
ABSTRACT

Bayesian Approach to Partially Validated Binary Regression with Response and Exposure
Misclassification

Katrina Anderson, Ph.D.

Chairperson: James D. Stamey, Ph.D.

Misclassification of epidemiological and observational data is a problem that com-

monly arises and can have adverse ramifications on the validity of results if not properly

handled. Considerable research has been conducted when only the response or only the

exposure are misclassified, while less work has been done on the simultaneous case. We

extend previous frequentist work by investigating a Bayesian approach to dependent, dif-

ferential misclassification models. Using a logit model with misclassified binary response

and exposure variables and assuming a validation sub-sample is available, we compare

the resulting confidence and credible intervals under the two paradigms. We compare the

results under varying percentages of validation subsamples, 100% (ideal scenario), 25%,

15%, 10%, 5%, 2.5%, and 0% (naive scenario) of the overall sample size. We extend this

work further be examining scenarios for which the assumptions may falter; we assume

independent, differential misclassification, increase the overall sample size, and vary the

influence of our priors from diffuse to concentrated.



Finally, we examine the scenario in which the response variable is correlated over

time and differentially misclassified. We compare four different models: a model that as-

sumes the differential misclassification is correlated within subjects and correlated with

the response model; a model that assumes independent response processes but with dif-

ferential misclassification having correlation within the subject; a model with independent

response processes and differential misclassification that is uncorrelated within the sub-

ject; and, lastly, a model that assumes independent response processes and that the non-

differential misclassification is uncorrelated within the subject. We present the Bayesian

approach, in addition to the previous frequentist work, to each of these models. We com-

pare not only the two approaches via estimation bias and precision, but also the ability of

each approach to select the “correct” model (assuming differential misclassification process

is correlated with the response model and within subject).
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CHAPTER ONE

Introduction

Data from diagnostic tests are often subject to misclassification. Suppose we want

to screen a large number of patients for a disease, but using a “gold-standard” (i.e. highly

accurate) test is prohibitively expensive in either time, labor, or cost. Suppose also we

have an error prone test that while not accurate can be readily given due to it’s ease of

use, low cost, or lack of time required to give it. Misclassification arises when the error-

prone test gives a different result than the gold-standard test, which is assumed to be the

truth. To understand the relationship between the error prone test and the gold-standard

test, we validate a small subsample of our data. Thus all participants are tested with the

error prone instrument, while only a faction of the sample is also given the gold-standard

test. In this dissertation, a Bayesian approach to misclassification with partially validated

data is developed and compared to a frequentist approach.

1.1 Motivating Examples

Specifically, two distinct scenarios involving misclassification with partially vali-

dated data are examined; the first, studies the relationship when both the response and

the exposure variable are misclassified, while the second studies the relationship when the

response is not only misclassified but is measured repeatedly, and thus correlated by time.

1.1.1 Misclassified Binary Response and Exposure Variables

Suppose that in addition to our response we also have a variable (referred to as the

exposure) that is related to the disease and is also very expensive to measure. Like our

response, this variable also has two tests, an error prone and gold-standard test. In this

setting, both our exposure and response variable are binary. Our validated patients will
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receive both tests, for both variables while our main data will only receive the error prone

tests for both variables.

The logistic regression that uses only the error prone measurements is known to be

biased. It is an open question whether a Bayesian approach may perform better than a

frequentist approach. Chapter Two will further present this scenario and explore the differ-

ences between the two approaches; Chapter Three will further expand upon the differences

between the two approaches.

1.1.2 Misclassified Response in Longitudinal Data

Suppose that the tests for our response can be given at multiple doctor’s visits. More

specifically we follow patients over J visits and test them for a disease using a readily

available, but error-prone test for the disease. For a small percentage of the patients we

“validate” their error-prone test with a more expensive and error free, gold-standard test.

Since each of the patients is tested each visit, there is correlation between visits.

In Chapter Four we develop methods to adequately predict for the presence of the

disease dealing with the misclassification and the correlation between visits.

1.2 Literature Review

A common problem in inference for observational studies is the existence of errors.

For discrete variables, misclassification, in which the observed value is different than the

true value of the variable is often encountered. Errors of this kind are widespread and

can lead to biased and inefficient results; refer to Barron (1977), Copeland et al. (1977),

Neuhaus (1999), and Carroll et al. (2006) for discussions of such problems. We can see

misclassification in data pertaining to engineering, business, and health sciences. In the

medical field misclassification is often seen in the diagnosis of disease; for example, a

patient is given a positive test result for a disease, however the patient does not in fact have

the disease. Several researchers have examined this phenomenon as it relates to various

diseases, including Tang et al. (2015a), Tomiyama et al. (2016) and Gosling and Saloniki
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(2014). The two examples outlined in Section 1.1 give possible scenarios explaining binary

variable misclassification and the use of validated data.

Much research has been done on misclassification of 2 × 2 contingency tables in

the event of binary exposure misclassification. Using frequentist methods, several meth-

ods have been proposed; Barron (1977) developed a matrix method (using known sensi-

tivity and specificity), Greenland (1988) uses an inverse variance weighted estimate, and

Marshall (1990) developed the inverse matrix method (using the probabilities of positive

and negative predicted values). All of these methods have attempted to circumnavigate

the use of maximum likelihood estimation in the hopes of developing a less computation-

ally intense estimation method that was more intuitive. The maximum likelihood estimates

(MLE) are laborious and computationally intensive to find. Lyles, (2002) however, used

a re-parameterization of the likelihood to show that the estimates from the inverse matrix

method is the same as the MLE’s for the differential misclassification case. Due to sym-

metry in the odds ratio, each of these methods can be generalized to the case of binary

response misclassification, for which logistic regression is a typical analytic tool used for

prediction.

Magder and Hughes (1997) used an expectation-maximization (EM) algorithm for

MLE’s that incorporates diagnostic error rates on the parameters of a logistic regression.

By utilizing a validation subsample Lyles et al. (2011) developed methods to use the EM

algorithm for the case when there are unknown diagnostic error rates for differential mis-

classification. Edwards et al. (2013) used internal validation data as well, however they used

this information to develop a multiple imputation approach instead of the EM algorithm.

In order to fully account for uncertainty in parameter estimates, research has been

done on the utilization of validation data instead of relying solely on assumptions about

the probabilities of false positives and false negatives. Carroll et al. (2006) used likelihood-

based methods to incorporate validation data in estimating regression parameters when dif-

ferential misclassification exists in the response variable. Pepe (1992) used non-parametric
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kernel methods, while Holcroft et al. (1997) used inverse probability weighting. Lyles et

al. (2011) developed accessible maximum likelihood methods using optimization tools

through SAS® software to incorporate internal validation data in the estimation of re-

gression parameters when the response is differentially misclassified. Bayesian methods

were used by Paulino et al. (2003) to incorporate prior expert opinions for the same sce-

nario. McInturff et al. (2004) explore the use of conditional means priors while Gerlach

and Stamey (2007) explore methods for variable selection using Bayesian methods with a

misclassified response.

In this dissertation we use simulation studies based upon the real-world data found

in Smith et al. (1997) regarding the presence of bacterial vaginosis in women. Frequentist

methods related to the two examples discussed in Section 1.1 were originally discussed

by Tang et al. (2015a, 2013) Their work did not establish methods under the Bayesian

approach; they also did not examine how the methods perform when the validation sample

size is small.

1.3 Plan of the Dissertation

In Chapter Two we look at the different types of misclassification that can affect

binary logistic regression as discussed in a frequentist framework by Tang et al. (2015a)

Using the HIV Epidemiology Research Study (HERS) data as a template for a simulation

study, we examine the differences between the Bayesian and frequentist approaches for

logistic regression with dependent differential misclassification on both the response and

exposure variables (Smith et al. 1997). In Chapter Three we investigate the performance of

the methods developed in Chapter Two under a variety of scenarios. We aim to understand

how the results are affected by varying the assumptions from dependent to independent dif-

ferential misclassification, increasing the overall sample size, and adjusting the information

in the prior distributions of our parameters under the Bayesian approach.
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In Chapter Four we examine the setting in which the response variable is correlated

over time; i.e. we have multiple visits from the same patient and measure the response each

time the patient visits. We will explore the effect of these correlated responses with partially

validated data and dependent errors using both frequentist (refer also to Tang et al. (2013))

and Bayesian methods. We will perform several analyses using varying assumptions of the

model at hand and use model selection criteria to ensure the “correct” model is selected

under each approach.
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CHAPTER TWO

Bayesian Misclassification with Partially Validated Data

2.1 Introduction to Misclassification and Literature Review

Reliably estimating a relationship between an exposure on an outcome is a primary

goal for many observational studies. For epidemiological studies, this goal is typically fo-

cused on variables describing the presence of a certain health trait or not. These variables

are binary in nature and are often times hindered by measurement errors of some kind (e.g.:

imprecise testing methods). For example, suppose we have a readily available diagnostic

screen for a certain disease but this screening tool is error-prone. The use of this screen may

produce false negative and false positive results for certain disease. This error in measuring

for the disease is called misclassification and is more broadly defined as the measurement

error stemming from categorical variables.

Several researchers have developed methods for correcting for misclassification in

either the response or exposure variable. Magder and Hughes (1997) looked at misclas-

sification in the response variable using logistic regression; Lash and Fink (2003) used a

sensitivity analysis to correct for misclassification in an exposure variable. Fox et al. (2005)

extended this work to included ranges of possible values for the sensitivity and specificity.

Lyles and Lin (2010) used a sensitivity analysis in terms of response misclassification; they

also studied a separate sensitivity analysis approach to correct for exposure misclassifi-

cation that utilized expert opinion to develop weights in fitting their models. While this

research is instructive on the needs for accounting for misclassification, none of these use

validation data to further refine the misclassification.

Internal validation data can provide a wealth of information for variable misclassi-

fication. In terms of differential and non-differential exposure misclassification, Marshall

(1990) and Greenland (1988) explored variance estimators for the effects estimates for a

6



couple of methods. Lyles (2002), Greenland (2008) and Morrissey and Spiegelman (1999)

all discuss the merits of validation data on finding likelihood-based estimates when mis-

classification exists. Tang et al. (2015a) tie in the methodology to provide practical analytic

solutions under the frequentist framework for the scenario when both the response and

exposure are subject to misclassification.

Considerable work from the Bayesian perspective has been done on misclassification

and measurement error models. Paulino et al. (2003) and Bedrick et al. (1996) investigated

methods to allow for model selection when the response variable for a binomial regres-

sion is subject to an unconstrained misclassification process. Using assumptions on the

sensitivity and specificity rather than a validation subsample, Goldstein et al. (2016) use a

case-control study to account for non-differential misclassification. McInturff et al. (2004)

developed methods for binomial regression with response misclassification that utilize con-

ditional means priors to aid in estimates of diagnostic sensitivity and specificity. Closely

related to our research, Gerlach and Stamey (2007) explore the effects of both differen-

tial and non-differential misclassification in the context of logistic regression when the

response is misclassified using internal validation data. All of this research focused solely

on methods for adjusting for response or exposure misclassification, not on the methods to

adjust for both.

Prior research often focuses on contingency tables when the response and exposure

are both misclassified. Since regression is a much more widely used approach to developing

relationships between variables we will focus our research on these methods. We not only

use the validation designs and likelihood methods proposed by Tang et al. (2015a), but we

expand upon their methods to the Bayesian approach. We also test each approach under

varying validation sizes to understand which approach prevails after adjustments.

This chapter begins with background information regarding misclassification and

the key terminology when discussing models with this type of error. We then discuss three

types of misclassification focusing mainly on dependent differential misclassification. We
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first focus on the frequentist approach and then delve into the Bayesian approach, com-

plete with a discussion on priors. The comparison of the two approaches is developed from

a simulation study based off of the HERS dataset. We discuss the convergence of both

approaches and then compare the results of each approach.

2.2 Background: 3 Types of Misclassification

Suppose that we are interested in a binary response, Y , and we have p covariates with

one exposure, X , that is of interest. For this, we assume that:

Y ∼ Bern(P (Y = 1|X,C1, C2, . . . CP )]), (2.1)

where we often use the logit model for binary response data,

logit[P (Y = 1|X,C1, C2, . . . CP )] = β0 + β1X +
P+1∑
p=2

βpCp. (2.2)

Note that in this case both X and Y are gold-standard measurements, meaning they are

highly expensive to measure. In order to not spend inordinate amounts of time, cost, or

energy these results are only available for a small sub-sample of our subjects. For every

subject however, we have X∗ and Y ∗, the error prone analog measurements for X and Y ,

respectively. These measurements are readily available, cheaper, or easier to assess than

their respective gold-standard measurements. A naïve analysis would simply replace X

and Y , the gold-standard measurements, with X∗ and Y ∗, the error prone measurements,

in equation 2.2 since these are available for all subjects. This gives the following model:

logit[P (Y ∗ = 1|X∗, C1, C2, . . . CP )] = β∗
0 + β∗

1X
∗ +

P+1∑
p=2

β∗
pCp, (2.3)

which then relates to the assumed distribution of the error-prone measurements; specifi-

cally, Y ∗ ∼ Bern(P (Y ∗|X∗, C1, C2, . . . CP )). Estimates of the β∗
j under this model are

biased for the parameters of interest, the βj .

The naïve model fails to incorporate the information from those subjects with both

the error prone and gold-standard measurements. This data, the validated data, offers an
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important piece of information, the relationship between the error prone and gold-standard

measurements. We must account for this information if it is available otherwise our esti-

mates would be unnecessarily more biased. We can incorporate this data in our models to

help develop the relationship for the remainder of our sample, the main data, that only has

the error prone measurements.

In the measurement error literature (e.g. Richardson and Gilks (1993)), three mod-

els are developed to explore relationships: the response model, exposure model, and the

measurement model(s). We have already seen our response model under the ideal scenario:

logit[P (Y = 1|X,C1, C2, . . . CP )] = β0 + β1X +
P+1∑
p=2

βpCp. (2.4)

Assuming X ∼ Bern(P (X = 1|C1, C2, . . . CP ), we use another model for our exposure’s

relationship to the covariates, called the exposure model:

logit[P (X = 1|C1, C2, . . . CQ)] = γ0 +

Q∑
q=1

γqCq. (2.5)

Finally, our measurement models are used to incorporate our error prone response and

exposure variables, y∗ ∼ Bern(P (y∗|y)) and x∗ ∼ Bern(P (x∗|x)), respectively. Depend-

ing on the assumptions relating to the misclassification scheme, the underlying probability

models range from simple to quite complex. The model assumptions we will cover in-

clude: independent non-differential misclassification, dependent non-differential misclas-

sification, and dependent differential misclassification.

2.2.1 Independent Non-Differential Misclassification

Independent non-differential misclassification has two main assumptions. The in-

dependence implies that the misclassification patterns of X and Y are independent. This

means that the pattern by which the response is missing does not depend on the pattern for

which the exposure is missing. The second assumption is that the sensitivity, probability of

a true positive, and specificity, probability of a true negative, are roughly constant across

all values of the variables. This is referred to as “non-differential" misclassification.

9



To incorporate these two assumptions, we will keep our response and exposure mod-

els as:

logit[P (Y = 1|X,C1, C2, . . . CP )] = β0 + β1X +
P+1∑
p=2

βpCp (2.6)

logit[P (X = 1|C1, C2, . . . CQ)] = γ0 +

Q∑
q=1

γqCq. (2.7)

However, to incorporate the misclassification information, we could utilize the following

relations involving the sensitivity and specificity of bothX and Y to build our measurement

models:

y∗|y ∼ Bern(ySy + (1− y)(1− Cy)) (2.8)

x∗|x ∼ Bern(xSx + (1− x)(1− Cx)). (2.9)

Equation 2.8 yields the following likelihood contribution:

P (y∗|y) = (ySy + (1− y)(1− Cy))y
∗
(1− (ySy + (1− y)(1− Cy)))1−y

∗
, (2.10)

which models the sensitivity of Y when y = 1 and the specificity of Y when y = 0. The

same relationship can be seen with equation 2.9 and the sensitivity and specificity of X .

All four of these models are used to calculate the joint probability, which can be

broken down as:

P (X∗ = x∗, Y ∗ = y∗|X = x, Y = y, C = c)

=

y=1∑
y=0

x=1∑
x=0

P (y∗|y)P (x∗|x)P (y|x, c)P (x|c), (2.11)

where the four pieces on the right-hand side of the equation represent vital pieces of in-

formation from our data (response model, exposure model, and measurement models). The

joint likelihood can thus be written as the product of the following two components:

Lm =
nm∏
i=1

{
yi=1∑
yi=0

xi=1∑
xi=0

P (y∗i |yi)P (x∗i |xi)P (yi|xi, ciy)P (xi|cix)

}
(2.12)
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Lv =
nv∏
j=1

{
P (y∗j |yj)P (x∗j |xj)P (yj|xj, cjy)P (xj|cjx)

}
. (2.13)

Lm (2.12) is the likelihood component for those observations in the “main" study; notice

that we sum over all possible combinations of X and Y , since they are not observed. Lv

(2.13) is the likelihood component for those observations in the “validation" study, the

observations where both the gold-standard and error prone measurements are known, and

thus do not need to be summed over because the true statuses are known.

2.2.2 Independent Differential Misclassification

Independent differential misclassification is an extension of independent non-differential

misclassification. We still assume the error prone measurements are independent but now

we assume that the sensitivity and/or specificity of X (Y ) depends on Y (X) and the co-

variates. Under this model, our likelihood components become:

Lm =
nm∏
i=1

{
yi=1∑
yi=0

xi=1∑
xi=0

P (y∗i |yi, xi, ciy∗)P (x∗i |xi, yi, cix∗)P (yi|xi, ciy)P (xi|cix)

}
(2.14)

Lv =
nv∏
j=1

{
P (y∗j |yj, xj, cjy∗)P (x∗j |xj, yj, cjx∗)P (yj|xj, cjy)P (xj|cjx)

}
. (2.15)

The joint likelihood for this misclassification model is the product of these two components

where Lm (2.14) is the likelihood component for those observations in the “main” study

whileLv (2.15) is the likelihood component for those observations in the “validation” study,

the observations where both the gold-standard and error prone measurements are known.

The independent differential misclassification model now has the following four lo-

gistic regression models rather than the two logistic regressions used for independent non-

differential misclassification model (equations 2.6 and 2.7):

logit[P (Y = 1|X,C1, C2, . . . CP )] = β0 + β1X +
P+1∑
p=2

βpCp (2.16)

logit[P (X = 1|C1, C2, . . . CQ)] = γ0 +

Q∑
q=1

γqCq (2.17)
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logit[P (Y ∗ = 1|Y,X,X∗, C1, C2, . . . CR)] = θ0 + θ1X + θ2Y +
R+2∑
r=3

θrCr (2.18)

logit[P (X∗ = 1|X, Y,C1, C2, . . . CS)] = δ0 + δ1X + δ2Y +
S+2∑
s=3

δsCs. (2.19)

Equation 2.16 and 2.18 are our original response and exposure models, respectively, while

equations 2.18 and 2.19 are our updated measurement models. These two new logistic re-

gressions are required to allow the sensitivity and specificity to vary with the covariates.

This model is now significantly more complex than the previous models because differen-

tial misclassification adds several parameters. As the number of parameters increases, their

values become harder to estimate and will typically require a larger validation sample size

to estimate accurately. In fact, for small validation samples, it is not unusual to for both the

frequentist and Bayesian approaches to have issues with convergence.

2.2.3 Dependent Differential Misclassification

The last type of misclassification model we will consider is dependent differential

misclassification. Here, the assumption of independence is now relaxed to include a possi-

bility of dependence in the error-prone to gold-standard measurements. As with indepen-

dent differential misclassification models we still have the assumption that the sensitivity

and/or specificity of X (Y ) depends on Y (X) and the covariates.

The dependent misclassification model is determined by the following four logistic

regressions:

logit[P (Y = 1|X,C1, . . . CP )] = β0 + β1X +
P+1∑
p=2

βpCp (2.20)

logit[P (X = 1|C1, . . . CQ)] = γ0 +

Q∑
q=1

γqCq (2.21)

logit[P (Y ∗ = 1|Y,X,X∗, C1, . . . CR)] = θ0 + θ1X + θ2X
∗ + θ3Y +

R+3∑
r=4

θrCr (2.22)

logit[P (X∗ = 1|X, Y,C1, . . . CS)] = δ0 + δ1X + δ2Y +
S+2∑
s=3

δsCs (2.23)
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where the added parameter θ2 in equation 2.22 reflects the dependence between X∗ and

Y ∗. Again, this effect is clearly shown when comparing the measurement models between

the independent differential misclassification model (2.18) and the dependent differential

misclassification model (2.22).

The joint likelihood for this model is proportional to the product of the following two

components:

Lm =
nm∏
i=1

{
yi=1∑
yi=0

xi=1∑
xi=0

P (y∗i |yi, xi, x∗i , ciy∗)P (x∗i |xi, yi, cix∗)P (yi|xi, ciy)P (xi|cix)

}
(2.24)

Lv =
nv∏
j=1

{
P (y∗j |yj, xj, x∗j , cjy∗)P (x∗j |xj, yj, cjx∗)P (yj|xj, cjy)P (xj|cjx)

}
. (2.25)

More specifically, our likelihood is:

L ∝ L(1−val)
m Lvalv , (2.26)

where the components of the likelihood are turned “on" or “off" depending on whether the

subject has been validated or not.

Chapter Three will discuss the differences between independent and dependent dif-

ferential misclassification in greater detail and, more specifically, investigating the added

information that θ2 gives to the misclassification model.

2.3 Bayesian Approach to Frequentist Work

For our context, we have the following formulas to work with:

logit[P (Y = 1|X,C1, . . . CP )] = β0 + β1X +
P+1∑
p=2

βpCp (2.20)

logit[P (X = 1|C1, . . . CQ)] = γ0 +

Q∑
q=1

γqCq (2.21)

logit[P (Y ∗ = 1|Y,X,X∗, C1, . . . CR)] = θ0 + θ1X + θ2X
∗ + θ3Y +

R+3∑
r=4

θrCr (2.22)

logit[P (X∗ = 1|X, Y,C1, . . . CS)] = δ0 + δ1X + δ2Y +
S+2∑
s=3

δsCs. (2.23)
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We are dealing with logistic regressions for which the mean of the responses, when ap-

propriately transformed, will hover between zero and one. A one-unit change in any of the

coefficients for the explanatory variables would rarely result in an increase in the predic-

tive probability from 0.01 to 0.99. Likewise, prior to seeing any data, we believe we would

rarely estimate a coefficient to which the resulting predicted probability of testing positive

in the response would increase from 1% to 99% simply by changing one input variable,

for example increasing in age by one year. This change would, when back transformed to

the scale of the coefficients, result in a coefficient with a magnitude of 10. In lieu of expert

opinion, this belief in our coefficients allows us to formulate our prior distributions on the

parameters. We will explore the impacts of prior information in Chapter Three.

For now, we set relatively uninformative priors on the parameters of interest so that

they are centered about zero with moderately large variance. For this, we will use:

β0 . . . βP+1 ∼ Normal(0, σ2 = 10) (2.27)

γ0 . . . γQ+1 ∼ Normal(0, σ2 = 10) (2.28)

θ0 . . . θR+1 ∼ Normal(0, σ2 = 10) (2.29)

δ0 . . . δS+1 ∼ Normal(0, σ2 = 10) (2.30)

This distribution is given in Figure 2.3.1 in which you can see that most of the values will

hover around 0, but that we still allow for the relatively unlikely values of 10 and−10. This

prior is placed on each of the parameter values, allowing us to have a very broad belief

in our parameter values. This prior doesn’t constrain the posterior probabilities too much

but does give exceptionally large values low probability. These priors allow for the very

unlikely example that we discussed before as well as the more likely and smaller percentile

jumps associated with values towards zero.

2.4 Example Based Upon HERS Dataset

Our simulation study is motivated by Tang et al. (2015a) The dataset utilized was

from the HIV Epidemiology Research Study based on a sample of 904 women. The study
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aim was to predict the occurrence of bacterial vaginosis (BV), a sexually transmitted infec-

tion, from the presence of trichomoniasis (TRICH), another type of sexually transmitted

infection, and other variables, such as age and race. In order to replicate this example, we

will use the same general set-up of their data to develop a model for our simulation study.

The gold-standard response is a laboratory-based method for testing of BV while the error

prone measurement is a clinically based test for BV. For the exposure, the gold-standard

predictor is a culture test for TRICH while the error prone measurement is called a wet

mount test for TRICH. The covariates of interest are: age (with a median of 37 years), race

(identified as “black" or not), HIV risk cohort (intravenous drug transmission versus sex-

ually transmitted), and HIV status (positive or negative). The authors had validation data

(where the gold-standard and error prone measurements are known) for 214 of the 904

women; we will use varying validation sizes for our study, as discussed in sections 2.5 and

2.6.

Based on model selection criteria presented by Tang et al. (2015a) and using the

dependent differential misclassification model proposed by them, the following models

and predictors were used to generate the data. The models for the validation data are:

logit[P (BV∗ = 1| . . .)] = θ0 + θ1Trich + θ2Trich∗ + θ3BV

+ θ4RiskCohort + θ5HIVStatus

Figure 2.3.1. Prior Distribution for Bayesian Parameter Estimation using N(µ = 0, σ2 = 10)
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logit[P (Trich∗ = 1| . . .)] = δ0 + δ1Trich + δ2BV + δ3RiskCohort

logit[P (BV = 1| . . .)] = β0 + β1Trich + β2Age + β3Race

+ β4RiskCohort + β5HIVStatus

logit[P (Trich = 1| . . .)] = γ0 + γ1Race (2.31)

These will each be utilized to develop the validation data component to the likelihood by

using: The joint likelihood for this model is proportional to the product of the following

two components:

Lv =
nv∏
j=1

{
P (BV∗ = 1| . . .)P (Trich∗ = 1| . . .)

P (BV = 1| . . .)P (Trich = 1| . . .)
}
. (2.32)

Recall, however, that both BV and TRICH are the gold-standard, unobserved measurements

for the main study participants thus the likelihood component relating to these individuals

is as follows:

Lm =
nm∏
i=1

{ yi=1∑
yi=0

xi=1∑
xi=0

P (BV∗ = 1| . . .)P (Trich∗ = 1| . . .)

P (BV = 1| . . .)P (Trich = 1| . . .)
}

(2.33)

For this calculation of the likelihood, we sum over the multiplicative contribution of each

case depending on the error prone response:

(1) Both BV and TRICH set to a value of 1:

logit[P (BV∗ = 1| . . .)] = θ0 + (θ1) + θ2Trich∗ + (θ3)

+ θ4RiskCohort + θ5HIVStatus

logit[P (Trich∗ = 1| . . .)] = δ0 + (δ1) + (δ2) + δ3RiskCohort

logit[P (BV = 1| . . .)] = β0 + (β1) + β2Age + β3Race

+ β4RiskCohort + β5HIVStatus

logit[P (Trich = 1| . . .)] = γ0 + γ1Race (2.34)
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(2) Both BV and TRICH are being set to a value of 0:

logit[P (BV∗ = 1| . . .)] = θ0 + θ2Trich∗

+ θ4RiskCohort + θ5HIVStatus

logit[P (Trich∗ = 1| . . .)] = δ0 + δ3RiskCohort

logit[P (BV = 1| . . .)] = β0 + β2Age + β3Race

+ β4RiskCohort + β5HIVStatus

logit[P (Trich = 1| . . .)] = γ0 + γ1Race (2.35)

(3) BV is set to a value of 1 and TRICH is set to a value of 0:

logit[P (BV∗ = 1| . . .)] = θ0 + θ2Trich∗ + (θ3)

+ θ4RiskCohort + θ5HIVStatus

logit[P (Trich∗ = 1| . . .)] = δ0 + (δ2) + δ3RiskCohort

logit[P (BV = 1| . . .)] = β0 + β2Age + β3Race

+ β4RiskCohort + β5HIVStatus

logit[P (Trich = 1| . . .)] = γ0 + γ1Race (2.36)

(4) BV is set to a value of 0 and TRICH is set to a value of 1:

logit[P (BV∗ = 1| . . .)] = θ0 + (θ1) + θ2Trich∗

+ θ4RiskCohort + θ5HIVStatus

logit[P (Trich∗ = 1| . . .)] = δ0 + (δ1) + δ3RiskCohort

logit[P (BV = 1| . . .)] = β0 + (β1) + β2Age + β3Race

+ β4RiskCohort + β5HIVStatus

logit[P (Trich = 1| . . .)] = γ0 + γ1Race (2.37)
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These logistic regression models are incorporated into the likelihood models as seen in

equation 2.33. For a more in depth look at how this is accomplished, refer to Appendix

B.1.1 and B.1.2.

2.5 Data Generation/Simulation, Convergence, and Methods of Estimation

2.5.1 Data Generation/Simulation

In order to compare the Bayesian versus frequentist models, a simulation study was

performed. The overall process of simulation, based on the real-world example using the

HIV Epidemiology Research Study as presented by Tang et al. (2015a), is:

(1) Set the true estimates of the parameters based on prior work. In this case we as-

sume:

A. A total of 904 women with complete data on BV, TRICH, and other risk

factors at the fourth visit were considered.

B. Among them, 61.7% were Black

C. 67.4% were HIV positive

D. 52% were intravenous drug users

E. The median age at enrollment was 37 years.

(2) For the Bayesian approach, each of the coefficients are given Normal(µ = 0, σ2 =

10) prior distributions.

(3) Generate a full dataset from these parameters using the assumptions and formulas

described for dependent differential misclassification (equations 2.20 - 2.25).

(4) Estimate the parameters using each of the approaches for the current dataset that

is generated.

(5) Compare the estimated parameters to the “true estimates" used to generate the

data.

18



(6) Repeat these steps 500 times and report the appropriate summaries for each paradigm.

This process is replicated for a variety of settings to find optimal validation sizes,

as well as to see the merit of the Bayesian approach. We run both paradigms for the ideal

model (eq. 2.2), naive model (eq. 2.3), and various validation sizes under the complete anal-

ysis that includes misclassification. The validation sizes proposed by Tang, et al. (2015a),

were 25%, 15%, 10%, and 5%. For further investigation, a validation size of 2.5% was

added to the analysis plan they chose.

2.5.2 Convergence

Convergence for the frequentist results decreased as the percentage of validation data

decreased: 25% validation size had 498/500 datasets that converged; 15% had 492/500 con-

verged datasets; 10% had 480/500 converged datasets; 5% had 429/500 converged datasets;

and 2.5% had 414/500 converged datasets. Datasets that did not converge were removed

from the tabulation of our results.

Convergence was assessed for the Bayesian versions as well; here, all 500 iterations

were used for each setting. Refer to appendix A.1 for a full display of each of the conver-

gence diagnostic checks for each validation size. For the sake of brevity, we will discuss the

convergence diagnostics for the largest and smallest validation sizes, 25% and 2.5%, both

Figure 2.5.1. Auto-correlation plots for both 25% and 2.5% validation sizes

19



of which are satisfied. For a validation size of 25% we used an iteration size of 14,000, a

burn-in of 4,000, and a thin of 1; for a validation size of 2.5% we used an iteration size of

225,000, a burn-in of 105,000, and a thin of 12. Figure 2.5.1 displays the autocorrelation

plots for validation sizes; typically, you should see that as the lag increases, the autocorre-

lation falls to zero and remains close to zero.

Figure 2.5.2 provides the trace plots for both validation sizes; typically, you should

see that as the iterations increase, there is no discernible pattern, and the values are centered

Figure 2.5.2. Trace plots for both 25% and 2.5% validation sizes

Figure 2.5.3. Density plots for both 25% and 2.5% validation sizes
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appropriately. In this case, we should see that the estimates hover near β1 = 0.64. As you

can see between the two trace plots, the values show no discernible pattern, however there

is much more variability in the values for the validation size of 2.5%.

Figure 2.5.3 shows the density plots for both validation sizes; we should see a smooth

curve with the height of the curve at the true value of our parameter estimate. For these two

validation sizes for β1 we see that both seem to have heights near β1 = 0.64, however there

is much more variability with the smaller validation size of 2.5%.

2.5.3 Methods of Estimation

Recall that our likelihood can be specified and broken down as follows:

L ∝ L(1−val)
m Lvalv (2.38)

Lv =
nv∏
j=1

{
P (y∗j |yj, xj, x∗j , cjy∗)P (x∗j |xj, yj, cjx∗)P (yj|xj, cjy)P (xj|cjx)

}
(2.39)

Lm =
nm∏
i=1

{
P (y∗i |yi = 1, xi = 1, x∗i , ciy∗)P (x

∗
i |xi = 1, yi = 1, cix∗)

P (yi = 1|xi = 1, ciy)P (xi = 1|cix)

+P (y∗i |yi = 1, xi = 0, x∗i , ciy∗)P (x
∗
i |xi = 0, yi = 1, cix∗)

P (yi = 1|xi = 0, ciy)P (xi = 0|cix)

+P (y∗i |yi = 0, xi = 1, x∗i , ciy∗)P (x
∗
i |xi = 1, yi = 0, cix∗)

P (yi = 0|xi = 1, ciy)P (xi = 1|cix)

+P (y∗i |yi = 0, xi = 0, x∗i , ciy∗)P (x
∗
i |xi = 0, yi = 0, cix∗)

P (yi = 0|xi = 0, ciy)P (xi = 0|cix)
}
. (2.40)

The component for the main study data, Lm, is entirely dependent upon the values of the

error prone measurements, while the validated data contributions, Lv are also dependent

upon the observed gold-standard measurements. In either case, the probabilities are attained

through the logistic regressions described previously (refer to Section 2.4), which makes

the likelihood very complex in nature.
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Using the frequentist approach, we utilize maximum likelihood optimization tech-

niques within SAS software, specifically PROC NLMIXED to estimate the parameters.

Quasi-Newtonian optimization algorithms are used as the default optimization algorithm

in PROC NLMIXED. “QUANEW" is a first-derivative method in which only the gradient

is computed, and second-order derivatives are approximated. The SAS code used for this

simulation study is found in Appendix B.1.1.

For the Bayesian approach, the posterior distributions are found by multiplying the

likelihood by the priors (Casella and Berger, 2002). The resulting marginal posteriors for

all parameters of interest are not available in closed form. We use MCMC techniques to

estimate the parameters with a set total number of iterations, burn-in, and thinning that has

been shown to converge appropriately; packages such as OpenBUGS and JAGS can be used

to fit the models. Christensen et al. (2011) explain that the idea behind MCMC techniques

is to generate random sequences of vectors. This sequence can, over time, converge to

a distribution called the posterior. A burn-in allows for assurance that the more volatile

beginning iterations in the sequence are not skewing the resulting end of the sequence,

while thinning ensures that the sequence is independent from one vector to the next. Refer

to Appendix B.1.2 for the models used in this chapter for the Bayesian approach.

2.6 Comparison of Results

We now discuss the results of simulation experiments illustrating how the two pro-

cedures perform for different levels of validation data. The results of these two procedures

are shown in Table 2.1.

We first consider the “naïve” model, that is, the model that uses only the error prone

laboratory results of Trichomoniasis and bacterial vaginosis as stand-ins for the “gold-

standard” clinical results. This model ignores all of the “gold-standard” clinical results

for the validated data and yields extremely low coverage probability for both paradigms

across all parameters. Considering this is an incorrect model, we would expect the coverage
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Table 2.1. Results Comparison for Bayesian and Frequentist Techniques

Frequentist Bayesian
Variable(β) β̂ (SE) Coverage β̂ (SD) Coverage

Naive Analysis
Trichomoniasis (β1 = 0.64) 1.546 (0.276) 8.8 1.526 (0.233) 3.8
Age (β2 = −0.05) -0.028 (0.010) 45.4 -0.029 (0.010) 48.8
Race (β3 = 0.79) 0.566 (0.182) 76.8 0.612 (0.180) 79.8
HIV Risk Chrt (β4 = 0.28) 0.826 (0.173) 9.8 0.777 (0.171) 18.2
HIV Status (β5 = 0.23) -0.314 (0.174) 13.2 -0.244 (0.174) 24.2

Ideal Analysis
Trichomoniasis (β1 = 0.64) 0.661 (0.190) 95.8 0.639 (0.169) 95.8
Age (β2 = −0.05) -0.050 (0.009) 95.0 -0.051 (0.009) 94.6
Race (β3 = 0.79) 0.789 (0.156) 95.6 0.813 (0.161) 94.4
HIV Risk Chrt (β4 = 0.28) 0.293 (0.143) 95.8 0.281 (0.146) 95.2
HIV Status (β5 = 0.23) 0.232 (0.153) 95.0 0.235 (0.155) 97.2

Complete Analysis (25%)
Trichomoniasis (β1 = 0.64) 0.662 (0.378) 94.6 0.680 (0.338) 94.2
Age (β2 = −0.05) -0.052 (0.017) 94.4 -0.050 (0.017) 95.8
Race (β3 = 0.79) 0.794 (0.289) 93.6 0.838 (0.304) 94.0
HIV Risk Chrt (β4 = 0.28) 0.309 (0.262) 94.0 0.309 (0.265) 93.0
HIV Status (β5 = 0.23) 0.238 (0.277) 95.2 0.263 (0.285) 94.0

Complete Analysis (15%)
Trichomoniasis (β1 = 0.64) 0.662 (0.498) 94.4 0.735 (0.441) 95.0
Age (β2 = −0.05) -0.053 (0.022) 93.8 -0.049 (0.022) 95.0
Race (β3 = 0.79) 0.808 (0.374) 94.0 0.853 (0.391) 96.8
HIV Risk Chrt (β4 = 0.28) 0.301 (0.340) 93.8 0.316 (0.342) 96.2
HIV Status (β5 = 0.23) 0.233 (0.360) 94.2 0.257 (0.368) 92.4

Complete Analysis (10%)
Trichomoniasis (β1 = 0.64) 0.711 (0.613) 92.6 0.721 (0.555) 93.2
Age (β2 = −0.05) -0.055 (0.027) 90.2 -0.048 (0.026) 95.2
Race (β3 = 0.79) 0.831 (0.456) 93.8 0.916 (0.488) 93.4
HIV Risk Chrt (β4 = 0.28) 0.257 (0.410) 92.8 0.346 (0.425) 92.6
HIV Status (β5 = 0.23) 0.238 (0.435) 93.8 0.299 (0.459) 93.2

Complete Analysis (5%)
Trichomoniasis (β1 = 0.64) 0.926 (1.040) 83.0 0.779 (0.832) 95.2
Age (β2 = −0.05) -0.056 (0.036) 76.2 -0.046 (0.037) 93.4
Race (β3 = 0.79) 0.951 (0.651) 82.4 0.995 (0.721) 93.4
HIV Risk Chrt (β4 = 0.28) 0.361 (0.574) 78.2 0.376 (0.626) 93.2
HIV Status (β5 = 0.23) 0.204 (0.606) 78.8 0.337 (0.675) 91.8

Complete Analysis (2.5%)
Trichomoniasis (β1 = 0.64) 1.508 (2.221) 73.6 1.068 (1.310) 91.8
Age (β2 = −0.05) -0.071 (0.048) 66.4 -0.043 (0.052) 95.0
Race (β3 = 0.79) 1.282 (1.083) 73.0 1.069 (1.101) 92.4
HIV Risk Chrt (β4 = 0.28) 0.367 (0.855) 72.2 0.357 (0.974) 93.2
HIV Status (β5 = 0.23) 0.513 (2.118) 68.4 0.364 (1.045) 95.6
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probabilities to be small; for the primary parameter of interest, β1, the coefficient for the

predictor of X on Y , we get coverage probabilities of 8.8% for the frequentist paradigm

and 3.8% for the Bayesian paradigm. These probabilities are in large part due to the high

degree of bias in the estimates. For β1, the true parameter is 0.64 while the estimates are

about 1.5 for both paradigms. It is well known that non-differential misclassification leads

to estimators biased towards the null; since this is differential misclassification, the bias

could be in either direction, and in this case is biased high. This, coupled with the small

standard errors estimated under each paradigm, results in the small coverage that can be

seen for each of the five estimated parameters.

In stark contrast to the “naïve” model is the “ideal” model; here we assume that the

gold-standard measurements are available for all subjects. Based upon the model assump-

tion, which is that the data are error free, we would expect to see coverage probabilities

close to the nominal level of 95%. As shown in Table 2.1, the coverage is near 95% for

each parameter, with estimates that are centered close to the truth and with small standard

errors. These results are a “best case” scenario that we can use to compare to the results

from the various levels of validation data.

We next consider the 25% validation sample fraction case for the misclassification

model. Here we see that both the frequentist and Bayesian approach are very close to at-

taining 95% coverage probability. Accounting for misclassification is known to increase

variance in estimation, so it is not surprising that we see some increase in the standard

errors from the ideal method with each standard error almost doubling; similar results are

seen for the posterior standard deviations. Though the variability is increased, the cover-

age probabilities are close to nominal and the bias is relatively small, thus 25% validation

appears effective for both the frequentist and Bayesian approach.

We next consider the case in which only 15% of our data is validated by gold-

standard measurements. As with the 25% validation case, we see that both the frequentist

and Bayesian intervals are close to attaining 95% coverage probability. Though the cov-
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erages are similar, there is an increase in the variability of the estimates from the 25%

validation case. We now start to see a difference in the two approaches; here, the Bayesian

approach attains a 95% coverage probability for all but one estimate, while the frequen-

tist approach does not attain 95% coverage probability for any of the estimates. Both ap-

proaches seem to produce estimates that center around the truth and have relatively similar

standard errors at this validation level.

Decreasing the validation data to 10% yields more differences between the two pro-

cedures. However, the more drastic jump is at a validation level of 5%. The Bayesian ap-

proach has approximate 95% coverage probability for all of the parameters. The frequentist

approach, on the other hand, has an 83% coverage probability or less for all of the parame-

ters.

For a validation size of 2.5% the frequentist paradigm has issues for both bias and

coverage. As can be seen in Table 2.1, the coverage probabilities are different from the 95%

nominal value. In addition, there is considerable bias and the standard errors are consid-

erably larger. It is interesting to note that even with the large degree of variability in the

estimates, the coverage probabilities are small. Comparing these findings with the results

from the Bayesian approach, we see that, even at the 2.5% validation size, the results are

behaving quite well. Though there is more bias than the cases with higher validation sizes,

estimates are still much closer than the frequentist approach. The standard deviations are

also the same or much smaller than the frequentist approach. Combined with the fact that

this approach actually captured the truth relatively well (the coverage probabilities are all

above 90%) we see that the Bayesian approach performs much better than the frequentist

approach for this small validation case.

The results indicate that the priors, N(0, 1), are actually moderately informative.

With some datasets the frequentist estimates “explode” and result in very large values for

the parameters. The priors keep the posterior from large values, thus keeping estimates
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Table 2.2. Results Comparison for Two Datasets Exhibiting Extreme Frequentist β1 Estimates
(True Value: 0.640)

Frequentist Bayesian
β̂1 (SE) 2.5th %ile 97.5th %ile β̂1 (SD) 2.5th %ile 97.5th %ile

10.395 (8.337) -5.945 26.735 4.601 (1.968) 1.060 8.767
10.100 (NA) NA NA 4.478 (1.732) 1.547 8.422

more reasonable. Of course, these priors should be justified but, in this case, large odds

ratios would not be expected.

2.6.1 Investigation into Data Sets with Divergent Results

As shown in Table 2.1, the largest disparity between the Bayesian and frequentist

approaches occurs at a validation size of 2.5%. In order to better understand the incon-

gruence between the approaches we examine specific datasets for which we see “extreme”

parameter estimates. Namely, we focus on datasets for which β1, our parameter of interest,

was estimated under the frequentist approach to be great than 10. We used this as our cutoff

because of the discussion on Bayesian priors in Section 2.3. We discuss the results of two

different datasets that had this result.

The results from these datasets are shown in Table 2.2. Clearly, the estimates of

β1 using the frequentist approach were much more biased than the Bayesian estimates.

The frequentist standard error for the first dataset is more than four times larger than the

Bayesian standard deviation. This gives frequentist interval estimates that span on both

sides of zero compared to the Bayesian interval estimates that remain on the positive side

of zero, where the truth lies. This shows that the conservative variance on the priors for the

Bayesian approach are reigning in the estimates enough to make them not “explode”. For

the second dataset, although we were able to get an estimate of β1 the analysis did not con-

verge and thus the standard error was unable to be calculated. A data set with these issues

under the frequentist approach would have been removed from our frequentist analysis in

the simulation study. Here we see that the Bayesian approach was not only able to converge
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upon an estimate and a standard deviation, but we also see that the estimate is far less bi-

ased than the potential estimate from the frequentist approach. Again, this shows that our

prior information, although diffuse, is providing enough information to garner estimates

from the Bayesian approach where the frequentist would have failed to.

Interestingly, both datasets did have a common quality in the validation sub-sample.

Neither data set observed any patients with false negative exposure measurements. This

could mean that we had a relatively flat likelihood as a result; the frequentist approach

struggles to handle this problem, while the N(0, 10) prior used Bayesian approach pro-

tects against extreme values in flat likelihoods, especially as the validation size decreases.

This prior “information” results in fairly unbiased and precise estimates of the parameters

compared to the frequentist approach.

We can see from the posterior densities of β1 in Figure 2.6.1 the densities are smooth

and suitably wide given the lack of information in the validation data. Thus, we have evi-

dence of convergence and we are able to see reasonable inferences for both data sets.

2.6.2 Investigation into Likelihood Contributions

Finally, we wish to compare the overall ability of each approaches likelihood calcu-

lations. For this, we compare the estimated likelihood contribution for a specific individual

to the true likelihood contribution for that individual using the true parameters. We will

do this for an individual in the validation subsample and the main study for each of the

Figure 2.6.1. Posterior Densities of β1 for Datasets with Extreme Frequentist Estimates
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Table 2.3. Likelihood Contributions Comparisons between the Truth, Bayesian Estimates, and
Frequentist Estimates

True Validation Frequentist Bayesian
Subsample Parameters Size(%) Estimates Estimates
Validation 0.056912 25 0.054626 0.054526

15 0.052251 0.052908
10 0.050135 0.048159
5 0.034381 0.043394
2.5 0.019848 0.048117

Main 0.739109 25 0.746559 0.742698
15 0.746883 0.743737
10 0.743093 0.748608
5 0.732732 0.753509
2.5 0.719765 0.776263

validation sizes. Suppose the individual of interest in both cases has an error prone re-

sponse measurement of BV ∗ = 0 but a gold standard response measurement of BV = 1

once validated; further, suppose the individual has an error prone exposure measurement

of Trich∗ = 0 with a gold standard exposure measurement of Trich = 1 once validated.

Also, the individual is Black (Race = 1), not HIV Positive (HIV Status = 0), not an in-

travenous drug user (RiskCohort = 0), and 37 years old (Age = 37). The results for this

individual are shown in Table 2.3; there, you can see that there is a considerable difference

in the likelihood contributions depending on whether the data had been validated, or not.

The results show that the likelihood contribution for the validation data is much

smaller than the contribution for the main study data. Also, for this individual, as the valida-

tion size decreases, both approaches provide estimated likelihood contributions that deviate

from the true likelihood contribution. Interestingly, it appears that the Bayesian approach

estimates the likelihood contribution similarly for validated data and main study data; each

type of data biases slightly as the validation size decreases. Conversely, for the frequentist

approach, the estimate of the likelihood contribution for validated data is extremely biased

for small validation sizes, while the main study data slightly biases as the validation size

decreases.
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CHAPTER THREE

Finding the Breaking Points

3.1 Baseline Comparison Model

In Chapter Two we discussed the methods for a binary regression with a misclassified

response and exposure. We demonstrated that results were better for larger validation frac-

tions. In this chapter we further investigate the various points at which these methods can

break down either with lack of convergence or poor performance. We will examine these

so-called “breaking points” via both the Bayesian and frequentist approach and, where ap-

propriate, determine which approach performs better.

We use similar models presented in section 2.2.3 that are adjusted to illustrate im-

portant points. We will use only a single covariate in our models. This means, the logistic

regressions we use are as follows:

logit[Pr(X = 1|C1)] = γ0 + γ1C1 (3.1)

logit[Pr(Y = 1|X,C1)] = β0 + β1X + β2C1 (3.2)

logit[Pr(X∗ = 1|X, Y,C1)] = δ0 + δ1X + δ2Y + δ3C1 (3.3)

logit[Pr(Y ∗ = 1|Y,X,X∗, C1)] = θ0 + θ1X + θ2Y + θ3X
∗ + θ4C1. (3.4)

The logistic regression models are then utilized in the likelihood components for the main

study data and validated data as:

Lm =
nm∏
i=1

{ yi=1∑
yi=0

xi=1∑
xi=0

Pr(Y ∗
i |Yi, Xi, X

∗
i , C1i)Pr(X

∗
i |Xi, Yi, C1i)

Pr(Yi|Xi, C1i)Pr(Xi|C1i)

}
(3.5)

Lv =
nv∏
j=1

{Pr(Y ∗
j |Yj, Xj, X

∗
j , C1j)Pr(X

∗
j |Xj, Yj, C1j)

Pr(Yj|Xj, C1j)Pr(Xj|C1j) } . (3.6)
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Recall, the product of these components is proportional to the full likelihood.

In order to create a comparison between the two approaches, we develop the follow-

ing data generation and simulation process:

(1) Set the true values of the parameters. In this case we use:

(a) β0 = 0.5, β1 = 2, β2 = −1,

(b) δ0 = −3, δ1 = 1.5, δ2 = 1.5, δ3 = 1,

(c) γ0 = −2, γ1 = 0.75,

(d) θ0 = −2, θ1 = 1, θ2 = 3, θ3 = 2, and θ4 = −2.

(2) For the Bayesian approach, each of the coefficients are given Normal prior distri-

butions with mean 0 and variance σ2 = 10, as discussed in Chapter Two (Section

2.3).

(3) Generate a full dataset from these parameters using the assumptions and formulas

described for dependent differential misclassification (equations 3.1 to 3.6).

(4) Estimate the parameters assuming dependent differential misclassification; specif-

ically utilizing equation 3.10.

(a) Using the frequentist approach, we utilize maximum likelihood optimization

techniques to estimate the parameters.

(b) Under the Bayesian approach, we will use MCMC techniques to estimate the

parameters after verifying convergence.

(5) Compare the estimated parameters to the “true values" used to generate the data.

(6) Repeat these steps 500 times and report the appropriate summaries for each method.

As stated in steps 4a - 4b, we will check the convergence of each method. As can be

seen in table 3.1, dataset convergence for the Frequentist results decreased as the percentage

of validation data decreased beyond 15%; roughly three-fifths of the datasets converged

once the validation size decreased to 2.5%. Convergence was assessed for the Bayesian
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Table 3.1. Convergence for Frequentist Results for the Baseline Model

Validation Size Converged Datasets/Total Datasets
25% 500/500
15% 500/500
10% 495/500
5% 439/500
2.5% 302/500

Table 3.2. Settings for Bayesian Results for the Baseline Model

Validation Size Iterations Burn-in Thin
25% 25, 000 15, 000 1
15% 40, 000 20, 000 2
10% 45, 000 25, 000 2
5% 70, 000 40, 000 3
2.5% 110, 000 60, 000 5

versions; we used the settings for these runs as shown in table 3.2. Refer to appendix A.2

for a full display of each of the convergence diagnostic checks for each validation size.

For the sake of brevity, we will discuss the convergence diagnostics for the smallest

validation size of 2.5%. We discuss these plots since it has been shown that for smaller

validation sizes convergence may be more difficult to attain. For a validation size of 2.5%

we used an iteration size of 110, 000, a burn-in of 60, 000, and used every 5th iteration for

inference. Figure 3.1.1 displays the autocorrelation plot and trace plot for this validation

size. For the autocorrelation plot you should typically see that as the lag increases, the

autocorrelation dampens to zero and remains close to zero. Trace plots should show no

discernible pattern as they illustrate the chains exploring the parameter space. As you can

see between the two plots, the autocorrelation does tend to zero and the trace plot appears

to appropriately explore the parameter space.

Figure 3.1.2 shows the density plot and running means plot for the 2.5% validation

size. The density plot, if we have attained convergence, should show a smooth curve with

the height of the curve at the value of our parameter estimate. The running mean plot, again,

if convergence is attained, should show a chain that converges to our parameter estimate
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over the length of the chain. For this validation size we see that the density is in fact smooth.

We can also see that the running mean plot does converge upon an estimate, even if it is

skewed high compared to our known true value of β1 = 2. These estimates could be skewed

due to random error or simply because we are examining a rather extreme case in which

nv = 25. Using this same criterion and the settings in Table 3.2, we have shown evidence

of chain convergence for this validation size and for each of the other validation sizes as

provided in Appendix A.2.

Now that convergence has been checked, we can compare the results of the methods

for this baseline model. Table 3.3 outlines the results from this process; we can see a similar

result here as we saw in Chapter Two. The Bayesian approach estimates the parameter

of interest well for each validation size, with coverage probabilities close to 95%. The

frequentist version does well for large validation sizes, but as the validated sample size is

reduced the results diverge from the 95% nominal coverage probabilities. The frequentist

estimates are also tending to be positively biased with extremely large standard errors,

Figure 3.1.1. Autocorrelation and trace plots for 2.5% validation size for the baseline model

Figure 3.1.2. Density and running mean plot for the 2.5% validation size for the baseline model
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Table 3.3. Results Comparison for Bayesian and Frequentist Techniques Assuming Dependent
Differential Misclassification

Frequentist Bayesian
Variable, β β̂ (SE) Coverage β̂ (SD) Coverage
25% Validated
β1 = 2.00 2.188 (1.197) 97.4 2.215 (0.625) 93.4
β2 = −1.00 -1.015 (0.303) 95.8 -1.007 (0.305) 93.4

15% Validated
β1 = 2.00 2.641 (3.607) 95.6 2.296 (0.826) 94.6
β2 = −1.00 -1.015 (0.392) 95.0 -1.021 (0.393) 96.4

10% Validated
β1 = 2.00 3.225 (20.395) 95.0 2.365 (1.023) 96.2
β2 = −1.00 -1.018 (0.485) 95.4 -1.017 (0.482) 94.8

5% Validated
β1 = 2.00 5.517 (182.732) 84.6 2.505 (1.430) 96.2
β2 = −1.00 -1.243 (3.401) 83.2 -1.043 (0.724) 93.0

2.5% Validated
β1 = 2.00 8.139 (412.282) 58.6 2.346 (1.840) 97.8
β2 = −1.00 -1.685 (48.468) 57.6 -1.066 (1.093) 96.2

especially for the parameter β1. As we saw in Chapter Two, our priors are only mildly

informative, but they are useful in cases that lead to flat likelihoods. Refer to Section 2.6.1

for an example and discussion of this phenomenon.

The results of this section (Table 3.3) will be used throughout the remainder of this

chapter to compare to all of the “breaking point” scenarios. The scenarios we will examine

are the effects of changing the assumption of dependent differential misclassification to

independent differential misclassification, increasing the overall sample size by a factor of

10, and, lastly, adding more information to the prior distributions.

3.2 Independent vs. Dependent Misclassification

Tang et al. (2015a) proposed a dependent differential misclassification model. In their

model the error prone exposure variable,X∗, is related to the error prone response variable,

Y ∗. The relationship is modeled via the following logistic regressions for our likelihoods:

logit[Pr(X = 1|C1, . . . CP )] = γ0 +

Q∑
p=1

γpCp (3.7)
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logit[Pr(Y = 1|X,C1, . . . CQ)] = β0 +

Q∑
q=1

βqCq + βQ+1X (3.8)

logit[Pr(X∗ = 1|X, Y,C1, . . . CR)] = δ0 +
R∑
r=1

δrCr + δR+1X + δR+2Y (3.9)

logit[Pr(Y ∗ = 1|Y,X,X∗, C1, . . . CS)] = θ0 +
S∑
s=1

θsCs

+ θS+1X + θS+2Y + θS+3X
∗ (3.10)

Assuming that the two error prone measurements are not only dependent on the gold-

standard measurements but are themselves dependent (equation 3.10) may seem counter

intuitive. One might think that the gold-standard measurements would render the error

prone measurements non-informative without the added complexity of another parameter

to estimate for the dependence between the two error prone measurements. In this section

we explore the assumption of dependence among the error prone measurements. To relax

this assumption, we will use the following model to run our analyses:

logit [Pr(Y ∗ = 1|Y,X,C1, C2, . . . CS)] = θ0 +
S∑
s=1

θsCs + θS+1X + θS+2Y (3.11)

This model is covered in more detail in Section 2.2.2, but of note is the difference in model

definition 3.11 (also model 2.18) and our previous dependent model definition, model 3.10

(also model 2.23). In the case of dependent differential misclassification, there is an added

parameter to estimate, the parameter associated with the error prone exposure variable. For

this section, we will examine whether the error prone measurement on the exposure truly

does help to predict the error prone response measurement, even with the presence of both

gold-standard measurements.

To accomplish this, we will follow a similar data generation and simulation process

as in Section 3.1:

(1) Set the true estimates of the parameters based on a general example outlined in

more detail in section 3.1.
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Table 3.4. Convergence for Frequentist Results for the Independent Model

Validation Size Converged Datasets/Total Datasets
25% 500/500
15% 500/500
10% 492/500
5% 421/500
2.5% 327/500

(2) Generate a full dataset from these parameters using the assumptions and formulas

described for dependent differential misclassification (eqs. 3.7-3.10).

(3) For the Bayesian approach, each of the coefficients are given Normal(µ = 0, σ2 =

10) prior distributions.

(4) Estimate the parameters using both of the approaches assuming independent dif-

ferential misclassification; specifically utilizing equation 3.11 instead of our pre-

vious equation 3.10.

(a) Using the frequentist approach, we utilize maximum likelihood optimization

techniques to estimate the parameters.

(b) Under the Bayesian approach, we will use MCMC techniques to estimate the

parameters.

(5) Compare the estimated parameters under the assumption of independent differen-

tial misclassification to the “true estimates" used to generate the data under our

assumption of dependent differential misclassification.

(6) Repeat these steps 500 times and report the appropriate summaries for each method.

As stated in steps 4a - 4b, we will check the convergence of each method. As can

be seen in table 3.4, convergence for the frequentist results decreased as the percentage

of validation data decreased below 15%; less than two-thirds of the datasets converged

once the validation size decreased to 2.5%. Convergence was assessed for the Bayesian

versions; we used the same settings for these runs as we used for the “Baseline” models.
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Refer to appendix A.3 for a full display of each of the convergence diagnostic checks for

each validation size.

For the sake of brevity, we will discuss the convergence diagnostics for the small-

est validation size of 2.5%. For a sample size of 1, 000, a validation less than 2.5% with

N(0.0.1) priors we could have considerable convergence problems. Here we used an it-

eration size of 110, 000, a burn-in of 60, 000, and a thin of 5. Figure 3.2.1 displays the

autocorrelation plot and trace plot for this validation size. For the autocorrelation plot you

should typically see that as the lag increases, the autocorrelation lowers toward zero and

remains close to zero. For the trace plot you should typically see that as the iteration in-

creases, there is no discernible pattern to the estimates, and the estimates seem to hover

evenly over the estimate. As you can see between the two plots, the autocorrelation does

tend to zero, although slowly, and the trace plot has no pattern. Both plots show no obvious

signs that convergence has been violated. Figure 3.2.2 shows the density plot and running

means plot for the 2.5% validation size. The density plot, if we have attained convergence,

should show a smooth curve over the mode of the distribution; it can be asymmetric. The

running mean plot, again, if convergence is attained, should show a dampening of values

toward the mode of the distribution. For this validation size we see that the density is in

fact smooth although slightly asymmetric. We can also see that the running mean plot does

converge upon an estimate.

Figure 3.2.1. Autocorrelation and trace plots for 2.5% validation size under the Independent model
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The results of the frequentist methods for both the analysis assuming dependent dif-

ferential misclassification (baseline model) and independent differential misclassification

are shown in table 3.5. Here we can see that for a validation size of 25% the assumption

change has an effect on the estimate of β1, our parameter of interest, which relates the

gold-standard exposure variable to the gold-standard response. Our estimate of β1 = 2.00

increases from 2.188 to 2.946, and although the standard errors seem to be relatively unaf-

fected, this change in estimate results in coverage decreasing from 97.4% to 84.0%.

Under both analyses as the validation size decreases we see more bias in our esti-

mates and higher standard errors for both parameters. Recall, that the correct analysis for

the data is dependent differential misclassification, however by decreasing the amount of

validated data to 2.5% the difference between the two analyses is difficult to discern. The

estimates for both β1 and β2 are now both biased (more so for the analysis using indepen-

dent differential misclassification) and the standard errors are now unrealistically large for

both analyses. The standard errors are actually larger for the dependent differential mis-

classification analysis due, in part, to a more complicated model. In either case, we can see

that the frequentist methods do not adequately predict for the gold-standard response when

the validation size is small, or in this case when nv = 25.

The results of the Bayesian approach for both the analysis assuming dependent dif-

ferential misclassification (baseline model) and independent differential misclassification

are shown in table 3.6. Here we can see that for a validation size of 25% the additional

Figure 3.2.2. Density plot and running mean plot for the 2.5% validation size under the
Independent model
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Table 3.5. Results Comparison for Frequentist Techniques Assuming Dependent Differential
Misclassification and Independent Differential Misclassification

Dependent Independent
Variable, β β̂ (SE) Coverage β̂ (SE) Coverage
25% Validated
β1 = 2.00 2.188 (1.197) 97.4 2.946 (1.137) 84.0
β2 = −1.00 -1.015 (0.303) 95.8 -1.084 (0.283) 93.6

15% Validated
β1 = 2.00 2.641 (3.607) 95.6 3.654 (6.311) 90.0
β2 = −1.00 -1.015 (0.392) 95.0 -1.097 (0.355) 95.0

10% Validated
β1 = 2.00 3.225 (20.395) 95.0 4.185 (28.842) 93.2
β2 = −1.00 -1.018 (0.485) 95.4 -1.122 (0.434) 92.6

5% Validated
β1 = 2.00 5.517 (182.732) 84.6 6.555 (140.911) 83.2
β2 = −1.00 -1.243 (3.401) 83.2 -1.208 (3.923) 78.2

2.5% Validated
β1 = 2.00 8.139 (412.282) 58.6 9.086 (310.449) 64.6
β2 = −1.00 -1.685 (48.468) 57.6 -2.370 (43.615) 60.8

parameter has a substantial effect on the estimate of β1, our parameter of interest, which

relates the gold-standard exposure variable to the gold-standard response. Our estimate of

β1 = 2.00 increases from 2.215 to 2.889, and although the standard errors seem to be rela-

tively unaffected, this change in estimate results in the coverage decreasing from 93.4% to

67.6%.

The Bayesian methods mimic the trends in results that we saw from the frequentist

methods. We see here that under both assumptions as the validation size decreases we see

more bias and less precision in our estimates. Interestingly, the independent differential

misclassification analysis appears to have smaller standard error than the dependent differ-

ential misclassification analysis by validation size, although the estimates themselves are

much more biased.

Of interest is the difference between the frequentist and Bayesian methods when the

dependent differential misclassification model is correct, but the independent differential

misclassification model is applied. As we saw in Table 3.5, the frequentist results became
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Table 3.6. Results Comparison for Bayesian Techniques Assuming Dependent Differential
Misclassification and Independent Differential Misclassification

Dependent Independent
Variable, β β̂ (SD) Coverage β̂ (SD) Coverage
25% Validated
β1 = 2.00 2.215 (0.625) 93.4 2.889 (0.595) 67.6
β2 = −1.00 -1.007 (0.305) 93.4 -1.079 (0.284) 93.6

15% Validated
β1 = 2.00 2.296 (0.826) 94.6 3.308 (0.817) 59.6
β2 = −1.00 -1.021 (0.393) 96.4 -1.107 (0.359) 94.0

10% Validated
β1 = 2.00 2.365 (1.023) 96.2 3.329 (0.956) 70.0
β2 = −1.00 -1.017 (0.482) 94.8 -1.065 (0.433) 95.0

5% Validated
β1 = 2.00 2.505 (1.430) 96.2 3.376 (1.325) 86.8
β2 = −1.00 -1.043 (0.724) 93.0 -1.003 (0.609) 93.4

2.5% Validated
β1 = 2.00 2.346 (1.840) 97.8 2.920 (1.753) 97.2
β2 = −1.00 -1.066 (1.093) 96.2 -0.991 (0.923) 92.4

increasingly more biased as the validation size decreased; this was true for both parameters

we examined. However, the Bayesian method, as shown in Table 3.6, only had biased re-

sults for the parameter of interest, β1, and the severity of the bias seemed to be consistent

as the validation size decreased. The difference between the two methods is even further

highlighted when you examine the difference in frequentist standard errors and Bayesian

standard deviations. These two measures should be relatively similar in terms of magni-

tude, but as we can see between the two results tables, these quantities vary greatly for

the estimates of β1 for each validation case. In fact, the “best” that the frequentist method

produces is still double the size of the Bayesian quantity (1.137 vs. 0.595 for the 25%

validation size). Furthermore, for the 5% and 2.5% validation sizes these quantities vary

greatly for the estimate of β2 as well. Again, we see that the frequentist quantities are huge

in comparison to the Bayesian counterparts.
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3.3 Sample Size Determination

For the original study by Tang et al. (2015a) the authors used a data set that had

904 women in the study to investigate the models proposed. We follow up their work with

a simulation study that uses a sample size of 1, 000 to model our “baseline” model in

Section 3.1. Generally, larger sample sizes lead to more precise inferences. In this section,

we explore the effects of increasing our sample size ten-fold for both the frequentist and

Bayesian approaches.

The data generation and simulation steps are exactly the same as in Section 3.1,

however we now use an overall sample size of 10, 000. Again, we must verify that we have

attained convergence for both approaches. Dataset convergence for the frequentist results

achieved 100% success for all validation sizes. Unlike the baseline models, which saw

decreasing convergence as the validation size decreased, here we see that the increase in

overall sample size has allowed the models to converge in each validation size scenario.

Convergence was examined for the Bayesian versions as well; we used the settings for

these runs as shown in table 3.7. Refer to Appendix A.4 for a full display of each of the

convergence diagnostic checks for each validation size.

To be concise, we will discuss the convergence diagnostics for the smallest validation

size of 2.5%; the discussions are similar for the remainder of validation sizes. For the

validation size of 2.5% we used an iteration size of 75, 000, a burn-in of 55, 000, and kept

every other iteration. Figure 3.3.1 displays the autocorrelation plot and trace plot for this

validation size. To assess convergence with an autocorrelation plot you should see that as

Table 3.7. Settings for Bayesian Results for the Increased Sample Size Analysis

Validation Size Iterations Burn-in Thin
25% 16, 000 6, 000 1
15% 18, 000 8, 000 1
10% 35, 000 15, 000 2
5% 40, 000 20, 000 2
2.5% 75, 000 55, 000 2
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the lag increases, the autocorrelation falls to zero and remains close to zero. For the trace

plot you should typically see that as the iteration increases, there is no discernible pattern

to the estimates and a fairly even spread above and below the mode of the distribution. As

you can see between the two plots, the autocorrelation does tend to zero and the trace plot

has no discernible pattern.

Figure 3.3.2 shows the density plot and running means plot for the 2.5% validation

size. The density plot, if we have attained convergence, should show a smooth, possibly

asymmetric curve. The running mean plot, again, if convergence is attained, should show a

chain that converges to the mode of the distribution. For this validation size we see that the

density is in fact smooth and the running mean plot does converge upon a mode.

Table 3.8 provides the frequentist results comparing the baseline sample size of

1, 000 to the increased sample size of 10, 000. The frequentist approach benefits greatly

from an increased sample size. As the validation size decreased in the Baseline results we

Figure 3.3.1. Autocorrelation and trace plots for 2.5% validation size with an overall sample size of
10, 000

Figure 3.3.2. Density plot and running mean plot for the 2.5% validation size with an overall
sample size of 10, 000
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Table 3.8. Results Comparison for Frequentist Techniques with Samples Sizes Increased Ten-Fold

n = 1, 000 n = 10, 000

Variable, β β̂ (SE) Coverage β̂ (SE) Coverage
25% Validated
β1 = 2.00 2.188 (1.197) 97.4 2.004 (0.176) 92.8
β2 = −1.00 -1.015 (0.303) 95.8 -1.009 (0.095) 93.8

15% Validated
β1 = 2.00 2.641 (3.607) 95.6 2.006 (0.228) 96.0
β2 = −1.00 -1.015 (0.392) 95.0 -0.996 (0.121) 93.8

10% Validated
β1 = 2.00 3.225 (20.395) 95.0 2.039 (0.282) 94.8
β2 = −1.00 -1.018 (0.485) 95.4 -1.003 (0.148) 94.2

5% Validated
β1 = 2.00 5.517 (182.732) 84.6 2.091 (0.412) 96.4
β2 = −1.00 -1.243 (3.401) 83.2 -1.014 (0.208) 94.2

2.5% Validated
β1 = 2.00 8.139 (412.282) 58.6 2.235 (1.609) 98.0
β2 = −1.00 -1.685 (48.468) 57.6 -1.053 (0.296) 94.8

saw an increase in the bias of our estimates as well as a huge increase in the precision of

our estimates (the standard errors balloon up as the validation size decreases). With the

increase in overall sample sizes, the amount of validated data has increased as well. With

this increase, we can see that the results are now much less biased and do not suffer from

the same drastic increase in standard errors as we saw in the baseline model.

At the largest validation size, 25%, we can see that the increased sample size results

in more accurate and precise estimates; our estimates for both β1 and β2 are closer to the

truth with smaller standard errors for the overall sample size of 10, 000 compared to our

estimates and standard errors from an overall sample size of 1, 000. More notably, at the

2.5% validation size we can see that our estimate of β1 decreased appropriately from 8.139

to 2.235, which is much closer to the true value of β1 = 2.00. The estimate of β2 also

decreased in magnitude at this validation size, however the difference between the two is

not as striking. The much more interesting change occurred in the standard error estimates

between the two sample size analyses. With an overall sample size of n = 1, 000 we see

that our standard error is unreasonably large (412.282), however with an overall sample size
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Table 3.9. Results Comparison for Bayesian Techniques with Samples Sizes Increased Ten-Fold

n = 1, 000 n = 10, 000

Variable, β β̂ (SD) Coverage β̂ (SD) Coverage
25% Validated
β1 = 2.00 2.215 (0.625) 93.4 2.013 (0.176) 94.6
β2 = −1.00 -1.007 (0.305) 93.4 -1.000 (0.095) 95.8

15% Validated
β1 = 2.00 2.296 (0.826) 94.6 2.017 (0.228) 95.0
β2 = −1.00 -1.021 (0.393) 96.4 -0.992 (0.121) 94.8

10% Validated
β1 = 2.00 2.365 (1.023) 96.2 2.036 (0.282) 95.6
β2 = −1.00 -1.017 (0.482) 94.8 -0.991 (0.147) 95.4

5% Validated
β1 = 2.00 2.505 (1.430) 96.2 2.074 (0.406) 94.6
β2 = −1.00 -1.043 (0.724) 93.0 -1.006 (0.208) 96.6

2.5% Validated
β1 = 2.00 2.346 (1.840) 97.8 2.210 (0.610) 93.0
β2 = −1.00 -1.066 (1.093) 96.2 -1.012 (0.294) 93.4

of n = 10, 000 our standard error becomes much more reasonable for a real-world scenario

at a value of 1.609. Again, a similar decrease occurs for the standard error estimate for β2

with a decrease from 48.468 to 0.296.

The results from the frequentist methods improved drastically, and while the Bayesian

methods also improved (results are shown in Table 3.9), the results are not as drastic. This

is due in large part to the fact that the baseline Bayesian analysis performed better than the

baseline frequentist analysis. Even so, the increase in overall sample size did have a posi-

tive impact on lowering the bias in the estimates, especially as the validation size decreased.

This was true for both parameters examined in Table 3.9. We can also see that the estimate

of the standard deviations decreased by two-thirds in almost every case, if not more.

Interestingly, the difference between the frequentist and Bayesian methods seems to

favor the frequentist methods for larger validation sizes (25% and 15%). The estimates for

the frequentist method under these validation sizes seem to be slightly less biased than for

the Bayesian method. The standard errors and standard deviations are very similar for both

methods; thus, we use the decreased bias of the frequentist results to say that for larger
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validation sizes we would tend to choose these methods for analysis. For mid-range valida-

tion sizes (i.e., 10% and 5%) we see no clear “winner” in the analysis; the frequentist and

Bayesian approaches both offer fairly accurate and precise estimates of our parameters. For

smaller validation sizes (i.e., 2.5%) the Bayesian approach seems to be more appropriate

to use. Here we see that the Bayesian methods produced less biased estimates and that the

standard deviation for the estimate of β1 is less than half of the standard error estimate

under the frequentist methods. Interestingly, the standard error and the standard deviation

estimates under the appropriate methods for the estimate of β2 are very close for all valida-

tion sizes, so it is clear that the increased sample size effects the results for our parameter

of interest, not necessarily the remaining parameters.

3.4 Informative Priors vs. Non-Informative Priors

A main advantage of using the Bayesian approach in many areas is that expert opin-

ion can be incorporated via informative prior distributions. For the sake of our comparison,

so far, we have assumed that we have little knowledge from previous studies or experts

on our parameters, though we have assumed extreme values are unlikely. For this rea-

son, we have used relatively diffuse priors that follow a normal distribution with a mean

of 0 and a standard deviation of about 3.2 (variance of σ2 = 10, standard deviation is thus
√
10 = 3.162278). As previously discussed in Section 2.3, this is a rather broad distribution

that allows for a multitude of values, even some that would almost never occur naturally.

For comparison, this section will explore the effects of having a slightly informative prior

distribution on the parameters. We will look at three sets of prior distributions to assess

the effect on the Bayesian approach: a prior that centers the distribution on the appropriate

side of zero for the parameter at hand, a prior that centers the distribution with a smaller

standard deviation, and a prior that centers the distribution and greatly narrows the spread

of the distribution.
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For each of the scenarios, we will follow similar steps as previous sections for data

generation and analysis:

(1) Set the true estimates of the parameters based on a general example outlined in

more detail in section 3.1.

(2) Generate a full dataset from these parameters using the assumptions and formulas

described for dependent differential misclassification (eqs. 3.7-3.10).

(3) For the Bayesian approach, each of the coefficients are given a prior distribution

unique to the section we are discussing.

(4) Estimate the parameters using Bayesian MCMC techniques assuming dependent

differential misclassification; specifically utilizing equation 3.10.

(5) Compare the estimated parameters under each new prior distribution change.

(6) Repeat these steps 500 times and report the appropriate summaries.

Since we are obviously not affecting the frequentist methods when we change our prior

distributions, for this section we will only focus on the results from the Bayesian approach.

3.4.1 Priors that are Centered on the Appropriate Side of Zero

For the sake of comparison, we will use our baseline model to compare to the new

priors developed in this section. The baseline model we used in Section 3.1 utilized prior

distributions that were the same for every parameter; we used: Normal(µ = 0, σ2 = 10).

As discussed in Chapter 2 (Section 2.3), this distribution allows for the scenario in which a

one-unit change in the explanatory variable results in a predicted probability increase from

1% to 99% to be possible although highly improbable. Likewise, our prior choice allows

for the improbable scenario that a one-unit change in the explanatory variable results in a

predictive probability decrease from 99% to 1%. Each of these changes, when back trans-

formed to the scale of our coefficients, means that coefficients on our parameters would
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Table 3.10. Prior Means for the Priors that are Centered on the Appropriate Side of Zero

Variable True Value Prior Mean Prior Variance
γ0 −2.00 -1 10
γ1 0.75 1 10
β0 0.50 1 10
β1 2.00 1 10
β2 −1.00 -1 10
δ0 −3.00 -2 10
δ1 1.50 1 10
δ2 1.50 1 10
δ3 1.00 1 10
θ0 −2.00 -1 10
θ1 1.00 1 10
θ2 3.00 2 10
θ3 2.00 1 10
θ4 −2.00 -1 10

very rarely be as large as 10 or−10. This prior allows for both of these situations, but gives

relatively low weight to their probability of occurrence.

This prior is reasonable if the goal is to minimize influence, however in a real-world

scenario you would most likely have a bit of intuition on whether or not your parameter is,

at the very least, positive or negative. This leads us to choosing priors for our parameters

that are somewhat reflective of which side of zero we believe they may tend to; table 3.10

shows the prior means we have chosen to utilize under this new Bayesian analysis.

As with the baseline model, we must find the optimal settings to achieve conver-

gence without sacrificing unrealistically long run times. When we run our simulations for

this model (with centered priors), we utilize the settings as displayed in Table 3.11. These

settings allowed for convergence criteria to be met at all validation sizes examined; to show

this we will discuss the convergence diagnostics for the 2.5% validation size. We exam-

ine the convergence of the smallest validation size since this is typically where we will face

more convergence problems. We present all of the diagnostic checks for all of the validation

sizes in Appendix A.5.
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Table 3.11. Settings for Bayesian Results for the Priors that are Centered on the Appropriate Side
of Zero

Validation Size Iterations Burn-in Thin
25% 15, 000 5, 000 1
15% 35, 000 25, 000 1
10% 50, 000 40, 000 1
5% 80, 000 60, 000 2
2.5% 105, 000 85, 000 2

We present four diagnostic checks for each validation size: autocorrelation plot, den-

sity plot, running mean plot, and a trace plot. The autocorrelation plot should show that as

the lag increases, the autocorrelation decreases. Ideally this would decrease to zero, how-

ever for this small of a validation size we see that the autocorrelation tends towards about

0.2. The density plot should show a smooth curve, and in fact we do see this for the 2.5%

validation size. In the trace plot we should see that the lines have no discernible pattern

and that the bouncing back and forth hovers over our true value; here we see that this is the

case, even though we are seeing a wide variation in our estimates from negative to positive

values. Lastly, the running means plot should show a convergence to a value over the itera-

tions. We do see that our running mean tends towards about 0.60; we would prefer that this

be closer to the truth (β1 = 2.00), however we do still see convergence.

Since we have confirmed that convergence of our chains has been met, we can discuss

the results of this process which are summarized in Table 3.12. Interestingly, the results

seem to show that centering our prior distributions does not actually allow for more accurate

Figure 3.4.1. Auto-correlation and density plot for 2.5% validation sizes
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Table 3.12. Results Comparison for Bayesian Techniques with Prior Distributions Centered on the
Appropriate Side of Zero (N(µ, σ2 = 10))

Baseline Centered
(N(0, σ2 = 10)) (N(µ, σ2 = 10))

Variable, β β̂ (SD) Coverage β̂ (SD) Coverage
25% Validated
β1 = 2.00 2.215 (0.625) 93.4 2.248 (0.624) 94.8
β2 = −1.00 -1.007 (0.305) 93.4 -1.013 (0.304) 95.2

15% Validated
β1 = 2.00 2.296 (0.826) 94.6 2.426 (0.857) 93.6
β2 = −1.00 -1.021 (0.393) 96.4 -1.055 (0.394) 96.2

10% Validated
β1 = 2.00 2.365 (1.023) 96.2 2.589 (1.091) 94.0
β2 = −1.00 -1.017 (0.482) 94.8 -1.025 (0.483) 94.4

5% Validated
β1 = 2.00 2.505 (1.430) 96.2 2.726 (1.462) 97.4
β2 = −1.00 -1.043 (0.724) 93.0 -1.089 (0.716) 93.6

2.5% Validated
β1 = 2.00 2.346 (1.840) 97.8 2.747 (1.914) 98.8
β2 = −1.00 -1.066 (1.093) 96.2 -1.102 (1.093) 96.4

or precise estimates. For example, at the 25% validation size we see that our baseline model

gave a slightly biased estimate of 2.215; compare this to our estimate from the analysis

which centered our priors and we see that we now produce and even higher estimate at

2.248. The estimates for the standard error and standard deviation are almost the same, so

we did not seem to gain higher precision either.

One possible explanation for the change in accuracy of our estimates is that we are

now allowing for our distribution to spread to more extreme values. For instance, our prior

Figure 3.4.2. Trace and running means plot for 2.5% validation sizes
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distribution for β1 changed from being centered at 0, with probable values between about

-7 to 7, to being centered at 1, with probable values now between -6 and 8. We are now

allowing for even more extreme coefficient values to be probable, and thus the centering is

actually skewing our results to become slightly more extreme than in our baseline model.

For this reason, we need to examine how the analysis would be affected by a change in the

prior distribution to give less probability to extreme values.

3.4.2 Priors that are Centered on the Appropriate Side of Zero with Moderate Prior Stan-
dard Deviations

We will examine the effect of narrowing our prior distributions slightly, in addition

to centering the distributions on the appropriate side of zero. We will define our priors now

by the same “centered” means as denoted in Table 3.10, but we will change the variance

components from σ2 = 10 to σ2 = 4 (this gives a precision of τ = 1
σ2 = 0.25 and a

standard deviation of σ = 2). These priors are described in Table 3.13. We run these results

under the same settings as the settings used for the priors centered on the appropriate side

of zero (refer to Table 3.11). Again, we must check the convergence of these settings before

moving forward with our analysis process.

We will discuss the convergence for the smallest validation size (2.5%) since this

size would be most likely to cause convergence errors. The remaining validation sizes did

reach convergence; all diagnostics are shown in Appendix A.6. As we can see, we have

attained convergence in each diagnostic. The autocorrelation plot shows that as the lag

increases, our autocorrelation decreases; the density plot is smooth; the trace plot shows

no discernible pattern and hovers evenly over an estimate of β1; and the running mean plot

shows that we converge upon an estimate as the iterations increase.

Since convergence criteria of our chains has been adequately checked, we can dis-

cuss the results of this process which are summarized in Table 3.14. Now that we have

centered and slightly narrowed our prior distributions, we can see that our estimates have

become less biased and more precise for every validation size. The bias is interestingly

49



Table 3.13. Prior Means for the Priors that are Centered on the Appropriate Side of Zero and
Slightly Narrowed

Variable True Value Prior Mean Prior Variance
γ0 −2.00 -1 4
γ1 0.75 1 4
β0 0.50 1 4
β1 2.00 1 4
β2 −1.00 -1 4
δ0 −3.00 -2 4
δ1 1.50 1 4
δ2 1.50 1 4
δ3 1.00 1 4
θ0 −2.00 -1 4
θ1 1.00 1 4
θ2 3.00 2 4
θ3 2.00 1 4
θ4 −2.00 -1 4

to the positive side of our true value of β1 = 2.00 for all but one validation size. At the

2.5% validation size we see that we are now biased downward, or below β1 = 2.00. This is

Figure 3.4.3. Auto-correlation and density plot for 2.5% validation sizes

Figure 3.4.4. Trace and running means plot for 2.5% validation sizes
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Table 3.14. Results Comparison for Bayesian Techniques with Prior Distributions Centered on the
Appropriate Side of Zero with Slightly Smaller Spread (N(µ, σ2 = 4))

Baseline Centered and Slight Narrow
(N(0, σ2 = 10)) (N(µ, σ2 = 4))

Variable, β β̂ (SD) Coverage β̂ (SD) Coverage
25% Validated
β1 = 2.00 2.215 (0.625) 93.4 2.161 (0.583) 96.0
β2 = −1.00 -1.007 (0.305) 93.4 -0.997 (0.302) 94.2

15% Validated
β1 = 2.00 2.296 (0.826) 94.6 2.256 (0.760) 96.4
β2 = −1.00 -1.021 (0.393) 96.4 -1.036 (0.387) 95.8

10% Validated
β1 = 2.00 2.365 (1.023) 96.2 2.251 (0.892) 96.8
β2 = −1.00 -1.017 (0.482) 94.8 -1.024 (0.475) 94.8

5% Validated
β1 = 2.00 2.505 (1.430) 96.2 2.160 (1.142) 98.2
β2 = −1.00 -1.043 (0.724) 93.0 -1.012 (0.668) 96.0

2.5% Validated
β1 = 2.00 2.346 (1.840) 97.8 1.990 (1.386) 98.6
β2 = −1.00 -1.066 (1.093) 96.2 -1.098 (0.971) 96.6

an indication that at this level of the validation size the prior distribution, centered at 1, is

having a larger effect on the posterior than is seen for the larger validation sizes.

3.4.3 Priors that are Centered on the Appropriate Side of Zero and Drastically Narrowed
Distributions

Now we will examine the effect of narrowing our prior distributions even further. We

will define our priors by the same “centered” means as in previous sections, but we will

change the variance components from σ2 = 10 and σ2 = 4 to σ2 = 1 (this gives a precision

and standard deviation that are both equal to 1); refer to Table 3.15 for the specifics of our

prior distributions for this section. We will be running our Bayesian approach under the

same settings as the settings used for the Bayesian approach when we centered the priors

and maintained a variance of σ2 = 10 (refer to Table 3.11).

We will discuss the convergence for the smallest validation size (2.5%) since this

size would be most likely to cause convergence errors. All diagnostics for all validation
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Table 3.15. Prior Means for the Priors that are Centered on the Appropriate Side of Zero and
Narrowed

Variable True Value Prior Mean Prior Variance
γ0 −2.00 -1 1
γ1 0.75 1 1
β0 0.50 1 1
β1 2.00 1 1
β2 −1.00 -1 1
δ0 −3.00 -2 1
δ1 1.50 1 1
δ2 1.50 1 1
δ3 1.00 1 1
θ0 −2.00 -1 1
θ1 1.00 1 1
θ2 3.00 2 1
θ3 2.00 1 1
θ4 −2.00 -1 1

sizes are shown in Appendix A.7. As we can see in Figures 3.4.5 and 3.4.6, we attained

convergence in each diagnostic. The autocorrelation plot shows that as the lag increases, our

autocorrelation decreases; the density plot is smooth; the trace plot shows no discernible

pattern and hovers evenly over an estimate β1; and the running mean plot shows that we

converge upon an estimate as the iterations increase. The remaining validation sizes did

reach convergence with similar properties shown in their diagnostic plots.

As can be seen in Table 3.16, when we dramatically decrease the variability in our

prior distributions we are effectively driving our results to be very nearly close to our prior

distributions. This table gives the results for two parameters for which we see that the prior

Figure 3.4.5. Auto-correlation and density plot for 2.5% validation sizes
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Table 3.16. Results Comparison for Bayesian Techniques with Prior Distributions Centered on the
Appropriate Side of Zero with Smaller Spread (N(µ, σ2 = 1))

Centered and Slight Narrow Centered and Narrowed
(N(µ, σ2 = 4)) (N(µ, σ2 = 1))

Variable, β β̂ (SD) Coverage β̂ (SD) Coverage
25% Validated
β1 = 2.00 2.161 (0.583) 96.0 1.878 (0.479) 97.4
β2 = −1.00 -0.997 (0.302) 94.2 -0.972 (0.288) 95.8

15% Validated
β1 = 2.00 2.256 (0.760) 96.4 1.810 (0.568) 95.6
β2 = −1.00 -1.036 (0.387) 95.8 -0.995 (0.362) 97.2

10% Validated
β1 = 2.00 2.251 (0.892) 96.8 1.734 (0.641) 97.4
β2 = −1.00 -1.024 (0.475) 94.8 -0.949 (0.428) 97.8

5% Validated
β1 = 2.00 2.160 (1.142) 98.2 1.565 (0.754) 97.8
β2 = −1.00 -1.012 (0.668) 96.0 -0.986 (0.560) 99.0

2.5% Validated
β1 = 2.00 1.990 (1.386) 98.6 1.354 (0.846) 98.4
β2 = −1.00 -1.098 (0.971) 96.6 -1.000 (0.691) 99.8

is centered very near our truth for β1 and actually on our truth for β2. The prior for β1 is

shown now to drive our results. For example, if we focus on the most dramatic scenario,

a validation size of 2.5%, we see that our prior on β1 being centered at 1 is now guiding

that estimate (β̂1 = 1.354) down towards 1 when it has a prior variance of 1. Our precision

in our estimates has decreased, but with such biased estimates, this is no longer a desirable

quality even if it does give us coverage probabilities near the nominal level of 95%.

Figure 3.4.6. Trace and running means plot for 2.5% validation sizes

53



If we examine the results as they relate to β2, we see a slightly different result in that

our estimates are very close to the true values. We also see that our standard deviations are

much smaller than the results from the slightly narrowed prior results. For example, our

estimate of the standard deviation at the 2.5% validation size for β2 was 1.386 when we

used slightly narrowed priors and is now 0.846 which used priors with a variance of 1. We

see that this relates to a coverage going from 98.6 to 98.4. Essentially, we are seeing very

accurate and precise results for β2 since we centered the results on the truth.

The difference in estimates for β1 and β2 tells us that unless we are very certain of

our prior information (as shown in the case of β2) we should refrain from using such a

small variance, even if the coverage is close to our nominal level of 95%. We should utilize

prior distributions with a sensible level of uncertainty (as shown in the case of β1) to allow

the data to guide our estimates, while still providing adequate prior information to improve

our estimates in both bias and precision.

3.4.4 Estimating the Information in the Priors: Effective Sample Size Comparison

In Sections 3.1, 3.4.1, 3.4.2, and 3.4.3 we showed/discussed the results of using

increasingly more informative priors on our results for dependent differential misclas-

sification. A common argument against Bayesian analyses is that the diffuse (or “non-

informative”) priors are actually informative, and sometimes much too informative, to al-

low the data to drive our estimations. In this section, we explore one simple measure of the

amount of information our priors provide, the prior effective sample size (ESS).

The prior effective sample size was notably discussed by Morita et al. (2008) in

which they not only define the term, but they provide practical solutions to finding this

measure for a variety of scenarios. ESS is, in a nutshell, the amount of information in

the posterior that results from updating our prior distribution with the likelihood using

Bayes Theorem. In general, if you have a diffuse prior this measure should be low, which

corresponds to a higher amount of information coming from the likelihood rather than the
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Table 3.17. ESS for Priors of Dependent Differential Misclassification

Priors Summed ESS
Baseline:

2.990698
N(0, σ2 = 10)

Centered:
5.923395

N(µ, σ2 = 10)
Centered and Moderate SD:

15.03335
N(µ, σ2 = 4)

Centered and Drastic SD:
60.00797

N(µ, σ2 = 1)

prior. Morita et al. (2008) developed a straight-forward R function to estimate the ESS for

a logistic regression.

We used their formula to help ascertain the information in our priors by assuming

that, at a maximum, the four logistic regressions will provide an additive ESS overall.

Simply put, we calculate the ESS for each of the models (eqs. 3.7-3.10) and sum their

results to describe the ESS for each of the four prior scenarios we used for this chapter.

Refer to Appendix C.1 for a detailed description of the formula and settings we used for

this work. The results of this process are shown in Table 3.17.

As you can see, the baseline prior showed the smallest ESS value of about 3 and

the priors that were centered on the appropriate side of zero with drastically narrowed

standard deviations had the largest ESS value of about 60. This confirms our results from

Section 3.4.3, in that we saw estimates and spreads that very closely resembled the priors

used on the parameters; the large ESS for this prior specification gives further verification

that our prior is driving our results rather than the data. Also, for the Centered priors (in

Section 3.4.1), we see a relatively small ESS value (about 6) however, the results showed

that the priors had an adverse effect on our estimates in terms of bias and precision. This

new information tells us that the prior is driving our results more-so than in the case of the

baseline model, however it’s magnitude may not be fully representative of the problems we

saw in the results.
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CHAPTER FOUR

Bayesian Misclassification with Differentially Correlated Binary Outcomes

4.1 Introduction

Considerable research has been done on the impact of misclassification on inference

in binomial regression models. Misclassification can lead to statistical inefficiency and bi-

ased results, as discussed by Barron (1977), Copeland et al. (1977), Neuhaus (1999), and

Carroll et al. (2006) Many researchers have proposed methods to correct for response mis-

classification. For example, in the study of ordinary logistic regression using validation data

or the assumption of known misclassification probabilities (refer to Magder and Hughes

(1997), Morrissey and Spiegelman (1999), Carroll et al. (2006), Green (1983), Greenland

(1988), Marshall (1990), Brenner and Gefeller (1993)).

Ample work has been done using a frequentist framework to estimate regression co-

efficients that incorporates validation data for a differentially misclassified response vari-

able (Carroll et al. (2006) and Holcroft et al. (1997)). Pepe (1992) use non-parametric

kernel methods while Lyles et al. (2011) develop computationally straightforward methods

that implements a maximum likelihood approach. The Bayesian approach has also been

considered; Paulino et al. (2003) extend work by Bedrick et al. (1996) to allow for model

selection in binomial regression when the response variable is subject to an unconstrained

(in terms of assumed sensitivity and specificity values) misclassification process. Goldstein

et al. (2016) use a case-control study to account for non-differential misclassification but

used fixed values of the sensitivity and specificity provided by “expert-opinion” to drive

their research. McInturff et al. (2004) utilize conditional means priors to allow for prior in-

formation and expert opinion to help provide estimates of diagnostic sensitivity and speci-

ficity from a binomial regression suffering from response misclassification. Gerlach and

Stamey (2007) explore the effects of both differential and non-differential misclassification
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in the context of logistic regression when the response is misclassified using internal vali-

dation data. All of this research has focused on the case in which the response measurement

is measured only once.

Repeated response measurement is commonly used in medical data; patients are fol-

lowed for extended periods of time and measured more than once over the study. Neuhaus

et al. (2002) use frequentist methods when misclassification probabilities are either known

or unknown for population averaged generalized estimating equations and cluster-specific

generalized linear mixed models. Their work centers on probabilities that were fixed and

independent of covariates because although maximum likelihood estimates could be ob-

tained in theory, practically there exist identifiability problems without more assumptions

being placed upon the analysis. Lyles et al. (2005) extend the idea of McNemar’s test for

matched pair 2×2 tables in a longitudinal study using both internal and external validation

data for odds ratio estimates. Extending both of these contributions for longitudinal studies

involving repeatedly measured error prone responses, Tang et al. (2015b) use internal vali-

dation subsamples at different study time points to find valid and computationally efficient

maximum likelihood estimates of regression parameters.

In this chapter we extend the work by Tang et al. (2015b) to the Bayesian approach.

We mirror their frequentist methods and develop corresponding Bayesian methods (as de-

scribed in section 4.3.4) to motivate a comparison between the two approaches. We aim, as

they did, to find methods that are computationally efficient and to show the importance of

accounting for differential misclassification. This chapter is organized as follows: in Sec-

tion 4.2 we introduce the frequentist methods proposed by Tang et al. (2015b) and the four

models used to convey the validity of the assumption of differential misclassification. In

Section 4.3 we describe the process by which we analyze our simulated data under the

frequentist and Bayesian approaches. We lastly discuss the results and the comparisons of

those results for both approaches in 4.4.
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4.2 Frequentist Methods for Differential Misclassification

Suppose we wish to examine the results of a test given to patients over repeated

visits to a clinic. Let Yij denote the gold-standard response measurement for subject i at

time point j and denote Y ∗
ij as the error prone measurement for subject i at time point j.

Here the gold-standard response, Yij , is assumed to be prohibitively expensive in time or

resources while the error prone response, Y ∗
ij , is readily available. We will let our covariates

be denoted as Xip, where p is the total number of covariates relating to the response. The

covariates are not dependent on the time of the visit but are dependent upon the subject. We

denote the total number of subjects as n, however, the amount of validated data and main

study data can vary depending on the validation size setting. We denote the validated data

sample size as nv and our main data sample size (data that has not been validated) as nm.

To incorporate correlation between the visits, we include a correlated random error

structure in the models, denoted by ui. This is expanded upon in Section 4.2.1. Further, we

assume that the responses within each subject, i, are conditionally independent, so that as

Breslow and Clayton (1993) find, the likelihood can be fully specified from our coefficients

and our subject specific random effect. For generalized linear mixed models, it is commonly

assumed that (ui, u∗i )
T ∼ N(0,Σ); we will assume this here without loss of generality.

We consider four models with a correlated structure: “General Misclassification”

where we assume correlated binary outcomes have dependent differential misclassifica-

tion (GEN), independent correlated differential (ICD) misclassification, independent un-

correlated differential (IUD) misclassification, and completely non-differential (ND) mis-

classification. For each model, we assume the generalized logistic models are appropriate,

although, other link functions could be used instead of the “logit” function.

4.2.1 General Misclassification (GEN)

The assumption under “General Misclassification” is that the outcomes are corre-

lated binary responses and that there exists dependent differential misclassification in the
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responses. To account for the misclassification, we use two logistic regression models to

represent our response model, the first of which is:

logit{Pr(Yij = 1|Xi1 . . . XiP , ui)} = β0 +
P∑
p=1

βpXip + ui. (4.1)

Equation 4.1 is referred to as the response or “main” model, since it is a model for the gold-

standard measurement. The other logistic model incorporates the misclassification and its

dependence on the individual covariate information. Here, we note that the covariates may

not be the same as they were for the main model, thus we define Ciq as the covariates for

the misclassified response. This gives:

logit{Pr(Y ∗
ij = 1|Ci1 . . . CiQ, Yij, u∗i )} = γ0 +

Q∑
q=1

γqCiq + γQ+1Yij + u∗i . (4.2)

We refer to equation 4.2 as the “joint” model since it incorporates knowledge of both the

error prone and the gold-standard response variable. To ease our notation, we will denote

Ciq = (Ci1 . . . CiQ) and, likewise, Xip = (Xi1 . . . XiP ).

Using the joint model, we define the sensitivity and specificity as:

SE(Ciq) = Pr(Y ∗
ij = 1|Yij = 1,Ciq, u

∗
i ) (4.3)

SP (Ciq) = Pr(Y ∗
ij = 0|Yij = 0,Ciq, u

∗
i ). (4.4)

Through these models we allow for the misclassification to be correlated within the same

subject in addition to the response. Thus, we must also define the assumed structure for the

subject-specific random effect vector that will allow for correlation among the models:

(ui, u
∗
i )
T ∼ N


0

0

,
σ2

ui
ψ

ψ σ2
u∗i


 . (4.5)

Using the random error structure in 4.5, we have that the likelihood contribution for subject

i at time j is:

Pr(Y ∗
ij |Xip,Ciq, ui, u

∗
i ) =

1∑
Yij=0

Pr(Y ∗
ij |Yij,Ciq, u

∗
i )Pr(Yij|Xip, ui) (4.6)
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This can then be further broken down depending on whether validation data is available.

The first formula is associated with the main data, where the true value of yij is

unknown; this gives:

Pr(Y ∗
ij |Xip,Ciq, ui, u

∗
i ) =Pr(Y

∗
ij |Yij = 1,Ciq, u

∗
i )Pr(Yij = 1|Xip, ui)

+ Pr(Y ∗
ij |Yij = 0,Ciq, u

∗
i )Pr(Yij = 0|Xip, ui)

=[Pr(Y ∗
ij = 1|Yij = 1,Ciq, u

∗
i )Pr(Yij = 1|Xip, ui)

+ Pr(Y ∗
ij = 1|Yij = 0,Ciq, u

∗
i )Pr(Yij = 0|Xip, ui)]

Y ∗
ij

[Pr(Y ∗
ij = 0|Yij = 1,Ciq, u

∗
i )Pr(Yij = 1|Xip, ui)

+ Pr(Y ∗
ij = 0|Yij = 0,Ciq, u

∗
i )Pr(Yij = 0|Xip, ui)]

(1−Y ∗
ij).

(4.7)

Equation 4.7, is entirely dependent on the value of Y ∗
ij ; the unobserved true values are

summed out.

The second formula is associated with the validated data, where the true value of yij

is known, which gives:

Pr(Y ∗
ij |Xip,Ciq, ui, u

∗
i ) =[Pr(Y ∗

ij = 0|Yij = 0,Ciq, u
∗
i )Pr(Yij = 0|Xip, ui)]

(1−Y ∗
ij)(1−Yij)

[Pr(Y ∗
ij = 1|Yij = 0,Ciq, u

∗
i )Pr(Yij = 0|Xip, ui)]

Y ∗
ij(1−Yij)

[Pr(Y ∗
ij = 0|Yij = 1,Ciq, u

∗
i )Pr(Yij = 1|Xip, ui)]

(1−Y ∗
ij)Yij

[Pr(Y ∗
ij = 1|Yij = 1,Ciq, u

∗
i )Pr(Yij = 1|Xip, ui)]

Y ∗
ijYij . (4.8)

You can see that equation 4.8 depends on both the values of Yij and Y ∗
ij in that for each

validated subject for each time, only one of the four components of this model equation

will contribute to the likelihood at a time.

From 4.7 and 4.8 we can develop the likelihoods in terms of the sensitivity and

specificity (4.3 and 4.4); we have two components that make up the likelihood. We denote

the validation portion of the likelihood as Lv where we have both the error prone and gold-

standard responses available. Lm denotes the likelihood for the main data, in which we
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only have the error prone response measurements available. These equations can be broken

down into the subject and time specific contributions and are defined as follows:

Lm =[SE(Ciq)Pr(Yij = yij|Xip, ui)+

(1− SP (Ciq))(1− Pr(Yij = yij|Xip, ui))]
y∗ij

[(1− SE(Ciq))Pr(Yij = yij|Xip, ui)+

SP (Ciq)(1− Pr(Yij = yij|Xip, ui))]
(1−y∗ij)f(ui, u

∗
i ) (4.9)

Lv =[SE(Ciq)Pr(Yij = yij|Xip, ui)]
y∗ijyij

[(1− SE(Ciq))Pr(Yij = yij|Xip, ui)]
(1−y∗ij)yij

[(1− SP (Ciq))(1− Pr(Yij = yij|Xip, ui))]
y∗ij(1−yij)

[SP (Ciq))(1− Pr(Yij = yij|Xip, ui))]
(1−y∗ij)(1−yij)f(ui, u

∗
i ) (4.10)

The resulting likelihood is thus:

L ∝ L(1−val)
m Lvalv (4.11)

where val is an indicator for whether or not the subject/time observation has been validated

or not. We next examine some of the changes to this model when the assumptions are

modified.

4.2.2 Independent Correlated Differential Misclassification (ICD)

Independent correlated differential misclassification (ICD) relaxes the assumptions

of our general misclassification model (models 4.1 and 4.2). For this model, the misclassi-

fication process is assumed to be correlated within the same subject, however the subject

specific random effects, ui and u∗i , are independent. For this, we have that the distribution

of our random error terms is as follows:

(ui, u
∗
i )
T ∼ N


0

0

,
σ2

ui
0

0 σ2
u∗i



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4.2.3 Independent Uncorrelated Differential Misclassification (IUD)

Independent uncorrelated differential misclassification (IUD) relaxes the assump-

tions of the GEN and ICD models (models 4.1 and 4.2 with the error structure of the ICD

model). For this model, the random errors are assumed to be independent and uncorrelated.

We now omit u∗i from the joint model (4.2), yielding the following model definition:

logit{Pr(Y ∗
ij = 1|Ci1 . . . CiQ, Yij, u∗i )} = γ0 +

Q∑
q=1

γqCiq + γQ+1Yij. (4.12)

Our main model is still as described for the GEN and IUD models (model 4.1), although

the distribution of our random error is now ui ∼ N(0, σ2).

4.2.4 Non-Differential Misclassification (ND)

Non-differential misclassification relaxes the assumptions under our model of gen-

eral misclassification (models 4.1 and 4.2) considerably. We now assume that there is no

correlation between the two models, and that the covariates do not have an impact on the

error prone response. This model reduces the original model equations to:

logit{Pr(Yij = 1|Xip, ui)} =β0 +
P∑
p=1

βpXip + ui (4.13)

logit{Pr(Y ∗
ij = 1|Yij)} =γ0 + γ1Yij (4.14)

Notice that the joint model no longer includes Ciq or u∗i .

4.3 Simulation Study based on Frequentist Methods

A simulation was performed to analyze the differences in the two methods using all

four models described in Section 4.2. This simulation study was based upon the potential

real-world scenario of a study in which patients are tested for a certain disease over a long

period of time, in which several visits to a clinic are performed. There are two tests for this

disease, a very expensive gold-standard test, which is only given to a small subsample of the

study participants, and a cheap, but error-prone test which is given to all study participants.

Thus, some study participants will be “validated" in that they will be tested using both tests
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at each visit. Each visit involves the patient being re-tested for the disease in question and

certain covariates being noted (e.g. gender, age at first visit, race, etc.).

We set J = 4, thus each subject visited the clinic and was tested at four distinct times.

Suppose we have two covariates: a binary covariate generated from a Bernoulli distribution

with probability of success as 0.5, and a continuous covariate generated from a Normal

distribution with a mean of 0 and a standard deviation of 4 (variance of 16). The covariates

are not dependent on the time of the visit but are, clearly, dependent upon the subject. As

for the number of subjects, we will use an overall sample size of n = 1, 000; the amount

of validated data and main data can vary depending on the validation size setting. For this

example, we will use a validation size of 20%. We will denote the validated data sample size

as nv = 200 and our main data sample size (data that has not been validated) as nm = 800.

4.3.1 Simulation Specific Frequentist Models

Based upon this study’s specifics, our models from Section 4.2 can be adapted to

fit the data at hand. The likelihood structure does not change, only the joint model, main

model, and random error structure change depending on the model.

“General Misclassification” (GEN) assumes the outcomes are correlated binary re-

sponses subject to dependent differential misclassification. For this, we assume the re-

sponse is only related to our two covariates, X1 and X2, so our main model is:

logit{Pr(Yij = 1|Xip, ui)} =β0 + β1Xi1 + β2Xi2 + ui. (4.15)

We also assume that our error prone response model is dependent upon the time of the visit,

and only the first covariate, X1. We will let our reference time point be the first visit and we

incorporate the visit information using indicator functions. Using this, we can define our

joint model as:

logit{Pr(Y ∗
ij = 1|Ciq, Yij, u

∗
i )} = γ0 + γ1I(Tij = 2) + γ2I(Tij = 3)

+ γ3I(Tij = 4) + γ4Xi1 + γ5Yij + u∗i . (4.16)
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We assume that the errors are dependent, thus the distribution of our random error terms is

(ui, u
∗
i )
T ∼ N

((
!0!
!0!

)
,

(
σ2
ui

ψ

ψ σ2
u∗
i

))
.

Independent correlated differential misclassification (ICD) assumes the misclassifi-

cation process is correlated within the same subject, however the subject specific random

effects, ui and u∗i , are independent. For this, we have that the distribution of our random

error terms is (ui, u∗i )
T ∼ N

((
!0!
!0!

)
,

(
σ2
ui

0

0 σ2
u∗
i

))
, and we have the same joint and main

models as in the GEN model (models 4.15 and 4.2).

Independent uncorrelated differential misclassification (IUD) relaxes the assump-

tions of the GEN and ICD models giving us the following model definition:

logit{Pr(Y ∗
ij = 1|T,Xip, Yij)} =γ0 + γ1I(Tij = 2) + γ2I(Tij = 3)

+ γ3I(Tij = 4) + γ4Xi1 + γ5Yij. (4.17)

Notice that this joint model no longer incorporates the random error related to the error-

prone response measurement (u∗i ). The main model for IUD misclassification is still as

described for the GEN and ICD models (model 4.1), although the distribution of our ran-

dom error is now ui ∼ N(0, σ2).

For the non-differential misclassification models, our joint and main models become:

logit{Pr(Yij = 1|Xip, ui)} =β0 + β1Xi1 + β2Xi2 + ui (4.18)

logit{Pr(Y ∗
ij = 1|Yij)} =γ0 + γ5Yij. (4.19)

The joint model, like the IUD joint model, does not include the correlated random error

term, u∗i , nor do we include the time point indicator functions. Again, the distribution of

our random error is ui ∼ N(0, σ2).

4.3.2 Data Generation and Frequentist Analysis Process

To begin our simulations, we first generate datasets to use; the generation process is

as follows:

(1) Set the true estimates of the parameters based on general examples:
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(a) β0 = 0, β0 = 1, β0 = 0.5,

(b) γ0 = −3, γ1 = 0.05, γ2 = 0.2, γ3 = 0.4, γ4 = 1.5, γ5 = 3

(c) σ2
ui
= 1, σ2

u∗i
= 1, and ψ = 0.5.

(2) Generate n = 1, 000 values of Xi1 ∼ Bern(0.5) and Xi2 ∼ N(0, σ = 4).

(3) Generate (ui, u
∗
i )
T ∼ N

((
!0!
!0!

)
,
(
σ2
ui

=1 0.5

0.5 σ2
ui

=1

))
.

(4) Generate Yij and Y ∗
ij following the models in Section 4.3.1 outlined under General

Misclassification.

(5) Create an indicator vector for which subjects have been validated.

This dataset will be used in both the Frequentist and Bayesian analysis processes outlined

next.

4.3.3 Frequentist Estimation

To estimate our parameters under the frequentist paradigm we use numerical integra-

tion to integrate out the random effects in our models. Utilizing SAS/STATr software and

the NLMIXED (1999) procedure we can then maximize the likelihood with quasi-Newton

optimization. To use these methods, we can supply initial values for our parameters. Initial

values are set assuming we would have some intuition about how these parameters would

behave; this intuition could come from a variety of sources like previous studies or experts

within the field we are working in.

The overall process of simulation for the frequentist method is:

(1) Generate a full dataset as described in Section 4.3.

(2) We use initial values for the parameters that are on the appropriate side of zero and

within a similar magnitude to the truth:

(a) β0 = 0, β1 = 2, β2 = 1,

(b) γ0 = −2, γ1 = 0, γ2 = 0.5, γ3 = 0.5, γ4 = 2, γ5 = 1

(c) σ2
ui
= 0.5, σ2

u∗i
= 0.5, and ψ = 0.1.
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(3) Analyze the data under each of the models described in section 4.2.

(4) Compare the estimated parameters to the “true estimates” used to generate the data

in specified in Section 4.3 under step 1.

(5) Repeat these steps 500 times and report the mean, standard error, coverage, and

convergence rate for each parameter.

4.3.4 Bayesian Priors and Estimation

The Bayesian approach requires prior distributions for all parameters. We focus on

mildly informative priors that do not allow for highly unlikely, extreme values to be prob-

able.

Similar to the frequentist methods described in Section 4.2, we have chosen to use

a logistic link function for our regression components (eqs. 4.15 and 4.16). This type of

function will predict response estimates that range between zero and one, when transformed

appropriately, to represent a probability of occurrence. Objectively (before data has been

collected/analyzed), a one-unit change in a predictor would rarely result in a response level

change from 0.01 (1% chance of a positive response) to 0.99 (99% chance of a positive

response). This change in the response is equivalent to the appropriate back-transformed

potential coefficient estimate of a magnitude of 10 that Gelman et al. discuss (2008). An

effect size this large is highly unlikely, thus our prior suitably keeps low probability on this

possibility.

For each of the models described in the frequentist method (Section 4.2), we will add

in prior information and update our prior beliefs via Bayes theorem. For this method, we

will use the same general prior for all coefficient parameters involved:

β0, . . . β2, γ0, . . . γ5 ∼ N(0, σ2 = 10). (4.20)

In addition to the priors needed for the coefficients on the predictors, we also require prior

distributions for the random error components of the models. Recall that in section 4.2 we
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described four different misclassification models, each of which had a different random

error structure assumption.

The simplest model (the model with the fewest predictors and the simplest random

error structure) is the non-differential misclassification (ND) model. Here, we are assuming

that there is only random error in the model to predict our gold-standard response, model

4.18. Since we would not expect that by random error alone our response, when appropri-

ately transformed, would increase from 1% to 50% (or result in an odds ratio increase of

5), we limit our prior distribution to:

ui ∼ N(0, σ2),

1

σ2
∼ Gamma(2, 2). (4.21)

These distributions allow for considerable variability, but still within a realm of practical

possibility. We use the Gamma distribution because it limits our responses to only posi-

tive values (precision cannot be negative) and limits the probability of getting extremely

small or large values for the variance of ui. See figure 4.3.1 for the density of this prior

distribution for the precision. We could have chosen to use a Uniform(0, Max) prior on the

standard deviations, however this is an improper prior and relies heavily on the choice of

the maximum value except for arbitrarily large values (see Gelman 2004). Likewise, we

could have used a half-Cauchy, although the limiting distribution becomes the Uniform

distribution proving to, again, depend on the value of the parameter, in this case relating

to scale. Therefore, we will use this same prior distribution (distribution 4.21) for the in-

dependent uncorrelated differential (IUD) case, which has the assumption that our main

model is now reliant upon covariate information.

For the correlated models, our priors need to be altered slightly due to the fact that

each of the models introduces a new correlated random error structure, thus the need for a

multivariate prior distribution. Recall, we use two regression models here utilizing J = 4
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time-points with the first time-point as our reference:

logit{Pr(Yij = 1|Xip, ui)} =β0 + β1Xi1 + β2Xi2 + ui (4.22)

logit{Pr(Y ∗
ij = 1|T,Xip, Yij, u

∗
i )} =γ0 + γ1I(Tij = 2) + γ2I(Tij = 3)

+ γ3I(Tij = 4) + γ4Xi1 + γ5Yij + u∗i . (4.23)

For the independent correlated differential misclassification (ICD) models, we need a mul-

tivariate prior on the error terms for both the joint and main models shown above that

incorporates the assumption of independence between the error terms but still allows for

some correlation. Thus, we will again use a gamma distribution on the precisions, but will

combine this information as hyper-priors to a multivariate normal distribution, as follows:

1

σ2
ui

∼ Gamma(2, 2) (4.24)

1

σ2
u∗i

∼ Gamma(2, 2) (4.25)

(ui, u
∗
i )
T ∼ N


0

0

,
σ2

ui
0

0 σ2
u∗i


 . (4.26)

The last model, dependent correlated differential misclassification (GEN), specifies

one more assumption from the ICD model in that the errors are now assumed to be de-

pendent upon one another. This will require that we have an added hyper-prior for the

Figure 4.3.1. Bayesian Prior Distribution for 1
σ2 ∼ Gamma(2, 2)
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dependence between the two error terms. For this, we assume our priors to be:

1

σ2
ui

∼ Gamma(2, 2) (4.27)

1

σ2
u∗i

∼ Gamma(2, 2) (4.28)

ψ ∼ Unif(−2, 2), (4.29)

(ui, u
∗
i )
T ∼ N


0

0

,
σ2

ui
ψ

ψ σ2
u∗i


 , (4.30)

where the added parameter, ψ, is used to represent the amount of covariance between the

two random error components of the joint and main models.

Analysis for the Bayesian approach was completed using NIMBLE (2017), a package

which uses Markov Chain Monte Carlo (MCMC) simulation approximate the posterior dis-

tribution. MCMC is, simply put, the idea that you can define a sequence of random vectors

in which the vectors generated towards the end of this sequence tend towards a particu-

lar “posterior” distribution (Christensen et al. 2011). Understanding that the sequence may

need a large number of vectors, a suitable set of vectors can be removed from the beginning

of the sequence to provide more accurate estimations of the posterior distribution (burning

in); since the sequence of vectors can be shown to be correlated, a pattern of vectors can

be set to be kept versus discarded so as to make consecutive random vectors, nearly inde-

pendent (thinning). More than one sequence can be run to ensure that each chain, while

random in nature, behaves similarly in its posterior quantities; all of these principles can be

checked and fine-tuned through convergence diagnostics.

4.3.5 Convergence Criteria and Bayesian Simulation Settings

Dataset convergence for the frequentist results varied between models: The ideal

model had 479/500 converged datasets; the naïve model had 71/500 datasets that con-

verged; the general model had 473/500 converged datasets; the ICD model had 485/500

converged datasets; the IUD model had 458/500 converged datasets; and the ND model
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had 417/500 converged datasets. Datasets that did not converge were removed from the

tabulation of our results. The naïve model had the worst rate of convergence, while the

remainder of the models all had relatively large rates of convergence.

Using the Bayesian approach, convergence can be assessed using diagnostic plots.

To do this, we examine three main plots: a marginal density plot, a trace plot, and an auto-

correlation plot. Each of these needs to show certain qualities to demonstrate convergence.

The marginal density plot should show a bell-shaped curve over the mode of the distribu-

tion, although it need not be symmetric. The trace plot should show "good mixing" over

the mode of the distribution; this means we want to see no clear pattern to the values as

they explore the parameter space. Lastly, the auto-correlation plot should show a decrease

in correlation towards 0 as the lag increases.

For the sake of brevity, we will discuss the convergence plots for the GEN model

only as it relates to our parameter of interest, β1, and the variance of the random error term,

σ2
ui

. This model has the highest number of parameters to be estimated and should thus be

the most difficult to meet convergence; if we can show convergence for this model, it should

follow that we can establish convergence for the remaining, more simplified, models. Refer

to Appendix A.8 and A.9 for a complete display of the convergence plots for all models

discussed here.

Figure 4.3.2 shows the marginal density plots for β1, τi = 1/σ2
ui

, and τ ∗i = 1/σ2
u∗i

for the GEN model. Here we see that the densities do appear to be moderately bell-shaped,

although in the cases of τi and τ ∗i we see that the densities are asymmetric (not surprising

for a distribution of precision). The asymmetric distributions should not be a problem, as

long as we see that the mode of the distribution is not an extreme value. In this case, we see

that the mode for the distribution of τi and τ ∗i are about 1.10 and 0.90 respectively.

Figure 4.3.3 shows the trace plots for β1, τi = 1/σ2
ui

, and τ ∗i = 1/σ2
u∗i

for the GEN

model. Here we see that the trace plot does not appear to have a discernible pattern for β1.

For the plots related to τi and τ ∗i we see that we have a skewed amount of data falling above
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the modes of about 1.10 and 0.90, respectively. This skewness can be explained by the fact

that we have constrained these values to be positive values only.

Figure 4.3.4 shows the auto-correlation plots for β1, τi = 1/σ2
ui

, and τ ∗i = 1/σ2
u∗i

for the GEN model. Here we see that the autocorrelations do tend to zero. As with the

previous diagnostics, we have questionable convergence for both τi and τ ∗i since plot shows

moderate autocorrelation. The autocorrelation plot for β1 does decrease to zero for both

chains, however there is still some variation above and below zero. Given the complexity

of the models, these plots do not indicate a lack of convergence.

For these simulations we used two chains instead of one because we wanted to ensure

convergence could be justified from our results. In the previous graphics you can see the

benefit in the chains because each chain behaves similarly. For example, comparing the

density plots in Figure 4.3.2 shows that both chains have a mode at about the same values. If

Figure 4.3.2. Density Plots for β1, τi, and τ∗i under the GEN Model

Figure 4.3.3. Trace Plots for β1, τi, and τ∗i under the GEN Model
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Table 4.1. Settings for Bayesian Results for Correlated Binary Response Models

Model Iterations Burn-in Thin Chains
Ideal 200, 000 185, 000 3 2
Naïve 200, 000 185, 000 3 2
GEN 900, 000 750, 000 30 2
ICD 400, 000 350, 000 10 2
IUD 375, 000 350, 000 5 2
ND 350, 000 330, 000 4 2

we saw two different modes in our chains this would be a good indication that convergence

had not been met. The same idea holds for the trace plots shown in Figure 4.3.3; here

we see that each chain centers (without pattern) over similar values. If we had seen that

the chains centered over different values, then this would have been a clear violation of

convergence that would require us to adjust our settings or adjust our methods. Lastly, the

auto-correlation plots in Figure 4.3.4 would show a violation if the two correlations did not

fall to zero or if they behaved differently from one another. We see that the chains behave

similarly and thus, again, the addition of a second chain is helpful to assess convergence.

Based upon these plots (and the plots for the remainder of models shown in Appendix

A.8 to A.9) we have not seen a violation in convergence. For the Bayesian approach, un-

like the frequentist method, all 500 iterations were used for each model under the settings

described in Table 4.1.

Figure 4.3.4. Auto-Correlation Plots for β1, τi, and τ∗i under the GEN Model
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Table 4.2. Results Comparison for Bayesian and Frequentist Techniques Assuming Dependent
Correlated Differential Misclassification with Validation Size of 20%

Model Frequentist Bayesian
True Value Estimate (SE) Coverage Estimate (SD) Coverage

Ideal
β0 = 0.000 0.001 (0.076) 95.0 0.005 (0.078) 94.0
β1 = 1.000 0.992 (0.112) 94.6 1.000 (0.114) 95.6
β2 = 0.500 0.498 (0.021) 95.2 0.504 (0.021) 94.6
σ2
ui
= 1.000 0.941 (0.152) 92.3 1.031 (0.172) 95.6

Naïve
β0 = 0.000 -1.007 (0.075) 0.0 -1.026 (0.077) 0.0
β1 = 1.000 1.540 (0.105) 0.0 1.560 (0.108) 0.0
β2 = 0.500 0.198 (0.014) 0.0 0.200 (0.014) 0.0
σ2
ui
= 1.000 1.014 (0.138) 91.5 0.911 (0.125) 84.2

GEN
β0 = 0.000 0.001 (0.143) 94.7 0.003 (0.147) 94.4
β1 = 1.000 1.007 (0.206) 95.2 1.032 (0.213) 93.6
β2 = 0.500 0.501 (0.041) 96.2 0.510 (0.041) 96.8
σ2
ui
= 1.000 0.964 (0.320) 94.1 1.117 (0.332) 97.0

σ2
u∗i

= 1.000 0.996 (0.229) 94.1 1.035 (0.222) 97.8
ψ = 0.500 0.517 (0.168) 96.6 0.517 (0.244) 96.2

ICD
β0 = 0.000 0.037 (0.154) 94.7 0.026 (0.159) 94.2
β1 = 1.000 0.984 (0.222) 96.3 1.026 (0.230) 94.6
β2 = 0.500 0.502 (0.041) 96.1 0.512 (0.043) 96.6
σ2
ui
= 1.000 1.119 (0.337) 96.1 1.300 (0.382) 91.6

σ2
u∗i

= 1.000 1.292 (0.242) 83.5 1.287 (0.242) 79.2
IUD
β0 = 0.000 -0.005 (0.148) 94.8 -0.108 (0.179) 93.2
β1 = 1.000 1.048 (0.210) 94.8 1.238 (0.256) 84.6
β2 = 0.500 0.483 (0.039) 87.6 0.520 (0.046) 96.2
σ2
ui
= 1.000 1.309 (0.272) 93.2 3.003 (0.639) 0.6

ND
β0 = 0.000 -0.751 (0.129) 0.0 -0.898 (0.161) 0.0
β1 = 1.000 2.308 (0.197) 0.0 2.611 (0.253) 0.0
β2 = 0.500 0.442 (0.034) 50.6 0.485 (0.042) 91.8
σ2
ui
= 1.000 1.575 (0.280) 67.9 3.243 (0.628) 0.0

4.4 Comparing Frequentist and Bayesian Methods

Table 4.2 shows the results from each method for all β parameters and the parameters

denoting the variability in our random error terms (σ2
ui

, σ2
u∗i

, or ψ) for both methods.

73



For the Ideal model we see that the estimates for both methods fall relatively close

to the true values (small bias). The frequentist standard error is slightly smaller than the

Bayesian standard deviations for all parameters. The coverages for the Bayesian method

all hover around the nominal level of 95% whereas the frequentist methods do have one

coverage probability slightly below nominal at 92.3%.

For the Naïve model we see that the estimates for both methods are very biased.

We see slightly smaller frequentist standard errors and Bayesian standard deviations than

we saw in the Ideal model. The coverages for β0, β1, and β2 are zero, regardless of the

method. The coverage for σ2
ui

is still below nominal, but is around 92% for the frequentist

approach and 84% for the Bayesian. Thus, the naïve model is poor for both the Bayesian

and frequentist approach.

For the GEN model we see that both methods have estimates close to the true values

(small bias); we see a bit more bias in the Bayesian estimates however, the magnitude of this

offset is not so much that the results should be regarded as inferior. Again, the frequentist

standard error is slightly smaller than the Bayesian standard deviations for all but one of

the parameters, σ2
u∗i

. The coverages for both methods hover near the nominal level of 95%

with the frequentist coverages a bit closer than the Bayesian coverages overall.

For the ICD model we see that the estimates for both methods have slightly more

bias than in the GEN model. The Bayesian standard errors are slightly larger than the

frequentist standard deviations. The most dramatic change is in the coverage probabilities.

We now see that the coverage for σ2
u∗i

is much less than the nominal coverage of 95% for

both methods. We see a discrepancy between the frequentist and Bayesian coverages for

σ2
ui

. The frequentist methods have slightly better coverage than the Bayesian approach;

however, recall this model is incorrect for the data.

For the IUD model we see slightly more bias in the parameter estimates than in

previous models. The standard errors and deviations are similar in magnitude to previous

models. Interestingly, both of these statements are much more dramatic for the Bayesian es-
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timate of σ2
ui

under this model; our estimate is now much larger than the truth (σ̂2
ui
= 3.003

vs. σ2
ui

= 1.000). The standard deviation (0.639) is now much larger than the previous

model (0.382) as well as the frequentist standard error for the same model (0.272). Interest-

ingly, each method has a coverage probability for a regression parameter that is markedly

lower than the others; the frequentist method has a smaller than nominal coverage for β2,

while the Bayesian method has a smaller than nominal coverage for β1. The Bayesian

method also, unsurprisingly because of the biased estimates, has a coverage probability of

0.6% for the estimate of σ2
ui

. This means only 3 out of the 500 iterations actually covered

the true value of σ2
ui

.

For the ND model we see very obvious problems with both methods. Both methods

provide extremely biased estimates for all four parameters shown. The magnitudes of the

standard errors and deviations are similar to the respective spreads in the IUD models. The

coverages are now zero in the frequentist method for both β0 and β1; the coverages for β2

and σ2
ui

are not much better at 50.6% and 67.9%, respectively. For the Bayesian coverage

probabilities, the only parameter with a non-zero coverage is β2, which has a surprisingly

high coverage of 91.8%.

We can also utilize model selection criteria to assess whether the correct model (the

GEN model) is proving to be the “best” model beyond simply the comparison of parameter

estimates. The frequentist methods use Akaike Information Criteria (AIC) to assess models;

this statistic allows models to be compared to another and the “best” model (or the model

to be selected) is the model with the lowest AIC value. Likewise, for the Bayesian methods

you can use the Widely Applicable Information Criteria (WAIC; refer to Watanabe (2010)

for a thorough discussion of this statistic) to compare and select models. Again, the model

with the lowest WAIC is selected as the “best” model.

Interestingly, in a study of 20 datasets, the frequentist approach selected the ICD

model 14 times and in each case the GEN model had a slightly higher AIC value. The

GEN model was only selected 2 times; the remaining 4 datasets had convergence problems
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under the frequentist approach and resulted in the IUD and ND models being selected

twice, each. The Bayesian approach, on the other hand, used a model diagnostic that hinges

upon the data correlated or not (refer to Ando and Tsay, 2010); for this, our models have

varying correlation assumptions and thus the four models must be grouped based off of the

assumed correlation structure. Under this approach we compare the GEN and ICD models

to one another and separately compare the IUD and ND models to one another. Here we

see that in all 20 of the models the Bayesian approach selected the GEN model over the

ICD model, and the IUD model over the ND model.

The entirety of these results show that the Bayesian methods do just as well as the fre-

quentist methods in model estimation, but completely out-perform the frequentist methods

in terms of model selection ability. We also see that a slight adjustment in the assumptions

governing our analysis models results in biased or imprecise estimates for both methods.

As Tang et al. (2015b) showed for frequentist methods only, we see that the assumption

of dependence and correlation between the two error terms is a required assumption to

produced accurate and precise estimates based on data of this kind for both analysis ap-

proaches. While the effect is not necessarily strong for our logistic regression parameters

of interest, we should still be concerned that the estimate of the error is affected by this

dropped assumption (as seen in the changes from the GEN model to the ICD model results

on σ2
u∗i

).
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CHAPTER FIVE

Conclusions

In this dissertation we examined the effects of analysis approach on misclassifica-

tion with partially validated data. We studied two main scenarios, one with both the re-

sponse and exposure being misclassified and one with correlated responses that are subject

to misclassification. We introduced both frequentist and Bayesian approaches for inference

on logistic regression parameters that accounted for misclassification. We discussed the

Bayesian priors needed for all models considered and thoroughly discussed convergence

diagnostics relating to the models. Finally, we varied the original settings for each misclas-

sification scenario to substantiate the need for our assumptions.

In Chapter Two we expanded upon work by Tang et al. (2015a) to account for mis-

classification that can affect binary logistic regression. We used the HIV Epidemiology

Research Study (HERS) data as a template for a simulation study based on misclassifica-

tion in both the response and the exposure variables (Smith et al. 1997). We examined the

differences between the frequentist and Bayesian approaches assuming dependent differ-

ential misclassification under a variety of validation sizes. We found that as the validation

size decreased, the diffuse priors used in the Bayesian approach greatly benefited the results

compared to the frequentist results which were inadequate to handle the reduced sizes.

In Chapter Three we ran the simulation study from Chapter Two under a selection of

different settings. We changed the underlying assumption of dependent differential misclas-

sification to independent differential misclassification. The premise was to understand the

effect of assuming there exists a relationship between the error prone exposure measure-

ment and the gold-standard response measurement. We saw that this relationship, while

counter-intuitive, does provide adequate information in the estimation of the parameters

for the response model, and thus this assumption is necessary. We then increased the over-
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all sample size ten-fold; our aim was to understand whether the results from Chapter Two

were dependent solely on the size of the validation data, or if they also depended on the

overall sample size. We learned that increasing the overall sample size diminished the ef-

fect of decreasing the validation size, however the Bayesian approach still provided less

bias and more precise estimates than the frequentist approach, especially as the validation

size decreased. Lastly, this chapter explored the effect of prior information on the Bayesian

approach. We found that if we could incorporate expert opinion or prior study information

to not only center our priors but reduce the variation in our prior distributions, we could

greatly improve the bias and precision in our estimates. We also found that if we greatly re-

duced the variation in our prior distributions we provided priors that were “too informative”

in that the posteriors began to reflect the prior distribution rather than the data.

In Chapter Four we studied the setting in which the response variable is correlated

over time; i.e. we had multiple visits from the same patient and measured the response and

covariates each time. We explored the effect of correlated responses with partially validated

data and dependent errors using both frequentist and Bayesian methods. The frequentist

methods in this chapter were originally developed by Tang et al. (2015b). The results of

our simulation study show that the Bayesian approach does just as well as the frequentist

methods in terms of parameter estimation. We also found that a slight adjustment in the

assumptions governing our analysis models results in biased or imprecise estimates for

both methods. We learned that the assumption of dependence and correlation between the

error terms is a required assumption to produce accurate and precise estimates for both

analysis methods. In terms of appropriate model selection, we found that the Bayesian

approach out-performed the frequentist approach by effectively selecting the correct model

more often than the frequentist approach.

In the future, we will extend the work done in Chapter Four; we will test the models

under a multitude of scenarios for which we will let the validation size vary, the overall

sample size vary, and explore more informative priors. We will also examine the intertwin-
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ing of the two scenarios described in Chapter Two and Chapter Four to understand how

to adequately account for misclassification when the response is correlated, misclassified,

and also dependent upon a misclassified exposure. This scenario has not been studied under

either the frequentist or Bayesian approach.
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APPENDIX A

Convergence Diagnostics

A.1 Bayesian Analysis of Simulation Study based on work from Tang, et al[38] Discussed
in Chapter Two

(A) 25% Validation Size; Iterations: 14,000 Burn-in: 4,000 Thin: 1

Figure A.1.1. Auto-correlation and density plot for 25% validation sizes

Figure A.1.2. Trace and running means plot for 25% validation sizes
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(B) 15% Validation Size; Iterations: 27,000 Burn-in: 7,000 Thin: 2

Figure A.1.3. Auto-correlation and density plot for 15% validation sizes

Figure A.1.4. Trace and running means plot for 15% validation sizes

(C) 10% Validation Size; Iterations: 39,000 Burn-in: 9,000 Thin: 3

Figure A.1.5. Auto-correlation and density plot for 10% validation sizes
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Figure A.1.6. Trace and running means plot for 10% validation sizes

(D) 5% Validation Size; Iterations: 60,000 Burn-in: 10,000 Thin: 5

Figure A.1.7. Auto-correlation and density plot for 5% validation sizes

Figure A.1.8. Trace and running means plot for 5% validation sizes
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(E) 2.5% Validation Size; Iterations: 225,000 Burn-in: 105,000 Thin: 12

Figure A.1.9. Auto-correlation and density plot for 2.5% validation sizes

Figure A.1.10. Trace and running means plot for 2.5% validation sizes
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A.2 Baseline Bayesian Analysis of Simulation Study Discussed in Section 3.1

(A) 25% Validation Size; Iterations: 25,000 Burn-in: 15,000 Thin: 1

Figure A.2.1. Auto-correlation and density plot for 25% validation sizes

Figure A.2.2. Trace and running means plot for 25% validation sizes

(B) 15% Validation Size; Iterations: 40,000 Burn-in: 20,000 Thin: 2

Figure A.2.3. Auto-correlation and density plot for 15% validation sizes
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Figure A.2.4. Trace and running means plot for 15% validation sizes

(C) 10% Validation Size; Iterations: 45,000 Burn-in: 25,000 Thin: 2

Figure A.2.5. Auto-correlation and density plot for 10% validation sizes

Figure A.2.6. Trace and running means plot for 10% validation sizes
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(D) 5% Validation Size; Iterations: 70,000 Burn-in: 40,000 Thin: 3

Figure A.2.7. Auto-correlation and density plot for 5% validation sizes

Figure A.2.8. Trace and running means plot for 5% validation sizes
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(E) 2.5% Validation Size; Iterations: 110,000 Burn-in: 60,000 Thin: 5

Figure A.2.9. Auto-correlation and density plot for 2.5% validation sizes

Figure A.2.10. Trace and running means plot for 2.5% validation sizes

88



A.3 Bayesian Analysis of Simulation Study Discussed in Section 3.2 Assuming
Independent Differential Misclassification

(A) 25% Validation Size; Iterations: 25,000 Burn-in: 15,000 Thin: 1

Figure A.3.1. Auto-correlation and density plot for 25% validation sizes

Figure A.3.2. Trace and running means plot for 25% validation sizes

(B) 15% Validation Size; Iterations: 40,000 Burn-in: 20,000 Thin: 2

Figure A.3.3. Auto-correlation and density plot for 15% validation sizes
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Figure A.3.4. Trace and running means plot for 15% validation sizes

(C) 10% Validation Size; Iterations: 45,000 Burn-in: 25,000 Thin: 2

Figure A.3.5. Auto-correlation and density plot for 10% validation sizes

Figure A.3.6. Trace and running means plot for 10% validation sizes

90



(D) 5% Validation Size; Iterations: 70,000 Burn-in: 40,000 Thin: 3

Figure A.3.7. Auto-correlation and density plot for 5% validation sizes

Figure A.3.8. Trace and running means plot for 5% validation sizes
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(E) 2.5% Validation Size; Iterations: 110,000 Burn-in: 60,000 Thin: 5

Figure A.3.9. Auto-correlation and density plot for 2.5% validation sizes

Figure A.3.10. Trace and running means plot for 2.5% validation sizes
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A.4 Bayesian Analysis of Simulation Study Discussed in Section 3.3 with Overall Sample
Sizes of n = 10, 000

(A) 25% Validation Size; Iterations: 25,000 Burn-in: 15,000 Thin: 1

Figure A.4.1. Auto-correlation and density plot for 25% validation sizes

Figure A.4.2. Trace and running means plot for 25% validation sizes

(B) 15% Validation Size; Iterations: 40,000 Burn-in: 20,000 Thin: 2

Figure A.4.3. Auto-correlation and density plot for 15% validation sizes
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Figure A.4.4. Trace and running means plot for 15% validation sizes

(C) 10% Validation Size; Iterations: 45,000 Burn-in: 25,000 Thin: 2

Figure A.4.5. Auto-correlation and density plot for 10% validation sizes

Figure A.4.6. Trace and running means plot for 10% validation sizes
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(D) 5% Validation Size; Iterations: 70,000 Burn-in: 40,000 Thin: 3

Figure A.4.7. Auto-correlation and density plot for 5% validation sizes

Figure A.4.8. Trace and running means plot for 5% validation sizes
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(E) 2.5% Validation Size; Iterations: 110,000 Burn-in: 60,000 Thin: 5

Figure A.4.9. Auto-correlation and density plot for 2.5% validation sizes

Figure A.4.10. Trace and running means plot for 2.5% validation sizes

96



A.5 Bayesian Analysis of Simulation Study Discussed in Section 3.4.3 Utilizing
Informative Priors-Centered

(A) 25% Validation Size; Iterations: 15,000 Burn-in: 5,000 Thin: 1

Figure A.5.1. Auto-correlation and density plot for 25% validation sizes

Figure A.5.2. Trace and running means plot for 25% validation sizes

(B) 15% Validation Size; Iterations: 35,000 Burn-in: 25,000 Thin: 1

Figure A.5.3. Auto-correlation and density plot for 15% validation sizes
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Figure A.5.4. Trace and running means plot for 15% validation sizes

(C) 10% Validation Size; Iterations: 50,000 Burn-in: 40,000 Thin: 1

Figure A.5.5. Auto-correlation and density plot for 10% validation sizes

Figure A.5.6. Trace and running means plot for 10% validation sizes
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(D) 5% Validation Size; Iterations: 80,000 Burn-in: 60,000 Thin: 2

Figure A.5.7. Auto-correlation and density plot for 5% validation sizes

Figure A.5.8. Trace and running means plot for 5% validation sizes
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(E) 2.5% Validation Size; Iterations: 105,000 Burn-in: 85,000 Thin: 2

Figure A.5.9. Auto-correlation and density plot for 2.5% validation sizes

Figure A.5.10. Trace and running means plot for 2.5% validation sizes
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A.6 Bayesian Analysis of Simulation Study Discussed in Section 3.4.3 Utilizing
Informative Priors-Centered and Slightly Narrowed

(A) 25% Validation Size; Iterations: 15,000 Burn-in: 5,000 Thin: 1

Figure A.6.1. Auto-correlation and density plot for 25% validation sizes

Figure A.6.2. Trace and running means plot for 25% validation sizes

(B) 15% Validation Size; Iterations: 35,000 Burn-in: 25,000 Thin: 1

Figure A.6.3. Auto-correlation and density plot for 15% validation sizes
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Figure A.6.4. Trace and running means plot for 15% validation sizes

(C) 10% Validation Size; Iterations: 50,000 Burn-in: 40,000 Thin: 1

Figure A.6.5. Auto-correlation and density plot for 10% validation sizes

Figure A.6.6. Trace and running means plot for 10% validation sizes
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(D) 5% Validation Size; Iterations: 80,000 Burn-in: 60,000 Thin: 2

Figure A.6.7. Auto-correlation and density plot for 5% validation sizes

Figure A.6.8. Trace and running means plot for 5% validation sizes
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(E) 2.5% Validation Size; Iterations: 105,000 Burn-in: 85,000 Thin: 2

Figure A.6.9. Auto-correlation and density plot for 2.5% validation sizes

Figure A.6.10. Trace and running means plot for 2.5% validation sizes
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A.7 Bayesian Analysis of Simulation Study Discussed in Section 3.4.3 Utilizing
Informative Priors-Centered and Narrowed

(A) 25% Validation Size; Iterations: 15,000 Burn-in: 5,000 Thin: 1

Figure A.7.1. Auto-correlation and density plot for 25% validation sizes

Figure A.7.2. Trace and running means plot for 25% validation sizes

(B) 15% Validation Size; Iterations: 35,000 Burn-in: 25,000 Thin: 1

Figure A.7.3. Auto-correlation and density plot for 15% validation sizes
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Figure A.7.4. Trace and running means plot for 15% validation sizes

(C) 10% Validation Size; Iterations: 50,000 Burn-in: 40,000 Thin: 1

Figure A.7.5. Auto-correlation and density plot for 10% validation sizes

Figure A.7.6. Trace and running means plot for 10% validation sizes
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(D) 5% Validation Size; Iterations: 80,000 Burn-in: 60,000 Thin: 2

Figure A.7.7. Auto-correlation and density plot for 5% validation sizes

Figure A.7.8. Trace and running means plot for 5% validation sizes
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(E) 2.5% Validation Size; Iterations: 105,000 Burn-in: 85,000 Thin: 2

Figure A.7.9. Auto-correlation and density plot for 2.5% validation sizes

Figure A.7.10. Trace and running means plot for 2.5% validation sizes
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A.8 Bayesian Analysis of Simulation Study Discussed in Section 4.3.5 for Correlated
Binary Responses for β1

(A) Naïve Model: Iterations: 200,000; Burn-in: 185,000; Thin: 3; Chains: 2

Figure A.8.1. Auto-correlation and density plot for β1 under the Naïve Model

Figure A.8.2. Trace and running means plot for β1 under the Naïve Model

(B) Ideal Model: Iterations: 200,000; Burn-in: 185,000; Thin: 3; Chains: 2

Figure A.8.3. Auto-correlation and density plot for β1 under the Ideal Model
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Figure A.8.4. Trace and running means plot for β1 under the Ideal Model

(C) General Model: Iterations: 900,000; Burn-in: 750,000; Thin: 30; Chains: 2

Figure A.8.5. Auto-correlation and density plot for β1 under the General Model

Figure A.8.6. Trace and running means plot for β1 under the General Model
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(D) Independent Correlated Model: Iterations: 400,000; Burn-in: 350,000; Thin: 10;

Chains: 2

Figure A.8.7. Auto-correlation and density plot for β1 under the Independent Correlated Model

Figure A.8.8. Trace and running means plot for β1 under the Independent Correlated Model

(E) Un-Correlated Differential Model: Iterations: 375,000; Burn-in: 350,000; Thin: 5;

Chains: 2

Figure A.8.9. Auto-correlation and density plot for β1 under the Un-Correlated Differential Model
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Figure A.8.10. Trace and running means plot for β1 under the Un-Correlated Differential Model

(F) Un-Correlated Non-Differential Model: Iterations: 350,000; Burn-in: 330,000; Thin:

4; Chains: 2

Figure A.8.11. Auto-correlation and density plot for β1 under the Un-Correlated Non-Differential
Model

Figure A.8.12. Trace and running means plot for β1 under the Un-Correlated Non-Differential
Model
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A.9 Bayesian Analysis of Simulation Study Discussed in Section 4.3.5 for Correlated
Binary Responses for σ2

ui
= 1/τi

(A) Naïve Model: Iterations: 200,000; Burn-in: 185,000; Thin: 3; Chains: 2

Figure A.9.1. Auto-correlation and density plot for σ2ui = 1/τi under the Naïve Model

Figure A.9.2. Trace and running means plot for σ2ui = 1/τi under the Naïve Model

(B) Ideal Model: Iterations: 200,000; Burn-in: 185,000; Thin: 3; Chains: 2

Figure A.9.3. Auto-correlation and density plot for σ2ui = 1/τi under the Ideal Model
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Figure A.9.4. Trace and running means plot for σ2ui = 1/τi under the Ideal Model

(C) General Model: Iterations: 900,000; Burn-in: 750,000; Thin: 30; Chains: 2

Figure A.9.5. Auto-correlation and density plot for σ2ui = 1/τi under the General Model

Figure A.9.6. Trace and running means plot for σ2ui = 1/τi under the General Model
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(D) Independent Correlated Model: Iterations: 400,000; Burn-in: 350,000; Thin: 10;

Chains: 2

Figure A.9.7. Auto-correlation and density plot for σ2ui = 1/τi under the Independent Correlated
Model

Figure A.9.8. Trace and running means plot for σ2ui = 1/τi under the Independent Correlated
Model

(E) Un-Correlated Differential Model: Iterations: 375,000; Burn-in: 350,000; Thin: 5;

Chains: 2

Figure A.9.9. Auto-correlation and density plot for σ2ui = 1/τi under the Un-Correlated
Differential Model
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Figure A.9.10. Trace and running means plot for σ2ui = 1/τi under the Un-Correlated Differential
Model

(F) Un-Correlated Non-Differential Model: Iterations: 350,000; Burn-in: 330,000; Thin:

4; Chains: 2

Figure A.9.11. Auto-correlation and density plot for σ2ui = 1/τi under the Un-Correlated
Non-Differential Model

Figure A.9.12. Trace and running means plot for σ2ui = 1/τi under the Un-Correlated
Non-Differential Model
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APPENDIX B

Models: JAGS and SAS

B.1 Analysis of Simulation Study based on work from Tang, et al[38] Discussed in
Chapter Two

B.1.1 Frequentist (SAS) Model Code

Proc NLMIXED data=data;
parms theta0=-2 theta1=0.5 theta2=1 theta3=2

theta4=0 theta5=0 theta6=0.8 theta7=-0.6
delta0=-5 delta1=4 delta2=0.5 delta3=0
delta4=0 delta5=1 delta6=0

beta0=0.1 beta1=0.9 beta2=-0.04 beta3=0.8
beta4=0.3 beta5=0.2

gamma0=-2 gamma1=0 gamma2=2.5 gamma3=0 gamma4=0;

eta1_y1_x1=theta0 + theta1 + theta2*xstar + theta3 +
theta4*age + theta5*black + theta6*riskchrt + theta7*hivpos;

p1_y1_x1=exp(eta1_y1_x1)/(1+exp(eta1_y1_x1));
eta1_y0_x1=theta0 + theta1 + theta2*xstar + theta4*age +

theta5*black + theta6*riskchrt + theta7*hivpos;
p1_y0_x1=exp(eta1_y0_x1)/(1+exp(eta1_y0_x1));
eta1_y1_x0=theta0 + theta2*xstar + theta3 + theta4*age +

theta5*black + theta6*riskchrt + theta7*hivpos;
p1_y1_x0=exp(eta1_y1_x0)/(1+exp(eta1_y1_x0));
eta1_y0_x0=theta0 + theta2*xstar + theta4*age +

theta5*black + theta6*riskchrt + theta7*hivpos;
p1_y0_x0=exp(eta1_y0_x0)/(1+exp(eta1_y0_x0));

eta2_x1_y1=delta0 + delta1 + delta2 + delta3*age +
delta4*black + delta5*riskchrt + delta6*hivpos;

p2_x1_y1=exp(eta2_x1_y1)/(1+exp(eta2_x1_y1));
eta2_x0_y1=delta0 + delta2 + delta3*age + delta4*black +

delta5*riskchrt + delta6*hivpos;
p2_x0_y1=exp(eta2_x0_y1)/(1+exp(eta2_x0_y1));
eta2_x1_y0=delta0 + delta1 + delta3*age + delta4*black +

delta5*riskchrt + delta6*hivpos;
p2_x1_y0=exp(eta2_x1_y0)/(1+exp(eta2_x1_y0));
eta2_x0_y0=delta0 + delta3*age + delta4*black +
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delta5*riskchrt + delta6*hivpos;
p2_x0_y0=exp(eta2_x0_y0)/(1+exp(eta2_x0_y0));

eta_x1=beta0 + beta1 + beta2*age + beta3*black +
beta4*riskchrt + beta5*hivpos;

p_x1=exp(eta_x1)/(1+exp(eta_x1));
eta_x0=beta0 + beta2*age + beta3*black +

beta4*riskchrt + beta5*hivpos;
p_x0=exp(eta_x0)/(1+exp(eta_x0));

eta_XC=gamma0 + gamma1*age + gamma2*black +
gamma3*riskchrt + gamma4*hivpos;

p_xc=exp(eta_XC)/(1+exp(eta_XC));

likeM=((p1_y1_x1)**ystar*(1-p1_y1_x1)**(1-ystar)*
(p2_x1_y1)**xstar*(1-p2_x1_y1)**(1-xstar)*
p_x1*p_xc +

(p1_y0_x1)**ystar*(1-p1_y0_x1)**(1-ystar)*
(p2_x1_y0)**xstar*(1-p2_x1_y0)**(1-xstar)*
(1-p_x1)*p_xc +

(p1_y1_x0)**ystar*(1-p1_y1_x0)**(1-ystar)*
(p2_x0_y1)**xstar*(1-p2_x0_y1)**(1-xstar)*
(p_x0)*(1-p_xc) +

(p1_y0_x0)**ystar*(1-p1_y0_x0)**(1-ystar)*
(p2_x0_y0)**xstar*(1-p2_x0_y0)**(1-xstar)*
(1-p_x0)*(1-p_xc))**(1-val);

eta1=theta0 + theta1*x + theta2*xstar +
theta3*y + theta4*age + theta5*black +
theta6*riskchrt + theta7*hivpos;

p1=exp(eta1)/(1+exp(eta1));

eta2=delta0 + delta1*x + delta2*y + delta3*age +
delta4*black + delta5*riskchrt + delta6*hivpos;

p2=exp(eta2)/(1+exp(eta2));

eta3=beta0 + beta1*x + beta2*age + beta3*black +
beta4*riskchrt + beta5*hivpos;

p3=exp(eta3)/(1+exp(eta3));

LikeV=(p1**ystar*(1-p1)**(1-ystar)*
p2**xstar*(1-p2)**(1-xstar)*p3**y*
(1-p3)**(1-y)*p_xc**x*
(1-p_xc)**(1-x))**val;
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Like = LikeM*LikeV;
loglik=log(Like);
model ystar~general(loglik);
run;

B.1.2 Bayesian OpenBUGS Model Code

model {
for (i in 1:n) {

BVStatusStar[i] ~ dbern(pBVStatusStar[i])
TrichStar[i] ~ dbern(pTrichStar[i])
logit(pBVStatusStar[i]) <- theta0 + theta1*Trich[i] +

theta2*TrichStar[i] + theta3*BVStatus[i] +theta4*Age[i]+
theta5*Black[i] + theta6*RiskChrt[i] + theta7*HIVPos[i]

logit(pTrichStar[i]) <- delta0 + delta1*Trich[i] +
delta2*BVStatus[i] + delta3*Age[i] + delta4*Black[i] +
delta5*RiskChrt[i] + delta6*HIVPos[i]

Trich[i] ~ dbern(PTrich[i])
BVStatus[i] ~ dbern(PBVStatus[i])
logit(PBVStatus[i]) <- beta0 + beta1*Trich[i] +
beta2*Age[i] + beta3*Black[i] + beta4*RiskChrt[i] +
beta5*HIVPos[i]

logit(PTrich[i]) <- gamma0 + gamma1*Age[i] +
gamma2*Black[i] + gamma3*RiskChrt[i] + gamma4*HIVPos[i]

}
for (j in 1:nv) {

BVStatusStarv[j] ~ dbern(pBVStatusStarv[j])
TrichStarv[j] ~ dbern(pTrichStarv[j])
logit(pBVStatusStarv[j]) <- theta0 + theta1*Trichv[j] +

theta2*TrichStarv[j] + theta3*BVStatusv[j] +
theta4*AgeV[j] + theta5*BlackV[j] +
theta6*RiskChrtV[j] + theta7*HIVPosV[j]

logit(pTrichStarv[j]) <- delta0 + delta1*Trichv[j] +
delta2*BVStatusv[j] + delta3*AgeV[j] +delta4*BlackV[j]+
delta5*RiskChrtV[j] + delta6*HIVPosV[j]

Trichv[j] ~ dbern(PTrichv[j])
BVStatusv[j] ~ dbern(PBVStatusv[j])
logit(PBVStatusv[j]) <- beta0 + beta1*Trichv[j] +

beta2*AgeV[j] + beta3*BlackV[j] +
beta4*RiskChrtV[j] + beta5*HIVPosV[j]

logit(PTrichv[j]) <- gamma0 + gamma1*AgeV[j] +
gamma2*BlackV[j] +gamma3*RiskChrtV[j] +gamma4*HIVPosV[j]
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}

gamma0 ~ dnorm(0, 0.1)
gamma1 ~ dnorm(0, 0.1)
gamma2 ~ dnorm(0, 0.1)
gamma3 ~ dnorm(0, 0.1)
gamma4 ~ dnorm(0, 0.1)

beta0 ~ dnorm(0, 0.1)
beta1 ~ dnorm(0, 0.1)
beta2 ~ dnorm(0, 0.1)
beta3 ~ dnorm(0, 0.1)
beta4 ~ dnorm(0, 0.1)
beta5 ~ dnorm(0, 0.1)

delta0 ~ dnorm(0, 0.1)
delta1 ~ dnorm(0, 0.1)
delta2 ~ dnorm(0, 0.1)
delta3 ~ dnorm(0, 0.1)
delta4 ~ dnorm(0, 0.1)
delta5 ~ dnorm(0, 0.1)
delta6 ~ dnorm(0, 0.1)

theta0 ~ dnorm(0, 0.1)
theta1 ~ dnorm(0, 0.1)
theta2 ~ dnorm(0, 0.1)
theta3 ~ dnorm(0, 0.1)
theta4 ~ dnorm(0, 0.1)
theta5 ~ dnorm(0, 0.1)
theta6 ~ dnorm(0, 0.1)
theta7 ~ dnorm(0, 0.1)
}

B.2 Analysis of Simulation Study Discussed in Chapter Three

B.2.1 Frequentist (R) Model Code for the Baseline Model

FreqMLE <- function(input){
beta0 <- input[1]
beta1 <- input[2]
beta2 <- input[3]
delta0 <- input[4]
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delta1 <- input[5]
delta2 <- input[6]
delta3 <- input[7]
gamma0 <- input[8]
gamma1 <- input[9]
theta0 <- input[10]
theta1 <- input[11]
theta2 <- input[12]
theta3 <- input[13]
theta4 <- input[14]

eta1_y1_x1 <- theta0 + theta1 + theta2*X_StarC +
theta3 + theta4*C_1C

p1_y1_x1 <- exp(eta1_y1_x1)/(1+exp(eta1_y1_x1))
eta1_y0_x1 <- theta0 + theta1 + theta2*X_StarC +

theta4*C_1C
p1_y0_x1 <- exp(eta1_y0_x1)/(1+exp(eta1_y0_x1))
eta1_y1_x0 <- theta0 + theta2*X_StarC + theta3 +

theta4*C_1C
p1_y1_x0 <- exp(eta1_y1_x0)/(1+exp(eta1_y1_x0))
eta1_y0_x0 <- theta0 + theta2*X_StarC + theta4*C_1C
p1_y0_x0 <- exp(eta1_y0_x0)/(1+exp(eta1_y0_x0))

eta2_x1_y1 <- delta0 + delta1 + delta2 + delta3*C_1C
p2_x1_y1 <- exp(eta2_x1_y1)/(1+exp(eta2_x1_y1))
eta2_x0_y1 <- delta0 + delta2 + delta3*C_1C
p2_x0_y1 <- exp(eta2_x0_y1)/(1+exp(eta2_x0_y1))
eta2_x1_y0 <- delta0 + delta1 + delta3*C_1C
p2_x1_y0 <- exp(eta2_x1_y0)/(1+exp(eta2_x1_y0))
eta2_x0_y0 <- delta0 + delta3*C_1C
p2_x0_y0 <- exp(eta2_x0_y0)/(1+exp(eta2_x0_y0))

eta_x1 <- beta0 + beta1 + beta2*C_1C
p_x1 <- exp(eta_x1)/(1+exp(eta_x1))
eta_x0 <- beta0 + beta2*C_1C
p_x0 <- exp(eta_x0)/(1+exp(eta_x0))

eta_XC <- gamma0 + gamma1*C_1C
p_xc <- exp(eta_XC)/(1+exp(eta_XC))

LikeM <- (((p1_y1_x1)^Y_StarC)*((1-p1_y1_x1)^(1-Y_StarC))*
((p2_x1_y1)^X_StarC)*((1-p2_x1_y1)^(1-X_StarC))*
(p_x1)*(p_xc) + ((p1_y0_x1)^Y_StarC)*
((1-p1_y0_x1)^(1-Y_StarC))*((p2_x1_y0)^X_StarC)*
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((1-p2_x1_y0)^(1-X_StarC))*((1-p_x1))*(p_xc) +
((p1_y1_x0)^Y_StarC)*((1-p1_y1_x0)^(1-Y_StarC))*
((p2_x0_y1)^X_StarC)*((1-p2_x0_y1)^(1-X_StarC))*
((p_x0))*(1-p_xc) + ((p1_y0_x0)^Y_StarC)*
((1-p1_y0_x0)^(1-Y_StarC))*((p2_x0_y0)^X_StarC)*
((1-p2_x0_y0)^(1-X_StarC))*((1-p_x0))*(1-p_xc))^(1-val)

eta1 <- theta0 + theta1*XC + theta2*X_StarC +
theta3*YC + theta4*C_1C

p1 <- exp(eta1)/(1+exp(eta1))
eta2 <- delta0 + delta1*XC + delta2*YC + delta3*C_1C
p2 <- exp(eta2)/(1+exp(eta2))
eta3 <- beta0 + beta1*XC + beta2*C_1C
p3 <- exp(eta3)/(1+exp(eta3))

LikeV <- ((p1^Y_StarC)*((1-p1)^(1-Y_StarC))*(p2^X_StarC)*
((1-p2)^(1-X_StarC))*(p3^YC)*((1-p3)^(1-YC))*
(p_xc^XC)*((1-p_xc)^(1-XC)))^val

sum(log(LikeM*LikeV))
}

B.2.2 Bayesian (OpenBUGS/JAGS) Model Code for the Baseline Model

BUGSModel <- function(){
for (i in 1:n) {

Y_Star[i] ~ dbern(PY_Star[i])
X_Star[i] ~ dbern(PX_Star[i])
logit(PY_Star[i]) <- theta0 + theta1*X[i] +

theta2*X_Star[i] + theta3*Y[i] + theta4*C_1[i]
logit(PX_Star[i]) <- delta0 + delta1*X[i] +

delta2*Y[i] + delta3*C_1[i]
X[i] ~ dbern(PX[i])
Y[i] ~ dbern(PY[i])
logit(PY[i]) <- beta0 + beta1*X[i] + beta2*C_1[i]
logit(PX[i]) <- gamma0 + gamma1*C_1[i]

}
for (j in 1:nv) {

Y_StarV[j] ~ dbern(PY_StarV[j])
X_StarV[j] ~ dbern(PX_StarV[j])
logit(PY_StarV[j]) <- theta0 + theta1*X_V[j] +

theta2*X_StarV[j] + theta3*Y_V[j] + theta4*C_1V[j]
logit(PX_StarV[j]) <- delta0 + delta1*X_V[j] +

delta2*Y_V[j] + delta3*C_1V[j]
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X_V[j] ~ dbern(PX_V[j])
Y_V[j] ~ dbern(PY_V[j])
logit(PY_V[j]) <- beta0 + beta1*X_V[j] + beta2*C_1V[j]
logit(PX_V[j]) <- gamma0 + gamma1*C_1V[j]

}

gamma0 ~ dnorm(0, 0.1)
gamma1 ~ dnorm(0, 0.1)

beta0 ~ dnorm(0, 0.1)
beta1 ~ dnorm(0, 0.1)
beta2 ~ dnorm(0, 0.1)

delta0 ~ dnorm(0, 0.1)
delta1 ~ dnorm(0, 0.1)
delta2 ~ dnorm(0, 0.1)
delta3 ~ dnorm(0, 0.1)

theta0 ~ dnorm(0, 0.1)
theta1 ~ dnorm(0, 0.1)
theta2 ~ dnorm(0, 0.1)
theta3 ~ dnorm(0, 0.1)
theta4 ~ dnorm(0, 0.1)
}

B.3 Analysis of Simulation Study Discussed in Chapter Four

B.3.1 Frequentist (R) Model Code for General Misclassification Model

PROC NLMIXED data=Main cov tech=congra;
parms beta0=&beta0. beta1=&beta1. beta2=&beta2.

gamma0=&gamma0. gamma1=&gamma1. gamma2=&gamma2.
gamma3=&gamma3. gamma4=&gamma4. gamma5=&gamma5.
sig2u_i=&sig2u_i. sig2u_iStar=&sig2u_iStar. psi=&psi.;

tau=beta0 + beta1*X_1 + beta2*X_2 + u1;
pY=exp(tau)/(1 + exp(tau));
etas=gamma0 + gamma1*Time2 + gamma2*Time3 + gamma3*Time4 +

gamma4*X_1 + gamma5 + u2;
etaf=gamma0 + gamma1*Time2 + gamma2*Time3 + gamma3*Time4 +

gamma4*X_1 + u2;
s=exp(etas)/(1 + exp(etas));
f=1/(1 + exp(etaf));
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pY_Star=(1-f) + (s + f-1)*pY;
like1=((pY_Star**Y_Star)*(1-pY_Star)**(1-Y_Star))**(1-val);
like2=((s*pY)**(Y*Y_Star)*((1-s)*pY)**(Y*(1-Y_Star))*

((1-f)*(1-pY))**((1-Y)*Y_Star)*
(f*(1-pY))**((1-Y)*(1-Y_Star)))**val;

like = like1*like2;
loglik=log(like);
model Y_Star ~ general(loglik);
random u1 u2~normal([0,0],[sig2u_i,psi,sig2u_iStar]) subject=id;
title 'General Misclassification';
run; quit;

B.3.2 Frequentist (R) Model Code for ICD Misclassification Model

PROC NLMIXED data=Main cov tech=trureg;
parms beta0=&beta0. beta1=&beta1. beta2=&beta2.

gamma0=&gamma0. gamma1=&gamma1. gamma2=&gamma2.
gamma3=&gamma3. gamma4=&gamma4. gamma5=&gamma5.
sig2u_i=&sig2u_i. sig2u_iStar=&sig2u_iStar.;

tau=beta0 + beta1*X_1 + beta2*X_2 + u1;
pY=exp(tau)/(1 + exp(tau));
etas=gamma0 + gamma1*Time2 + gamma2*Time3 + gamma3*Time4 +

gamma4*X_1 + gamma5 + u2;
etaf=gamma0 + gamma1*Time2 + gamma2*Time3 + gamma3*Time4 +

gamma4*X_1 + u2;
s=exp(etas)/(1 + exp(etas));
f=1/(1 + exp(etaf));
pY_Star=(1-f) + (s + f-1)*pY;

like1=((pY_Star**Y_Star)*(1-pY_Star)**(1-Y_Star))**(1-val);
like2=((s*pY)**(Y*Y_Star)*((1-s)*pY)**(Y*(1-Y_Star))*

((1-f)*(1-pY))**((1-Y)*Y_Star)*
(f*(1-pY))**((1-Y)*(1-Y_Star)))**val;

like = like1*like2;
loglik=log(like);
model Y_Star ~ general(loglik);
random u1 u2~normal([0,0],[sig2u_i,0,sig2u_iStar]) subject=id;
title 'Independent Correlated Differential Misclassification';
run;
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B.3.3 Frequentist (R) Model Code for IUD Misclassification Model

PROC NLMIXED data=Main cov tech=congra;
parms beta0=&beta0. beta1=&beta1. beta2=&beta2.

gamma0=&gamma0. gamma1=&gamma1. gamma2=&gamma2.
gamma3=&gamma3. gamma4=&gamma4. gamma5=&gamma5.
sig2u_i=&sig2u_i.;

pY=exp(tau)/(1 + exp(tau));
etas=gamma0 + gamma1*Time2 + gamma2*Time3 + gamma3*Time4 +

gamma4*X_1 + gamma5;
etaf=gamma0 + gamma1*Time2 + gamma2*Time3 + gamma3*Time4 +

gamma4*X_1;
s=exp(etas)/(1 + exp(etas));
f=1/(1 + exp(etaf));
pY_Star=(1-f) + (s + f-1)*pY;
like1=((pY_Star**Y_Star)*(1-pY_Star)**(1-Y_Star))**(1-val);
like2=((s*pY)**(Y*Y_Star)*((1-s)*pY)**(Y*(1-Y_Star))*

((1-f)*(1-pY))**((1-Y)*Y_Star)*
(f*(1-pY))**((1-Y)*(1-Y_Star)))**val;
like = like1*like2;
loglik=log(like);
model Y_Star ~ general(loglik);
random u1 ~ normal(0,sig2u_i) subject=id;
title 'Uncorrelated Differential Misclassification';
run;

B.3.4 Frequentist (R) Model Code for ND Misclassification Model

PROC NLMIXED data=Main cov tech=congra;
parms beta0=&beta0. beta1=&beta1. beta2=&beta2.

gamma0=&gamma0. gamma5=&gamma5.
sig2u_i=&sig2u_i.;

tau=beta0 + beta1*X_1 + beta2*X_2 + u1;
pY=exp(tau)/(1 + exp(tau));
etas=gamma0 + gamma5;
etaf=gamma0;
s=exp(etas)/(1 + exp(etas));
f=1/(1 + exp(etaf));
pY_Star=(1-f) + (s + f-1)*pY;

like1=((pY_Star**Y_Star)*(1-pY_Star)**(1-Y_Star))**(1-val);
like2=((s*pY)**(Y*Y_Star)*((1-s)*pY)**(Y*(1-Y_Star))*

((1-f)*(1-pY))**((1-Y)*Y_Star)*
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(f*(1-pY))**((1-Y)*(1-Y_Star)))**val;
like = like1*like2;
loglik=log(like);

model Y_Star ~ general(loglik);
random u1 ~ normal(0,sig2u_i) subject=id;
title 'Non-Differential Misclassification';
run;

B.3.5 NIMBLE Model Code for the General Misclassification Model

general <- nimbleCode({
tau_i ~ dgamma(2, 2)
tau_iStar ~ dgamma(2, 2)
sig2u_i <- 1/tau_i
sig2u_iStar <- 1/tau_iStar

rho ~ dunif(-1, 1)
psi <- rho*sqrt(sig2u_i)*sqrt(sig2u_iStar)

beta0 ~ dnorm(0, 0.1)
beta1 ~ dnorm(0, 0.1)
beta2 ~ dnorm(0, 0.1)
gamma0 ~ dnorm(0, 0.1)
gamma1 ~ dnorm(0, 0.1)
gamma2 ~ dnorm(0, 0.1)
gamma3 ~ dnorm(0, 0.1)
gamma4 ~ dnorm(0, 0.1)
gamma5 ~ dnorm(0, 0.1)
mu[1] <- 0
mu[2] <- 0
covar[1,1] <- sig2u_i
covar[1,2] <- psi
covar[2,1] <- psi
covar[2,2] <- sig2u_iStar
for (j in 1:(n+nv)){

u[j, 1:2] ~ dmnorm(mu[1:2], cov = covar[1:2,1:2])
}
for (j in 1:nv*J){

Y_StarV[j] ~ dbern(pY_StarV[j])
logit(pY_StarV[j]) <- gamma0 + gamma1*Time2V[j] +

gamma2*Time3V[j] + gamma3*Time4V[j] +
gamma4*X_1V[j] + gamma5*YV[j] + u[SubjV[j],2]
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YV[j] ~ dbern(pYV[j])
logit(pYV[j])<-beta0 + beta1*X_1V[j] +

beta2*X_2V[j] + u[SubjV[j], 1]
}
for (j in 1:n*J){

Y_Star[j] ~ dbern(pY_Star[j])
logit(pY_Star[j]) <- gamma0 + gamma1*Time2[j] +

gamma2*Time3[j] + gamma3*Time4[j] +
gamma4*X_1[j] + gamma5*Y[j] + u[Subj[j],2]

Y[j] ~ dbern(pY[j])
logit(pY[j])<-beta0 + beta1*X_1[j] +

beta2*X_2[j] + u[Subj[j],1]
}

})

B.3.6 NIMBLE Model Code for the ICD Misclassification Model

Ind_Corr <- nimbleCode({
tau_i ~ dgamma(2, 2)
tau_iStar ~ dgamma(2, 2)
sig2u_i <- 1/tau_i
sig2u_iStar <- 1/tau_iStar

beta0 ~ dnorm(0, 0.1)
beta1 ~ dnorm(0, 0.1)
beta2 ~ dnorm(0, 0.1)
gamma0 ~ dnorm(0, 0.1)
gamma1 ~ dnorm(0, 0.1)
gamma2 ~ dnorm(0, 0.1)
gamma3 ~ dnorm(0, 0.1)
gamma4 ~ dnorm(0, 0.1)
gamma5 ~ dnorm(0, 0.1)
mu[1] <- 0
mu[2] <- 0
covar[1,1] <- sig2u_i
covar[1,2] <- 0
covar[2,1] <- 0
covar[2,2] <- sig2u_iStar
for (j in 1:(n+nv)){

u[j, 1:2] ~ dmnorm(mu[1:2], cov = covar[1:2,1:2])
}
for (j in 1:nv*J){

Y_StarV[j] ~ dbern(pY_StarV[j])
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logit(pY_StarV[j]) <- gamma0 + gamma1*Time2V[j] +
gamma2*Time3V[j] + gamma3*Time4V[j] +
gamma4*X_1V[j] + gamma5*YV[j] + u[SubjV[j],2]

YV[j] ~ dbern(pYV[j])
logit(pYV[j])<-beta0 + beta1*X_1V[j] +

beta2*X_2V[j] + u[SubjV[j], 1]
}
for (j in 1:n*J){

Y_Star[j] ~ dbern(pY_Star[j])
logit(pY_Star[j]) <- gamma0 + gamma1*Time2[j] +

gamma2*Time3[j] + gamma3*Time4[j] + gamma4*X_1[j] +
gamma5*Y[j] + u[Subj[j],2]

Y[j] ~ dbern(pY[j])
logit(pY[j])<-beta0 + beta1*X_1[j] +

beta2*X_2[j] + u[Subj[j],1]
}

})

B.3.7 NIMBLE Model Code for the IUD Misclassification Model

UnCorr_Diff <- nimbleCode({
tau_i ~ dgamma(2, 2)
sig2u_i <- 1/tau_i

beta0 ~ dnorm(0, 0.1)
beta1 ~ dnorm(0, 0.1)
beta2 ~ dnorm(0, 0.1)
gamma0 ~ dnorm(0, 0.1)
gamma1 ~ dnorm(0, 0.1)
gamma2 ~ dnorm(0, 0.1)
gamma3 ~ dnorm(0, 0.1)
gamma4 ~ dnorm(0, 0.1)
gamma5 ~ dnorm(0, 0.1)
for (j in 1:(n+nv)){

u[j] ~ dnorm(0, var = sig2u_i)
}
for (j in 1:nv*J){

Y_StarV[j] ~ dbern(pY_StarV[j])
logit(pY_StarV[j]) <- gamma0 + gamma1*Time2V[j] +

gamma2*Time3V[j] + gamma3*Time4V[j] +
gamma4*X_1V[j] + gamma5*YV[j]

YV[j] ~ dbern(pYV[j])
logit(pYV[j])<-beta0 + beta1*X_1V[j] +
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beta2*X_2V[j] + u[SubjV[j]]
}
for (j in 1:n*J){
Y_Star[j] ~ dbern(pY_Star[j])
logit(pY_Star[j]) <- gamma0 + gamma1*Time2[j] +

gamma2*Time3[j] + gamma3*Time4[j] +
gamma4*X_1[j] + gamma5*Y[j]

Y[j] ~ dbern(pY[j])
logit(pY[j])<-beta0 + beta1*X_1[j] +

beta2*X_2[j] + u[Subj[j]]
}

})

B.3.8 NIMBLE Model Code for the ND Misclassification Model

Non_Diff <- nimbleCode({
tau_i ~ dgamma(2, 2)
sig2u_i <- 1/tau_i

beta0 ~ dnorm(0, 0.1)
beta1 ~ dnorm(0, 0.1)
beta2 ~ dnorm(0, 0.1)
gamma0 ~ dnorm(0, 0.1)
gamma5 ~ dnorm(0, 0.1)
for (j in 1:(n+nv)){

u[j] ~ dnorm(0, var = sig2u_i)
}
for (j in 1:nv*J){

Y_StarV[j] ~ dbern(pY_StarV[j])
logit(pY_StarV[j]) <- gamma0 + gamma5*YV[j]
YV[j] ~ dbern(pYV[j])
logit(pYV[j])<-beta0 + beta1*X_1V[j] +

beta2*X_2V[j] + u[SubjV[j]]
}
for (j in 1:n*J){

Y_Star[j] ~ dbern(pY_Star[j])
logit(pY_Star[j]) <- gamma0 + gamma5*Y[j]
Y[j] ~ dbern(pY[j])
logit(pY[j])<-beta0 + beta1*X_1[j] +

beta2*X_2[j] + u[Subj[j]]
}

})
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APPENDIX C

ESS Settings and Code

C.1 ESS for Priors of Dependent Differential Misclassification Using Morita et al.[29]

Provided ESS Calculator and Settings

Refer to Morita et al.[29] for a complete description of the formula sourced in the

code below (ESS_RegressionCalculator.R); we used this calculator for each of

the logistic regression models that make up dependent differential misclassification. The

number of covariates varied between each of the 4 models and were appropriately set for

use with the function inputs. We set M = 50 for each model since we assumed we would

not see an ESS higher than that for any one particular model. We used 500 simulations

(NumSims = 500) to replicate the number of replications in our simulation study. We did

not investigate the parameter subsets since it was not within the scope of this investigation.

We then replicated this work for each of the four priors used throughout Chapter Three:

N(0, σ2 = 10), N(µ, σ2 = 10), N(µ, σ2 = 4), and N(µ, σ2 = 1). Based upon the corre-

sponding literature, the priors were set to N(0, σ2 = 1000) for any prior on a covariate that

did not exist for the model at hand.

source("ESS_RegressionCalculator.R")
ESS_Function <- function(Guesses, Num_cov, Distribution_Type,

Distribution_parm_1, Distribution_parm_2,
M, NumSims, theta_sub1, theta_sub2){
Reg_model <- 2
Prior_0 <- c(Distribution_Type[1],
Distribution_parm_1[1], Distribution_parm_2[1])
Prior_1 <- c(Distribution_Type[2],
Distribution_parm_1[2], Distribution_parm_2[2])
Prior_2 <- c(Distribution_Type[3],
Distribution_parm_1[3], Distribution_parm_2[3])
Prior_3 <- c(Distribution_Type[4],
Distribution_parm_1[4], Distribution_parm_2[4])
Prior_4 <- c(Distribution_Type[5],
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Distribution_parm_1[5], Distribution_parm_2[5])
Prior_5 <- c(Distribution_Type[6],
Distribution_parm_1[6], Distribution_parm_2[6])
Prior_6 <- c(Distribution_Type[7],
Distribution_parm_1[7], Distribution_parm_2[7])
Prior_7 <- c(Distribution_Type[8],
Distribution_parm_1[8], Distribution_parm_2[8])
Prior_8 <- c(Distribution_Type[9],
Distribution_parm_1[9], Distribution_parm_2[9])
Prior_9 <- c(Distribution_Type[10],
Distribution_parm_1[10], Distribution_parm_2[10])
Prior_10 <- c(Distribution_Type[11],
Distribution_parm_1[11], Distribution_parm_2[11])
Prior_11 <- c(Distribution_Type[12],
Distribution_parm_1[12], Distribution_parm_2[12])

resultList <-
ESS_RegressionCalc ( Reg_model, Num_cov,

Prior_0, Prior_1, Prior_2, Prior_3, Prior_4, Prior_5,
Prior_6, Prior_7, Prior_8, Prior_9, Prior_10, Prior_11,
M, NumSims, theta_sub1, theta_sub2)

as.data.frame(cbind("Calculated ESS"=resultList,
"Estimated ESS"=Guesses),

row.names = c("Whole \theta", "Sub-vector 1",
"Sub-vector 2"))

}
Theta <- ESS_Function(Guesses <- c(0.8, 0.3, 0.5),

Num_cov <- 4, Distribution_Type <- rep(1, 12),
Distribution_parm_1 <- rep(0, 12),
Distribution_parm_2 <- c(rep(10, 5), rep(1000, 7)),
M <- 50, NumSims <- 500,
theta_sub1 <- c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
theta_sub2 <- c(0, rep(1, Num_cov),rep(0, 11-Num_cov)))

Centered_Theta <- ESS_Function(Guesses <- c(0.8, 0.3, 0.5),
Num_cov <- 4, Distribution_Type <- rep(1, 12),
Distribution_parm_1 <- c(-1, 1, 2, 1, -1, rep(0,7)),
Distribution_parm_2 <- c(rep(10, 5), rep(1000, 7)),
M <- 50, NumSims <- 500,
theta_sub1 <- c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
theta_sub2 <- c(0, rep(1, Num_cov),rep(0, 11-Num_cov)))

Narrowed_Theta <- ESS_Function(Guesses <- c(0.8, 0.3, 0.5),
Num_cov <- 4,
Distribution_Type <- rep(1, 12),
Distribution_parm_1 <- c(-1, 1, 2, 1, -1, rep(0,7)),
Distribution_parm_2 <- c(rep(4, 5), rep(1000, 7)),
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M <- 50, NumSims <- 500,
theta_sub1 <- c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
theta_sub2 <- c(0, rep(1, Num_cov),rep(0, 11-Num_cov)))

Informative_Theta <- ESS_Function(Guesses <- c(0.8, 0.3, 0.5),
Num_cov <- 4, Distribution_Type <- rep(1, 12),
Distribution_parm_1 <- c(-1, 1, 2, 1, -1, rep(0,7)),
Distribution_parm_2 <- c(rep(1, 5), rep(1000, 7)),
M <- 50, NumSims <- 500,
theta_sub1 <- c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
theta_sub2 <- c(0, rep(1, Num_cov),rep(0, 11-Num_cov)))

Delta <- ESS_Function(Guesses <- c(0.8, 0.3, 0.5),
Num_cov <- 3, Distribution_Type <- rep(1, 12),
Distribution_parm_1 <- rep(0, 12),
Distribution_parm_2 <- c(rep(10, Num_cov+1),

rep(1000, 12-(Num_cov+1))),
M <- 50, NumSims <- 500,
theta_sub1 <- c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
theta_sub2 <- c(0, rep(1, Num_cov),rep(0, 11-Num_cov)))

Centered_Delta <- ESS_Function(Guesses <- c(0.8, 0.3, 0.5),
Num_cov <- 3, Distribution_Type <- rep(1, 12),
Distribution_parm_1 <- c(-3, 1.5, 1.5, 1,

rep(0,11-Num_cov)),
Distribution_parm_2 <- c(rep(10, Num_cov+1),

rep(1000, 12-(Num_cov+1))),
M <- 50, NumSims <- 500,
theta_sub1 <- c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
theta_sub2 <- c(0, rep(1, Num_cov),rep(0, 11-Num_cov)))

Narrowed_Delta <- ESS_Function(Guesses <- c(0.8, 0.3, 0.5),
Num_cov <- 3, Distribution_Type <- rep(1, 12),
Distribution_parm_1 <- c(-3, 1.5, 1.5, 1,

rep(0,11-Num_cov)),
Distribution_parm_2 <- c(rep(4, Num_cov+1),

rep(1000, 12-(Num_cov+1))),
M <- 50, NumSims <- 500,
theta_sub1 <- c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
theta_sub2 <- c(0, rep(1, Num_cov),rep(0, 11-Num_cov)))

Informative_Delta <- ESS_Function(Guesses <- c(0.8, 0.3, 0.5),
Num_cov <- 3, Distribution_Type <- rep(1, 12),
Distribution_parm_1 <- c(-3, 1.5, 1.5, 1,

rep(0,11-Num_cov)),
Distribution_parm_2 <- c(rep(1, Num_cov+1),

rep(1000, 12-(Num_cov+1))),
M <- 50, NumSims <- 500,
theta_sub1 <- c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
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theta_sub2 <- c(0, rep(1, Num_cov),rep(0, 11-Num_cov)))
Beta <- ESS_Function(Guesses <- c(0.8, 0.3, 0.5),

Num_cov <- 2, Distribution_Type <- rep(1, 12),
Distribution_parm_1 <- rep(0, 12),
Distribution_parm_2 <- c(rep(10, Num_cov+1),

rep(1000, 12-(Num_cov+1))),
M <- 50, NumSims <- 500,
theta_sub1 <- c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
theta_sub2 <- c(0, rep(1, Num_cov),rep(0, 11-Num_cov)))

Centered_Beta <- ESS_Function(Guesses <- c(0.8, 0.3, 0.5),
Num_cov <- 2, Distribution_Type <- rep(1, 12),
Distribution_parm_1 <- c(1, 1, -1, rep(0,11-Num_cov)),
Distribution_parm_2 <- c(rep(10, Num_cov+1),

rep(1000, 12-(Num_cov+1))),
M <- 50, NumSims <- 500,
theta_sub1 <- c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
theta_sub2 <- c(0, rep(1, Num_cov),rep(0, 11-Num_cov)))

Narrowed_Beta <- ESS_Function(Guesses <- c(0.8, 0.3, 0.5),
Num_cov <- 2, Distribution_Type <- rep(1, 12),
Distribution_parm_1 <- c(1, 1, -1, rep(0,11-Num_cov)),
Distribution_parm_2 <- c(rep(4, Num_cov+1),

rep(1000, 12-(Num_cov+1))),
M <- 50, NumSims <- 500,
theta_sub1 <- c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
theta_sub2 <- c(0, rep(1, Num_cov),rep(0, 11-Num_cov)))

Informative_Beta <- ESS_Function(Guesses <- c(0.8, 0.3, 0.5),
Num_cov <- 2, Distribution_Type <- rep(1, 12),
Distribution_parm_1 <- c(1, 1, -1, rep(0,11-Num_cov)),
Distribution_parm_2 <- c(rep(1, Num_cov+1),

rep(1000, 12-(Num_cov+1))),
M <- 50, NumSims <- 500,
theta_sub1 <- c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
theta_sub2 <- c(0, rep(1, Num_cov),rep(0, 11-Num_cov)))

Gamma <- ESS_Function(Guesses <- c(0.8, 0.3, 0.5),
Num_cov <- 1, Distribution_Type <- rep(1, 12),
Distribution_parm_1 <- rep(0, 12),
Distribution_parm_2 <- c(rep(10, Num_cov+1),
rep(1000, 12-(Num_cov+1))),
M <- 50, NumSims <- 500,
theta_sub1 <- c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
theta_sub2 <- c(0, rep(1, Num_cov),rep(0, 11-Num_cov)))

Centered_Gamma <- ESS_Function(Guesses <- c(0.8, 0.3, 0.5),
Num_cov <- 1, Distribution_Type <- rep(1, 12),
Distribution_parm_1 <- c(-1, 1, rep(0,11-Num_cov)),
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Distribution_parm_2 <- c(rep(10, Num_cov+1),
rep(1000, 12-(Num_cov+1))),
M <- 50, NumSims <- 500,
theta_sub1 <- c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
theta_sub2 <- c(0, rep(1, Num_cov),rep(0, 11-Num_cov)))

Narrowed_Gamma <- ESS_Function(Guesses <- c(0.8, 0.3, 0.5),
Num_cov <- 1, Distribution_Type <- rep(1, 12),
Distribution_parm_1 <- c(-1, 1, rep(0,11-Num_cov)),
Distribution_parm_2 <- c(rep(4, Num_cov+1),
rep(1000, 12-(Num_cov+1))),
M <- 50, NumSims <- 500,
theta_sub1 <- c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
theta_sub2 <- c(0, rep(1, Num_cov),rep(0, 11-Num_cov)))

Informative_Gamma <- ESS_Function(Guesses <- c(0.8, 0.3, 0.5),
Num_cov <- 1, Distribution_Type <- rep(1, 12),
Distribution_parm_1 <- c(-1, 1, rep(0,11-Num_cov)),
Distribution_parm_2 <- c(rep(1, Num_cov+1),
rep(1000, 12-(Num_cov+1))),
M <- 50, NumSims <- 500,
theta_sub1 <- c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
theta_sub2 <- c(0, rep(1, Num_cov),rep(0, 11-Num_cov)))

(ESS_Baseline <-
as.numeric(Theta$`Calculated ESS`[1]) +
as.numeric(Delta$`Calculated ESS`[1]) +
as.numeric(Beta$`Calculated ESS`[1]) +
as.numeric(Gamma$`Calculated ESS`[1]))

(ESS_Centered <-
as.numeric(Centered_Theta$`Calculated ESS`[1]) +
as.numeric(Centered_Delta$`Calculated ESS`[1]) +
as.numeric(Centered_Beta$`Calculated ESS`[1]) +
as.numeric(Centered_Gamma$`Calculated ESS`[1]))

(ESS_Narrowed <-
as.numeric(Narrowed_Theta$`Calculated ESS`[1]) +
as.numeric(Narrowed_Delta$`Calculated ESS`[1]) +
as.numeric(Narrowed_Beta$`Calculated ESS`[1]) +
as.numeric(Narrowed_Gamma$`Calculated ESS`[1]))

(ESS_Informative <-
as.numeric(Informative_Theta$`Calculated ESS`[1]) +
as.numeric(Informative_Delta$`Calculated ESS`[1]) +
as.numeric(Informative_Beta$`Calculated ESS`[1]) +
as.numeric(Informative_Gamma$`Calculated ESS`[1]))
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