
ABSTRACT

Topics in Interval Estimation for Two Problems Using Double Sampling

Linda Njoh, Ph.D.

Chairperson: Dean M. Young, Ph.D.

This dissertation addresses two distinct topics. The first considers interval

estimation methods of the odds ratio parameter in 2×2 cohort studies with misclas-

sified data. That is, we derive two first-order likelihood-based confidence intervals

and two pseudo-likelihood-based confidence intervals for the odds ratio in a 2 × 2

cohort study subject to differential misclassification and non-differential misclassifi-

cation using a double-sampling paradigm for binary data. Specifically, we derive the

Wald, score, profile likelihood, and approximate integrated likelihood-based confi-

dence intervals for the odds ratio of a 2×2 cohort study. We then compare coverage

properties and median interval widths of the newly derived confidence intervals via a

Monte Carlo simulation. Our simulation results reveal the consistent superiority of

the approximate integrated likelihood confidence interval, especially when the degree

of misclassification is high.

The second topic is concerned with interval estimation methods of a Poisson

rate parameter in the presence of count misclassification. More specifically, we derive

multiple first-order asymptotic confidence intervals for estimating a Poisson rate pa-

rameter using a double sample for data containing false-negative and false-positive

observations in one case and for data with only false-negative observations in an-

other case. We compare the new confidence intervals in terms of coverage probability



and median interval width via a simulation experiment. We then apply our derived

confidence intervals to real-data examples. Over the parameter configurations and

observation-opportunity sizes considered here, our investigation demonstrates that

the Wald interval is the best omnibus interval estimator for a Poisson rate parameter

using data subject to over-and under-counts. Also, the profile log-likelihood-based

confidence interval is the best omnibus confidence interval for a Poisson rate param-

eter using data subject to visibility bias.
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CHAPTER ONE

Introduction and Background

1.1 Overview

A well-known problem in statistical science is how to account for or to elimi-

nate nuisance parameters from a model. While some parameters are relevant, others

are merely required to complete a model. Pawitan (2001) states that nuisance pa-

rameters create most of the complications in likelihood theory. They often appear

in problems as a natural consequence of our effort to use bigger and better models.

Because nuisance parameters can dramatically impact the inference of the param-

eters of interest, accounting for nuisance parameters is important. Even if we are

interested in all model parameters, our inability to view a multidimensional likeli-

hood forces us to view individual parameters in isolation. While we consider one

parameter, the remaining parameters become a nuisance. Consequently, to access

the information for the parameter of interest, one must account for or eliminate the

nuisance parameters.

Binary or binomial data are frequently encountered in a wide range of appli-

cations, including survey analysis, criminology, clinical medicine, and information

technology. One also finds such data in epidemiology, which is the study of the dis-

tribution of health-related states and events in populations. The primary objective

of an epidemiology study is to obtain a valid and precise estimate of the effect of

an exposure on the occurrence of a disease in the source population of the study.

The parameter of interest is the odds ratio, which remains perhaps the most popular

relative measure of the exposure-disease relation in epidemiology to date (Nurmi-

nen, 1995). However, misclassification errors in the sampling and measurement of

subjects in a study can cause systematic errors in the estimator of the odds ratio.
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Count data or data with an underlying Poisson distribution can also be found

in the areas of epidemiology, market research, and criminal justice. Researchers

often propose Poisson models to compare the rates of certain events for different

populations. For instance, one might use Poisson models to compare mortality rates

for different diseases. Market researchers use such models to analyze purchasing

trends, and investigators in criminal justice studies use them to compare crime rates

for different neighborhoods. In all three examples, the counts used to estimate

the Poisson rate of interest could be subject to error; that is, inferences on rates

using discrete counts can be inaccurate due to misclassification (Stamey, Young,

and Stephens, 2005).

Bross (1954) has shown that when misclassification is present, the sample pro-

portion is a biased estimator of the population proportion p and that the bias, which

is a function of the amount of misclassification in the data, can be substantial. Fur-

thermore, Whittemore and Gong (1991) and Sposto, Preston, Shimizu, and Mabuchi

(1992) have shown that misclassification in the data collection process can lead to

incorrect counts that adversely affect our inferences. That is, misclassification of

count occurrences causes a biased estimator of the Poisson rate of interest. In order

to correct for the bias, Tenenbein (1970) has developed a double-sampling plan for

obtaining an unbiased estimate of the population proportion of binary data with

misclassification. His double-sampling scheme is used in the following chapters to

derive nearly unbiased estimators and approximate confidence intervals (CIs) for the

odds ratio and the Poisson rate. However, Tenenbein’s scheme produces one or more

nuisance parameters that must be accounted for or eliminated.

In this dissertation, we use maximum likelihood and pseudo-likelihood estima-

tions to derive the Wald, score, profile likelihood (PL), integrated likelihood (IL),

and approximate integrated likelihood (AIL) CIs. In Chapters Two and Three, we

compare three interval estimation methods for the odds ratio that measures the as-
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sociation between disease and exposure levels under a double-sampling procedure

for binomial data with two types of misclassification. In Chapters Four and Five,

we derive and compare likelihood and pseudo-likelihood confidence intervals for the

Poisson rate parameter using a double sample of infallible data and fallible data sub-

ject to misclassification in the form of false-negative and/or false-positive counts.

The remainder of Chapter One is organized as follows. Cohort studies are

defined in Section 1.2. In Section 1.3 Tenebein’s double-sampling plan is presented.

In Section 1.4 we define the different types of misclassification used in this work.

Section 1.5 briefly introduces the four confidence interval methods we utilize in

Chapters Two through Five. We provide an outline of the dissertation organization

in Section 1.6.

1.2 Cohort Studies

A cohort study is an observational study in which a sample or a cohort is

selected and information is obtained to determine which subjects have a particular

characteristic (e.g., blood group A) that is suspected of being related to the develop-

ment of the disease under investigation or have been exposed to a possible etiological

agent (e.g., cigarette smoking). The entire study sample is then followed up in time,

and the incidence of the disease in the exposed individuals is compared with the inci-

dence in those not exposed. Two main types of cohort studies are defined according

to the point of time when information on exposure was collected: prospective cohort

studies or retrospective cohort studies. In prospective cohort studies, data on expo-

sure is collected once the study population has been defined. The main disadvantage

of this type of cohort study, is that the time from exposure to onset of disease may

be too long. The alternative, particularly useful for conditions with long induction

periods, is to rely on exposure measurements made many years before the study was

set up. These measurements may be available from medical, employment, or other
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personal records. By using data from existing records, we can reduce or even elimi-

nate waiting for the exposure to affect the risk of disease. This type of cohort study

is called a retrospective cohort study. One of the main limitations of retrospective

cohort studies is that the exposure data available in past records are generally less

accurate and detailed than those collected prospectively.

The main advantages of cohort studies are that the exposure is measured be-

fore onset of disease and is therefore likely to yield an unbiased viewpoint in terms

of disease development; rare exposures can be examined by appropriate selection of

study cohorts; multiple outcomes (diseases) can be studied for any one exposure;

and incidence of disease can be measured in the exposed and unexposed groups.

The main disadvantages of this type of study are that they can be very expensive

and time-consuming, particularly if conducted prospectively; changes in exposure

status and in diagnostic criteria over time can affect the classification of individuals

according to exposure and disease status; ascertainment of outcome may be influ-

enced by knowledge of the subject’s exposure status (information bias); and losses

to follow-up may introduce selection bias.

In Chapters Two and Three, we investigate estimation of the odds ratio in a

cohort study using the double-sampling scheme for binary data subject to differential

and non-differential misclassification.

1.3 Double Sampling

Binary data are usually obtained when experimental units are classified into

two mutually exclusive categories. Generally, a statistical classifier is not perfect.

Hence, misclassified binary data can occur. Many researchers have demonstrated

that classical estimators that ignore misclassification are biased when applied to

misclassified binary data (Rahardja and Young, 2011). In particular, Bross (1954)

has shown that, when misclassification occurs, the sample proportion is a biased
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estimate of the parameter p and that the bias, which is a function of the amount

of misclassification in the data, can be substantial. In order to adjust for this

bias, we must gain some knowledge of the amount of misclassification in the data.

Tenenbein (1970) states that one method of obtaining information on the extent of

misclassification is to compare results obtained by two or more measuring devices

involving the same group of sampling units.

Suppose that two measuring devices are available to classify experimental units

into one of two mutually exclusive categories. Suppose the use of the first device is an

expensive procedure that classifies units correctly. While the use of the second device

is cheaper, it tends to misclassify units. Tenenbein (1970) has proposed a double-

sampling scheme to obtain an unbiased estimator for the population proportion π

of binary data with misclassification.

Suppose we conduct a test that allows us to obtain a disease status on a large

sample of participants. However, such an instrument, although fast, inexpensive,

and perhaps non-invasive, can be fallible. Hence, the counts we observe will have

errors due to misclassification, thus causing a biased estimator of the parameter of

interest, the odds ratio from a 2 × 2 cohort study. Another example could be one

in which a researcher compares the colon cancer mortality rates for obese and non-

obese populations. Misclassification could occur in the data if a subject is assigned

an incorrect cause of death, which leads to a biased estimator of the Poisson rate of

interest.

To calculate the misclassification rate and account for the induced bias, we

obtain a subsample of the original data set and use not only the fallible test but

also a second, inerrant test, referred to as the gold standard test. This gold stan-

dard procedure is often very expensive, invasive, and time consuming. Hence, the

sample on which we use boh tests is much smaller than the original fallible sample.

The fallible sample is called the main or incomplete study, whereas the infallible
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sample is called a validation or complete study. Dahm, Gail, Rosenberg, and Pee

(1995) have investigated the value of additional fallible classification for improving

estimates of the odds ratio in case-control and cohort studies. Also, Karunaratne

(1991) has examined different approaches of estimation in both types of studies un-

der differential and non-differential misclassification. In this dissertation we utilize

a double-sampling procedure to assess the misclassification rate and develop several

confidence intervals that account for nuisance parameters.

1.4 Differential and Nondifferential Misclassification

When analyzing misclassified data, we focus on whether the misclassification

rates between the fallible classifier or error-prone test and the infallible classifier or

“gold-standard” test depend on the error-free disease status of the patient (Tenen-

bein, 1970). Thus, we define the test sensitivity of an exposure measurement method

as the probability that an individual who is truly exposed is classified as exposed

by the method and the test specificity of an exposure measurement method as the

probability that someone who is truly unexposed will be classified as unexposed.

Hence, high levels of specificity and sensitivity indicate low misclassification rates.

Misclassification errors are non-differential if the classification between fallible

exposure level and “gold-standard” exposure level is independent of the disease sta-

tus. More simply, non-differential misclassification arises when measurement errors

with regard to exposure are independent of disease status. Hence, for non-differential

misclassification, we assume that the specificity and sensitivity are independent of

the disease status. The assumption of non-differential misclassification is usually

plausible for prospective cohort studies in which one determines the exposure status

before the disease status is measured (Dahm, Gail, Rosenberg, and Pee, 1995).

Differential misclassification occurs when the error rate or probability of being

misclassified differs across groups of study subjects. For example, if the exposed
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group in a cohort study is more likely to be mistakenly classified as having developed

the disease than the exposed group, then the misclassification is differential. In such

instances, the sensitivity and specificity between diseased and non-diseased groups

are assumed to be different.

1.5 Four First-Order Asymptotic Confidence Interval Methods

Let x = (x1, x2, ..., xn)′ be a random vector of n iid observations from the prob-

ability density f(θ|x). Here, θ = (θ1, θ2, ..., θp)
′ is a parameter vector of dimension p

contained in the parameter space Θ ∈ <p. The likelihood is a function of θ for the

given observation vector x and, by the likelihood principle, contains all the infor-

mation concerning the experiment of interest (Bjornstad (1996)). Thus, inferences

about θ should depend on the random variable only through the likelihood function

defined as

L(θ|x) = f(θ|x).

Berger, Liseo, and Wolpert (1999) notice that because θ is a vector of parameters,

one might be interested in only one parameter or a subset of parameters. Thus,

we partition θ into the parameter of interest, the odds ratio, ψ or the Poisson rate,

λ, and η, the set of nuisance parameters. For inferences in the following chapters,

we propose and describe five confidence interval (CI) methods for estimating the

parameter of interests, the odds ratio, and the Poisson rate. After comparing the

intervals in terms of coverage probability and average width, we consider and define

in subsequent chapters the Wald and score CI as part of the maximum likelihood-

based CI as well as the profile likelihood, and the approximate integrated likelihood,

which are pseudo-likelihood-based CIs.

In Chapters Two and Three, we conduct Monte-Carlo simulations to com-

pare confidence intervals for the odds ratio using double sampling for cohort studies

under both differential and non-differential misclassification. We use the abbrevi-
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ation CODIFF for cohort studies with differential misclassification and CONDIFF

for cohort studies with non-differential misclassification.

1.6 Dissertation Outline

In this dissertation we cover two distinct topics. We first consider the interval

estimation of the odds ratio parameter in cohort studies with data subject to mis-

classification. Second, we dwell on the interval estimation of the Poisson rate using

data subject to misclassification. Each chapter of the dissertation is an independent

unit with individual literature reviews and conclusions. In Chapters Two and Three

we restrict ourselves to cohort studies subject to differential and non-differential

misclassification, respectively. In Chapter Four, we consider the interval estimation

of a Poisson rate using data subject to misclassification in the form of false-negative

and false-positive counts. Finally, in Chapter Five, we derive interval estimation

methods for a Poisson rate using data subject to visibility bias or under-reporting.

In all chapters, we propose a model and derive numerically maximum likelihood es-

timators (MLEs) and the restricted maximum (RMLEs) likelihood estimators. We

then use the MLEs to derive multiple CIs for the odds ratio parameter or the Poisson

rate parameter of interest. In the last part of each chapter, we conduct a Monte

Carlo simulation study to compare the proposed intervals. In Chapters Four and

Five, we also apply the newly derived CIs to real data examples.
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CHAPTER TWO

Three Approximate Confidence Intervals for the Odds Ratio in a 2× 2 Cohort
Study with Differential Misclassification

2.1 Abstract

We derive two first-order likelihood-based confidence intervals (CIs) and one

pseudo-likelihood-based CI for the odds ratio in a 2 × 2 cohort study subject to

differential misclassification using the double sampling paradigm for binary data.

Specifically, we derive the Wald, score, the approximate integrated likelihood (AIL)-

based CIs. We compare average coverage properties and median interval widths of

the newly derived CIs via a Monte Carlo simulation. We conclude that the AIL

interval is superior in terms of average coverage and interval width properties to the

Wald and score CIs for the parameter configurations we study.

2.2 Introduction

The typical goal of a cohort study is to compare the incidence of disease in

one or more study cohorts. If there are two cohorts in the study, then the one with

individuals who have experienced a putative causal event or condition is referred

as the exposed cohort, and the other is referred to as the unexposed, or reference,

cohort (Rothman, Greenland, and Lash, 2008). The odds ratio (OR) is the odds

that an outcome will occur given a particular exposure, divided by the odds of the

outcome occurring in the absence of that exposure. Odds ratios are most commonly

used in case-control studies but may also be used in cohort study designs as well

(Szumilas, 2010).

Differential misclassification is a problem that can arise in many cohort studies.

This systematic error leads to an over- or under-estimation of the actual magnitude

of the OR that can produce considerable bias in the OR estimator, which depends
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on the proportion of subjects that are misclassified. Epidemiologists have long rec-

ognized that measurement errors have been among the major weaknesses of their

studies and have gone to great lengths to try to assess the magnitude of such errors

and their likely impact on the conclusions. This problem has spurred much research,

initially with respect to understanding the effects of measurement error on exposure-

response relationships and more recently on developing methods to correct such er-

rors. For instance, Gustafson, Le, and Saskin (2001) have considered a case-control

analysis with a dichotomous exposure variable that is subject to misclassification.

Their research shows that if the classification probabilities are known, methods are

available to adjust odds-ratio estimates in light of misclassification. Walter and

Irwig (1988) have reviewed methods for the analysis of categorical, clinical, and epi-

demiological data, in which the observations are subject to misclassification. They

have found that under certain conditions, one can estimate error parameters such

as sensitivity, specificity, relative risk, or predictive value, even though no gold stan-

dard is available. Thomas, Stram, and Dwyer (1993) have reviewed a variety of

methods that have been suggested for adjusting exposure-response relationships for

measurement error and their relationships.

A large research literature is available on binary data subject to misclassi-

fication that provides point and interval estimation methods for various functions

of the proportion parameters. For one-sample problems, several researchers have

considered the case in which only one type of error is present. For example, Lie,

Heuch, and Irgens (1994) have used a maximum likelihood approach, where false-

negative errors were corrected using fallible classifiers. York, Madigan, Heuch, and

Lie (1995) have considered this same problem from a Bayesian perspective. When

data are obtained using a double-sampling scheme, Moors, Van Der Genugten, and

Strijbosch (2000) have discussed the method of moment and maximum likelihood

estimation, in addition to one-sided interval estimation. Boese, Young, and Stamey
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(2006) have derived several likelihood and pseudo-likelihood-based CIs for a single

proportion parameter, while Lee and Byun (2008) have provided Bayesian credible

sets using non-informative priors for the same problem.

Moreover, several researchers have also studied one-sample problems with both

types of misclassification error. In conjunction with double sampling, Tenenbein

(1970) has proposed a maximum likelihood estimator (MLE) for a proportion pa-

rameter and has derived an expresssion for the asymptotic variance. For the case

when training data is unavailable in one-sample problems, Gaba and Winkler (1992)

and Viana, Ramakrishnan, and Levy (1993) have developed Bayesian approaches us-

ing sufficiently informative priors.

Here, we derive three approximate CIs for the OR parameter in a 2× 2 cohort

study that uses double sampling. The Wald and score intervals are likelihood based,

and the AIL interval is based on the integrated or marginal likelihood. We consider

the case of differential misclassification for both fallible and infallible samples; that

is, the specificity and sensitivity of those samples are not assumed to be equal.

The double-sampling procedure allows us to estimate nuisance parameters and then

derive the three CIs mentioned above.

This chapter is organized as follows. We present the model and the double-

sampling scheme in Section 2.3. In Section 2.4, we derive the MLES of the parameter

of interest and the model nuisance parameters, which are used to derive the Wald

CI. To derive the other two CIs, we define the restricted maximum likelihood esti-

mators (RMLEs) of the nuisance parameters and describe their derivation in Section

2.5. In Section 2.6, we derive the observed Fisher information (OFIM) matrix and

then derive the Wald, score, and AIL CIs. In Section 2.7, we utilize Monte Carlo

simulation methods to compare the coverage and interval width properties of the

CIs. Finally, we comment on the simulation results in Section 2.8.

11



2.3 The Model

The individuals in a 2 × 2 cohort study either have been exposed or have

not been exposed to a certain medical condition. We define the binary random

variable D as the disease level (D = 1 for diseased, D = 0 for not diseased) for each

individual in the population. Following the double-sampling scheme introduced by

Tenenbein (1970), we assume that two testing procedures are available to determine

the exposure level of each participant. In the first stage, we classify all individuals in

the study using solely a fallible procedure. Let Z denote the fallible exposure level,

where Z = 1 represents an individual who is classified by the fallible test as exposed

and Z = 0 represents an individual who is classified by the fallible procedure as

not exposed. Such a procedure is usually fast, inexpensive, and non-invasive and is

performed on a relatively large sample. In the second stage of the double-sampling

scheme, we use a smaller sub-sample of the fallible test sample and perform a second

gold standard procedure on this sub-sample P . Let X denote the gold standard

exposure level, where X = 1 represents an individual who is classified as exposed by

the gold standard test, and X = 0 represents an individual who is classified as not

exposed by the gold standard test. This test is often so expensive, time-consuming,

and invasive that it is performed on only a small group of individuals. Because

we know that the gold standard test is absolutely accurate, we use the parameter

estimates from this sub-sample to correct for the estimator bias (Tenenbein, 1970).

Let Z = j, X = k, and D = i represent the fallible test outcome, gold standard

test outcome, and actual disease outcome, respectively, where i, j, k = 0, 1. The cell

count for the fallible data in the cell with D = i, and Z = j is denoted by Wij,

and the cell count for the validation data or double sampled-data for the cell with

X = k, D = i and Z = j will be denoted by Vkij.
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The number of individuals tested with both fallible and gold standard pro-

cedures, Mk, is predetermined by the researcher and is a sub-sample of the total

number of people participating in the study Mk + Ni for each i, k = 0, 1. For a

visual representation of the above notations, refer to Table 2.1.

Table 2.1: Counts for a Study with Misclassified Exposure Data
Validation Study (Complete) fallible Study (Incomplete)

Fallible X = 1 X = 0 X = 1 X = 0
(Z) D = 1 D = 1 D = 0 D = 0 D = 1 D = 0
Z = 1 V111 V011 V101 V001 W11 W01

Z = 0 V110 V010 V100 V000 W10 W00

M1 M0 N1 N0

For the infallible classifier study, we denote the joint probability of exposure

and the disease level categories.

πi = Pr(X = 1, D = i), (2.1)

where X = 1 for the ith group (D = i) with i = 0, 1. Also, for the fallible test

or classifier, we define the sensitivity, Si, as the probability that an individual tests

positive for the fallible test (Z = 1) and the same individual tests positive on the gold

standard procedure (X=1 ) for each of the disease-level categories D = i, i = 0, 1.

Thus,

Si = Pr(Z = 1|X = 1, D = i), (2.2)

where i = 0, 1. We denote the probability that an individual does not have the

disease according to the fallible test (Z = 0) and has a negative result on the gold

standard procedure (X=0) for disease categories D = i, i = 0, 1, as

Ci = Pr(Z = 0|X = 0, D = i), (2.3)

where i = 0, 1. We remark that we assume distinct values for the specificity and

sensitivity for each of the disease-level group, which we refer to as differential mis-

classification.
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Based on (2.1) - (2.3) and the derivations given in Prescott and Garthwaite

(2002), the distribution on the observable counts for the validation and fallible stud-

ies are

(V1i1, V1i0, V0i1, V0i0) ∼Multi(πiSi, πi(1− Si), (1− πi)(1− Ci), (1− πi)Ci) (2.4)

and

Wi1 ∼ Bin(Ni, πiSi + (1− πi)(1− Ci)),

respectively, where i = 0, 1. The OR ψ that associates the gold standard exposure

level X with the disease outcome D is

ψ ≡ π1(1− π0)
π0(1− π1)

. (2.5)

Dahm, Gail, Rosenberg, and Pee (1995) have provided an example of a prospec-

tive cohort study of the prognostic value of a renal biopsy (X) on a five-year survival

rate (D = 1, if death is within five years). One might wish to perform renal biopsy

studies on no more than 100 patients because of the possible complications and dis-

comfort. Instead of a renal biopsy, one might wish to use a non-invasive test (Z)

to obtain additional information on the prognostic significance of a renal biopsy by

studying an additional sample of individuals using non-invasive tests only. Also,

Pepe (1992) has reported a cohort study that investigated whether aplastic anemia

patients who had undergone bone marrow transplants would develop graft-versus-

host disease (GVHD). The data sets consisted of 179 subjects in two groups: those

aged below 20 and those above 20. Two classifiers were used to classify the patients.

The first was a gold standard test (X), referred to as “Chronic GVHD,” an expen-

sive test that obtained responses via the long-term follow-up of each patient. The

other was the fallible classifier (Z), referred to as “Acute GVHD,” which could be

measured instantly and was adopted as a sensible surrogate for “Chronic GVHD.”
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2.4 Maximum-Likelihood Estimators

Let η ≡ (π1, C1, C0, S1, S0)
′ be the nuisance parameter vector and let d ≡

(W0i,W1i, V1i1, V0i1, V1i0, V0i0)
′, where i = 0, 1 (0 for diseased, 1 for non-diseased),

denote the observed counts for both fallible and validation studies. If we let Lo ≡

Lo(π1, π0, C1, C0, S1, S0|d), then the concentrated observed-likelihood function is

Lo ∝
1∏
i=0

[πiSi + (1− πi)(1− Ci)]Wi1 [1− πiSi − (1− πi)(1− Ci)]Ni−Wi1×

(πiSi)
V1i1 [πi(1− Si)]V1i0 [(1− πi)(1− Ci)]V0i1 × [(1− πi)Ci][Mi−(V1i1+V1i0+V0i1)].

Because our interest is the estimation of ψ, using (2.5), we solve for π0 and then

substitute for its expression into the likelihood function Lo. The transformed con-

centrated log-likelihood is

`ψ ∝ W11 ln[π1S1 + (1− π1)(1− C1)] +W01 ln

[
(1− C0)(1− π1)ψ + π1S0

ψ + π1 − ψπ1

]
+ (N1 −W11) ln[1− π1S1 − (1− π1)(1− C1)] + V101 ln

[
π1S0

ψ + π1 − ψπ1

]
+ (N0 −W01) ln

[
C0ψ + π1 − C0ψπ1 − π1S0

ψ + π1 − ψπ1

]
+ V100 ln

[
(π1 − π1S0)

ψ + π1 − ψπ1

]
+ V111 ln(π1S1) + V110 ln[π1(1− S1)] + V011 ln[(1− π1)(1− C1)]

+ [M1 − (V111 + V110 + V011)] ln[(1− π1)C1] + V001 ln

[
(1− C0)(1− π1)ψ
ψ + π1 − ψπ1

]
+ [M0 − (V101 + V100 + V001)] ln

[
C0ψ − π1ψC0

ψ + π1 − ψπ1

]
.

(2.6)

We next use (2.6) and calculations from Joseph et al. (1995) and Prescott and

Garthwaite (2002) to obtain the MLEs

π̂i =
(V0i0 + V1i0 +Wi0)(V1i0V0i1 + V1i0V1i1)

(V0i0 + V0i1 + V1i0 + V1i1 +Wi0 +Wi1)(V0i0 + V1i0)(V0i1 + V1i1)

+
(V0i1 + V1i1 +Wi1)(V1i1V0i0 + V1i1V1i0)

(V0i0 + V0i1 + V1i0 + V1i1 +Wi0 +Wi1)(V0i0 + V1i0)(V0i1 + V1i1)
,

Ŝi =
(V0i0 + V1i0)V1i1(V0i1 + V1i1 +Wi1)

(V0i1 + V1i1) [(V0i0 + V1i0)(V1i0 + V1i1) + V1i0Wi0] + (V0i0 + V1i0)V1i1Wi1

,
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Ĉi =
V0i0(V0i1 + V1i1)(V0i0 + V1i0 +Wi0)

(V0i1 + V1i1) [(V0i0 + V1i0)(V0i0 + V0i1) + V0i0Wi0] + (V0i0 + V1i0)V0i1Wi1

,

where i = 0, 1. By the invariance property of the MLEs, we have that

ψ̂ =
(V001 + V101) [(V000 + V100)(V000 + V001) + V000W00] + (V000 + V100)V001W01

(V001 + V101) [(V000 + V100)(V100 + V101) + V100W00] + (V000 + V100)V101W01

× (V011 + V111)[(V010 + V110)(V110 + V111) + V110W10] + (V010 + V110)V111W11

(V011 + V111) [(V010 + V110)(V010 + V011) + V010W10] + (V010 + V110)V011W11

.

(2.7)

One can find a more detailed description of the above MLE derivations in Appendix

A.1.

2.5 Restricted Maximum-Likelihood Estimators

Two of the CIs we consider here require evaluations of RMLEs for the nuisance

parameters. To calculate the score and AIL CIs, we must evaluate the likelihood

function using the RMLEs to eliminate the nuisance parameters. We next describe

how we obtain the RMLEs of the nuisance parameters.

First, consider the cell counts for the validation study (refer to Table 2.1) and

recall that these counts are subject to misclassification. We define a set of new latent

variables, U1ij, for the unobserved misclassified data counts under the assumption

that an infallible test was performed. The subscripts i, j = 0, 1, correspond to the

outcomes of the true disease condition (D) and the fallible test (Z ), respectively, for

each patient in the study. In Table 2.2 we show that U1ij are the unobserved portions

of the observed counts Wij. Also, from previous derivations and the assumption that

Table 2.2: Counts for the Fallible Study with Unobserved, Misclassified Data
Fallible Study (Incomplete)

Fallible X = 1 X = 0 X = 1 X = 0
(Z) D = 1 D = 1 D = 0 D = 0
Z = 1 U111 W11 − U111 U101 W01 − U101

Z = 0 U110 W10 − U110 U100 W00 − U100

U111 + U110 N1 − (U111 + U110) U101 + U100 N0 − (U101 + U100)
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the validation study is a sub-sample of the main study, we have

(U1i1 + U1i0) ∼ Bin(Ni, πi),

U1i1|(U1i1 + U1i0) ∼ Bin(U1i1 + U1i0, Si),

and

(Wi0 − U1i0)|(U1i1 + U1i0) ∼ Bin(Ni − (U1i1 + U1i0), Ci),

where i = 0, 1. See Joseph, Gyorkos, and Coupal (1995) for more details. Let dfull ≡

(W0i,W1i, V1i1, V0i1, V1i0, V0i0, Ui11, Ui10)
′, where i = 0, 1 represents the full data vec-

tor. The complete-data likelihood function LU ≡ LU(π1, π0, C1, C0, S1, S0|d full) is

detailed in Appendix A.2. Next, we construct an EM algorithm to determine the

RMLEs for a fixed value of ψ because no closed-form solutions for the RMLEs exist.

The EM algorithm steps are outlined in Appendix 1.2.1.

2.6 Three Approximate Confidence Intervals for ψ

In this section we derive three approximate CIs for the OR ψ. All three CIs

utilize the observed Fisher information matrix(OFIM) described below.

2.6.1 The Observed Fisher Information Matrix

We use the inverse of the OFIM to estimate the covariance matrix of the MLEs

and then construct the likelihood and pseudo-likelihood-based CIs for ψ. Recall that

we have five nuisance parameters because we assume differential misclassification and

have distinct values for the specificity and sensitivity for each of the disease-level

group. Let θ = (ψ,η′)′ represent our vector of parameters, where ψ is the OR.
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Then, the OFIM is

J(ψ,η) ≡ −



∂2`ψ
∂ψ2

∂2`ψ
∂ψ∂π1

∂2`ψ
∂ψ∂S0

∂2`ψ
∂ψ∂S1

∂2`ψ
∂ψ∂C0

∂2`ψ
∂ψ∂C1

.
∂2`ψ
∂π2

1

∂2`ψ
∂π1∂S0

∂2`ψ
∂π1∂S1

∂2`ψ
∂π1∂C0

∂2`ψ
∂π1∂C1

. .
∂2`ψ
∂S2

0

∂2`ψ
∂S0∂S1

∂2`ψ
∂S0∂C0

∂2`ψ
∂S0∂C1

. . .
∂2`ψ
∂S2

1

∂2`ψ
∂S1∂C0

∂2`ψ
∂S1∂C1

. . . .
∂2`ψ
∂C2

0

∂2`ψ
∂C0∂C1

. . . . .
∂2`ψ
∂C2

1


, (2.8)

where `ψ is given in (2.6). In Appendix A.3, we give expressions for each of the

elements in (2.8). Also, we partition (2.8) so that

J (ψ,η) ≡

 J11 J12

J21 J22

 , (2.9)

where J11 = Jψ is a scalar. We use (2.9) in Section 2.6.2 below to develop the score

and AIL CIs for ψ.

2.6.2 A Wald Confidence Interval for ψ

We first describe a Wald CI for ψ. The Wald statistic for ψ with nuisance

vector η is

W = (ψ̂ − ψ)2[J11(ψ̂, η̂)]−1,

where J11 = (J11−J12J
−1
22 J21)

−1 (see Pawitan (2001)). An approximate 100(1−α)%

Wald CI for the parameter ψ consists of the values of ψ that satisfy

(ψ̂ − ψ)2[J11(ψ̂, η̂)]−1 < χ2
1(1− α),

where χ2
1(1 − α) denotes the (1 − α) quantile of a central chi-squared distribution

with one degree of freedom. Thus, an approximate (1 − α)% Wald CI for ψ under

the double-sampling paradigm with differential misclassification is

ψ̂ −
√
χ2
1(1− α)[J11(ψ̂, η̂)] < ψ < ψ̂ +

√
χ2
1(1− α)[J11(ψ̂, η̂)] (2.10)
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2.6.3 A Score Confidence Interval for ψ

Second, we describe a score CI for the OR ψ, which is a likelihood related

interval. The score interval with nuisance parameters, based on Rao’s score statistic,

is

Sc =
[
S(ψ, η̂ψ)

]2 [
J11(ψ, η̂ψ)

]
∼̇χ2

p,

where ψ is the parameter of interest and η is the vector of nuisance parameters. An

approximate 100(1− α)% score CI consists of the values of ψ that satisfy[
S(ψ, η̂ψ)

]2 [
J11(ψ, η̂ψ)

]
< χ2

1(1− α), (2.11)

where η̂ψ is the restricted MLE (RMLE) of the nuisance vector, η, evaluated at

a fixed ψ. We evaluate the OFIM at the RMLEs of the nuisance parameters for

each fixed value of ψ. Because one cannot directly solve (2.11) for ψ, we use an

EM algorithm described in Appendix A.2 and a bisectional root-finding method to

numerically determine the CI (2.11).

2.6.4 An Approximate Integrated Likelihood Confidence Interval for ψ

Last, we describe a CI based on the approximate integrated likelihood. In most

cases, integrating out the nuisance parameters, as in the integrated likelihood, can

be computationally intensive or even intractable. We therefore employ the Laplace

approximation to obtain a more computationally feasible likelihood and express the

approximate integrated likelihood function as

LAI(ψ) =

∫
L(ψ,η)dη ≈ cLP (ψ)∣∣∣Ĵη(ψ, η̂)

∣∣∣1/2 ,
where c = (2π)ν/2, ν is the dimension of the nuisance parameter and

LP (ψ) ≡ max
η

L(ψ,η) = L(ψ, η̂ψ),

where η̂ψ is the restricted or profile MLE of η and the profile likelihood function.

Notice that Jη is the nuisance parameter sub-matrix of the OFIM. Thus, Ĵη ≡ J22
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in (2.9) evaluated at the nuisance parameter MLEs. We use the OFIM elements

given in Appendix A.3, the MLEs shown in Section 2.4 and an iterative bisectional

root-finding method to determine a CI composed of the values of ψ that satisfy the

inequality

−2
[
`AI(ψ)− `AI(ψ̂AI)

]
< χ2

1(1− α), (2.12)

where `AI(ψ) is the approximate integrated log likelihood evaluated at ψ.

2.7 A Monte Carlo Simulation

We compared the performance of the three proposed CIs for ψ based on cover-

age probability and median interval width properties via a Monte Carlo simulation.

Specifically, we examined the effect of the sample sizes of both cohorts, Mi and Ni,

respectively, for i = 0, 1, the effect of the disease probability πk, where k = 0, 1, for

the gold standard test outcome X = 0, 1, and the magnitude of ψ, on the coverage

probability and median interval width of the CIs defined in (2.10), (2.11) and (2.12).

2.7.1 Simulation Parameter and Sample-Size Configurations

In this simulation study, we assume two values for the odds ratio ψ: ψ = 2 and

ψ = 4. Also, πi = Pr(X = 1, D = i), where i = 0, 1, represents the joint probabilities

of exposure and disease status. Here, X = 1 indicates that the participant was

classified as exposed by the gold standard and D = 0 or 1 indicated the condition

of the participant as not-diseased or diseased, respectively. Next, we defined the

sensitivity and specificity probabilities for the simulation in this cohort study with

differential misclassification (CODIFF). Recall that the sensitivities and specificities

are Si = Pr(Z = 1|X = 1, D = i) and Ci = Pr(Z = 0|X = 0, D = i), where i = 0, 1,

respectively. Due to the high degree of complexity involved in the simulation over

the parameter space, we considered only low and high misclassification with the

corresponding sensitivity and specificity probability values displayed in Table 2.3.

We examined the CIs for eight different sample sizes in each of the described situa-

20



Table 2.3: Parameter Configurations Used in the Simulation for CODIFF

Conf. ψ π0 π1 Misclassification C0 C1 S0 S1

C2.1 2 0.25 0.40 low 0.99 0.97 0.98 0.96
C2.2 4 0.38 0.71 low 0.99 0.97 0.98 0.96
C2.3 2 0.25 0.40 high 0.90 0.85 0.80 0.75
C2.4 4 0.38 0.71 high 0.90 0.85 0.80 0.75

tions – low misclassification with ψ = 2 and high misclassification with ψ = 4. The

sample sizes for each of the considered validation and fallible studies are displayed

in Table 2.4. Refer to Table 2.1 for the definition of Mi and Ni, i = 0, 1. We re-

Table 2.4: Sample Sizes Used in the Simulation for CODIFF

A1 A2 A3 A4 A5 A6 A7 A8

M0 100 100 150 200 250 300 350 400
M1 60 60 74 100 124 150 174 200
N0 500 1000 1500 2000 2500 3000 3500 4000
N1 240 500 740 1000 1240 1500 1740 2000

mark that the sample sizes for the validation studies are considerably smaller when

compared to the corresponding sample sizes for the fallible studies. We generated

10,000 data sets for each parameter configuration given in Table 2.3 and calculated

the three proposed approximate 95% confidence intervals for ψ for each data set.

2.7.2 Simulation Results

We compared the coverage properties and median interval widths for the Wald,

score, and AIL CIs via a Monte Carlo simulation. The simulation results for param-

eter configurations C2.1 and C2.2 are displayed in Figures 2.1 - 2.4. Figures 2.1 and

2.3 depict coverage probabilities, and Figures 2.2 and 2.4 display median interval

widths for the sample-size scenarios A1 - A8 given in Table 2.4, for ψ = 2, 4, and for

our low differential misclassification scenario.

Under parameter configuration C2.1, we see in Figure 2.1 that the Wald interval

coverage probability was conservative and overcovered the nominal 95% confidence
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level for all considered sample-size scenarios, A1 - A8. Although the score CI is often

believed to be an improvement over the Wald CI, it yielded the smallest coverage

probability for most of the sample-size scenarios considered here. In Figure 2.1, the

AIL CI showed better coverage properties of ψ than the Wald and the score CIs. The

AIL CI slightly under-covered the OR ψ for the configurations A1 - A8, but as the

sample sizes increased, the AIL CI coverage probabilities approached the nominal

95% confidence level.

Figure 2.1: Coverage rates of W, S, and AIL CIs for a cohort study under C2.1.

In Figure 2.2, we see that as the sample sizes increased, the median interval

widths of the Wald CIs became consistently larger than the median interval widths of

the AIL CIs. Hence, the actual parameter value for ψ is more likely to be contained

in the Wald CIs, thus resulting in over-coverage for the Wald interval.
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Figure 2.2: Interval widths of W, S, and AIL CIs for a cohort study for C2.1.
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The score CI yielded the greatest interquartile ranges for the sample-size sce-

narios A1 - A8 and the smallest coverage probabilities. The poor coverage properties

for the score interval could be partially explained by the large variability in the score

interval widths. The median interval widths of the score CIs for scenarios A1 - A8

were larger than those of the Wald and AIL CIs. The median AIL interval widths

were much smaller than the Wald and score median interval widths and the validity

in interval width was much less as well. Of the three CIs considered here, the AIL

CI yielded the best overall coverage properties for the interval estimation of ψ. The

simulation coverage probabilities and median interval width results obtained under

parameter configuration C2.2 are almost identical to the coverage and interval width

properties for the case of low differential misclassification with ψ = 2.

We noticed in Figure 2.3 that the Wald CIs were very conservative and over-

covered the nominal 95% confidence level for all of the sample-size scenarios in Table

2.4. The score CIs yielded the smallest average coverage probabilities and appeared

to underestimate the nominal 95% confidence level for all considered sample-size

scenarios. However, the AIL interval displayed better coverage properties of ψ than

those of the Wald and the score CIs in that they displayed only a slight under-

coverage. Figure 2.3 also showed that for the sample-size scenario A1, the AIL CI

underestimated the coverage, but as the considered sample sizes increased, the AIL

CIs approached the nominal 95% confidence level.

In Figure 2.4, we see that as the sample sizes increased, the Wald CIs had

larger median widths compared to those of the other competing CIs and, as the

sample sizes increased, the interval widths of all intervals decreased. The median

interval widths of the score CIs for the considered sample-size scenarios A1 - A8

were considerably shorter than those of the Wald and AIL CI widths, thus perhaps

explaining the under-coverage for the score interval displayed in Figure 2.3.
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Figure 2.3: Coverage rates of W, S, and AIL CIs for a cohort study for C2.2.

Of the three competing interval estimators, the AIL CI yielded the best cov-

erage properties and displayed good interval-width properties for the interval esti-

mation of ψ. Lastly, we compared the coverage probability properties and median

interval widths for the Wald, score, and AIL interval estimators using the simulation

results in Figures 2.5 - 2.8. Figures 2.5 and 2.7 depict estimated coverage probabil-

ities and Figures 2.6 and 2.8 display the median interval widths across the different

sample-size scenarios, A1 - A8, in Table 2.4 for ψ = 2, 4, under high differential

misclassification.
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Figure 2.4: Interval widths of W, S, and AIL CIs for a cohort study for C2.2.
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Figure 2.5: Coverage rates of W, S, and AIL CIs for a cohort study for C2.3.

For the parameter configurations C2.3 and C2.4, we see in Figures 2.5 and 2.7,

respectively, that although the Wald CI slightly under-covered for the nominal 95%

confidence level for all considered sample-size scenarios, its coverage properties were

good. However, the score interval yielded the lowest coverage probabilities. From

Figures 2.5 and 2.7, we observed that the AIL CI yielded better coverage properties

than the Wald and score CIs. Summarily, the AIL CI was an excellent CI for

estimating ψ under parameter configurations C2.3 and C2.4.
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Figure 2.6: Interval widths of W, S, and AIL CIs for a cohort study for C2.3.
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Figure 2.7: Coverage rates of W, S, and AIL CIs for a cohort study for C2.4.

Figures 2.6 and 2.8 indicated that as the sample sizes increased, the median

interval widths of the AIL interval were consistently larger than the corresponding

Wald and score interval widths. Hence, it is highly probable that the actual parame-

ter value is more frequently contained in the AIL CIs, therefore resulting in the best

overall coverage properties confirmed in Figures 2.5 and 2.7. The median interval

widths of the score interval were smaller than those of the competing CIs for all

sample-size scenarios, A1 - A8, hence supporting the under-coverage seen in Figures

2.5 - 2.7. Overall, we have smaller variability for all CI widths in Figures 2.6 and 2.8.

This fact could occur because we have more data to estimate the misclassification

parameters Si and Ci, i = 0, 1, under the high misclassification scenario.

29



Figure 2.8: Interval widths of W, S, and AIL CIs for a cohort study for C2.4.
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2.8 Comments

In this paper, we have derived two likelihood-based and one pseudo-likelihood-

based approximate CIs for the OR parameter for a cohort study using the double-

sampling scheme for binary data subject to differential misclassification. Through

our simulation results, we have concluded that the AIL interval yields coverage prob-

abilities closest to the nominal confidence level regardless of the OR parameter values

or the degree of differential misclassification. This result appears to be consistent

with the findings of several authors who have examined the AIL pseudo-likelihood

interval under different settings, (Boese (2005), Greer (2008), and Markova (2011)).

The score CI performed the worst in our simulation study in terms of coverage

probability and was also more computationally demanding than the Wald and AIL

CIs.
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CHAPTER THREE

Three First-Order Asymptotic Confidence Intervals for the Odds Ratio in a 2× 2
Cohort Study with Non-Differential Misclassification

3.1 Abstract

We derive three first-order asymptotic confidence intervals for the odds ratio

in 2×2 cohort studies using a double-sampling scheme under the assumption of non-

differential misclassification. Specifically, we obtain Wald, profile likelihood (PL),

and approximate integrated likelihood-based (AIL) confidence intervals (CIs). We

examine average coverage probabilities and median interval width properties of the

newly obtained CIs via a Monte Carlo simulation study. For a low degree of non-

differential misclassification, the Wald CI performed the best among the competing

intervals in terms of average coverage properties. However, for a high degree of

non-differential misclassification, the AIL CI was superior to the Wald and PL CIs

in terms of average probabilities coverage and median-interval-width properties for

the parameter configurations considered here.

3.2 Introduction

A cohort study is a form of longitudinal study in which the population under

investigation consists of individuals who are at risk of developing a specific disease

or health outcome. These individuals are observed for a period of time in order

to measure the frequency of occurrence of the disease among those exposed to the

suspected causal agent as compared to those not exposed (Blumenthal, Fleisher,

Esrey, and Peasey, 2001). Hence, the objective in all cohort studies is to partition

the cohort into a group of exposed individuals and a group of non-exposed individuals

and follow their disease status over time. A famous example of a cohort study is the

Nurse’s Health Study, in which cohorts of nurses were followed for over thirty years
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to see how various factors, such as smoking, exercise, and hormone levels, affect their

long-term health.

In most 2 × 2 cohort studies, a researcher uses the odds ratio (OR), which

is the ratio of the probability of occurrence of an event to that of non-occurrence.

The OR describes the strength of association between an exposure and a disease

outcome. In most epidemiologically based studies, such as cohort studies, the OR

may be poorly estimated due to non-differential misclassification of exposure. For

example, for a binary exposure variable, some exposed subjects may be classified as

non-exposed while some non-exposed subjects may be classified as exposed. Non-

differential misclassification of exposure is present if, regardless of disease, all exposed

and non-exposed subjects have the same probability of being misclassified (Sorahan

and Gilthorpe, 1994).

Modern epidemiological techniques have been developed largely as a result of

outbreak investigations of infectious disease during the nineteenth century (Blumen-

thal, Fleisher, Esrey, and Peasey, 2001). John Snow’s study of cholera in London and

its relationship to water supply is widely considered to be the first epidemiological

study (Snow, 1851). A goal of many epidemiological studies is to assess the asso-

ciation between a binary exposure variable and the presence or absence of disease.

A potential complication is that, for various reasons, the exposure variable may be

misclassified (Prescott and Garthwaite, 2002). Data that includes misclassified data

has initiated much research on comprehending the deleterious effects of misclassifi-

cation on exposure-response relationships and developing procedures to rectify the

misclassification-caused bias problems.

A considerable literature on the estimation of the OR under misclassification

has accumulated. For instance, Walter and Irwig (1988) have examined methods to

analyze categorical clinical and epidemiological data, in which the observations were

subject to misclassification. They demonstrated that under certain conditions, it
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is possible to estimate error parameters such as specificity, sensitivity, relative risk,

or predictive value although no definitive classification (gold standard) is available.

Thomas, Stram, and Dwyer (1993) have examined several proposed methods for

adjusting exposure-response relationships for measurement error. Gustafson, Le, and

Saskin (2001) have considered a case-control analysis with a dichotomous exposure

variable that was subject to misclassification and showed that if the classification

probabilities are known, then methods are available to adjust the OR for misclassified

counts.

Several researchers have been concerned with point and interval estimation

on functions of the population proportion obtained from misclassified data by using

a double-sampling scheme. See Tenenbein (1970, 1972); Geng and Asano (1989);

York, Madigan, Heuch, and Lie (1995); Moors, Van Der Genugten, and Strijbosch

(2000); Barnett, Haworth, and Smith (2001); Boese, Young, and Stamey (2006); and

Lee and Byun (2008).

In particular, Tenenbein (1970, 1972) has introduced a double-sampling scheme

to estimate a population proportion parameter using misclassified binomial and

multinomial data. York et al. (1995) have illustrated the advantage of a double-

sampling scheme to estimate the proportion of infants born with Down’s Syndrome,

while Barnett et al. (2001) have presented a two-phase sampling scheme with ap-

plications to auditing. They have discussed methodologies for combining two data

sets to produce optimum estimates of the proportion of financial transaction in er-

ror. Also, Boese et al. (2006) have approached the interval-estimation problem by

deriving five asymptotic confidence intervals in the false-positive misclassification

model. These intervals were based on certain combinations of pseudo-likelihood-

based statistics, likelihood-based statistics, and differing Fisher-information types.

Lee and Byun (2008) have provided a simple but effective interval estimator for the

population proportion with double-sampled data subject to false-positive classifica-
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tion relying on the Bayesian paradigm. In this paper we obtain one likelihood-based

CI and two pseudo-likelihood-based CIs for the OR parameter in a cohort study

using the double-sampling paradigm. Specifically, we derive and compare Wald, PL,

and the AIL CIs to estimate the OR from a 2× 2 cohort study.

We have organized the remainder of this paper as follows. We present the

model, basic terms, and needed notation in Section 3.3. We examine the double-

sampling scheme as well as the assumption of non-differential misclassification in

Section 3.3. In Section 3.4 we derive maximum-likelihood-estimating equations for

both the parameter of interest and the nuisance parameters. We use the Newton-

Raphson method for determining the parameter MLEs for the model because we

cannot determine closed-form solutions. We use the results of this section to develop

a Wald CI for the OR. The other two intervals require the derivation of restricted

maximum-likelihood estimators (RMLEs) for the nuisance parameters. We present

an EM algorithm to determine the RMLEs in Section 3.5. Further, in Section 3.6

we obtain the observed Fisher information matrix (OFIM), which is used to de-

rive the three CIs for the odds ratio: the Wald, PL, and AIL intervals. In Section

3.7 we describe a Monte Carlo simulation study comparing the coverage proba-

bilities and median interval widths of each of the three intervals for two levels of

misclassification–low and high. Finally, in Section 3.8 we give some brief concluding

remarks.

3.3 A Double-Sampling Model

Recall that the cohort under investigation consists of individuals in a 2 × 2

cohort study who have been observed for a period of time and then tested for the

disease of interest and exposure outcomes. The binary random variable D represents

the disease level (D = 1 for diseased, D = 0 for not diseased) of each individual

in the study. Researchers have found cohort studies advantageous for the study of
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both relatively common outcomes and relatively rare exposures. However, because

careful classification of exposures and outcomes is needed, as is the measurement

and control of confounding factors, cohort studies are often complex and difficult to

manage. The time span is usually at least a year and, consequently, cohort studies

are expensive (Blumenthal et al. (2001)).

Employing the double-sampling scheme first proposed by Tenenbein (1970),

we assume that there are two measuring devices used to classify participants as

exposed or not exposed to a suspect causal agent. One is an inexpensive fallible

device, and the other is an expensive infallible device. In stage one, the whole

sample is classified by an inexpensive but fallible device, and in stage two, a smaller

sub-sample is classified by a supplementary inerrant device usually referred to as a

gold standard device. We therefore define two binary random variables: the gold

standard exposure indicator X (X = 1 for exposed, X = 0 for not exposed) and the

fallible exposure indicator Z (Z = 1 for exposed, Z = 0 for not exposed).

Let the subscripts k, i, and j represent the gold standard test outcome, X = k;

the true disease status, D = i; and the fallible test outcome, Z = j. We denote the

count for the incomplete data for the cell with D = i and Z = j by Wij. We denote

the cell count for the complete data for the cell with X = k, D = i and Z = j by

Vkij, where k, i, j = 0, 1.

Also, we use the notation Mk +Ni to represent the sample size from stage one

and represent the sample size of stage two by Mk for k, i = 0, 1. The overall design

of the cohort study with double sampling is shown in Table 3.1.

Table 3.1: Counts for a Study with Misclassified Exposure Data
Validation Study (Complete) Main Study (Incomplete)

Fallible X = 1 X = 0 X = 1 X = 0
(Z) D = 1 D = 1 D = 0 D = 0 D = 1 D = 0
Z = 1 V111 V011 V101 V001 W11 W01

Z = 0 V110 V010 V100 V000 W10 W00

M1 M0 N1 N0
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For the complete (validation, infallible) study, we denote the joint probability

of exposure and the disease-level categories; that is, the probability for X = 1 for

the ith group is

πi = Pr(X = 1, D = i), (3.1)

where i = 0, 1, for not diseased and diseased, respectively. After introducing the

fallible test, we define the specificity Ci as the probability that an individual does

not have the disease according to the fallible test (Z = 0) and the individual has a

negative result on the gold standard procedure (X=0) for each of the disease-level

categories D = 0, 1. We also define the sensitivity, or true positive rate, Si, as the

probability that an individual tests positive under the fallible test (Z = 1) and the

individual has a positive result on the gold standard procedure (X=1) for each of

the disease-level categories D = 0, 1.

Under the assumption of non-differential misclassification, we know that the

exposure status is independent of the disease outcome level, and we redefine the

specificity and sensitivity probabilities, respectfully, as

S = Pr(Z = 1|X = 1, D = i), i = 0, 1 (3.2)

and

C = Pr(Z = 0|X = 0, D = i), i = 0, 1. (3.3)

Based on (3.1) - (3.3) and derivations in Prescott and Garthwaite (2002),

we utilize the following multinomial distributions on the observable counts for the

complete study. We assume

(V111, V110, V011, V010) ∼Multi(π1S, π1(1− S), (1− π1)(1− C), (1− π1)C), (3.4)

and

(V101, V100, V001, V000) ∼Multi(π0S, π0(1− S), (1− π0)(1− C), (1− π0)C), (3.5)
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where i = 0, 1, indicates the actual disease status of the person in the study (0

for diseased, 1 for non-diseased). For the incomplete study, we assume a binomial

distribution for the observable cell counts so that

Wi1 ∼ Bin(Ni, πiS + (1− πi)(1− C)),

where i = 0, 1. The OR, which associates the gold standard exposure level X to the

disease outcome D, is

ψ ≡ π1(1− π0)
π0(1− π1)

. (3.6)

Many documented 2× 2 cohort studies with misclassified data have appeared

in the literature. For example, based on the work of Tenenbein (1970), York et al.

(1995) have illustrated the advantage of the double-sampling scheme in a cohort

study estimating the proportion of infants born with Down’s Syndrome nationwide.

From 1979 - 1984, for every birth in Norway, the midwife or obstetrician classified

each child with Down’s Syndrome based on a visual inspection (Z), and for a small

sub-sample of births, an expensive but accurate cytogenetic test (X) was applied for

the classification. Dahm, Gail, Rosenberg, and Pee (1995) gave another example of

a prospective cohort study of the prognostic value of a renal biopsy (X) on 5-year

survival (D = 1 if death within five years). Renal biopsy studies were performed

on 100 or fewer patients because of the possible complications and discomfort, and

instead of using a renal biopsy, researchers used a non-invasive test of renal function

(Z) on the whole cohort.

3.4 Maximum-Likelihood Estimators

Let θ ≡ (ψ,η
′
)
′

be the model parameter vector, where η ≡ (π1, C, S)
′

is the

vector of nuisance parameters. To derive the Wald, PL, and AIL CIs for ψ, we

must obtain the MLE of ψ and MLEs of the nuisance parameters π1, C, and S. Let

d ≡ (W0i,W1i, V1i1, V0i1, V1i0, V0i0)
′, where i = 0, 1, indicates the actual disease status

(0 for diseased, 1 for non-diseased) for the observed data counts from both the main
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(fallible) and the validation (infallible) studies. If we let Lo ≡ L(π1, π0, C, S|d) be

the observed likelihood function then

Lo ∝ [π1S + (1− π1)(1− C)]W11 [1− π1S − (1− π1)(1− C)]N1−W11

× (π1S)V111 [π1(1− S)]V110 [(1− π1)(1− C)]V011 × [(1− π1)C][M1−(V111+V110+V011)],

× [π0S + (1− π0)(1− C)]W01 [1− π0S − (1− π0)(1− C)]N0−W01

× (π0S)V101 [π0(1− S)]V100 [(1− π0)(1− C)]V001 × [(1− π0)C][M0−(V101+V100+V001)].

Using (3.6), we next make the transformation

π0 =
π1

π1 − π1ψ + ψ
. (3.7)

Now substituting the right-hand side of (3.7) for π0 into the log-likelihood function,

we get

`ψ ∝ W11 ln[π1S + (1− π1)(1− C)] +W01 ln

[
(1− C)(1− π1)ψ + π1S

ψ + π1 − ψπ1

]
+ (N1 −W11) ln[1− π1S − (1− π1)(1− C)] + V101 ln

[
π1S

ψ + π1 − ψπ1

]
+ (N0 −W01) ln

[
Cψ + π1 − Cψπ1 − π1S

ψ + π1 − ψπ1

]
+ V100 ln

[
(π1 − π1S)

ψ + π1 − ψπ1

]
+ V111 ln(π1S) + V110 ln[π1(1− S)] + V011 ln[(1− π1)(1− C)]

+ [M1 − (V111 + V110 + V011)] ln[(1− π1)C] + V001 ln

[
(1− C)(1− π1)ψ
ψ + π1 − ψπ1

]
+ [M0 − (V101 + V100 + V001)] ln

[
Cψ − π1ψC
ψ + π1 − ψπ1

]
,

(3.8)

where η is the nuisance parameter vector and `ψ represents the log-likelihood in

terms of ψ and η, given the observed data counts d. We remark that using a

different parametrization, Karunaratne (1991) has observed that one cannot derive

closed-form MLEs for any parameter in (3.8). Thus, we use a numerical method for

determining the MLEs of ψ and η.
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3.5 Restricted Maximum-Likelihood Estimators

The PL and AIL CIs require evaluation not only at the MLEs, but also at the

restricted MLEs (RMLEs) of the nuisance parameters. Hence, we next describe a

method to determine the RMLE for η for a fixed value of ψ.

We assume that the cell counts from the validation sample (refer to Table 3.1)

are subject to misclassification and define a new set of latent variables, U1ij, as the

unobserved misclassified counts. Recall that the subscripts, i, j = 0, 1, correspond to

the outcomes of the gold standard test (X), the true disease condition (D), and the

fallible test (Z), respectively, for each patient in the study. In Table 3.2 we display

the latent variables across the main, or fallible, study. Hence, the counts U1ij are

the unobserved portions of the observed counts Wij. From previous derivations and

Table 3.2: Counts for the Main Study with Unobserved, Misclassified Data
Main Study (Incomplete)

Fallible X = 1 X = 0 X = 1 X = 0
(Z) D = 1 D = 1 D = 0 D = 0
Z = 1 U111 W11 − U111 U101 W01 − U101

Z = 0 U110 W10 − U110 U100 W00 − U100

U111 + U110 N1 − (U111 + U110) U101 + U100 N0 − (U101 + U100)
N1 N0

the assumption that the main study is a sub-sample of the complete study including

both the fallible and infallible data, we have that the distributions of the unobserved

latent variables are

(U1i1 + U1i0) ∼ Bin(Ni, πi),

U1i1|(U1i1 + U1i0) ∼ Bin(U1i1 + U1i0, S),

and

(Wi0 − U1i0)|(U1i1 + U1i0) ∼ Bin(Ni − (U1i1 + U1i0), C),

where i = 0, 1, indicates the non-diseased and the diseased categories, respectively.

One should refer to Joseph, Gyorkos, and Coupal (1995) for more details. Let dfull
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represent the full-data vector including the unobserved latent variables. The full-

data likelihood function LU ≡ LU(π1, π0, C, S|d full) is displayed in expression (B.1.1)

in Appendix B.1. Because we cannot derive closed-form solutions for the RMLE for

η, we construct an EM algorithm to determine the RMLE for η given ψ. We outline

the EM algorithm steps in detail in Appendix B.1.

3.6 Three First-Order Asymptotic Confidence Intervals for ψ

In this section, we derive three particular first-order asymptotic confidence

intervals for the OR parameter ψ defined in (3.6). First, however, we give the OFIM

whose inverse is used to obtain an estimate of the variance of ψ̂, the MLE of ψ.

Recall that η = (π1, S, C)′ is the nuisance parameter vector where S and C

represent the common sensitivity and the common specificity, respectively. Then

J(ψ,η) ≡ −



∂2`ψ
∂ψ2

∂2`ψ
∂ψ∂π1

∂2`ψ
∂ψ∂S

∂2`ψ
∂ψ∂C

.
∂2`ψ
∂π2

1

∂2`ψ
∂π1∂S

∂2`ψ
∂π1∂C

. .
∂2`ψ
∂S2

∂2`ψ
∂S∂C

. . .
∂2`ψ
∂C2


(3.9)

is the OFIM, where `ψ is the transformed log-likelihood function. We display the

elements of (3.9) in Appendix B.2. We use (3.9) in the following subsection.

3.6.1 A Wald Confidence Interval for ψ

We first describe the full-likelihood Wald CI that incorporates nuisance pa-

rameters. The Wald statistic for ψ with nuisance parameter vector η is

W = (ψ̂ − ψ)2[J11(ψ̂, η̂)]−1,

where

J(ψ,η) ≡

 J11 J12

J21 J22

 (3.10)
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is the partitioned observed information matrix for the MLEs ψ̂ and η̂ and J11 ≡

(J11−J12J
−1
22 J21)

−1 (see Pawitan (2001)).Thus, an approximate 100(1−α)% CI for

the OR consists of the values of ψ that satisfy

(ψ̂ − ψ)2[J11(ψ̂, η̂)]−1 < χ2
1(1− α), (3.11)

where χ2
1(1 − α) denotes the (1 − α) quantile of a central chi-squared distribution

with one degree of freedom. Solving (3.11) directly for ψ, we obtain

ψ̂ −
√
χ2
1(1− α)[J11(ψ̂, η̂)] < ψ < ψ̂ +

√
χ2
1(1− α)[J11(ψ̂, η̂)], (3.12)

an approximate (1−α)% Wald confidence interval for ψ under the double-sampling

procedure with non-differential misclassification. We use a bisectional algorithm to

derive the endpoints of (3.12). Notice that J11 is evaluated at the MLEs for both ψ

and η derived in Section 3.4.

3.6.2 A Profile Likelihood Confidence Interval for ψ

The second CI we consider in this paper is the profile likelihood interval, which

is a pseudo-likelihood-based CI, generally believed to have better coverage probabil-

ity properties than the full likelihood Wald CI. We eliminate the nuisance parameters

in the likelihood function by replacing them with their respective RMLEs. Hence,

the profile likelihood function is

LP (ψ) ≡ max
η

L(ψ,η) = L(ψ, η̂ψ), (3.13)

where η̂ψ is the vector of profile MLEs or RMLEs for η in terms of ψ. We derive an

EM algorithm to compute the RMLEs for η because we cannot obtain closed-form

RMLEs (see Section 3.5). Thus, an approximate 100(1 − α)% profile likelihood CI

for the odds ratio is the set of values of ψ that satisfy

−2
[
`(ψ, η̂ψ)− `(ψ̂, η̂)

]
< χ2

1(1− α), (3.14)
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where `(ψ̂, η̂) is the log-likelihood function evaluated at the MLEs ψ̂ and η̂ (see

Section 3.4), and `(ψ, η̂ψ) is the log-likelihood function evaluated at the RMLE η̂.

The profile likelihood CI possesses a major flaw in that it does not account for the

uncertainty in the nuisance parameter estimation. This flaw can cause optimistically

short CIs for the OR parameter (see Riggs (2006)).

3.6.3 An Approximate Integrated Likelihood Confidence Interval for ψ

Finally, we describe the AIL CI, which is a pseudo-likelihood-based interval.

This CI is generally considered an improvement over the PL CI, but its calculation is

often computationally intensive or even intractable because one must integrate over

all the nuisance parameters. To overcome this particular issue, we use the Laplace

approximation method for a more computationally feasible approximation. The AIL

likelihood function is

LAI(ψ) =

∫
L(ψ,η)dη ≈ cLP (ψ)∣∣∣Ĵη(ψ, η̂)

∣∣∣1/2 , (3.15)

where c = (2π)ν/2, ν is the dimension of the nuisance parameter, and LP (ψ) is

the profile likelihood expressed in (3.13). Recall that Jη represents the nuisance

parameter sub-matrix of the OFIM. Hence, from (3.10) we have Ĵη is J22 evaluated

at the MLE of η. The sub-matrix is obtained using the expressions for the OFIM

given in Appendix B.2 and the MLE of η. We use an iterative bisectional method

to determine all values of ψ that satisfy

−2
[
`AI(ψ)− `AI(ψ̂AI)

]
< χ2

1(1− α), (3.16)

where `AI(ψ) is the approximate integrated log likelihood evaluated at a fixed value

of ψ.

3.7 The Monte Carlo Simulation Design

In this section, we examine the performance of three different first-order asymp-

totic CIs for the estimation of ψ in a 2 × 2 cohort study when implementing a
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double-sampling procedure for a non-differential misclassification. In particular,

we compare the performance of these three CIs based on coverage probability and

median-interval-width properties via a Monte Carlo simulation. Specifically, we as-

sess the effect of the sample sizes of both cohorts, Mi and Ni, respectively, for i = 0,

1, the effect of the disease probability πk, for k = 0, 1, for the gold standard test

outcome X = 0, 1, and the magnitude of the odds ratio ψ on the coverage probability

and median interval width of the CIs (3.12), (3.14), and (3.16).

3.7.1 Simulation Parameter and Sample Size Configurations

In this Monte Carlo simulation study, we considered two values for the odds

ratio parameter ψ = 2 and ψ = 4. Table 3.3 displays the joint probabilities of

exposure and disease status π0 ≡ Pr(X = 1, D = 0) and π1 ≡ Pr(X = 1, D = 1).

Here X = 1 indicates that the gold standard test has classified an individual as

exposed, D = 0 indicates that the participant’s condition is not-diseased, and D = 1

indicates that an individual is diseased.

Recall that we are interested only in the case of non-differential misclassification,

Table 3.3: Parameter Configurations Used in the Simulation for CONDIFF

Conf. ψ π0 π1 Misclassification C S

C3.1 2 0.25 0.40 low 0.99 0.98
C3.2 4 0.38 0.71 low 0.99 0.98
C3.3 2 0.25 0.40 high 0.85 0.75
C3.4 4 0.38 0.71 high 0.85 0.75

i.e, S0 = S1 = S and C0 = C1 = C. We consider only two misclassification categories

– low and high – where the corresponding the configuration parameter values are

given in Table 3.3.

To obtain realistic interval comparisons, we derive CIs for eight sample sizes

with low and high misclassification values with ψ = 2, 4. By definition we know that

the validation sample sizes are much smaller than the fallible sample sizes due to
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factors previously discussed. We show the sample-size values we use in our simulation

in Table 3.4. The parameter configurations for this simulation are summarized

Table 3.4: Sample Sizes Used in the Simulation for CONDIFF

A1 A2 A3 A4 A5 A6 A7 A8

M0 100 100 150 200 250 300 350 400
M1 60 60 74 100 124 150 174 200
N0 500 1000 1500 2000 2500 3000 3500 4000
N1 240 500 740 1000 1240 1500 1740 2000

by ψ ∈ {2, 4}, π1 ∈ {0.40, 0.71}, S ∈ {0.98, 0.75}, and C ∈ {0.99, 0.85}. We

generated 10,000 data sets under each combination of conditions and calculated

the corresponding Wald, PL, and AIL 95% CIs for the OR under double-sampling

and non-differential misclassification in cohort studies for each of the CI methods

described in this chapter.

3.7.2 Monte Carlo Simulation Results

The parameter configuration scenario we first consider is the case of low non-

differential misclassification and ψ = 2, 4. Refer to Table 3.3 to recall the appropriate

misclassification probabilities. We compared the coverage probabilities (Figures 3.1

and 3.3) and median interval widths (Figures 3.2 and 3.4) for the three proposed

CIs for the sample-size scenarios in Table 3.4.

Under parameter configuration C3.1, we see in Figure 3.1 that the Wald CIs

overestimated the nominal 95% confidence level for the sample-size scenarios A1

to A4. However, as the sample sizes increased, the Wald CI coverage probabilities

converged towards the nominal 95% confidence level. Notice in Figure 3.2 that the

Wald CIs had greater median interval widths and interquartile ranges for the sample-

size scenarios A1 to A4 compared to the PL and AIL CIs. This fact could explain

the over-coverage of the Wald CI seen in Figure 3.1. Nevertheless, as the sample

sizes (A5 - A8) increased the median interval widths of the Wald CIs became similar
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to the PL and AIL CIs. The PL and AIL CIs closely followed the same average

coverage probability patterns and similar interval width characteristics (see Figure

3.1 and 3.2).

Figure 3.1: Coverage rates of W, PL, and AIL CIs for cohort study under C3.1.

For the sample-size scenarios A1 - A4, the PL and AIL coverage probabilities

were very poor in that the under-coverage was large for relatively small sample sizes.

However, as the sample sizes increased, the coverage probabilities approached the

nominal level but still did not achieve the desired nominal coverage. Overall, the AIL

and PL CIs considerably under-covered ψ for all sample-size scenarios except the last

two scenarios shown in Figure 3.2. Because the AIL and PL median interval widths

were relatively short, the corresponding CIs had lower coverage probabilities. The
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Figure 3.2: Interval widths of W, PL, and AIL CIs for cohort study under C3.1.
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results obtained for low non-differential misclassification and an odds ratio parameter

ψ = 4 were similar to those obtained under low non-differential misclassification and

an odds ratio parameter, ψ = 2.

Figure 3.3: Coverage rates of W, PL, and AIL CIs for cohort study under C3.2.

We noticed in Figure 3.3 that the Wald CI coverage probabilities for the

sample-size scenarios A1− A4 (Table 2.4) were conservative and overestimated the

nominal 95% confidence level. However, as the sample sizes increased, the coverage

probabilities improved and closely approximated the nominal confidence level. For

the sample-size scenarios A1 - A4 in Figure 3.4, the Wald CIs had considerably larger

median interval widths compared to the PL and AIL median interval widths. This

fact could explain the over-coverage of the Wald CI seen in Figure 3.3. The PL and

AIL CIs closely followed the same patterns for the case ψ = 2.
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Figure 3.4: Interval widths of W, PL, and AIL CIs for cohort study under C3.2.
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Hence, we conclude that for low non-differential misclassification with an odds

ratio of ψ = 4, the PL and AIL CIs yielded less-than-nominal coverage. This fact is

possibly explained by the relatively small interquartile ranges for each sample-sizes

scenario (A1 - A8) seen in Figure 3.4. Notice that although the PL and AIL CI

coverage probabilities slightly underestimated the nominal confidence level of 95%,

both intervals showed approximately correct coverage probability as the fallible and

infallible sample sizes increased.

Figure 3.5: Coverage rates of W, PL, and AIL CIs for cohort study under C3.3.

The last parameter-configuration scenarios we considered were the cases of

high non-differential misclassification and odds ratios ψ = 2, 4. Refer to Table 3.3

for the corresponding misclassification probabilities. We compared the coverage

50



Figure 3.6: Interval widths of W, PL, and AIL CIs for cohort study under C3.3.

51



probabilities (Figure 3.5 and Figure 3.7) and median interval widths (Figure 3.6 and

Figure 3.8) of the Wald, PL, and AIL CIs under the different sample-size scenarios

given in Table 3.4.

Figure 3.7: Coverage rates of W, PL, and AIL CIs for cohort study under C3.4.

The coverage probabilities of all three CIs displayed similar behaviors (see

Figure 3.5). The Wald and PL CIs slightly underestimated the nominal confidence

level of 95% for the two smallest sample-size scenarios. However as the sample sizes

increased (A3-A8), the Wald, PL, and AIL CIs approached the nominal 95% con-

fidence level. Most importantly, the AIL interval consistently closely approximated

the nominal 95% confidence level for all sample-size scenarios. Thus, the AIL in-

terval yielded the best coverage probability properties for the interval estimation of

ψ for the configuration C3.3. In Figure 3.6, we see that all three CIs yielded very
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Figure 3.8: Interval widths of W, PL, and AIL CIs for cohort study under C3.4.

53



similar median interval widths for configuration C3.3. As the sample sizes increased,

the median interval widths decreased as expected. Overall, for the parameter con-

figurations considered here, the AIL CI for ψ yielded the best coverage probability

properties and had reasonable interval width properties.

Under the scenario of high non-differential misclassification and an assumed

OR parameter of ψ = 4, Figure 3.7 shows that all three CIs displayed similar coverage

probability and median width behaviors as for C3.3. Notice in Figure 3.7 that for

the sample size scenarios A1 - A4, the Wald and PL CIs slightly underestimated

the nominal 95% confidence level. However, as the sample sizes increased, both

CIs approached the nominal 95% confidence level. The AIL CI yielded coverage

probabilities that were the closest to nominal level for all sample-size scenarios.

Figure 3.8 shows that all three CIs yielded very similar median-interval-widths and

interquartile ranges for the corresponding interval widths. However, for sample-size

scenarios A1 - A4, the Wald CI yielded slightly shorter median CI widths. As the

sample sizes increased, their median interval widths consistently decreased as one

would expect. For relatively high non-differential misclassification, the AIL CI was

the preferred interval estimator for ψ for the parameter configuration C3.4.

3.8 Comments

In this paper we have derived and contrasted one-likelihood-based and two

pseudo-likelihood-based CIs for the OR parameter ψ in a binary data cohort study

using a double-sampling scheme for binary data subject to correct for non-differential

misclassification. In the case of low non-differential misclassification with an assumed

OR of ψ = 2 or ψ = 4, we have concluded that the Wald CI consistently over-

covered and the PL and AIL CIs consistently under-covered for relatively small

sample sizes. However, as the sample sizes increased, all three approximate CIs

showed excellent potential as omnibus CIs for estimating ψ. In the case of high non-
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differential misclassification with an assumed odds ratio of ψ = 2 or ψ = 4, the AIL

CI yielded almost exact coverage probabilities for all sample-size scenarios considered

here (Table 3.4). We conjecture that the reason the AIL CI showed excellent coverage

properties was because of the fact that with a high probability of misclassification,

we have more information to estimate the misclassification parameters and, thus,

the misclassification error rates are more stable estimates. The AIL CI coverage

probabilities determined for the high non-differential misclassification case appeared

to be consistent with the findings of several authors who have examined similar

likelihood and pseudo-likelihood-based intervals for different proportion parameters

using double-sampling (Boese (2005), Greer (2008) and Markova (2011)).
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CHAPTER FOUR

Approximate Interval Estimation of a Poisson Rate Parameter Using Data Subject
to Misclassification

4.1 Abstract

We derive four first-order asymptotic confidence intervals (CIs) for estimating

a Poisson rate parameter using a double sample of inerrant data and data containing

false-negative and false-positive observations. The four CIs are then compared in

terms of average coverage probability and median interval width via a simulation

experiment. We conclude that over the parameter configurations and sample sizes

considered here, the Wald CI is the best omnibus CI for the Poisson rate parameter.

Last, we apply all four interval estimation procedures to a real-data example.

4.2 Introduction

The biasing effects of misclassification on Poisson parameter estimation have

not been documented as thoroughly as the misclassification-biasing effects of the

binomial success parameter observation, especially when both false-positives and

false-negatives are present. A false-positive takes place when a count occurs for any

reason other than an event of interest. A false-negative occurs when an occurrence

of interest is omitted (Bratcher and Stamey (2002)).

Suppose we wish to estimate the rate of an event from a population that yields

data that are approximately Poisson distributed. For example, one might be inter-

ested in estimating the digestive disease mortality rate based on death certificates.

Because the statistical analysis for this problem involves count data, we will very

probably encounter misclassified counts. To obtain accuracy, one must adjust for

this labeling error.
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When misclassification is present, the double-sampling paradigm, developed

by Tenenbein (1970), can be utilized to correct for the misclassification bias. This

sampling method combines inerrant data from which one obtains a true count, a

false-positive count, and a false-negative count, and errant data from which only a

fallible count is available (Bratcher and Stamey (2002)).

In this chapter we derive two likelihood-based and one pseudo-likelihood-based

confidence interval (CI) for a Poisson rate parameter using a double sample of in-

errant data and data that contains both false-negative and false-positive observa-

tions. Specifically, we utilize Wald, score, profile log-likelihood (PL), and the ap-

proximated integrated likelihood (AIL) statistics to obtain CIs for a Poisson rate

parameter. We assess the efficacy of these four CIs in terms of coverage probabil-

ity and median interval width properties via a Monte Carlo simulation experiment.

We also apply these four interval estimators that utilize information in a double-

sampling scheme to a real-data example presented in Kircher, Nelson, and Burdo

(1985).

Many authors have derived methods for parameter estimation for counted data

with misclassification for both binomial and Poisson models. Such authors include

Bross (1954); Tenenbein (1970, 1971); Hochberg (1977); Chen (1979); Whittemore

and Gong (1991); Sposto, Preston, Shimizu, and Mabuchi (1992); Viana, Ramakrish-

nan, and Levy (1993); Joseph, Gyorkos, and Coupal (1995); Bratcher and Stamey

(2002); Boese, Young, and Stamey (2006); Greer (2008); and Riggs, Young, and

Stamey (2009).

In particular, Hochberg (1977) and Chen (1979) have used double sampling

to correct for misclassification in categorical models to obtain maximum likelihood

estimators (MLEs). Tenenbein (1970), Whittemore and Gong (1991), Viana et al.

(1993), and Joseph et al. (1995) have focused on the bias of estimators due to

misclassification and on methods to correct this bias. Bratcher and Stamey (2002)
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have estimated Poisson rates in the presence of both false-negative and false-positive

misclassification utilizing a Bayesian approach. Also, Sposto et al. (1992) have

considered estimating complementary cancer and non-cancer mortality rates using

data subject to misclassification. These two populations are assumed to be mutually

exclusive and, thus, counts were assigned only to one group. Stamey, Young, and

Stephens (2005) have found closed-form MLEs of parameters for this model in the

case of no covariates using a double-sampling scheme similar to that of Tenenbein

(1970). Riggs et al. (2009) have derived three interval estimators for complementary

Poisson rates where the data are possibly misclassified.

We have organized this chapter as follows. In Section 4.3, we present the

statistical model, basic terms, and notation. In Section 4.4, we derive the full-

data likelihood along with the parameter MLEs. In Section 4.5, we provide an EM

algorithm for estimating the restricted maximum-likelihood estimators (RMLEs)for

two nuisance parameters. In Section 4.6, we present the observed Fisher information

matrix (OFIM) that is used to derive the four CIs for a Poisson rate parameter using

a double sample of infallible and fallible data. We examine the performance of the

proposed four CIs in Section 4.7 using a Monte Carlo simulation, and in Section 4.8

we apply the four MLE-motivated CIs for a Poisson rate parameter model under a

double-sampling paradigm to a real data set. We conclude with some brief comments

in Section 4.9.

4.3 The Model

To derive likelihood- and pseudo-likelihood-based CIs for the Poisson rate pa-

rameter, we consider a statistical model. For our current problem, we use a double-

sampling procedure with the assumption of possible misclassification. Hence, we

collect fallible and infallible training data from a population that can be approxi-

mately modeled using a Poisson distribution. On the first observation-opportunity
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size A0, we apply both a fallible and an infallible test classifier. For the second

observation-opportunity size A, which is generally much larger than A0, the data

collected is less costly and consists solely of counts using only a fallible classification

method. Let t be the actual number of occurrences, y the number of false-positives,

and x the number of false-negatives. Then, we assume z = t+ y − x is the number

of observed occurrences actually reported from A. The unobservable variables t, y,

and x are conditionally independent and have the distributions

t|λ ∼ Poisson(Aλ),

y|φ, t ∼ Poisson(Aφ),

and (4.1)

x|t, θ ∼ Binomial(t, θ).

The occurrence false-positive and false-negative rates, are represented by λ, φ, and

θ, respectively. From (4.1) and using the transformation t = z+x− y, we have that

f (z, y, x|λ, φ, θ) =
e−Aλ(Aλ)z+x−y

(z + x− y)!

e−Aφ(Aφ)y

y!

 z + x− y

x

 θx (1− θ)z−y (4.2)

is the joint density function of the unobservable variables, z, y, and x. Thus, from

(4.2), g(z|λ, θ, φ) ∼ Poisson(A[λ(1− θ) + φ]).

If the misclassification parameters φ and θ are unknown, we can use a training

sample to determine the MLEs for λ, φ, and θ analogous to the approach taken

by Tenenbein (1970) for the binomial model with false-negative and false-positive

misclassification. We use two different search techniques on the training observation-

opportunity size A0. One search method is an expensive error-free method that

results in a true count of size t0. A less-expensive, error-prone search technique is

also utilized that yields a fallible count of z = t0 + y0 − x0, where x0 and y0 are

false-negative and false-positive occurrences, respectively. We remark that because
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the actual count is distributed as a Poisson random variable, the maximum number

of false-negatives is t0 and, thus, x0 is distributed as a binomial random variable.

Also, we assume that we are sampling from a countably infinite population, and,

therefore, the actual count has no effect on the number of false-positives. Hence, we

obtain

t0 ∼ Poisson(A0λ),

y0 ∼ Poisson(A0φ),

x0 ∼ Binomial(t0, θ), (4.3)

and

z ∼ Poisson(A[λ(1− θ) + φ]).

From (4.3), the joint density function of the observable variables, t0, y0, x0, and z is

f (t0, x0, y0, z|λ, φ, θ) =
e−A0λ(A0λ)t0

t0!

e−A0φ(A0φ)y0

y0!

 t0

x0

 θx0 (1− θ)t0−x0

× [λ(1− θ) + φ]ze−A[λ(1−θ)+φ]

z!
.

(4.4)

4.4 The Full Data Likelihood and Maximum-Likelihood Estimators

Let ρ ≡ (λ,η′)′ represent the parameter vector where λ is the occurrence

rate parameter of interest and η is the vector of nuisance parameter. Also, let

d ≡ (z, t0, y0, x0)
′

denote the observed data counts. From (4.4), if we let Lo ≡

Lo(λ, φ, θ|d) then the concentrated observed data likelihood function is

Lo ∝ λt0e−λA0φy0e−φA0θx0(1− θ)t0−x0 [λ(1− θ) + φ]ze−A[λ(1−θ)+φ], (4.5)

so that the observed data log-likelihood function `o is

`o ∝ t0 ln(λ) + y0 ln(φ) + x0 ln(θ) + (t0 − x0) ln(1− θ) + z ln[λ(1− θ) + φ]

+ (−A0λ− A0φ− A[λ(1− θ) + φ]).

(4.6)
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Taking partial derivatives of (4.6) with respect to λ, φ, and θ yields the three esti-

mating equations

t0
λ
− A0 +

z(1− θ)
λ(1− θ) + φ

− A(1− θ) = 0,

y0
φ
− A0 +

z

λ(1− θ) + φ
− A = 0,

and (4.7)

x0
θ
− t0 − x0

1− θ
− zλ

λ(1− θ) + φ
+ Aλ = 0,

respectively. Solving the estimating equations (4.7) for the respective parameters of

interest yields the MLEs

λ̂ = α1

(
t0 + z(1− y0/z0)

A0

)
+ α2

(
x0
A0

)
, (4.8)

φ̂ =
(z + z0)y0
(A+ A0)z0

, (4.9)

and

θ̂ =
x0(A+ A0)

A0

(
z + t0 + x0

A0
A− y0

z0
z
) , (4.10)

where z0 = t0 + y0 − x0, α1 = A0/(A + A0), and α1 + α2 = 1. Hence, z0 is the

number of occurrences observed using the fallible search technique in the training

sample, y0/z0 is the proportion of false positives in the observed training-sample

data, and x0/A0 is the estimated rate of false negatives. We remark that (4.8) can

be expressed as

λ̂ =
z + t0 + (x0/A0)A− (y0/z0)z

A0 + A
. (4.11)

The numerator of (4.11) is composed of three terms. The first term is the sum

of the observed occurrences using the infallible method on the training sample and

using the fallible method on the larger sample. The second term is the weighted rate

of false-negatives in the fallible sample and the third term is the weighted proportion

of false-positives from the training sample. The sum of those three terms is then

averaged over the total sample size A0 + A.
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The misclassification estimators φ̂ and θ̂ have straightforward interpretations.

The false-negative proportion estimator (4.10) is the proportion of false-negatives

from the training sample per the estimated rate of occurrence. The false-positive

rate estimator (4.9) is the average of the observed fallible data from both samples

multiplied by the proportion of false-positives from the training sample.

4.5 Restricted Maximum-Likelihood Estimators

To compute the score, the PL and AIL CIs, we need the unrestricted MLEs

(4.8), (4.9), and (4.10), as well as the RMLEs of the nuisance parameters. Unlike

the unrestricted MLEs, we can derive no closed form for the RMLEs. Therefore, we

detail an EM algorithm to determine the RMLEs for a fixed value of λ in Appendix

C.1.

The likelihood used to obtain the EM algorithm results from the two indepen-

dent samples. First, a training observation-opportunity size A0 where fallible and

infallible classifiers are both applied, and the fallible observation-opportunity size

A, where only the fallible classifier is applied. Multiplying the fallible data associ-

ated likelihood (4.2) with the likelihood for the training sample (4.5), we obtain the

complete-data likelihood Lc(λ,η|dc) expressed in (C.1.1) of Appendix C.1, where

dc ≡ (z, y, x, t0, y0, x0)
′ represents the complete data with x and y unobservable.

4.6 Four Asymptotic Confidence Intervals for λ

Here, we define and develop four first-order asymptotic CIs for a Poisson rate

parameter λ where the data is subject to false-negative and false-positive misclassi-

fication. First, we derive the OFIM that we use to estimate the MLE variances for

λ and η. We then construct one likelihood and two pseudo-likelihood-based CIs for
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λ. The OFIM is

J(λ,η) = −


∂2`o
∂λ2

∂2`o
∂λ∂φ

∂2`o
∂λ∂θ

. ∂2`o
∂φ2

∂2`o
∂φ∂θ

. . ∂2`o
∂θ2

 , (4.12)

where `o is the log-likelihood function in (4.5). In Appendix C.2 we give expressions

for each of the terms in (4.12). Also, we partition (4.12) so that

J (λ,η) ≡

 J11 J12

J21 J22

 , (4.13)

where J11 = Jλ is a scalar and we emphasize that (4.13) is used in the construction

of the subsequent CIs for λ.

4.6.1 A Wald Confidence Interval for λ

The Wald CI is based on the large-sample properties of the Wald statistic with

nuisance parameters. Here, the corresponding Wald statistic for λ with nuisance

parameters η is

W = (λ̂− λ)2[J11(λ̂, η̂)]−1,

where J11 = (J11−J12J
−1
22 J21)

−1 (refer to Pawitan (2001)). An approximate 100(1−

α)% Wald CI for the occurrence rate parameter consists of the values of λ that satisfy

(λ̂− λ)2[J11(λ̂, η̂)]−1 < χ2
1(1− α), (4.14)

where χ2
1(1 − α) denotes the (1 − α) quantile of a central chi-squared distribution

with one degree of freedom. Thus, solving (4.14) directly for λ, we get

λ̂−
√
χ2
1(1− α)[J11(λ̂, η̂)] < λ < λ̂+

√
χ2
1(1− α)[J11(λ̂, η̂)] (4.15)

as an approximate (1−α)% Wald CI for λ using the double-sampling paradigm with

misclassified counts. The OFIM (4.13) is derived in Appendix C.2.
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4.6.2 A Score Confidence Interval for λ

Second, we derive a score CI, which is a likelihood related interval. The score-

based CI for λ involves inverting the score statistic

Sc = [S(λ, η̂λ)]
2 [J11(λ, η̂λ)

]
∼̇χ2

p,

where λ is the parameter of interest and η is the vector of nuisance parameters. An

approximate 100(1− α)% score CI is composed of the values of λ that satisfy

[S(λ, η̂λ)]
2 [J11(λ, η̂λ)

]
< χ2

1(1− α), (4.16)

where η̂λ is the vector of RMLEs of the nuisance parameters evaluated at a fixed

value of λ. The interval of solutions to (4.16) must be found numerically.

4.6.3 A Profile Likelihood Confidence Interval for λ

The profile log-likelihood CI for λ involves inverting the profile log-likelihood

statistic. For sufficiently large n,

−2
[
`(λ, η̂λ)− `(λ̂, η̂)

]
∼̇χ2

1.

Therefore, an approximate 100(1−α)% profile likelihood CI for the occurrence rate

is the set of values of λ that satisfy

−2
[
`(λ, η̂λ)− `(λ̂, η̂)

]
< χ2

1(1− α), (4.17)

where λ̂ is given in (4.8) and η̂λ is defined in Subsection 4.6.2. As in (4.16), the

values of λ that satisfy (4.17) must be determined numerically.

4.6.4 An Approximate Integrated Likelihood Confidence Interval for λ

Last, we obtain a CI for ψ based on the approximate integrated likelihood

(AIL). We use the Laplace approximation to derive a more computationally feasible

likelihood and express the AIL function as

LAI(λ) =

∫
L(λ,η)dη ≈ cLP (λ)∣∣∣Ĵη(λ, η̂)

∣∣∣1/2 ,
64



where c = (2π)ν/2, ν is the nuisance parameter dimension, and LP (ψ) is the profile

likelihood

LP (λ) ≡ max
η

L(λ,η) = L(λ, η̂λ)

where Jη is the nuisance parameter sub-matrix of the observed information matrix.

Thus, from (4.13) we have Ĵη is J22 evaluated at the MLEs of the nuisance param-

eters. We use an iterative bisectional method to determine the interval of λ values

that satisfy the inequality

−2
[
`AI(λ)− `AI(λ̂AI)

]
< χ2

1(1− α), (4.18)

where `AI(λ) is the log AIL evaluated at a fixed value of λ.

4.7 A Monte Carlo Simulation

Here, we examine coverage probability and interval width properties of the

four competing interval estimators of λ described in (4.15) - (4.18) by using a Monte

Carlo simulation. We studied these intervals under parameter configurations C1−C4

displayed in Table 4.1. Each parameter configuration is examined with a fixed value

Table 4.1: Parameter Configurations for Study of CIs with λ = 20

Configuration θ φ A A0

C1 0.15 0.6 10, 20, 40, 10, 20, 40 3, 3, 3, 8, 8, 8
C2 0.25 0.6 10, 20, 40, 10, 20, 40 3, 3, 3, 8, 8, 8
C3 0.15 0.9 10, 20, 40, 10, 20, 40 3, 3, 3, 8, 8, 8
C4 0.25 0.9 10, 20, 40, 10, 20, 40 3, 3, 3, 8, 8, 8

of λ = 20, three different values of the fallible sample size A ∈ {10, 20, 40}, two

different values of the training sample A0 ∈ {3, 8} and one unique combination

of the misclassification parameters θ ∈ {0.15, 0.25} and φ ∈ {0.6, 09}. For each

parameter configuration, we generated 10,000 data sets and calculated the 95% CIs

for the Poisson rate parameter using double sampling with misclassified counts for

each of the four CI methods presented in Subsections 4.6.1 - 4.6.4.
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4.7.1 Simulation Results

We first considered the simulation scenarios for the parameter configurations

C1 and C2 shown in Table 4.1. We compared the coverage probabilities in Figure

4.1 and Figure 4.2 and the median interval widths in Figure 4.3 and Figure 4.4 for

our four proposed CIs.

Figure 4.1: Coverage Rates for λ for parameter configuration C1.

Note in Figure 4.1 and Figure 4.2 that as the fallible data observation-opportunity

sizes (A = 10, 20, 40) increased, the training observation opportunity-size (A0 = 3)

remained relatively small and the rate of false positive observations was moderate

(φ = 0.60), the score, PL and AIL CIs slightly underestimated the nominal 95%

confidence level. Moreover, as the training observation-opportunity size (A0 = 8)
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increased by more than 50%, we noticed that the coverage probabilities of the Wald,

score, PL and AIL CIs all improved and approached the nominal level. A possible

explanation for the under-coverage of the score, PL and AIL CIs is that the error-

free observation-opportunity size A0 is small relative to to the tainted observation-

opportunity size A, and, thus, the misclassification rates φ and θ are not well esti-

mated.

Figure 4.2: Coverage Rates for λ for parameter configuration C2.

For parameter configurations C2, we observed that for the misclassification

rates θ = 0.25 and φ = 0.60, the PL CI yielded on average better coverage rates

that the score and AIL CIs (see Figure 4.2). However, for parameter configurations

C1 and C2, the Wald CI yielded the best coverage properties for the occurrence-rate

parameter λ.
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Figure 4.3: Confidence Interval Widths for λ for parameter configuration C1.
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Figure 4.4: Confidence Interval Widths for λ for parameter configuration C2.
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From Table 4.2 and Figures 4.3 - 4.4, we observed that as the fallible data

observation-opportunity size A and training data observation-opportunity size A0

increased, the Wald CIs exhibited larger median widths compared to the other three

CIs. This fact could explain why the Wald CI coverage probabilities outperformed

the PL, AIL, and score CIs coverage behavior and that the Wald CI is more likely

to contain λ. Also, from Figures 4.3 - 4.4, we observed that as A or A0 increased,

the widths of the CIs decreased, as expected.

Figure 4.5: Coverage Rates for λ for parameter configuration C3.

Moreover, the median interval widths for all four CIs intervals decreased as the

training observation-opportunity size (A0 = 8) increased, confirming the improved

coverage probabilities for the PL, AIL, and score CIs shown in Figure 4.1 and Figure
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4.2. However, the decrease in available training data (A0 = 3) comes at the cost of

noticeable under-coverage as shown in Figures 4.1 - 4.2.

Figure 4.6: Coverage Rates for λ for parameter configuration C4.

Next, we examined the simulation scenarios C3 and C4. Refer to Table 4.1 for

the corresponding misclassification probabilities. Figure 4.5 and Figure 4.6 yielded

insight into the effect of the error prone and training observation-opportunity sizes on

the CIs’ coverage probabilities when λ = 20 and the rate of false-positive observations

was high (φ = 0.90), while the rates of false-negative observations fluctuated from

very small (θ = 0.15) to relatively small (θ = 0.25). As the fallible observation-

opportunity size A increased, the amount of potential misinformation increased,

causing a substantial decrease in coverage probabilities. However, this effect was

offset by an increase in the training observation-opportunity size A0.
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Figure 4.7: Confidence Interval Widths for λ for parameter configuration C3.
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Figure 4.8: Confidence Interval Widths for λ for parameter configuration C4.

From Figure 4.5 and Figure 4.6, we observed that as the observation oppor-

tunity sizes of the fallible data increased, and the training observation opportunity

sizes (A0 = 3) remained small while the rate of false positive observations (φ = 0.90)
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was high, the score, the PL and AIL CIs considerably undercovered λ. However the

Wald CI maintained good coverage probability properties. We also noticed that for

a larger rate of false positive observations (φ = 0.90), the score CIs yielded larger

coverage probabilities than the PL and AIL CIs.

Under a small to high misclassification rates (θ = 0.25, 0.15, φ = 0.9) and a

small training observation opportunity size (A0 = 3), we observed from Figures 4.5-

4.6 that the coverage probabilities of the score, PL, AIL CIs considerably decreased

as compared to Figures 4.1-4.2.

We next considered the median interval width properties of the Wald, score,

PL and AIL CIs for configurations C3 and C4. From Table 4.2 and Figures 4.7

and 4.8, the ordering of the median interval widths from largest to smallest was

the Wald, score, PL and AIL CIs. Hence, we conjecture that it is highly likely

that the actual parameter value is more frequently contained in the wider Wald CIs,

therefore resulting in the best overall coverage probability properties. Evidence for

this conjecture appears in Figure 4.5 and Figure 4.6. Because the score CI median

interval widths were larger than the corresponding AIL and PL median interval

widths, its average coverage properties were superior to the AIL and PL CIs (see

Figures 4.5 and 4.6 ). Also, as anticipated, an increase in the training observation-

opportunity size A0 and the fallible observation-opportunity size A produced shorter

interval widths.

4.8 An Application

We now apply the four new approximate CIs for the Poisson rate parameter

λ using both fallible and infallible data to a data set from Kircher et al. (1985).

The data involve the death certificates and corresponding autopsy reports of all

individuals who died in Connecticut in 1979. Suppose that our interest lies in the

rate of death due to digestive disease per 10,000 person-years. Death certificates have
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long been criticized as fallible, but follow-ups with autopsy reports are assumed to

be infallible. An infallible count of 272 deaths were thoroughly autopsied and used

as training data to gain information concerning the misclassification parameters. A

larger sample of 3604 death certificates was used as the fallible sample, subject to

both false-negative and false-positive misclassification. Here, A = 39.4, in terms of

10,000 person-years.

The infallible data contained t0 = 32 deaths due to digestive disease. For the

observation-opportunity size A0 = 3.0 in terms of 10,000 person-years, the search of

inaccurate death certificate information resulted in z0 = 18 deaths. Comparing the

errant and inerrant counts, we concluded that y0 = 2 false positives and x0 = 16 false

negatives were contained in this sample. For the fallible observation-opportunity size

A, z = 219 death certificates were recorded with digestive disease as the cause of

death. Here, the rate parameter λ is the death rate due to digestive disease per

10,000 person-years.

Table 4.2: MLEs, Estimated Standard Errors and Approximate 95% CIs for λ

Est. S.E Wald Score PL AIL

λ 10.30 1.44 (7.49, 13.11) (7.77, 13.09) (7.79, 13.50) (7.57, 13.12)
θ 0.52 0.07 n/a n/a n/a n/a

φ 0.62 0.43 n/a n/a n/a n/a

Table 4.2 gives the double-sample-based MLE estimates for λ, θ, and φ, the

corresponding estimated standard errors estimated from both the fallible and infal-

lible counts, and approximate 95% Wald, score, PL and AIL CIs for λ. From Table

4.2, we see that the score CI yielded the shortest interval width, and the PL CI

yielded the widest interval width. Hence, the actual value of λ maybe more likely

to be contained in the PL CI. However, because the discrepancy in interval widths

among the considered CIs was essentially negligible, all four CIs could be reasonable

interval estimates for the rate of death of individuals who died in Connecticut in
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1979 due to digestive disease per 10,000 person-years. Nevertheless, we suggest that

one use the Wald CI to estimate λ when the Poisson count size and misclassification

rates are moderate to high as is the case in this example. Therefore, using the Wald

95% CI, we are highly confident that the rate of death of all individuals who died in

Connecticut in 1979 due to digestive disease per 10,000 person-years is contained in

(7.49, 13.11).

4.9 Discussion

In this paper, we noticed that in the case of small to moderate misclassifi-

cation rates (θ = 0.15, 0.25, φ = 0.60) and a small ratio of infallible observation-

opportunity size to fallible observation-opportunity size (A0/A), the Wald CI dis-

played good overall coverage properties compared to the score CIs. However, in

the scenario of moderate to high misclassification rates (θ = 0.15, 0.25, φ = 0.90)

and a small ratio of infallible to fallible observation-opportunity sizes, the score CI

yielded better coverage probabilities than the PL and AIL CIs. From Table 4.2

we also noticed that for a fixed ratio A0/A, the median interval widths of all four

intervals increased as misclassification increased. Summarizing, for all parameter

configurations considered here, we observed that the Wald interval maintained the

best overall coverage properties for the estimation of the Poisson rate parameter λ

for the case where the data counts are subject to misclassification. This conclusion

was primarily attributable to the fact that the Wald CIs maintained slightly wider

interval widths and, therefore, larger coverage probabilities. The simulation results

determined here appear to be consistent with the findings of Riggs (2006) and Riggs

et al. (2009) who have examined the Wald, score and PL CIs using various parame-

ter and observation-opportunity size and parameter configurations in some Poisson

related double-sampling paradigms.
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CHAPTER FIVE

Approximate Interval Estimation of a Poisson Rate Parameter Using Data Subject
to Visibility Bias

5.1 Abstract

We derive three first-order asymptotic confidence intervals (CIs) for estimating

a Poisson rate parameter using a double sample of both an inerrant count and a

count containing false-negative observations. In particular, we obtain a Wald-based,

a score-based, and a profile log-likelihood-based CI. We then compare these three CIs

in terms of coverage probability and median interval width properties via a Monte

Carlo simulation experiment. For the parameter configurations considered here, we

conclude that the CI based on the profile log-likelihood statistic is superior. Finally,

we apply our three new CIs to real data.

5.2 Introduction

Suppose one is interested in estimating the rate of gallinule nests along a

certain waterway. One may find a thorough search difficult for such a large area,

and if only a cursory search is undertaken, nests obstructed from view could be

uncounted. Thus, a cursory search would very likely result in unregistered counts

that cause an underestimate of the nest rate. Such observations are known as false-

negative observations, and this type of count misclassification is known as visibility

bias (Stamey, Young, and Cecchini, 2003a).

To account for visibility bias in counted data, we can implement a double-

sampling method analogous to the double-sampling scheme of Tenenbein (1970),

which consists of an infallible training count and a count that is under-reported. The

double-sampling method combines data from a large, usually inexpensive, fallible

sample with data from a smaller, more expensive, infallible sample that is used to
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estimate the parameter of interest (Greer, 2008). Here, we derive three first-order

asymptotic CIs for a Poisson rate parameter using the double-sampling paradigm

when data is subject to visibility bias. In particular, we derive Wald, score, and

profile-likelihood (PL) CIs and compare the efficacy of these three CIs for ψ in

terms of coverage probability and median interval width properties via a Monte

Carlo simulation. We also apply the three proposed interval estimators to a real

data set that has a double sample and is subject to under-reporting bias.

Various methods and models have been proposed to estimate parameters for

counted data subject to visibility bias. Anderson, Bratcher, and Kutran (1994) have

considered a Bayesian approach to estimate of a Poisson rate parameter λ when the

data is subject to visibility bias. Their estimation of λ and the “visibility” param-

eter θ were based on independent cursory searches, exhaustive searches, and prior

information about λ and θ. Fader and Hardie (2000) have presented a parsimonious

Bayesian model for the analysis of under-reported Poisson count data and were able

to derive an analytic expression for the key marginal posterior distributions of inter-

est. Stamey and Young (2005) have derived maximum likelihood estimators (MLEs)

for a Poisson model that allows for both false-positives and false-negatives and have

also provided rough guidelines for sample-size determination. However, the papers

listed above have given little information regarding interval estimation for λ.

The remainder of this chapter is organized in the following manner. In Section

5.3, we present the statistical model and an under-reporting misclassification param-

eter in our visibility bias model. In Section 5.4, we derive the likelihood function

along with the Poisson rate parameter and the misclassification parameter MLEs.

In Section 5.5, we give an EM algorithm used to determine the restricted maximum

likelihood estimators (RMLEs) or maximum profile-likelihood estimators needed in

two of the new CIs. In Section 5.6, we derive the three large-sample CIs for the Pois-

son rate parameter using a double sample. In Section 5.7, we provide a simulation
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study in which we compare the efficacy of the three proposed interval estimation

methods in terms of coverage probability and median interval width properties. In

Section 5.8, we apply the three MLE-motivated CIs assuming a visibility-bias model

to a real data set and conclude with some brief comments in Section 5.9.

5.3 The Model

First, we introduce the statistical model that we utilize to construct the

likelihood-based CIs for a Poisson rate parameter. Under the double-sampling

paradigm and the assumption of visibility bias, we utilize two counts: a fallible

count obtained from a relatively large observation-opportunity size A using a cursory

search method and a training count obtained from a small observation-opportunity

size A0. In the fallible count obtained from A, there are t true occurrences, while

only z = t−x occurrences are actually spotted, where x represents the missed counts

in the cursory search. Hence, x represents the number of false-negatives. We assume

the following distributions for the unobservable variables t and x:

t|λ ∼ Poisson(Aλ)

and (5.1)

x|t, θ ∼ Binomial(t, θ).

The occurrence-rate and the false-negative misclassification rate parameters are λ

and θ, respectively. Using (5.1) and the fact that t = z + x, we determine the joint

density function of the unobservable variables z and x to be

f (z, x|λ, θ) =
e−Aλ(Aλ)z+x

(z + x)!

 z + x

x

 θx (1− θ)z . (5.2)

From (5.2), we have that z|λ, θ ∼ Poisson(A[λ(1−θ)]). One can find a proof of this

result in Stamey (2000).
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If the rate of false-negatives θ is unknown, then we use sample data from an

observation-opportunity time or size to determine the MLEs similar to the method

developed by Tenenbein (1970) for the binomial model with misclassification. A cur-

sory search and an exhaustive search are both performed on a training observation-

opportunity size A0. The exhaustive search produces a true count t0, and the cursory

search yields a count of z = t0 − x0, where x0 is the number of false-negative occur-

rences. Because the actual count t0 is distributed as a Poisson random variable, the

maximum number of false-negatives is t0 and, thus, x0 is distributed as a binomial

random variable. We then obtain the observable data random variables

t0 ∼ Poisson(A0λ),

x0 ∼ Binomial(t0, θ),

and (5.3)

z ∼ Poisson(A[λ(1− θ)]).

From (5.3), we define the joint density function of the observable variables t0, x0,

and z as

f (t0, x0, z|λ, θ) =
e−A0λ(A0λ)t0

t0!

 t0

x0

 θx0 (1− θ)t0−x0 ×

[λ(1− θ)]ze−A[λ(1−θ)]

z!
.

(5.4)

5.4 The Full-Data Likelihood and Maximum-Likelihood Estimators

Let Ψ ≡ (λ, θ)′ represent the parameter vector, where λ is the Poisson rate

parameter of interest and θ is the misclassification parameter, and let d ≡ (z, t0, x0)
′

denote the observed data. Also, let Lo(λ, θ|d) denote the observed-data likelihood

function, and let `o represent the observed data log-likelihood function. From (5.4),

we have

Lo(λ, θ|d) ∝ λt0e−λA0θx0(1− θ)t0−x0 [λ(1− θ)]ze−A[λ(1−θ)]. (5.5)
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Therefore,

`o ∝ t0 ln(λ) + x0 ln(θ) + (t0 − x0) ln(1− θ) + z ln[λ(1− θ)] + (−A0λ− A[λ(1− θ)]).

(5.6)

Let Ψ̂ = (λ̂, θ̂)′ represent the unrestricted MLEs. Stamey et al. (2003a) have shown

that the MLEs for λ and θ are

λ̂ =
A0(t0 + z) + Ax0
A0(A+ A0)

and (5.7)

θ̂ =
(A+ A0)x0

A0(t0 + z) + Ax0
.

Note that λ̂ can be rewritten as

λ̂ = α1x0/A0 + α2(t0 + z)/A0, (5.8)

where α1 = A/(A0 + A), and α1 + α2 = 1. One can see from (5.8) that λ̂ is a

weighted average of the number of observations missed in the small area x0 and the

total number observed in both samples, (t0 + z). Thus, the first component of (5.8)

simply “adds back” the number of observations missed proportionally to the size of

A (Stamey et al. (2003a)).

5.5 Restricted Maximum-Likelihood Estimation

We utilize the unrestricted MLEs in (5.7) along with the restricted maximum-

likelihood estimators (RMLEs) of the nuisance parameters to derive the score and the

PL CIs. We implement an EM algorithm to determine the RMLEs given λ because

there appears to be no closed form for the RMLEs. If we let dc ≡ (z, x, t0, x0)
′

denote the complete data, the EM algorithm steps, detailed in Appendix 4.1.1, use

the complete-data likelihood function Lc(λ, θ|dc), which is expressed in Appendix

D.1.1.
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5.6 Three First-Order Asymptotic Confidence Intervals for Estimating λ

In this section, we obtain three approximate 100(1−α)% CIs for λ by inverting

the appropriate Wald, score, and profile log-likelihood statistics. Note that all three

interval estimators are based on first-order asymptotic approximations.

We first obtain the observed Fisher information matrix for Ψ = (λ, θ)′ which

is used to construct Wald and score statistics that yield CIs for the Poisson rate

parameter λ. The observed Fisher information matrix is

I (Ψ) ≡ −E
[
∂2`o
∂Ψ∂Ψ′

]

= −

 − t0+z
λ2

A

A −x0+θ(−2x0+θ(t0+z))
(θ−1)2θ2

 . (5.9)

We partition (5.9) so that

I (Ψ) ≡

 I11 I12

I21 I22

 (5.10)

and remark that we use (5.10) in the construction of the score and PL CIs.

5.6.1 A Wald Confidence Interval for λ

We first derive the Wald CI for λ by inverting the appropriate Wald statistic.

Here, the Wald statistic for λ with nuisance parameter θ is

W (λ) = (λ̂− λ)2[I11(λ̂, θ̂)]−1,

where I11 = (I11 − I12I−122 I21)
−1 (refer to Pawitan (2001)). As A,A0 → ∞ then

W (λ)
d→χ2

1. Hence, an approximate 100(1 − α)% Wald CI for the Poisson rate

parameter consists of all the values of λ satisfying

(λ̂− λ)2[I11(λ̂, θ̂)]−1 < χ2
1(1− α), (5.11)
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where χ2
1(1 − α) denotes the (1 − α) quantile of a central chi-squared distribution

with one degree of freedom. Thus, solving (5.11) for λ, we have that

λ̂−
√
χ2
1(1− α)[I11(λ̂, θ̂)] < λ < λ̂+

√
χ2
1(1− α)[I11(λ̂, θ̂)] (5.12)

is an approximate (1− α)% Wald CI for λ.

5.6.2 A Score Confidence Interval for λ

Next, we describe a score-based CI for λ that involves inverting the score

statistic

Sc =
[
S(Ψ̂λ)

]2 [
I11(Ψ̂λ)

]
∼̇χ2

p,

where Ψ̂ ≡ (λ̂, θ̂)′ and S(Ψ̂λ) ≡ ∂`
∂λ

, where ` is given in (5.6). An approximate

100(1− α)% score CI is composed of the values of λ that satisfy[
S(Ψ̂λ)

]2 [
I11(Ψ̂λ)

]
< χ2

1(1− α). (5.13)

We determine the interval (5.13) numerically.

5.6.3 A Profile Likelihood Confidence Interval for λ

One can determine a profile log-likelihood CI for λ by inverting the profile

log-likelihood statistic. For sufficiently large n,

−2
[
`(Ψ̂)− `(Ψ̂λ)

]
∼̇χ2

1.

Therefore, an approximate 100(1− α)% CI consists of all values of λ that satisfy

−2
[
`(Ψ̂)− `(Ψ̂λ)

]
< χ2

1(1− α). (5.14)

The CI given in (5.14) must be determined numerically.

5.7 A Monte Carlo Simulation

Here, using a Monte Carlo simulation, we examine coverage and interval-width

properties of the three interval estimators for λ described in (5.12), (5.13), and (5.14).
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We fix λ = 20 and examine the effects of varying observation-opportunity sizes A0,

A, and false negative rates (θ = 0.4 - moderate, θ = 0.7 - moderate to high). We

studied these intervals for the two different parameter configurations shown in Table

5.1. For each parameter configuration, we generated 10,000 data sets and calculated

Table 5.1: Parameter Configurations for CIs with λ = 20

Config θ A A0

Co1 0.4 2, 10, 20, 2, 10, 20, 2, 10, 20 .25, .25, .25, .5, .5, .5, 1, 1, 1
Co2 0.7 2, 10, 20, 2, 10, 20, 2, 10, 20 .25, .25, .25, .5, .5, .5, 1, 1, 1

approximate 95% Wald, score, and PL CIs for the Poisson rate parameter λ using a

double sample of an inerrant count and an under-counted count.

5.7.1 Simulation Results

For all parameter and sample-size configurations considered in Co1 and Co2,

we see from Figures 5.2 and 5.3 that the median interval widths of the score CIs

were the shortest while the median interval widths of the PL CIs were the widest.

However, as the observation-opportunity sizes A0 and A increased, the discrepancy

in median interval widths among the Wald, score, and PL CIs significantly decreased

as did the Wald, score, and PL CI coverage probabilities (see Figures 5.1 and 5.4).

For a moderate false-negative rate (θ = 0.4), we remark from Figure 5.1 that

the Wald and score CIs underestimated the nominal 95% confidence level for all

observation-opportunity sizes considered in Co1. For observation-opportunity size

A0 = 0.25, we noticed that the PL CIs also somewhat underestimated the nominal

95% confidence level. However, for A0 = 0.5, 1, the PL CI maintained almost nomi-

nal coverage. This coverage property behavior could be attributable to the fact that

as the ratio of error-prone data to error-free data (A/A0) decreases, the better each

CI will cover the parameter λ.
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Figure 5.1: Coverage rates for λ under parameter configuration Co1.

We observed from Figures 5.2 and 5.3 that the differences among the median

interval widths of all three CIs when A0 = 1 are negligible. Hence, the coverage

probabilities of the Wald and score intervals for parameter configurations Co1 and

Co2 when A0 = 1 were very similar (see Figures 5.1 and 5.4). Comparing Figures

5.2 and 5.3, we noticed that as the rate of false-negative observations increased, the

median interval widths decreased and the coverage probabilities improved toward

the nominal 95% confidence level. Also, we noticed from Figures 5.1 and 5.4 that as

the observation-opportunity size (A0 = 0.25) increased by more than 50%, the Wald

and score CI coverage probabilities greatly improved.
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Figure 5.2: Confidence interval widths for λ under parameter configuration Co1.
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Figure 5.3: Confidence interval widths for λ under parameter configuration Co2.
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Figure 5.4: Coverage rates for λ under parameter configuration Co2.

Under the parameter configuration Co2, for the case of a moderate to high

false-negative rate (θ = 0.7), we noted from Figure 5.4 that while the Wald and

score CIs considerably under-covered λ, the PL CI yielded the best overall coverage

properties for the estimation of Poisson rate λ. Overall, for a fixed ratio of A0/A,

the median interval widths of all three CIs increased as the rate of false-negative

observations increased, which is the behavior one would expect.

5.8 A Real-Data Example

Here, we apply the proposed double-sample Poisson rate-estimation CI with

data subject to visibility bias to a real-data problem. We analyze data from Anderson

et al. (1994) for which the parameter of interest is the rate of gallinule nests along
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the water of Lacassine National Wildlife Refuge in southern Louisiana. A cursory

(fallible) search along the waterway is conducted along with a thorough (infallible)

search by air-boat over a smaller area. The fallible search is over the area A = 4300

linear feet, and the infallible search is applied over the smaller area A0 = 500 linear

feet. Using the thorough search, researchers spotted nine nests, five of which were

missed in using a cursory search over the same area.

For the larger area over which only a cursory search was applied, 21 nests were

spotted. Using (5.7) and (5.4), one obtains the resulting Poisson rate estimate λ̂

and the false-negative rate θ̂ displayed in Table 5.2.

Table 5.2: MLEs, Estimated Standard Errors, and 95% Confidence Intervals for λ

Est. S.E. Wald Score PL

λ̂ 15.21 4.60 (6.21, 24.21) (6.79, 24.17) (8.39, 26.85)

θ̂ 0.34 0.11 n/a n/a n/a

Table 5.2 provides the double-sample-based MLEs, estimated standard errors

for the two MLEs (5.7) using both the fallible and infallible data, and approximate

95% Wald, score, and PL CIs for λ. From Table 5.2, for θ < 0.4 and a relatively

small ratio of infallible to fallible observation-opportunity sizes (A0/A = 0.116),

we observed that the score CI yielded the shortest interval width and the PL CI

yielded the widest interval width. Hence, using the PL 95% CI in Table 5.2, we are

highly confident that the rate of gallinule nests along the water of Lacassine National

Wildlife Refuge per 1000 linear feet is in the interval (8.39, 26.85).

5.9 Comments

In this chapter, we have derived three CIs for a Poisson rate parameter us-

ing under-reported data and utilizing likelihood and pseudo-likelihood methods to

account for a nuisance parameter in the model. The Wald, score, and PL Poisson

rate CI estimators are based on a first-order asymptotic approximation. To gain in-
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formation concerning the under-reporting rate, we have utilized a double-sampling

method in which we collect training counts from a small observation-opportunity

size A0 in addition to a fallible count from a large observation-opportunity size A.

Through a simulation analysis, we have found that the profile likelihood approach

yielded better coverage properties than the Wald and score approaches for the pa-

rameter configurations considered here. Hence, we suggest that one use the PL CI

to estimate λ when the ratio A0/A is relatively small, as in our example application.
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APPENDIX A

Derivations for Chapter Two

A.1 Maximum-Likelihood Estimators for ψ and η

1.1.1 Tenenbein (1970)’s Re-parameterizations

To derive the MLEs for ψ, πi, Si, and Ci, we first re-parameterize using the

transformations

αi = πiSi + (1− πi)(1− Ci),

βi =
πiSi
αi

,

γi =
πi(1− Si)

1− αi
,

1− βi =
(1− πi)(1− Ci)

αi
,

and

1− γi =
(1− πi)Ci

1− αi
,

where i = 0, 1, indicates the disease group of the participant.

1.1.2 Likelihood and Log Likelihood Functions in Terms of α, β, and γ

The concentrated observed-data likelihood function is

Lo ∝ [π1S1 + (1− π1)(1− C1)]
W11 [1− π1S1 − (1− π1)(1− C1)]

N1−W11

× [π0S0 + (1− π0)(1− C0)]
W01 [1− π0S0 − (1− π0)(1− C0)]

N0−W01

× (π1S1)
V111 [π1(1− S1)]

V110 [(1− π1)(1− C1)]
V011

× (π0S0)
V101 [π0(1− S0)]

V100 [(1− π0)(1− C0)]
V001

× [(1− π1)C1]
[M1−(V111+V110+V011)] × [(1− π0)C0]

[M0−(V101+V100+V001)].

(A.1.1)

92



For ease of derivation, we consider each part of the likelihood that comes from each

disease status group (D = 1 or D = 0) separately. Rewriting the observed-data

likelihood in (A.1.1) in terms of αi, βi, and γi, i = 0, 1, we have the transformed

concentrated likelihood

Lo ∝ αW11+V111+V011
1 (1− α1)

W10+V110+V010βV1111 (1− β1)V011γV1101 (1− γ1)V010

× αW01+V101+V001
0 (1− α0)

W00+V100+V000βV1010 (1− β0)V001γV1000 (1− γ0)V000 ,

so that the concentrated observed-data log-likelihood is

`ψ ∝ (W11 + V111 + V011) ln(α1) + (W10 + V110 + V010) ln(1− α1)

+ V111 ln(β1) + V011 ln(1− β1) + V110 ln(γ1) + V010 ln(1− γ1)

+ (W01 + V101 + V001) ln(α0) + (W00 + V100 + V000) ln(1− α0)

+ V101 ln(β0) + V001 ln(1− β0) + V100 ln(γ0) + V000 ln(1− γ0).

(A.1.2)

Thus, the estimating equations are

∂ lnLo
∂αi

=
Wi1 + V1i1 + V0i1

αi
− Wi0 + V1i0 + V0i0

1− αi
= 0,

∂ lnLo
∂βi

=
V1i1
βi
− V0i1

1− βi
= 0

and

∂ lnLo
∂γi

=
V1i0
γi
− V0i0

1− γi
= 0,

where i = 0, 1. Expression (2.7) is obtained by using the invariance property of

MLEs and the observed-data MLEs for αi, βi, and γi, i = 0, 1. Thus, we see that

α̂i =
Wi1 + V1i1 + V0i1

Wi1 + V1i1 + V0i1 +Wi0 + V1i0 + V0i0
,

β̂i =
V1i1

V1i1 + V0i1
,

and

γ̂i =
V1i0

V1i0 + V0i0
.
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A.2 Restricted Maximum-Likelihood Estimators

Let LU ≡ LU(π1, π0, C1, C0, S1, S0|d full) be the full likelihood function in terms

of the complete observed and unobserved data. Then,

LU =
1∏
i=0

 U1i1 + U1i0

U1i1

 (πiSi)
U1i1 [πi(1− Si)]U1i0

×

 Ni

U1i1 + U1i0

 (πi)
U1i1+U1i0(1− πi)Ni−(U1i1+U1i0)

×

 Ni − (U1i1 + U1i0)

Wi0 − U1i0

 [(1− πi)Ci]Wi0−U1i0 [(1− πi)(1− Ci)]Wi1−U1i1

×
(

4!

V1i1!V1i0!V0i1!V0i0!

)
(πiSi)

V1i1 [πi(1− Si)]V1i0 [(1− πi)(1− Ci)]V0i1 [(1− πi)Ci]V0i0 ,

where i = 0, 1, indicates the true disease status of an individual in the study (0

indicates diseased, 1 indicates non-diseased). We then re-express LU as

LU ∝
1∏
i=0

 Ni

U1i1 + U1i0


 U1i1 + U1i0

U1i1


 Ni − (U1i1 + U1i0)

Wi0 − U1i0


× (πiSi)

U1i1 [πi(1− Si)]U1i0 × [(1− πi)(1− Ci)]Wi1−U1i1 [(1− πi)(Ci)]Wi0−U1i0

× (πiSi)
V1i1 [πi(1− Si)]V1i0 [(1− πi)(1− Ci)]V0i1 × [(1− πi)Ci][Mi−(V1i1+V1i0+V0i1)].

(A.2.1)

Let

π0 =
π1

π1 − π1ψ + ψ
, (A.2.2)

and let fi(V1i1, V1i0, V0i1, V0i0), i = 0, 1, be the multinomial probability functions

for the complete data. Then substituting the right-hand side of (A.2.2) for π0 into
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(A.2.1), we get

LU ∝
1∏
i=0

Wi1!

U1i1!(Wi1 − U1i1)!

Wi0!

U1i0!(Wi0 − U1i0)!

×
[

π1S1

π1S1 + (1− π1)(1− C1)

]U111
[

(1− π1)(1− C1)

π1S1 + (1− π1)(1− C1)

]W11−U111

×
[

π1S0

π1S0 + ψ(1− π1)(1− C0)

]U101
[

ψ(1− π1)(1− C0)

π1S0 + ψ(1− π1)(1− C0)

]W01−U101

×
[

π1(1− S1)

π1(1− S1) + (1− π1)C1

]U110
[

(1− π1)C1

π1(1− S1) + (1− π1)C1

]W10−U110

×
[

π1(1− S0)

π1(1− S0) + ψ(1− π1)C0

]U100
[

ψ(1− π1)C0

π1(1− S0) + ψ(1− π1)C0

]W00−U100

×
∏
i=0,1

fi(V1i1, V1i0, V0i1, V0i0).

(A.2.3)

Thus, the latent variables U111, U110, U101, and U100 are conditionally binomially dis-

tributed.

1.2.1 An EM Algorithm

E-step: Let Φ(r) ≡ (ψ, π
(r)
1 , S

(r)
0 , S

(r)
1 , C

(r)
0 , C

(r)
1 )′ be the current parameter

vector at the rth iteration. We first determine that the conditional expectations of

the four unobserved variables are

U∗111 ≡ E[U111|d,Φ(r)] =
W11π

(r)
1 S

(r)
1

π
(r)
1 S

(r)
1 + (1− π(r)

1 )(1− C(r)
1 )

,

U∗110 ≡ E[U110|d,Φ(r)] =
W10π

(r)
1 (1− S(r)

1 )

π
(r)
1 (1− S(r)

1 ) + (1− π(r)
1 )C

(r)
1

,

U∗101 ≡ E[U101|d,Φ(r)] =
W01π

(r)
1 S

(r)
0

π
(r)
1 S

(r)
0 + ψ(1− π(r)

1 )(1− C(r)
0 )

,

and

U∗100 ≡ E[U100|d,Φ(r)] =
W00π

(r)
1 (S

(r)
0 − 1)

π
(r)
1 (1− S(r)

0 ) + ψ(1− π(r)
1 )C

(r)
0

.
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M-step: Recall that the conditional likelihood function LU is given in (A.2.3).

The full-data estimating equations are

∂`U
∂π1

= −M0 +M1 − U∗100 − U∗101 − U∗110 − U∗111 +W00 +W01 +W10 +W11

1− π1

− V100 − V101 − V110 − V111
1− π1

+
(M0 +W00 +W01)(ψ − 1)

π1 − π1ψ + ψ

+
U∗100 + U∗101 + U∗110 + U∗111 + V100 + V101 + V110 + V111

π1
= 0,

∂`U
∂S0

=
V101 + U∗101

S0

− V100 + U∗100
1− S0

= 0,

∂`U
∂S1

=
V111 + U∗111

S1

− V110 + U∗110
1− S1

= 0,

∂`U
∂C0

=
W00 + V000 − U∗100

C0

− W01 − U∗101 +M0 − V101 − V100 − V000
1− C0

= 0,

and

∂`U
∂C1

=
W10 + V010 − U∗110

C1

− W11 − U∗111 +M1 − V111 − V110 − V010
1− C1

= 0.

Solving these estimating equations for the respective nuisance parameters

π1, Si, and Ci, i = 0, 1, we obtain their complete-data MLEs in terms of ψ. We

then update the current parameter estimates π
(r)
1 , S

(r)
i , and C

(r)
i , i = 0, 1, using

π
(r+1)
1 =

B −
√
B2 − 4AC

2A
,

where

A = (ψ − 1)(M1 +W10 +W11),

B = M0 +W00 +W01 + ψ(M1 +W10 +W11)

+ (ψ − 1)(V100 + V101 + V110 + V111 + U∗100 + U∗101 + U∗110 + U∗111),

and

C = ψ(V100 + V101 + V110 + V111 + U∗100 + U∗101 + U∗110 + U∗111).

Also,

C
(r+1)
i =

Wi0 − U∗1i0 + V0i0
Wi0 +Wi1 − U∗1i0 − U∗1i1 +Mi − V1i1 − V1i0

,

and

S
(r+1)
i =

V1i1 + U∗1i1
V1i0 + V1i1 + U∗1i0 + U∗1i1

.
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A.3 The Observed Fisher Information Matrix

To calculate the Wald, score, and AIL CIs, we derive each of the elements on

and above the diagonal of the OFIM J(ψ,η) defined in (2.8). We have

∂2`ψ
∂ψ2

=

[
(π1 − 1)2(V100 + V101)−

π2
1(V000 + V001)

ψ2
+

2(π1 − 1)π1(V001 + V000)

ψ

+
2π1(π1 − 1)2(S0 + C0 − 1)(N0 −W01)

−C0ψ + π1(S0 + C0ψ − 1)
− π2

1(π1 − 1)2(S0 + C0 − 1)2(N0 −W01)

[C0ψ − π1(S0 + C0ψ − 1)]2

+
2π1(π1 − 1)2(S0 + C0 − 1)W01

(C0 − 1)(π1 − 1)ψ + π1S0

− π2
1(π1 − 1)2(S0 + C0 − 1)W01

[(C0 − 1)(π1 − 1)ψ + π1S0]2

]
× 1

(π1 + ψ − π1ψ)2
,

∂2`ψ
∂ψ∂π1

=
−π1(V001 + V000)

ψ(π1 − 1)(−ψ − π1 + ψπ1)
− π1(V001 + V000)

ψ(π1 − 1)(ψ + π1 − ψπ1)2

+
(V101 + V100)(π1 − 1)(ψ − 1)

(ψ + π1 − ψπ1)2
+

V101 + V100
ψ + π1 − ψπ1

+
2π1(V001 + V000)(ψ − 1)

ψ(ψ + π1 − ψπ1)2
+

(V001 + V000)

ψ(ψ + π1 − ψπ1)

+
(−ψ + π1 + ψπ1)(S0 + C0 − 1)(N0 −W01)

(ψ + π1 − ψπ1)2(C0ψ(π1 − 1) + π1(S0 − 1))

− ψπ1(π1 − 1)(S0 + C0 − 1)2(N0 −W01)

(ψ + π1 − ψπ1)2(C0ψ(1− π1) + π1(1− S0))2

− ψπ1(π1 − 1)(S0 + C0 − 1)2W01

(ψ + π1 − ψπ1)2((C0 − 1)ψ(π1 − 1) + π1S0)2

+
(ψ(π1 − 1) + π1)(S0 + C0 − 1)W01

(ψ + π1 − ψπ1)2((C0 − 1)ψ(π1 − 1) + π1S0)

∂2`ψ
∂ψ∂S1

=
∂2`ψ
∂ψ∂C1

=
∂2`ψ
∂S0∂S1

=
∂2`ψ

∂S0∂C1

=
∂2`ψ

∂S1∂C0

=
∂2`ψ

∂C0∂C1

= 0,
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∂2`ψ
∂ψ∂S0

=

[
C0N0[(C0 − 1)(π1 − 1)ψ + π1S0]

2

+W01(C0 − 1)[π2
1 − 2C0(π1 − 1)π1ψ + C0(π1 − 1)2ψ2]

+ 2W01(C0 − 1)π2
1S0 −W01π

2
1S

2
0

]
× −π1(π1 − 1)

[C0ψ(1− π1) + π1(1− S0)]2[(C0 − 1)ψ(π1 − 1) + π1S0]2
,

∂2`ψ
∂ψ∂C0

=

[
2S0ψπ1(π1 − 1)(S0 − 1)− S0π

2
1(S0 − 1)

+W01ψ
2(π1 − 1)2

[
1 + C2

0 + 2C0(S0 − 1)− S0

]
+N0(S0 − 1)[(C0 − 1)ψ(π1 − 1) + π1S0]

2

]
× π1(π1 − 1)

[(C0 − 1)ψ(π1 − 1) + π1S0]2[C0ψ − π1(S0 + C0ψ − 1)]2
,

∂2`ψ
∂π2

1

=
2(V001 + V000)(ψ − 1)

(π1 − 1)(ψ + π1 − ψπ1)2
+

ψ(V101 + V100)

(−ψ − π1 + ψπ1)π2
1

+
ψ(ψ − 1)(V101 + V100)

π1(ψ + π1 − ψπ1)2

− (V110 + V111)

π2
1

− (V010 + V011)

(π1 − 1)2
+

2ψ(ψ − 1)(S0 + C0 − 1)(N0 −W01)

(ψ + π1 − ψπ1)2(C0ψ(π1 − 1) + π1(S0 − 1))

− (V001 + V000)

(π1 − 1)2(ψ + π1 − ψπ1)2
− (S1 + C1 − 1)2W11

(1 + C1(π1 − 1) + π1(S1 − 1))2

− ψ2(S0 + C0 − 1)2(N0 −W01)

(ψ + π1 − ψπ1)2(C0ψ(1− π1) + π1(1− S0))2

− ψ2(S0 + C0 − 1)2W01

(ψ + π1 − ψπ1)2((C0 − 1)ψ(π1 − 1) + π1S0)2

+
2ψ(ψ − 1)(S0 + C0 − 1)W01

(ψ + π1 − ψπ1)2((C0 − 1)ψ(π1 − 1) + π1S0)

− (S1 + C1 − 1)2(N1 −W11)

(C1(π1 − 1) + π1(S1 − 1))2
,
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∂2`ψ
∂π1∂S0

=

[
− C0N0[(C0 − 1)(π1 − 1)ψ + π1S0]

2

+W01(C0 − 1)[−π2
1 + 2C0(π1 − 1)π1ψ − C0(π1 − 1)2ψ2]

+ 2W01(C0 − 1)π2
1S0 +W01π

2
1S

2
0

]
× ψ

[C0ψ(1− π1) + π1(1− S0)]2[(C0 − 1)ψ(π1 − 1) + π1S0]2
,

∂2`ψ
∂π1∂S1

=

[
− C1N1(C1 + π1 − π1C1 − π1S1 − 1)2 +W11C

2
1(π2

1 − 1)

+W11C1[2π
2
1(S1 − 1) + 1] +W11π

2
1(S1 − 1)2

]
× 1

[C1 (π1 − 1) + π1 (S1 − 1)]2 [(C1 − 1) (π1 − 1) + π1S1]
2 ,

∂2`ψ
∂π1∂C0

=

[
2S0ψπ1(π1 − 1)(S0 − 1)− S0π

2
1(S0 − 1)

+W01ψ
2(π1 − 1)2

[
1 + C2

0 + 2C0(S0 − 1)− S0

]
+N0(S0 − 1)[(C0 − 1)ψ(π1 − 1) + π1S0]

2

]
× ψ

[(C0 − 1)ψ(π1 − 1) + π1S0]2[C0ψ − π1(S0 + C0ψ − 1)]2
,

∂2`ψ
∂π1∂C1

=

[
N1(S1 − 1)[(C1 − 1)(π1 − 1) + π1S1]

2

+W11C
2
1(π1 − 1)2 + 2W11C1 (π1 − 1)2 (S1 − 1)

+W11 (S1 − 1) (π1 (S1 − 1) (π1 − 2)− 1)

]
× 1

[C1 (π1 − 1) + π1 (S1 − 1)]2 [(C1 − 1) (π1 − 1) + π1S1]
2 ,
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∂2`ψ
∂S2

0

= −V101
S2
0

− V100
(S0 − 1)2

+
π2
1(W01 −N0)

(C0ψ − π1(S0 + C0ψ − 1))2

− π2
1W01

((C0 − 1)(π1 − 1)ψ + π1S0)2
,

∂2`ψ
∂S0∂C0

=

[
− (π1 − 1)π1ψ

((C0 − 1) (π1 − 1)ψ + π1S0)
2 (C0ψ − π1 (C0ψ + S0 − 1))2

]

×

 N0 ((C0 − 1) (π1 − 1)ψ + π1S0)
2

+W01 (π1 (ψ − 1)− ψ) (ψ − 2C0ψ + π1 (2S0 + 2C0ψ − ψ − 1))

 ,

∂2`ψ
∂S2

1

= −V111
S2
1

− V110
(S1 − 1)2

− π2
1(N1 −W11)

(C1(π1 − 1) + π1(S1 − 1))2

− π2
1W11

(1 + C1(π1 − 1) + π1(S1 − 1))2
,

∂2`ψ
∂S1∂C1

= − W11π1(π1 − 1)

((C1 − 1)(π1 − 1) + π1S1)2
+

(W11 −N1)π1(π1 − 1)

(C1(π1 − 1) + π1(S1 − 1))2
,

∂2`ψ
∂C2

0

= − V001
(C0 − 1)2

− V000
C2

0

− (π1 − 1)2ψ2(N0 −W01)

(C0ψ − π1(S0 + C0ψ − 1))2

− (π1 − 1)2ψ2W01

((C0 − 1)(π1 − 1)ψ + π1S0)2
,

∂2`ψ
∂C2

1

= − V011
(C1 − 1)2

− V010
C2

1

− (π1 − 1)2(N1 −W11)

(C1(π1 − 1) + π1(S1 − 1))2

− (π1 − 1)2W11

((C1 − 1)(π1 − 1) + π1S1)2
.

The terms beneath the OFIM diagonal are provided by the symmetry of the OFIM.
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APPENDIX B

Derivations for Chapter Three

B.1 Restricted Maximum-Likelihood Estimators

The complete-data likelihood function is

LU =
1∏
i=0

 U1i1 + U1i0

U1i1

 (πiS)U1i1 [πi(1− S)]U1i0

×

 Nj

U1i1 + U1i0

 (πi)
U1i1+U1i0(1− πi)Ni−(U1i1+U1i0)

×

 Ni − (U1i1 + U1i0)

Wi0 − U1i0

 [(1− πi)C]Wi0−U1i0 [(1− πi)(1− C)]Wi1−U1i1

×
(

4!

V1i1!V1i0!V0i1!V0i0!

)
(πiS)V1i1 [πi(1− S)]V1i0 [(1− πi)(1− C)]V0i1 [(1− πi)C]V0i0 ,

(B.1.1)

We next regroup the latent variables U1ij, i, j = 0, 1, and rewrite (B.1.1) as the

concentrated complete-data likelihood function

LU ∝
1∏
i=0

 Ni

U1i1 + U1i0


 U1i1 + U1i0

U1i1


 Ni − (U1i1 + U1i0)

Wi0 − U1i0


× (πiS)U1i1 [πi(1− S)]U1i0

× [(1− πi)(1− C)]Wi1−U1i1 [(1− πi)(C)]Wi0−U1i0

× (πiS)V1i1 [πi(1− S)]V1i0 [(1− πi)(1− C)]V0i1 × [(1− πi)C][Mi−(V1i1+V1i0+V0i1)].

(B.1.2)

Let

π0 =
π1

π1 − π1ψ + ψ
. (B.1.3)

After substituting the right-hand side of (B.1.3) into (B.1.2), we get
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LU ∝
W11!

U111!(W11 − U111)!

W01!

U101!(W01 − U101)!

W00!

U100!(W00 − U100)!

W00!

U100!(W00 − U100)!

×
[

π1S

π1S + (1− π1)(1− C)

]U111
[

(1− π1)(1− C)

π1S + (1− π1)(1− C)

]W11−U111

×
[

π1S

π1S + ψ(1− π1)(1− C)

]U101
[

ψ(1− π1)(1− C)

π1S + ψ(1− π1)(1− C)

]W01−U101

×
[

π1(1− S)

π1(1− S) + (1− π1)C

]U110
[

(1− π1)C
π1(1− S) + (1− π1)C

]W10−U110

×
[

π1(1− S)

π1(1− S) + ψ(1− π1)C

]U100
[

ψ(1− π1)C
π1(1− S) + ψ(1− π1)C

]W00−U100

× f0(V101, V100, V001, V000)f1(V111, V110, V011, V010),

where the notation fi(V1i1, V1i0, V0i1, V0i0) for i = 0, 1, represents the multinomial

distributions for the two groups that compose the observed data. Thus, the full

conditional distributions of the latent variables U1ij, i, j = 0, 1, are distributed as

binomial distributions.

2.1.1 An EM Algorithm for Estimating the RMLEs

E-step: Let Φ(r) ≡ (ψ, π
(r)
1 , S(r), C(r))′ be the current parameter vector at the

rth iteration. We next derive the conditional expectations for the latent variables

U ≡ (U111, U110, U101, U100)
′, given the observable counts and current parameter

values. The conditional expectations of the unobserved variables are

U∗111 ≡ E[U111|d,Φ(r)] =
W11π

(r)
1 S(r)

π
(r)
1 S(r) + (1− π(r)

1 )(1− C(r))
,

U∗110 ≡ E[U110|d,Φ(r)] =
W10π

(r)
1 (1− S(r))

π
(r)
1 (1− S(r)) + (1− π(r)

1 )C(r)
,

U∗101 ≡ E[U101|d,Φ(r)] =
W01π

(r)
1 S(r)

π
(r)
1 S(r) + ψ(1− π(r)

1 )(1− C(r))
,

and

U∗100 ≡ E[U100|d,Φ(r)] =
W00π

(r)
1 (S(r) − 1)

π
(r)
1 (1− S(r)) + ψ(1− π(r)

1 )C(r)
.
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M-step: We update the parameter of interest in each iteration by using the

solutions to the full-data log-likelihood estimating equations

∂`U
∂π1

= −M0 +M1 − U∗100 − U∗101 − U∗110 − U∗111 +W00 +W01 +W10 +W11

1− π1

− V100 − V101 − V110 − V111
1− π1

+
(M0 +W00 +W01)(ψ − 1)

π1 − π1ψ + ψ

+
U∗100 + U∗101 + U∗110 + U∗111 + V100 + V101 + V110 + V111

π1
= 0,

∂`U
∂C

=
W00 + V000 − U∗100 +W10 + V010 − U∗110

C

− W01 + V001 − U∗101 +W11 + V011 − U∗111
1− C

= 0,

and

∂`U
∂S

=
V101 + U∗101 + V111 + U∗111

S
− V100 + V110 + U∗100 + U∗110

1− S
= 0.

(B.1.4)

Solving the three estimating equations in (B.1.4) for the respective elements of nui-

sance parameter vector η, we have for the rth iteration,

π
(r+1)
1 =

B −
√
B2 − 4AC

2A
,

where

A = (ψ − 1)(M1 +W10 +W11),

B = M0 +W00 +W01 + ψ(M1 +W10 +W11)

+ (ψ − 1)(V100 + V101 + V110 + V111 + U∗100 + U∗101 + U∗110 + U∗111),

and

C = ψ(V100 + V101 + V110 + V111 + U∗100 + U∗101 + U∗110 + U∗111).

Also, we have

C(r+1) =
W00 +W10 − U∗100 − U∗110 + V010 + V000

W00 +W01 +W10 +W11 − U∗100 − U∗101 − U∗110 − U∗111 +M0 +M1 − T10
,
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where

T10 = (V111 + V100 + V101 + V110),

and

S(r+1) =
V101 + V111 + U∗101 + U∗111

V100 + V101 + V110 + V111 + U∗100 + U∗101 + U∗110 + U∗111
.

B.2 The Observed Fisher Information Matrix

Below, we give the OFIM elements used to calculate the Wald, score, and AIL

CIs. The elements on and above the diagonal of J(ψ,η), given in (3.9), are

∂2`ψ
∂ψ2

=

[
(π1 − 1)2(V100 + V101)−

π2
1(V000 + V001)

ψ2
+

2(π1 − 1)π1(V001 + V000)

ψ

+
2π1(π1 − 1)2(S + C − 1)(N0 −W01)

−Cψ + π1(S + Cψ − 1)
− π2

1(π1 − 1)2(S + C − 1)2(N0 −W01)

[Cψ − π1(S + Cψ − 1)]2

+
2π1(π1 − 1)2(S + C − 1)W01

(C − 1)(π1 − 1)ψ + π1S
− π2

1(π1 − 1)2(S + C − 1)W01

[(C − 1)(π1 − 1)ψ + π1S]2

]
× 1

(π1 + ψ − π1ψ)2
,

∂2`ψ
∂ψ∂π1

=
−π1(V001 + V000)

ψ(π1 − 1)(−ψ − π1 + ψπ1)
− π1(V001 + V000)

ψ(π1 − 1)(ψ + π1 − ψπ1)2

+
(V101 + V100)(π1 − 1)(ψ − 1)

(ψ + π1 − ψπ1)2
+

V101 + V100
ψ + π1 − ψπ1

+
2π1(V001 + V000)(ψ − 1)

ψ(ψ + π1 − ψπ1)2
+

(V001 + V000)

ψ(ψ + π1 − ψπ1)

+
(−ψ + π1 + ψπ1)(S + C − 1)(N0 −W01)

(ψ + π1 − ψπ1)2(Cψ(π1 − 1) + π1(S − 1))

− ψπ1(π1 − 1)(S + C − 1)2(N0 −W01)

(ψ + π1 − ψπ1)2(Cψ(1− π1) + π1(1− S))2

− ψπ1(π1 − 1)(S + C − 1)2W01

(ψ + π1 − ψπ1)2((C − 1)ψ(π1 − 1) + π1S)2

+
(ψ(π1 − 1) + π1)(S + C − 1)W01

(ψ + π1 − ψπ1)2((C − 1)ψ(π1 − 1) + π1S)
,
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∂2`ψ
∂ψ∂S

=

[
CN0[(C − 1)(π1 − 1)ψ + π1S]2

+W01(C − 1)[π2
1 − 2C(π1 − 1)π1ψ + C(π1 − 1)2ψ2]

+ 2W01(C − 1)π2
1S −W01π

2
1S

2

]
× −π1(π1 − 1)

[Cψ(1− π1) + π1(1− S)]2[(C − 1)ψ(π1 − 1) + π1S]2
,

∂2`ψ
∂ψ∂C

=

[
2Sψπ1(π1 − 1)(S − 1)− Sπ2

1(S − 1)

+W01ψ
2(π1 − 1)2

[
1 + C2 + 2C(S − 1)− S

]
+N0(S − 1)[(C − 1)ψ(π1 − 1) + π1S]2

]
× π1(π1 − 1)

[(C − 1)ψ(π1 − 1) + π1S]2[Cψ − π1(S + Cψ − 1)]2
,

∂2`ψ
∂π2

1

=
2(V001 + V000)(ψ − 1)

(π1 − 1)(ψ + π1 − ψπ1)2
+

ψ(V101 + V100)

(−ψ − π1 + ψπ1)π2
1

+
ψ(ψ − 1)(V101 + V100)

π1(ψ + π1 − ψπ1)2

− (V110 + V111)

π2
1

− (V010 + V011)

(π1 − 1)2
+

2ψ(ψ − 1)(S + C − 1)(N0 −W01)

(ψ + π1 − ψπ1)2(Cψ(π1 − 1) + π1(S − 1))

− (V001 + V000)

(π1 − 1)2(ψ + π1 − ψπ1)2
− (S + C − 1)2W11

(1 + C(π1 − 1) + π1(S − 1))2

− ψ2(S + C − 1)2(N0 −W01)

(ψ + π1 − ψπ1)2(Cψ(1− π1) + π1(1− S))2

− ψ2(S + C − 1)2W01

(ψ + π1 − ψπ1)2((C − 1)ψ(π1 − 1) + π1S)2

+
2ψ(ψ − 1)(S + C − 1)W01

(ψ + π1 − ψπ1)2((C − 1)ψ(π1 − 1) + π1S)

− (S + C − 1)2(N1 −W11)

(C(π1 − 1) + π1(S − 1))2
,
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∂2`ψ
∂π1∂S

=
2ψV101

π1S(π1ψ − π1 − ψ)(π1 + ψ − ψπ1)
+

N1 −W11

C(π1 − 1) + π1(S − 1)

+
W11

(C − 1)(π1 − 1) + π1S
+

π1ψ(S + C − 1)(N0 −W01)

(π1ψ − π1 − ψ)(Cψ − π1(S + Cψ − 1))2

− π1W11(S + C − 1)

((C − 1)(π1 − 1) + π1S)2
+

π1ψ(S + C − 1)W01

(π1ψ − π1 − ψ)(ψ(C − 1)(π1 − 1) + π1S)2

− ψW01

(π1ψ − π1 − ψ)(ψ(C − 1)(π1 − 1) + π1S)
− π1(S + C − 1)(N1 −W11)

(C(π1 − 1) + π1(S − 1))2

+
ψ(−N0 +W01)

(π1ψ − π1 − ψ)(−Cψ + π1(S + Cψ − 1))
,

∂2`ψ
∂π1∂C

=
(π1 − 1)ψ2(S + C − 1)(N0 −W01)

(π1ψ − π1 − ψ)(Cψ − π1(S + Cψ − 1))2
+

W11

(C − 1)(π1 − 1) + π1S

+
(π1 − 1)ψ2(S + C − 1)W01

(π1ψ − π1 − ψ)(ψ(C − 1)(π1 − 1) + π1S)2
+

N1 −W11

C(π1 − 1) + π1(S − 1)

− (π1 − 1)(S + C − 1)(N1 −W11)

(C(π1 − 1) + π1(S − 1))2
− (π1 − 1)(S + C − 1)W11

((C − 1)(π1 − 1) + π1S)2

− ψW01

(π1ψ − π1 − ψ)(ψ(C − 1)(π1 − 1) + π1S)

+
ψ(−N0 +W01)

(π1ψ − π1 − ψ)(−Cψ + π1(S + Cψ − 1))
,

∂2`ψ
∂S2

= −(V101 + V111)

S2
− (V100 + V110)

(S − 1)2

− π2
1W01

(ψ(C − 1)(π1 − 1) + π1S)2
− π2

1W11

((C − 1)(π1 − 1) + π1S)2

+
π2
1(W01 −N0)

(Cψ − π1(S + ψC − 1))2
+

π2
1(W11 −N1)

(C(π1 − 1) + π1(S − 1))2
,

∂2`ψ
∂S∂C

= π1 ×
[
− ψ(π1 − 1)(N0 −W01)

(Cψ − π1(S + ψC − 1))2
− (π1 − 1)ψW01

(ψ(C − 1)(π1 − 1) + π1S)2

− (π1 − 1)(N1 −W11)

(C(π1 − 1) + π1(S − 1))2
+

(π1 − 1)W11

((C − 1)(π1 − 1) + π1S)2

]
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∂2`ψ
∂C2

= −(V000 + V010)

C2
− (V001 + V011)

(C − 1)2

− (π1 − 1)2ψ2W01

(ψ(C − 1)(π1 − 1) + π1S)2
− (π1 − 1)2W11

((C − 1)(π1 − 1) + π1S)2

− ψ2(π1 − 1)2(N0 −W01)

(Cψ − π1(S + ψC − 1))2
− (π1 − 1)2(N1 −W11)

(C(π1 − 1) + π1(S − 1))2
.

We obtain the remaining terms beneath the diagonal of J(ψ,η) from its symmetry.
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APPENDIX C

Derivations for Chapter Four

C.1 Restricted Maximum-Likelihood Estimators

Recall that λ is the occurrence rate parameter of interest, and η is the nuisance

parameter vector. Also, let dc ≡ (z, y, x, t0, y0, x0)
′ be the complete-data. Then the

concentrated complete-data likelihood is

Lc(λ,η|dc) ∝ λz+x+t0−ye−λ(A+A0)φy+y0e−φ(A+A0)θx+x0(1− θ)z+t0−y−x0 . (C.1.1)

Furthermore, the complete data log likelihood is

`c = constant+ (z + x+ t0 − y) lnλ− λ(A+ A0) + (y + y0) lnφ

− φ(A+ A0) + (x+ x0) ln θ + (z + t0 − y − x0) ln(1− θ).

To implement the EM algorithm, one must know the full conditional distributions

of the unobserved variables x and y. The conditional distribution of x is

f(x|z, y, λ, φ, θ) =
f(z, y, x, |λ, φ, θ)
∞∑
x=0

f(z, y, x|λ, φ, θ)
.

(C.1.2)

After some algebraic manipulations, we have that

∞∑
x=0

f(z, y, x|λ, φ, θ) = e−Aλ(Aλ)z−y
e−Aφ(Aφ)y

y!(z − y)!
(1− θ)z−y

∞∑
x=0

(Aλθ)x

x!
.

Hence,

f(x|z, y, λ, φ, θ) =
(Aλθ)xe−Aλθ

x!
(C.1.3)

and

f(y|z, x, λ, φ, θ) =

 z

y

( φ

φ+ λ(1− θ)

)y (
λ(1− θ)

φ+ λ(1− θ)

)z−y
. (C.1.4)
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3.1.1 EM Algorithm

E-step: Let ρ(r) = (λ(r), φ(r), θ(r))′ be the current parameter vector at the rth iter-

ation. From (C.1.3) and (C.1.4), we determine that the conditional expectations of

the unobserved variables are

x∗ ≡ E[x|d,ρ(r)] = Aλ(r)θ(r)

and

y∗ ≡ E[y|d,ρ(r)] = z
φ(r)

φ(r) + λ(r)(1− θ(r))
.

M-step: In this step we update the parameter values λ, φ, and θ at each iteration

by using the solutions to

∂`c

∂λ
= −(A+ A0) +

t0 + x− y + z

λ
= 0,

∂`c

∂φ
= −(A+ A0) +

y + y0
φ

= 0,

and

(C.1.5)

∂`c

∂θ
=
x+ x0
θ

t0 − x0 − y + z

θ − 1
= 0.

We solve (C.1.5) for the respective nuisance parameters λ, φ, and θ. Then, for the

rth iteration, we have

λ(r+1) =
t0 + x− y + z

A+ A0

,

φ(r+1) =
y + y0
A+ A0

,

and

θ(r+1) =
x+ x0

t0 + x− y + z
.
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C.2 The Observed Fisher Information Matrix

Below, we obtain the terms inside the OFIM in order to calculate the Wald,

score, PL, and AIL CIs. The terms on the upper diagonal of the matrix J(λ,η) are

∂2`o
∂λ2

= − t0
λ2
− (1− θ)2z

(λ+ φ− λθ)2
,

∂2`o
∂λ∂φ

= − (1− θ)z
(λ+ φ− λθ)2

,

∂2`o
∂λ∂θ

= A− φz

(λ+ φ− λθ)2
,

∂2`o
∂φ2

= − y0
φ2
− z

(λ+ φ− λθ)2
,

∂2`o
∂φ∂θ

=
λz

(λ+ φ− λθ)2
,

and

∂2`o
∂θ2

= −x0
θ2

+
x0 − t0
(θ − 1)2

− λ2z

(λ+ φ− λθ)2
.

We obtain the remaining terms via the symmetry property of J(λ,η).
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APPENDIX D

Derivations for Chapter Five

D.1 Restricted Maximum-Likelihood Estimators

Let Ψ ≡ (λ, θ)′ represent the vector of parameters, where λ is the occurrence

rate parameter of interest, and θ is the false-negative misclassification parameter.

Let dc ≡ (z, x, t0, x0)
′ be the complete data. Then, the complete-data likelihood is

Lc(λ,η|dc) ∝ λz+x+t0e−λ(A+A0)θx+x0(1− θ)z+t0−x0 . (D.1.1)

and the complete-data log-likelihood is

`c = constant+ (z + x+ t0) lnλ− λ(A+ A0)+

(x+ x0) ln θ + (z + t0 − x0) ln(1− θ).

Using
∞∑
x=0

f(z, x|λ, θ) = e−Aλ
(Aλ)z

z!
(1− θ)z

∞∑
x=0

(Aλθ)x

x!
,

we have that the full conditional distribution of x is

f(x|z, λ, θ) =
(Aλθ)xe−Aλθ

x!
. (D.1.2)

4.1.1 An EM Algorithm

E-step: Let Ψ(r) ≡ (λ(r), θ(r))′ be the current parameter vector at the rth iteration.

From (D.1.2), the conditional expectation of the unobserved undercount variable x

is

x∗ ≡ E[x|d,Ψ(r)] = Aλ(r)θ(r).

M-step: We update the parameter estimates by using the solutions to

∂`c

∂λ
= −A− A0 +

(t0 + x+ z)

λ
= 0
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and (D.1.3)

∂`c

∂θ
=
x+ x0
θ

t0 − x0 + z

θ − 1
= 0.

Solving equations (D.1.3) at each iteration for the two parameters, we have

λ(r+1) =
t0 + x+ z

A+ A0

and

θ(r+1) =
x+ x0

t0 + x+ z

for the rth iteration.
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