.

char Alpha Type Holds a character indicative of the type of sector that

The Alpha is. Since the constructor takes a reference to an Alpha object,

the subclasses of Alpha can also be initialized to The Alpha . The Type

member of that object is saved in this variable when the constructor is

called.

map<int, int> Fermion Mode Map Holds the fermion mode pairings. Initial-

ized in constructor.

GSO Projector GSO Handler object which performs the GSO projections on

the massless states once they are created. Initialized in constructor.

list<State> States The massless states produced by The Alpha which passed

the GSO projections.

CONSTRUCTORS:

State Builder(const Alpha& The Alpha, const map<int, int>& Fermion Mode Map,

const vector<Basis Alpha>& Common Basis Alphas,

const GSO Coefficient Matrix& k ij) The method first initializes The Alpha to

The Alpha. Because this is an argument by reference, it can (and

is intended to) take any of Alpha’s subclasses. The Type member

of Alpha and its subclasses indicates whether it is an Alpha Fermion,

Alpha Boson, or Alpha SUSY. That member is stored in Alpha Type .

Fermion Mode Map is initialized to Fermion Mode Map, and a GSO Projector

object is created using the constructor GSO Projector(const vector

285

<Basis Alpha> Common Basis Alphas, const Alpha& The Alpha,

const GSO Coefficient Matrix& k ij, const map<int, int>& Fermion Mode Map).

Then GSO is initialized to that object.

METHODS:

void Build States() Interface function which selects the helper to call for build-

ing the states. The method first determines which type of state to build

based on Alpha Type . This is done with a switch statement on that

member. If Alpha Type is ‘b’, then void Build Boson States() is called. If

Alpha Type is ‘f’, then void Build Fermion States() is called. Finally, if

Alpha Type is ‘s’, then void Build SUSY States() is called.

void Display The Alpha() const Calls the void Display() const method for

The Alpha . For debugging.

void Display States() const Loops over States calling each elements void Dis-

play() const function. For debugging.

void Build Fermion States() Builds the fermion states for The Alpha that are

massless and consistent with the GSO projections. Initializes States .

This method begins by calculating the number of large space-time di-

mensions, calling int Calculate Large ST Dimensions(int LM Size), passing

it The Alpha ’s LM Size member. After that, a State LM Builder object is

created using the constructor State LM Builder(const Alpha& The Alpha,

int Large ST Dimensions, const map<int, int>& Fermion Mode Map), passing

it The Alpha , the previously calculated number of large space-time di-

mensions, and Fermion Mode Map . A State RM Builder object is also cre-

ated using the constructor State RM Builder(const Alpha& The Alpha, int

Large ST Dimensions, const map<int, int>& Fermion Mode Map), passing it

The Alpha , the previously calculated number of large space-time dimen-

286

sions, and Fermion Mode Map . Then, the massless left and right mov-

ing modes of the states are built calling void Build Massless State LMs()

from the State LM Builder object and void Build Massless State RMs() from

the State RM Builder object. Then, the Massless State LMs member of

State LM Builder is looped over, and within that loop the

Massless State RMs member of State RM Builder is looped over, merging

the left and right movers to form all possible complete states. The ac-

tual new State objects are created by merging the numerators (pulled

from State LM Builder and State RM Builder), then calling the construc-

tor State(const vector<int>& Numerator, int Denominator, int LM Size), pass-

ing it the combined numerator, twice the denominator for The Alpha

(recall the state charge values are half that of the sector phase values),

and the LM Size member of The Alpha . For each complete state that

is formed, that state is passed to bool GSOP(const State& New State). If

that function returns true, that state is added to States . If it does not,

the state is not added. When this method finishes, the member States

contains only massless states produced by The Alpha which have passed

the GSO projections.

void Build Boson States() Builds the boson states from The Alpha which are

massless and consistent with the GSO projections. Initializes States .

The method begins by calculating the number of large space-time di-

mensions using the function int Calculate Large ST Dimensions(int LM Size),

passing it LM Size of The Alpha . Then, a State RM Builder is cre-

ated using the constructor State RM Builder(const Alpha& The Alpha, int

Large ST Dimensions, const map<int, int>& Fermion Mode Map), passing it

The Alpha , the previously calculated number of large space-time dimen-

sions, and Fermion Mode Map . To build the boson state right movers,

287

the State RM Builder method void Build State RMs() is called. Those right

movers are then looped over. Each right moving boson state is ap-

pended to the boson left mover, which has 1’s for the first complex

space-time pair, and 0’s for all other left moving fermion modes. Once

the complete boson state is created (using the constructor State(const

vector<int>& Numerator, int Denominator, int LM Size), passing it the com-

plete numerator, twice the denominator of The Alpha since a state

has half the phase values of the sector, and the LM Size member of

The Alpha), the method calls bool GSOP(const State& New State) from

GSO to see if the state passes the GSO projections. If that method

returns true, the the boson state is added to States . If the method

returns false, the state is not added.

void Build SUSY States() Builds the gravitino states from The Alpha that are

massless and consistent with the GSO projections. Initializes States .

The method begins by calculating the number of large space-time di-

mensions using int Calculate Large ST Dimensions(int LM Size). Then, a

State LM Builder object is created using the constructor

State LM Builder(const Alpha& The Alpha, int Large ST Dimensions, const

map<int, int>& Fermion Mode Map), passing it The Alpha , the previously

calculated large space-time dimensions, and Fermion Mode Map . Then,

the massless left movers are created using the

void Build Massless State LMs() member function of State LM Builder.

Those left movers are looped over, and the right mover (all 0’s) for

gravitinos is added to them. The new state is created by calling the

State constructor State(const vector<int>& Numerator, int Denominator, int

LM Size), passing it the newly created numerator, twice the denomi-

nator of The Alpha since the state charge elements are half the sector

288

phase values, and LM Size of The Alpha . Once the gravitino state has

been created, the method then calls bool GSOP(const State& New State)

from GSO to see if the gravitino passes the GSO projections. If the

state passes, it is added to States , otherwise, it is not.

int Calculate Large ST Dimensions(int LM Size) Calculates and returns the num-

ber of large space-time dimensions given the size of the left mover for

a state, basis vector, or sector. Uses the formula A.8.

A.2.25 FF State LM Builder.hh

NAME: State LM Builder

PURPOSE: Builds the massless left moving parts of the states produced by a

given fermion or SUSY sector.

OBJECTS CREATED BY: State Builder

USED IN: State Builder

MEMBERS:

int Large ST Dimensions The number of large space-time dimensions for the

model.

vector<int> Alpha LM Numerator The left moving part of the numerator for

the sector producing the state left movers.

int Alpha LM Denominator The denominator of the sector producing the state

left movers.

map<int, int> Fermion Mode Map The map of complex fermion modes for the

model.

list<vector<int> > ST LM Modes The left moving space-time modes.

list<vector<int> > Compact LM Modes The left moving compact modes.

289

list<vector<int> > Massless State LMs All the massless left movers.

CONSTRUCTORS:

State LM Builder(const vector<int>& Alpha LM Numerator,

int Alpha LM Denominator, int Large ST Dimensions,

const map<int, int>& Fermion Mode Map) Initializes Alpha LM Numerator to Al-

pha LM Numerator, Alpha LM Denominator to Alpha LM Denominator,

Large ST Dimensions to Large ST Dimensions, and Fermion Mode Map to

Fermion Mode Map.

State LM Builder(const Alpha& The Alpha, int Large ST Dimensions,

const map<int, int>& Fermion Mode Map) Initializes Alpha LM Numerator to the

left moving part of Numerator in The Alpha, and Alpha LM Denominator

to Denominator in The Alpha. Also initializes Large ST Dimensions to

Large ST Dimensions, and Fermion Mode Map to Fermion Mode Map.

METHODS:

void Build Massless State LMs() Builds the massless left movers. Initializes

Massless State LMs . The method begins by creating an appropriately

sized empty vector to serve as an initial parameter for

void Build Compact LM Modes(int element, vector<int>& LM Compact). The

method then calls void Build ST LM Modes() and

void Build Compact LM Modes(int element, vector<int>& LM Compact), pass-

ing the latter function 0 and the empty vector. After that, the method

produces all possible combinations between ST LM Modes and Com-

pact LM Modes , pushing each combination onto Massless State LMs .

There is an optimization which pushes only the space-time modes onto

Massless State LMs if there are ten large space-time dimensions, since

there are not compact modes in that case.

290

void Display Massless State LMs() const Displays the elements of

Massless State LMs onto the screen for debugging.

void Display Fermion Mode Map() const Displays Fermion Mode Map onto the

screen for debugging.

void Build ST LM Modes() Builds the space-time left moving fermion modes

for a given model, initializing ST LM Modes . For models with less

space-time dimensions, this is simply adding the 1
2

modes since the

GSOPs only allow one parity (selected by the space-time fermion modes

and x modes) to survive for those models. For models with ten space-

time dimensions, even and odd parities can be present in a model, so

in addition to the vector of eight real 1
2

modes there is also a vector of

six real 1
2

modes and two real −1
2

modes.

void Build Compact LM Modes(int element, vector<int>& LM Compact) Builds

the compact fermion modes for a given model, initializing

Compact LM Modes . Takes the element to be lowered and the current

compact left moving modes as parameters. This method uses recursion

to apply the lowering operator to all nonzero modes of the compact

left moving elements. The method begins by checking to see if the

parameter element is less than the size of LM Compact. If it is, then

the current loop in the recursion has terminated, and LM Compact is

pushed onto Compact LM Modes . Otherwise, the method then checks

to see if the following conditions are true:

• The left moving compact mode at element is nonzero.

• The left moving compact mode at element is not the second in a

complex pair.

291

element<LM Compact.size() ?

Push onto Compact LM Modes Nonzero, in map, not real?

Increment element Nest loop

Apply lowering operator

Increment element

Figure A.5: A schematic of the recursive algorithm used to apply the ~F operator
to the LM of a state.

• The left moving compact mode at element is not the first element

of a real left-right pair. This is checked using the function bool

Real LM Mode(int element), passing it element.

If any of these are false then the method calls itself, passing it element+1

and LM Compact. If they are all true, then the method starts a loop over

the possible lowering operator values (0 or -1). Since the numerator is

being operated upon, the method subtracts the denominator from the

elements. This is done for the fermion mode at element and it’s complex

partner. Once the loop has been started and the values adjusted, the

method calls itself, passing element+1 and LM Compact. This process is

shown schematically in Figure A.5.

bool Real LM Mode(int element) Takes the index of a compact left moving ele-

ment and returns whether it is a real fermion mode or not. The method

begins by adjusting the value of element to fit the full state vector. This

is necessary because it is called within void Build Compact LM Modes(int

element, vector<int>& LM Compact), which only carries the compact left

292

moving modes. Once the value of element is adjusted, Fermion Mode Map

is checked. If the “complex” partner of the mode indexed by element

is a right moving mode, the method returns true. Otherwise it returns

false.

bool In Map(int element) Takes the index of a compact left moving element

and returns whether it is in Fermion Mode Map as a key or a value. If it

is a key, then the element is the first mode in a complex pair, otherwise

it is the second element in the pair. The method must first adjust the

value of element to fit the full state vector. This is necessary because it

is called within void Build Compact LM Modes(int element, vector<int>&

LM Compact), which only carries the compact left moving modes. Once

the value of element is adjusted, the find function of the C++ STL map

is called, passing it the adjusted element. If it returns anything other

than Fermion Mode Map .end(), the method returns true. Otherwise, it

returns false.

A.2.26 FF State RM Builder.hh

NAME: State RM Builder

PURPOSE: Builds the massless right movers for states coming from a boson or

fermion sector.

OBJECTS CREATED BY: State Builder

USED IN: State Builder

MEMBERS:

int Large ST Dimensions The number of large space-time dimensions for the

model.

293

vector<int> Alpha RM Numerator The numerator of the right moving part of

the sector which is generating the states.

int Alpha RM Denominator The denominator of the right moving part of the

sector which is generating the states.

map<int, int> Fermion Mode Map The map of complex fermion modes for the

model.

int LM Size The number of left moving modes for the sector producing the

states.

int Mass Limit The maximal mass squared value for the right movers.

map<int, int> Reverse Fermion Mode Map The reverse map for

Fermion Mode Map .

list<vector<int> > Massless State RMs The massless right movers for the

states.

CONSTRUCTORS:

State RM Builder(const vector<int>& Alpha RM Numerator,

int Alpha RM Denominator, int Large ST Dimensions, const map<int, int>&

Fermion Mode Map) Initializes Alpha RM Numerator to Alpha RM Numerator,

Alpha RM Denominator to Alpha RM Denominator, Large ST Dimensions to

Large ST Dimensions, and Fermion Mode Map to Fermion Mode Map. It

then calls void Build Reverse Fermion Mode Map(), which initializes Re-

verse Fermion Mode Map . After that, the constructor initializes LM Size

to its value using equation A.1. Finally, Mass Limit is initialized accord-

ing to the equation

Mass Limit = 2×2×Denominator×2×Denominator = 2×4×Denominator2

(A.28)

294

State RM Builder(const Alpha& The Alpha, int Large ST Dimensions,

const map<int, int>& Fermion Mode Map) This constructor begins by strip-

ping the right mover out of Numerator in The Alpha, using it to ini-

tialize Alpha RM Numerator . It uses Denominator from The Alpha to ini-

tialize Alpha RM Denominator . It then initializes Large ST Dimensions

to Large ST Dimensions and Fermion Mode Map to Fermion Mode Map. It

also initializes LM Size to LM Size of The Alpha. Then,

Reverse Fermion Mode Map is initialized by calling

void Build Reverse Fermion Mode Map(). Finally, Mass Limit is initialized

via the equation A.28.

METHODS:

void Build Massless State RMs() Interface function which starts the recursive

algorithms for building the state right movers. Begins by creating an

unraised, unlowered right mover (set equal to the Alpha RM Numerator),

then starts the recursion with void Select F Operator(int element,

vector<int>& RM, int Mass), passing it a 0, the vector set equal to Al-

pha RM Numerator , and the mass of Alpha RM Numerator , calculated by

int Compute Mass(vector<int>& RM).

void Display Massless State RMs() const Prints the elements of

Massless State RMs onto the screen for debugging.

void Build Reverse Fermion Mode Map() Builds the reverse map to

Fermion Mode Map , initializing Reverse Fermion Mode Map . This method

should be called after the member Fermion Mode Map has been initial-

ized, otherwise an exception will be thrown. This method could be

improved by allowing it to take the fermion mode map as an argument

rather than calling the member Fermion Mode Map .

295

bool In Map(int element) Checks whether element is in Fermion Mode Map as

a key by calling the C++ STL map function find function. Note that

element must be shifted, since element is the index of the mode in Al-

pha RM Numerator , while Fermion Mode Map has the mode indices for

the entire state vector. Returns true if the mode is found, returns false

if it isn’t.

bool Real RM Mode(int element) Takes the index of an element and determines

whether it is the right moving part of a left-right pair, returning true

if it is, and false if it is not. This is checked by looking for element in

Reverse Fermion Mode Map using the C++ STL map find function. It

is important to note that element needs to be adjusted, since it is the

index element is an index for an element of Alpha RM Numerator , and

Fermion Mode Map holds the indices for the full state rather than just

the right mover.

void Select F Operator(int element, vector<int>& RM, int Mass) This method se-

lects whether a raising and lowering operator, a raising operator only,

a lowering operator only, or no operator should be applied to the el-

ement indexed by element of RM. The method also accepts the mass

of RM as a passed parameter rather than calculating it each time to

save computing power. It begins by checking if element is at the end

of RM. If it is, then the recursive nesting is finished, and RM is pushed

onto Massless State RMs if it is massless (that is, if Mass is equal to

Mass Limit). If element is not at the end of RM, the method checks

to see which type of mode it is. If the mode indexed by element is

the second in a complex right moving pair, then element is incremented

and the method is called again, passing it the incremented element,

RM, and Mass. If the mode indexed by element is the second in a

296

real pair, then that mode should be lowered only. The method first

checks whether the mode will become massive when lowered by call-

ing int Mass Increase Lower(int element) and adding it to Mass. If the

sum is less than Mass Limit , the state will not become massive when

lowered, and void Apply Real F Operator(int element, vector<int> RM, int

Mass) is called, passing it element, RM, and Mass. If the state will be-

come massive if the lowering operator is applied, then element is in-

cremented and the function is called recursively, passing it the incre-

mented element, RM, and Mass. If the mode is the first in a complex

pair, then the method checks whether the state will become massive if

a raising and a lowering operator is applied. This is done by calling

int Mass Increase Lower(int element) and int Mass Increase Raise(int element),

passing both of these element. Those values are added to Mass (sepa-

rately) and checked if they make the state massive. If the state becomes

massive when raised or lowered, then element is incremented and the

function is called recursively, passing it the incremented element, RM,

and Mass. If the state becomes massive only when raised, but not low-

ered, then void Apply Complex F Operator(int element, vector<int> RM, int

F Lower, int F Raise, int Mass) is called, passing it element, RM, -1, 0,

and Mass. If the state becomes massive only when lowered, then void

Apply Complex F Operator(int element, vector<int> RM, int F Lower, int

F Raise, int Mass) is called, passing it element, RM, 0, 1, and Mass. If the

state does not become massive when either the raising or lowering op-

erator is called, then the method calls void Apply Complex F Operator(int

element, vector<int> RM, int F Lower, int F Raise, int Mass), passing it ele-

ment, RM, -1, 1, and Mass. The process is shown schematically in figure

A.6.

297

element<RM.size()-1?

Massless?

In Map Real RM Mode Neither

Push onto Massless State RMs

Select Complex ~F Select Real ~F

Apply Complex ~F Apply Real ~F

Increment element

Figure A.6: A schematic for the algorithm which selects ~F for a state’s RM.

298

int Compute Mass(vector<int>& RM) Takes a state right mover (RM) and com-

putes the mass squared, returning the numerator of that product. It

loops over the modes in RM, checking to see if they are real using

bool Real RM Mode(int element), passing it the loop index for element.

It also checks to see if the mode is in the map using bool In Map(int

element), also passing it the loop index for element. If the mode is in

Fermion Mode Map , then the mass squared is incremented by the square

of the mode. If the mode is a real mode and is a twisted mode (the

absolute value of the mode is equal to Alpha RM Denominator), then

the mass squared is incremented by half the square of the mode. If the

mode is a real mode but is untwisted, then the mass squared is incre-

mented by the square of the mode. The special treatment is needed

due to a redundancy in the real modes’ lowering operator - the mass

increase of real modes is doubled. However, lowering real modes with

twists of 1
2

does not increase the mass, so only the contribution of the

original mode is counted. In the case of a lowering operator applied to

an untwisted mode, the mass increase is doubled, and the contribution

of those modes to the mass squared is weighed equivalently to the com-

plex right moving modes. Once the mass squared has been calculated,

the method returns the numerator of the mass squared.

int Mass Increase Raise(int element) Takes the index of a right moving mode

and computes the mass increase that would occur should the raising

operator be applied. It returns the value of the equation

Mass Increase = 4× Denom2 + 4× Denom× Num.at(element), (A.29)

where Denom is the denominator of the sector producing the states and

Num is the numerator of the sector producing the states.

299

int Mass Increase Lower(int element) Takes the index of a right moving mode

and computes the mass increase that would occur should the lowering

operator be applied. It returns the value of the equation

Mass Increase = 4× Denom2 − 4× Denom× Num.at(element), (A.30)

where Denom is the denominator of the sector producing the states and

Num is the numerator of the sector producing the states.

void Apply Real F Operator(int element, vector<int> RM, int Mass) Nests a loop

in which an ~F operator is applied to a real right moving element. This

is different from a complex element for two reasons. Firstly, only the

lowering operator is applied. A real mode with a raised element is iden-

tical to one which is lowered, so the raising operator does not produce

a different state. This redundancy requires corrections which must be

applied to the mass squared and GSO projection calculations, and are

accounted for elsewhere. Secondly, there is not a complex partner which

needs to be operated upon. The left moving mode in a real pair does

not get the ~F operator treatment. This is another redundancy present

in the construction which must be accounted for in the GSO projections

and the mass squared calculations. The method calls a loop between

-1 and 0 (representing lowering and not lowering). Within that loop,

the operator is applied to the element of RM, the the change in mass

is calculated using a modified version of equation (A.30) which only

adds to the mass when the loop index is nonzero. Then the method

increments element, passing it, the new RM, and the new Mass to void

Select F Operator(int element, vector<int>& RM, int Mass).

void Apply Complex F Operator(int element, vector<int> RM, int F Lower,

300

int F Raise, int Mass) Nests a loop in which an ~F operator is applied to a

complex right moving element. The bounds of the loop are set by

F Lower and F Raise, which determine whether ~F will only lower, only

raise, or raise and lower the element’th mode of RM. Mass, the mass

squared of RM, is also needed, as it will be changed when ~F is applied.

The method first applies ~F to the mode of RM indexed by element

as well as it’s complex partner, which is stored in Fermion Mode Map .

Then the increase in mass is calculated using a modified version of

equations (A.29, A.30) which only adds to the mass when the loop index

is nonzero. Then the method increments element passing it, the new

RM, and the new Mass to void Select F Operator(int element, vector<int>&

Mass).

A.3 FF Framework Class Inheritance Structure

Presented here are the classes which use inheritance. Each derived class in-

herits all members of the base class, and any added members or differences are

detailed.

A.3.1 Alpha Class Inheritance

Below is a description of the classes inheriting from Basis Alpha, and what is

changed or added with each inheriting class. A graphical representation is shown in

figure A.7.

Basis Alpha The base class for this inheritance tree.

Alpha Inherits from Basis Alpha, adding bool operator<(const Alpha& Other Alpha), int

Mass Left(), int Mass Right(), virtual bool Type , and vector<int> Coefficients .

Alpha Fermion Inherits from Alpha. Changes bool Type to ‘f‘.

Alpha Boson Inherits from Alpha. Changes bool Type to ‘b‘.

301

Basis Alpha

Alpha

Alpha Boson Alpha Fermion Alpha SUSY

Figure A.7: The inheritances of the Alpha-type classes.

Alpha SUSY Inherits from Alpha. Changes bool Type to ’s’.

A.3.2 State Class Inheritance

Below is a description of the inheritance structure of the State and Matter State

classes, as well as descriptions of what is changed from State to Matter State.

State The base class for this inheritance tree.

Matter State Modifies bool operator<(const Matter State& Matter State2) const and bool

operator==(const Matter State& Matter State2) const. Also adds vector<int>

Representations .

A.4 Using the Makefile

This section describes the directory structure in the FF Framework, as well as

the necessary requirements needed to operate the included makefile, called Makefile.

A.4.1 Directory Structure

The directory structure of the FF Framework is as follows.

FF Framework/ Contains the headers (.hh) for the FF Framework classes.

src/ Contains the source files (.cpp) for the FF Framework classes.

obj/ Contains the object files (.o) for the FF Framework classes.

302

ana/ Contains the sources and object files for analysis and builder programs which

use the classes of the FF Framework. Any source to be compiled into an

executable using the FF Framework should be placed here.

There can be other directories as well, such as those for data sets or tex files. How-

ever, it is not recommended those be kept under version control, as the files can get

quite large.

A.4.2 Creating Executables

To use the makefile, have a source ready to compile in ana/. The command

to compile the source into an executable is the root name of the source with the

extension .exe added. For example, if the source were named NAHE Builder.cpp, the

following command will compile the source into an executable when given in the FF

Framework’s root directory.

make NAHE Builder.exe

The makefile looks for all headers in FF Framework/ and all sources in src/. It then

turns any classes whose source files have changed into object files, placing them in

obj/. Next, it compiles the executable itself, placing the object file for the executable

in ana/ and linking everything from obj/ to create the .exe file, which is placed in the

root directory for the framework.

The makefile will scan the entire FF Framework/ and src/ directories, so adding

classes to the framework for analysis or extra functionality do not require make-

file modification, unless they are placed in different directories than those specified

above.

A.4.3 Debugging and Optimization

The g++ compiler has flags for optimization and debugging, and these can be

set inside the makefile for the FF Framework. However, they require the makefile

303

itself to be altered, so it is recommended that a clean command be called so that all

sources will be compiled from scratch.

The variable controlling the optimization flag is OPT. It tells make whether to

turn on the -O3 compiler flag for g++. To enable compiler optimization, set this

variable to YES. To disable it, set it to NO.

The variable controlling the debugging flag is DBG. It tells make whether to

turn on the -g compiler flag for g++. To enable debugging, set this variable to

YES. To disable it, set it to NO. It is not recommended that both of these flags

be simultaneously used. The gdb debugger will not be as informative due to the

compiler optimizations.

A.4.4 Other Makefile Functions

There are other functions that are defined by the makefile for convenience.

The first is the clean function, which deletes the contents of obj as well as any .o

files in ana/ and any .exe files in the root directory for the FF Framework. This is

useful if header files or compiler flags are changed. The other function is echo, which

outputs the files that make uses and the variables under which they are stored. This

is useful if make is, for whatever reason, not functioning properly.

304

BIBLIOGRAPHY

[1] K. Nakamura et al., “Review of particle physics,” J. Phys. G37, 075021 (2010).

[2] B. Zwiebach, A First Course in String Theory, Cambridge University Press,
2004.

[3] E. Kiritsis, String Theory in a Nutshell, Princeton University Press, 2007.

[4] J. H. S. Katrin Becker, Melanie Becker, String Theory and M-Theory: A Mod-
ern Introduction, Cambridge University Press, 2007.

[5] M. Gasperini, Elements of String Cosmology, Cambridge University Press,
2007.

[6] I. Antoniadis, C. P. Bachas, and C. Kounnas, “Four-Dimensional Superstrings,”
Nucl. Phys. B289, 87 (1987).

[7] I. Antoniadis and C. Bachas, “4-D Fermionic Superstrings with Arbitrary
Twists,” Nucl. Phys. B298, 586 (1988).

[8] H. Kawai, D. C. Lewellen, and S. H. H. Tye, “Construction of Fermionic String
Models in Four- Dimensions,” Nucl. Phys. B288, 1 (1987).

[9] J. Bagger, D. Nemeschansky, N. Seiberg, and S. Yankielowicz, “Bosons,
Fermions and Thirring Strings,” Nucl. Phys. B289, 53 (1987).

[10] H. K. Dreiner, J. L. Lopez, D. V. Nanopoulos, and D. B. Reiss, “String Model
Building in the Free Fermionic Formulation,” Nucl. Phys. B320, 401 (1989).

[11] R. Bousso and J. Polchinski, “Quantization of four-form fluxes and dynamical
neutralization of the cosmological constant,” JHEP 06, 006 (2000).

[12] S. Ashok and M. R. Douglas, “Counting flux vacua,” JHEP 01, 060 (2004).

[13] K. R. Dienes, “Statistics on the heterotic landscape: Gauge groups and cos-
mological constants of four-dimensional heterotic strings,” Phys. Rev. D73,
106010 (2006).

[14] K. R. Dienes, M. Lennek, D. Senechal, and V. Wasnik, “Supersymmetry versus
Gauge Symmetry on the Heterotic Landscape,” Phys. Rev. D75, 126005
(2007).

[15] K. R. Dienes and M. Lennek, “Correlation Classes on the Landscape: To What
Extent is String Theory Predictive?,” Phys. Rev. D80, 106003 (2009).

305

[16] B. Assel, K. Christodoulides, A. E. Faraggi, C. Kounnas, and J. Rizos, “Clas-
sification of Heterotic Pati-Salam Models,” (2010).

[17] K. R. Dienes and M. Lennek, “Fighting the floating correlations: Expectations
and complications in extracting statistical correlations from the string theory
landscape,” Phys. Rev. D75, 026008 (2007).

[18] G. B. Cleaver, A. E. Faraggi, D. V. Nanopoulos, and J. W. Walker, “Phe-
nomenological study of a minimal superstring standard model,” Nucl. Phys.
B593, 471 (2001).

[19] J. L. Lopez, D. V. Nanopoulos, and K.-j. Yuan, “The Search for a realistic
flipped SU(5) string model,” Nucl. Phys. B399, 654 (1993).

[20] A. E. Faraggi, D. V. Nanopoulos, and K.-j. Yuan, “A Standard Like Model in
the 4D Free Fermionic String Formulation,” Nucl. Phys. B335, 347 (1990).

[21] A. E. Faraggi, “Construction of realistic standard - like models in the free
fermionic superstring formulation,” Nucl. Phys. B387, 239 (1992).

[22] I. Antoniadis, G. K. Leontaris, and J. Rizos, “A Three generation SU(4) x
O(4) string model,” Phys. Lett. B245, 161 (1990).

[23] G. K. Leontaris and J. Rizos, “N=1 supersymmetric SU(4)xSU(2)LxSU(2)R
effective theory from the weakly coupled heterotic superstring,” Nucl. Phys.
B554, 3 (1999).

[24] A. E. Faraggi, “A New standard - like model in the four-dimensional free
fermionic string formulation,” Phys. Lett. B278, 131 (1992).

[25] A. E. Faraggi, “Aspects of nonrenormalizable terms in a superstring derived
standard - like Model,” Nucl. Phys. B403, 101 (1993).

[26] A. E. Faraggi, “Generation mass hierarchy in superstring derived models,”
Nucl. Phys. B407, 57 (1993).

[27] A. E. Faraggi, “Hierarchical top - bottom mass relation in a superstring derived
standard - like model,” Phys. Lett. B274, 47 (1992).

[28] A. E. Faraggi, “Yukawa couplings in superstring derived standard like models,”
Phys. Rev. D47, 5021 (1993).

[29] A. E. Faraggi, “Top quark mass prediction in superstring derived standard -
like model,” Phys. Lett. B377, 43 (1996).

[30] A. E. Faraggi, “Calculating fermion masses in superstring derived standard -
like models,” Nucl. Phys. B487, 55 (1997).

[31] G. B. Cleaver, “Advances in old-fashioned heterotic string model building,”
Nucl. Phys. Proc. Suppl. 62, 161 (1998).

306

[32] G. B. Cleaver and A. E. Faraggi, “On the anomalous U(1) in free fermionic
superstring models,” Int. J. Mod. Phys. A14, 2335 (1999).

[33] G. Cleaver, M. Cvetic, J. R. Espinosa, L. L. Everett, and P. Langacker, “Clas-
sification of flat directions in perturbative heterotic superstring vacua with
anomalous U(1),” Nucl. Phys. B525, 3 (1998).

[34] G. Cleaver, M. Cvetic, J. R. Espinosa, L. L. Everett, and P. Langacker, “Flat
directions in three-generation free-fermionic string models,” Nucl. Phys.
B545, 47 (1999).

[35] G. Cleaver et al., “Physics implications of flat directions in free fermionic su-
perstring models. I: Mass spectrum and couplings,” Phys. Rev. D59, 055005
(1999).

[36] G. Cleaver et al., “Physics implications of flat directions in free fermionic
superstring models. II: Renormalization group analysis,” Phys. Rev. D59,
115003 (1999).

[37] G. B. Cleaver, “Quark masses and flat directions in string models,” (1998).

[38] G. B. Cleaver, A. E. Faraggi, and D. V. Nanopoulos, “String derived MSSM
and M-theory Unification,” Phys. Lett. B455, 135 (1999).

[39] G. B. Cleaver, A. E. Faraggi, and D. V. Nanopoulos, “A minimal superstring
standard model. I: Flat directions,” Int. J. Mod. Phys. A16, 425 (2001).

[40] G. B. Cleaver, A. E. Faraggi, D. V. Nanopoulos, and J. W. Walker, “Phe-
nomenological study of a minimal superstring standard model,” Nucl. Phys.
B593, 471 (2001).

[41] G. B. Cleaver, “M-fluences on string model building,” (1999).

[42] G. B. Cleaver, A. E. Faraggi, D. V. Nanopoulos, and J. W. Walker, “Non-
Abelian flat directions in a minimal superstring standard model,” Mod.
Phys. Lett. A15, 1191 (2000).

[43] G. B. Cleaver, A. E. Faraggi, and C. Savage, “Left-right symmetric heterotic-
string derived models,” Phys. Rev. D63, 066001 (2001).

[44] G. B. Cleaver, A. E. Faraggi, D. V. Nanopoulos, and J. W. Walker, “Phe-
nomenology of non-Abelian flat directions in a minimal superstring standard
model,” Nucl. Phys. B620, 259 (2002).

[45] G. B. Cleaver, D. J. Clements, and A. E. Faraggi, “Flat directions in left-right
symmetric string derived models,” Phys. Rev. D65, 106003 (2002).

[46] G. B. Cleaver, A. E. Faraggi, and S. Nooij, “NAHE-based string models with
SU(4) x SU(2) x U(1) SO(10) subgroup,” Nucl. Phys. B672, 64 (2003).

307

[47] G. B. Cleaver, “Parameter space investigations of free fermionic heterotic
models,” (2002).

[48] G. Cleaver et al., “On the possibility of optical unification in heterotic strings,”
Phys. Rev. D67, 026009 (2003).

[49] J. Perkins et al., “Heterotic string optical unification,” (2003).

[50] J. Perkins et al., “Stringent Phenomenological Investigation into Heterotic
String Optical Unification,” Phys. Rev. D75, 026007 (2007).

[51] G. B. Cleaver, A. E. Faraggi, E. Manno, and C. Timirgaziu, “Quasi-realistic
heterotic-string models with vanishing one-loop cosmological constant and
perturbatively broken supersymmetry?,” Phys. Rev. D78, 046009 (2008).

[52] J. Greenwald et al., “Note on a NAHE Variation,” (2009).

[53] G. Cleaver et al., “Investigation of Quasi–Realistic Heterotic String Models
with Reduced Higgs Spectrum,” (2011).

[54] G. B. Cleaver, “Supersymmetries in free fermionic strings,” Nucl. Phys. B456,
219 (1995).

[55] H. Kawai, D. C. Lewellen, and S. H. H. Tye, “Classification of Closed Fermionic
String Models,” Phys. Rev. D34, 3794 (1986).

[56] H. Kawai, D. C. Lewellen, J. A. Schwartz, and S. H. H. Tye, “The Spin Struc-
ture Construction of String Models and Multiloop Modular Invariance,”
Nucl. Phys. B299, 431 (1988).

[57] D. C. Lewellen, “Embedding Higher Level Kac-Moody Algebras in Heterotic
String Models,” Nucl. Phys. B337, 61 (1990).

[58] S. Chaudhuri, S. W. Chung, G. Hockney, and J. D. Lykken, “String consistency
for unified model building,” Nucl. Phys. B456, 89 (1995).

[59] G. Aldazabal, A. Font, L. E. Ibanez, and A. M. Uranga, “String GUTs,” Nucl.
Phys. B452, 3 (1995).

[60] G. B. Cleaver, “What’s new in stringy SO(10) SUSY GUTs,” (1995).

[61] G. B. Cleaver, “Grand unified theories from superstrings,” (1996).

[62] Z. Kakushadze and S. H. H. Tye, “A classification of three-family SO(10) and
E(6) grand unification in string theory,” Phys. Rev. D55, 7878 (1997).

[63] J. Erler, “Asymmetric orbifolds and higher level models,” Nucl. Phys. B475,
597 (1996).

308

[64] Z. Kakushadze, G. Shiu, S. H. H. Tye, and Y. Vtorov-Karevsky, “A review
of three-family grand unified string models,” Int. J. Mod. Phys. A13, 2551
(1998).

[65] I. Antoniadis, J. R. Ellis, J. S. Hagelin, and D. V. Nanopoulos, “The Flipped
SU(5) x U(1) String Model Revamped,” Phys. Lett. B231, 65 (1989).

[66] R. N. Mohapatra and V. L. Teplitz, “Structures in the mirror universe,”
Astrophys. J. 478, 29 (1997).

[67] R. N. Mohapatra and V. L. Teplitz, “Mirror matter MACHOs,” Phys. Lett.
B462, 302 (1999).

[68] R. N. Mohapatra and V. L. Teplitz, “Mirror dark matter,” (2000).

[69] R. N. Mohapatra, S. Nussinov, and V. L. Teplitz, “Mirror matter as self
interacting dark matter,” Phys. Rev. D66, 063002 (2002).

309

