
 
 
 
 
 
 
 
 

ABSTRACT 
 

Studies on New Approaches of Chiral Discrimination for Chiral Analysis  
by Regression Modeling of Spectral Data 

 
Selorm Kwame Modzabi, Ph.D. 

 
Mentors: Kenneth W. Busch, Ph.D. and Marianna A. Busch, Ph.D. 

 
 

Two new approaches of chiral discrimination for enantiomeric composition 

analysis using isotropic spectroscopic techniques and multivariate regression modeling 

were investigated.  This is in view of the urgent need for rapid and improved strategies 

for chiral analysis due to the rising preference and demand for chiral drugs.  

In the first approach, (S)-(+)-1,2-propanediol or the racemic mixture of 2-butanol 

was reacted with the enantiomers of amino acids or chiral pharmaceutical compounds to 

form covalent derivatives (diastereomers).  To circumvent usually long and cumbersome 

separation processes required by some chiral analysis techniques, the isotropic UV or 

fluorescence spectra of solutions of the reaction matrix containing the derivatized 

enantiomers were subjected to partial least squares regression (PLSR) modeling.  PLSR 

was used as a means of extracting latent or structured information from the spectral data, 

which might contain interference and/or redundant information from the reaction matrix.  

Evaluation of the above approach using a test set of samples gave results with root-mean-

square errors (RMSEs) of 0.0012-0.042. 



In the second approach, PLS-1 regression analysis were performed on the UV 

spectral data of samples containing different compositions of enantiomeric pairs, which 

were non-covalently discriminated in situ using a multi-functional chiral selected, (S)-(-)-

1-phenylethylamine.  Enantiomeric compositions of test samples of three amino acids and 

a carbohydrate determined using the second approach gave RMSEs of 0.006-0.025. 

In view of the need for micro-scale techniques in analyses such as this, a capillary 

tube, with a total volume of 95 µL, was custom-designed in the cause of this research for 

the measurement of fluorescence emission spectra of micro volumes of samples.  The 

custom-designed capillary tube, which has an internal diameter of 1 mm and requires not 

more than 25 µL of sample solution for spectral measurement, was found to result in 

higher fluorescence emission intensities than measured using a commercial 10-mm 

pathlength fluorometer cell.  Results of quantitative studies performed using the custom-

designed capillary micro cell for spectral measurement were significantly identical to the 

results of studies conducted using the commercial cell.  
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CHAPTER ONE 
 

Introduction  
 
 

Chirality 
 

Many objects in nature reveal the concept of chirality.  A familiar example is our 

hands, which posses a mirror-image symmetry relationship. 

Just as a pair of objects can portray an object-mirror image relationship, pairs of 

molecules, which are the building blocks of many objects seen around us, are known to 

be chiral or exhibit chirality.  The terms chiral and chirality are reported to be first coined 

by a British physicist, Thomas (1824-1907), who was knighted in 1866 by Queen 

Victoria [1-5].  These terms are documented to have first appeared in the 1894 printed 

version of Thomson’s famous 2nd Robert Boyle Lecture.  According to Gal [1, 2], it is 

not known whether he actually used those terms in the lecture since there is no 

stenographic record of the lecture.  Thomson, who is also known Lord Kelvin, described 

the concept of nonsuperposability seen in certain objects saying, “I call any geometrical 

figure or group of points, chiral, and say it has chirality, if its image in a plane mirror, 

ideally realized, cannot be brought to coincide with itself’’ [1-3].  According to Cintas 

and Gal, the printed document also shows that Lord Kelvin, in addition, said “Two equal 

and similar right hands are homochirally similar or allochirally similar.  These are also 

called enantiomorphs, after a usage introduced, I believe by German writers.  Any chiral 

object and its image in a plane mirror are heterochirally similar.”  The reference to the 

Germans in Kelvin’s statements suggests that the concept he was describing had already 
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been observed and made public by the Germans, who had a different name for it.  The 

word chiral, used by Kelvin, is derived from the Greek word hand, χειρ [2, 3, 5].  The 

word enantiomorph, according to the literature, was first used by Carl Friedrich 

Naumann, a German crystallographer and mineralogist, in his Elemente der theoretischen 

Krystallographie (Elements of Theoretical Crystallography, referred to as Elemnete), 

published in 1856 [1].  Naumann proposed the word enantiomorphism (enantiomorphie 

in German) to denote absolute oppositeness for which no displacement can compensate.  

Naumann used this term to describe the phenomenon of handedness and non-

superposability in hemihedral pentagondodecahedral crystal structures that he had 

encountered in his work.  It is noted that long before Naumann, the phenomenon of 

handedness was first examined by Immanuel Kant (1724 - 1804), a German philosopher, 

who in referring to the two hands wrote, “sie können nicht kongruieren” meaning they 

are not congruent, and said such objects were incongruent counterparts [1,2, 6, 7].  Kant’s 

‘incongruent counterpart’, however, might have faded with time because it is not used in 

modern stereochemistry as a term for chirality.  The subject of chirality in chemistry in 

particular can be associated with two French scientists, Jean-Baptisté Biot (1774 - 1862) 

and Louis Pasteur (1822 - 1895).  Biot, Pasteur’s mentor, in 1812, noted a correlation 

between optical rotation and crystal hemihedrism [2, 4, 8].  Specifically, Biot found out 

that a quartz plate, cut at right angles to its crystal axis, rotated the plane of vibration of 

linearly polarized light.  According to the literature, Biot recognized this rotation to be an 

inherent property of the quartz crystal and used the terms dextro- and levorotatory in his 

description of this optical property of the crystals.  About three years later he found that 

certain organic liquids and solutions of certain organic compounds including turpentine, 
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sugar, camphor, and tartaric acid were capable of rotating the plane of polarization of 

linearly polarized light, which he indicated seemed to be a property of individual 

molecules.  Pasteur’s contribution to the field of chirality in chemistry took place in 1848.  

He discovered that the sodium ammonium salt of tartaric acid occurs as a conglomerate 

of two non-superposable crystal forms [1, 2, 4, 5, ].  Pasteur then performed the first 

resolution of chiral compounds by separating the salts, which are noted to be hemihedral 

and asymmetric, under a magnifying lens using a pair of tweezers.  He, however, never 

coined a term to describe the geometrical relationship between the two forms of his 

crystals instead he described them as isomères, the French word for isomers, which was 

coined by the Swedish chemist Jönes Jakob Berzelius (1779 - 1848) in 1830 [1].  The 

word isomères (isomers) refers to molecules with the same molecular formula but 

different structural formulae.  Further experiments carried out by Pasteur led him to 

discover that similar to his solid crystals, solutions prepared from equal amounts of his 

crystals rotated plane polarized light equally in opposite directions.  The direction of 

rotation of the light by one of the salts was found to be in the same direction obtained for 

one form of natural tartaric acid.  It was therefore assigned the same direction of rotation 

of plane polarized light already assigned to tartaric acid, which was positive (+) or 

clockwise.  In another designation, such a notation is referred to as dextro (a prefix from 

the Latin word dexter meaning on the right side) or d.  The solution of the other crystal, 

which was noted to rotate light in the anti-clockwise or negative direction, was denoted 

as (-) or levo (on the left side) or l.  Based on the dextro and levo assignments, molecules 

exhibiting clockwise direction of rotation of plane polarized light are said to be 

dextrorotatory while molecules with an anti-clockwise rotation of plane polarized light 

 3



are levorotatory.  Pasteur concluded on the basis of his experiments that the phenomenon 

of rotation of plane polarized light was due to what he termed dissymétrie moléculaire, 

which means molecular dissymmetry.  He went further to postulate that his crystals must 

have an object-mirror image relationship and pictured them as nonsuperimposable helices 

or tetrahedral arrangement of atoms in the molecules of the crystals [2, 4, 5, 8].  Pasteur 

therefore became the first to describe the relationship between optical rotation, 

dissymmetry at the molecular level, and the nonsuperimposable relation between 

molecules with an object-mirror image relationship.  According to the literature, Pasteur 

never used the word chiral in any of his descriptions [1].  However, he is by his 

contributions considered by many to be the founder of stereochemistry and molecular 

chirality [1, 2, 5, 8].   

The next major breakthrough with vast application in modern stereochemistry 

occurred in 1874 when van ’t Hoff, a Dutch physical and organic chemist and Le Bel, a 

French chemist, independently published their ideas on the tetrahedral arrangement of 

atoms in molecules [8, 9].  It is noted that van ‘t Hoff’s approach was geared towards 

finding a model that could account for isomers known at that time while Le Bel’s 

approach, which was more of Pasteur’s approach, sought to find the relationship between 

molecular asymmetry and optical rotation.  Generally, the property of rotation of plane 

polarized light is termed optical activity and molecules exhibiting this property are said to 

be optically active molecules. 

In modern stereochemistry, molecules are described as chiral or achiral (no 

chirality) based on symmetry operations.  According to symmetry operations, a molecule 

is achiral only and only if it has an axis of improper rotation; that is, an n-fold rotation 
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(360o /n) followed by reflection in the plane perpendicular to the axis of rotation, which 

maps the molecule onto itself.  Thus, any molecule lacking this axis is chiral or 

dissymmetric according to the older description.  Chiral molecules, however, are not 

necessarily asymmetric because they can have an axis of symmetry of a kind [4].  

Pasteur’s pair of sodium ammonium salts of tartaric acid, which he found to exhibit 

opposite but equal optical activity, is described in modern stereochemistry as a pair of 

enantiomers.  The term enantiomer, which gradually replaced the older terminology of 

enantiomorph, is derived from the Greek words enantios meaning opposite and meros 

meaning part.  Enantiomers belong to a class of isomers known as stereoisomers, which 

are molecules with the same molecular and structural formulae but differ in the spatial 

arrangement of their atoms or group of atoms.  According to Ramberg [7], Pasteur also 

found out that a solution made up of equal amounts of his salts had no effect on plane 

polarized light as Mischerlich had already shown.  Such a mixture of enantiomers is 

referred to as a racemic mixture or a racemate.   

Chirality is known to originate differently in different molecular systems.  The 

most common of these is the type observed for a molecular system made up of a central 

atom to which are bonded four different atoms or groups represented as Cabcd [4, 5, 8].  

As noted earlier, this system was proposed independently in 1874 by van’t Hoff and Le 

Bel.  According to them, the four different substituents (a,b,c and d) are arranged 

tetrahedrally around the central carbon atom.  Van’t Hoff, who worked with Kekule, 

specified that in a three-dimensional space, the four substituents linked to the carbon 

atom pointed to the corners of a regular tetrahedron, and that exactly two 

nonsuperposable forms or structures (enantiomers) were possible [4, 5, 8].  In modern 
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terms the central carbon in such a molecular system is referred to as the stereocenter or 

stereogenic atom; it is also called a chiral center.  Based on later developments in 

stereochemistry, the number of stereoisomers possible for a molecule with n number of 

stereocenters is given by 2n.  Hence, a molecule with one stereocenter will have two (21) 

stereoisomers (enantiomers) and a molecule with two stereogenic centers will ideally 

have four isomers (22).   

Another origin of chirality in molecules is the presence of what is referred to as a 

chiral axis [4].  Molecules with this origin of chirality do not have typical chiral centers 

as the Cabcd molecular system of chiral molecules mentioned above.  In addition they 

have bonds with restricted rotation.  Examples of compounds with axial chirality include 

allenes and ortho-substituted biphenyls.  Figure 1.1 shows the structures of the 

enantiomers of an ortho-substituted biphenyl, 6 6´-dinitro-2 2´-diphenic acid; the chiral 

axis passes through the middle of the bond joining the phenyl groups.  It can be seen from  

the structures that the arrangement the CO2H and NO2 groups on one of the phenyl  
 
 

 

Figure 1.1.  Enantiomers of 6 6´-dinitro-2 2´-diphenic acid 
 
 

groups is opposite in the two structures.  Apart from the possession of an axial chirality, 

some molecules are said to have an axial plane, which gives rise to their chirality [4].  An 

example of a class of compounds with chiral planes is the ansa (handle) compounds 

generically shown in Figure 1.2 below.  The chiral plane defined, for example, for the  
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X = CH2, n ≥ 6 

Figure 1.2.  Generic structure of ansa compounds 
 
 

generic ansa compound structure in Figure 1.2 consists of the alicyclic ring constrained to 

lie over one of the faces of the arene.  One enantiomer of such a compound will have its 

chiral plane over one face of the arene while the chiral plane of the other enantiomer will 

lie over the opposite face of the arene.  In these compounds, the chiral plane should 

usually contain as many of the atoms of the molecules as possible but with at least one 

out of plane atom or group for the molecule to be chiral.  In addition, an important 

condition for chirality in these compounds requires the alicyclic ring (ansa: handle) to 

restrict, for example, the aromatic ring from swiveling through.  Spiranes, which are 

nonplanar organic compounds, are known to exhibit chirality by virtue of their nonplanar 

structure [4].  Similar to the compounds with axial and planar chirality, spiranes may not 

have stereocenters.  An example of a chiral spirane is spiro[2,2]pentane [4].  Other forms 

or origins of chirality are realized in compounds with propeller and helical structures [4].  

For the propeller-structured compounds, all the groups representing the blades in one 

enantiomer must be twisted in the same sense but opposite to those of the other 

enantiomer.  For helical structures, a trace of the helix from one end to the other would 

lead the tracer moving along the axis drawn through the helix in a clockwise direction for 

one enantiomer and the anti-clockwise direction for the other enantiomer.  Examples of 

propeller and helical chirality are revealed respectively by the three-bladed tri-ortho-
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substituted triarylboron and hexahelicene shown in Figure 1.3 A and B respectively; the 

substituents in the triarylboron are represented with the letters a, b, and c.  In addition to  

the above-mentioned forms or origins of chirality encountered in chiral molecules, 
 
 

              A 

B B

a

c

b ab

c  
 
 

              B 

 

Figure 1.3.  A: Structure of the enantiomers of a tri-ortho-substituted triarylboron.  B: Structure of the 
enantiomers of hexahelicene 

 
 

nitrogen compounds in which the nitrogen atom is part of a structure that restricts 

inversion at the nitrogen atom could lead to chirality in such compounds.  An  

example of this is 1-chloro-2, 2-dimethylaziridine shown in Figure 1.4. 
 
 

N

Cl Me

Me

N

ClMe

Me  

Figure 1.4. Enantiomers of 1-chloro-2,2-dimethylziridine 
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Enantiomers 
 
 

Nomenclature of enantiomers.  In addition to the dextro or positive sign (+) and 

levo or negative sign (-) notation used to denote the direction of optical rotation of 

enantiomers, optically active compounds are designated using descriptors to specify their 

spatial arrangement or configuration.  Prior to 1951 [4], chemists were limited in 

assigning absolute configurations to chiral compounds due to lack of the necessary 

technology.  Thus, relative configurations were assigned to chiral compounds by 

correlating their optical activities with that of other chiral compounds, for example, (+)- 

or (-)-glyceraldehyde (HOCH2CHOHCHO).  The situation, however, changed by 1951 

with the development of the anomalous X-ray scattering technique, which is capable of 

determining the absolute configuration of chiral compounds.  The specification of the 

absolute configuration of an optically active compound involves assigning to the 

compound descriptors that specify, according to a set of rules, the three dimensional 

structure of the compound.  The most common or universally used system of descriptors 

for the specification of the absolute configuration of optically active compounds was 

developed by Chan, Ingold and Prelog (CIP).  The CIP system uses the italicized forms 

of the letters R and S (R and S) to specify the absolute configuration of optically active 

compounds with stereocenters according to a set of rules.  This set of rules, which can be 

found in many advanced-level organic texts, including several undergraduate organic 

textbooks, are used to assign priority to the four atoms or groups linked to the 

stereocenter in the order, for example, A>B>C>D.  According to this order, the atom or 

group assigned the letter A has the highest priority and D the lowest.  A model made of 

the compound with the assigned priorities is then required to be viewed from the side 
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directly opposite to the atom or group with the lowest priority (priority D atom or group).  

In this view, the rest of the three atoms or groups (A, B, and C) will present a tripodal 

array before the viewer.  If the tripodal array in the sequence A→B→C is traced in a 

clockwise direction, the optically-active compound is assigned the descriptor R or rectus, 

meaning right in Latin.  If the sequence, on the other hand, is traced in an anti-clockwise 

direction, the compound is assigned the descriptor S or sinister, meaning left in Latin.  

All optically active molecules having one or more stereocenters can be described by 

either an R or S descriptor(s) or some combinations of both for molecules with more that 

one stereocenter.  To specify the absolute configurations of chiral compounds with chiral 

centers, the appropriate descriptor(s) is used in their chemical names.  For example, the 

name (S)-(-)-1-phenylethylamine of a chiral compound shown in Figure 1.5 below 

indicates that: (1) the first carbon atom in the parent or longest hydrocarbon chain is the 

stereocenter (carbon atom with asterisk) of the compound, (2) the sequence of the priority 

of the tripodal groups, A (NH2)→B (C6H5)→C (CH3) are traceable only in the anti-

clockwise direction, and (3) the compound rotates plane polarized light in the anti- 

clockwise direction as indicated by the negative sign. 
 
 

 

Figure 1.5.  Structure of (S)-(-)-(1)-phenylethylamine showing the priority of groups attached to the 
stereocenter (in asterix) according to the CIP sequence rule. 
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As noted earlier, other forms of chirality are found in molecules in addition to the 

possession of a stereocenter.  As such, other descriptors are used to specify the 

configuration of optically active molecules that do not have chiral centers.  A set of 

descriptors, aR and aS, closely related to the CIP descriptors described above are used for 

the specification of the configuration of molecules with axial chirality.  Similar to the CIP 

system, four groups, for example, the two pairs of groups of the ortho-substituted 

biphenyl shown in Figure 1.1 are required for the specification of the configuration 

molecules with axial chirality.  Where more than two pairs of such groups are present, 

those closest to the center of the chiral axis are given priority.  The groups are prioritized 

beginning with any pair of the four groups using, for example, the letters a and b for the 

first pair of groups and the letters c and d for the second pair according the CIP priority 

sequence rules; the priorities of the atoms or groups for the second pair is made without 

regard for that of the first pair [4].  Using the biphenyl in Figure 1.1 as an example, the 

prioritized groups are presented as Fischer projections shown in Figure 1.6 with the 

groups having priorities a and b on a vertical line and c and d on a horizontal line.  The 

direction of the sequence a→b or b→c or c→d is then traced.  If the direction of the 

sequence is clockwise as shown in the left Fischer projection then the configuration of the 

molecule is aR.  On the other hand, an anti-clockwise direction signifies an aS 

configuration as shown in the right Fischer projection in Figure 1.6.  The aR and aS 

configuration designations equally apply to spiranes.  Other forms of descriptors, M and 

P, are also used particularly for optically active helical molecules.  For this notation, if a 

trace of the helix along the axis drawn through the center of the helix describes a 

clockwise direction, the helix is assigned the descriptor M.  If the helix is traced in the 
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Figure 1.6.  Fischer projections of CIP prioritized groups for the assignment of configuration to the 
enantiomers of 6,6`-dinitro-2,2`-diphenic acid having axial chirality 

 
 

anti-clockwise direction then it has a P configuration.  It should be noted that the use of 

these descriptors has no correlation with the direction of optical activity of the 

enantiomer.  Readers interested in further discussion on this subject can find useful  

information in several advanced texts on stereochemistry including reference 4.   
 
 

Properties of enantiomers.  As mentioned earlier, enantiomers of compounds are 

pairs of molecules having equal but opposite optical activity.  Enantiomers have a 

universal property, which is the nonsuperposability of the structure of one enantiomer of 

a pair on the structure of the other.  Except for the rotation of plane polarized light, the 

enantiomeric pairs are said to have identical physical properties like density, boiling and 

melting point, solubility, dipole moment and refractive index [4, 5].  Likewise, they are 

said to exhibit identical chemical properties toward achiral molecules but tend to differ 

when they react with the same enantiomer molecule of an appropriate compound [4, 5] or 

are in a chiral environment.   

Enantiomeric pairs of certain compounds are known to differ from each other in 

their response to certain isotropic spectroscopic techniques.  For example, Eliel et al. [4, 

10] found out in their study that while the IR spectra of the phthalates of (+)-, (-)-, and 
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racemic mixture of p-ethylphenylmethylcarbinol revealed identical spectra in chloroform 

solution, the mull spectra were different.  This difference in spectra could be due to 

differences in hydrogen bonding in the different states of the molecules.  Research 

conducted in our laboratory clearly showed that significant differences do exist between 

the UV spectra of the pure or solution forms of the enantiomeric pairs of several chiral 

compounds including limonene, 1,2-propanediol, and N-benzyl-α-methylbenzylamine 

[11, 12].  These spectroscopic differences indicate that though enantiomeric pairs may be 

identical in most of their physical properties, the stereochemical difference between a 

pair of enantiomers can manifest itself in their response to isotropic (non-polarized) light.  

As such, enantiomeric pairs could be studied using isotropic spectroscopy techniques.  As 

mentioned earlier, a mixture of equal amounts of a pair of enantiomers forms a racemate 

or racemic mixture.  Unlike enantiomeric pairs, racemic mixtures generally have zero 

optical activity or may exhibit optical rotation based on temperature, wavelength and 

solvent.  Racemates could differ significantly in their properties (density, boiling point, 

melting point, solubility, etc.) relative to either member of the pair.  Studies have shown 

that isotropic IR and electronic spectra of racemates differ more from those of the 

constituent enantiomers than the corresponding spectra for one of the constituent 

enantiomers compared to the other [4, 10, 13].  However, it is noted that these differences 

are not expected when conglomerates are formed [4].   

In addition to having racemates, a pair of enantiomers can occur or be mixed in an 

unequal proportion to form what is referred to as an enantiomeric excess (ee). According 

to Eliel et al. [4], samples made up of different enantiomeric proportions (enantiomeric 

purity) ranging from the pure to the racemate will often differ in both their physical and 

 13



chemical properties.  The enantiomeric excess, if the concentrations or moles of the 

individual enantiomers are known, is mathematically expressed as: 

21 φφ −=ee           1.1 

where φ 1 and φ 2 are the mole fractions of the enantiomer such that φ 1 is greater than φ 2.  

In practice, the percent ee can be determined by dividing the specific optical rotation, 

][
12 φφ

α FF + , of the mixture by the specific rotation, ][
1φ

α F ,obtained for the enantiomer in 

excess as: 

%100])[][(
121

×= + φφφ ααee           1.2 

The specific rotation, ][α , is computed from the optical rotation, α (in degrees), using the 

equation: 

[ ]
cl

T

×
=

αα λ
100           1.3 

where T and λ are the temperature and the wavelength (usually the sodium D-line, 589 

nm) respectively, l is the pathlength of the sample in dm and, c is the concentration 

expressed in grams per 100mL.  It can be shown from equation 1.3 that the concentration, 

c, is directly proportional to the optical rotation, α.  Consequently, if the concentrations or 

any other parameter directly proportional to the concentration can be determined 

accurately, the mole fractions of the enantiomers can be determined and the percent ee 

computed using equation 1.1 multiplied by 100.  Specific rotation is known to depend, in 

addition to temperature and wavelength, on solvent (for solution samples) and sometimes 

concentration [4].  Thus the solvent and concentration must be specified (in parentheses) 

when the specific rotation of a solution sample is reported. 
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Diastereomers 

Unlike enantiomers, some stereoisomeric pairs of molecules, which are optically 

active, have no object-mirror image relationship with each other.  Such pairs of 

molecules are referred to as diastereomers or are said to form diastereomeric pairs.  

Diastereomers usually contain more than one chiral center resulting superimposable 

configurations or have substituents that give rise to different conformations (possession 

of chiral torsion axes) or a combination of both.  In addition, diastereomerism can arise 

even though a compound may not possess a chiral center as in cis- and trans-1,3-

dichlorocyclobutane and olefinic geometrical isomers.  According to Eliel et al. [4], 

diastereomers differ in most, if not all, physical and chemical properties similar to 

constitutional isomers.  They noted this to be due to a lack of isometry, in diastereomers.  

The term isometry, as used by Eliel et al., refers to the existence of identical distances 

between any pair of atoms found in any given pair of enantiomers.  Closely related to 

diastereomers are meso stereoisomers.  These molecules, unlike diastereomers, are not 

optically active even though they may have chiral centers.  The optical inactivity of these 

molecules is usually due to the possession of plane of symmetry.  Though diastereomers 

may occur naturally, they can be synthesized using chiral compounds as precursors.  As 

such, enantiomers can be transformed covalently into completely new compounds with 

diastereomeric properties.  In addition, diastereomeric properties can be induced in 

enantiomers through non-covalent intermolecular interactions leading to conformational 

changes; diastereomerism can arise from conformational changes according to Eliel et al. 

[4].  Diastereomeric transformation of enantiomers through covalent derivatization or 
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non-covalent complexation/association is of great importance because it allows for the 

discrimination of chiral compounds for chiral analysis.  As such, isotropic spectroscopic  

techniques can be coupled with enantiomeric discrimination strategies for chiral analysis. 
 
 

Importance of Chiral Molecules  

The importance of chirality cannot be over-emphasized.  This phenomenon 

pervades the whole universe.  Almost all biological functions in living organisms involve 

the activities of chiral compounds.  For example, it is documented that except for one, all 

the twenty naturally occurring amino acids that make up naturally occurring proteins are 

chiral and occur in the l form [4, 5, 14,].  Similarly, all naturally occurring 

sugars/carbohydrates, which are linked to many proteins and lipids involved in cell-cell 

recognition, and form part of the structural framework of RNA and DNA molecules, 

occur in the d form [4, 5, 14, 15].  The natural forms of these nucleic acids (RNA and 

DNA), which are related to gene expression and storage of genetic information, are 

known to be enantiomerically pure.  Biological receptors responsible for distinguishing 

odor and taste in humans and animals work through chiral biodiscrimination.  For 

example, Piutti (1886) [4] reported the isolation of dextrorotatory asparagine and noted it 

to have a sweet taste whereas the naturally occurring levorotatory counterpart is known to 

be tasteless– chiral receptors of the tongue were capable of discriminating the two 

enantiomers of asparagine.  Another important biological function known to involve 

chiral interactions is enzymatic reaction or activity.  Enzymes in their reactions are 

known to exhibit a high degree of specificity towards substrate molecules by reacting 

only with molecules of the correct stereochemistry in the presence of several other 

molecules.  For example, the use of L-hexoses as sweeteners is based on the fact that 
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enzymes that are responsible for breaking down D-hexoses or sucrose are unable to 

metabolize L-hexoses [4, 16].  The above-mentioned and more of the chiral specific 

biological reactions are vital to survival.   

The unfortunate and painful thalidomide incident in the 1960s is one reminder of 

the importance of chirality to pharmaceutical and allied industries.  It turned out that the S 

enantiomer of thalidomide, which was administered in the racemic form (both in the R 

and S forms) to treat morning sickness in pregnant women is teratogenic.  Consequently, 

many children born subsequent to the use of the drug had severe birth defects.  After this 

painful episode, much attention was paid to studying the correlation between 

toxicological and pharmacological properties in relationship with chirality.  Currently, the 

pharmaceutical and allied industries in major drug and chemical manufacturing nations 

are required to study the biological activities of each enantiomer of pharmaceutically 

potent compounds [4, 5, 17].  For example, the US Food and Drug Administration 

beginning in 1988 explicitly required the submission of detailed information on the 

enantiomers of chiral compounds in new drugs [4].  The current trend in drug policy is 

largely related to recent scientific and technological advancement, for example, in 

molecular biology and chemical analysis.  With this advancement, it is now known with 

specifics that: (1) biological messenger molecules and cell receptor surfaces, which are 

the targets of many drugs, are chiral and (2) enantiomers of pharmaceutically important 

compounds could have different biological activities; one enantiomer could be active for 

a particular therapeutic application while the other may be inactive or toxic or have an 

entirely different therapeutic effect.  It is, therefore, important that the biological 

activities of each of the enantiomers of a compound for drug application be thoroughly 
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known.  In view of these possible different biological activities of the enantiomers of 

chiral compounds, single enantiomer drugs are preferred for other reasons such as (1) 

reduction in metabolic load on the body, (2) simplification of pharmacokinetics, and (3) 

more homogeneous response to treatment [18].  Pharmaceutical and allied industries 

worldwide are progressively making a switch from the manufacturing of racemic drugs to 

single-enantiomer drugs [19, 20].  According to the author of an article published in 

Chemical and Engineering News, the sale of chiral drugs for the first time reached $ 100 

billion in 1999 with single-enantiomer drugs reaching $115 billion, up by 16 % from $ 99 

billion in 1998 [19].  In Japan, single-enantiomer drugs have received four times as much 

approval as racemic drugs by the Japanese government in the early 2000s [20].  Figures 

for worldwide development and approval of single-enantiomer drugs show that the 

market share for single-enantiomer drugs increased from 27 % in 1996 to 39 % in 2002 

[20].  This worldwide preference for chiral drugs and particularly single-enantiomer 

drugs undoubtedly underscores the importance of the phenomenon of chirality.  In 

consonance with the high demand for chiral drugs is the need for new designs and 

methods of synthesis for the production of chiral drugs.  The synthesis technique 

currently used for the production of single-enantiomer drugs is asymmetric synthesis, 

which has three major approaches: chiral pool synthesis, asymmetric induction synthesis, 

and asymmetric catalysis synthesis.  However, non-asymmetric synthetic approaches 

followed by the use of separation techniques for the resolution and isolation of 

enantiomers from racemic mixtures are still in practice.   

In addition to the pharmaceutical industry, the issue of chirality is important to the 

agrochemical and fragrance industries as well.  The agrochemical industry, for example, 
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is faced not only with the challenge of developing and producing target-specific chiral 

chemicals for pest and weed control, but also the aftermath environmental impact of the 

application of these chemicals.  Similar to the possibility of enantiomers exhibiting 

different therapeutic effects, the stimulation of olfactory glands are known to be chiral 

specific.  The R enantiomer of limonene, for example has an orange odor while the S 

enantiomer has the odor of lemon.  As such, the fragrance industry, like pharmaceutical 

industry, is faced with a similar task of development, synthesis, and analysis of chiral 

chemicals as the.   

With the need for new designs and synthesis techniques for chiral compounds 

comes the demand for simple, efficient, robust, and rapid analytical techniques for 

catalyst evaluation in asymmetric synthesis, and enantiomeric purity assessment for 

quality control and combinatorial libraries.  Consequently, chiral analysis techniques are 

high on the agenda of pharmaceutical and other companies involved in the development, 

production, testing, and selling of chiral chemicals.  Several methods, both qualitative 

and quantitative, are available for chiral analysis.  However, the current demands in the  

field of chirality are such that improved strategies are required. 
 
 

Chiral Analysis  

Generally, methods for analyzing chiral molecules can be classified into two 

categories: (1) chiroptical methods, which involve measuring spectral responses 

following the interaction of chiral molecules with polarized light and (2) methods that 

depend on transforming chiral molecules into diastereomers using covalent or non-

covalent strategies prior to instrumental analysis.  The chiroptical methods can be used 

for both qualitative and quantitative studies.  The second category of methods, which are 
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usually combined with non-chiroptical or isotropic detection techniques, are normally 

used for quantitative analysis though they are capable of being employed for qualitative 

purposes as well. 

The chiroptical methods employed for chiral analysis include: (1) polarimetry, (2) 

optical rotatory dispersion (ORD), (3) circular dichroism (CD), (4) vibrational circular 

dichroism (VCD), and (5) Raman optical activity (ROA) [4, 21].   

Polarimetry, which is the oldest of all the chiroptical methods, measures at a 

single-wavelength (usually the sodium D-line, 589 nm) the rotation of plane polarized 

light by an optically sample.  The property of optical rotation is said to be based on the 

phenomenon of circular birefringence, which is related to the refractive index of the 

sample [4].  Optical rotation in polarimetry is, thus, affected by the type of solvent used, 

the wavelength of the plane polarized light, and temperature.  In practice, wavelengths 

used for polarimetric measurements are those at which the sample does not absorb.  For a 

given pair of enantiomers, if the optical rotation measured in degrees of, for example, the 

R enantiomer is positive, the optical rotation of the S enantiomer will be negative.   

Optical rotatory dispersion (ORD) is similar to the polarimetric technique in that 

it involves the measurement of the optical rotation caused by an optically active sample.  

However, the optical rotation in ORD is measured as a function of wavelength and it is 

known to arise as a result of the variation with wavelength of the indices of refraction of 

left-and right-circularly polarized light.  ORD curves measured in the region of the 

absorption band of optically substances reveal what is know as anomalous dispersion.  

Anomalous ORD arises as a result of the difference in absorption of the left- and right-

circularly polarized light, which in turn, leads to changes in the direction of rotation 
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(usually reversed) of the polarized light that passed through the sample.  An anomalous 

ORD plot of ellipticity as a function of wavelength reveals a maximum and a minimum 

or an S-shaped curve with an inflexion point, which may or not coincide with the 

absorption maximum of the samples.  A normal ORD curve, on the other hand, reveals 

what is known as a plain curve.  Figure 1.7 shows a hypothetical plot of an anomalous  

ORD curve together with normal positive and negative ORD plain curves.  Usually, ORD 
 
 

 

Figure 1.7.  Hypothetical normal and anomalous ORD curves. ANORD: Anomalous ORD 
 
 

measurements are performed in the UV-vis region because the ORD effect increases as 

the wavelength decreases.  ORD can be measured in terms of ellipticity or the degree of 

rotation of the linearly polarized light transmitted through the optically active sample.  

The ellipticity, measured in radians, is due the superposition of the electric vectors with 

different amplitudes of the left- and right-circularly polarized components of the linearly 

polarized lights; the difference in amplitude of the electric vectors of the left- and right-

circular polarized components of the plain polarized light is due to the differential 
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absorption by the optically active sample.  Similar to polarimetric measurements, the 

ORD measurements of a given pair of enantiomers will have opposite signs.   

Circular dichroism, which is simply a measure of the change in absorbance, is due to the 

tendency of optically active substances to absorb left- and right-circularly polarized lights 

to different extents.  Circular dichroism, therefore, is closely related to anomalous ORD, 

which is a measure the rotation of polarized light in the region of the absorption band of 

an optically active sample.  Similar to ORD, the CD of optically active sample is 

measured in the UV-vis region.  The CD phenomenon, which is due to differential 

absorption of left- and right-circularly polarized light, together with the change in the 

direction of rotation observed with anomalous ORD in the absorption band region of an 

optically active sample, is referred to as the Cotton-effect.  The Cotton-effect can be 

positive or negative.  The effect is said to be positive if the ORD maximum occurs at a 

longer wavelength than the absorption maximum of the optically active sample, while a 

negative Cotton-effect is said to result if the maximum occurs at a shorter wavelength.   

Figure 1.8, hypothetically, shows how an ORD curve is related to the CD 

spectrum of an optically active sample and the two types of Cotton-effect mentioned 

above.  CD spectra can be presented either as a plot of ellipticity as a function of 

wavelength or change in absorbance as a function of wavelength.  Similar to polarimetric 

and ORD measurements, the circular dichroism spectra recorded for a pair of 

enantiomers, will have opposite signs.  The difference in absorbance, ∆A, between the 

absorbance, AL, of the left-polarized light and that of the right-polarized light, AR, can be  

related to the difference in molar absorptivity, ∆ε, using the Beer-Lambert’s Law as 
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A 

B 

C 

Figure 1.8. Hypothetical absorption, CD spectra, and ORD curves.  A: An absorption band.  B: CD and 
ORD spectra showing a positive Cotton-effect.  C: CD and ORD spectra showing a negative Cotton-effect.  
Abs: Absorbance.   

 
 

( )clAA RLRL εε −=−           1.5 

where εL and εR are the molar absorptivities of the optically active sample for the left- and 

right-circularly polarized light respectively, c is the concentration in mol L-1, and l the 

pathlength in cm of the optically active sample.  Equation 1.5 can be written in the form 

clA εΔ=Δ .          1.6 

As shown, CD measurement complies with the Beer-Lambert Law. As such, the CD 

technique, similar to the polarimetric and ORD techniques, can be used for quantitative  

analysis of chiral samples [22, 23].  However, among these three chiroptical techniques, 

the CD technique is preferred for quantitative analysis because it is more sensitive than 

the other two techniques for the determination of enantiomeric purity, particularly for 

samples with small angles of rotation. 
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Vibrational circular dichroism (VCD) is a technique that measures the difference 

in absorption between left- and right-circularly polarized infrared radiation.  As such, it is 

an extension of circular dichroism into the infrared region to allow the probing of bond 

vibrations instead of just specific chromophores.  The complementary technique, Raman 

optical activity (ROA), measures the difference in intensity of scattered left- and right-

circularly polarized light produced by an optically active sample.  Unlike the previous 

chiroptical techniques mentioned, VCD and ROA techniques provide more detailed 

information on functional groups and/or structure of the optically active molecule.  The 

two techniques, thus, are used when detailed qualitative information is required [4, 24].  

In addition, VCD and ROA spectral data can be used in quantum mechanical 

computations to determine the absolute configurations of small optically active molecules 

[25].  Similar to the regular IR technique, VCD, at present, is not suitable for the analysis 

optically active molecules in aqueous solutions.  ROA, on the other hand, has been used 

to successfully analyze biomolecules in aqueous solutions [26].  Recent publications on 

the use of VCD and ROA for the determination of enantiomeric purity show VCD gives 

results within a limit of accuracy of 3 %, while results with the ROA are within a limit of 

accuracy of 0.1 % [26, 27] 

The second category of methods, as noted earlier, requires the conversion of 

enantiomers into diastereomers either by covalent derivatization or by some non-covalent 

association (specific complex formation or some other intermolecular interaction).  In 

these methods, the enantiomers are converted into diastereomers using another chiral 

substance in the enantiopure form (homochiral substance).  The enantiopure or 

homochiral substance in this case is referred to as a chiral selector or chiral auxiliary 
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agent.  It can also be called a chiral discriminating agent.  The fundamental principle of 

analysis for these non-chiroptical methods is based on the fact that diastereomers, formed 

from a pair of enantiomers, become two different stereoisomers (see example 1 and 2 

bellow); the enantiomers lose their object-mirror image property and acquire different  

 

Example 2

S-ROH + S-R'NH2 S-RO H-----NH2R'-S

R-ROH + S-R'NH2 R-RO H-----NH2R'-S

Diastereomeric pair of hydrogen
bonded complexes

R contains the chiral center: R or S
 

physical and chemical properties.  The pair of diastereomers formed could behave as 

constitutional isomers [4].  As such, diastereomeric pairs are relatively easier to identify 

or distinguish and separate than the enantiomeric pairs from which they were formed.  

The examples above illustrate the formation of a pair of covalent and non-covalent 
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diastereomers from two pairs of enantiomers.  The first example shows the formation of a 

pair of amides (covalent diastereomers) from the D and L enantiomers of a chiral 

carboxylic acid using the S form of a chiral amine.  The second example shows the 

formation of a pair of diastereomeric hydrogen bonded complexes between the S and R 

enantiomers of a chiral alcohol and the S form of a chiral amine.  The amide products as 

well as the hydrogen bonded complexes shown in the examples are diastereomeric 

because of the presence of the same chiral center in both compounds.   

Traditionally, non-chiroptical methods used for chiral analysis include NMR, 

chromatography, and electrophoresis.  The use of NMR without a chiral auxiliary will 

require that the chiral compound should have an active nucleus or group of nuclei, whose 

signal differs significantly for the two enantiomers of the compound.  This hardly occurs 

because the nuclei of pure enantiomers relax at significantly the same rate.  To overcome 

this difficulty, cross-polarization and magic angle spinning NMR techniques were 

developed for both qualitative and quantitative analysis of chiral compounds [4].  

However, these techniques could be used for only solid-state NMR measurements.  With 

the strategy of converting enantiomers into diastereomers, chiral compounds could be 

analyzed both in the solid-state and in solution using regular NMR instruments.  

Diastereomerization of enantiomers for NMR analysis is carried out through either the 

use of covalent chiral derivatizing agents or the use of chiral shift reagents or solvents 

(for non-covalent diastereomerization) [4, 21, 28-30].  A typical example of a covalent 

derivatization agent used for NMR chiral analysis is the Mosher’s reagent (α-methoxy-α-

trifluoromethyl phenylacetic acid) while Europium tris [3(heptafluoropropylhydroxy-

methylene)-(+)-camphorate] and 2,2,2-trifluoro-1-(anthryl)-ethanol are used as a chiral 
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shift reagent and chiral solvent, respectively.  With the use of covalent chiral 

derivatization agents, non-NMR active chiral molecules can be derivatized with specific 

NMR active nuclei like the CF3 group in the Mosher’s reagent for analysis. 

Chromatographic techniques are the most common techniques employed in chiral 

analysis.  These techniques, which include both GC and HPLC, are used for both 

qualitative and quantitative chiral analyses.  Chromatography is quite a powerful and 

versatile tool for analysis such as this because it can be coupled with a variety of sensitive 

detection systems as well as other analytical techniques.  Chromatographic methods, 

therefore, are known for their sensitivity and accuracy if not for speed, simplicity, and 

low expense [4, 28].  Irrespective of the specific technique, GC or HPLC or other, 

chromatographic techniques for chiral analysis will require a chiral stationary phase or a 

chiral mobile phase if the enantiomers are not derivatized.  In the case where neither a 

chiral stationary or mobile phase is employed, the enantiomers being analyzed are 

derivatized using a suitable chiral selector or derivatization agent prior to the analysis [4, 

31, 32].  All chromatographic techniques for chiral analysis, therefore, depend on the 

involvement of stable or transient diastereomeric species, which as a result of their 

different solubility or stability or adsorption properties, allow for separation.  Types of 

chiral stationary phases used in chromatographic techniques for chiral analysis include 

amides, carbohydrates (e.g., native and modified cyclodextrins), crown ethers, metal 

chelates, and proteins.  Organic solvents, including chloroform, containing chiral mobile 

phase additives such as 2,2,2-trifluoro-1-(anthryl)-ethanol are used as chiral mobile 

phases for chiral analysis.  Unlike HPLC, GC analysis requires that the chiral analyte be 
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volatile and thermally stable.  While GC may continue to be used in this field of analysis, 

its application has been superseded by HPLC in recent times [4].   

Capillary electrophoresis (CE), which is based on the original principle of 

electrophoresis discovered by F. F. Reuss in 1807 [33], is now a well-known technique 

employed mostly in biochemical or biological analysis.  Capillary electrophoresis has 

gained a considerably vast application in chiral analysis for about a decade now [34].  

This is not surprising since chirality is an important subject in biochemical and biological 

studies.  Generally, electrophoresis, and for that matter CE analysis, is based on the 

differences in mobility of charged analytes through an electrolyte system under the 

influence of a strong electric field.  For chiral analysis, CE techniques, similar to 

chromatographic techniques, are based on the formation of stable (covalent) or transient 

(non-covalent) diastereomeric species.  Differences in the physicochemical properties of 

the diastereomers allow for the difference in mobility, which is determined by both 

electroosmosis and electrophoretic transport under the influence of the applied electric 

field.  Chiral analysis using CE techniques can be performed directly or indirectly.  The 

direct analysis involves analyzing, for example, a pair of enantiomers in their original 

form (no prior formation of diastereomers) by adding a chiral auxiliary agent to the 

electrolyte system (buffer).  The interaction between the chiral analyte and the chiral 

auxiliary agent, which in this approach is non-covalent, leads to the formation of transient 

diastereomers.  The indirect approach, on the other hand, requires the formation of 

diastereomers of the enantiomers prior to the separation.  The indirect analysis, therefore, 

can be performed in a non-chiral electrolyte environment.  Several CE techniques are 

available for application in chiral analysis.  However, capillary isotachophoresis and 
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capillary zone electrophoresis (CZE) are the most systematically researched CE 

techniques for chiral analysis [35].  According to Vespalec et al. [34], CZE, due to its 

simplicity, has now become the electrophoretic technique of choice for chiral separations.  

It is noted that resolutions above 5 are common and values as high as 20 have been 

achieved, resulting in enantiomeric impurity detections below 0.1 % [35].  Compared to 

other methods, capillary electrophoresis is economical because it requires small samples 

and limited reagent.  It is, however, not necessarily the fastest and the least cumbersome.  

Though both CE and chromatography techniques have certain things in common, CE is 

distinguished from chromatography in that an electric field must be applied.  In addition, 

there is no mobile phase per se in CE techniques.  CZE, in particular, is a free solution 

technique, which does not involve a stationary phase for separation.  Other CE 

techniques, for example, gel capillary electrophoresis and those that employ capillary 

walls coated with chiral auxiliary agents are much more closely related to 

chromatography.  Though electrophoresis, and for that matter CE, require generally that 

analytes must be charged species, neutral chiral molecules can also be analyzed by the 

formation of micelles using surfactant carriers [4, 34].  Because the basic interactions 

between chiral analytes and selectors are the same for both CE and chromatography, 

chiral selectors used in chromatographic separations are equally effective for analysis in 

chiral CE.  Analyte detection in CE is usually accomplished using fluorescence and 

diode-array UV detectors.  An extensive review on capillary electrophoresis in chiral 

analysis, including several of the chiral selectors used in chiral CE analysis, is published 

by Vespalec et al. [34].  More information on CE for chiral analysis can be found in this 

review publication.  
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In the early stages (1970s) of application for chiral analysis, mass spectrometric 

(MS) techniques were based on the differential volatility of isotopicaly labeled 

enantiomers.  The separation of the chiral compound was manifested in the relative 

abundance of the molecular ions as function of time.  In those early stages, molecular 

ions were generated using the electron impact (EI) and chemical ionization (CI) 

techniques [4, 36].  Since those early stages, significant improvement and refinement 

have been made in the use of MS for chiral analysis.  To date, MS techniques used for 

chiral analysis can be classified into four major classes: (1) Host-guest diastereomeric 

adduct formation, (2) ion/molecule reaction diastereomeric adduct formation, (3) 

collision-induced dissociation, and (4) kinetic reaction method.  All these four classes of 

MS techniques for chiral analysis require the use of chiral auxiliaries.  Common chiral 

auxiliary agents employed in the first two methods include cyclodextrins and crown 

ethers while metal-coordinated chiral auxiliaries are used in the third and fourth 

techniques.  It is noted that each of the above-mentioned technique can be used for 

recognition or identification as well as quantification studies [21, 37].  To quantify 

samples, calibration involving standards with known enantiomeric excess is required. 

Recent enantiomeric excess analysis using MS reported errors less than 2 % [21, 37].   

Isotropic spectroscopic techniques are gradually gaining ground in their 

application in chiral analysis.  This is because, generally, spectroscopic techniques are: 

(1) faster, (2) relatively simple yet capable of being made sophisticated in function, (3) 

more versatile, (4) sensitive and reliable, and (5) capable of providing detailed chemical 

information.  It is, therefore, not surprising that more often than not other analytical 

techniques are coupled with spectroscopic detectors for detailed chemical information.  
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Isotropic spectroscopic techniques like regular UV and fluorescence spectroscopy are of 

interest, particularly for quantitative purposes, because they are simple, fast, sensitive, 

and can be used to analyze samples in a variety of solvents.  Our research group has over 

the years employed these two spectroscopic techniques in research in quantitative chiral 

analysis.  The focus of our research in chiral analysis includes method development.  This 

involves investigating known chiral selectors for isotropic spectroscopic enantiomeric 

discrimination and designing new discrimination strategies and simple high throughput 

techniques. 

UV and fluorescence spectroscopy, like other spectroscopic technique, is based on 

the principles of the interaction of matter with electromagnetic radiation.  

Electromagnetic radiation (ER) is made up of electric and magnetic fields oscillating at 

right angles to each other.  ER can also be treated as particles or photons. ER cover a 

range of wavelengths from radio waves (~ 106-1 m) through microwaves (~ 1-10-1 m), 

infrared radiation (~ 10-2-10-6 m), visible radiation (~10-2-10-6 m), ultraviolet radiation (~ 

10-7-10-9 m), X-rays (~ 10-9-10-13 m) to gamma rays (from 10-13 m and above) [38].  It 

should also be noted that no clear-cut boundaries exist between the various radiations 

constituting the electromagnetic spectrum.  Unlike other forms of waves, electromagnetic 

waves can travel through a vacuum.  The energy, E (in Joules, J), of a photon of a given 

electromagnetic radiation is related to its frequency, v (in Hertz, Hz), by the equation: 

hvE =           1.7 

where h is Plank’s constant.  The frequency, v, is related to the speed of light, c, in a 

vacuum by the equation: 

vc λ=           1.8 
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where λ is the wavelength (usually in nanometers, nm).  The interaction of molecules 

with electromagnetic radiation leads to characteristic responses or outcomes based on the 

energy or frequency of the radiation.  For example, the interaction of molecules with 

gamma and X-rays, which are high energy radiations, results in changes in nuclear 

configurations and electron transitions between an inner and a higher energy shell.  

Spectroscopic techniques requiring such high energies include Auger electron 

spectroscopy and X-ray photoelectron spectroscopy.  The result of electron transitions 

caused by the interaction of molecules with UV-vis radiations forms the basis UV-vis 

absorption spectroscopy.  Unlike the X-ray and UV radiations, infrared and microwave 

radiations are of lower energies than the electronic energies of atoms or molecules.  As 

such, infrared radiations are capable of inducing ground state molecular vibrations while 

microwaves can cause rotational motions in molecules.  Radio waves, which are capable 

of inducing spin transitions in appropriate nuclei, form the basis of nuclear magnetic 

resonance spectroscopic techniques.  It should be noted that molecular interactions with 

higher energy radiations could result in effects that are associated with lower energy 

radiation.  For example, electronic transitions in molecules caused by UV absorption are 

accompanied by both vibrational and rotational motions (important in the gas phase) and 

infrared irradiation can produce rotational motions in the gas phase in addition to ground 

state molecular vibrations.  The different regions of the electromagnetic radiation, as 

outlined above, thus provide different chemical information on substances: X-ray for 

crystal structure among others, UV-vis for electronic transitions in chromophores, 

infrared for bond vibrations and functional groups, and radio waves for molecular 

structure of molecules containing appropriate nuclei.   
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As mentioned earlier, isotropic UV-vis and fluorescence spectroscopy, which are 

the main non-chiroptical techniques employed by our research group for chiral analysis, 

usually employ radiation sources ranging from 190-800 nm.  In certain instruments, 

however, the wavelength region is extended into part of the NIR region.  For example the 

UV-vis instrument used (Agilent 8453 photo diode-array spectrophotometer) for our 

studies has a radiation source that ranges from 190 to 1100 nm  Irradiation of molecules 

with UV-vis light, as mentioned above, results in electronic transitions from the ground 

state to higher energy states known as excited states.  Because electronic energy levels in 

molecules are quantized, the energy of the radiation must be equal to the difference in 

energy between the higher electronic energy state and the ground state electronic energy 

for electronic transitions to occur.  These transitions usually occur from the highest 

occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital 

(LUMO).  Generally, molecules are made up of three types of molecular orbitals– the 

sigma, pi and nonbonding molecular orbitals.  The sigma and pi orbitals have associated 

unoccupied higher-energy molecular orbitals (anti-bonding orbitals) with specific 

energies.  In organometallic compounds, another type of molecular orbital, the d-orbital, 

may be present; these molecular orbitals have ground and higher energy states similar to 

sigma and pi molecular orbitals.  In most molecules, sigma orbitals are the lowest-energy 

occupied molecular orbitals with pi molecular orbitals at a higher energy level and the 

nonbonding orbitals at still a higher energy level.  Figure 1.9 shows in a simplified form 

the relative energy levels of molecular orbitals and the possible electronic transitions that 

can occur due to absorption of UV-vis light.  The figure shows that the transition energy, 

for example, between the nonbonding orbital, n, and the anti-bonding pi orbital, π, is  
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Figure 1.9.  Molecular orbital energy levels and possible electronic transitions 
 
 

lower than that between the pi bonding orbital and the anti-bonding pi orbital, π*. 

It is, however, known that not all transitions that might appear feasible actually occur.  

For example, the π*←n transition is symmetry forbidden.  While forbidden transition 

signals may not be observed for some molecules, they tend to show up with reduced 

intensity for others.  With the quantization of electronic energy, it will be expected that 

signals for UV absorption should appear as sharp lines or narrow bands.  None of these is 

observed in practice because molecules, unlike atoms, have vibrational as well as 

rotational (important only in the gas phase) motions, which are not frozen even at 

absolute zero but perturbed by the absorbed UV-vis radiation.  Thus, the molecule is 

promoted from its ground state vibrational and rotational energy levels to the excited 

vibrational and rotational levels associated with the excited electronic state.  Unlike 

electronic states, the energy differences between vibrational or rotational states in 

molecules are small.  In addition, several of them are present for a given electronic state.  

Consequently, continuous UV-vis radiation passing through a sample of molecules is 

absorbed over a broad wavelength range and the ensuing signal appears as a broad band.  
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The UV absorption spectrum, thus, is an electron-vibronic spectrum.  The association of 

vibrational excitation with electronic excitation allows the UV-vis absorption spectrum of 

a molecule to contain some information about the structure of the molecule.  This is 

important for our chiral analysis, which involves the transformation of enantiomeric pairs 

into either covalent or non-covalent diastereomeric pairs.  This is because, while the 

electron transition energies of the diastereomeric pairs may not differ significantly from 

each other, vibrational transitions should differ because of a lack of isometry in their 

structures.  It is, thus, possible for us to probe the difference between diastereomerized 

enantiomers using isotropic UV-vis spectroscopy.   

The electrons responsible for UV-vis absorption are part of bonds formed by a 

group of atoms.  As such, the properties of the electrons are influenced by the nuclei of 

the atoms forming those bonds.  The entire system of atoms and bonds responsible for a 

given transition in the UV-vis region is referred to as a chromophore.  Table 1.1 shows 

typical chromophores found in organic molecules, their associated electronic transitions, 

wavelengths of maximum absorption (λmax), and molar absorptivities (ε) [39].  The 

absorption bands of chromophores are affected by conjugation– a system of bonds in 

which at least a pair of double bonds alternated by a single bond.  Conjugation leads to 

delocalization of electrons, which tends to lower the energy of transition and increase the 

density of electrons involved in the absorption.  These changes result in absorption at 

longer wavelengths and/or increase in absorbance.  Absorption to a longer wavelength is 

referred to as a bathochromic shift or red shift and an increase in absorption is termed a 

hyperchromic effect.  In addition to conjugation, the absorption band of original 

chromophores can be modified by electron donating or withdrawing groups, which are  

 

 35



Table 1.1.  Transitions of typical chromophores 
 

Chromophore Example of 
organic 
molecule 

Solvent Electronic 
transition 

 λmax (nm) εmax           
(m2 mol-1) 

-C=C- Pentene Hexane π*←π 190 1000 

-C=O Propanone Hexane π*←π 188 90 

   π*←n 279 1.5 

C6H6 Benzene Hexane π*←π 184 6000 

    203 740 

    255 20 

-C=C-C=C- Buta-1,3-diene Hexane π*←π 217 2100 

-N=O Nitromethane Hexane π*←n 278 1.7 

 
 

collectively referred to as auxochromes.  Electron donating auxochromes produce 

bathochromic and/or hyperchromic effects, while electron withdrawing auxochromes 

cause shift in absorption to shorter wavelengths and/or a decrease in absorbance.  A shift 

in absorption to a shorter wavelength is known as a blue shift or hypsochromic effect and 

a decrease in absorbance is referred to as a hypochromic effect.  Furthermore, solvents 

may produce significant changes including band broadening in the absorption bands of 

chromophores.  Generally, polar solvents tend to be more effective in modifying 

absorption bands of chromophores than non-polar solvents.  In addition to the effect of 

solvent molecules on chromophores, the presence of other chemical species, which can 

form hydrogen and ionic bonds or undergo intermolecular interactions, including dipole 

moment interactions with chromophores, can significantly modify the absorption bands 

of chromophores.  Usually, the effect of auxochromes, solvent molecules, and other 

solutes in solutions are particularly significant if these species are directly associated with 

the chromophore system of the absorbing molecule.  The further these species are from 
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the chromophore, the weaker their effect on the absorption band of the absorbing 

molecule.  The effect of auxochromes and solutes in solutions of chromophores play vital 

roles in our isotropic spectroscopic methods of chiral analysis.  This is because the 

diastereomeric effect induce in enantiomers through either covalent derivatization 

(employed is in this present research) or non-covalent association (e.g., inclusion or non-

inclusion complex formation) are analytically useful only if the effect is reflected in the 

spectra.  Consequently, our discrimination strategies are designed to induce changes in 

the chromophores of the chiral analytes and/or the chiral selectors.   

As shown in Table 1.1, the extent of UV-vis light absorption and the wavelength 

region of absorption are characteristic of the chromophore involved.  It is known that the 

amount of light absorbed scales directly with the number of the absorbing molecules. In 

addition, the amount of light absorbed by a sample is known to be independent of the 

intensity of the light.  The first observation was verified by Wilhelm Beer (German 

astronomer; 1797-1850) and the second by Johanna Heinrich Lambert (German 

mathematician; 1728-1777).  These two observations were put together to derive the 

Beer-Lambert Law, which is mathematically given by the equation: 

cl
I
I

A ε== 0
10log           1.9 

where A is the absorbance, I0 and I are the incident and transmitted radiations 

respectively, ε the molar absorptivity coefficient in L mol-1 cm-1, c the concentration in 

mol L-1, and l the pathlength in cm.  The ratio of the incident light to the transmitted light 

is equal to the inverse of the transmittance, T.  Equation 1.9 above allows for the 

quantitative analysis of UV-vis active analytes.  However, only certain electronic 

transitions associated with certain chromophores are accessible by ordinary UV-vis 
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instruments and useful for quantitative analysis.  For example, σ*←σ transition can be 

induced in all organic molecules.  These may occur either in the vacuum ultraviolet 

region (~ 170-10 nm) or close to the lower wavelength region of the far UV range (180-

200 nm).  Signals in the vacuum ultraviolet region require special instrumentation while 

those occurring in the far UV region, 180-200 nm, are usually not useful because they are 

interfered with by solvent absorption and are not particularly sensitive.   

Modern regular or isotropic UV-vis spectroscopy instruments are quite simple.  

Figure 1.10 shows a schematic based on a modern Agilent 8453 isotropic UV-vis 

spectrophotometer used for spectra collection in the present research.  Usually, the 

isotropic UV-vis light in a modern UV-vis instrument such as the Agilent 

spectrophotometer is generated using a deuterium and tungsten lamp.  Light from these 

two sources are collimated using a collimating lens through a shutter system consisting of 

an optical on/of switch and a filter.  The filter is used to reduce stray light in the UV 

range.  The isotropic UV-vis light passes through the sample, which can be contained, 

depending on the need, in a quartz or ordinary glass cuvette.  The transmitted light is 

collimated through a slit into a high resolution polychromator, which disperses the 

transmitted light onto a 1024-element diode-array detector made up of silicon 

photodiodes.  Charge deposited on reversed-biased photodiodes is discharged when the 

dispersed transmitted light falls on the photodiode.  The amount of current required to 

recharge a given photodiode is proportional to the intensity of transmitted light of a  

particular wavelength that impinged on the photodiode in question, since the photodiode 
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Figure 1.10.  Schematic of the Agilent 8453, UV-vis, photodiode array spectrophotometer 
 
 

was last interrogated.  The optical configuration of the Agilent instrument is a single-

beam configuration.  Some spectrophotometers are based on a double-beam configuration 

in which the source light is split into a reference beam and a sample beam.  The array of 

photodiodes used as a detector in the Agilent spectrophotometer can record absorbances 

over a range of wavelengths simultaneously.  In addition, recording absorbance does not 

require scanning, hence no moving parts.  As such, the spectrophotometer does not suffer 

from instrument variation errors associated with the use of moving parts in instruments.  

Elimination of such sources of error is important for our analysis because differences 

between the isotropic spectra of the diastereomers formed by our discrimination 

strategies are usually small.  
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As mentioned earlier, our techniques for chiral analysis techniques involve the use of 

isotropic fluorescence spectroscopy in addition to isotropic UV-vis spectroscopy.  

Fluorescence spectroscopy is similar to UV-vis absorption spectroscopy because it 

requires the same chromophores as UV-vis spectroscopy.  Fluorescence emission is a 

consequence of absorption of UV light of usually higher intensity than used for UV 

spectroscopy.  Figure 1.11 shows the light absorption and electron transition processes, 

which give rise to the fluorescence and other photoluminescence processes.  This energy 

level diagram is referred to as a Jablonski diagram.  As shown in the diagram, a molecule 

in its ground state (S0), usually the singlet state, can be promoted to any of the excited 

singlet states (S1or S2) with the molecule being able to occupy any of the vibrational 

levels of the excited states.  Molecules in an excited vibrational state can undergo 

vibrational relaxation from higher vibrational levels due to molecular collision to the 

lowest vibrational level of the first excited state, S1.  The extra vibrational energy is lost 

in the form of heat, which leads to a minuscule increase in temperature of the substance.  

Vibrational relaxation is an effective process and occurs within a shorter time (~ 10-12 s 

or less) than the average lifetime of an excited electronic state [39].  De-excitation from 

the lowest vibrational level of the first excited singlet state to any of the vibrational levels 

of the ground singlet state results in emission of light of a longer wavelength than the 

absorbed wavelength.  This emission process, which occurs on a timescale of about 10-8 s 

is referred to as fluorescence emission.  Molecules may also undergo intersystem 

crossing where the molecule may change from the singlet state to the triplet state 

(unpaired or parallel spin). De-excitation from the triplet excited state to the ground state 

leads to phosphorescence emission (10-4-10 s or more).  Other non-radiative processes  
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Figure 1.11.  Jablonski diagram showing photoluminescence processes following light absorption.              
v : Vibrational level.  r: Rotational level 

 
 

including internal and external conversion can take place during molecular excitation.  

Fluorescence emission is affected by the same factors mentioned above, which affect the 

absorption spectra of chromophores.  In addition, molecular rigidity, solvent molecules, 

and the presence of bulky molecules in solution can result in fluorescence quenching 

(reduction in fluorescence intensity).   

The use of fluorescence spectral data for quantitative analysis is based on a linear 

equation derived from Beer’s Law.  The equation is given by the expression: 

clPKF ε03.2 ′=           1.10 

where F is the fluorescence intensity, K΄ is the a constant dependent on the quantum 

efficiency of the fluorescence process, P0 is the incident beam power, ε is the molar 
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absorptivity in L mol-1 cm-1 of the fluorescing molecule, and c and l are the concentration 

(mol L-1) and pathlength (cm) of the sample respectively.  Equation 1.10 is derived based 

on the condition or requirement that the absorbance of the analytical solution is weak.  As 

such, fluorescence spectroscopy is more sensitive than UV-vis spectroscopy.  This is 

useful because it allows, for example, the analysis of chiral samples at much lower 

concentrations than possible with most chiroptical techniques including polarimetry.  

Similar to UV-vis instrumentation, spectrofluorometers or fluorometers are quite simple.  

They require a UV light source for excitation, an excitation monochromator or filter, an 

emission monochromator or filter, and a sample and reference photomultiplier for 

detection.   

Figure 1.12 shows the schematic for the spectrofluorometer (FluoroMax-2, Jobin Yvon 

SPEX Instrument, S.A Inc.) used in the present research for the collection of fluorescence 

emission spectral data.  The schematic in Figure 1.12 generally applies to most 

spectrofluorometers.  Unlike UV-vis spectrophotometers, the fluorescence emission 

signal is collected at right angles to the excitation beam.  Fluorescence emission signals, 

similar to UV-vis signals contain some amount of information on the structure of the 

fluorescing molecules.  This is because, the fluorescence emission signal, as mentioned 

and shown in the Jablonski diagram above, is related to the vibrational states of the 

fluorescing molecule.  Isotropic fluorescence spectroscopy, thus, can be used to probe 

spectral differences between diastereomers formed from enantiomers for the purpose of 

enantiomeric composition analysis. 
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Figure 1.12.  Schematic of the FluoroMax-2, Jobin Yvon SPEX Instrument, S.A Inc. 
 
 

Spectral Data Analysis 

Generally, spectral data may be analyzed for either qualitative or quantitative 

purposes.  Qualitative analysis of data may be for the purpose of identification, 

differentiation, following a reaction, and characterization while the basic purpose for 

analyzing data quantitatively is to determine how much of a given component is available 

in a sample of interest.  While the analytical chemist may be interested and involved in 

analyzing data for both qualitative and quantitative reasons, the organic chemist and 

researchers in biological chemistry may be mostly concerned with analyzing data for 

qualitative purposes.  Whichever the case might be, there is one central reason for 

analyzing spectral data of samples: to obtain chemical information.  This may be used for 

quality control, drug development, diagnosis, decision and policy making, and more.  As 
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such, spectral data analysis is a vital aspect of any analytical science.  To the analytical 

chemist, data analysis becomes almost unavoidable.  

Usually, quantitative analysis of spectral data, which are collected for 

samples/matrices containing single analytes or for the purpose of determining a single 

analyte are, traditionally, performed using a univariate regression model.  Such a model is 

based on a mathematical expression, which shows a linear relationship between an 

independent variable, x, and a dependent variable, y.  Such a relationship can be 

expressed in a simplified form as: 

bxay ±=           1.11 

where a and b are coefficients representing the intercept (baseline offset/background in 

e.g., spectral data) and slope (related e.g., to absorptivity) of the curve showing the linear 

relationship between the independent variable x and the dependent variable y. For 

spectral data, the variable x may represent a spectral property, for example, absorbance or 

emission while y may represent, say, the concentration of the analyte.  Because data will 

always consist of some level of error, e, usually random error, a linear model must take 

into account the error part of the data.  A typical univariate linear model taking the error 

in the data into account will, thus, be of the form: 

ebxay +±=          1.13 

For a univariate linear model to be useful for quantitative analysis, the spectral property 

measured must scale directly with the amount of the analyte.  As such, spectroscopic 

analytical techniques that comply with the Beer-Lambert law or for which a linear 

relationship can be defined between a measured spectral property and 

amount/concentration of analyte, can be used for quantitative analysis.  Because UV-vis 
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absorption and fluorescence emission intensity comply with the Beer-Lambert law or 

scale directly with concentration, most quantitative analytical techniques depend on the 

measurement of these two spectral properties for quantitative analysis.   

For univariate determination of the unknown concentration of a UV-vis or 

fluorescence active analyte, the absorbances or fluorescence emission intensities of 

standard solutions of the pure form of the analyte are measured.  The absorbance or 

emission is usually measured at the wavelength of maximum absorption or emission.  In 

this case, care must be taken not to use concentrations that exceed the linear range of the 

Beer-Lambert law.  A calibration curve of the standards is then prepared by plotting 

concentration (y-axis) as a function of absorbance or fluorescence emission (x-axis).  The 

absorbance or fluorescence emission of the unknown, measured under the same 

conditions as the standards, is then traced horizontally from the absorbance axis (y-axis) 

of the calibration plot until it crosses the calibration curve.  A straight vertical line is then 

drawn from where the horizontal line crosses the calibration curve to the concentration 

axis (x-axis).  The value of the concentration at the point where the vertical line crosses 

the concentration axis is the concentration of the unknown.  Otherwise the concentration 

of the unknown can be determined using the equation of the calibration line, which 

relates absorbance or emission to concentration through the intercept and slope of the 

calibration line.  In cases where other components in a sample are suspected or observed 

to contribute to the absorption or emission of the analytes, the standard addition method 

is used to overcome errors that might result because of the matrix [40].   

However, the situation regarding multicomponent analysis in the determination of 

enantiomeric compositions of chiral analytes is not as simple due to the following 
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reasons: (1) spectral differences among sample solutions made up of identical total 

concentrations but varying enantiomeric compositions are quite small, (2) the spectral 

differences do not necessarily occur uniformly at a single wavelength, and (3) 

information in one wavelength or a region of wavelengths may be complementary.  In 

situations of this kind, the use of univariate regression modeling is hardly an option.   

Consequently, multivariate regression modeling tools are required.  
 
 

Multivariate Regression Analysis in Chemistry 

Multivariate regression analysis is traditionally a statistical tool used for data 

analysis in which a dependent variable depends on several independent variables.  Its 

introduction into chemistry was basically for the purpose of acquiring maximum 

chemical information from chemical data.  In the late 1960s and early 1970s, automated 

data collection and computation in chemistry were made relatively easier as a result of 

the technological advancement of that period [41]– the computer.  One of the rippling 

effects of this is that it became possible to collect larger volumes of chemical data than 

before.  This in turn, created a challenge for chemists, who were faced with analyzing 

larger volumes of chemical data than before.  During this same era, improved mainframe 

computers with statistical software packages were becoming increasingly available.  

These factors, in addition to a change in attitude in the statistics and analytical chemistry 

communities, according to Brown [41], led to the development of a chemical sub-field 

now called chemometrics.  Chemometrics is defined in several ways in the literature [41-

43].  Each definition, however, clearly indicates that chemometrics involves the 

application of statistical and mathematical methods in chemistry.  According to the 

International Chemometric Society (ICS), chemometrics is the science of relating 
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measurements made on a chemical system or process to the state of the system via 

application of mathematical or statistical methods [44].  Though chemometrics began as a 

sub-field of chemistry in the late 1960s and early 1970s, its practice dates as far back as 

1908 [41].  Since the 1970s, chemometrics evolved as it should to include, currently, 

several areas of application such as experiment design, pattern recognition, and signal 

processing in chemistry and related fields.   

Multivariate statistical tools employed in chemistry come in various forms.  The 

most common of these tools used for chemical data analysis include multiple linear 

regression (MLR), principal component regression (PCR) and partial least squares 

regression (PLSR).  Unlike univariate regression modeling where, for example, 

absorbance at a single wavelength is related to analyte concentration by a linear model of 

the form shown by equation 1.12, multivariate linear regression modules for spectral data 

analysis are formulated using more than one wavelength.  The equation for a multivariate 

linear regression, taking error (e) in the data into consideration, will have a form that can 

be general written as: 

exbay ii +Σ±=           1.13 

where the dependent or response variable, y, (e.g., concentration) is related to a weighted 

linear combination of all the independent variables, xi (e.g. absorbances at given 

wavelengths).  The weighting, bi, is the partial regression coefficient indicating the rate of 

change of the response variable, y, as a function of the predictor variable, x, at the ith 

level.   

The MLR technique is designed to use a selection of variables (at least as many as 

there are chemical components) for the model based on the level of significance of the 
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variable.  The level of significance of the variable is determined by the probability to 

enter and leave, that is, how statistically significant the regression term of the variable is 

[45].  Because of the large volume of data, models for multivariate regression analysis are 

computed as matrices and/or vectors.  For example, in an MLR analysis, the predictor 

variable, X, (absorbance at different wavelengths) is a data matrix of the form n x k (n is 

the number of rows and k the number of columns) while the variable to be predicted or 

response variable, y, (e.g., enantiomeric composition) is an n x 1 vector.  The matrix 

equation showing the regression of y on X can be written in the form [21]: 

y = Xb         1.14 

where b is the regression vector, which can be determined by multiplying equation 1.14 

by the transpose matrix, XT, as: 

XTy = XTXb           1.15 

b = (XTX)-1XTy           1.16 

Thus, with the spectral and concentration data of a set of calibration samples, the actual 

vector, b, can be computed.  This can then be used together with the X-spectral data of an 

unknown sample to predict the response variable vector, y (concentrations or 

enantiomeric compositions).   

As noted earlier, the MLR technique uses a selection of variables for model 

computation.  Though this approach has the advantage of making the model simple, the 

technique has several disadvantages [45]: (1) because of the use of selected variables, 

MLR is unable to account for unusual samples; (2) the benefit of multivariate signal 

averaging is significantly reduced; (3) the model is unable to account for colinearity, 
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resulting in poor predictability [46, 47].  Thus, the MLR technique is not usually used in 

the analysis of complex spectroscopic data.  

PCR, similar to PLSR, is able to deal with colinearity in spectral data because it is 

based on the technique of using an orthogonal set of factors called principal components 

(PCs) to represent the variation present in a large set of data.  The concept of principal 

components is can be illustrated using a set hypothetical data.  Consider, for example, a 

set of hypothetical data for which three variables were measured.  This data set, with a 

variable space of three can be projected as a swarm of data points on an XYZ coordinate  

system (three independent variables) as shown in Figure 1.13.  The idea of the principal  
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Figure 1.13.  Hypothetical data swarm plotted on an XYZ coordinate system showing three PCs. The three 
principal components (PC1, PC2, and PC3) represent orthogonal spaces of maximum variation in the data.  
component is synonymous with defining new orthogonal vectors within the data swarm 

to represent regions of variation in the data points.  Thus, the first principal component, 
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vector orthogonal to PC1, which defines the maximum possible variation in the swarm 

orthogonal to the vector defined by PC1.  Subsequent PCs are defined to capture the 

successively smaller variation in the data.  Usually, the variation captured by the PCs 

decreases as the number of PCs increase.  Thus, PC1 should capture most of the variation 

in the data followed by PC2 and so on.  The PCs shown in Figure 1.13 have actually 

defined a new orthogonal coordinate system on which the data can be projected.  As 

such, each data point has a new set of coordinates defined by the PCs.  These new 

coordinates defined by the PCs are referred to as scores.   Because the PCs, as shown in 

Figure 1.13 represent maximum variation in the data, they are variance-scaled 

eigenvectors [21].  Each PC can be defined in terms of the contributions of the original 

variables of the data to it.  These contributions are referred to as loadings [22, 46] and the 

higher the loading, the more important the variable is to the PC in question.  For a given 

data set, there is a maximum number of PCs to be computed, which is equal to the 

smaller of the number of variables or n-1 samples (n is total number of samples)[21, 45].  

Up to this point, it can be deduced from the discussion on the computation of PC that two 

goals– elimination of colinearity and reduction in dimensionality of data– are achieved 

through principal component computation.  Colinearity, which is correlation within 

measurements of the same variable, for example, x-variables (independent variables), is 

eliminated because the new coordinate system defined for the data points by the PCs are 

orthogonal (mathematically independent).  The dimensionality of the data is reduced 

because the size of the data to be used for the PC based multivariate model is determined 

by the number of PCs, which cannot be more than the smaller of the number of variables 

or n-1 samples.  Although as many as the smaller of the number variables or n-1 samples 
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of PCs can be computed, not all of them relate to the structured information in a given 

data set.  This is because, ideally, as the number of PCs increases, the less the variance 

explained by successive PCs become less and more noise is incorporated in the model.  A 

graphical illustration of this situation showing the plot of unexplained variance or 

explained variance as a function of the number of PCs may look like Figure 1.14A or B.  

The variance curves in Figure 1.14A and B show that the use of PC3 and PC4 may 

contribute noise to the model because compared to PC1 and PC2, they explain less of the 

variation in the data.  These two PCs might therefore not be necessary and their removal 

from a model computed with the four PCs will result in further reduction of the variable  

space of the data.  In addition, the elimination of such PCs should lead to a better model.  
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Figure 1.14.  Ideal plots of variance in data as a function principal component.  A: Unexplained variance 
increasing with increasing number of PCs.  B: Explained variance decreasing as the number of PCs 
increase  

 
 

For PCR analysis, the scores matrix denoted T is used in the matrix equation (y = 

Xb equation 1.14) shown for MLR technique.  Thus, the matrix equation for the PCR 

model is of the form [21]: 

y = Tb          1.17 
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Using data for a set of calibration samples where, for example, the concentrations 

of the samples are known, the regression coefficient vector, b, can be computed by 

multiplying equation 1.17 by the transpose, TT, of the scores matrix and solving for b as: 

TTy = TTTb           1.18 

b = (TTT)-1TTy           1.19 

Though PCR analysis is capable of eliminating colinearity and reducing the 

dimensionality of a data set as explained above, it is limited because its application 

involves the use of only the data on the independent variable (X-data) for PC 

computation.  This is problematic because the variation in the X-data, which was used to 

compute the scores matrix, T, for the prediction of the y (e.g., concentrations) vector, 

may not correlate entirely with y.  In addition, it is possible that the variance in the X-

data that is related to y is just a portion of the entire variation in the X-data [45].  

Consequently, PCR may fail in finding relevant linear combinations of variables for 

modeling y.  To overcome the limitation of PCR technique, the partial least squares 

regression (PLSR) technique is used.   

The PLSR technique was developed and popularized in analytical science 

particularly by Wold [47].  With the PLSR algorithm, the limitation mentioned for the 

PCR technique is circumvented by using the covariance of the X-data (spectral data) with 

the y-data (e.g., concentrations) in conjunction with the X-data to compute the scores 

matrix for the model [45].  Once the PLSR scores matrix is obtained, the vector, b, can be 

found as shown above using the y-data of the calibration samples.   This makes the PLSR 

technique particularly powerful for multivariate calibration and prediction of spectral data 

because: (1) as noted, it takes into account both the concentration (y) and the spectral 
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variables (x-variables), (2) it minimizes the dimensionality in data and focuses on 

variables that are relevant to the calibration model [45-48].  Two variants of the PLSR 

technique can be identified: PLS-1 (or PLS1) and PLS-2 (or PLS2).  PLS-1 is used when 

only one type of dependent variable (y-variable) is to be determined while PLS-2 is used 

when more than one dependent variables is to be determined simultaneously.  However, 

it is possible to use PLS-1 to determine each dependent variable individually in the case 

where more than one dependent variable is of interest.  For detailed mathematical 

derivations and discussion on the subject of multivariate regression analysis, the reader is 

referred to more extensive materials [21, 45-48]. 

Generally, multivariate regression analysis of spectral data is performed in two phases: 

the calibration phase and the prediction phase.  The goal in the calibration phase is to 

develop a model that relates two sets of data, X and y, where X is the matrix of the 

independent x-variables (spectral data), and y is a vector of the dependent y-variables 

(concentrations).  This is schematically shown in Figure 1.15A.  In the second phase 

(Figure 1.15B), which is the prediction phase, the model developed from the calibration 

data is used in conjunction with the measured independent x-variable data of the 

unknown to predict the dependent y-variables of the unknown.   

Though highly sophisticated statistical packages are available for multivariate 

data analysis, these software packages are yet to be designed to automatically identify 

and model specific spectral band regions containing structured information only.  

Because structured information in spectra may be contained only in certain spectral band 

regions, calibration models will have to be optimized.  While model optimization can be  

achieved using certain manual tools provided by the software, this could become a 
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Figure 1.15.  Schematic of the two major phases in multivariate regression analysis of spectral data.  A: 
Calibration phase– model development using known x- and y-variables.  B: Prediction phase– calibration 
model used in conjunction with measured x-variables (xu) of unknown to predict unknown y-variables (ŷ). 

 
 

laborious and time-consuming task.  As such, spectral data could be subjected to simple 

data manipulation techniques such as spectral mean centering prior to modeling in order 

to visually identify spectral band regions, which show variation among samples.  Spectral 

mean centering is performed by summing up the spectral responses measured, for 

example, absorbances or emission intensities wavelength by wavelength for all the 

samples.  The sum of the spectral responses is then divided by the total number of 

samples to obtain the mean spectral response.  This mean is then subtracted from the 

spectral response of each sample to obtain the mean centered spectrum of each sample.  

Spectral mean centering is particularly useful for prior selection of spectral band or 

wavelength regions to be used for modeling when differences in original spectra of 

samples can hardly be seen.  The spectral mean centering approach for selecting spectral 
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band regions for modeling is employed in the analysis of spectral data in this research to 

facilitate model optimization. 

Several commercially available multivariate statistical packages including 

MATLAB and the Unscrambler can be used to perform multivariate regression analysis 

of spectral data.  The Unscrambler statistical package, which is designed by CAMO 

Software, AS, is employed for PLS-1 regression analysis of spectral data collected for the 

chiral analysis studies reported here.  A typical Unscrambler PLS-1 regression model is 

associated with four plots: the scores plot, regression coefficient plot, residual variance or 

explained variance plot, and the predicted versus measured plot.  

The Unscrambler scores plot is usually presented as a plot of the second PC (y-

axis) versus the first PC (x-axis).  The plot reveals relationships among samples and 

patterns in the sample.  Samples close to each other in the plot indicate similarity, for 

example, in spectra captured by the two PCs.  Thus, the further apart a pair of samples is 

the more different they are.  In addition, the scores plot will reveal unusual samples or 

outliers and show groups in a set of samples.  Furthermore, it shows the percentage of the 

variation explained by the first and second PCs.  The software shows the scores plot in 

terms of the two PCs because these PCs usually capture substantially more of the 

variation in a given data set than any subsequent PCs.  The Unscrambler usually shows 

below the scores plot the percentages of the variation in the x- and y-data explained by 

the first two PCs.  

The regression coefficient (rc) plot is constructed as a plot of the regression 

coefficients of the independent or predictor variables as a function of wavelength.  It 

summarizes the relationship between the predictor variable (spectral data) and the 
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response variable (concentration) for the number of PCs used in the model.  The 

regression coefficient associated with a given predictor variable (x-variable) may have a 

positive or negative sign.  Regression coefficient curves, thus, may be positive or 

negative or have both positive and negative values.  A positive regression coefficient 

curve shows that the response variables (y-variables) change in the same direction as the 

predictor variables (x-variables).  A negative rc curve, on the other hand, shows that the 

response variables change in an opposite direction to the predictor variable.  An rc curve 

showing both positive and negative values indicates that the response variables show both 

forms of variation with the predictor variables.  Regression coefficients can be presented 

as raw or weighted values.  Raw rc values indicate nothing more than the relationship 

between the response and the predictor variables.  Weighted regression coefficients, on 

the other hand, reveal the importance of the predictor variables. 

The residual variance plot, which is constructed as a plot of the residual variances 

of the PCs used to develop the model versus the PCs, is a measure of the unexplained part 

of the information associated with a PC for a given set of data.  For a given PC, the 

smaller the residual variance is, the smaller the unexplained part of the information 

captured by the PC is.  Residual variance can be computed for the y- or x-variable. It can 

also be expressed as a percentage in which case it is referred to as explained residual 

variance.  A given PC may have a small residual variance or a high explained residual 

variance but the information associated with the PC may not be important for the model.  

Thus, the residual variance plot or explained variance plot may show PCs with low 

residual variances or high explained residual variances but are not included in the model.  
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The Unscrambler regression plot is a plot of the predicted values for the response 

variable versus its measured or known values.  This plot, which summarizes the results of 

the other plots, reveals three regression lines– the line for the linear model (ideal 

situation), the fitted calibration line, and the cross-validation line.  The line for the model 

passes through the origin of the plot or has an offset of zero with a slope of 1.  For data 

showing high or strong correlation between predictor and response variables, both the 

fitted calibration and cross-validation lines are hardly distinguishable from the regression 

line of the linear model.  In addition to the regression lines or curves, the plot reveals plot 

statistics for the calibration and cross-validation curves or lines.  The plot statistics 

consist of the slope, offset, correlation coefficient, root-mean-squares error of prediction 

or calibration, and standard error (standard deviation of residuals associated with PCs).  

The plot statistics of calibration curves or lines usually approximate those of the model 

but do not always reflect the actual correlation between predictor and response variables 

because they are fitted.  The extent of correlation between predictor and response 

variables are better verified by cross-validating the samples used in developing a 

calibration model.  To cross-validate a set of samples, a calibration model is developed 

using all but one of the samples.  The left-out sample is then predicted with the developed 

calibration model.  The process is repeated on all the other samples in the set.  A plot of 

the predicted versus actual or known values of the samples constitutes a cross-validation 

regression line or curve.  Usually, cross-validation regression lines having slopes and 

correlation coefficients higher than 0.98 and root-mean-square errors of prediction of not 

more than 0.05 result in quite good predictions of similar future samples, giving root-

mean-square errors of prediction not more than 0.05.  

 57



As explained earlier, regression models may require optimization to make them 

representative and improve their predictive ability.  PLS-1 regression models developed 

using spectral data collected for samples in this research were optimized prior to sample 

prediction by: (1) spectra mean centering used for the selection of spectra band regions 

revealing spectral variation among samples as noted and (2) cross-validation of 

calibration samples used in developing models.  Based on this, cross-validated PLS-1 

models, whose slopes and correlation coefficients were greater than 0.98, and root-mean-

squares errors of prediction less than 5 % were used for sample prediction.  The 

enantiomeric compositions of the calibration samples used to develop the PLS-1 

regression calibration models were entirely different from those of the samples predicted. 

The root-mean-squares error (RMSE) mentioned above is a frequently-used measure of 

the difference between the value of a quantity or parameter predicted by a model or an 

estimator and the actual or known value of the quantity or parameter predicted or 

estimated.  It is a measure of accuracy and therefore employed as a figure of merit for 

evaluation or comparison.  The RMSE is expressed in the same units as the quantity 

being predicted or estimated.  The acceptable limit of this error depends on the discipline 

and the quantity or parameter being studied.  Generally, however, the smaller the value of 

the RMSE is, the higher the accuracy of the results.  In many applications, including 

principal component analysis and partial least squares regression, where it is not always 

easy to analyze the degrees of freedom [45, 47], RMSE is computed using the expression: 
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where y and ŷ, respectively, are the actual or known and predicted values of the ith 

sample and n is the number of samples modeled.  Because RMSE is a measure of 
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accuracy and used for evaluation or comparison, it is used in enantiomeric composition 

analysis to evaluate or compare techniques or various chiral selectors employed in the  

same analytical technique. 
 
 

Previous Studies 

As a result of the need for improved strategies for the assessment of enantiomeric 

purity, for example, for catalyst evaluation in asymmetric synthesis, to meet standards or 

requirements set by governmental agencies for pharmaceutical industry, and to meet the 

need of large combinatorial libraries required in drug development, the demand for rapid, 

reliable, and robust analytical methods for chiral analysis is on the increase.  In this 

regard, spectroscopic methods, according to Finn [28], are most suitable.  Recently, our 

research group (The Busch Group, Center for Analytical Spectroscopy, Baylor 

University) developed a nontraditional strategy for the determining enantiomeric 

composition of chiral analytes.  The strategy is based on: (1) the use of isotropic 

spectroscopic techniques (e.g., ordinary UV or fluorescence spectroscopy), (2) the 

induction of diastereomeric behavior in enantiomers, and (3) multivariate regression 

modeling of spectral data.  This strategy, irrespective of the means for diastereomeric 

property induction and the isotropic spectroscopic technique employed, is referred to as 

chiral analysis by regression modeling of spectral data abbreviated CARMSD.  In its 

initial stages, CARMSD studies were performed using isotropic NIR spectroscopy with 

native cyclodextrins as chiral auxiliaries for inducing diastereomeric spectral properties 

in enantiomers [21].  The results of the studies were rather disappointing due to several 

reasons, including solubility limitations of native cyclodextrins in water, which are noted 

in an account on these studies [21].  However, the poor results of the NIR studies led to 
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the use of ordinary UV-vis spectroscopy in combination with the native cyclodextrins, 

which turned out to be successful.  The chiral auxiliary agent, cyclodextrins (CDs), 

employed in these studies are truncated-cone or barrel-shaped macrocyclic homochiral 

sugar molecules that function as ideal inclusion complexing agents for solubilising 

lipophilic guest analytes in aqueous media [4, 21, 49-54].  In the CARMSD studies, CDs 

are used to discriminate enantiomeric pairs through the formation of transient, non-

covalent inclusion complexes.  This interaction transforms appropriate enantiomeric pairs 

into transient diastereomeric pairs with different spectral properties.  The initial studies 

using UV-vis spectroscopy showed that the spectra of sample solutions of different 

enantiomeric compositions of an appropriate chiral analyte dissolved in a stock solution 

of cyclodextrin of a given concentration, varied with the enantiomeric compositions.  On 

the basis of this, it was possible to design multivariate regression models from the 

spectral data of calibration samples.  These models were used to successfully predict the 

enantiomeric composition of independently prepared validation samples [21].  The 

studies since then have progressed passed the use of native cyclodextrins to include 

modified cyclodextrins, surfactants, and simple sugars [11, 21, 55].  In addition, 

CARMSD studies have been extended to include fluorescence spectroscopy.  The use of 

fluorescence spectroscopy has significantly increased the sensitivity of the technique.  

This allows appropriate samples to be analyzed at significantly lower concentration levels 

[55].  To date different classes of chiral analytes including amino acids and several 

pharmaceuticals have been successfully analyzed using the CARMSD technique [56-61].  

Presently, the CARMSD technique is used by others [62, 63].  As a matter of fact, the 

level of accuracy achieved using the CSRMSD technique is comparable to most 
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traditional techniques employed for enantiomeric composition analysis.  Compared to 

existing chromatographic and NMR chiral techniques, CARMSD is simpler, faster, and 

significantly more cost effective.  As such, the CARMSD technique has a great potential 

for routine and high throughput application than existing chromatographic and NMR 

techniques.  Automation of the CARMSD technique will greatly enhance its industrial  

application.  
 
 

Rationale and Scope of Present Research 

Just as the demand for improved strategies for assessing enantiomeric purity has 

been on the rise in recent times, so has our research group continued in its efforts to 

improve and broaden the application of the CARMSD technique for enantiomeric 

composition analysis.  We deduced over the years from our CARMSD studies that the 

extent of discrimination of pairs of enantiomers, through the formation of diastereomers, 

is vital for the effectiveness of the CARMSD technique.  This is because the difference in 

the isotropic spectra, for example, of a pair of enantiomers complexed with cyclodextrin, 

depends on how different the complexes are.  We have noticed that generally, the more 

significant the difference between the spectra of the discriminated pair of enantiomers is, 

the better the model and predictions made using the model.  Based on this, we used a 

different approach to discriminate enantiomeric pairs in the present research with the aim 

of enhancing the difference between enantiomeric pairs.  The different approach 

employed in the present research involves converting enantiomeric pairs to covalently 

formed diastereomers.  As different covalent compounds, the chemical and physical 

properties (including spectral properties) of the diastereomers are expected to be 

significantly different.  This should result in optimum differences in spectral property 
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because, in principle, the two diastereomers represents two distinct stereoisomers.  As 

such, the covalent discrimination approach should lead to a better model and prediction 

result.  In addition to the covalent derivatization, a novel approach involving subjecting 

samples of the covalent diastereomers to isotropic spectral analysis without prior 

separation of the diastereomers from the reaction medium is employed.  This is unlike the 

chromatographic or electrophoretic techniques involving covalently derivatized 

enantiomers, which require separation prior to detection.  Analysis of the isotropic 

spectral data containing spectral information on both the covalent diastereomers and the 

rest of the reaction medium should not adversely affect the effectiveness of the method.  

This is because partial least squares regression, which is employed for the spectral data 

analysis, is capable of extracting structured information in data sets such as this that 

might contain interference and redundant information.  The present strategy of covalently 

derivatizing enantiomers and recording the spectral data of the entire reaction medium 

containing the diastereomers (not separated) is termed a non-separative, covalent, chiral 

discrimination strategy (NSCCDS).   

We also postulated on the basis of our previous results that for non-covalent 

approaches of inducing diastereomeric behavior in enantiomers, stereocenter-containing 

chiral selectors that can give rise to interactions at chiral centers or within a bond length 

of chiral centers with chiral analytes, should enhance enantiomeric discrimination.  This 

is because such interactions are more likely to reflect the stereochemical differences 

between a pair of enantiomers than interactions at points remote from chiral centers.  In 

addition, in non-covalent chiral discrimination, both the chances and effectiveness of 

chiral selector-chiral analyte interaction can be enhanced with the use of a chiral selector 
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that has different functional groups, for example, hydroxyl, amino, and phenyl functional 

groups.  Furthermore, it is possible that such a multifunctional chiral selector would be 

able to discriminate different classes of chiral molecules.  The present research was thus 

designed to investigate these new approaches of enhancing chiral discrimination for the 

determination of enantiomeric composition by regression modeling of spectral data.   

The second chapter of this dissertation describes the application of the covalent 

discrimination approach using (S)-(+)-1,2-propanediol as the chiral selector for covalent 

derivatization.  In this covalent derivatization, (S)-(+)-1,2-propanediol was reacted with 

selected amino acids using the Fischer esterification reaction.  In a similar study, proton 

and C-13 NMR spectra recorded for the recrystallized product of the reaction of 2-

butanol with an amino acid, phenylalanine, showed that the Fischer esterification reaction 

adapted for our analysis leads to ester formation.  Results for the NMR studies are 

discussed in Chapter 4.  For the analyses in Chapter 2, separate stock solutions of the 

covalently derivatized enantiomeric pairs were prepared.  For each enantiomer, the entire 

reaction medium was used to prepare the stock solution.  Samples for analysis were then 

prepared by mixing different compositions of the separate stock solutions.  The third 

chapter covers a study on a capillary tube (internal diameter of 1 mm) custom-designed 

for use as a micro flurometer cell.  The performance of the capillary cell, which requires 

only 25 µL of sample solution for fluorescence emission measurement, is compared with 

that of a commercial fluorometer cell.  The cell was designed and investigated because of 

the need for microanalytical techniques for routine and high throughput applications in 

chiral analysis.  Chapter 4 describes another study on the application of the covalent 

discrimination approach using the racemic mixture of 2-butanol as the covalent 
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derivatization agent instead of (S)-(+)-1,2-propanediol.  In addition, the chapter discusses 

the results of an NMR study that showed that the Fischer esterification approach 

employed by us for covalent derivatization of amino acids, leads to ester formation.  

Furthermore, analysis using β-cyclodextrin as a chiral selector is compared to the 

covalent approach.  The result of the investigation of modeling log10-converted spectral 

data is also described in Chapter 4.  The final analysis described in Chapter 4 is on a real-

life application of the covalent approach.  In this real-life application, different 

compositions of the enantiomers of phenylalanine were weighed into different vials and 

mixed together to simulate samples for real-life analysis.  Identical amounts of the 

racemic mixture of 2-butanol acidified with HCl were then added to each sample and 

heated together.  The samples were allowed to cool, quantitatively transferred into 

identical but separate volumetric flasks, and diluted to the mark.  The spectra of the 

samples were then collected and subjected to PLS-1 regression analysis.  Chapter 5 

covers a study carried out using a multifunctional chiral selector, (S)-(-)-1-

phenylethylamine, whose point of interaction with appropriate chiral analytes is a bond 

length from its chiral center.  The use of (S)-(-)-1-phenylethylamine was to verify our 

postulate that chiral discriminations based on non-covalent interactions can be enhanced 

with the use of a multifunctional chiral selector, whose point of interaction with the chiral 

analyte is at the chiral center or a bond length from the chiral center.  
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CHAPTER TWO 
 

Non-Separative, Covalent, Chiral Discrimination Strategy 
 
 

Introduction 
 

Over the years, our research group, as noted in chapter one, focused on 

developing improved strategies involving chiral selectors that depend on non-covalent 

interactions for enantiomeric excess (ee) or enantiomeric composition (ec) analysis.  This 

is basically because available techniques requiring the formation of covalent derivatives 

of enantiomers for ee or ec analysis are usually time-consuming, cumbersome, and 

expensive [4, 21, 28, 56].  These covalent derivatization techniques, however, yield quite 

accurate results.  This is because, fundamentally, they involve analyzing covalently 

formed diastereomeric pairs, which have different chemical and physical properties.  By 

virtue of being diastereomers, these pairs of compounds have no mirror image optical 

properties unlike their corresponding enantiomeric pairs. 

Although several strategies or techniques are available for ee or ec analysis, there 

is still room for improved strategies to cater for the growing demands in the field of chiral 

analysis as mentioned in the previous chapter.  Our research group has been working 

consistently over the years to contribute to meeting this growing demand for new 

analytical strategies for chiral analysis.  Recently, we developed a new chiral 

discrimination strategy for application in chiral analysis by regression modeling of 

spectral data (CARMSD).  With the new strategy, as noted in Chapter 1, covalently 

derivatized enantiomers are analyzed without being separated from the reaction medium 
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prior to the instrumental analysis.  The new approach is thus referred to as non-

separative, covalent, chiral discrimination strategy (NSCCDS).  This strategy combines 

the sensitivity and broad-base application covalent derivatization of enantiomers for 

chiral analysis with the robust, fast, simple, and inexpensive attributes of our existing 

strategies [11, 21, 55, 56].  Specifically, the new approach involves reacting covalently, a 

chiral selector with an appropriate chiral analyte in the presence necessary reagents under 

the required reaction conditions in a suitable vessel.  The entire reaction medium 

including the derivatized chiral analyte is then diluted using a suitable solvent to an 

appropriate concentration for spectral analysis.  For calibration purposes, for example, in 

enantiomeric composition determination, different compositions of the enantiomers of the 

chiral compound to be analyzed will be required.  Equal amounts of reagent solution 

containing the chiral selector will then be added to the different compositions of the 

enantiomers and reacted under the appropriate conditions.  At the end of the reaction, the 

reaction media containing the derivatized enantiomers are quantitatively transferred into 

separate volumetric flasks of identical volume and diluted to the marks using a suitable 

solvent.  Spectral data of these samples are then collected to develop a calibration model.  

The calibration model is then used in conjunction with the spectral data of unknowns 

prepared under the same conditions as the calibration samples to determine the 

enantiomeric compositions of the unknowns.  This strategy can be combined with any 

spectroscopic technique suitable for quantitative analysis.  UV-vis and fluorescence 

spectroscopy can be employed for analyses involving UV active chiral analytes or chiral 

selectors.  For non-UV active chiral analytes or chiral selectors, IR or Raman techniques 

can be used.  This technique is expected to result in optimum discrimination of 
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enantiomers because the enantiomers are subjected to competition, which will be 

influence by kinetic and/or thermodynamic factors in favor of one of the enantiomers.  

This is because pairs of enantiomers are known to react differently with other chiral 

compounds.  Differences in spectra from sample to sample will be due to the derivatized 

enantiomers in the sample matrix since all samples will contain identical amounts of 

reagents to begin with.  As such, the compositions of enantiomers can be determined 

without separating the derivatized enantiomers.  In addition, the use of PLS-1 regression 

analysis will allow spectral information related to the enantiomers to be modeled by 

virtue of principal component computation.  The elimination of separation or isolation 

processes in our new discrimination strategy distinguishes it from the existing 

chromatographic, electrophoretic, and NMR techniques employed in analyses such as this 

[4, 21].  In addition, the new strategy is different from chiroptical techniques because it 

does not require the use of polarized light.  Generally, the new strategy should lend itself 

to any covalent reaction that can take place between a given chiral selector and a given 

pair of enantiomers.  Our interest, however, is in simple, one-step, chemical reactions 

requiring simple experimental conditions as well as apparatus.  Most covalent reactions 

can be carried out in this manner.  As such, the technique should have a broad-base 

application. 

This chapter describes the enantiomeric composition analyses of phenylalanine, 

tyrosine, and two pharmaceutical compounds, Atenolol and Norephedrine, using our new 

strategy, NSCCDS.  In these analyses, (S)-(+)-1,2-propanediol (PD), which is a dialcohol, 

was used as the chiral selector for covalent derivatization of the enantiomers of the above 

chiral analytes.  In order to verify the basis of the strategy, that is, covalent derivatization 
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of a pair of enantiomers will result in differences in the isotropic spectra of the 

enantiomers, the enantiomeric pairs of the above-mentioned chiral compounds were 

derivatized separately using (S)-(+)-1,2-propanediol (PD).  Separate stock solutions of the 

derivatized enantiomers were then prepared for each pair of enantiomers of a given chiral 

compound.  The stock solution of each derivatized enantiomer was prepared without 

separating the derivatized enantiomer from the reaction medium, that is, the entire 

reaction medium containing the derivatized eanatiomer was diluted to prepare the stock 

solution.  The spectra of the stock solutions of the enantiomeric pair of each of the chiral 

compounds were than recorded for evidence of the discrimination.  To demonstrate that 

enantiomeric compositions of the chiral analytes can be assessed as noted for the strategy, 

that is, without separating the derivatized enantiomers from the reaction medium, 

different compositions of the stock solutions were mixed.  The spectra of these solutions 

containing different amounts of the derivatized enantiomers and other components that 

might be present in the reaction medium were then collected.  The spectral data obtained 

were subjected to PLS-1 regression analysis for enantiomeric composition determination.  

It is recognized that these analyses differ from real-life analyses even though tailored on 

the basis of our new strategy and thus identical in principle.  In a real-life situation, the 

strategy is expected to be used in analyzing a pair of enantiomers occurring together as 

one sample and not separate entities combined on purpose.  As such, application of the 

strategy for a real-life analysis situation was investigated in a different study.  This is 

described in a later chapter (Chapter 4).  Though these analyses, which are discussed later 

in this chapter, were performed differently from what is expected in a real-life situation, 

their design served a number of purposes: (1) to show that covalent derivatization results 
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in differences in spectra of enantiomeric pairs and (2) to demonstrate that enantiomeric 

compositions of covalently derivatized enantiomers can be assessed without separating 

the derivatives from the reaction medium.  As outlined above, the two goals were to be 

achieved using one set of sample preparation.  This is important in view of the fact that 

we intend to carry out this study at the possible minimum cost.  In addition, the analyses 

in this chapter were so designed to allow us to perform control analyses by which it can 

be shown systematically that covalent derivatization plays a vital role in the analyses.  

Chromatographic techniques that depend on derivatizing enantiomers for enantiomeric 

purity assessment, usually involve long separation stages requiring significant amounts of 

solvents.  None of these is required for our new strategy, NSCCDS.  In this regard, our 

new strategy, non-separative, covalent, chiral discrimination strategy is faster, simpler, 

and less expensive.  

The use of chiral solvents or chiral selectors for direct enantiomeric purity 

assessment (non-covalent approach) is a well-known chiral discrimination strategy 

employed in some chromatographic and NMR techniques [4, 21, 64, 65].  This suggests 

that it might be possible to carry out the analyses in this study successfully without 

having to transform the enantiomeric pairs into covalent derivatives (diastereomers).  As 

such, control experiments or analyses were performed to verify the effect of converting 

the enantiomers into covalent derivatives of diastereomers.  Samples for the control 

analyses contained the chiral analytes, the chiral selector, and any reagent used in the 

covalent dirivatization.  These control samples were not subjected to the conditions of the 

covalent derivatization.  Thus, the control samples were analyzed in the unreacted form.  

In addition, sample solutions, containing only phenylalanine (no chiral selector or 
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reagent) in varying enantiomeric compositions, were analyzed.  These chiral selector- and 

reagent-free samples were prepared at the same concentration level as the NSCCDS and 

control sample solutions of phenylalanine.  

In this study, samples prepared using our new strategy, NSCCDS, are referred to 

as NSCCDS samples while those for the control analysis are referred to as control  

samples of the analyte in question.   
 
 

Background on the Analysis of Phenylalanine (Phe) and Tyrosine (Tyr) using (S)-(+)-1,2-
propanediol (PD) 

 
Being organic acids (containing the carboxyl functional group), phenylalanine and 

tyrosine can react with (S)-(+)-1,2-propanediol (PD), which is a dialcohol, to form PD 

esters.  Esterification of carboxylic acids using alcohols can be performed using a simple, 

single-step, synthesis approach known as the Fischer esterification named after the 

German chemist, Emil Fischer [66].  The reaction involves a nucleophilic substitution in 

which the OH group of a carboxylic acid is replaced by the alkoxide group (OR) of an 

alcohol.  This reaction, which is catalyzed by a mineral acid, is an equilibrium reaction 

and results in the formation water.  Fischer esterification is usually performed under 

reflux and works well with primary and secondary alcohols. The use of tertiary alcohols 

results in the formation of alkenes through elimination.  Equation 2.1 below shows the 

schematic of the Fischer esterification reaction between the carboxylic acid functional 

group (COOH) and the OH alcohol functional group.  Being an equilibrium reaction, the  

RCOOH  +  R´OH  +  H+  + heat  =  RCOOR´  +  H2O          2.1 

amount of ester formed is controlled by Le Chatelier’s principle.  Removing water from 

the reaction system or using an excess amount of alcohol will shift the equilibrium to the 

70 



side of the ester (RCOOR).  The latter approach, which is easier to accomplish, is usually 

used as a means of driving the reaction to completion.  The structure of (S)-(+)-1,2-

propanediol, shown together with those of phenylalanine and tyrosine in Figure 2.2, 

reveals PD is both a primary and a secondary alcohol.  Consequently, (S)-(+)-1,2-

propanediol can, form a mono or diester or a mixture of both when reacted with a 

carboxylic acid.  However, the terminal OH of PD is less hindered than the OH on the 

stereogenic carbon.  As such, it is possible that formation of the monoester using the 

terminal OH would be favored over the other.  The formation of an ester bond using the 

terminal OH will locate the Phe or Tyr molecule two bonds away from the stereogenic  

center of PD.  On the other hand, a bond formed using the OH attached to the stereogenic  
 
 

 

Figure 2.1.  1: (S)-(+)-1,2-propanediol (chiral selector).  2: Phenylalanine.  3: Tyrosine. 
 
 

carbon will locate the amino acids within a bond length from the stereogenic center of 

PD.  Generally, neither the type of ester (mono or di) nor the point of linkage of the 

amino acids will compromise the diastereomeric relationship between the ester pairs that 

might be formed with these amino acids.  The type of ester formed should, therefore, not 

preclude chiral discrimination.  Reaction Scheme I shows the two types of monoester that 

can possibly be formed, for example, with phenylalanine using the terminal OH and the 

OH attached to the stereocenter of (S)-(+)-1,2-propanediol (structure 4 and 5 
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Scheme I. Reaction schematic showing the formation of monoester hydrochlorides of phenylalanine using 
the terminal OH or the OH attached to the stereogenic center of (S)-(+)-1,2-propanediol. 

 
 

respectively).  Comparison of structure 4 and 5 shows that the stereocenters in the 

monoester for the OH attached to the stereocenter of PD are closer to each other than they 

are in the monoester for the terminal OH.  As such, any chiral discrimination effect that 

depend on chiral center proximity, should be enhanced in pairs diastereomeric 

monoesters formed using the OH attached to the stereocenter of (S)-(+)-1,2-propanediol.  

Reaction Scheme II shows the formation of the diester (structure 6).  This reaction might 

be less favorable because it will involve bulkier and sterically more hindered molecules.  

However, the expected sterically hindered diester, in principle, should be less liable to 

racemization through inversion of configuration.  Its formation might, therefore, enhance 

discrimination of the enantiomers of the amino acids.  The use of (S)-(+)-1,2-propanediol 

as a chiral selector thus appears to have some characteristics that might be useful for 

chiral discrimination for the purpose of enantiomeric composition analysis. 

Unlike our existing cyclodextrin guest-host complex strategies, which are 

efficient for chiral analytes with sizes appropriate for inclusion in the cavity of the 
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Scheme II. Reaction schematic showing phenylalanine diester hydrochloride formation by the reaction of 
phenylalanine with both OH groups of (S)-(+)-1,2-propanediol.  Structure 1 and 2 (see Scheme I). 6: 
Phenylalanine hydrochloride 1,2-propyl diester  

 
 

cylodextrins, our new NSCCDS is applicable to molecules of any size provided they have 

the right functional groups to react covalently.  In addition, our new strategy is less 

limited by the type of solvent that can be used in the analysis because covalent reactions 

can be performed in a variety of solvents.  Furthermore, this new strategy is less 

restricted in terms of the concentration of analytes and chiral selectors that can be used 

[11, 21, 55, 56].  This is because samples can be analyzed at any concentration that is not 

less than the quantitation limit of the analyte and outside the linear range of the probe 

technique.  As such, isotropic IR techniques can be combined with this strategy for 

enantiomeric purity assessment.  Thus, our new covalent, chiral discrimination strategy 

combined with isotropic spectroscopic techniques, has several advantages over its  

chromatographic and NMR counterparts.   
 
 

Background on the Analysis of Atenolol and Norephedrine using (S)-(+)-1,2-propanediol 

Atenolol, chemically known as 4-[2-hydroxy-3-isopropylaminopropoxy] 

phenylacetamide, is an FDA approved prescription drug.  Atenolol is a hydroxyl propyl 
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amine, which contains also an amide and a phenyl functional group.  This drug, whose 

structure is shown in Figure 2.2, belongs to a class of pharmaceuticals known as beta-

blockers (β-blocker), which are used for treating cardiovascular diseases among others 

[67, 68].  Compared to other β-blockers, Atenolol is reported to cause fewer side effects  

of depression, nightmares, and bronchospastic reactions [67]. 
 
 

 

Figure 2.2. Structure of 4-[2-hydroxy-3-isopropylaminopropoxy] phenylacetamide (Atenolol) 
 
 

Current resolution and enantiomeric composition analysis of this compound 

involves the use of chromatographic, electrophoretic, NMR and mass spectrometric 

techniques [67, 68].  Bhushan et al. [67] reported the reverse-phase TLC and LC analysis 

of Atenolol derivatized with Marfey’s reagent (1-fluoro-2,4-dinitrophenyl-5-L-alanine 

amide).  Marfey’s reagent was introduced in 1984 by Marfey for indirect LC resolution 

of amino acids [67].  This reagent is known to react stoichiometrically with α-amino 

groups of D- and L-amino acids without racemization in about an hour at a temperature of 

40 oC.  The diastereomers formed are reported to have large differences in their retention 

factors and are easily separated on non-chiral columns in LC.  Up to date, however, no 

technique has been found in the literature, which uses (S)-(+)-1,2-propanediol as a chiral 

selector for enantiomeric composition analysis of Atenolol.  Unlike phenylalanine and 

tyrosine, Atenolol has no carboxyl functional group to react directly with (S)-(+)-1,2-
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propanediol to form an ester.  In addition, alcohols are not known to react directly with 

amines or amides according to the Fischer esterification reaction scheme.  However, 

amides are known to undergo acid hydrolysis on heating to form the corresponding 

carboxylic acid and the ammonium ion of the corresponding amine according to reaction 

equation 2.2 below [69]. 

RCONHR´  +  H+  +  H2O  + heat  =  RCOOH  +  +NH3R´             2.2 

In the presence of an alcohol and a proton from a mineral acid, the carboxylic acid 

formed can react with the alcohol to for an ester as shown earlier in equation 2.1.  

Hypothetically, therefore, it is possible that the reaction of Atenolol with (S)-(+)-1,2-

propanediol in the presence of HCl will lead to the formation of an ester of Atenolol; the 

reaction of PD with the enantiomers of Atenonlol might form a diastereomeric ester pair 

of Atenonol.   

Norephedrine, which is also known as phenylpropanolamine, was added to the list 

of analytes after the analysis of Atenolol turned out to be successful.  Norephedrine, 

which is known to act on the sympathetic nervous system, is used as a pharmaceutically 

active ingredient in cough and cold medicines [70].  Norephedrine, unlike Atenolol, 

contains only a hydroxyl and an amine functional group as shown in Figure 2.3.  Similar 

to the situation with Atenolol, no literature is found that reveals the possible product that 

could be formed when excess PD is heated together with Norephedrine in the presence of 

HCl.  However, hypothetically, heating Norephedrine in the presence of HCl, could 

possibly lead to the formation of a carbocation through the elimination of water as a 

result of the protonation of the OH group attached to the chiral carbon in Norephedrine 

(see Figure 2.3).  The carbocation is likely to be stable because it can be resonance  
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Figure 2.3. Structure of 2-amino-1-phenyl-propan-1-ol (Norephedrine) 
 
 

stabilized by the phenyl group.  Subsequent nucleophilic attack on the carbocation by a 

PD molecule could possibly lead to the formation of an ether, that is, substituting the OH 

group of Norephedrine with the alkoxide group of PD. 

The literature shows that amide and amine functional groups can be converted to 

N-monoalkyl amides and alkylated amines, respectively, using alcohols.  However, these 

reactions are usually performed using metallic catalysts under severe reaction conditions 

of pressure and temperature [71-73].  Although some of these reactions are shown to 

result in high yields (≥ 96 %), they are short of the objectives for developing the 

NSCCDS for enantiomeric composition analysis.  This is because the reactions are 

complex, multi-step, time-consuming, and expensive– a simple and fast reaction scheme 

is desirable.  As such, even though our proposed reaction scheme lacks documentation 

and we could not predict the products of the reactions, the two pharmaceutical 

compounds were subjected to the NSCCDS analysis using (S)-(+)-1,2-propanediol in the 

presence of HCl.   

 
 

Methodology 
 
 

Materials  

Enantiopure phenylalanine (D and L: ≥ 99%), tyrosine (D and L: 99%), 4-[2-

hydroxy-3-isopropylaminopropoxy] phenylacetamide (R/S-Atenolol: 99%), (1R,2S) and 
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(1S,2R)-phenylpropanolamine (1R,2S/1S,2R-Norephedrine: 99 %) and (S)-(+)-1,2-

propanediol (≥ 99 %), were purchased from Aldrich Chemical Company, Inc. and used as 

received.  ACS grade (12.01 M) concentrated hydrochloric acid was used as the catalyst  

for the Fischer esterification scheme.   
 
 

Preparation of NSCCDS Samples of Phenylalanine and Tyrosine 

A mass of 0.1652 g of enantiopure D- or L-phenylalanine was carefully weighed 

into a 24-mL glass vial. (S)-(+)-1,2-propanediol (440 µL) and 70 µL of concentrated HCl 

were then added.  This was then heated in a water bath at 80 oC for an hour while stirring.  

The preparation was allowed to cool to room temperature and transferred quantitatively 

into a 250-mL volumetric flask. The solution was then made up to the mark with 

deionized water to obtain a 4 mM stock solution of D- or L-phenylalanine.  It should be 

noted that the (S)-(+)-1,2-propanediol derivatized phenylalanine was not separated prior 

to preparing the analytical stock solution– the entire reaction medium at the end of the 

derivatization reaction was used in preparing the analytical stock solution.  This 

constitutes the non-separative, covalent, chiral discrimination strategy.  The derivatized 

D- and L-phenylalanine stock solutions were then used to prepare fifteen sample solutions 

for analysis by mixing pre-determined volumes of the stock solutions using a 1000 μL 

eppendorf pipet.  For each sample solution the exact composition in terms of weight of 

the derivatized D- or L-phenylalanine stock solution was determine by weighing on an 

analytical balance (METTLER AE200) during the mixing.  The mole fraction of D- or L-

phenylalanine for each sample solution was computed using the weight composition 

instead of the pre-determined volume compositions of the samples.  No attempt was 

made at varying the samples at a regular mole fraction interval. 
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The stock and samples solutions for tyrosine were prepared according to the 

procedure outlined for phenylalanine.  A concentration of 2.5 mM instead of 4 mM was 

used for tyrosine because it has a higher molar absorptivity coefficient than 

phenylalanine.  Twelve sample solutions were prepared for analysis by mixing 

predetermined volumes of the D- and L-tyrosine stock solutions using a 1000 μL 

eppendorf pipet as usual.  The enantiomeric compositions in mole fractions, of the 

sample solutions, were computed using the pre-determined volumes of the PD derivatized  

or esterified D- and L-tyrosine stock solutions constituting the sample solutions. 
 
 

Preparation of Control Samples of Phenylalanine and Tyrosine 

Weights of the D and L enantiomers of phenylalanine and tyrosine, identical to the 

weights used in preparing the stock solution for the NSCCDS analyses, were carefully 

weighed into sample vials.  Carefully measured amounts of (S)-(+)-1,2-propanediol and 

HCl, identical to amounts used in preparing the NSCCDS phenylalanine and tyrosine 

stock solutions, were added and dissolved with out heating with some amount of 

deionized water.  The dissolved samples were quantitatively transferred from the samples 

vials into volumetric separate volumetric flasks and diluted to the marks with deionized 

water.  Separate sets of sample solutions of phenylalanine and tyrosine were prepared for 

analysis by mixing known weights of the corresponding D and L enantiomer stock 

solutions as usual.  It should be noted that the esterification step, which requires heating 

the enantiomers together with (S)-(+)-1,2-propanediol in the presence of HCl, was  

omitted in the preparation these control stock solutions.   
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Preparation of Chiral-Selector-Free Phenylalanine Samples 

Analytical stock solutions of enantiopure D- and L-phenylalanine were prepared 

with amounts of D- and L-phenylalanine identical to the amounts used for the NSCCDS 

and control stock solutions above.  Unlike the control samples, these solutions were 

prepared without the (S)-(+)-1,2-propanediol chiral selector.  In addition, the solutions 

were prepared without heating.  Sample solutions for analysis were prepared by mixing 

known weights of the enantiopure D- and L-phenylalanine stock solutions as before.  The 

purpose for analyzing these samples without the chiral selector is to verify the need for a  

chiral selector in analyses such as these at low concentration levels (e.g., 4 mM).   
 
 

Preparation NSCCDS and Control Samples of Atenolol  

Stock and samples solutions for NSCCDS analysis of Atenolol were prepared 

according to the procedure outlined for phenylalanine above.  The stock solutions were 

prepared at a 2 mM concentration level.  This required a mass of 0.0267 g of R- or S-

Atenolol.  A volume of 450 μL of (S)-(+)-1,2-propanediol and 50 μL of HCl were added 

to the R- or S-Atenolol weighed out into a glass vial and heated in a water bath at 80 oC 

for one hour.  After the heating and cooling processes, the entire reaction medium was 

quantitatively transferred into a 50-mL volumetric flask and diluted to the mark.  

Fourteen sample solutions were prepared for analysis by mixing known weights of the R- 

and S-Atenolol stock solutions.  The enantiomeric compositions in terms of mole fraction 

of the sample solutions were computed using the weight compositions of the stock 

solutions of R- and S-Atenolol making up the sample solutions prepared for analysis. 

Stock and sample solutions for control analysis were prepared in the same way as those  

for the NSCCDS analysis except for the omission of the heating process. 
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Instrumentation, Spectra Collection and Data Analysis 

An Agilent 8453, photodiode array, UV-vis spectrophotometer, equipped with a 

low pressure deuterium lamp (190-800 nm) and a low-noise tungsten lamp (370-1100 

nm) for UV-vis and NIR irradiation of samples, was used to record the UV-vis spectra of 

all the samples.  The instrument has a wavelength range of 190-1100 nm.  A black-wall, 

10 mm pathlength, quartz sample cell, with a 2.5 mm wide window, was used as the UV-

vis sample cell for spectra recording.  Before collecting the spectrum of each sample 

solution, the UV-vis spectrum of deionized water, used as blank, was recorded.  On 

measuring the spectrum of a sample solution after the blank, the instrument software 

(Agilent ChemStation A.08x) automatically computes and displays the blank-corrected 

UV-vis spectrum of the sample solution.  The blank-corrected UV-vis spectral data, as 

well as the enantiomeric composition data of the samples, were then subjected to 

multivariate, PLS-1, regression analyses using the UnscramblerTM statistical package, 

version 9.7 (CAMO, Inc., Woodbridge, NJ).  The data analyses were performed 

following the procedure described in Chapter 1– spectral mean centering, wavelength  

selection, full-cross-validated calibration model development, and test sample prediction.  
 
 

Results and Discussion 
 
 

Analysis of NSCCDS Samples of Phenylalanine 

Figure 2.4A shows the UV absorption spectra from 222 to 322 nm of the 4 mM 

stock solutions of the (S)-(+)-1,2-propanediol derivatized D- and L-phenylalanine.  Figure 

2.4B is the mean-centered UV absorption spectra of the stock solutions.  Figure 2.4A 

clearly shows the usual absorption peak of phenylalanine, which has a maximum at 257 
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nm.  Unlike Figure 2.4A, the mean-centered spectra in Figure 2.4B clearly reveals that 

the stock solutions have different UV absorbances, with the derivatized L-phenylalanine 

showing higher absorbance between 228 and 278 nm.  The difference, for example, in 

absorbance between the two solutions at 259 nm is 0.01 absorbance units (AU).  This 

difference is twice the magnitude of the instrument error in absorbance (± 0.005 AU).  

This indicates the recording of an actual difference in absorbance between the two 

solutions.  As noted in Chapter 1, an NMR study discussed later in Chapter 4 shows that 

an HCl catalyzed reaction of 2-butanol with phenylalanine under heat leads to ester 

formation.  Based on this, the difference in absorbance between the stock solutions 

should be due to the formation of diastereomeric esters of phenylalanine by the 

esterification of the enantiomers of phenylalanine with (S)-(+)-1,2-propanediol (PD).  

The UV absorption spectra from 230 to 271 nm of the fifteen sample solutions, 

made up of different enantiomeric compositions, of the PD derivatized D- and L- 

phenylalanine are shown in Figure 2.5A.  The mean centered UV absorption spectra, 

which are labeled in terms of the mole fractions of the D-phenylalanine enantiomer are 

shown in Figure 2.4B.  Like all other spectra labeled in this chapter using mole fractions, 

the mole fractions shown in Figure 2.4B are corrected to two decimal places (2 dp).  

Similar to the stock solutions, the mean-centered spectra in Figure 2.5B, shows 

differences in absorbance of the fifteen samples solutions.  Since these sample solutions 

have identical total phenylalanine concentrations, the differences revealed in Figure 2.5B  

can only be due to the variation in enantiomeric composition of the samples.  This, in 

turn, can arise only because the spectral property of the PD esterified D-phenylalanine is 

different from that of the PD esterified L-phenylalanine enantiomer.  This reinforces the 
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Figure 2.4. A: UV absorption spectra of 4 mM PD esterified D-and L-phenylalanine stock solutions.  B: 
The mean-centered spectra of A.  Note the difference in absorbance between the two solutions in B.  The 
difference in absorbance, 0.01 AU, at 259 nm is greater than the instrument error of ± 0.005 AU.  

 
 

statement made about the mean-centered spectra (see Figure 2.4B) of the stock solutions 

that covalent diastereomers (ester pair) of phenylalanine were formed as a result of the 

esterification reaction.  The mean centered spectra in Figure 2.5B reveals a typical 

situation in analyses such as this where variations in spectra of samples tend to occur less 

uniformly and in different wavelength regions.  Situations of this kind, undoubtedly, 

require multivariate regression analysis for the extraction of latent structured information. 

The usefulness of a chiral discrimination strategy for enantiomeric composition analysis 

lies in how well the differences in a probed property of samples discriminated using the 

strategy, correlate with the enantiomeric compositions of the samples.  As, such the 

spectral data for the phenylalanine samples, discriminated using our new covalent 

strategy, NSCCDS, was subjected to multivariate, PLS-1 regression modeling.  Seven 

calibration samples, with D-phenylalanine mole fractions of 0.0496, 0.151, 0.250, 0.300, 

0.501, 0.733, and 0.950, were randomly selected from the fifteen samples prepared to 

develop a PLS-1 calibration model.   
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Figure 2.5. A: UV absorption spectra of fifteen sample solutions prepared using 4 mM PD esterified D-and 
L-phenylalanine stock solutions The samples solutions were made up of different enantiomeric 
compositions but identical total phenylalanine concentrations.  B: The mean-centered spectra of A labeled 
in terms of the mole fractions (to two decimal places) of the D-phenylalanine enantiomer.  
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Figure 2.6A, B, C, and D show the multivariate, PLS-1 regression, calibration 

model plots developed using the above calibration samples.  Figure 2.6A is the scores 

plot, 2.6B is the regression coefficient as a function of wavelength plot, 2.6C is the  

explained variance as a function of principal component plot and 2.6D is the predicted (y-

axis) versus known (x-axis) calibration sample mole fraction plot.  Chapter 1 can be 

referred to for what each of these plots stand for.  In this discussion, the plots are 

interpreted relevant to the data analyzed.  The scores plot in Figure 2.6A, which is 

constructed using the first PC as the x-axis and the second PC as the y-axis, shows a 

pattern that reveals the compositions of the calibration samples in terms of the D-

phenylalanine mole fraction in an increasing order from left to right.  Figure 2.6B, which 

is the regression coefficient plot, shows the modeled wavelength region, 230-567 nm, and 

relationship between the spectral data (x-variables) and the enantiomeric composition (y-

variables) of the samples.  The positive part (above zero) of the curve shows that the 

regression coefficients of the x-variables in the region are positive.  This indicates that 

the y-variables vary in the same direction with the x-variables in that wavelength region. 

The opposite interpretation holds for the negative part (below zero) of the regression 

curve.  The regression coefficient with the highest positive value is associated with 

the260 nm wavelength and the regression coefficient with the highest negative value is 

recorded at 240 nm; the enantiomeric compositions change most with spectral data 

associated with these wavelengths.  Part of the curve shows some noise (400-567) but an 

attempt to model a narrower wavelength region, 230-400 nm, resulted in a model with a 

lower figure of merit (higher RMSE of cross-validation).  This indicates that though the 

wavelength region from 400 to 567 nm reveals some noise, some amount of relevant 



Figure 2.6. Plots of PLS-1 regression calibration model developed using the UV absorption spectral data and known enantiomeric compositions of 
NSCCDS calibration samples of phenylalanine.  A: scores plot, B: regression coefficient as a function of wavelength plot, C: percent explained variance as 
a function of principal component plot, and D: calibration and cross-validation regression lines for the fitted (black) and predicted (blue) mole fractions, 
respectively, versus the known mole fractions of calibration samples.  The model required three PCs (see below plot B or D).
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information is resident in that region of the spectra.  Such situations are encountered.  

The explained variance plot in Figure 2.6C reveals that five PCs were computed in 

developing the calibration model.  The percent explained variances of these PCs are 

53.34, 93.67, 99.59, 99.59, and 99 59 %.  However, only three PCs were needed in 

describing the relationship between the spectral data and the enantiomeric compositions.  

Of the selected three PCs, the first PC explained 31 % of the variation in x-data (spectral 

data) and 98 % of the variation y-data (enantiomeric composition, ec).  The second PC 

explained 45 and 1 % of the variation in the x- and y-data respectively.  Thus, the two 

PCs explained 76 % of the variation in the x-data and 99 % of the variation in the y-data.  

The explained variations are displayed below the scores plot (Figure 2.6A).  Based on the 

Unscrambler software, if the sum of the variation in the x- or y-data explained by the first 

two PCs is 70 % of more, then the model explains a significant portion of the information 

in the data and the relationship between the predictor (x) and response (y) variables can 

be reported with a high degree of certainty.  Figure 2.6D shows two regression lines– the 

fitted calibration model line shown in black and the cross-validation regression line 

shown in blue.  The plot statistics (slope, offset, correlation coefficient, root-mean-

squares error, and standard error) for these two regression lines are compared in Table 

2.1.  The table shows that the plot statistics for the cross-validation, which reveals the 

actual relationship between the spectral data and enantiomeric composition of the 

calibration samples, are not significantly different from those for the calibration line 

(best-fit).  For example, the slope and correlation coefficient for the cross-validation are 

0.967 and 0.998 respectively.  These are significantly identical to those computed for the 

calibration, both of which have the value 0.999.  The values of the cross-validation plot 
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statistics in Table 2.1, therefore, indicate clearly that the UV absorption spectra of the 

calibration samples correlate well with their enantiomeric composition as portrayed by 

the first two PCs.   

Table 2.2 compares the result of the prediction of the mole fractions of  

independent test/validation samples, predicted using the calibration model, with the  
 
 

Table 2.1. Regression Plot Statistics for Calibrating and Cross-Validating 4 mM calibration samples made 
up of varying compositions of (S)-(+)-1,2-propanediol esterified D- and L-phenylalanine (NSCCDS 

analysis). 
 

Regression Plot Statistic (RPS) RPS value for Calibration RPS value for Cross-Validation 

Slope 0.999 0.967 

Offset 0.000428 0.00828 

Coefficient of Correlation 0.999 0.998 

Root-Mean-Square Error 0.00966 (≈ 1 %) 0.0229 (≈ 2.3 %) 

Standard Error (standard 
deviation of residuals) 

0.0104 (≈ 1 %) 0.0241 (≈ 2.4 %) 

 
 

actual or known mole fractions.  NR in Table 2.2 stands for a mole fraction that could not 

be computed because the weight of the solution of the derivatized Phe enantiomer in 

question was mistakenly not recorded during the sample preparation.  Clearly, Table 2.2 

shows that the predicted mole fractions of the test samples closely match the actual mole 

fraction.  The highest absolute deviation recorded is0.026.  The root-mean-square error of 

prediction (RMSEP), which is the average error of deviation for the predicted value from 

the actual or known value, is 0.014.  As noted in Chapter 1, the RMSE is a figure of  

merit, which can be used in evaluating techniques.  The RMSEP value of 0.014 computed 

for this analysis indicates quite a high merit because it shows quite a low level of 

deviation from the actual enantiomeric compositions of the test or validation samples.   
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Table 2.2. Actual and predicted D-Phe mole fractions of 4 mM validation samples containing varying 
compositions of D- and L-phenylalanine esterified with (S)-(+)-1,2-propanediol (NSCCDS analysis) 

 
Actual D-Phe øa  Predicted D-Phe 

ø  
Absolute error of 
Prediction 

Actual L-Phe ø Predicted L-Phe 
ø 

Absolute error of 
Prediction 

0.103 0.0848 -0.0182 0.897 0.915 0.018 

0.400 0.407 0.007 0.600 0.593 -0.007 

0.451 0.425 -0.026 0.549 0.575 0.026 

0.597 0.596 -0.001 0.403 0.404 -0.001 

NRb 0.773 - NR 0.227 - 

0.801 0.801 0.0 0.199 0.208 0.009 

0.851 0.859 0.008 0.149 0.141 -0.008 

NR 0.877 - NR 0.123 - 

RMSEPc  0.014   0.014 

a Mole fraction, b Not recorded, c Root-mean-square error of prediction 
 
 

Thus, the NSCCDS is quite effective for the assessment of the enantiomeric composition 

of phenylalanine at a concentration level of 4 mM.  In addition, the results shows that 

with our new strategy, analysis of future samples, similar to those analyzed in this study,  

could be within an error margin of ± 0.014 mole fraction units.   
 
 

Analysis of Control Samples of Phenylalanine 

Control samples of phenylalanine were prepared as described above to evaluate 

the effect of the covalent derivatization discrimination.  As noted above, covalent 

derivatization or formation of covalent diastereomers, which is the heart of our new 

discrimination strategy, might not be necessary because chiral solvents are used 

successfully in non-covalent resolution of enantiomers in some chromatographic and 

NMR chiral analysis techniques.  The samples for this control analysis are referred to 

here as control or (S)-(+)-1,2-propanediol (PD) associated phenylalanine samples. 
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Figure 2.7 shows the UV absorption spectra from 222 to 322 nm for the 4 mM PD 

derivatized and PD associated D- and L-phenylalanine stock solutions.  The spectra for 

the NSCCDS D- and L-phenylalanine stock solutions are shown in pink and blue colors 

respectively.  The corresponding spectra for the control or PD associated stock solutions 

are shown in green and brown.  Figure 2.7 shows the usual absorption band of 

phenylalanine with a maximum at 257 nm.  The figure reveals significant differences 

between the two sets of phenylalanine solutions– the PD derivatizes phenylalanine 

solutions have higher UV absorption coefficients in the spectral regions from about 224 

to 244 nm and 270 to 302 nm than the PD associated phenylalanine (control) stock 

solutions.  A careful examination of the two sets of spectra in the wavelength region, 

224-235 nm, reveals a bathochromic shift in the spectra for the NSCCDS stock solutions 

relative to those for the control stock solutions.   

Figure 2.8 shows the mean-centered UV absorption spectra from 222 to 322 nm 

for the 4 mM NSCCDS and control D and L-phenylalanine (control) stock solutions.  The 

spectrum for the PD esterified D-phenylalanine is in blue, that of the esterified L- 

phenylalanine in pink and the spectra for the PD associated D- and L-phenylalanine 

enantiomers are shown in green and brown colors respectively.  Figure 2.8 reveals 

additional significant differences between the two sets of phenylalanine solutions.  The 

figure shows that the spectra for the control or PD associated phenylalanine solutions  

cross at 234 and 283 nm while those for the NSCCDS solutions cross at 235 and 279 nm.  

This spectral crossing at difference wavelengths clearly reveals the relative shift in 

absorption wavelength of these two sets of phenylalanine solutions.  Figure 2.8 also 

shows that the UV absorption of the NSCCDS prepared D-phenylalanine solution, 
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Figure 2.7. UV absorption spectra of 4 mM NSCCDS and PD associated or control (not heated) D-and L-
phenylalanine stock solutions.  Blue spectrum: NSCCDS D-phenylalanine. Pink spectrum: NSCCDS L-
phenylalanine. Green spectrum: Control D-phenylalanine. Brown spectrum Control L-phenylalanine. 

 
 

between 235 and 285 nm, is higher than that of the L-phenylalanine solution.  The control 

or PD associated phenylalanine solutions, on the other hand, reveal the exact opposite 

effect.  The differences in spectra revealed in Figure 2.7 and 2.8 clearly shows that the 

NSCCDS phenylalanine (esterified phenylalanine) stock solutions are different from the 

control or PD associated phenylalanine stock solutions.   

Figure 2.9A and B, respectively, are the original and mean-centered UV 

absorption spectra (230-290 and 227-307nm respectively) for thirteen control 

phenylalanine sample solutions prepared using the 4 mM control D-and L-phenylalanine 

stock solutions.  Figure 2.9A clearly shows the usual absorption band of phenylalanine, 

which has a maximum at 257 nm.  Unlike Figure 2.9A, the mean-centered spectra in 

Figure 2.9B, which are labeled in terms of the mole fractions (to two decimal places) of 

the D-phenylalanine enantiomer, shows that there are quite significant differences in the 

spectra of the control sample solutions.   
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Figure 2.8. Mean-centered UV absorption spectra of 4 mM (S)-(+)-1,2-propanediol (PD) esterified and 
associated or control (not heated) D-and L-phenylalanine stock solutions.  Blue spectrum: PD esterified D-
phenylalanine. Pink spectrum: PD esterified L-phenylalanine. Green spectrum: PD associated D-
phenylalanine (control solution). Brown spectrum PD associated L-phenylalanine (control solution). 

 
 

Figure 2.10A, B, C, and D show the plots for the PLS-1 regression calibration 

model developed to verify the correlation of the spectral differences shown in Figure 

2.9B with the compositions of the samples.  The plots were developed using the spectral 

data and enantiomeric compositions of six randomly selected control calibration samples 

with D-phenylalanine mole fractions of: 0.151, 0.399, 0.500, 0.801, 0.897, and 0.950.  

Figure 2.10A is the scores plot constructed with the second PC as the y-axis and first PC 

as the x-axis.  Figure 2.10B is the regression coefficient as a function of wavelength plot, 

2.10C is the percent explained variance as versus of PC plot, and 2.10D is the calibration 

model (black line) and cross-validation (blue line) regression lines plot (predicted versus 

known mole fraction plot).  Figure 2.10A and C, respectively, show that the scores and 

percent explained variance plots of the control calibration samples of phenylalanine are 

not significantly different from those of the NSCCDS phenylalanine calibration samples.   
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Figure 2.9. Original and mean-centered UV absorption spectra of thirteen sample solutions prepared using 
4 mM PD associated or control (not heated) D-and L-phenylalanine stock solutions: A is original UV 
absorption spectra and B is mean centered UV absorption spectra.  The samples were made up of different 
enantiomeric compositions but identical total phenylalanine concentrations.  The mean centered spectra are 
labeled in terms of the mole fractions (to two decimal places) of the D-phenylalanine enantiomer. 
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Figure 2.10. Plots of PLS-1 regression calibration model developed using the UV absorption spectral data and known enantiomeric compositions of the 
control or PD-associated calibration samples (not heated) of phenylalanine.  A: scores plot, B: regression coefficient as a function of wavelength plot, C: 
percent explained variance as a function of principal component plot, and D: calibration and cross-validation regression lines for the fitted (black) and 
predicted (blue) mole fractions, respectively, versus the known mole fractions of calibration samples.  The model required three PCs (see below plot B or 
D).
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However, the regression coefficient plot in Figure 2.10B indicates that a shorter 

wavelength range was required for modeling (222-450 nm) the control calibration 

samples compared to the corresponding NSCCDS samples (235-567 nm).  In addition, 

Figure 2.10D shows that the cross-validation regression line (blue) for the control 

samples of phenylalanine differs from that for the corresponding NSCCDS calibration 

samples.  The differences between the two regression lines, in terms of the cross-

validation plot statistics, are shown in Table 2.3.  The table also shows the plot statistics 

of the fitted calibration lines for the two sets of calibration samples.  It is clear from the  

table that the regression plot statistics of calibration for the control and NSCCDS samples 

are not significantly different from each other.  This is not surprising because the 

calibration plots are fitted as mentioned earlier.  As such, calibration regression lines, 

usually, havegood regression plot statistics.  However, the cross-validation plot statistics 

for the control calibration samples differ from the plot statistics of the fitted calibration 

line.  On the other hand, the cross-validation plot statistics for the NSCCDS samples 

compare quite favorably with the plot statistics of the fitted calibration plot.  Generally, 

the closer the values of the plot statistics for the cross-validation regression line are to 

those of the fitted calibration line, the better the correlation between the predictor 

(spectral data) and the response variable (enantiomeric composition).  Thus, the plot 

statistics in Table 2.3 indicate a slightly higher degree of correlation in the data for the 

NSCCDS phenylalanine samples than the control phenylalanine samples.  This is in spite 

of the fact that the first two PCs for the control samples explained 94 and 100 % of the 

variation in the x- and y-data respectively, compared 76 and 99 % for the NSCCDS 

calibration samples. 
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Table 2.3. Regression Plot Statistics for Calibrating and Cross-Validating 4 mM NSCCDS and control 
calibration samples made up of varying compositions of D- and L-phenylalanine. 

 
Regression Plot 
Statistic (RPS) 

RPS value for 
NSCCDSSa 
Calibration 

RPS value for 
Control Samples 
Calibration 

RPS value for 
NSCCDSS Cross-
Validation 

RPS value for 
Control Samples 
Cross-Validation 

Slope 0.999 0.999 0.967  0.881 

Offset 0.000428 0.0003 0.00828 0.0908 

Corrb. Coefficient 0.999 0.999 0.998 0.992 

RMSEc 0.00966 0.006 0.0229 0.0500 

SEd (SDR)e 0.0104 0.007 0.0241 0.0501 

a Non-separative, covalent, chiral discrimination samples, b Correlation, c Root-mean-square error, d 
Standard error, e Standard deviation of residuals 

 
 

Table 2.4 compares the absolute errors of prediction computed for the mole 

fractions of nine control validation samples with those computed for the mole fractions of  

the NSCCDS validation samples.  The magnitudes of the absolute errors of prediction for  
 
 

Table 2.4. Comparison of the predicted D-phenylalanine (Phe) mole fractions in the control and NSCCDS 
validation samples of phenylalanine made up of varying enantiomeric compositions of D- and L-Phe. 

 
Actual D-Phe øa 
for Control 
Sample 

Predicted D-Phe 
ø for Control 
Sample 

Absolute error 
for D-Phe ø 
Prediction 

Actual D-Phe ø 

for NSCCDSb 
Sample 

Predicted D-Phe 
ø for NSCCDS 
Sample 

Absolute error 
for D-Pheø 
Prediction 

0.0499 0.0160 -0.0339 0.103 0.0848 -0.0182 

0.102 0.124 0.022 0.400 0.407 0.007 

0.200 0.227 0.027 0.451 0.425 -0.026 

0.299 0.259 -0.04 0.597 0.596 -0.001 

0.601 0.576 -0.025 NR 0.773  

0.700 0.701 0.001 0.801 0.801 0.0 

0.855 0.846 -0.009 0.851 0.859 0.008 

   NRb 0.877  

RMSEPc  0.026   0.014 

a Mole fraction, b Non-separative, covalent chiral discrimination strategy,  c Root-mean-square error of 
prediction 
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the control samples compared to those for the NSCCDS samples (see Table 2.2) show 

that generally, PD is less effective for the analysis of phenylalanine when used as a non-

covalent chiral selector.  The root-mean-square error of prediction computed for the 

analysis of the control samples is 0.026.  This error is about twice the prediction error of 

0.014 computed for the NSCCDS samples.  Though the results of these two analyses 

appear to suggest that (S)-(+)-1,2-propanediol (PD) is more effective as covalent chiral 

selector, the results also indicate that PD can be used for non-covalent discrimination  

analysis.  This is because of the low RMSEP, 0.026, computed for the analysis.   
 
 

Analysis of Chiral-Selector-Free Phenylalanine Samples 

We have found out in our research on chiral analysis over the years that the 

isotropic UV-vis spectral signatures of the enantiomeric pairs of certain chiral liquids 

vary significantly [11, 12].  Such samples have been analyzed without a chiral selector.  

In addition, it was possible to analyze these liquids and other solid chiral compounds at 

elevated concentrations (≥ 15 mM) without the use of a chiral selector. At such high 

concentrations, however, most chiral compound will not dissolve in water, which is a 

preferred solvent for analyses such this.  For example, phenylglycine and tyrosine, which 

must be heated to dissolve in water at concentration levels greater than 4 mM, tend to 

precipitate with time on cooling.  As such, chiral compounds behaving similarly to 

phenylglycine and tyrosines cannot be analyzed effectively without a chiral selector.  In 

addition, it is important and desirable to be able to assess enantiomeric purity at low 

concentration levels because the concentrations of chiral active pharmaceutical 

ingredients (API) in most therapeutic drugs are low.  Examples of such drugs include 

Boniva (API: 2.5mg), Detrol (API: 1, 2 ,and 4 mg), and Singulair (API: 4, 5, and 10 mg).  
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It is, therefore, important that chiral analysis techniques being developed for analyzing 

such categories of compounds should be capable of doing so effectively at low 

concentration levels.  Our new strategy must thus be tested against the possibility of 

assessing enantiomeric purity of chiral compounds at the concentration levels, for 

example, at which phenylalanine was analyzed using the NSCCDS approach without a 

chiral selector. 

Figure 2.11 shows the UV absorption spectrum (blue spectrum) from 222 to 322 

nm of a 4 mM stock solution containing only enantiopure D-phenylalanine.  The figure 

also shows the spectrum (pink spectrum) of the 4 mM D-phenylalanine stock solution 

prepared using the NSCCDS approach.  It is obvious from the figure that the spectrum for 

the chiral-selector-free or pure D- phenylalanine is different from the spectrum recorded 

for the NSCCDS D- phenylalanine stock solution.  The difference shown in Figure 2.11 

between the NSCCDS and pure D- phenylalanine stock solutions is similar to that 

recorded between the control and NSCCDS phenylalanine stock solutions shown in 

Figure 2.7.  In fact, the spectra of the control and pure phenylalanine stock solutions have 

similar signatures.  Figure 2.11 reveals that the NSCCDS D-phenylalanine solution has a 

higher UV absorption from about 227 to 244 nm and 272 to 302 nm than the pure D-

phenylalanine solution.  In addition, the NSCCDS D- phenylalanine stock solution shows  

a bathochromic shift relative to the enantiopure D- phenylalanine solution in the spectral 

region from 222 to 242 nm.  These spectral differences confirm that phenylalanine is 

transformed into a derivative of PD, whose spectral signature differs significantly from 

pure phenylalanine.   
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Figure 2.11. UV absorption spectra of 4 mM (S)-(+)-1,2-propanediol (PD) esterified and chiral-selector-
free (enantiopure) D- phenylalanine stock solutions.  Blue spectrum: enantiopure D-phenylalanine. Pink 
spectrum: PD esterified D-phenylalanine (NSCCDS sample) 

 
 

Figure 2.12 shows the mean-centered spectra from 222 to 224 nm for fourteen 

sample solutions, which were prepared by mixing know weights of the 4 mM chiral-

selector-free or pure D- and L-phenylalanine stock solutions.  The mean-centered spectra 

for the pure phenylalanine samples are clearly different from the mean-centered spectra 

recorded for the NSCCDS and control phenylalanine samples (see Figure 2.5 and 2.9).  

These differences recorded for the mean-centered spectra of these three sets of 

phenylalanine samples reflect the effect of the (S)-(+)-1,2-propanediol chiral selector on 

the spectral property phenylalanine.  Figure 2.12 shows that there is some variation in UV 

absorption of the pure phenylalanine sample solutions. To determine whether the 

variation in spectra of the pure phenylalanine samples correlate with the enantiomeric 

compositions of the samples, the original spectral data of the pure phenylalanine samples 

were subjected to PLS-1 regression modeling.   
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Figure 2.12. Mean-centered UV absorption spectra of fourteen chiral-selector-free sample solutions made 
up of different enantiomeric compositions 4 mM enantiopure D-and L-phenylalanine.  The spectra are 
labeled in terms of the mole fractions (to two decimal places) of the D-phenylalanine enantiomer. 

 
 

Figure 2.13A, B, C, and D show the PLS-1 regression model plots developed 

using the spectral data of seven samples.  The seven samples were randomly selected 

from the fourteen samples prepared for analysis.  Figure 2.13A is the scores plot.  Apart 

from the mismatch of sample D150 the scores plot shows that the first two PCs describe 

the samples in terms of the D-phenylalanine compositions in an increasing order of the 

mole fraction of D-phenylalanine from left to right.  Unlike the NSCCDS samples, the 

regression coefficient curve shown in Figure 2.13B for the pure phenylalanine samples 

has only a positive phase.  This indicates that the enantiomeric compositions of the pure 

phenylalanine calibration samples change in the same direction as the spectral data in the 

modeled wavelength region.  Figure 2.13C, which is the explained variance versus PC 
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100 

plot, shows that five PCs were computed to explain the variation in the data.  that the 

variation in the spectral data poorly explains the variation in the composition of the 

samples.  The explained variances, from the first through to the fifth PC are 50, 70.47, 

19.82, 45.22, and 45.51 %.  For this data set, the first two PCs explained 99 of the 

variation in spectral data and 72 % of the variation in the enantiomeric composition.  

However, only the first PC was necessary in developing the model.  Figure 2.13D shows 

the calibration and cross- validation regression lines for the pure phenylalanine (chiral-

selector-free Phe) samples.  It is clear from the figure that the cross-validation regression 

line (blue) deviates significantly from the fitted calibration line (black line).  The plot 

statistics associated with the two regressions lines are compared in Table 2.5 with those 

of the previously discussed NSCCDS phenylalanine samples.  The plot statistics reported 

in Table 2.5 for the pure phenylalanine samples clearly indicate poor correlation in data 

unlike those for the NSCCDS phenylalanine samples.  For example, values for the slope 

and correlation coefficient of both the fitted calibration and cross-validation lines are 

significantly lower than the minimum acceptable value of 0.9, which is required for a 

meaningful regression of the sample composition (response variable) on the spectral data 

(predictor variable) to attained.  The root-mean-squares errors and standard deviation of 

the residuals (standard error) are quite high.  An attempt made at predicting a set of 

validation samples using the calibration model (Figure 2.13D) for the pure phenylalanine 

samples resulted in poor predictions.  The predictions are shown in Table 2.6 in 

comparison with the actual mole fractions of the validation samples.  From the table, 

except for two samples with actual D-phenylalanine mole fractions of 0.899 and 0.249, 

the deviations or errors in the predicted mole fractions of the rest of the samples are 
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Figure 2.13. Plots of PLS-1 regression calibration model developed using the UV absorption spectral data and known enantiomeric compositions of chiral-
selector-free phenylalanine calibration samples.  A: scores plot, B: regression coefficient as a function of wavelength plot, C: percent explained variance as 
a function of principal component plot, and D: calibration and cross-validation regression lines for the fitted (black) and predicted (blue) mole fractions, 
respectively, versus the known mole fractions of calibration samples. The model required only one PC (see below plot B or D).
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Table 2.5. Regression Plot Statistics for Calibrating and Cross-Validating 4 mM NSCCDS and chiral-
selector-free calibration samples of Phe made up of varying compositions of D- and L-phenylalanine 

 
Regression Plot 
Statistic (RPS) 

RPS value for 
NSCCDSSa 
Calibration 

RPS value for 
EPSb Calibration 

RPS value for 
NSCCDSS Cross-
Validation 

RPS value for EPS 
Cross-Validation 

Slope 0.999 0.668 0.967  0.629 

Offset 0.000428 0.130 0.00828 0.118 

Corrc. Coefficient 0.999 0.817 0.998 0.667 

RMSEd 0.00966 0.124 0.0229 0.173 

SEe (SDR)f 0.0104 0.134 0.0241 0.185 

a Non-separative, covalent, discrimination strategy samples, b Enantiopure sample, c Correlation, d Root-
mean-square error, e Standard error, f Standard deviation of residuals 

 
 

unusually high.  For example, the validation sample with an actual D-phenylalanine mole 

fraction of 0.851 has an absolute error as high as -0.256.  The root-mean-square error of 

prediction computed for the analysis is 0.16.  This is about 11.4 times the error computed 

for the NSCCDS analysis of phenylalanine.  The prediction results for the pure 

phenylalanine samples indicate that the variations observed in the spectra of the pure 

phenylalanine samples were not caused by the differences in enantiomeric compositions 

of the samples.  The observed variations could be due to instrument variation.  Should 

this be the case, it will imply that differences in spectra caused by instrument variation in 

analyses such as this cannot result in meaningful correlation of spectral data with samples 

composition.  In other words the correlation between spectral data and enantiomeric  

composition observed in the analysis of the NSCCDS and control phenylalanine samples 

are due to actual discrimination effects of the (S)-(+)-1,2-propanediol chiral selector.  The 

experimentation with the pure phenylalanine samples undoubtedly show that a chiral 

selector is needed at a concentration level of 4 mM for assessing the enantiomeric purity 
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Table 2.6. Actual and predicted D-phenylalanine mole fractions for 4 mM validation samples containing 
varying compositions of chiral-selector-free (enantiopure samples) D- and L-phenylalanine 

 
Actual øa for Enantiopure D-Phe Predicted øa for Enantiopure D-

Phe 
Absolute error of Prediction 

0.951 0.737 0.214 

0.899 0.866 0.033 

0.851 1.107 -0.256 

0.801 0.884 -0.083 

0.501 0.614 -0.113 

0.249 0.240 0.009 

0.0497 0.287 -0.2373 

Root-Mean-Squares Error of 
Prediction 

 0.16 

a Mole fraction 
 
 

of phenylalanine.  Generally, the analysis suggests that except for the enantiomers of neat 

chiral liquid compounds, whose isotropic spectral signatures differ significantly, a chiral 

selector may be required in assessing enantiomeric composition of chiral compounds in  

solution at low concentration levels.  
 
 

Analysis of NSCCDS Samples of Tyrosine 

Figure 2.14A and B contain the original UV absorption spectra and the mean-

centered spectra, respectively, from 235 to 349 nm of the 2.5 mM NSCCDS D- and L-

tyrosine stock solutions.  Figure 2.14A shows the usual tyrosine absorption band in  

aqueous solution with a maximum at 274 nm.  The absorption band is due to the A1g ← 

B2u forbidden л*← л transition of the phenolic group of tyrosine.  Similar to 

phenylalanine, the mean-centered spectra in Figure 2.14B clearly shows that the tyrosine 

stock solutions differ in their spectral properties: PD derivatized L-tyrosine absorbs more 
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Figure 2.14. A: UV absorption spectra for PD derivatized or esterified 4 mM stock solutions of D-and L-
tyrosine. B: Mean-centered spectra of A.  Note the difference in absorbance between PD esterified D- and 
L-Tyr in B.  The difference in absorbance, 0.056, at 239 nm is greater than the instrument error, ± 0.005. 

 
 

UV light than the D-tyrosine counterpart between 236 and 258 nm, and 285 and 330 nm.  

The difference in absorbance between these stock solutions at 239 nm is 0.056 AU and at 

289 nm a difference of 0.014 AU is recorded.  These differences cannot be due to 

instrument errors because both are more than twice the instrument error in absorbance, 

which is ± 0.005.  Thus, actual spectral differences were recorded.  

Figure 2.15A and B show the original UV absorption spectra (247-321 nm) and 

the mean-centered UV absorption spectra (286-236 nm) for the twelve sample solutions 

prepared using the 2.5 mM NSCCDS tyrosine stock solutions.  Similar to the stock 

solutions (Figure 2.14), the mean-centered spectra clearly depict spectral differences 

among the samples.  As noted for phenylalanine, these differences in absorbance should 

be due to the formation of a diastereomeric ester pair of tyrosine as a result of the 

esterification of tyrosine using (S)-(+)-1,2-propanediol in the presence of HCl.  Being 

diastereomers, the D- and L-tyrosine should be different in their spectral properties, hence 

the differences in absorbance recorded.   
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Figure 2.16A, B, C, and D show the plots for the PLS-1 regression calibration 

model developed to investigate the correlation of the spectral differences shown by the 

mean-centered spectra for the NSCCDS tyrosine samples solutions.  Six calibration 

samples, with D-tyrosine mole fractions of 0.250, 0.400, 0.450, 0.500, 0.600, and 0.700, 

were randomly selected from the twelve samples prepared to develop the calibration 

model.  The plot in Figure 2.16A is the scores plot, 2.16B the regression coefficients as a 

function of wavelength plot, 2.16C the percent explained variances versus PC plot, and 

2.16D the regression line plot (plot of predicted verses known mole fractions of the 

calibration samples).  The scores and regression coefficient plots reveal features about the 

spectral and enantiomeric composition data of the tyrosine samples that are significantly 

identical to that discussed previously for the NSCCDS phenylalanine samples.  The 

explanations given for the phenylalanine samples, thus, hold here as well.  However, 

different wavelength regions were required in modeling the two samples: 289-349 nm for 

tyrosine and 230-567 nm for phenylalanine.  This is not surprising because the two 

molecules are different with different UV absorption properties.  As such, the (S)-(+)-1,2- 

propanediol derivatives of these two compounds should have different spectral 

properties.  The percent explained variance plot for the NSCCDS tyrosine samples, in 

Figure 2.16C, reveals four PCs with percent variances of 34.23, 96.77, 98.28, and 98.57 

%.  However, only three PCs were adequate for the model.  Of these, the first two PCs 

together explained 98 % of the variation in the spectral data and 99 % of the variation in 

the sample composition.  These percentages indicate that a significant amount of 

information in the data is accounted for by the model.  As such, the relationship between 

the spectral data and sample composition can be reported with a high degree of certainty.   
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Figure 2.15. A: UV absorption spectra of twelve sample solutions prepared using 2.5 mM PD esterified D-
and L-tyrosine stock solutions. B: Mean-centered spectra of A. The samples solutions are made up of 
different enantiomeric compositions but identical total tyrosine concentrations.  The mean centered spectra 
are labeled in terms of the mole fractions (to two decimal places) of the D-tyrosine enantiomer. 
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Figure 2.16. Plots of PLS-1 regression calibration model developed using the UV absorption spectral data and known enantiomeric compositions of 
NSCCDS calibration samples (heated) of tyrosine.  A: scores plot, B: regression coefficient as a function of wavelength plot, C: percent explained 
variance as a function of principal component plot, and D: calibration and cross-validation regression lines for the fitted (black) and predicted (blue) mole 
fractions, respectively, versus the known mole fractions of calibration samples. The model required three PCs (see below plot B or D).
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Table 2.7 shows the plot statistics for the fitted calibration (black line) and cross-

validation (blue line) regression lines shown in Figure 2.16D for the NSCCDS tyrosine 

calibration samples.  The offset, root-mean-squares error, and standard error for the 

cross-validation regression line of the NSCCDS tyrosine samples differ from the 

corresponding values computed for the fitted calibration line.  However, values for the  

slope and correlation coefficient compare favorably with those for the fitted calibration  
 
 

Table 2.7. Regression Plot Statistics for the Calibration and Cross-Validation of 2.5 mM calibration sample 
solutions of tyrosine made up of varying enantiomeric compositions of (S)-(+)-1,2-propanediol (PD) 

esterified D- and L-tyrosine (NSCCDS analysis). 
 

Regression Plot Statistics (RPS) RPS value for Calibration RPS value for Cross-Validation  

Slope 0.998 0.985 

Offset 0.000755 0.0160 

Coefficient of Correlation 0.999 0.989 

Root-Mean-Squares Error 0.0057 0.023 

Standard Error (standard 
deviation of residuals) 

0.0062 0.023 

 
 

line.  Except for the offset, the cross-validation plot statistics for the NSCCDS tyrosine 

calibration samples are significantly different from the cross-validation plot statistics of 

the NSCCDS phenylalanine calibration samples reported in Table 2.1. 

Table 2.8 shows the mole fractions predicted for the rest of the six NSCCDS 

tyrosine samples used as validation samples.  The table also shows the actual mole 

fractions of these validation samples.  Compared to predictions for the NSCCDS 

phenylalanine samples (see Table 2.2), slightly higher deviations/errors are associated 

with most of the predicted NSCDS tyrosine smples.  The root-mean-square error of 

prediction (RMSEP) computed for the analysis is 0.030.  Though higher than the RMSEP 
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computed for the NSCCDS phenylalanine samples, the analysis still indicates effective 

discrimination of tyrosine using (S)-(+)-1,2-propanediol.  This is because the 0.03 root-

mean-square error is within the error margin usually reported for existing  

chromatographic and NMR techniques employed in analyses such as this [21]. 
 
 

Table 2.8. Actual and predicted D-Tyr mole fractions of 2.5 mM validation samples of tyrosine esterified 
with PD (NSCCDS analysis). The samples contain varying enantiomeric compositions of D- and L-Tyr. 

 
Actual øa for D-
Tyr 

Predicted ø for 
D-Tyr 

Absolute error of 
Prediction 

Actual ø for L-
Tyr 

Predicted ø for 
L-Tyr 

Absolute error of 
Prediction 

0.800 0.794 0.006 0.200 0.206 -0.006 

0.750 0.737 0.013 0.250 0.263 -0.013 

0.550 0.581 -0.031 0.450 0.419 0.031 

0.300 0.248 0.052 0.700 0.752 -0.052 

0.200 0.166 0.034 0.800 0.834 -0.034 

0.100 0.0766 0.0234 0.900 0.923 -0.023 

RMSEPb  0.030   0.030 
a Mole fraction, b Root-mean-square of prediction 

 
 

Analysis of Control Samples of Tyrosine 

Similar to phenylalanine, control samples of tyrosine were analyzed.  The set of 

spectra labeled A, in Figure 2.17, are the UV absorption spectra from 235 to 335 nm of 

the fourteen 2.5 mM control sample solutions of tyrosine.  These control tyrosine 

solutions contain identical amounts of (S)-(+)-1,2-propanediol and HCl as the previously 

discussed NSCCDS tyrosine samples.  As in the case of phenylalanine, heating was 

avoided during the preparation of the tyrosine stock solutions from which the control 

tyrosine samples were prepared.  The spectra reveal the usual absorption band of 
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tyrosine, which has a maximum at 274 nm.  Figure 2.17 also shows a second set of 

spectra labeled B, which belongs to the twelve NSCCDS tyrosine samples discussed  

previously.  The figure clearly shows a significant difference in UV absorption property  
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Figure 2.17. UV absorption spectra for two different sets of tyrosine samples made up of varying 
enantiomeric compositions of D- and L-tyrosine.  Spectra set A is for the fourteen control samples (no 
heating).and spectra set B is for the twelve samples prepared using the NSCCDS approach (heating). 

 
 

of the two sets of tyrosine samples.  Unlike phenylalanine, (see Figure 2.4), the 

absorbances of the control samples of tyrosine turned out to be higher than the 

absorbances of the NSCCDS tyrosine samples.  This can be seen in the spectral regions 

from 244 to 282 nm and 290 to 325 nm.  This difference in spectral response of the 

NSCCDS phenylalanine and tyrosine solutions reveals that the chiral selector, (S)-(+)-

1,2-propandiol, has different spectral effects on this two chiral analytes. 

Figure 2.18 shows the mean-centered UV absorption spectra from 285 to 435 nm 

for the fourteen control samples of tyrosine.  The figure clearly reveals differences in 

absorbance among the individual control sample solutions of tyrosine.  This is a clear  
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indication of the formation of diastereomeric species of tyrosine in solution through a  

non-covalent interaction of the D- and L-tyrosine enantiomers with (S)-(+)-1,2- 
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Figure 2.18.  Mean-centered spectra of the UV absorption spectra shown in Figure 2.17A for the fourteen 
control samples (not heated) of tyrosine.  The spectra are labeled in terms of the mole fractions (to two 
decimal places) of the D-tyrosine enantiomer. 

 
 

propandiol.  Unlike the enantiomers, the non-covalent tyrosine-PD diastereomers are two 

different compounds with different properties, hence the spectral difference recorded for 

the control tyrosine sample solutions. 

Figure 2.19A, B, C, and D show the PLS-1 regression calibration model plots for 

six control sample randomly selected from the fourteen prepared for analysis.  The six 

calibration samples consist of D-tyrosine mole fractions of: 0.0492, 0.199, 0.299, 0.504, 

0.800, and 0.950.  Figure 2.19A is the scores plot, which is constructed as a plot of the 

second PC verses the first PC.  Figure 2.19B is the regression coefficient as a function of 
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wavelength plot, 2.19C the percent explained variance versus PC plot, and 2.19D the 

calibration and cross-validation regression lines plot.  The scores plot in Figure 2.19A 

reveals a pattern in the control samples that is similar to that for the NSCCDS tyrosine 

samples.  However, the regression coefficient plot in Figure 2.19B shows that the 

relevant spectral information in the spectral data for the control samples of tyrosine, is 

resident in a longer wavelength region than identified for the NSCCDS tyrosine samples 

(see Figure 2.16B).  The explained variance plot in Figure 2.19C shows that four PCs 

were computed with percent variances of not less than 99.58 %.  The first PC explained 

98 and 100 % of the variation in the spectral data and enantiomeric composition 

respectively while the second PC explained 2% of the variation in the spectral data and 0 

% of the variation in enantiomeric composition.  Because the variation explained by the 

second PC is insignificant, the first PC, which explained almost the entire variation in the 

data, was adequate for the model.  Thus, the model was developed based on one PC.  

Similar to the scores plot, the regression line plot in Figure 2.19D shows that the fitted 

calibration and cross-validation regression lines for the control samples of tyrosine are 

not significantly different from the lines obtained for the NSCCDS tyrosine samples.   

Table 2.9 shows the plot statistics for the calibration and cross-validation 

regression lines of the two sets of tyrosine calibration samples (control and NSCCDS).  

The table shows that both the calibration and cross-validation plot statistics of the two 

sets of calibration samples of tyrosine compare favorably with each other.  

Table 2.10 compares the absolute errors of prediction computed for the mole 

fractions of a set of NSCCDS and control validation samples of tyrosine.  The result 

forthe NSCCDS samples is the same result reported earlier in Table 2.8; they are repeated 
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Figure 2.19. Plots of PLS-1 regression calibration model developed using the UV absorption spectral data and known enantiomeric compositions of 
control calibration samples of tyrosine.  A: scores plot, B: regression coefficient as a function of wavelength plot, C: percent explained variance as a 
function of principal component plot, and D: calibration and cross-validation regression lines for the fitted (black) and predicted (blue) mole fractions, 
respectively, versus the known mole fractions of calibration samples. The model required only one PC (see below plot B or D).
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Table 2.9. Regression Plot Statistics for Calibrating and Cross-Validating 2.5 mM NSCCDS and control 
calibration samples of tyrosine 

 
Regression Plot 
Statistic (RPS) 

RPS value for 
NSCCDSSa 
Calibration 

RPS value for 
Control Samples 
Calibration 

RPS value for 
NSCCDSS Cross-
Validation 

RPS value for 
Control Samples 
Cross-Validation 

Slope 0.998 0.998 0.985  0.967 

Offset 0.000755 0.00102 0.016 0.00975 

Corrb. Coefficient 0.999 0.999 0.989 0.997 

RMSEc 0.0057 0.015 0.023 0.028 

SEd (SDR)e 0.0062 0.016 0.023 0.031 

a Non-separative, covalent, chiral discrimination strategy samples, b Correlation, c Root-mean-squares 
error, d Standard error, e Standard deviation of residuals 

 
 

here in Table 2.10 for the purpose of comparison.  It is obvious from the table that except 

for the NSCCDS sample with D-tyrosine mole fraction of 0.300, the absolute errors  

computed for both sets of validation samples are, generally, quite low.  However, most of  

the predictions for the control analysis are slightly better than the predictions for the  
 
 

Table 2.10. Comparison of the predicted mole fractions of D-tyrosine (Tyr) in the 2.5 mM NSCCDS and 
control validation samples of tyrosine made up of varying enantiomeric compositions of D- and L-Tyr. 

 
Actual D-Tyr øa 
for NSCCDSb 
Sample 

Predicted D-Tyr 
ø for NSCCDS 
Sample 

Absolute error 
for NSCCDS 
Sample 

Actual D-Tyr ø 
for Control 
Sample 

Predicted D-Tyr 
ø for Control 
Sample 

Absolute error 
for Control 
Sample 

0.800 0.794 0.006 0.100 0.109 0.009 

0.750 0.737 0.013 0.150 0.153 0.003 

0.550 0.581 -0.031 0.344 0.357 0.013 

0.300 0.248 0.052 0.400 0.427 0.027 

0.200 0.166 0.034 0.599 0.568 -0.031 

0.100 0.0766 0.0234 0.898 0.884 -0.014 

RMSEPc  0.030   0.019 
a Mole fraction, b Non-separative, covalent, chiral discrimination strategy, c Root-mean-square error of 
prediction 
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NSCCDS analysis.  The root-mean-squares error of prediction computed for the control 

analysis is 0.019 and that for the NSCCD analysis is 0.03.  In the case of phenylalanine, 

root-mean-square errors of prediction of 0.014 and 0.026 were computed for the  

NSCCDS and control analysis respectively.  These prediction errors show that the non-

covalent discrimination, which is responsible for the control analyses, is comparable to 

the covalent discrimination approach, NSCCDS, for the analysis of the two amino acids. 
 
 

Analysis of NSCCDS and Control Samples of Atenolol 

Figure 2.20 shows the UV absorption spectra from 235 to 335 nm for the 2 mM 

control stock solution of R-Atenolol and the 2 mM stock solution of R-Atenolol prepared 

by reaction the enantiomers of Atenolol with PD in the presence of HCl (NSCCDS 

solution).  Figure 2.20 clearly shows that the NSCCDS and control solutions of R-

Atenolol are spectrally different.  The spectral effect of reacting PD with Atenolol, as 

shown in Figure 2.20, is similar to the spectral effect recorded for reacting phenylalanine 

with PD (compare with Figure 2.7): R-Atenolol reacted with PD has higher UV 

absorbance in certain wavelength regions (243 to 280 nm and 290 to 300 nm) than the 

corresponding control solution (no heating).  It was noticed during the sample 

preparation, that the reaction of Atenolol with (S)-(+)-1,2-propanediol in the presence of 

HCl, resulted in the formation of a light brown liquid product from an initially colorless 

liquid.  This change in color, coupled with the difference in absorbance recorded between 

the two stock solutions of R-Atenolol (NSCCDS and control stock solutions) shown in  

Figure 2.20, indicate that a transformation of a sort did occur.  The transformation could 
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Figure 2.20. UV absorption spectra for 2 mM control stock solution of R-Atenolol (blue spectrum).and 2 
mM stock solution of R-Atenolol prepared by reaction R-Atenolol with PD (NSCCDS Atenolol). 

 
 

possibly be the formation of an ester of Atenolol as explained earlier.  However, this 

cannot be substantiated because we do not have experimental evidence. 

Figure 2.21A and B show the mean-centered UV absorption spectra for fourteen samples 

each of the NSCCDS and control Atenolol samples, respectively.  Both mean-centered 

spectra, which are labeled in terms of the mole fractions of the R-Atenolol enantiomer, 

reveal variations among the samples.  However, the spectra are significantly different.  

This reveals the difference in effect of the covalent and non-covalent discrimination 

approaches on Atenolol.  To determine how the different spectral effects reflect the 

discrimination of the enantiomers of Atenolol, the spectral data for the two sets of 

Atenolol samples were subjected to PLS-1 regression analysis.   

Figure 2.22A, B, C, and D show the multivariate, PLS-1 regression, calibration 

model plots for seven NSCCDS calibration samples of Atenolol, which were randomly 

selected from the fourteen samples prepared.  The calibration samples consist of S- 
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Figure 2.21.  Mean centered spectra of the UV absorption spectra for the two sets of fourteen Atenolol 
samples.  A: Mean-centered spectra for the NSCCDS Atenolol samples (heated).  B: Mean-centered spectra 
for the control Atenolol samples (not heated).  The spectra are labeled in terms of the mole fractions (two 
decimal places) of the R-Atenolol enantiomer. 
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Atenolol mole fractions of: 0.0493, 0.148, 0.299, 0.398, 0.499, 0.712, and 0.951.  Figure 

2.22A is the scores plot, 2.22B is the regression coefficient as a function of wavelength 

plot, 2.22C is the percent explained variation versus PC plot, and 2.22D is the fitted and 

predicted (by cross-validation) versus actual mole fraction regression lines (black and 

blue respectively) plot.   

The PLS-1 regression calibration model plots developed using the data on the 

control samples (not heated) used for calibration are shown in Figure 2.23A, B, C, and D.  

Figure 2.23A is the scores plot, 2.23B is the regression coefficient as a function of 

wavelength plot, 2.23C is the percent explained variation versus PC plot, and 2.24D is the 

fitted and predicted (by cross-validation) versus actual mole fraction regression lines 

(black and blue respectively) plot.  The calibration model for the control analysis was 

developed from the spectral data of six instead of seven randomly selected control 

samples.  This is because one sample was identified as an outlier.  The six calibration 

samples consist of S-Atenolol mole fractions of: 0.0495, 0.200, 0.349, 0.501, 0.551, and 

0.899.  The scores plots, Figure 2.22B and 2.23B, for the two sets of Atenolol samples 

(NSCCDS and control samples) are similar; show increasing order from left to right of S-

Atenolol composition.  Similarly, the regression coefficient plots (see Figure 2.22B and 

2.23B) show that the same spectral band region is required in developing models for the 

two sets of calibration samples.  However, all of the regression coefficients computed for 

the control samples, unlike the NSCCDS samples, are positive.  This indicates that the 

sample compositions change in the same direction with the spectral data.  The percent 

variances versus PC plots (see Figure 2.22C and 2.23C) are also similar.  The average 

percent variance for the PCs of the NSCCDS model is 96.63 % and that for the PCs of 
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Figure 2.22.  Plots of PLS-1 regression calibration model developed using the UV absorption spectral data and known enantiomeric compositions of 
NSCCDS calibration samples (heated) of Atenolol.  A: scores plot, B: regression coefficient as a function of wavelength plot, C: percent explained 
variance as a function of principal component plot, and D: calibration and cross-validation regression lines for the fitted (black) and predicted (blue) mole 
fractions, respectively, versus the known mole fractions of calibration samples.  The model required three PCs (see below plot B or D).
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Figure 2.23.  Plots of PLS-1 regression calibration model developed using the UV absorption spectral data and known enantiomeric compositions of 
control calibration samples of Atenolol (not heated).  A: scores plot, B: regression coefficient as a function of wavelength plot, C: percent explained 
variance versus principal component plot, and D: calibration and cross-validation regression lines for the fitted (black) and predicted (blue) mole fractions, 
respectively, versus the known mole fractions of the calibration samples.  The model required only one PC (see below plot B or D).
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the control model is 97.68 %.  Three PCs were needed for the NSCCDS model, the first 

two of which explained 97 % (61 plus 31 %) of the variation in spectral data and 99 % 

(97 plus 2 %) of the variation in enantiomeric composition.  On the other hand, only one 

PC was required for the model developed using data on the control samples. This model 

explained 97 and 99 % of the variation in the spectral data and enantiomeric composition 

respectively.  The plot statistics computed for the fitted calibration and cross-validation 

regression lines shown in Figure 2.22D and 2.23D, respectively, for the NSCCDS and 

control samples are reported in Table 2.11.  Though most of the values of the plot 

statistics shown in Table 2.11 compare favorably, the root-mean-square and standard 

errors for these two sets of samples differ: data for the control calibration samples are 

associated with higher errors than the data on the NSCCDS calibration samples.  

Table 2.12 compares the results of predicting the rest of the fourteen NSCCDS 

and control samples of Atenolol used as validation samples.  These two sets of validation 

samples were predicted using the corresponding calibration models, whose plots are 

shown in Figure 2.22 and 2.23, respectively.  It is obvious from the table that the absolute 

errors computed for predicting the NSCCDS samples, compared to those computed for 

the control samples, are smaller.  For example, an absolute error as high as -0.492, was 

computed for the control sample with S-Atenolol mole fraction of 0.701.  The highest 

absolute error of prediction computed for the NSCCDS samples is 0.072.  The root- 

mean-square error of prediction (RMSEP) computed for the control analysis of Atenolol 

is 0.21.  This error is five times higher than the RMSEP of 0.042 computed for the 

NSCCDS analysis.  With 97 and 99 % of the variation in the spectral data and  

enantiomeric composition explained by the PC used for the model developed for the 
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Table 2.11. Regression Plot Statistics for Calibrating and Cross-Validating 2mM NSCCDS and control 
calibration samples of Atenolol. 

 
Regression Plot 
Statistic (RPS) 

RPS value for 
NSCCDSSa 

Calibration 

RPS value for 
Control Samples 
Calibration 

RPS value for 
NSCCDSS Cross-
Validation 

RPS value for 
Control Samples 
Cross-Validation 

Slope 0.999 0.989 0.998 0.996 

Offset 0.00537 0.00451 0.00835 0.00938 

Corrb. Coefficient 0.999 0.995 0.992 0.988 

RMSEc 0.010 0.028 0.038 0.043 

SEd (SDRe) 0.011 0.031 0.040 0.047 

a Non-separative, covalent, chiral discrimination strategy sample, b Correlation, c Root-mean-square error, d 
Standard error, e Standard deviation of residuals 

 
 

control analysis, a strong correlation in data, leading to low prediction errors would be 

expected.  The high prediction errors computed for the control samples indicates that the 

spectral information associated with the calibration samples is not representative of the 

entire set of samples prepared for analysis.  This could possibly be due to unstable and 

non-specific diastereomeric interactions between Atenolol and the (S)-(+)-1,2- 

propanediol chiral selector.  The results for the control analysis of Atenolol is an example 

of a situation in which non-covalent discrimination strategies may fail because of the 

inability to form specific and stable non-covalent diastereomeric complexes.  Our new 

covalent discrimination approach or strategy should be less prone to such weaknesses 

because it depends on the formation covalent compounds, which are relatively more  

stable.   
 
 

Analysis of NSCCDS Samples of Norephedrine 

As noted earlier, the reaction of Atenolol with PD in the presence of HCl led to 

the formation of a light brown liquid product with color.  During the reaction of 
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Table 2.12. Comparison of the predicted mole fractions of S-Atenolol in the 2 mM NSCCDS and control 
validation samples of Atenolol made up of varying enantiomeric compositions of R- and S-Atenolol. 

 
Actual øa of      
S-Atenolol 
(NSCCDSSb) 

Predicted ø of S-
Atenolol 
(NSCCDSS) 

Absolute error of 
Prediction 
(NSCCDSS) 

Actual ø of S-
Atenolol 
(Control Sample) 

Predicted ø of S-
Atenolol 
(Control Sample) 

Absolute error of 
Prediction 
(Control Sample) 

0.101 0.116 -0.015 0.950 1.011 -0.061 

0.198 0.270 -0.072 0.850 0.944 -0.094 

0.451 0.419 0.032 0.800 1.026 -0.226 

0.601 0.617 -0.016 0.701 1.193 -0.492 

0.650 0.695 -0.045 0.601 0.634 -0.033 

0.801 0.743 0.058 0.400 0.356 0.044 

0.850 0.832 0.018 0.300 0.282 0.018 

RMSEPc 0.042   0.21  
a Mole fraction, b Non-separative, covalent, chiral discrimination strategy sample, c Root-mean-square error 
of prediction 

 
 

Norephedrine with the PD chiral selector, changes in color were carefully monitored over 

the one-hour heating process.  It was observed after heating for more than three minutes 

at 80 oC that the samples began to develop a similar brownish coloration.  Figure 2.24A 

and B show the colors of the solutions formed on heating Norephedrine and (S)-(+)-1,2-

propanediol together in the presence of HCl.  Figure 2.24A shows the colorless clear 

solutions of the two enantiomers of Norephedrine three minutes into the heating process.  

Figure 2.24B reveals the clear light brown liquid product obtained at the end of the one 

hour heating process.  The color change observed in this reaction is comparable to that 

observed during the reaction of Atenolol with the PD chiral selector.  This observation 

suggests that similar to the situation with Atenolol, some sort of transformation took 

place.  As explained in the case Atenolol, we are unable to tell the type of product formed 

by the reaction of Norephedrine with PD because no experiments were performed to  

determine the products of the reaction.  However, subjecting the spectral data of samples 
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Figure 2.24. Color changes occurring during the reaction of Norephedrine with (S)-(+)-1,2-propanediol in 
the presence of HCl.  Both compounds were heated together in the presence of HCl at 80 oC.  A: color of 
the liquid product formed after three minutes of heating.  B: color of the liquid product formed at the end of 
the heating process (one hour). 

 
 

of the above reaction to PLS-1 regression modeling for enantiomeric composition 

analysis, should reveal if diastereomeric products ensued.  Thus, the light brown liquids 

shown in Figure 2.24B were used to prepare samples, the UV spectra data of which were 

subjected to PLS-1 regression analysis. 

Figure 2.25A shows the UV absorption spectra (225-268 nm) for sixteen samples  

solutions prepared using 2.5 mM stock solutions of 1R,2S- and 1S,2R-Norephedrine 

reacted with PD in the presence of HCl.  The Figure 2.5 reveals that there are differences 

in the absorbances of the spectra of the samples.  The mean centered spectra of the UV 

absorption spectra shown in Figure 2.5A are presented in Figure 2.5B to clearly show the 

differences in the spectra.  The spectra are labeled in terms of mole fractions (two 

decimal places) of the 1S,2R-Norephedrine enantiomer.  Typical of spectra collected in 

these analyses, Figure 2.5B shows that the spectra for the Norephedrine samples do not 

vary regularly in a given wavelength region.  To develop a calibration model for the 

analysis, a random selection, as usual, of calibration samples was performed.  The mole 

fractions of the calibration samples in terms of the 1R,2S-Norephedrine enantiomer 
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Figure 2.25.  A: original UV absorption spectra of sixteen Norephedrine sample solutions prepared using 
2.5 mM stock solutions of 1R,2S- and 1S,2R-Norephedrine reacted with PD (NSCCDS analysis) The 
samples are made up of varying enantiomeric compositions but identical total Norephedrine concentrations. 
B: mean centered spectra of the UV absorption spectra shown in A.  The mean centered spectra are labeled 
in terms of the mole fractions (two decimal places) of the 1R,2S-Norephedrine enantiomer 
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are0.101, 0.149, 0.399, 0.451, 0.501, 0.599, 0.701, and 0.949.  The calibration model 

developed was then used to predict the rest of the samples used as test or validation 

samples.  

Table 2.13 compares the results of the predicted 1R,2S-Norephedrine enantiomer  

mole fractions with the actual mole fractions of the validation.  Except for the  
 
 

Table 2.13. Comparison of the actual and predicted mole fractions of 1R,2S-Norephedrine in the NSCCDS 
validation samples of Norephedrine  

 
Actual mole fraction of 1R,2S-
Norephedrin 

Predicted mole fraction of 1R,2S-
Norephedrin 

Absolute Error of prediction 

0.0493 0.127 0.0777 

0.200 0.216 0.016 

0.301 0.283 -0.018 

0.348 0.357 0.009 

0.540 0.549 0.009 

0.799 0.75 -0.049 

0.898 0.882 -0.016 

Root-mean-squares error of 
prediction 

 0.037 

 
 

sample with 1R,2S-Norephedrin enantiomer mole fraction of 0.0493, the absolute errors 

computed for the predicted mole fractions show that the samples were predicted with 

quite a high level of accuracy.  The root-mean- square error of prediction computed for 

the analysis is 0.037, which is slightly lower than the 0.042 root-mean-squares error 

computed for the analysis of Atenolol.  These errors indicate a similar level of 

performance of the covalent discrimination strategy in the analyses of these 

pharmaceuticals using (S)-(+)-1,2-propanediol as a chiral selector.  The correlation of the 

spectral data of the samples of Atenolol and Norephedrine, prepared by reacting these 
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drugs with PD in the presence of HCl, with enantiomeric composition clearly indicates 

that the reactions resulted in a discrimination effect.  Unlike these samples, samples for 

the control analysis of Atenolol, where no heat was applied to chemically react Atenolol 

with PD, resulted in a root-mean-square error as high as 0.21.  As such, the NSCCDS  

approach employed in analyzing these pharmaceuticals has a discriminatory impact. 
 
 

NSCCDS Compared to Our Previous Non-Covalent Discrimination Studies  

This section compares our new non-separative, covalent, chiral discrimination 

strategy in which PD is used as a covalent chiral discriminator with a selected number of 

our existing non-covalent chiral discrimination strategies as well as the present non-

covalent PD discrimination strategy (referred to herein as control analysis). 

Noted in Chapter 1, the root-mean-square error (RMSE) is a frequently-used 

measure of the difference between the value of a quantity or parameter predicted by a 

model or an estimator and the actual or known value of the quantity or parameter 

predicted or estimated.  It is a measure of accuracy and therefore employed as a figure of 

merit for evaluation or comparison.  The RMSE is expressed in the same units as the 

quantity being predicted or estimated.  In analyses such as this, the root-mean-square 

error of prediction, as it is usually referred to, is used to evaluate or compare techniques 

or various chiral selectors employed in the same analytical technique.  The acceptable 

limit for this error depends on the discipline and the quantity or parameter being studied.  

Generally, however, the smaller the value of the RMSE is, the higher the accuracy of the 

results.  The method or technique used to obtain such results will thus be considered to 

have a high RMSE figure of merit.  In our chiral analysis by regression modeling of 

spectral data (CARMSD) technique, differences in spectral data of samples, made up of 
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varying enantiomeric compositions, are correlated with the enantiomeric compositions of 

the samples.  The strength or extent of the correlation depends on how unique the spectra 

of the individual samples are, which in turn, depends on the effectiveness of the chiral 

selector and the discrimination strategy.  Our prediction results, therefore, depend on the 

chiral selector and the discrimination strategy.  Consequently, the RMSEP computed in 

our analyses is a direct evaluator of the chiral selector and the discrimination strategy 

employed.   

Table 2.14 compares our new covalent discrimination strategy, NSCCDS, in 

which (S)-(+)-1,2-propanediol was used as a chiral selector, with a selected number of 

our previous chiral selectors and the discrimination strategies employed.  The studies are 

compared in terms of the concentration levels at which the analyses were preformed and 

the root-mean-square errors of prediction computed for the analyses.  In order to have a 

leveled ground for comparison, only studies in which a given chiral selector was used to 

analyze at two amino acids or two pharmaceutical molecules, comparable to those 

analyzed in the present study, were considered.  In addition, only studies performed using 

UV spectroscopy as used in the present study were selected for comparison.  Based on 

these criteria, previous UV-vis studies involving β-cyclodextrin and carboxymethyl-γ-

cyclodextrin (CM-γ-CD) as chiral selectors were chosen.  In these studies, both chiral 

selectors were used as transient, non- covalent, inclusion complex forming chiral 

selectors.  β-Cyclodextrin was used in different studies to analyze four amino acids:  

aspartic acid, phenylglycine, phenylalanine, and tyrosine.  Carboxymethyl-γ- 

cyclodextrin, on the other hand, was used to analyze two pharmaceuticals, Ephedrine and  

Norephedrine.  The information presented on β-Cyclodextrin in Table 2.14 was taken 
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Table 2.14. Summary of the results for the NSCCDS study compared with the results for our existing non-
covalent discrimination strategies used in the analysis of selected amino acids and pharmaceutical 

molecules 
 

Discrimination Strategy Chiral Selector Chiral Analyte and 
Concentration (mM) 

RMSEP 

CEDa (S)-(+)-1,2-propanediol Phenylalanine: 4 0.014 

  Tyrosine: 2.5 0.030 

  Atenolol: 2.5 0.042 

  Norephedrine: 2.5 0.037 

Non-CED (S)-(+)-1,2-propanediol Phenylalanine: 4 0.026 

  Tyrosine: 2.5 0.019 

  Atenolol: 2.5 0.21 

 β-Cyclodextrin  Aspartic Acid: 30 0.11 

  Phenylalanine: VSCb 0.053 

  Phenylglycine: 15 0.027 

  Tyrosine: 15 0.015 

 Carboxymethyl-γ-
Cyclodextrin 

Ephedrine: 15 0.044 

  Norephedrine: 7.5 0.086 

a Covalent enantiomeric discrimination, b Varying sample concentration: 6.011, 6.744, 7.507, 8.233, and 
9.129 mM.   

 
 

from reference 55 and 56 while that on carboxymethyl-γ-cyclodextrin was taken from 

reference 55.  The root-mean-square errors of prediction for the analyses involving these 

two chiral selectors were computed using the prediction results from the references.   

It is clear, with reference to Table 2.14 that relatively high concentrations of 

analytes were required in the analyses involving the two cyclodextrins.  For example, 

aspartic acid was analyzed at a concentration of 30 mM, which is 7.5 times higher than 
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the highest concentration of 4 mM employed in the analysis of phenylalanine in this 

present study.  These high concentrations are typical of the transient, non-covalent, 

inclusion complex forming strategies combined with isotropic UV-vis spectroscopy by 

our group for chiral analysis.  One factor that could possibly explain the need for such 

high concentrations is the nature of the non-covalent interactions responsible for the 

chiral discrimination.  It is reported that native cyclodextrins and the carboxymethyl 

derivatives have hydrophobic cavities [4, 21, 34, 51], which allow easy displacement of 

water molecules from the cavity by hydrophobic molecules.  The cavity of these cyclic 

glucose oligosaccharides are known to be lined up with ether-like anomeric oxygen 

atoms, C3, and C5 hydrogen atoms which participate in inclusion complex formation 

through hydrogen bonding, dipole moment, and van der Waals interactions with 

appropriate guest molecules.  It is possible that the effectiveness of these intermolecular 

interactions could be influenced by how close these molecules can get to each other in 

solution.  For example, appropriately small amounts of most hydrophobic organic liquids 

(e.g., toluene, benzene, etc.) will dissolve in an appropriate amount of water.  This is 

because the molecules of these organics will be effectively dispersed in the water through 

intermolecular association with the water molecules.  At such low concentration levels, 

the association of water molecules with the organic molecules becomes more effective 

than the organic molecule-organic molecule association.  However, as the number of the 

organic molecules is increased in the same amount of water, the organic molecule-

organic molecule association becomes more effective than the association of the organic 

molecules with water molecules.  The organic liquid will eventually begin to separate out 

of solution to form its own phase.  As such, concentration can influence the effectiveness 
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of intermolecular association in solution.  It is therefore possible that the higher the 

concentration of cyclodextrin and the chiral analyte, the more effective the intermolecular 

association hence the formation of non-covalent diastereomers.  Our new covalent 

discrimination strategy, on the other hand, is less affected by this concentration 

phenomenon because once the enantiomer is covalently derivatized, the covalent 

molecule formed inherently acquires diastereomeric properties relative to its counterpart.  

However, an appropriate concentration of the covalently derivatized enantiomer is 

needed for spectroscopic analysis.  This is because the covalently acquired diastereomeric 

spectral property must be made sensitive to the spectroscopic probe technique.  The 

relatively low analyte concentration required for our present covalent discrimination 

strategy, highlights one advantage the present strategy has over the existing non-covalent 

discrimination strategies.  This is because smaller amounts of samples can be analyzed 

thereby reducing the cost of analysis.  It is worth pointing out however, that high 

concentration is not a necessary condition for effective enantiomeric discrimination in 

non-covalent discrimination strategies.  This is because chiral selectors could form, for 

example, effective or strong hydrogen bonds with appropriate chiral analytes that could 

lead to significant changes in spectra.  Under such conditions, high concentrations may 

not be necessary so long as the analysis is performed at a concentration at which the 

spectroscopic probe technique is sensitive enough.  A typical example in this present 

study is the successful analysis of tyrosine at 2.5 mM using (S)-(+)-1,2-propanediol as a 

non-covalent chiral selector (control analysis of tyrosine).  The RMSEP computed for 

this non-covalent PD analysis of tyrosine is only 0.019.  This shows that while 

concentration may be an important factor in non-covalent discrimination strategies, the 
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effectiveness of non-covalent discrimination strategies also depend on the analyte in 

question.  As shown earlier, the analysis of Atenolol using (S)-(+)-1,2-propanediol in a 

non-covalent discrimination approach (control analysis of Atenolol) resulted in an 

RMSEP that is as high as 0.21.  The high RMSEP indicates an ineffective discrimination, 

which may be because the concentration used was not high enough or because of the 

nature of Atenolol or both.  However, when the same (S)-(+)-1,2-propanediol was used to 

analyze Atenolol according to our new covalent discrimination strategy, NSCCDS, at the 

same concentration, an RMSEP of 0.042 was computed.  This is a significant 

improvement showing how the change in discrimination strategy is able to overcome the 

problem of ineffective chiral discrimination due to either the effect of concentration or 

type of chiral analyte or both.   

Figure 2.26 shows the bar plots for the root-mean-square errors of prediction 

computed for the various studies involving the three chiral selectors: PD, β-CD, and CM-

γ-CD.  For each chiral selector and strategy, the lowest RMSE value (LREV), the highest 

RMSE value (HREV), and the range of the RMSE values (RER) for the analysis of at 

least two chiral compounds in each class of amino acids and pharmaceuticals, are plotted. 

The range of the RMSE is computed by subtracting the LREV from the HREV.   

For the analyses of the amino acids, Figure 2.26 shows that the LREVs computed 

for the use of PD for the present covalent discrimination (green bar, 0.014) and non-

covalent discrimination (purple bar, 0.019) studies, are comparable to the LREV 

computed for β-cyclodextrin in a previous non-covalent discrimination (yellow bar, 

0.015) study.  In terms of the highest RMSE error values (HREV), however, β-CD has a 

significantly high value (yellow bar, 0.11).  The HREVs for the use of PD for the 
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Figure 2.26. Comparison of the root-mean-square error of prediction figures of merit for chiral selectors and their discrimination approaches used in the 
analyses of selected amino acids and pharmaceuticals reported in Table 2.14.  LREV: lowest root-mean-square error value.  HREV: highest root-mean-square 
error value.  RER: root-mean-square error range.  PD: (S)-(+)-1,2-propanediol.  β-CD: β-Cyclodextrin.  CM-γ-CD: Carboxymethyl-γ-cyclodextrin.  CEDAA: 
covalent enantiomeric discrimination of amino acids.  NCEDAA: non-covalent enantiomeric discrimination of amino acids.  CEDPM: covalent enantiomeric 
discrimination of pharmaceutical molecules.  NCEDPM: Non-covalent enantiomeric discrimination of pharmaceutical molecules.  



present covalent (NSCCDS studies) and non-covalent discrimination studies (control 

studies) are quite low: 0.03 and 0.026 respectively.  The RER computed for β-CD used in 

previous non-covalent discrimination studies 0.095.  This is significantly higher than the 

RERs, 0.016 and 0.007, computed for PD used in the present study for covalent non 

covalent discriminations, respectively.  The root-mean-square error range (RER) can be 

used to measure not the effectiveness but the consistency of a chiral selector in its use for 

the analyses of a given class of chiral compounds.  The smaller the RER value of a chiral 

selector is for a given class of analytes, the more consistent the chiral selector is for the 

analysis of compounds in the given class and vice versa.  In this regard, PD is more 

consistent in its use for the analysis of the selected amino acids than β-CD because its 

RERs are smaller than the RER computed for β-CD used in analyzing the selected amino 

acids.  In other words, the effectiveness of the discrimination by β-CD depends on the 

amino acid being analyzed than the effectiveness of the discrimination by PD employed 

in both the covalent non-covalent discrimination studies.  Reference to Table 2.14 for the 

analyses of phenylalanine and tyrosine, for example, shows this to be the case.  The 

dependency of the discrimination effect of cyclodextrins on the analyte is explained by 

the effectiveness of the formation of inclusion complexes, which depend on the size of 

the analyte relative to the cyclodextrin cavity.   

With regard to the pharmaceuticals, Figure 2.26 shows that the HREV and RER 

computed for PD (brown bars, 0.042 and 0.005 respectively) are significantly lower than 

those computed for carboxymethyl-γ-cyclodextrin (CM-γ-CD) (pink bars, 0.086 and 

0.042 respectively).  The HREVs and RERs for PD and CM-γ-CD reveal a trend that is 

identical to that observed for the analyses of the amino acids using PD and β-CD.  As 

134 



such, CM-γ-CD used for the non-covalent analysis of the pharmaceuticals, compares in 

the same way to PD used for the covalent studies of the pharmaceuticals as β-CD 

compares to PD for the analysis of the amino acids. 

Apart from β-CD and CM-γ-CD, our group employed other chiral selectors for 

non-covalent discrimination studies with UV-vis, which do not fall completely under the 

criteria used in comparing the present PD studies with those of β-CD and CM-γ-CD.  

These other previous studies involved the use of mixed cyclodextrins, surfactants plus 

cyclodextrins, and simple sugars as chiral selectors for enantiomeric composition 

determination [55, 56].  The chiral compounds studied include amino acids and 

pharmaceuticals.  These chiral compounds were analyzed at concentration levels that 

ranged from 3.75 to 15 mM and the root-mean-square errors of prediction computed 

range from 0.018 to 0.11.  Similar to β-CD and CM-γ-CD, the non-covalent 

discrimination analyses involving these other chiral selectors show that the effectiveness 

of the analyses depends on the chiral analyte– a limitation that our newly developed 

covalent discrimination strategy, NSCCDS, is intended to overcome.  As demonstrated 

with the analyses of phenylalanine, tyrosine, Atenolol, and Norephedrine, which yielded 

RMSEP values that range from 0.014 to 0.042, our new covalent discrimination strategy, 

NSCCDS, appears not to be analyte dependent.  Consequently, in situations where our 

non-covalent discrimination approaches may be the cheapest and/or simplest but not 

necessary the most effective, our new covalent discrimination approach could be a 

suitable alternative. 

 
 
 
 

135 



 
Conclusion 

Although our existing non-covalent discrimination approaches may be less 

cumbersome because they do not require, for example, heating, our newly developed 

covalent discrimination strategy, is undoubtedly more effective.  The new covalent 

strategy appears in this study to overcome the limitations of concentration and 

dependency of effectiveness of chiral discrimination on type of analyte that we 

sometimes encounter in our non-covalent discrimination approaches.  The successful 

analysis of the pharmaceuticals suggests that with PLS-1 regression modeling, useful 

information on chiral discrimination can be obtained in analyses such as this with little or 

no prior knowledge about the products of the reaction employed.   

In general, the successful analysis of all the selected chiral analytes using our 

newly developed covalent discrimination approach shows that the approach can be used 

to effectively analyze chiral compounds similar to those studied.   

Finally, with the availability of several simple covalent reactions for the 

conversion of enantiomeric pairs to pairs of diastereomers, our newly developed non-

separative, covalent, chiral discrimination strategy, combined with PLS-1 regression 

modeling of spectral data, could be useful for industrial application. 
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CHAPTER THREE 
 

Capillary Tube Micro Fluorometer Cell for Steady-State Fluorescence Measurement 
 
 

Introduction 
 

This chapter describes a study carried out on a capillary tube custom-designed for 

the measurement of steady-state fluorescence emission.  This study is an alternative 

approach to a previous attempt made by our research group to develop a flow injection 

system for enantiomeric composition analysis [55].  As in the case of the previous study, 

the goal of this present study is to develop a high throughput microanalytical technique 

that can be employed in enantiomeric composition analysis. 

Since the introduction, microanalytical techniques have attracted a lot of interest 

in chemical analysis [74].  Today, several microanalytical techniques including selected-

area X-ray photoelectron spectroscopy, capillary electrophoresis, and capillary 

chromatographic techniques can be identified [75-82].  Mocroanalytical techniques have 

made possible measurement of micro-size amounts of samples, carrying out micro-scale 

separation and purification processes, and (3) performing micro-scale analyses of 

samples.  Microanalytical techniques have become important because of the need to 

obtain detailed and specific chemical information, cut down on material usage, reduce 

waste, shorten analysis time, and in general, cut down the cost of analyzing samples.  

Worldwide sales of chiral drugs in single-enantiomer forms continue to grow as a 

result of increased knowledge about the possible differential pharmacological effects of 

enantiomers and the benefits of single-enantiomer drugs [83, 84].  Consequently, 
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documentation on drug stereochemistry and the differential biological effects of 

enantiomers have become important issues for the pharmaceutical industry and regulatory 

authorities [83, 84.  In addition, there is the demand for the determination of enantiomeric 

purity in combinatorial libraries for drug development [21].  The demand for chiral 

analysis techniques to cater for the needs of the chiral drug industry has therefore grown 

over the years.  Of particular interest will be micro-scale techniques that are robust, 

simple, efficient, and cost effective for high-throughput applications.  According to Finn, 

spectroscopic methods are the most promising for the rapid determination of the 

enantiomeric content of organic molecules [28].  Such methods will be useful, for 

example, in catalyst evaluation in asymmetric synthesis, chiral drug quality control, 

analysis of both chiral drugs and chiral biological molecules in biological samples for 

medical diagnosis, and finding new and better therapeutic chiral drugs [21].  Up to date, 

several techniques have been developed for rapid measurement of enantiomeric excess 

[28, 85-88].  Some of these methods include enzymatic and reaction microarrays 

techniques, which are designed for micro-scale applications [86, 87].  One of the recent 

advances in the developments of a micro-scale instrument for chiral analysis is the 

successful miniaturization of the polarimeter by Bobbitt and Yeung [21, 89].  The 

instrument consists of a 1 μL flow cell with a 1 cm pathlengh interfaced with a liquid 

chromatographic system.  Its complicated optical design is noted to have the capability of 

detecting optical activity as low as 15 μdeg for 11 ng of fructose.  It was, however noted 

that the high instrument cost and optical complexity limited the use of this instrument and 

the technique involved for high-throughput micro-scale applications [21].  Following this, 

a variety of improved polarimetric techniques coupled with chromatographic systems 
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were developed [21].  However, these instruments and the employed techniques, similar 

to that of Bobbitt and Yeung, were noted to be either too expensive or complicated and 

could, therefore, not be used for high-throughput chiral analysis [28].  As such, there is 

the need for inexpensive and efficient microanalytical techniques for routine and high 

throughput chiral analysis in industry as well as research. 

Our research group, previously, developed a flow injection system interfaced with 

a Jobin Yvon-SPEX Fluoro Max-2 spectrofluorometer for fluorescence emission 

measurement in isotropic studies of enantiomeric composition analysis [55].  The 

instrumentation involved the use of a quartz capillary tube with an internal diameter of 

0.2 cm as a flow cell for fluorescence emission measurement.  Though sample detection 

with the system was generally possible, its application for enantiomeric composition 

analysis failed to yield the desired results.   

Chapter two described the successful analysis of samples prepared using our new 

covalent discrimination strategy by multivariate PLS-1 regression modeling of the 

ordinary UV-vis spectral data of the samples.  The UV-vis spectral data collection 

required the measurement of not less than 600 μL (0.6 mL) amounts of the samples.  This 

volume of sample is extremely large compared to the sample size required, for example, 

in micro-scale capillary liquid chromatographic (LC) and electrophoretic analytical 

techniques [77, 79, 80], which are limited when it comes to routine and high-throughput 

applications.  The present study is, therefore, aimed at employing a micro sample cell 

requiring significantly reduced sample volume, among other things, for spectral 

measurement in analyses such as this. 
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Noted earlier, the present micro-scale fluorescence measurement is a modification 

of our previous flow injection system in which a quartz capillary cell was employed as a 

flow cell.  In this present study, a capillary tube was custom-designed and used as a micro 

sample cell for steady-state fluorescence emission measurements without a flow system.  

This approach is similar to the use of a regular fluorometer cell for steady-state 

fluorescence emission measurement of fixed volumes of sample solutions.  As will be 

noted in the next section, the use of this cell involves simple steps that will allow its  

usage for routine and high throughput analyses in industry and research. 
 
 

The Custom-Designed Capillary Micro Fluorometer Cell 

Figure 3.1A shows our custom-designed capillary micro sample cell, which is 

compared with a commercial, 10 mm pathlength, micro fluorometer quartz cell shown in 

Figure 3.1B.  Our custom-designed micro-cell is made up of a 95 mm long quartz 

capillary tube with an internal diameter of 1 mm.  The 1 mm internal diameter represents  

the longest possible pathlength of the cell.  The tube is fitted with a ferrule at one end.  A  
 
 

A B

 

Figure 3.1 A: Custom-designed capillary micro-cell consisting of a 95 mm long capillary tube, a Teflon 
holder and a ferrule at one end.  B: Commercial, 10 mm pathlength, micro fluorometer quartz cell. The 
commercial cell requires a sample volume of 1400 μL.  
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Teflon material, which is carefully molded to fit into the sample holder of the 

spectrofluorometer, functions as a holder for the capillary tube inserted perfectly in the 

middle of the Teflon holder.  The Teflon holder allows easy handling and ensures that the 

capillary tube is positioned in the path of the excitation light.  The cell has a number of 

attractive features.  Firstly, the ferrule attached to one end of the cell allows, for example, 

water to be pushed through the tube for easy cleaning.  The ferrule, also, serves as a 

suitable point for passing nitrogen gas through the tube for drying.  Secondly, the cell has 

a small total volume of 75 μL, which allows for quick cleaning and drying.  Thirdly, only 

the volume of the capillary below the Teflon holder, as shown in Figure 3.1A, needs to be 

filled with sample solution for measurement.  This part of the cell requires only 25 μL of 

sample solution compared with 1400 μL sample solution required by the commercial  

micro-cell.  In addition, filling the custom-designed micro-cell with sample solution does  
 
 

 

Figure 3.2 A: Custom-designed micro-cell before filing.  B: Sample solution filling by capillary action.  C: 
Sample solution holding by capillary action.  D:  Cell position during measurement. 
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not require any kind of pipet.  Sample solutions are admitted into the cell by capillary 

action.  The same force of action holds the sample solution vertically in the capillary tube 

when it is placed in the sample cell holder of the spectrofluorometer.  Figure 3.2A, B, C, 

and D portray the stages involved in sample measurement using the capillary cell. Figure 

3.2A shows the capillary cell before filling, 3.2B during sample solution filling by 

capillary action, Figure 3.2C sample solution holding by capillary action, and Figure  

3.2D the cell position in the spectrofluorometer during spectral measurement.   
 
 

Spectral Measurement Ttest 
 
 

Initial spectral test.  The performance of our custom-designed micro-cell, as a 

fluorescence cell, was initially verified in comparison with the commercial fluorescence 

micro-cell shown in Figure 3.1B.  This was done by using it to record the emission 

spectra of deionized water and a solution of 2 mM tyrosine.  The deionized water was 

excited at 274 nm even though water is usually excited at 350 nm for instrument 

calibration purposes in fluorescence spectroscopy.  Usually, most fluorescence active 

molecules are excited at wavelengths lower than 350 nm, which will require that in order 

for our custom-designed capillary cell to be useful, it should allow for sample excitation 

in the far and mid UV regions.  As such, the deionized water was excited through the 

capillary cell at the excitation wavelength for tyrosine to reveal, if any, possible 

interference.  

Figure 3.3 shows the fluorescence emission for the deionized water from 282-500 

nm recorded using our custom-designed capillary cell and the commercial fluorometer 

cell at 2 or 5 nm emission slit widths.  Spectrum A is the emission spectrum of the 
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deionized water recorded using the commercial (10 mm pathlength) cell with the 

instrument emission slit width set at 5 nm.  Spectrum B in the same figure is the emission 

spectrum of the deionized water recorded using our custom- designed capillary cell with  

the instrument emission slit width set at 2 nm and spectrum C the emission spectrum of  
 
 

 

C 

A B 

Figure 3.3 A: Fluorescence emission spectrum for deionized water collected using the commercial cell at 
an emission slit width of 5 nm, B and C: Fluorescence emission spectrum for the same deionized water 
recorded using our custom-designed capillary cell at emission slit widths of 2 and 5 nm, respectively.  

 
 

the same water recorded using the capillary cell but at an emission slit width of 5 nm.  

Spectrum C, in Figure 3.3, shows an unusually intense and broad emission peak over the 

entire wavelength scanned (282-500 nm).  The peak of the emission is centered on 397 

nm with shoulders at 301 and 470 nm.  This is in sharp contrast with spectrum A 

recorded with the commercial cell.  Spectrum A reveals only the peak at 301 nm, which 

is by far, of significantly lower emission intensity.  Contrary also to spectrum C, the 

emission intensity of spectrum B, which was recorded using the same capillary cell but at 
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an emission slit width of 2 nm, is similar to that for spectrum A recorded using the 

commercial cell.  The emission, however, covers the entire wavelength region scanned as 

recorded for at the 5 nm slit width.  These results show that the capillary tube fluoresces 

and possibly scatters light strongly in contrast with the commercial cell.  Spectrum B, 

compared with C, indicates that the intensity of the emission and possibly scattered light 

of the capillary tube can be controlled by manipulating the instrument emission slit.  As 

such, the spectral measurement test using the 2 mM tyrosine solution was performed with 

the instrument emission slit width set at 2 nm.  However, the spectra collected with the 

commercial cell for comparison were recorded at an emission slit width of 5 nm. This is 

because the use of narrower slit widths resulted in noisy spectra.  

The set of spectra (282 to 500 nm) labeled A, in Figure 3.4, are ten replicated 

fluorescence emission spectra of the 2 mM tyrosine solution recorded using the capillary 

cell.  The set of spectra labeled B, in the same Figure 3.4, are eight fluorescence emission 

spectra of the same tyrosine solution recorded over the same wavelength range as A using 

the commercial cell.  The solution was excited at 274 nm in both cases.  The spectra were 

collected after an instrument warm up time of thirty minutes.  Two obvious deductions 

can be made from Figure 3.4.  Firstly, the usual fluorescence emission peak maximum of 

tyrosine is identically recorded in both sets of spectra.  This indicates that there is no 

compromise on essential spectral features in the use of our custom-designed capillary 

micro-cell compared with the 10 mm commercial cell. Secondly, spectral fluctuation is 

similar in the use of both cells.  These obvious deductions indicate that our custom-

designed capillary cell compares favorably with the 10 mm commercial cell in terms of 

spectral recording.  However, the intensities of the spectra recorded using the capillary  
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A 

B 

Figure 3.4. A: Ten spectral replicate of the fluorescence emission spectrum of 2 mM tyrosine solution 
collected using the capillary cell, B: Eight spectral replicates of the fluorescence emission spectrum of the 
same 2 mM tyrosine solution collected using the 10 mm commercial cell.   

 
 

cell are higher than those recorded using the commercial cell.  This could mean higher 

sensitivity in fluorescence detection with the use of our capillary cell.  Spectra set A in 

Figure 3.4 reveals a low and broad intensity peak centered on 397 nm in the spectra 

collected using the capillary cell.  No such peak is recorded in the use of the commercial  

cell.   
 
 

UV excitation spectral response.  The broad peak revealed by the spectra for the 2 

mM tyrosine solution collected using the custom-designed capillary cell appear to be 

characteristic of the capillary tube.  This is because it is present in the fluorescence 

emission spectrum for deionized water (see Figure 3.3C) recorded using the capillary cell 

at the 5 nm emission slit width.  Consequently, two experiments were designed to 

investigate the response of the custom-designed capillary cell to UV excitation.  The first 

experiment was to measure the UV excitation spectral response of the empty capillary 
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cell at a higher excitation frequency in comparison with that of the empty commercial 

cell and the detector signal recorded at the same excitation wavelength.  To do this, the 

cells were excited at 257.5 nm and the emissions scanned from 274-450 nm.  The 

detector signal was recorded over the same wavelength range with the excitation light 

turned on at 257.5 nm without any cell in the cell compartment. 

Figure 3.5A shows the UV excitation spectral response for the empty capillary cell 

recorded with the instrument emission slit width set at 3 or 5 nm.  Figure 3.5B shows the 

spectral response of the empty commercial cell and the detector signal.  The signals in 

Figure 3.5B were recorded with the width of the spectrofluorometer emission slit set at 5 

nm.  It is obvious from Figure 3.5A that the capillary tube used for our micro-cell 

fluoresces strongly over the entire wavelength scanned.  This is in contrast with the 

commercial micro fluorometer quartz cell, whose signal is just about twice the detector 

signal.  The intense and broad fluorescence emission recorded for the capillary tube 

suggests that the quartz material from which the capillary tube is made might be 

contaminated with strong fluorescence or UV active materials.  It is also possible that the 

emission signal observed for the capillary tube might be coupled with strong scattering of 

the excitation light.   

Usually, scattering signals in fluorescence emission can be easily verified because 

scanning the fluorescence emission over wavelengths including the excitation wavelength 

should reveal a Rayleigh (excitation peak) peak.  In addition, scattering signals in 

emission spectra are easily identified due to the fact that they are always red-shifted by a 

fixed frequency from the excitation wavelength irrespective of the excitation wavelength.   
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Figure 3.5 A: The fluorescence emission spectra of the empty capillary tube used for the custom-designed 
capillary cell.  The spectra were recorded with the instrument emission slit set at 3 or 5 nm, B: Signal 
recorded for the empty commercial cell (pink) and the detector signal (blue). 

 
 

Moreover, unlike fluorescence emission peaks, they usually appear as narrow bands.  In 

view of the ease of verifying scattering in fluorescence emission measurement, the 

second experiment was designed to determine whether the capillary tube scatters and 

absorbs UV light as suspected.  For this determination the empty capillary cell was 

excited at two wavelengths, 257.5 and 350 nm.  The spectral responses at these 

wavelengths were compared with those of deionized water excited through the 
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commercial cell at the same wavelengths.  Scattering signals in fluorescence emission 

spectra of a sample can be confirmed by changing the excitation wavelength.  This is 

because changing the excitation wavelength would cause the position of the Raman band 

to change correspondingly.  For example, the emission spectrum of water exhibits a 

Raman band at 397 ± 1 nm when excited at 350 nm.  Changing the excitation wavelength 

to 257.5 nm will cause the position of the Raman band to be shifted to 282 ± 1 nm, which 

is the same frequency from 257.5nm as 397 ± 1 nm is from 350 nm.  As such, the 

presence of an excitation peak and a scattering signal in the emission spectra of the empty 

capillary cell excited, for example, at 257.5 nm, can be confirmed by excitation at 350 

nm (hence the excitation at two wavelengths).  Though the Raman band positions might 

differ, collection of the emission spectra of water at the two excitation wavelengths 

(257.5 and 350 nm) was to confirm by comparison, suspected light scattering behavior of 

the capillary tube. 

Strong absorption of excitation light can be verified using the intensity of an 

excitation peak and its Raman band in the fluorescence emission spectra of an excited 

sample.  This is because complete absence of an excitation peak in the emission spectrum 

of a sample, scanned over wavelengths including that of the excitation, will indicate 

complete absorption of the excitation wavelength by the sample.  In addition, a 

significant reduction in intensity of the peak of a given excitation wavelength will be 

accompanied by a low intensity Raman band relative to the Raman band associated with 

an excitation wavelength at which lesser amount of the excitation light is absorbed.  

Consequently, exciting the capillary cell at 257.5 and 350 nm and collecting the emission 
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spectra over wavelengths including 257.5 and 350 nm, should reveal the possible light 

scattering effect and absorption suspected of the capillary tube.   

Figure 3.6A shows the spectral responses from 230-800 nm of deionized water 

excited at 257.5 and 350 nm through the commercial cell.  The spectra in Figure 3.6B are 

the fluorescence emission responses from 230-800 nm of the empty capillary cell excited 

at the same wavelengths as the deionized water.  Figure 3.6A clearly reveals the Rayleigh 

scattered or excitation peaks for water at 257.5 and 350 nm, which are numbered 1 and 3 

respectively.  In addition, the figure clearly reveals the Raman band of water at 397 nm 

(peak 4) due to excitation at 350 nm and its first overtone at 794 nm (peak 8).  The 794 

nm overtone is truncated as result of limited instrument wavelength range.  The first 

overtone of the excitation peak at 350 nm is recorded at 700 nm (peak 7).  Figure 3.6A 

also shows the change in the position of the Raman band of water from 397 nm to 282 

nm (peak 2) when the deionized water was excited at 257.5 nm instead of 350 nm.  The 

first overtones of both the excitation at 257.5 nm and the Raman band at 282 nm are 

recorded at 515 nm (peak 5) and 564 nm (peak 6) respectively.  The presence of the 

excitation peaks, the corresponding Raman bands and their shift in positions relative to 

the excitation peaks, clearly confirms the scattering effect of water.   

Figure 3.6B, which shows the fluorescence emission spectral responses of the 

empty capillary cell, has rather unusual spectral features.  Compared to the spectral 

response of water, the emission response of the capillary cell excited at 257.5 nm reveals 

strong absorption, labeled 1, of the excitation wavelength by the capillary tube.  The first 

overtone of the 257.5 nm excitation light, labeled 5, is also strongly absorbed.  These 

absorptions are accompanied by intense and broad fluorescence emissions covering 
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Figure 3.6 A: Rayleigh and Raman scattering signals for deionized water due to excitation at 257.5 and 350 
nm. B: Fluorescence emission response of the empty capillary cell due to excitation at 257.5 and 350 nm. 

 
 

almost the entire wavelength scanned.  A distinct peak that appears to be a scattered 

signal is recorded at 779 nm.  In addition, Figure 3.6B reveals an even stronger 

absorption effect by the capillary tube when it was excited at 350 nm– the excitation 

wavelength is completely absorbed in addition to its first overtone.  The fluorescence 
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emission associated with the excitation at 350 nm is more intense than that for the 257.5 

nm excitation.  Unlike the emission spectrum recorded for the excitation at 257.5 nm, no 

scattering signal was recorded when the capillary cell was excited at 350 nm.  This is 

probably because with excitation at a longer wavelength (350 nm) than 257.5 nm, the 

Raman scattering signal, if any, should occur at a longer wavelength than 779 nm.  This 

signal, however, cannot be seen in the spectrum because of the limited instrument 

wavelength range.  The UV excitation spectral response of the capillary tube undoubtedly 

indicates that the quartz material from which the capillary tube is made contains 

contaminants that absorb UV strongly and fluoresce intensely.  High quality quartz 

material from which, for example, the commercial fluorometer cell is fabricated, should 

not absorb UV light in the mid or near UV region (~ 200-400 nm).  This is confirmed by 

the excitation spectral response recorded for the empty commercial fluorometer quartz  

cell (see Figure 3.5B).  
 
 

Test for qualitative analysis.  The experiment on the UV excitation spectral 

response of the capillary cell revealed that the cell absorbs UV strongly at 257.5 and 350 

nm and fluoresces intensely over almost the entire spectral region from 230 nm to 780 

nm.  This could possibly limit the use of the custom-designed capillary cell for 

fluorescence emission measurement as intended.  It was therefore necessary to investigate 

the possibility of using the cell for measuring the fluorescence emission spectrum of a 

sample excited at a wavelength absorbed by the capillary tube.  The aqueous solution of 

phenylalanine has a UV absorption maximum at 257 nm.  Consequently, the fluorescence 

emission spectra of aqueous solutions of phenylalanine are usually collected by excitation 

at 257 nm.  With the UV absorption of phenylalanine being identical to one of the UV 
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absorption wavelengths of the capillary tube, a qualitative analysis test was performed on 

the custom-designed capillary cell by using it to measure the fluorescence emission 

spectra of phenylalanine at different emission slit widths.  To do this, a blank solution 

was first prepared by pipeting 400 µL of racemic 2-butanol and 200 µL of HCl into a 50-

mL volumetric flask and diluting to the mark using deionized water.  A mass of 0.0124 g 

of L-phenylalanine was then dissolved in some volume of the blank solution and 

quantitatively transferred into a 25-mL volumetric flask. This was diluted to the mark 

using the same blank solution to prepare a 3 mM phenylalanine solution.  The 

fluorescence emission spectra of the butanol-HCl blank and 3 mM phenylalanine 

solutions were then recorded at selected emission slit widths.  The solutions were excited 

at 257.5 nm and the emission scanned from 274 to 450 nm.  In addition, the spectra of the 

same butanol-HCl blank and 3 mM phenylalanine solutions were collected using the 

commercial cell with the instrument emission slit width set at the same values used for 

the capillary cell measurements. 

Figure 3.7A shows the fluorescence emission spectra of the blank solution 

recorded at 5, 3, 2, 1, and 0.5 nm emission slit widths using the capillary cell and Figure 

3.7B the emission spectra of the same blank solution recorded over the same wavelength 

range using the commercial cell.  The spectra in Figure 3.7A reveal the usual capillary 

cell peak centered on 397 nm and a second peak recorded at 284 nm.  This second peak is 

probably due to 2-butanol emission.  The spectra of the blank in Figure 3.7B, recorded 

using the commercial cell, reveal only the peak at 284 nm.  Both Figure 3.7A and B show 

that the fluorescence emission intensity of the blank solution is a function of emission slit  
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width– decreasing with decreasing slit width.  This is because the amount of light  

reaching the photomultiplier detector decreases with decreasing slit width. 
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Figure 3.7 A: Fluorescence emission spectra for racemic 2-butanol-HCl blank solution collected using the 
capillary cell at different emission slit widths. B: Fluorescence emission spectra of the same blank solution 
collected using the commercial fluorometer cell at the same emission slit widths shown in A. 

 
 

Figure 3.8A and B are the fluorescence emission spectra for the 3 mM 

phenylalanine solution recorded using the capillary and commercial cells respectively.  

These spectra were collected at the same emission slit widths as the blank solution.  The 
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emission spectra for the phenylalanine solution in Figure 3.8A and B, compared to those 

for the blank in Figure 3.7 A and B, reveal that except for higher intensities, the spectra  

for the 3 mM phenylalanine solution are similar to those for the blank solution.  Figure  
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Figure 3.8 A: Fluorescence emission spectra for 3 mM phenylalanine solution collected using the capillary 
cell at different emission slit widths, B: Fluorescence emission spectra of the same phenylalanine solution 
collected using the commercial cell at the emission slit widths shown in A 

 
 

3.8A shows that the emission spectra collected for the phenylalanine solution using the 

capillary cell differ significantly from the previously shown emission spectra for the 2 
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mM tyrosin solution (see Figure 3.4), which were collected using the same capillary cell.  

Comparison of the two figures show that the capillary peak at 397 nm is more prominent 

in the emission spectra for phenylalanine excited at 257.5 nm than tyrosine excited at 274 

nm.  This difference clearly indicates that the intensity and broadness of the characteristic 

397 nm capillary peak depends on wavelength of excitation.  This implies that, the 

capillary tube is contaminated with certain specific fluorescence active materials that are 

more sensitive to certain wavelengths of excitation than others.   

To obtain the blank-corrected spectra for the 3 mM phenylalanine solution, the 

spectra for the butanol-HCl blank, recorded at different emission slit widths, were 

subtracted from the corresponding 3 mM phenylalanine spectra.   

Figure 3.9A shows the blank-corrected spectra of the 3 mM phenylalanine 

solution obtained for the capillary cell at emission slit widths of 0.5, 1, 2, 3, and 5 nm.  

Figure 3.9B shows the blank-corrected spectra of the same 3 mM phenylalanine solution 

obtained for the commercial cell at the same emission slit widths used for the capillary 

cell.  It is obvious from Figure 3.9A and B that the blank-corrected spectra obtained for 

both cells clearly reveal the usual phenylalanine emission band with a maximum at 282 

nm.  This emission band is due to the л* ← л transition of the phenyl group.  It is a 

singlet-singlet emission band, which arises from the 1A1g→1B2u symmetry forbidden 

absorption transition of the phenyl group of phenylalanine.  In addition, the shapes of the 

phenylalanine emission peaks, compared for the same emission slit widths, are identical 

in the blank-corrected spectra for the two cells.  This indicates that our custom-designed 

capillary micro-cell is comparable to the commercial cell.  However, some unusual 

features are revealed in some of the blank-corrected spectra shown in Figure 3.9A for the 
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capillary cell.  For example, the nature of the blank-corrected spectrum for the 5 nm slit 

width implies that the emission intensity of the blank solution, from about 323 to 373 nm, 

is higher than that of the 3 mM phenylalanine solution in the same spectral region.  The  

peak shown from about 374 to 432 nm indicates the opposite.  This unusual behavior  
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Figure 3.9 A: Blank-corrected fluorescence emission spectra for 3 mM phenylalanine solution obtained 
from spectra collected using the capillary cell at different emission slit widths.  B: The blank corrected 
fluorescence emission spectra of the same phenylalanine solution obtained from spectra collected using the 
commercial cell at the same emission slit widths as in A. 
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could be due to changes in spectral property as a result of changes in solution 

environment: possibly changes in pH.  This is because the pH of the blank solution, made 

up of 2- butanol and HCl, could be changed when phenylalanine is dissolved in it.  This 

is because the amine group in phenylalanine is a weak base that can accept protons in 

solution.  In addition, butanol could possibly form hydrogen bonds with phenylalanine in 

solution.  As such, the intermolecular association, for example of butanol in the blank 

solution could be different from its intermolecular association in the phenylalanine 

solution.  The spectral properties of butanol could therefore not be the same in both the 

blank and the phenylalanine solution.  Figure 3.9B, which shows the blank-corrected 

spectra for the commercial cell, revealsthat the blank-corrected spectra obtained for 

spectra recorded at the 5 nm emission slit width, portrays a negative spectral deviation 

from about 334 to 364 nm.  This is, however, significantly weaker than the deviation for 

the capillary cell measurement.  While this effect may be associated with the solutions, 

the difference in the magnitudes of it for the two cells seems to suggest that differences in 

sensitivity of the cells might be important– determining the extent to which the effect is 

reflected in spectra.  This is because the fluorescence emission spectra recorded using the 

two cells show that higher emission intensities were always recorded in the use of the 

capillary cell than the commercial cell.  Though some of the blank-corrected spectra for 

the capillary cell are unusual, the blank-corrected spectra for the spectra collected at 0.5, 

1, and 2 nm emission slit widths, except for the higher intensities, are identical in shape 

to those for the commercial cell at the same emission slit widths  This implies that with 

the correct emission slit setting, our custom-designed micro-cell can be used to collect 
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spectra for qualitative analysis with identical spectral results as the 10 mm pathlength 

commercial cell.  In addition, the higher emission intensities could improve sensitivity in  

the use of the capillary cell. 
 
 

Test for quantitative analysis.  This analysis test was performed on the capillary 

cell in comparison with the commercial cell to determine how the spectral characteristics 

of our custom-designed capillary cell might influence the results of our enantiomeric 

composition analyses.  To do this, two new sets of replicated fluorescence emission 

spectra of the 2 mM tyrosine solution were recorded using both cells.  The spectral data 

were subjected to multivariate PLS-1 regression analysis using the Unscrambler 

statistical package (The UnscramblerTM version 9.7; CAMO, Inc., Oslo, Norway).  This 

analysis test is important because our analytical technique for enantiomeric purity 

determination depends on the analysis of small spectral differences among samples using 

the multivariate PLS-1 regression modeling.  Consequently, the spectra measurements 

should be devoid of any bias that may lead to misleading analysis results.  For example, 

incremental or irregular variations in spectra measurement due to changing spectral 

property of a sample cell used for spectra collection will result in misleading analysis 

results.  This test was thus designed to verify the spectral stability and the reproducibility 

of our custom-designed capillary cell during fluorescence emission spectra measurement. 

Figure 3.10 shows the two new sets of replicated spectra for the 2 mM tyrosine.  

Spectra set A are the spectra recorded using our custom-designed capillary cell and 

spectra set B, those recorded using the commercial cell.  Unlike the previous sets of 

spectra, these new sets of repeated spectra appear to fluctuate less in the peak region.  

This might be due to less instrument variation during spectra collection because a longer 
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instrument warm up time (1h) was allowed in this measurement than the previous 

measurement (30 min).  The time allowed for the instrument to warm up could be 

important considering the fact that the Jobin Yvon FluoroMax-2 spectrofluorometer used 

for the spectra collection is quite old.  Prior to modeling, each spectrum in each set of 

spectra was treated as the spectrum of a sample solution of tyrosine with a different  

concentration.  As such, the first spectrum collected in each set was assigned 
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Figure 3.10 A: Ten replicated fluorescence emission spectra for the 2 mM tyrosine solution recorded using 
the custom-designed capillary micro cell. B: Nine replicated fluorescence spectra for the same tyrosine 
solution recorded using the 10 mm pathlength commercial micro-cell.  

 
 

aconcentration value of 1, the second a concentration value of 2, and so on to correspond 

with the order in which the spectra were recorded.  This spectral treatment could give rise 

to one of three possible regression lines: (1) a regression line showing strong correlation 

of the replicated spectral data with the order of spectra collection, (2) a regression line 

showing poor correlation (scattered points) of the replicated spectral data with the order 

of spectra collection, and (3) a flat regression line showing the replicated spectra are 
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identical (reproducible) with no correlation with the order of spectra collection.  If the 

regression analysis results in the first possibility then an incremental spectral variation by 

the cell is verified.  This behavior will be revealed by two plot statistics, slope and 

correlation coefficient, of the cross-validated PLS-1 regression line for the replicated 

spectral data.  Under this condition, the plot statistics should have values not less than 0.9 

– the minimum value set by the Unscrambler statistical package for a response variable to 

be considered to be meaningfully correlated with its predictor variable.  The verification 

of such inherent spectral variation in the cell could create a misleading impression of 

good spectral data correlation with enantiomeric composition in actual experiments.  

Should the regression analysis result in the second possibility then an irregular spectral 

response of the cell is verified.  Under this condition, the values of the regression plot 

statistics will be lower than the minimum value of 0.9.  Such an inherent irregular 

spectral response by the cell will lead to high errors in analyses.  The third possibility, a 

flat regression line, will portray a stable spectral response by the cell, which will signify 

high reproducibility of the cell during spectral measurement.  Such response is desirable 

for quantitative analysis because it will eliminate bias in analysis results. 

Figure 3.11A, B, C, and D are the PLS-1 regression model plots for the spectral 

data of the two sets of replicated spectra (see Figure 3.10) collected using the capillary 

and the commercial cells.  Figure 3.11A is the scores plot constructed with the second 

principal component (PC) as the y-axis and the first principal component as the x-axis; 

the first and second PCs usually describe most of the variation in a set of data.  The blue 

symbols in the left half of the scores plot represent the set of replicated spectra recorded 

for the commercial cell and the green symbols in the right half of the plot those recorded 
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for the custom-designed capillary micro-cell.  The first and second PCs of the scores plot 

clearly describe the two sets of replicated spectral data as two distinct groups of samples.  

This description is in terms of intensity because the intensities of the spectral replicate for 

the tyrosine solution collected using the capillary are clearly different from the spectral 

replicate collected for the same solution using the commercial (see Figure 3.10).  In 

addition, the two PCs used for the scores plot reveal the small differences among the 

individual spectra of the two sets of spectra (capillary and commercial cell spectra) 

collected for the tyrosine solution.  Figure 3.11B shows the regression coefficient curve, 

which is a plot of regression coefficient as a function of wavelength.  The curve assumes 

the general shape of the replicated spectra shown in Figure 3.10 and shows that all the 

regression coefficients associated with the mathematical model are positive (curve above 

the zero on the y-axis).  Plot C in Figure 3.11 is the explained validation variance plot, 

which is a plot of percent explained variance versus principal component.  Figure 3.11C 

shows that a total of eight PCs were computed.  However, only one, the first PC, was 

needed for the model.  This first PC explained 100 % of the variation in the spectral data 

and 1 % of the variation in order of spectral collection.  With only 1 % of the variation in 

order of spectral collection explained, no significant information relevant to the linear 

model (PLS-1 model) is explained in the order of spectral collection by the first PC.  

Though the second PC explained 34 % of the variation in the order of spectral collection, 

the total variation explained by the two PCs, 35 %, is still significantly below the 

threshold for meaningfulness (70 % and above according to the Unscrambler statistical 

package).  Plot D in Figure 3.11 is the regression line plot.  In this case, it is the predicted 

order of spectra collection (predicted by cross-validation) versus the actual or known



Figure 3.11 Plots of the PLS-1 regression model developed for the quantitative analysis test on the capillary and commercial cells.  The plots were 
developed using the fluorescence emission spectral data and order of spectral collection of the two sets of replicated spectra collected for a 2 mM solution 
of tyrosine using the capillary and commercial cells.  A: scores plot, B: regression coefficient as a function of wavelength plot, C: percent explained 
variance as a function of principal component plot, and D: predicted order of spectral collection for spectra collected using the capillary (green symbols) 
and commercial (blue symbols) cells, versus the actual order of spectral collection.  The model required only one PC (see below plot B or D)
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order of spectral collection.  This plot shows that the replicated spectra, recorded using 

both the commercial and custom-designed capillary micro-cells, have no correlation with 

the order of spectra collection.  This is because the regression lines described by the 

corresponding blue and green symbols for the two sets of replicated spectra are almost 

parallel to the horizontal axis of the plot.  As such, the regression lines, undoubtedly, 

show that both cells do not have spectral properties that change incrementally or 

irregularly.  This implies that the spectral response of our custom-designed capillary cell 

is constant for a given set of measurement conditions and comparable to the commercial 

fluorometer cell.  

The comparable performance of the capillary cell, which has a pathlength of 1 

mm, compared to the commercial cell, raises a question about the need for longer 

pathlength, 10 mm, usually used in fluorometer sample cells.  This study, at this stage, is 

unable to provide an answer to the question and neither could it explain the higher 

emission intensities recorded in the use of the capillary cell.  The fluorescence emission 

has quite a number of competing processes such as external conversion, internal 

conversion, and intersystem crossing among others such that one will expect a larger 

volume of sample and a considerably longer sample pathlength to observe fluorescence 

emission to an appreciable level.  There should, therefore, be some unique property or the 

other of the cell which though not known at this stage accounts for its satisfactory 

performance.  On the other hand, the condition required for establishing a linear 

relationship between fluorescence emission and sample concentration may provide an 

answer to why it was possible to use the cell for quantitative analysis (regression 

analysis) even though it has a pathlength of only 1 mm.  The modified fluorescence 



emission equation for quantitative analysis requires that the absorbance, A of the sample, 

given by  

bcA ε= ……….3.4 

where ε is the molar absorptivity (mol.-1 L cm-1) of the sample, b the pathlength (cm), and 

c the concentration (mol. L-1), must be small (< 0.05).  This is conventionally achieved 

via the concentration by using dilute solutions.  However, the pathlength b, which can be 

changed, is directly proportional to the absorbance A.  The shorter the pathlength is the 

lower the absorbance.  As such, the shorter pathlength of the capillary cell might possibly 

be important in its use for the quantitative analysis test described earlier. 

The picture in Figure 3.12 shows an experimenter about to collect the fluorescence  

emission spectrum of a sample using the custom-designed capillary cell.   
 
 

 

Custom-Designed  
Capillary Micro-Cell

Figure 3.12. Fluorescence emission spectra collection using the capillary tube custom-designed as a micro 
fluorometer cell for fluorescence emission measurement of 25µL volumes of samples.  The spectra were 
recorded with the Jobin Yvon FluoroMax-2 spectrofluorometer located in the Instrumental Analysis 
Laboratory of the Chemistry and Biochemistry Department, Baylor University. 
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Notable in the use of the capillary micro-cell is the shorter time it takes to go 

through the cycle of collecting the spectrum of a sample compared with the commercial 

cell; it took fifty-three minutes to collect single scan spectra of the thirty samples on the 

Fluoro Max-2 spectrofluorometer.  Recording the spectra of the same number of samples 

under the same conditions on the same instrument, using the commercial cell, will take 

about one hour twenty-five minutes to complete– saving about 32 minutes of analysis  

time.   
 
 

Conclusion 

The results of the performance tests on the custom-designed capillary cell show 

that: (1) though the capillary tube absorbs UV light and fluoresces, its function as a 

sample cell, under the appropriate instrument setting, is comparable with that of the 10 

mm pathlength fluorometer cell for qualitative analysis and (2) the capillary cell can be 

used for quantitative analysis on the basis of the regression analysis shown in Figure 3.8, 

and (3) with a required sample volume of 25 µL, compared to the 1400 µL of sample 

volume required for the commercial cell, fluorescence emission can be accurately 

measured on a micro-scale.  This study has, therefore, identified three major advantages 

of the custom-designed capillary cell over the commercial cell are identifiable: (1) 

requirement of much smaller sample volume, 25 μL compared to 1400 μL for the 

commercial cell, for spectra measurement and (2) higher fluorescence emission intensity 

(higher sensitivity) , and (3) significant reduction in spectra collection time.  As such, the 

custom-designed capillary micro-cell was used in place of the commercial 10-mm 

pathlength micro-cell for spectra collection in a study on phenylalanine, which is 

described in the next chapter. 
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CHAPTER FOUR 
 

Micro-Scale Fluorescence Measurement, the Use of the Racemic Mixture of 2-Butanol as 
a Chiral Selector, and the Modeling of Log-Converted Spectral Data 

 
 

Introduction 
 

Chapter 2 described in detail our recent chiral discrimination strategy, NSCCDS, 

and its successful application in the analyses of four chiral compounds including 

phenylalanine.  This chapter describes analyses performed using the racemate of 2-

butanol (the use of the racemic mixture is discussed later) in place of (S)-(+)-1,2-

propanediol as the chiral selector for the analysis of the same phenylalanine studied.  The 

purpose for using a different chiral selector in analyzing the same chiral compound is to 

investigate the generality of our new strategy.  Chapter 3 described the investigation of 

the spectral properties and performance of a capillary tube that was custom-designed by 

us for steady-state fluorescence emission measurement.  The investigation showed that 

the performance of the custom-designed capillary cell is comparable to that of a standard 

fluorometer cell.  To show that the custom-designed capillary cell can be used for actual 

experiments, it was employed in this study for the collection of the fluorescence emission 

spectra of all the samples analyzed.  The capillary cell, as noted earlier, does not require 

more than 25 µL solution for fluorescence emission measurement.  As such, we by this 

study demonstrate the use of a microanalytical measurement technique suitable for 

routine and high throughput chiral analysis.  This is in view of the expensive nature of the 

chiral industry.   
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In this study, four different analyses of phenylalanine were performed.  The first 

analysis follows the same approach described in Chapter 2 for the application of our new 

covalent discrimination strategy, NSCCDS.  The second analysis was in two parts.  The 

first part of the second analysis involved preparing, isolating, and recrystallizing the 2-

butanol derivatized  D- and L-phenylalanine.  Part of the recrystallized product obtained 

for D-phenylalanine was used for NMR analysis.  This was done to establish that the 

adapted esterification scheme leads to ester formation.  In the second part of the second 

analysis, the recrystallized products of D- and L-phenylalanine were used for 

enantiomeric composition analysis.  In the third analysis, β-cyclodextrin was used as a 

chiral selector for non-covalent chiral discrimination of phenylalanine at the same 

concentration used in the first analysis mentioned above.  This will allow direct 

comparison of our new covalent discrimination strategy, NSCCDS, with the non-covalent 

discrimination strategy of β-cyclodextrin.  The fourth analysis was performed to illustrate 

the application of our newly developed covalent strategy in real-life situations as mention 

in Chapter 1.  To do this, different known compositions of the solid enantiomers of 

phenylalanine were weighed into different glass vials, that is, each sample is a mixture of 

the two enantiomers as will be found in real-life situations for analysis.  Identical 

amounts of reagent solution (the racemate of 2-butanol plus HCl) were then added to the 

solid mixtures and heated together in a water bath for esterification.  The samples were 

allowed to cool and quantitatively transferred with deionized water into volumetric flasks 

of identical volume.  They were then diluted to the marks and subjected to spectral 

measurement.  We refer to these samples as real-life (RL) samples in order to 

differentiate them from samples for the first analysis. 
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Data manipulation is important in analyses such this because application of the 

appropriate data treatment to raw data could maximize or enhance information extraction.  

On the other hand, data pre-treatment could lead to misleading or lose of information.  

The analysis of log10converted spectral data in this study is intended to: (1) find out if 

converting the usually wide range of spectra intensities recorded to log10 data to make 

them relatively more comparable will improve the results of the analysis and (2) to 

evaluate the possibility of introducing linearity in spectral band regions where spectra 

intensities might not vary linearly with sample composition.  These measures were 

considered because it has been noticed by our group over the years that some of the 

obvious spectral variations recorded among samples do not necessarily lead to good 

correlation with sample composition.  While such occurrences could be due to poor chiral 

discrimination, other factors could be responsible.  An example of such a factor is non-

linear scaling of spectra with sample concentration or enantiomeric composition in this 

case.  Presently, the Unscrambler statistical package used in analyzing our data can only 

handle linear variations within a data set.  As such, spectral data manipulation to 

introduce linearity in the data might enhance extraction of information and improve the 

result of the analysis. 

The logarithmic scale, as noted in the paragraph above, is useful when there is a 

wide range of values of a given quantity that needs to be made comparable in order for 

the figures to be more meaningful.  For example, pH is the negative log of the hydronium 

ion in solution.  If the concentration of hydronium ion in solution should be used to 

compare solutions, an acidic solution of pH 2 will be said to have hydronium ion 

concentration of 0.01 M (10-2 M).  A neutral solution (pH = 7) will be 0.0000001 M (10-7 



M) and a basic solution of pH 12 will be said to have a hydronium ion concentration of 

0.000000000001 M (10-12 M).  Unless the software used in a given analysis to compare 

values with magnitudes of this kind is specifically designed to handle such a wide range 

of values (10-2-10-12 M), the hydronium concentration of the basic solution could be 

interpreted as noise relative to that of the acid.  This will lead to loss of relevant 

information because the hydronium concentration of the basic solution is meaningful and 

important.  Taking the negative log of this range converts it to pH 2-12.  In this log-

converted form, the hydronium ion concentration of the basic solution is unlikely to be 

ignored on the basis of its magnitude compared with the acidic solution.  Instances of this 

nature, arising in the analysis of actual spectra could lead to loss of relevant information 

if variations in spectra of such magnitude are ignored.  Log10 pre-treatment of spectra 

could therefore make a wide range of intensities recorded for modeling relatively more 

comparable and meaningful in our spectral data analysis.  Furthermore, spectral 

intensities that might vary exponentially with sample concentration (enantiomeric 

composition in this case), at certain wavelengths, could be transformed to vary linearly 

with concentration (enantiomeric composition in this case) if log10 is taken of the 

intensities.  If, for example, the fluorescence intensity of a given set of samples should 

vary exponentially with concentration in a given spectral region then such spectral region 

would obey the original fluorescence equation, written in Chapter 1 in the form  

( )bcKPF ε−−= 1010 ……….3.1 

where F is the total intensity of light emitted by the sample, K a constant that depends on 

the quantum efficiency of the fluorescence process, P0 the power of the excitation beam, ε 
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the molar absorptivity (L mol-1 cm-1), b the pathlength (cm) of the sample, and c the 

concentration (mol L-1) of the sample.  Taking log10 of equation 3.1 gives 

( ) ( )[ ]bcKPKPF ε−+−= 10loglogloglog 1001001010 ……….3.2 

Equation 3.2 can be reduced to  

bcF ε=10log ……….3.3 

Equation 3.3 shows a linear log10 relationship of the fluorescence emission intensity (F) 

with the concentration (c), which in this case corresponds to enantiomeric composition.  

Modifying the fluorescence spectral data according to equation 3.3 should, therefore, 

introduce a linear relationship between the fluorescence emission intensity and the 

concentration (enantiomeric composition in this case) in spectral regions where the two 

parameters relate exponentially.  With this, spectral variations that might not fit the linear 

PLS-1 regression model but might contain important structured information could be 

taken advantage of in the PLS-1 regression modeling.  This might improve the results of 

the analysis. 

 Based on the above two examples on the effect of the logarithm function, log10 

spectral pre-treatment could be useful in chiral analysis by regression modeling of 

spectral data (CARMSD).  Consequently, log10 converted spectral data of the samples in 

this study were subjected to the multivariate, PLS-1 regression modeling analysis in 

comparison with the regression modeling analysis of the original spectral data. 

Conventionally, enantiomeric analysis using non-chiral techniques that depend on 

analyzing diastereomeric forms of enantiomers require resolution of enantiomeric pairs 

with homochiral chiral selectors.  This is because when a pair of enantiomers of a 

compound reacts with a single enantiomer of another compound, they form a pair of 
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diastereomers, which are not mirror images of each other but rather different compounds.  

The diastereomers can be isolated together from the reaction mixture and analyzed using 

non-chiral chromatographic or NMR techniques as well as chiroptical techniques.  

Traditionally, racemates are not used for the resolution of enantiomers in these 

techniques.  This is because the reaction of a pair of enantiomers with the racemate of a 

chiral compound should result in the formation products that are not simply a pair of 

diastereomers but a mixture of stereoisomers.  The stereoisomers will relate with each 

other both as diastereomeric and enantiomeric pairs.  Under this condition, the above 

mentioned non-chiral techniques are limited when it comes to analyzing the enantiomeric 

pair of the chiral analyte quantitatively.  In addition, chiral techniques, including chiral 

chromatography, requiring some separation or the other of the derivatized products, may 

run into problems because a complex separation procedure will be required.  As such, the 

use of chiral selectors in the racemate form is not a viable option in these techniques. 

The choice to use the racemate of 2-butanol instead of one of its enantiomers in 

place of (S)-(+)-1,2-propanediol for chiral discrimination was motivated by two factors: 

its relatively low price and ready availability.  Prior to the experiment, the possibility of 

the success of using the racemate of 2-butanol as a chiral selector in combination with 

non-chiroptical or isotropic fluorescence spectroscopy for the present study, was 

carefully examined.  Reaction Scheme I shows that the Fischer esterification of D-

phenylalanine with the racemate of 2-butanol (reaction A) could form a pair of 

diastereomeric ester hydrochlorides, which is enantiomeric to the pair of esters that could 

be formed with L-phenylalanine (reaction B).  A test solution for analysis, prepared by 
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Scheme I.  A and B show the formation of diastereomeric pairs of ester hydrochlorides by the reaction of D- 
and L-phenylalanine with the racemate of 2-butanol.  1: D-phenylalanine.  2: (S)-2-butyl D-phenylalanine 
ester hydrochloride. 3: (R)-2-butyl D-phenylalanine ester hydrochloride.  4: L-phenylalanine.  5: (S)-2-butyl 
L-phenylalanine ester hydrochloride. 6: (R)-2-butyl L-phenylalanine ester hydrochloride  

 
 

mixing known amounts of the D- and L-phenylalanine ester solutions will thus contain 

four stereoisomers made up of two pairs of enantiomers.  Based on this, one might 

conclude that the discrimination of D- and L-phenylalanine using the racemate of 2-

butanol combined with non-chiroptical fluorescence spectroscopy should not lead to a 
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successful enantiomeric composition analysis of phenylalanine– the analysis has no 

sound basis for success.  Such a conclusion may hold for the non-chiral NMR technique 

because for quantitative purposes, the use of NMR will require the resonance frequency 

of the diastereotopic nuclei in the derivatized enantiomers to be detected.  The use of 

non-chiral NMR should result in the same signals for both of the diastereomeric pairs of 

say the D and L forms of the chiral analyte.  This is because the diastereomeric pair, DR 

and DS, formed by the R and S forms of a chiral selector with the D form of a chiral 

analyte, is enantiomerically related to the diastereomeric pair, LS and LR, formed by the 

same R and S forms of the same chiral selector with the L form of the same chiral 

analyte.  Thus, the use of a non-chiral NMR technique for the quantitative analysis of 

enantiomeric pairs, which are covalently resolved with the racemate of a chiral selector, 

will be ineffective.  For chiral NMR techniques, a special chemical shift reagent capable 

of effectively discriminating the diastereomeric pair of say the D form of the chiral 

analyte from the diastereomeric pair of the L form in the sample will be required.  On the 

other hand, our non-chiroptical or isotropic spectroscopic techniques have no limitation 

and do not require special reagents in analysis of samples with the above-mentioned 

unusual composition because they do not require separation and probe bulk spectral 

properties of samples.  Consequently, any effect that can bring about differences in the 

spectral properties of the bulk of sample solutions is all that is needed to spectrally 

differentiate one sample from the other.  If the effect scales directly with sample 

composition, it should be possible to use the isotropic spectral data of the samples for 

quantitative analysis of the samples.  In the present case, for example, reaction Scheme I 

shows that four stereoisomers will be present in a sample made up of D- and L-
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phenylalanine if the sample is reacted with the racemate of 2-butanol.  The same situation 

is presented when separate solutions of D- and L-phenylalanine reacted with the racemate 

of 2-butanol are mixed to prepare test solutions as in the first analysis.  In such a sample 

solution, the ester formed by the S form of 2-butanol with D-phenylalanine (DS) will be 

enantiomeric to the ester formed by the R form of 2-butanol with L-phenylalanine (LR).  

Similarly, the ester formed by the S form of 2-butanol with L-phenylalanine (LS) will be 

enantiomeric to the ester formed by the R form of 2-butanol with D-phenylalanine (DR) 

as portrayed by reaction Scheme I.  The sample will thus, have two pairs of enantiomers 

or enantiomeric interactions: (1) DS and LR (molecules 2 and 6 in Scheme I) and (2) DR 

and LS (molecules 3 and 5 in Scheme I).  Enantiomeric interaction, by convention, 

should not allow for spectral discrimination (the situation can be different at high 

concentrations as noted in Chapter 2 though) of samples of different enantiomeric 

compositions.  However, the possible chiral interactions in such a sample are not limited 

to the above enantiomeric interactions only.  Diastereomeric pairings or interactions are 

equally possible in the same sample: DR and DS (structure 2 and 3), DS and LS (structure 

2 and 5), DR and LR (structure 3 and 6), and LR and LS (structure 5 and 6) constitute 

diastereomeric pairings or interactions in the sample.  These diastereomeric pairings or 

interactions outweigh the enantiomeric pairings or interactions.  Based on this, each test 

sample solution will have a net of diastereomeric pairing or interaction, which should 

vary according to sample composition.  Consequently, the spectral properties of sample 

solutions made up of varying enantiomeric compositions should vary according to the 

diastereomeric excess pairing or interaction.  In addition, being in the same solution, the 

spectral property of each individual species (DR, DS, LR, and LS) could be affected by 
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the possible complex chiral interactions in solution.  This complex chiral interaction 

could impart a unique spectral property to the sample solution.  This can as well result in 

spectral differences among samples made up of different compositions of these individual 

species (DR, DS, LR, and LS).   

Furthermore, the R and S enantiomers of 2-butanol cannot react equally with the 

enantiomers of phenylalanine.  This is because the members of a pair of enantiomers 

have the property of reacting differently with other chiral molecules.  As such, the esters 

are not expected to be formed to the same extent; sample solutions prepared from D- and 

L-phenylalanine esterified with the racemate of 2-butanol should thus have net 

diastereomeric properties.  Based on this, chromatographic techniques can be employed 

provided an effective separation can be achieved prior to analyte detection.  Generally, 

chromatographic techniques, usually, take a long time and in this particular example a 

complex separation protocol, unlikely to be suitable for routine and high throughput 

analysis, may be required. 

As explained above, the bulk properties of sample solutions made up of different 

compositions, for example, of the above-mentioned four hypothetical stereoisomers will 

vary as a result of either the effect of the excess diastereomeric interaction or complex 

chiral interaction or both.  Thus, such samples can be spectrally differentiated using 

isotropic spectroscopic techniques (ordinary UV-vis and fluorescence spectroscopy), 

which are employed by us for chiral analysis.  It is possible that the spectral differences 

will be small and occur at different spectral band regions but the use of multivariate 

regression techniques such as PLS-1 regression will allow such information in the 

spectral data to be assessed.  
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Based on the above careful examination of the implications of using the racemate 

of 2-butanol for chiral analysis, we came to the conclusion that it is possible to employ 

the racemic mixture of 2-butanol as a chiral selector in our new covalent discrimination 

strategy for the analysis of phenylalanine.  Thus, the racemic mixture of 2-butanol is the  

chiral selector used in the analysis described in this chapter.   
 
 

Methodology 
 
 

Materials 

Enantiopure Phenylalanine (D and L, ≥ 99 %), racemic mixture of 2-butanol (99 

%), and homochiral β-cyclodextrin hydrate (β-CD) were purchased from Aldrich 

Chemical Company.  ACS Grade concentrated hydrochloric acid (12.1 M) was used as  

the acid catalyst in the esterification reaction.  All chemicals were used as received. 
 
 

Preparation of NSCCDS Samples of Phenylalanine Using the Racemate of 2-Butanol 

The NSCCDS samples of phenylalanine prepared using the racemic mixture of 2-

butanol were the samples prepared for the first analysis of phenylalanine.  The samples 

were prepared using the same procedure followed in preparing the NSCCDS samples in 

Chapter.  For this analysis, however, 2 mL of the racemate of 2-butanol, 1mL of HCl, and 

0.2065 g of enantiomerically pure D- or L-phenylalanine were used.  The samples were 

heated at 75 oC to prepare the 2-butanol derivatized or esterified phenylalanine products.   

The derivatized D- and L-phenylalanine samples were used to prepare 5 mM stock 

solution, which were mixed to prepare thirty sample solutions made up of different 

enantiomeric compositions for analysis.  The samples were varied at a regular mole 

fraction interval of 0.03. 
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Preparation of Recrystallized 2-Butanol Phenylalanine Ester Samples  

To verify that esters were actually formed during the esterification reaction 

adapted for our new covalent discrimination strategy, enantiomerically pure D- or L-

phenylalanine were reacted with the racemic mixture of 2-butanol as in the first analysis.  

This time however, the reaction products for the D- and L-phenylalanine enantiomers 

were not diluted to prepare stock solutions.  Rather, 10 mL of the racemate of 2-butanol 

was added to the D- or L-Phenylalanine product and left overnight.  White gelatinous 

precipitates were formed overnight.  These precipitates were filtered and recrystallized 

from the 2-butanol.  The solids obtained were then dried overnight in an oven at a 

temperature of 60 oC.  A mass of 20 mg of the recrystallized D-phenylalanine solid was 

dissolved in 2 ml of deuterated water.  Proton and carbon-13 NMR spectra of the solution 

were recorded to verify the formation of the esters.  The recrystallized solid obtained for 

L-phenylalanine and the rest of the recrystallized D-phenylalanine solid sample were then 

used to prepare separate 3.511 mM stock solutions.  A set of thirty sample solutions, 

varied at a regular interval of 0.03 mole fraction units were prepared for analysis.  The 

thirty samples for this second analysis are referred to here as the ‘recrystallized ester  

samples’ (RE samples).   
 
 

Preparing β-Cyclodextrin Samples of Phenylalanine 

In order to compare our new non-separative, covalent, chiral discrimination 

strategy (NSCCDS) with the non-covalent, inclusion complex forming, chiral 

discrimination of β-cyclodextrin at the same concentration level, a third set of samples,‘β-

CD samples,’ were prepared for analysis.  To prepare these samples for the third analysis 

of phenylalanine, a 10 mM stock solution of β-cyclodextrin was firstly prepared: 2.8375 
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g of enantiopure β-cyclodextrin hydrate was dissolved in a limited amount of deionized 

water by warming.  The solution was allowed to cool and transferred quantitatively into a 

250-mL volumetric flask.  It was then made up to the mark using deionized water to 

obtain the 10 mM β-CD stock solution.  A 5 mM stock solution of D- or L-phenylalanine 

in β-cyclodextrin was prepared by dissolving 0.0413 g of D- or L-phenylalanine in a 

limited amount of the 10 mM β-cyclodextrin stock solution, which was transferred 

quantitatively into a 50-mL volumetric flask and diluted to the mark with the same 10 

mM β-cyclodextrin stock solution.  The D- and L-Phenylalanine-β-CD stock solutions 

were mixed in different compositions to prepare thirty β-CD sample solutions varied at a  

regular mole fraction interval of 0.03. 
 
 

Preparation of Real-Life Situation Samples of Phenylalanine using the Racemate of 2-
Butanol 

 
Phenylalanine samples prepared in this fourth analysis were done so in a manner 

that is synonymous with a real-life analysis situation.  Firstly, different amounts of D- 

and L-phenylalanine were weighed into different glass sample vials (24 mL), that is, each 

glass vial contained a given composition of a solid mixture of D- and L-phenylalanine.  

The total mass of the samples varied between 0.0300 and 0.0305 g.  Identical amounts (1 

mL) of a reagent solution, 9:1 2-butanol/HCl, were added to the solid samples in the glass 

vials.  The samples were then heated together in a water bath for one hour at 75 oC.  At 

the end of the heating, the samples were allowed to cool and then transferred quantitatively 

with deionized water into volumetric flasks of identical volume.  The solutions were then 

diluted to the marks.  The spectra of these sample solutions were then recorded for  

analysis. 
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Spectral Data Collection, Treatment, and Analysis 

The spectra of all the samples for the first, second, and third analyses were 

collected using the Jobin Yvon-SPEX Fluoro Max-2 spectrofluorometer schematically 

shown in Chapter 1.  The instrument emission slit width was set at 5 nm.  Each sample 

(not more than 25 μL ) was excited through our custom-designed capillary micro-cell at 

an excitation wavelength of 257 nm.  The spectrum for each sample was recorded as a 

single scan spectrum from 274 nm to 450 nm.  The 257 nm excitation wavelength used is 

the wavelength of maximum UV absorption for phenylalanine.  The spectra for the real-

life samples, on the other hand, were recorded using the Agilent 8453, photodiode array, 

UV-vis spectrophotometer described in Chapter 1. 

The original spectral data of all the samples were subjected to PLS-1 regression 

analysis using the Unscrambler statistical package (The UnscramblerTM version 9.7; 

CAMO, Inc., Oslo, Norway) according to the procedure outlined in Chapter 1.  In 

addition, the spectral data of the samples prepared for the first and second analyses were 

converted to log10 spectral data and subjected to PLS-1 regression analysis.  This was 

done to determine whether log10 pre-treatment of spectral data in analyses of this kind has  

any benefit.  
 
 

Results and Discussion 

Figure 4.1A shows the original D-phenylalanine crystal sample, 4.1B the 

gelatinous precipitate of the Fischer esterification reaction of the D-phenylalanine 

enantiomer with the racemate of 2-butanol, and 4.1C the recrystallized solid sample.  

Unlike the original D-phenylalanine crystals, which are shiny and flaky, the recrystallized 

solid is dull and fluffy. This indicates that the two compounds are physically different. 



Figure 4.1. A: Original crystal sample of D-phenylalanine.  B: White gelatinous precipitate product formed 
by HCl catalyzed Fischer esterification of D-phenylalanine with the racemate of 2-butanol.                         
C: Recrystallized product of the gelatinous precipitate shown in B.  Note the difference in appearance 
between original D-Phe crystals and the recrystallized esterification product. 

recrystallized gelatinous precipitate obtained from the esterification of D-phenylalanine 

with the racemate of 2-butanol.  Similar to Figure 4.2, the top left corner of Figure 4.3 

shows the structure of the ester with numberings to match chemical shifts with nuclei.  

The top right corner of the same figure shows the ChemDraw structure of the same ester 

with C-13 chemical shift estimates together with the ChemDraw C-13 NMR spectrum.  

ChemDraw estimates are used here for reference purposes because empirical references 

on the NMR of 2-butyl esters of phenylalanine are not available in the literature. 
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Figure 4.2 shows the experimentally measured proton NMR spectrum of the 

recrystallized gelatinous precipitate obtained from the esterification of D-phenylalanine 

with the racemate of 2-butanol.  The top-left corner insert of Figure 4.2 is the structure of 

the expected 2-butyl ester of D-phenylalanine.  The structure shows numberings from 1 

to13, which are used later to match protons or carbons with chemical shifts.  The top right 

corner of Figure 4.2 shows the ChemDraw structure of the 2-butyl ester of D-

phenylalanine with proton chemical shifts estimates in addition to the H1 NMR spectrum.  

Figure 4.3 shows the experimentally measured C-13 NMR spectrum of the 
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Figure 4.2 H1 NMR spectrum of the solid product formed by reacting the racemate of 2-butanol with D-phenylalanine. The top left insert is the 
structure of the expected sec-butyl ester of D-phenylalanine. The top right insert is the ChemDraw H1 NMR spectrum showing estimated H1 
chemical shifts of the ester. 
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Figure 4.3  C-13 NMR spectrum of the solid product formed by reacting the racemate of 2-butanol with D-phenylalanine.  The top left insert is the     
structure of the expected sec-butyl ester of D-phenylalanine. The top right insert is the ChemDraw C-13 NMR spectrum showing estimated C-13 
chemical shifts of the ester 
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Table 4.1 compares the values of the experimentally measured H1 and C-13 

chemical shifts with the ChemDraw estimates according to the number assignments 

shown in the inserts of the H1 and C-13 NMR spectra in Figure 4.2 and 4.3.  The 

experimental proton chemical shifts in Table 4.1 are reported in a format comparable to 

the ChemDraw estimates where an average chemical shift position is used to represent 

the signal of a nucleus or a group of nuclei showing signal splitting.  In Table 4.1, proton 

and C-13 chemical shifts that are contributed by 2-butanol to the structure of the ester are 

denoted as B and those contributed by D-phenylalanine as Phe.   

The chemical shifts reported in Table 4.1 show that the experimentally determined H1 

shifts compare favorably with the chemical shifts assigned by the ChemDraw software.  

The proton shifts at 0.89, 1.60, 3.99, 1.24 ppm agree with the ChemDraw H1 estimates 

for the 2-butyl alkyl group portion of the D-phenylalanine ester numbered 

correspondingly as 1, 2, 3, and 4 in Figure 4.2.  Experimentally measured proton 

chemical shifts at 4.39, 3.12, 7.38, 7.43, and 7.32 ppm agree with the ChemDraw H1  

protons shift estimates numbered in the structure of the ester shown in Figure 4.2 as 6, 7,  

9 and 13, 10 and 12, and 11.  Except for the C-13 signals of carbons numbered in the 

ester structure as 1, 3, and 4, all other carbons shown in the ChemDraw structure and C-

13 spectrum in Figure 4.3 are accounted for by the experimentally measured C-13 NMR 

spectrum.  The C-13 chemical shift at 30.8 ppm, which agrees with the ChemDraw 

estimate for the carbon numbered 2, is contributed by the 2-butyl alky group of 2-butanol 

to the ester structure.  Table 4.1clearly shows that, the experimentally determined C-13 

chemical shifts for the carbons numbered from 5 to 13 in the structure of the 

phenylalanine ester, closely much the ChemDraw estimates.  In addition, it is clear from 
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Table 4.1. Comparison of experimentally measured proton and C-13 chemical shifts of the recrystallized 
solid product obtained from the HCl catalyzed reaction of D-phenylalanine with the racemate of 2-butanol 

with the ChemDraw software estimates. 
 

Nucleus or 
nuclei 

ChemDraw H1 
shift (ppm) 

Experimental 
H1 shift (ppm) 

Nucleus or 
nuclei 

ChemDraw C13 
shift (ppm) 

Experimental 
C13 shift (ppm) 

1 0.96 0.89: B 1 7.7 No signal 

2 1.57  1.60: B 2 29.6 30.8: B 

3 4.13 3.99: B 3 74.3 No signal 

4 1.40  1.24: B 4 19.4 No signal 

5 No proton No proton 5 172.0 176.8: Phe 

6 3.84 4.39: Phe 6 60.6 58.9: Phe 

7 3.16 3.12: Phe 7 39.7 39.2: Phe 

8 No proton No proton 8 140.2 137.9: Phe 

9 and 13 

10 and 12 

11 

7.12 

7.21 

7.08 

7.38: Phe 

7.43: Phe 

7.32: Phe 

9, and 13  

10 and 12 

11  

127.9 

128.4  

125.7 

131.9: Phe 

132.2: Phe 

130.5: Phe 

 
 

Figure 4.2 that no carboxyl proton signal, which usually appears around 10 ppm, was  

detected in the recrystallized product for the D-phenylalanine ester of 2-butanol.  This 

indicates that the recrystallized solid product is either 100 % the 2-butanol ester of D-

phenylalanine or contains undetectable amounts of unreacted D-phenylalanine if any.  

These NMR results, coupled with the different physical appearance of the recrystallized 

solid product compared with the original crystals of D-phenylalanine (see Figure 4.1), are 

compelling evidence that 2-butanol ester of D-phenylalanine was formed.  This indicates 

that the Fischer esterification procedure adapted for our new non-separative, covalent, 

chiral discrimination strategy (NSCCDS), resulted in the formation of ester diastereomers 

of the enantiomers of phenylalanine.  By extension, the NMR results in this study  
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strongly suggests that the reaction of phenylalanine and tyrosine with (S)-(+)-1,2-

propanediol (PD) in the study described in Chapter 2, resulted in the formation PD ester 

derivatives of phenylalanine and tyrosine. 

Figure 4.4A, B, respectively, show the fluorescence emission spectra from 274 to 

450 nm recorded for the 5 mM D- and L-phenylalanine ester stock solutions prepared for 

the first analysis and the 3.511 mM D- and L-phenylalanine ester stock solutions prepared 

from the recrystallized ester solids.  Figure 4.4C shows the 5 mM D- and L-

Phenylalanine-β-CD stock solutions prepared by dissolving appropriate amounts D- and 

L-phenylalanine in the 10 mM β-cyclodextrin stock solution.  The spectra shown in 

Figure 4.4A, B, and C reveal both the phenylalanine emission band at 282 nm ( л*← л 

phenyl group transition) and the characteristic 397 nm peak associated with the capillary 

cell.  These spectral features are similar to the non-blank-corrected spectra recorded with 

the capillary cell for the 3 mM phenylalanine solution mentioned in Chapter 3.  

Figure4.4A, B, and C show that the emission intensities of the solutions for the D 

enantiomer (ester derivative and β-CD associated) are higher in the spectral region from 

297 to 264 nm than solutions for the L enantiomer.  While the differences between the 

ester derivatives in Figure 4.4A and B are due to the formation of diastereomeric esters, 

the spectral difference in Figure 4.4C, between the β-CD associated D- and L-

phenylalanine, is reported to be associated with the formation of transient, non-covalent, 

diastereomeric inclusion complexes [4, 21, 34].  Our research group in a previous 

fluorescence study of phenylalanine using β-CD as a chiral selector reported a similar 

spectral difference [67].  Spectra in the previous study were collected using the same 

commercial (10 mm pathlength) fluorometer cell, which was used in evaluating the 
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Figure 4.4. A: Fluorescence emission spectra of 5 mM stock solutions of racemate 2-butanol esters of D- 
and L-phenylalanine prepared by the NSCCDS procedure.  B: Fluorescence emission spectra of 3.511 mM 
stock solutions of racemate 2-butanol esters of D- and L-phenylalanine prepared from the recrystallized 
ester solid samples.  C: Fluorescence emission spectra of 5 mM stock solutions of D- and L-phenylalanine 
prepared by dissolving D- and L-phenylalanine in 10 mM stock solution of β-cyclodextrin.   
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performance of our custom-designed capillary cell.  This similarity in spectral 

information is a further indication that the capillary cell is comparable to the commercial 

fluorometer cell.  Comparison of Figure 4.4A, B, and C shows that the difference in 

intensity between the D and L-phenylalanine esters are about twice the difference 

recorded between the β-CD associated D- and L-phenylalanine complexes.  The smaller 

difference in spectra recorded for the β-CD solutions could be due to the transient and 

non-covalent nature of the diastereomeric β-CD-phenylalanine inclusion complex.  This 

is because, unlike the covalent diastereomeric ester pairs, the non-covalent diastereomeric 

β-CD-phenylalanine complexes could easily undergo conformational changes in solution.  

These conformational changes could lead to the formation of conformers with closely 

related spectral properties.  In addition, the transient nature of the complexes indicates 

that with the use of an ordinary steady-state instead of a time resolved fluorescence 

technique for spectral collection, one is able to capture only an averaged situation: 

transition between the free enantiomer state and the β-CD complex state– can be 

captured.  This average situation may present a smaller spectral difference between the β-

CD-phenylalanine complexes.  Zhong et al. reported in a hydrophobic binding study 

involving a methyl derivative of β-cyclodextrin and 2-(2-hydroxyphenyl)-4-

methyloxazole (HPMO) that the bound state of HPMO changes in the cavity of the 

cyclodextrin molecule within picoseconds [90].  The phenylalanine molecule is smaller 

and has a lesser number of hydrogen bonding groups than HPMO.  It is, therefore, 

possible that the bound state of phenylalanine could change in the cavity faster than 

HPMO.  Transition between the enantiomeric and diastereomeric states of phenylalanine 

could, as a result, occur at a rate faster than would allow the individual states to be 



188 

captured by the ordinary steady-state fluorescence probe (time scale of 10-7-10-9 s) used 

in this study.   

Figure 4.5A, B, C are the fluorescence emission spectra from 274-450 nm 

recorded for the three sets of thirty sample solutions (NSCCDS, RE and β-CD samples) 

prepared for the first three analyses.  Figure 4.5A shows the fluorescence emission 

spectra for the NSCCDS samples.  Figure 4.5B shows the emission spectra for the thirty 

RE samples and Figure 4.5C the emission spectra for the thirty β-CD samples.  It was 

shown in the study described in the previous chapter that the inherent spectral properties 

of our custom-designed capillary cell will not adversely affect quantitative analysis.  As 

such, the spectra for the sample solutions in Figure 3.20 A, B, and C were not blank 

corrected.   

Figure 4.6A shows the mean centered fluorescence emission spectra of the thirty 

NSCCDS samples, 4.6B the RE samples, and 4.6C the β-CD samples.  The three sets of 

spectra reveal clearly that the sample solutions vary in their fluorescence emission.  This 

is due to the difference in the spectral properties of the diastereomerically discriminated 

enantiomers of phenylalanine.  Unlike the RE and β-CD samples, most of the mean 

centered spectra for the NSCCDS samples crossed each other at about 379 nm.  This 

behavior is usually observed for a set of solutions containing identical total amounts of 

two different species having identical molar absorption coefficients at a common 

wavelength but different at other wavelengths.  For a set of solutions containing strictly 

two of such species, the wavelength at which the absorption of the two species happens to 

be identical is termed as an isosbestic point.  A set of solutions that differ from this ideal 

situation may show deviations in which case the spectra may not cross perfectly at a 
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Figure 4.5. A: Fluorescence emission spectra of thirty NSCCDS sample solutions.  B: Fluorescence 
emission spectra of thirty RE samples.  C: Fluorescence emission spectra of thirty β-CD samples. 
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Figure 4.6. A: Mean centered fluorescence emission spectra of the thirty NSCCDS samples.  B: Mean 
centered fluorescence emission spectra of the thirty ester-crystal samples.  C: Mean centered fluorescence 
emission spectra of the thirty β-CD sample. 
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single wavelength.  We term this ‘pseudo isosbestic’ behavior where the solutions may 

absorb light identically over a narrow range of wavelengths leading to spectra crossing 

over a narrow range of wavelengths instead of a single wavelength.  Figure 4.6A shows 

that the NSCCDS samples exhibit a pseudo isosbestic behavior.  This ‘pseudo isosbestic’ 

behavior rather than a classical isosbestic point is expected for such a set of sample 

solutions because they contain more than a pair of species.  As shown in Figure 4.1 the 

use of a racemic mixture of 2-butanol in discriminating D- and L-phenylalanine, will 

result in sample solutions having four pairings of diastereomers and two of enantiomers.  

As such, the sample solutions deviate from the ideal case where a classical isosbestic 

point (single wavelength) is expected.  Unlike the RE samples with no spectra crossing, 

the mean centered spectra of some of the β-CD sample cross each other.  In addition, the 

pattern of the mean centered spectra for the β-CD samples bears some resemblance to 

that of the NSCCDS samples.  In contrast, the pattern revealed by the RE samples is 

completely different even though the sample solutions contain the same 2-butyl D and L-

phenylalanine esters as the NSCCDS samples.  This difference might be due to the fact 

that in addition to the phenylalanine esters, the NSCCDS samples, by virtue of the non-

separative nature of the sample preparation procedure, contain the unreacted excess of the 

racemate of 2-butanol and HCl unlike the RE samples.  The two sample solutions are 

therefore not identical.  The racemate of 2-butanol, unlike the hydrochloric acid, can 

undergo non-covalent chiral interactions with the phenylalanine esters.  This could 

enhance the discrimination (Vespalec et al. [34]).  Thus, the unreacted excess of the 

racemate of 2-butanol, could be responsible for the‘pseudo isosbestic’ behavior recorded. 
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As usual, the spectral data of a set of calibration samples, which were randomly 

selected from the total number of NSCCDS, RE and β-CD samples prepared for analysis, 

were used to develop PLS-1 calibration models for prediction.  The D- or L-phenylalanine 

enantiomer mole fractions of the three sets of calibration samples are listed below. 

NSCCDS Samples (D-Phe 
mole fractions) 

Recrystallized Ester Samples 
(D-Phe mole fractions) 

β-CD Samples (L-Phe 
mole fractions) 

   
0.0606 0.182 0.939 

0.242 0.333 0.848 

0.303 0.424 0.788 

0.364 0.455 0.697 

0.394 0.515 0.576 

0.515 0.576 0.515 

0.697 0.606 0.485 

0.727 0.697 0.455 

0.758 0.848 0.394 

0.788 0.909 0.242 

  0.182 

 
Figures 4.7A, B, C, and D show the PLS-1 regression model plots for the 

NSCCDS calibration samples.  Figure 4.7A, is the two-dimensional scores, which reveals 

a pattern of increasing order of arrangement of the NSCCDS samples from left to right.   

Figure 4.7B, which is the regression coefficient as a function of a wavelength plot, shows 

a positive regression coefficient curve for the modeled wavelength region, 297-355 nm.  

This indicates that the spectral data (x-variable) in this wavelength region and the 

enantiomeric composition (y-variable) change in the same direction.  The curve shows 

that the highest regression coefficient or rate of change of the enantiomeric compositions 

with the spectral data is at 316 nm.  The smooth nature of the curve indicates that for the 
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PC used for the model, the enantiomeric compositions change uniformly with the spectral 

data in the modeled wavelength region.  The explained variance plot in Figure 4.7C 

shows that eight principal components were computed.  However, only one principal 

component, the first PC, was needed for the development of the model.  This PC 

explained 100 % of the variation in both the spectral data and the sample composition.  

This situation arises when the spectra of the samples are well separated in a given 

wavelength region as revealed by the mean-centered spectra for the NSCCDS samples 

(see Figure 4.6A).  Figure 4.7D shows the regression line for the predicted (by cross-

validation) versus known mole fractions of the 2-butanol ester of Phe calibration samples 

(NSCCDS samples).  The line shows a good fit between the predicted and known 

enantiomeric compositions of the calibration samples.  This is an indication of a strong 

correlation between the spectral data and the enantiomeric compositions.  

Figure 4.8A, B, C, and D show the PLS-1 regression model plots for the 

recrystallized ester (RE) calibration samples.  Figure 4.8A is the scores plot, 4.8B the 

regression coefficient plot, 4.8C the explained variance plot, and 4.8D the cross-

validation regression line plot.  Similar to the NSCCDS calibration samples of Phe in the 

first analysis, the scores plot for the RE calibration samples (Figure 4.8A) shows a pattern 

of increasing D-phenylalanine mole fractions from left to right.  The regression 

coefficient plot in Figure 4.8B shows a curve that has both positive and negative regions 

for the modeled wavelength range, 274-450 nm.  This is different from the situation 

observed for the NSCCDS calibration samples.  The positive part of the curve indicates 

that the enantiomeric compositions of the calibration samples change in the same 

direction with spectral data while the negative part of the curve indicates change in 



Figure 4.7. Plots of PLS-1 regression calibration model developed using the fluorescence emission spectral data and known enantiomeric compositions of 
NSCCDS calibration samples of phenylalanine (2-butanol esters of Phe) listed on page 192.  A: scores plot, B: regression coefficient as a function of 
wavelength plot, C: percent explained variance as a function of principal component plot, and D: regression line for the predicted (by cross-validation) 
mole fractions versus the known mole fractions of calibration samples.  The model required only one PC (see below plot B or D). 
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opposite directions.  The highest positive regression coefficient for the RE calibration 

samples is recorded at 320 nm; a shift of 4 nm from the wavelength at which the highest 

regression coefficient for the NSCCDS samples in the first analysis of Phe was recorded.  

The curve shows that the highest negative regression coefficient is associated with the 

360 nm wavelength.  Unlike the NSCCDS calibration samples of Phe in the first analysis, 

the regression coefficient curve for the RE calibration samples is noisy.  The explained 

variance plot shown in Figure 4.8C for the RE samples reveal that seven PCs were 

computed.  However, only the first and second PCs were required in developing the 

model.  The first PC explained 99 and 97 % of the variation in the spectral data and the 

enantiomeric compositions of the samples, respectively.  Correspondingly, the second PC 

explained 1 and 3 %.  An attempt to use only the first PC degraded the model.  This 

implies the 3 % variation in enantiomeric composition explained by the second PC is 

important.  Figure 4.8D shows the regression line for the predicted versus actual mole 

fractions of the RE calibration samples.  In spite of the noisy regression coefficient curve, 

the regression line indicates a strong correlation between the spectral data and the 

enantiomeric compositions of the RE calibration samples.   

The plots shown in Figure 4.9A, B, C, and D are correspondingly the scores, 

regression coefficient, explained variance, and the predicted (by cross-validation) versus 

actual mole fraction regression line plots for the β-CD calibration samples.  Unlike the 

models for the first two analyses, the model for the β-CD calibration samples was 

developed in terms of the L- and not the D-phenylalanine mole fractions.  Thus, the scores 

plot (Figure 4.9A) for the β-CD calibration samples shows a pattern of variation for the 

β-CD calibration samples that is opposite to the pattern observed for the first two  



Figure 4.8. Plots of PLS-1 regression calibration model developed using the fluorescence emission spectral data and known enantiomeric compositions of 
the recrystallized phenylalanine ester calibration samples listed on page 192.  A: scores plot, B: regression coefficient as a function of wavelength plot, C: 
percent explained variance versus principal component plot, and D: regression line for the predicted (by cross-validation) mole fractions versus the known 
mole fractions of calibration samples.  The model required only two PC (see below plot B or D). 
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analyses.  This is an indication of the sensitivity of the PLS-1 regression technique to the 

spectral difference between the D- and L-phenylalanine diastereomers.  The regression 

coefficient curve for the β-CD samples in Figure 4.9B is less noisy compared to the curve 

for the RE samples (Figure 4.8B).  The regression coefficient curve for the β-CD 

samples, similar to the RE samples, has both positive and negative regions for the best 

modeled wavelength range, 300-357 nm.  The highest positive regression coefficient for 

the β-CD samples is associated with the326 nm wavelength while highest negative 

regression coefficient is associated with the 300 nm wavelength.  The explained variance 

plot in Figure 4.9C for the β-CD samples shows nine PCs were computed with explained 

variances above 95 %.  However, similar to the RE samples, only the first two PCs were 

required for the model.  Though different spectral regions were modeled, these PCs 

explained the same percentages of variation in spectral data and enantiomeric 

composition as the first two PCs computed for the RE calibration samples.  As noted for 

the RE model, exclusion of the second PC from the β-CD model degraded the model.  

The cross-validation regression line shown in Figure 4.9D for the β-CD samples, as 

usual, indicates strong correlation between the spectral data and the eantiomeric 

compositions of calibration samples. 

Table 4.2 compares the plot characteristics of the cross-validated PLS-1 

regression plots for the NSCCDS, RE, and β-CD calibration samples.  It is clear from the 

table that relevant spectral information is contained in similar wavelength regions for the 

NSCCDS and β-CD calibration samples.  This is different from the recrystallized ester 

(RE) samples, for which the entire emission wavelength scanned was required to extract 

relevant spectral information.  In spite of this difference, the plot statistics– slope, 
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A B 

Figure 4.9. Plots of PLS-1 regression calibration model developed using the fluorescence emission spectral data and known enantiomeric compositions of 
the phenylalanine-β-CD calibration samples listed on page 192.  A: scores plot, B: regression coefficient as a function of wavelength plot, C: percent 
explained variance versus principal component plot, and D: regression line for the predicted (by cross-validation) mole fractions versus the known mole 
fractions of calibration samples.  The model required only two PC (see below plot B or D). 
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correlation coefficient, and root-mean-square error of prediction computed for cross- 

validating the three sets of calibration samples, are not significantly different.   
 
 

Table 4.2. Plot characteristics of the cross-validated PLS-1 regression plots for the NSCCDS, RE, and β-
CD calibration samples listed on page 191.  The cross-validated PLS-1 regression plots are shown in Figure 

4.7 for the NSCCDS samples, Figure 4.8 for the RE samples, and Figure 4.9 for the β-CD samples 
 

Sample type Modeled 
wavelength 
range (nm) 

Number of 
principal 
components 

Slope of 
regression line 

Correlation 
coefficient of 
regression line 

RMSEPa 

NSCCDSb  297-355 10 0.999 0.998 0.015 

Recrystallized ester 274-450 9 0.972 0.997 0.018 

β-CDc 299-357  11 0.990 0.997 0.018 

a Root-mean-squares error of prediction, b Non-separative, covalent, chiral discrimination strategy, 
c β-cyclodextrin 

 
 

To show that the strong correlations portrayed by the NSCCDS, RE, and β-CD 

calibration samples apply to the rest of the corresponding samples not used in developing 

the calibration models, predictions were made of the samples not used for the calibration.  

Thus, samples not included in the calibration sets were used as sets of validation samples 

to validate the calibration models. The validation samples that were identified by the 

model as outliers were excluded from the analyses.   

Table 4.3 shows the predicted D-phenylalanine mole fractions of the NSCCDS, 

RE, and β-CD validation samples, compared with the actual D-phenylalanine mole 

fractions.  Clearly, the prediction results in Table 4.3 reveal a high level of prediction 

accuracy– the predicted mole fractions favorably agree with the actual mole fractions.  

The root-mean-square error of prediction (RMSEP), which is a measure of the average 

deviation of the predicted sample from the actual sample, is 0.011 for the NSCCDS 

analysis, 0.023 for the recrystallized ester (RE) analysis, and 0.021 for the β-CD analysis.   
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Table 4.3 Comparison of predicted D-phenylalanine mole fractions of the NSCCDS, recrystallized ester 
(RE), and β-CD validation samples with the corresponding actual D-phenylalanine mole fractions. 

 
Actual D-Phe ø 
for NSCCDSSa 

Predicted D-
Phe ø for 
NSCCDSS 

Actual D-Phe ø 
for REb sample 

Predicted D-
Phe ø for RE 
sample 

Actual D-Phe ø 
for β-CDc 

Predicted D-
Phe ø for       
β-CD 

0.0909 0.0753 0.212 0.220 0.909 0.889 

0.121 0.133 0.273 0.297 0.879 0.872 

0.152 0.157 0.303 0.331 0.818 0.789 

0.212 0.229 0.364 0.406 0.758 0.773 

0.273 0.292 0.485 0.501 0.727 0.751 

0.333 0.329 0.545 0.576 0.636 0.679 

0.485 0.482 0.667 0.684 0.545 0.541 

0.545 0.539 0.818 0.811 0.424 0.423 

0.576 0.580 0.879 0.854 0.364 0.352 

0.636 0.642 0.939 0.932 0.303 0.284 

0.667 0.659 - - 0.212 0.227 

0.848 0.863 - - 0.152 0.123 

RMSEPd 0.011  0.023  0.021 
ø: mole fraction, a Non-separative, covalent, chiral discrimination strategy sample, b Recrystallized ester,  
c β-cyclodextrin, d Root-Mean-Squares Error of Perdiction 

 
 

β -cyclodextrin is known from our previous studies to be particularly effective for the 

analysis of phenylalanine [11, 55].  The magnitudes of the root-mean-square errors of 

prediction for our covalent discrimination strategy, NSCCDS, using the racemate of 2-

butanol and the non-covalent discrimination strategy using β-CD indicate that both 

strategies are effective for the analysis phenylalanine.  The predictions for the 

recrystallized sample (RE) analysis undoubtedly show that the ester pairs that were 

formed in the present study, and the study described in Chapter 2, are diastereomeric.  

The results for the NSCCDS analysis in the present study is of a particular interest 
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because it confirms the effectiveness, robustness, and consistency or reproducibility of 

our newly developed non-separative, covalent, chiral discrimination strategy (NSCCDS)– 

the 0.011 RMSEP computed for the present analysis of phenylalanine is consistent with 

the 0.014 RMSEP computed for the analysis of the same phenylalanine in the study 

discussed in Chapter 2.  This is regardless of the use of different chiral selectors used for 

the analyses.  The strategy, thus, appears to holds a lot of promise for analyses such as 

this. 

As mentioned earlier, the effect of analyzing the log10-converted instead of the 

original spectral data in analyses such as this may be beneficial.  To verify whether PLS-

1 regression analysis of log-converted spectral data is beneficial in analyses such as this, 

the emission intensities of the samples for the first two analyses (NSCCDS and RE 

analyses) were converted to the log10-emission intensities (log10 spectral data). 

Figure 4.10A and C show the log10-converted fluorescence emission spectra from 

274 to 450 nm for the NSCCDS and RE samples.  The log10 spectra are compared with 

the corresponding original spectra in Figure 4.10B and D.  Figure 4.10A and C compared 

with Figure 4.10B and D show that the log10 spectral conversion increased the originally 

small separations recorded among the spectra.  This is due to the effect of logarithmic 

function on small numerical values.   

Figure 4.11A, B, C, and D, correspondingly, represents the PLS-1 model scores  

plot, regression coefficient plot, explained variance plot, and regression line plot for the 

log10-converted spectral data of the NSCCDS calibration samples (previous samples).  

These PLS-1 calibration model plots for the log-converted spectral data of the NSCCDS  

 



Figure 4.10.  A: Log10 converted fluorescence emission spectra for the thirty NSCCDS samples compared 
with the original emission spectra shown in B.  C: Log10 converted emission spectra for the thirty 
recrystallized samples compared with the original emission spectra shown in D.  E: Log10 converted 
fluorescence emission spectra for the thirty β-CD samples compared with the original fluorescence 
emission spectra shown in F. 

Figure 4.12A, B, C, and D show the PLS-1 regression model scores, regression 

coefficient, percent variance, and cross-validation regression line plots for the log10-

converted spectral data of the recrystallized ester (RE) calibration samples.  Similar to the 

log10 model developed for the NSCCDS calibration samples, the log10 model plots in 

Figure 4.12A, B, C, and D for the RE samples reveal features that are identical to the 

using the original spectral data of the samples.   
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Figure 4.11 Plots of PLS-1 regression calibration model developed using the log10-converted fluorescence emission spectral data and known enantiomeric 
compositions of NSCCDS calibration samples of phenylalanine (2-butanol esters of Phe) listed on page 191.  A: scores plot, B: regression coefficient as a 
function of wavelength plot, C: percent explained variance as a function of principal component plot, and D: regression line for the predicted (by cross-
validation) mole fractions versus the known mole fractions of calibration samples.  The model required only one PC (see below plot B or D).
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model plots developed using the original spectral data (see Figure 4.8A, B, C, and D) of 

the RE calibration samples.   

Table 4.4 compares the cross-validation PLS-1 regression plot statistics for the 

original and log10 PLS-1 calibration models developed for the two sets of samples.  The 

table shows that unlike the NSCCDS samples, the cross-validation regression plot 

statistics for the original spectral data for the RE samples are significantly identical to the 

cross-validation regression plot statistics computed for the log spectral data.  For the 

NSCCDS samples, the RMSEP, 0.015, and standard error (SE), 0.016 , of cross-

validation, computed for the original spectral data of the calibration samples, increased to 

0.02 and 0.021, respectively, for the log10-converted spectral data.  The increases in these 

errors signify the weakening of the strength of correlation between the spectral data and 

enantiomeric composition of the samples.   

The predicted and actual D-phenylalanine mole fractions for the NSCCDS 

validation samples are reported in Table 4.5.  In addition, the mole fractions predicted 

using the original spectral data are reported in the same table for comparison.  In order to 

have the same basis for comparison, the same validation samples, which were predicted 

for the original spectral data analysis, were predicted for for the log10 spectral data 

analysis as well.  It is clear from Table 4.5 that compared to the actual D-phenylalanine 

mole fractions, the log10 spectral data predictions for most of the samples are associated 

with higher absolute errors than the original spectral data predictions.  The root-mean-

square error of prediction computed for the log10 spectral data predictions is 0.027.  The 

error is more than two times the root-mean-square error of computed for the prediction of 

the validation samples using the original spectral data.  It is clear from these results that 



Figure 4.12.  Plots of PLS-1 regression calibration model developed using the log10-converted fluorescence emission spectral data and known enantiomeric 
compositions of the recrystallized phenylalanine ester calibration samples listed on page 191.  A: scores plot, B: regression coefficient as a function of 
wavelength plot, C: percent explained variance versus principal component plot, and D: regression line for the predicted (by cross-validation) mole 
fractions versus the known mole fractions of calibration samples.  The model required only two PC (see below plot B or D).
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Table 4.4. Comparison of the cross-validation PLS-1 regression plot statistics computed for the original and 
log10 spectral data of the NSCCDS and recrystallized ester calibration samples. 

 

a Non-separative, covalent, chiral discrimination strategy, b Recrystallized ester,c Root-mean-squares error 
of prediction, d Standard error 

Plot Statistic Plot Statistic Value for Cross-Validated NCCDS and RE Calibration Samples 

 NSCCDSa original 
spectral data 

NSCCDS log10 
spectral data 

REb original 
spectral data 

RE log10 spectral 
data 

Slope 0.999 1.00 0.972 0.980 

Offset 6.59 x 10-5 0.00253 0.0163 0.0116 

Correlation 
coefficient. 

0.998 0.997 0.997 0.998 

RMSEPc 0.015 0.020 0.018 0.015 

SEPd 0.016 0.021 0.019 0.016 

 
 

modeling the log10 converted spectral data of the NSCCDS samples did not improve but 

negatively affected the information in the spectral data, hence the higher RMSEP value.  

Table 4.6 compares the log10 and original spectral data predictions for the D-

phenylalanine mole fractions of the recrystallized ester (RE) validation samples with the  

actual D-phenylalanine mole fractions.  Unlike the NSCCDS samples, the absolute errors  

computed for the log10 spectral data predictions are significantly identical to the absolute 

errors computed for the original spectral data predictions.  The root-mean-square errors 

for the log10 and original spectral data analysis are, respectively, 0.022 and 0.023.  

Consequently, the log10 conversion of the spectral data of the recrystallized ester samples 

resulted in no significant effect on the analysis.   

Generally, the PLS-1 regression analysis of the two sets of log10-converted 

spectral data did not show any improve in the results of the analysis.  As noted earlier, the 

log10 spectral data analyses resulted in an increase in RMSEP for the NSCCDS samples 

while the RMSEP computed for the RE samples significantly unchanged.  

206 
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Table 4.5 Prediction results for log10 and original spectral data analyses of NSCCDS validation samples of 
phenylalanine.  Samples were predicted in terms of D-phenylalanine mole fractions. 

 
Actual D-Phe ø a of 
NSCCDS sample 

Log10 spectral data 
prediction 

Absolute error Original spectral 
data prediction 

Absolute error 

0.0909 0.0634 0.0275 0.0753 0.0156 

0.121 0.127 -0.006 0.133 -0.012 

0.152 0.151 0.001 0.157 -0.005 

0.212 0.232 -0.02 0.229 -0.017 

0.273 0.297 -0.024 0.292 -0.019 

0.333 0.333 0 0.329 0.004 

0.485 0.487 -0.002 0.482 0.003 

0.545 0.544 0.001 0.539 0.006 

0.576 0.579 -0.003 0.58 -0.004 

0.636 0.635 0.001 0.642 -0.006 

0.667 0.656 0.011 0.659 0.008 

0.848 0.764 0.084 0.863 -0.015 

Root-mean-square 
error of prediction 

 0.027  0.011 

a Mole fraction, b Non-separative, covalent, chiral discrimination strategy 
 
 

Figure 4.13 shows the UV absorption spectra from 227-268 nm for ten samples 

prepared to illustrate the application of the new covalent discrimination strategy in a real-

life analysis.  The spectra are labeled in terms of the weight compositions, D/L, in mg of 

the enantiomers of phenylalanine.  The weight compositions of the samples were not 

varied at a regular interval.  However, the total weight of each sample is about 0.0300 g.  

Figure 4.13 clearly shows that the absorbances of the real-life situation samples vary 

significantly from each other.  To determine whether the differences in absorbance shown 

by the real-life (RL) samples correlate with their enantiomeric compositions, all of the ten  
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samples were cross-validated, that is, each sample was excluded once from the 

calibration model and predicted as a validation sample.  As such, each sample was tested  

both as a calibration and a validation sample.   
 
 

Table 4.6. Prediction results for log10 and original spectral data analyses for recrystalized phenylalanine 
ester (RE) validation samples.  Samples were predicted in terms of D-phenylalanine mole fractions. 

 
Actual D-Phe ø a of 
RE sample 

Log10 spectral  
data prediction  

Absolute error Original spectral  
data prediction 

Absolute error 

0.212 0.214 -0.002 0.22 -0.008 

0.273 0.293 -0.02 0.297 -0.024 

0.303 0.331 -0.028 0.331 -0.028 

0.364 0.408 -0.044 0.406 -0.042 

0.485 0.5 -0.015 0.501 -0.016 

0.545 0.575 -0.03 0.576 -0.031 

0.667 0.68 -0.013 0.684 -0.017 

0.818 0.811 0.007 0.811 0.007 

0.879 0.861 0.018 0.854 0.025 

0.939 0.927 0.012 0.932 0.007 

Root-mean-square 
error of prediction 

 0.022  0.023 

a Mole fraction, b Recrystallized 
 
 

Figure 4.14A and B, respectively, show the calibration (fitted) and cross-

validation regression (predicted versus known weights) plots for the samples.  Similar to 

the previous NSCCDS analyses of phenylalanine, the calibration plot shown in Figure 

4.14A reveal strong correlation between spectral data and enantiomeric composition.  

This is indicated by the plot statistics shown in the plot (see top-left corner of plot).  The 

calibration line in Figure 4.14A, which is repeated (black line) in the cross-validation 

plot, shows graphically the deviation in the prediction results for the RL samples.  The 
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Figure 4.13.  UV absorption spectra of ten real-life (RL) samples made up of different compositions of the 
enantiomers of phenylalanine.  The samples were prepared by esterifying known weight compositions of 
the enantiomers weighed out together using a racemic mixture of 2-butanol in the presence of HCl.  The 
arrow shows the order of the spectra from top to bottom according to the weight compositions, D/L, in mg 
of the enantiomers of phenylalanine making up the samples.  

 
 

specific value for the predicted weight of D-phenylalanine in each sample, compared to 

the actual weight is shown in Table 4.7.  It is obvious from the table that the absolute 

errors computed for the predicted weights are quite small.  This is an indication of the 

effectiveness of the covalent discrimination.  The root- mean-square error of prediction 

computed for the analysis is 0.0012.  This error is significantly low compared to errors 

computed for the other analysis described earlier in this chapter.  The low error values 

computed for this analysis suggest that the covalent discrimination strategy could be even 

more sensitive or effective for real-life situations.  One reason that could possibly account 

for the high sensitivity or effectiveness of the real-life situation analysis is kinetically 
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Figure 4.14.  A: PLS-1 regression calibration plot developed from the spectral data of the ten phenylalanine 
samples prepared for real life situation analysis.  B: PLS-1 cross-validated plot for the same samples in A. 

 
 

and/or thermodynamically controlled competition between the enantiomers in their 

reaction with the chiral selector.  Kinetic and /or thermodynamic control in reactions of 
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Table 4.7.  Summary of the prediction results for the analysis of real-life situation samples of phenylalanine 
 

Total weight (g) Weight of L-Phe 
(g) 

Weight of D-Phe 
(g) 

Predicted weight 
of D-Phe (g) 

Absolute error 

0.0301 0.0211 0.009 0.0103 -0.0013 

0.0301 0.0128 0.0173 0.0188 -0.0015 

0.0301 0.0171 0.0130 0.0120 0.001 

0.0300 0.0151 0.0149 0.0158 -0.0009 

0.0304 0.0131 0.0173 0.0159 0.0014 

0.0300 0.0109 0.0191 0.0182 0.0009 

0.0304 0.0092 0.0212 0.0224 -0.0012 

0.0300 0.0042 0.0258 0.0244 0.0014 

0.0301 0.005 0.0251 0.0232 0.0019 

0.0304 0.0023 0.0281 0.0271 0.001 

Root-mean-square error of prediction                                                                                  0.0012 

 
 

this kind will lead to the preferential formation of the derivative of one of the  

enantiomers over the other.  This could enhance quantitation of the enantiomers.   
 
 

The Custom-Designed Capillary Micro Cell Compared with the Commercial Cell and the 
Capillary Flow-Cell 

 
The root-mean-square error of prediction (RMSEP), as noted in the previous 

chapters can be used as a figure of merit to compare different techniques in analyses such 

as this because it is a measure of accuracy.  In this section, the effects of the different 

fluorescence cells (the custom-designed capillary, commercial cell, and the capillary 

flow-cell) on the analysis of phenylalanine using β-CD as a chiral selector are compared.  

It should be noted that this comparison can be made because the cell used in a particular 

analysis is an integral part of the analytical technique and its spectral properties or mode 
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of application will directly impact the spectral data for the study in question.  The studies 

compared in this section differ only in the type of cell used for the fluorescence 

measurement: the fluorescence instrument (The Jobin Yvon-SPEX Fluoro Max-2 

spectrofluorometer), chiral analyte (phenylalanine), and chiral selector (β-CD strategy) 

are the same.   

Table 4.8 compares the RMSEP figure of merit for the analysis of phenylalanine-

β-CD samples excited through the custom-designed capillary micro cell to the RMSEP 

figures of merit computed for the analyses of phenylalanine-β-CD samples excited 

through the commercial and capillary flow cells.  A summary of the results for the 

NSCCDS studies and analysis of the recrystallized esters are also reported in Table 4.8.  

Data on studies involving the use of the commercial cell and the capillary flow-cell were 

taken from previous analyses reported by our research group [55].   

From Table 4.8, the RMSEP values for previous analyses of phenylalanine 

involving the use of the commercial fluorometer cell (10 mm pathlength) range from 

0.007 to 0.019.  These errors are comparable with RMSEP, 0.021, computed for the 

analysis of the fluorescence emission spectral data for the phenylalanine collected using 

the capillary micro cell.  The differences between these error values should be due most  

probably to random errors rather than cell defects because the differences are small.  

Similar to the β-CD analysis of Phe in the present study, the RMSEP values computed for 

the analyses of the emission spectral data collected using the capillary cell, for the 

NSCCDS and RE samples, are comparable to the RMSEP values for studies in which the 

commercial cell was used.  It is obvious from Table 4.8 that neither the concentration of 

phenylalanine nor the number of principal components appears to influence the RMSEP. 
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Table 4.8. Comparison of the root-mean-square error of prediction (RMSEP) figures of merit for the 
analysis of phenylalanine using the custom-designed capillary micro-cell, the commercial micro cell and 

the capillary flow-cell. 
 

Cell Type RMSEPa Discrimination 
Strategy 

BMWRb (nm) Number of PCc Concentration 
(mM) 

Capillary 
micro cell 
 

0.021 β-CDd  
 

300-357 2 5 

Commercial 
micro cell 
 

0.013 β-CD 
 

310-375 5 3.75  

 0.019  
 

310-360 5 1.875  

 0.014  
 

320-375 5 0.9375  

 0.007  
 

315-375 5 0.4688  

Capillary  
flow-Cell 
 

0.34 β-CD 275-450 - 3.75  

Capillary 
micro cell 
 

0.011 NSCCDSe  
 

297-355 1 5 

 
 

0.023 NSCCDS, 
(Recrystallized 
ester sample)  

274-450 2 5 

a Root-mean-squares error of prediction, b Best modeled wavelength region, c Principal component 
d β-cyclodextrin, e Non-separative, covalent chiral discrimination 

 
 

Unlike the RMSEP values for the capillary and commercial cells, it can be seen 

from Table 4.8 that an unusually high RMSEP, 0.34, was computed for the study in 

which the emission spectral data of phenylalanine was collected using the capillary flow-

cell.  The unusually high error for the flow-cell analysis should be due to the flow system.  

This is because, except for the use of the flow-cell for emission spectra collection, the 

study was perform under conditions identical to those for the study reported in Table 4.8 

in which the commercial cell was employed in the analysis of Phe at a concentration of 

3.75 mM.  In addition, the unusually high error should be due to the flow system because 

the capillary tube used for the flow-cell is similar to the capillary tube used for the  
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present study, which resulted in RMSEP values comparable to those for the commercial 

cell.  It is noted in the reference [55] for the flow-cell study that the flow injection system 

needs optimization.   

Based on the RMSEP values computed for the analyses involving the use of the 

custom-designed capillary cell compared to the commercial cell, it is undoubtedly clear 

that the capillary cell is comparable to the 10-mm pathlength commercial cell for steady- 

state fluorescence emission measurement.   
 
 

Conclusion 

The use of the racemic mixture of 2-butanol in place of (S)-(+)-1,2-propanediol in 

our newly developed covalent discrimination strategy, NSCCDS, for the successful 

analysis phenylalanine, indicates that the strategy will possibly lend itself to the use of a 

variety of chiral selectors.  Thus, the strategy has the potential for being a general 

strategy for enantiomeric composition analysis.  The successful application of the 

racemic mixture of 2-butanol in the present study shows that the use of isotropic 

spectroscopic (non-chiroptical) techniques, as employed by us, for chiral analyses will 

allow the use of racemate forms of chiral selectors for the assessment of enantiomeric 

purity.  This is beneficial in view of the high cost of enantiopure chiral selectors as 

opposed to their racemates or racemic mixtures.  Furthermore the use of the racemate of 

2-butanol as a chiral selector in this study suggests it might be worthwhile investigating 

the possibility of using racemates as chiral selectors for quantitative chiral analysis, 

involving other techniques, particularly in chromatography.  This should be possible 

because, as mentioned earlier, enantiomeric pairs are known not to react equally with any  
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given enantiomer.  Thus, there is always the possibility of the preferential formation of 

one diastereomer of a pair of enantiomers over the other.  However, the viability of using 

racemic mixtures for enantiomeric purity assessment in chromatographic can only be 

proven experimentally.   

The small sample volume (25 μL) required by our custom-designed capillary cell 

is certainly a significant advantage over the use of the commercial cell, which requires 

not less than 1400 μL of sample volume.  In addition, the use of our custom-designed 

capillary cell is less cumbersome and faster for spectral collection than the commercial 

cell.  Thus, analysis involving fluorescence measurements can be performed more rapidly 

using the capillary cell than the commercial cell.  There is, however, the need to improve 

on the quality of the cell by using a capillary tube made of high quality quartz material.  

With such a high quality quartz material, spectra collected using the capillary cell may 

not need to be blank corrected for qualitative purposes.  The Jobin Yvon-SPEX Fluoro 

Max-2 spectrofluorometer used in this study is designed with an excitation beam for 

exciting a flat and wider surface area than presented by our custom-designed capillary 

cell.  It is, therefore, possible that a spectrofluorometer whose optical configuration is 

modified to suit the geometry and size of the capillary cell might improve spectra 

collection with the capillary cell.   



 
 
 

CHAPTER FIVE 
 

(S)-(-)-1-phenylethylamine As a Chiral Selector for Non-Covalent Enantiomeric 
Composition Analysis 

 
 

Introduction 
 

In chapter two, (S)-(+)-1,2-propanediol (PD) was employed both as a covalent 

and a non-covalent chiral selector or discriminator for the enantiomeric composition 

analysis of selected chiral analytes including tyrosine and phenylalanine.  The non-

covalent chiral discrimination of tyrosine was particularly effective resulting in a root-

mean-squares error of prediction of 0.019 (1.9 %) compared to 0.047 (4.7 %) for 

phenylalanine.  This error difference in the analyses was noted could be most probably 

due to the difference in the chemical structure of the two analytes.  Unlike phenylalanine, 

tyrosine has a phenolic group, which is a good hydrogen bonding donor capable of 

forming strong hydrogen bonds with the hydroxyl groups of (S)-(+)-1,2-propanediol.  (S)-

(+)-1,2-propanediol, on the other hand, is a weak base with a pKa of 14.9.  Consequently, 

(S)-(+)-1,2-propanediol is capable of acting as a good hydrogen bonding acceptor for 

tyrosine to form strong hydrogen bonds.  The non-covalent (S)-(+)-1,2-propanediol 

discrimination analysis of tyrosine is noteworthy.  This is because it revealed that a non-

inclusion complex forming chiral compound, capable of strong non-covalent interactions 

with a chiral analyte, can be used for effective non-covalent chiral discrimination in our 

CARMSD technique.  This is important because such non-covalent discrimination 

strategy alternatives could be equally sensitive and/or more cost effective.  For the amino 

acids analyzed in Chapter 2 and allied chiral compounds, non-covalent quaternary salt 
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formation could be an alternative discrimination strategy to the covalent esterification 

strategy described in Chapter 2.  The non-covalent quaternary salt formation could be 

achieved through the use of a chiral amine whose pKa is higher than that of the chiral 

organic acid (amino acid or other) in question.  On the other hand, a chiral selector, 

capable of protonating the amino group, for example, of amino acids can be used as a 

non-covalent chiral selector for the analysis of amino acids and allied chiral compounds.  

Generally, the classically non-covalent protonation reaction between an organic acid and 

an amine can be represented as shown in reaction equation 5.1 below.  Such coordinate  

RCOOH  +  NHR2   =  RCOO- +NH2R2            5.1 

bond forming interaction between the enantiomeric pair of an organic acid and a chiral 

amine will lead to the formation of a pair of diastereomeric salts.  As a pair of 

diastereomeric compounds, the solution spectral properties, among others, of the pair of 

diastereomeric salts, should be different.  This should allow for spectral discrimination of 

the enantiomeric pair of the organic acid in question for enantiomeric composition 

analysis.   

For environmentally friendly strategies, it is desirable that these non-covalent 

interactions take place in environmentally friendly solvents like water.  In addition, it was 

noted that chromatographic, electrophoretic, NMR and chiroptical analytical techniques 

employed in analyses such as this, are limited by one or more of the following: (1) long 

analysis time, (2) large sample amount requirement, (3) high sample concentration, and 

(4) high cost of analysis [4, 21, 91, 92-95].  As such, the chromatographic, 

electrophoretic, NMR and chiroptical techniques, even though effective, are less 

attractive for routine and high-throughput application in analyses such as this. As noted 
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earlier, these limitations have created the need for the development of effective 

alternative methods that are simpler, fast, robust, and less expensive [56, 96].   

This chapter describes the determination of the enantiomeric composition of 

selected chiral analytes using (S)-(-)-1-phenylethylamine (S-PEA) as a non-covalent 

chiral selector.  Similar to our previous strategies, S-PEA is used as a chiral 

discriminating agent for the formation of non-covalent diastereomeric pairs in situ from 

enantiomeric pairs of chiral analytes  

(S)-(-)-1-phenylethylamine (S-PEA) or alpha-methylbenzylamine is a chiral 

amine with an optical activity of – 30 ± 1o ( [ ]20
Dα , 10% ethanol) and can be obtained in 

high purity (≥ 99 %).  S-PEA is soluble in a large number of organic solvents including 

ethanol, benzene, toluene, acetonitrile, chloroform, and tetrahydrofuran (THF).  Its 

solubility in water is 0.04 mg/mL.  The non-covalent interactions possible with S-PEA 

include: (1) classically non-covalent Bronsted-Lowry or Lewis base reactions with 

appropriate acids and metal complex formation [97], (2) hydrogen bonding, and (3) 

aromatic π-system interactions [98, 99] .  

The procedure for the application of (S)-(-)-1-phenylethylamine as a chiral 

selector is quite simple: calibration stock solutions are prepared by dissolving identical 

amounts of the pure enantiomers of the chiral analyte in separate but identical volumes of 

a stock solution of S-PEA.  Calibration sample solutions are then prepared for spectral 

analysis by mixing known amounts of the stock solutions of the enantiomers dissolved in 

the S-PEA solution.  The spectral data collected are then subjected to PLS-1 regression 

modeling to develop a calibration model.  The calibration model is then used as usual for 

the determination of the enantiomeric composition of unknowns.  This mode of 
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application of S-PEA for chiral analysis is novel.  This is because though several reports 

are in the literature on the application of S-PEA in stereochemistry, [100-108] none 

indicates the use of 1-phenylethylamine for the determination of enantiomeric 

composition according to the simple procedure outlined for this study.  (R/S)-(+/-)-1-

phenylethylamine is an attractive chiral selector for our approach of chiral analysis 

because: (1) it can be dissolved in water, (2) it can be obtained in high purity (≥ 99 %), 

(3) it is capable of associating with a broad spectrum of other molecules through different 

intermolecular interactions– ionic, hydrogen bonding, and aromatic pi interactions, (4) it 

is inexpensive, and (5) it can be analyzed using several spectroscopic techniques 

including ordinary UV spectroscopy. Unlike the 1,2-propanediol covalent discrimination 

analysis described in chapter two, the present S-PEA strategy does not require any 

heating thus making the analysis simpler.   

In this study, three amino acids (alanine, phenylalanine, and tyrosine) and a 

sugar/carbohydrate (arabinose) were analyzed.  The structures of these chiral analytes are 

shown in Figure 5.1.  Based on the functional groups of these chiral compounds, S-PEA 

could interact non-covalently with alanine, phenylalanine, and tyrosine through: (1) ion 

pair formation (quaternary salt formation) and (2) hydrogen bonding.  Aromatic pi 

system interactions could also occur between S-PEA and tyrosine or phenylalanine [100, 

101].  The obvious mode of interaction of arabinose with S-PEA will be hydrogen bond 

formation.  This is because it has hydroxyl groups, which could be used in forming 

hydrogen bonds with the amine group of S-PEA.  Ion pair formation could be possible 

with arabinose provided its hydroxyl groups are acidic enough.  In addition to the above-

mentioned modes of interactions, van der Waals and dipole moment interactions are  
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Figure 5.1. Chemical structures of (S)-(-)-1-Phenylethylamine (S-PEA), Alanine (Ala), Phenylalanine 
(Phe), Tyrosine (Tyr), and Arabinose.  

 
 

also possible.  These latter interactions could be useful if they differ for a given pair of  

enantiomers.   
 
 

Methodology 
 
 

Materials  

Enantiopure Alanine (D and L, 99 %), Phenylalanine (D and L, ≥ 99 %), Tyrosine 

(D and L, 99 %), and arabinose (D and L, 99 %) were purchased from Aldrich Chemical 

Company, Inc.  Enantiopure (S)-(-)-1-Phenylethylamine (98 %) was purchased from Alfa 

Aesar. All chemicals were used as received.  
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Instrumentation, Spectra Collection, and Spectral Data Analysis 

The spectra of samples analyzed in this study were collected using the same 

Agilent 8453, photodiode array, UV-vis spectrophotometer and the black-wall, 10-mm 

pathlength, quartz sample cell used in the study described in Chapter 2.  The original 

spectral data of samples in this study were subjected to multivariate, PLS-1 regresion 

analysis as usual using the same Unscrambler statistical package employed in the studies  

described in the previous chapters.   
 
 

Analysis of the Amino Acids: Preparation of Stock and Sample Solutions 
 
 

Tyrosine.  Approximately 2.5 mM stock solution of S-1-PEA was prepared by 

quantitatively transfering 0.0758 g of S-PEA into a 250-mL volumetric flask using 

deionized water.  The solution was then diluted to the 250 mL mark using the same 

deionized water  A 2.5 mM D- or L-tyrosine-S-PEA solution was prepared by dissolving 

0.0453 g of D- or L-tyrosine in some amount of the S-PEA stock solution, which was then 

transferred quantitatively into a 100-mL volumetric flask and diluted to the mark using 

the same 2.5 mM S-PEA stock solution.  Seventeen sample solutions were prepared for 

analysis by mixing pre-determined volumes of the D- and L-tyrosine-S-PEA stock 

solutions, using a 1000 μL eppendorf pipet. The mole fractions of D- or L-Tyr were 

computed using the volume compositions of the samples. The mole fractions of the  

sample solution were varied at a regular interval of 0.05 mole fraction units.   
 
 

Phenylalanine.  The molar absorption coefficient of phenylalanine is lower than 

that of tyrosine.  As such, 4 mM instead of 2.5 mM solutions of phenylalanine were 

prepared.  To do this, 0.4851 g of S-PEA was quantitatively transferred into a one liter 
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volumetric flask with deionized water.  The solution was then diluted to the 1 L mark 

using deionized water to prepare approximately a 4mM S-PEA stock solution.  A 4 mM 

stock solution of D- or L-Phenylalanine dissolved in the S-PEA stock solution was 

prepared by dissolving 0.0661 g of D- or L-Phenylalanine in a minimum amount of the S-

PEA stock solution.  This was then transferred quantitatively into 100mL volumetric 

flask and made up to the 100 mL mark using the same S-1-PEA stock solution.  Sixteen 

sample solutions made up of varying enantiomeric compositions of phenylalanine were 

prepared for analysis by mixing pre-determined amounts of the D- and L-phenylalanine in  

S-PEA stock solutions.   
 
 

Alanine.  Similar to phenylanine, alanine solutions were prepared at a 

concentration of 4 mM.  Part of the approximately 4 mM stock solution of S-PEA, 

prepared during the analysis of phenylalanine, was used in this experiment to prepare 

stock solutions of D- and L-alanine disolved in S-PEA solution according to the 

procedure described above for phenylalanine.  For the 4 mM D or L-alanine-S-PEA stock 

solution, a mass of 0.0356 g of D- or L-alanine was required.  Fourteen sample solutions, 

made up of varying enantiomeric compositions, were prepared for analysis as usual by  

mixing pre-determined amounts of the D- and L-alanine-S-PEA stock solutions. 
 
 

Analysis of Arabinose 

Arabinose is an aldopentose monosaccharide that is known to be more abundant 

in nature in the L than the D form.  Arabinose is a significant component in corn and 

green soybean fiber and can be found in biopolymers like hemicellulose, pectin, and 

other cellulosic biomass [109-111].  The L-arabinose operon of Escherichia coli (E. coli), 
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which has been studied for over forty years, is still an active area of research in 

recombinant gene studies and ethanol fuel production [112-114].  Generally, 

carbohydrates serve as energy reservoirs and metabolic intermediates, several of which 

are linked to proteins and lipids of great biological importance.  In addition, the vital 

biomolecules, DNA and RNA, which are responsible for the storage of genetic 

information and gene expression, contain the pentose sugars, deoxyribose and ribose, as 

part of their structural framework.  In a recent publication, Augusti et al. noted that 

studies have revealed that carbohydrate groups on cell surfaces play key roles in cell-cell 

recognition [115].  Similar to other biological molecules, the biological functions of 

carbohydrates or sugars are closely related to their chiral stereochemistry.  As such, 

carbohydrates or sugars constitute an important class of molecules studied in the field of 

chiral analysis.  Usually, chiral analysis of carbohydrate or sugars involves the use of 

chromatographic techniques [115, 116].  However, the significant progress made in the 

past few years in mass spectrometric techniques, has made possible the use of mass 

spectrometry for chiral identification and quantification [115].  Several studies including 

a recent publication by Augusti et al. in which modified amino acids and divalent cations 

of transition metals were used as chiral selectors for enantiomeric composition analysis of 

simple sugars are reported [115-119].  As part of the extension of our research in chiral 

analysis, our research group recently developed a UV spectrophotometer-based 

spectropolarimetric technique for the determination of sucrose and other optically active 

compounds [120].  Unlike the previous spectropolarimetric study, the present study on 

arabinose, similar to our previous chiral analysis studies, used a chiral selector, (S)-(-)-1-

phenylethylamine, instead of a polarized light source in combination with an ordinary 
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UV spectrophotometer for the analysis.  Compared to the traditional chromatographic and 

recent mass spectrometric techniques, our present technique involving S-PEA as a chiral 

selector is simpler, faster, less expensive, and can be used for routine and high throughput 

analysis.  In addition, the present S-PEA approach will afford determination of 

enantiomeric excess/composition of carbohydrates or sugars at lower concentration levels 

than some of the currently used methods [121-122]. 

The analysis of arabinose in this study was performed at two concentration levels.  

The first analysis was performed at a concentration of 3 mM and the second at 12 mM.  

The second analysis at a higher concentration was necessitated by the unsatisfactory 

results of the analysis at the 3 mM concentration level.  This was suspected to be due to 

ineffective chiral discrimination, which in turn was suspected to be due to weak 

intermolecular interactions at the 3 mM concentration level; the possibility of this was  

explained in Chapter 2.  
 
 

Preparation of Stock and Sample Solutions of Arabinose.  The stock and sample 

solutions for arabinose were prepared following the procedure used in preparing the stock 

and sample solutions for tyrosine, phenylalanine and alanine.  For the a 3 mM analysis, 

0.0450 g of D- or L-arabinose was dissolved in an appropriate volume of 3 mM S-PEA 

solution.  Twelve arabinose-S-PEA sample solutions were prepared using the 3 mM D- 

and L-arabinose-S-PEA stock solution for spectral analysis.  In case of the 12 mM 

analysis, a mass of 0.1802 g of D- or L-arabinose was dissolved in 6 mM S-1-PEA 

solution giving arabinose/S-PEA ratio of 2:1.  This ratio of arabinose to S-PEA was used 

to create competition for the purpose of enhancing discrimination of the enantiomers.  
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Thirteen sample solutions made up of varying enantiomeric compositions of the 12 mM 

D- and L-arabinose-S-1-PEA stock solutions were prepared for spectral analysis similar to  

the other analytes.  
 
 

Results and Discussion 
 
 

Analysis of Tyrosine 

Figure 5.2A shows the UV absorption spectra from 205 to 356 nm for 2.5 mM 

aqueous solutions of enantiopure L-tyrosine and S-PEA.  The tyrosine spectrum reveals 

the usual absorption peak of tyrosine in water with an absorption maximum at 274 nm.  

The spectrum for the S-PEA reveals the usual absorption peak of the phenyl group, which 

has an absorption maximum at 257 nm.  The absorption peaks recorded for tyrosine and 

S-PEA are due to the 1Ag1←1B2u forbidden л*←л transitions of the phenolic group in 

tyrosine and the phenyl group in S-PEA respectively.  Figure 5.2B shows the spectra 

from 250 to 340 nm for the eighteen tyrosine-S-PEA sample solutions prepared for 

analysis.  The solutions are made up of different enantiomeric compositions but identical 

total amount of tyrosine and S-PEA.  Similar to the pure tyrosine solution, the tyrosine-S-

PEA samples solutions reveal the usual absorption maximum of tyrosine at 274 nm.  In 

addition, the spectra of the tyrosine-S-PEA sample solutions, compared to the spectrum 

for the enantiopure L-tyrosine or S-PEA, show dramatic hyperchromic and bathochromic 

effects in the spectral regions from 250 to 260 nm and about 290 to 313 nm.  These 

changes in spectral signature, undoubtedly, should be due to the interaction of S-PEA 

with tyrosine.  This is because such features are not revealed by the spectrum of pure 

tyrosine (see Figure 5.2A) in those spectral band regions.   
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Figure 5.2. A: UV absorption spectra of 2.5 mM aqueous solutions of tyrosine (pink spectrum) and (S)-(-)-
1-phenylethylamine (blue spectrum).  B: UV absorption spectra of eighteen tyrosine-S-PEA sample 
solutions made up of varying enantiomeric compositions of tyrosine but identical total amounts of tyrosine 
and S-PEA 
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Figure 5.3.  Mean-centered UV absorption spectra of eighteen tyrosine-S-PEA sample solutions made up of 
varying compositions of D- and L-tyrosine but identical total amounts of tyrosine and S-PEA.  The spectra 
are labeled in terms of the mole fractions (to two decimal places) of the D-tyrosine enantiomer. 

pair complexes were formed in solution.  

Figure 5.3 shows from 285 to 405 nm the mean-centered spectra of the original 

UV absorption spectra shown in Figure 5.2B for the eighteen tyrosine-S-PEA sample 

solutions.  Like all other spectra labeled in this chapter using mole fractions, the mole 

fractions shown in Figure 5.2B are corrected to two decimal places (2 dp).  The figure 

clearly shows differences in absorption of the sample solutions and an isosbestic point at 

340 nm.  These features indicate that two different UV absorbing species were formed by 

the interaction of tyrosine with S-PEA in solution.  Thus, tyrosine-S-PEA diastereomeric  
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Figure 5.4.  Plots of PLS-1 regression calibration model developed using the UV absorption spectral data and known enantiomeric compositions of 
tyrosine-S-PEA calibration samples.  A: scores plot, B: regression coefficient as a function of wavelength plot, C: percent explained variance as a function 
of principal component plot, and D: calibration and cross-validation regression lines for the fitted (black) and predicted (blue) mole fractions, respectively, 
versus the known mole fractions of calibration samples.  The model required two PCs (see below plot B or D). 

A 
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Figure 5.4A, B, C, and D show the multivariate, PLS-1 plots of the tyrosine-S-

PEA calibration model.  Figure 5.4A is the scores plot, which reveals the pattern of 

variation in sample composition of the calibration samples.  Figure 5.4B represents the 

regression coefficient plot.  The regression coefficient curve has both positive (above 

zero) and negative (below zero) parts.  The negative part shows that enantiomeric 

composition changes in an opposite direction with spectra in that wavelength region 

while the positive part indicates enantiomeric composition changes in the same direction 

with spectra in that wavelength region. The regression coefficient with the highest 

positive value is associated with the 365 nm wavelength and the regression coefficient 

with the highest negative value is recorded at 319 nm.  Figure 5.4C shows that six 

PCswere computed.  However, only the first two PCs were needed for the model.  The 

first PC explained 97 and 99 % of the variation in the spectral data and enantiomeric 

composition.  The second PC explained 2 and 1 % of the variation in the spectral data and 

enantiomeric composition.  Though the variations explained by the second PC were small 

they were found to be useful.  Figure 5.4D, shows the regression line for the predicted 

(by cross-validation) versus known enantiomeric compositions of the calibration samples 

plot.  The plot statistics computed for the regression line are: 0.999 for the slope, 0.00221 

for the offset, 0.998 for the correlation coefficient, 0.018 for the root-mean-square error 

of prediction and 0.019 for the standard error.  These values indicate a strong correlation 

between the predicted and known sample compositions of the calibration samples as 

shown by the plot in Figure 5.4D.  This in turn signifies that the spectral data of the 

calibration samples are well correlated with the corresponding enantiomeric 

compositions.   
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Table 5.1 shows the mole fractions predicted for eight tyrosine-S-PEA validation 

samples using the tyrosine-S-PEA calibration model whose plots are shown in Figure 

5.4A, B, C, and D.  The actual mole fractions of the tyrosine-S-PEA validation samples 

are also reported in the table.  In addition, the mole fractions predicted in Chapter 2 for 

the analysis of tyrosine, using (S)-(+)-1,2-propanediol both as a covalent and non- 

covalent chiral selector, are reported in the same table together with the corresponding  
 
 

Table 5.1.  Comparison of the actual and predicted D-tyrosine mole fractions of 2.5 mM tyrosine validation 
samples containing varying compositions of D- and L-Tyr.  All samples contain identical amounts of total 

tyrosine and a fixed concentration of S-PEA. 
 

Actual D øa for 
S-PEA NCAb 

Predicted D ø 
for S-PEA 
NCA 

Actual D ø for 
PDc NCA 

Predicted D ø 
for PD NCA 

Actual D ø for 
PD CAd 

Predicted D ø 
for PD CA 

0.250 0.250 0.100 0.109 0.800 0.794 

0.300 0.303 0.150 0.153 0.750 0.737 

0.400 0.401 0.344 0.357 0.550 0.581 

0.450 0.462 0.400 0.427 0.300 0.248 

0.650 0.659 0.599 0.568 0.200 0.166 

0.750 0.758 0.898 0.884 0.100 0.0766 

0.800 0.802     

0.900 0.901     

RMSEPe 0.006  0.019  0.03 

a Mole fraction, b Non-covalent analysis, c (S)-(+)-1,2-propanediol d Covalent analysis, e Root-mean-
squares error of prediction 

 
 

actual mole fractions for comparison.  The predicted mole fractions (second column) for 

the tyrosine-S-PEA analysis, compared with the actual mole fractions (first column), 

clearly reveal a high level of accuracy of the analysis.  The root-mean-square error of 
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prediction (RMSEP) computed for the analysis is 0.006.  This low magnitude of the 

RMSEP is an indication of the effective chiral discriminatory effect of (S)-(-)-1-

phenylethylamine.  The 0.006 RMSEP computed for the tyrosine-S-PEA analysis, 

compared to the prediction errors computed for the (S)-(+)-1,2-propanediol analyses, 

indicates that the non-covalent S-PEA discrimination is the most effective strategy for the 

analysis of tyrosine.  In addition, the prediction errors appear to suggest that generally, 

the non-covalent discrimination analyses are more effective for the analysis of tyrosine.  

This is because the results for the non-covalent (S)-(+)-1,2-propanediol discrimination 

analysis are also better than the results for the covalent analysis.  This reinforces the point 

made earlier for the need for alternative strategies in these analyses.  The effectiveness of 

the non-covalent discrimination by S-PEA might be related to the extent to which the 

effect of discrimination is reflected in the spectral property of the analyte.  This is 

because unlike (S)-(+)-1,2-propanediol, S-PEA significantly changed in the spectral  

signature of tyrosine (compare Figure 5.2A to 5.2B).   
 
 

Analysis of Phenylalanine 

Figure 5.5 shows the UV absorption spectrum (pink) for a 4 mM solution made 

up of 1:9 mole fraction ratio of D- and L-phenylalanine dissolved in S-PEA solution (~ 

4mM) and the spectrum (blue) of a 4 mM solution of enantiopure D-phenylalanine.  It is 

clear from Figure 5.5 that the absorbance of the phenylalanine-S-PEA solution at the 

wavelength of maximum absorption, 257 nm, for the phenyl group present in both 

molecules, is about twice the absorbance recorded for the enantiopure D-phenylalanine 

solution.  This is expected because the phenylalanine-S-PEA solution contains twice as 

much phenyl groups as the enantiopure D-phenylalanine solution.  In addition, the 
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spectrum for the phenylalanine-S-PEA solution reveals a bathochromic shift in the 

spectral region between224 and 244 nm.  Furthermore, the vibrational structures revealed 

by the spectrum for the enantiopure D-phenylalanine solution, in the spectral region 249-

264 nm, are partially smoothed out in the spectrum recorded for the phenylalanine-S-

PEA solution.  The above-noted changes in spectral signature for the phenylalanine-S-

PEA solution (see Figure 5.5) are significantly different from those revealed in 

Figure5.2B by the tyrosine-S-PEA sample solutions.  This could possibly mean that the  

modes of interaction of S-PEA with tyrosine and phenylalanine are different. 
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Figure 5.5. UV absorption spectrum (pink) of a 4 mM solution made up of 1:9 mole fraction ratio of D- and 
L- phenylalanine dissolved in ~ 4 mM S-PEA solution and the UV absorption spectrum (pink) of the ~ 4 
mM S-PEA solution.   

 
 

Figure 5.6A and B, respectively, show the original and mean-centered UV 

absorption spectra (227-272 and 232-253 nm respectively) for the seventeen 

phenylalanine-S-PEA sample solutions prepared for analysis.  The sample solutions are 

made up of different enantiomeric compositions of D- and L- phenylalanine but identical 
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total concentrations of phenylalanine and S-PEA.  Similar to the tyrosine samples, the 

mean centered spectra in Figure 5.6, which are labeled in terms of the mole fractions (to 2 

dp) of the D-phenylalanine enantiomer, clearly show that the phenylalanine-S-PEA 

sample solutions differ in their absorbances.  This is an indication that diastereomers of 

phenylalanine were formed by the interaction of the S-PEA chiral selector with the 

enantiomers of phenylalanine in solution.  The phenyalalnine-S-PEA samples, as shown 

by their mean-centered spectra in Figure 5.6, reveal no spectra-crossing unlike the 

tyrosine samples.  Consequently, the interaction of the S-PEA chiral selector with 

phenylalanine did not lead to the formation diastereomers that absorb UV identically at 

any wavelength recorded as observed for tyrosine.   

As usual, a multivariate, PLS-1 regression calibration model was developed using 

the original spectral data of eight randomly selected phenylalanine-S-PEA calibration 

samples made up of D-phenylalanine mole fractions of 0.0500, 0.100, 0.200, 0.392, 

0.500, 0.527, 0.700, and 0.950.  The cross-validated regression plot statistics of the 

phenylalanine-S-PEA calibration samples (second column) are compared with the cross-

validated regression plot statistics reported in Chapter 2 for the analyses of phenylalanine 

using (S)-(+)-1,2-propanediol both as a covalent and a non-covalent chiral selector 

(column 2 and 3).  Table 5.2 also shows the regression plot statistics computed for the S-

PEA-tyrosine calibration samples (fifth column) for comparison.  Table 5.2 shows that 

the values of the cross-validated PLS-1 regression plot statistics for the phenylalanine-S-

PEA calibration samples differ from those computed for the phenylalanine calibration 

samples discriminated using (S)-(+)-1,2-propanediol as a non-covalent chiral selector 

(Table 5.2, column 2).  On the other hand, they compare favorably with the plot statistics  
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Figure 5.6.  Mean-centered UV absorption spectra of seventeen phenylalanine-S-PEA sample solutions (4 
mM) made up of varying compositions of D- and L-phenylalanine but identical total amount phenylalanine 
and S-PEA.  The mean centered spectra are labeled in terms of the mole fractions (to two decimal places) 
of the D-phenylalanine enantiomer. 
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Table 5.2. Comparison of the cross-validated PLS-1 regression plot statistics computed for the calibration 
samples of phenylalanine and tyrosine analyzed using (S)-(-)-1-phenylethylamine (S-PEA) or (S)-(+)-1,2-

propanediol  (PD) used for covalent or a non-covalent chiral discrimination of phenylalanine. 
 

Cross-Validated PLS-1 Regression Plot Statistic Value PLS-1 Regression 
Plot Statistic 

S-PEA NCAa 
of Phenylalanine 

PDb NCA 
of Phenylalanine 

PD CAc 
of Phenylalanine 

S-PEA NCA 
of Tyrosine 

Slope  0.988 0.881 0.967 0.999 

Offset 0.00643 0.0908 0.00828 0.00221 

Correlation 
coefficient 

0.996 0.992 0.998 0.998 

RMSEPd 0.025 0.0500 0.023 0.018 

SEPe 0.027 0.0501 0.024 0.019 

Modeled 
wavelength range 

223-360 nm 225-450 nm 235-567 nm 318-500 nm 

a Non-covalent analysis, b (S)-(+)-1,2-propanediol, c Covalent analysis, d Root-mean-squares error of 
prediction, e Standard error 

 
 

computed for the phenylalanine calibration sample discriminated using (S)-(+)-1,2-

propanediol as a covalent chiral selector (Table 5.2, column 4).  Compared to the plot 

statistic values for tyrosine discriminated using S-PEA as a non-covalent chiral selector, 

the plot statistics values computed for tyrosine are of slightly higher merit than those for 

the phenylalanine-S-PEA calibration samples.   

The PLS-1 regression calibration model of the phenylalanine-S-PEA calibration 

sample, whose cross-validated regression plot statistics are shown in Table 5.2, was used 

in predicting eight of the phenylalanine-S-PEA samples.  The results of the prediction are 

reported in Table 5.3.  Also included in Table 5.3 are the prediction results reported in 

Chapter 2 for the analysis of phenylalanine using (S)-(+)-1,2-propanediol.  It is clear from 

the table that the mole fractions of the phenylalanine-S-PEA samples are predicted quite 

accurately. The root-mean square errors of prediction (RMSEP) computed for the  

analysis is 0.013.  This is comparable to the RMSEP of 0.014 computed for the 
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Table 5.3. Comparison of the actual and predicted D-Phe mole fractions of 4 mM phenylalanine validation 
samples containing varying compositions of D- and L-Phe. All samples contain identical amounts of total 

phenylalanine. 
 

Actual D øa for 
S-PEA NCAb 

Predicted D ø 
for S-PEA 

NCA 

Actual D ø for 
PDc CAd 

Predicted D ø 
for PD CA 

Actual D ø for 
PD NCA 

Predicted D ø 
for PD NCA 

0.150 0.185 0.103 0.0848 0.0499 0.0160 

0.267 0.264 0.400 0.407 0.102 0.124 

0.352 0.348 0.451 0.425 0.200 0.227 

0.468 0.464 0.597 0.596 0.299 0.259 

0.486 0.483 0.801 0.801 0.601 0.576 

0.527 0.524 0.851 0.859 0.700 0.701 

0.600 0.597   0.855 0.846 

0.650 0.640      

RMSEPe 0.013  0.014  0.026 

a Mole fraction, b Non-covalent analysis, c (S)-(+)-1,2-propanediol, d Covalent analysis 
 
 

(S)-(+)-1,2-propanediol covalent discrimination analysis of phenylalanine reported in 

Chapter 2.  The prediction error, 0.026, computed for the non-covalent discrimination 

analysis of phenylalanine using (S)-(+)-1,2-propanediol for non-covalent chiral 

discrimination of phenylalanine is quite good.  The differences between these errors, 

most probably, could be due to random errors; not necessarily one strategy being better 

than the other.  Compared to tyrosine, the RMSEP values reported in Table 5.3 for the 

three approaches used in analyzing phenylalanine suggest that unlike tyrosine, both the S-

PEA non-covalent and (S)-(+)-1,2-propanediol covalent discrimination strategies are  

effective for the analysis of phenylalanine.   
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Analysis of Alanine 

Figure 5.7 shows four UV absorption spectra from 190 to 310 nm recorded for 

four different solutions: the ~ 4 mM S-PEA stock solution, (blue spectrum), a 4 mM 

solution of enantiopure D-alanine (pink spectrum), the 4 mM D-alanine dissolved in ~4 

mM S-PEA solution (green spectrum), and the 4 mM L-alanine dissolved in ~4 mM S-

PEA solution (brown spectrum). Alanine (Ala) has a weak chromophore and shows an 

end-absorption.  However, the spectral effect of the interaction of Ala with S-PEA is  

reflected in the spectrum for the D- or L-alanine-S-PEA solution as a shift to lower  
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Figure 5.7.  UV absorption spectra for four different solutions: S-PEA (blue spectrum), enantiopure D-
almandine (pink spectrum), D-phenylalanine dissolved in S-PEA solution (green spectrum), and L-
phenylalanine dissolved in S-PEA solution (brown spectrum). 

 
 

wavelength relative to the spectrum recorded for the S-PEA solution.  This hypsochromic 

shift is recorded in the spectral region from 210 to 230 nm.  Though this change is small 

in magnitude, it has been consistently observed.  The change in spectral signature of the 
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Ala-S-PEA solution relative to spectral signature of the S-PEA solution indicates a non-

passive intermolecular interaction between Ala and S-PEA in solution.   

Figure 5.8A and B, respectively, show the original and mean-centered UV 

absorption spectra (227-297 and 220-250 nm respectively) for the seventeen Ala-SPEA 

sample solutions prepared for analysis.  Similar to the tyrosine- and phenylalanine-S-PEA 

samples, the mean-centered UV absorption spectra of the Ala-S-PEA sample, which are 

labeled in terms of the mole fractions (to 2 dp) of D-Ala, reveal quite clear differences in 

absorbance.  This indicates that diastereomeric pairs of Ala (D-alanine-S-PEA and L- 

alanine-S-PEA) were formed in solution by the interaction of the S-PEA chiral selector 

with Ala.  Unlike tyrosine but similar to phenylalanine, no spectral crossing is revealed 

by the mean-centered spectra shown in Figure 5.8B for the Ala-S-PEA samples.  This 

indicates that the non-covalent S-PEA diastereomers of Ala do not have the same molar 

absorptivity coefficient at any of the wavelengths recorded.   

For the PLS-1 regression analysis, eight randomly selected samples (0.0500, 

0.150, 0.250, 0.350, 0.500, 0.650, 0.750, 0.900, and 0.950) were used to develop a PLS-1 

calibration model.  The calibration model, as usual, was employed in predicting the rest 

of the seventeen Ala-S-PEA samples, which were used as validation samples.  Contained 

in Table 5.4 are the plot statistic values computed for the regression of the predicted (by 

cross-validation) mole fraction on the actual mole fractions of the calibration samples.  

The regression plot statistic values shown in Table 5.2 for tyrosine and phenylalanine are 

lso reported in Table 5.4 for comparison.  It is obvious from Table 5.4 that except for the 

slope and offset, the regression plot statistics for the Ala-S-PEA calibration samples are 

significantly identical to those for the phenylalanine-S-PEA calibration samples.  Though 
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Figure 5.8.  A: UV absorption spectra of seventeen 4 mM alanie-S-PEA sample solutions made up of 
varying enantiomeric compositions of alanine but identical total amounts of alanine and S-PEA.  B: Mean-
centered form of the UV absorption spectra shown in A for the seventeen 4 mM alanie-S-PEA samples.  
The mean centered spectra are labeled in terms of the mole fractions (to 2 dp) of the D-Ala enantiomer. 
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a most of the regression plot statistics values computed for the Ala-S-PEA calibration 

samples are of lower merit compared to the values computed for the tyrosine calibration 

samples, the correlation coefficient for both samples are the same.  It is possible that the 

difference in the values of the other statistics might be due to random errors.  It is clear in 

Table 5.4 that the modeled wavelength ranges reported for the three sets of calibration 

samples differ significantly from one set of calibration samples to the other.  This is a 

reflection of the different effects of the S-PEA chiral selector on the spectral properties of 

the three amino acids.  The PLS-1 regression model for the Ala-S-PEA calibration 

samples, whose regression plot statistics are reported in Table 5.4, were used in  

predicting the rest of the seventeen Ala-S-PEA samples used as validation samples 
 
 

Table 5.4 Comparison of the cross-validated PLS-1 regression plot statistics computed for the calibration 
samples of alanine, phenylalanine, and tyrosine analyzed using (S)-(-)-1-phenylethylamine (S-PEA) as a 

non-covalent chiral selector 
 

Cross-Validated PLS-1 Regression Plot Statistic Value PLS-1 Regression Plot 
Statistic 

S-PEA NCAa of Alanine S-PEA NCA of 
Phenylalanine 

S-PEA NCA of 
Tyrosine 

Slope  0.940 0.988 0.999 

Offset 0.0398 0.00643 0.00221 

Correlation coefficient 
 

0.998 0.996 0.998 

RMSEPd 0.029 0.025 0.018 

SEPe 0.029 0.027 0.019 

Modeled wavelength 
range 

229-989 nm 223-360 nm 318-500 nm 

a. Non-covalent analysis 
 
 

Out of the remaining eight Ala-S-PEA samples used as validation samples, three were 

identified as outliers and were excluded from the analysis.   
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Table 5.5 compares the predicted mole fractions of the Ala-S-PEA validation 

samples with the actual mole fractions.  Similar to the tyrosine and phenylalanine 

samples, the Ala-S-PEA validation samples are predicted with quite a high level of 

accuracy.  The highest absolute error computed is only 0.031 and the root-mean-square 

error of prediction computed for the entire analysis is 0.016.  These error values clearly  

indicate the chiral discriminatory efficiency of S-PEA as a non-covalent chiral selector.   
 
 

Table 5.5.  Comparison of the actual and predicted D-alanine mole fractions of alanine-S-PEA validation 
samples containing varying compositions of D- and L-Ala but identical total concentrations of Ala and S-

PEA 
  

Actual mole fraction of D-Ala Predicted mole fraction of D-Ala Absolute Error for D-Ala 
Prediction 

0.800 0.789 -0.011 

0.700 0.721 0.021 

0.600 0.596 -0.004 

0.400 0.369 -0.031 

0.300 0.308 0.008 

Root-Mean-Squares Error of 
Prediction 

 0.016 

 
 

Analysis of Arabinose  

As note earlier, arabinose was initially analyzed at a concentration of 3 mM and 

later repeated at 12 mM as a result of unsatisfactory analysis results obtained at the 3 mM 

concentration level.  Figure 5.9A shows the UV absorption spectra from 226 to 306 nm 

for the 3 mM stock solutions of D-and L-arabinose dissolved in 3 mM S-PEA solution, 

and the spectrum of the 3 mM S-PEA solution.  The spectra in pink and blue colors are 

respectively the spectra for D- and L-arabinose dissolved in S-PEA solution and the 

spectrum in brown is the spectrum for the S-PEA solution.  The UV absorption spectra 
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for the for the 12 mM stock solutions of D- and L-arabinose dissolved in 6 mM S-PEA 

solution and the spectrum for the 6 mM S-PEA solution are in Figure 5.9B.  Unlike the 3 

mM solutions in Figure 5.9A, the spectra for the 12 mM solutions of D- and L-arabinose 

dissolved in 6 mM S-PEA solution differ significantly both in absorbance and shape  

(peak region) from the spectrum recorded for the 6 mM S-PEA solution.  In addition, a 
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Figure 5.9.  UV absorption spectra recorded for solutions of D-and L-arabinose dissolved in S-PEA solution 
(pink and blue colors respectively), and S-PEA (brown color spectrum).  A: spectra for solutions prepared 
at a 3 mM concentration level.  B: spectra for 12 mM solutions of D-and L-arabinose dissolved in 6 mM S-
PEA solution and the spectrum for the 6 mM S-PEA solution 

 
 

significant difference in absorbance is recorded between the 12 mM D- and L-arabinose 

solutions from 231 to 257 nm.  These differences between the 3 and 12 mM arabinose-S-
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PEA solutions should be due either to the difference in concentration or the ratio of 

arabinose to S-PEA of the solutions or a combination of both.  As explained in Chapter 2, 

non-covalent chiral discriminations that may depend on weak intermolecular interactions 

could be made more effective by increasing the concentrations of both analyte and chiral 

selector.  This is because it will increase the proximity of the molecules in solution.  The 

effect of increasing concentration should be particularly useful in cases where the solvent 

is capable of interacting with either the analyte or chiral selector in a way similar to the 

interaction between the analyte and chiral selector.  For the effect of using a 2:1 instead 

of 1:1 arabinose/S-PEA ratio, it is presumed that chiral discrimination could be enhanced 

through competitive interaction of the enantiomers with the S-PEA chiral selector.  In this 

way the most favorable interaction may predominate leading to better chiral selectivity in 

the 2:1 arabinose/S-PEA ratio samples than the 1:1 ratio samples.   

Figure 5.10A and B, respectively, show the spectra recorded for the twelve 3 mM 

and thirteen 12 mM arabinose-S-PEA sample solutions prepared by mixing varying 

compositions of the corresponding D- and L-arabinose-S-PEA stock solutions.  These two 

sets of spectra reveal clearly the effect of differences between the 3 and 12 mM solutions 

discussed above; the spectra for the 12 mM sample solutions are better separated from 

each other than the spectra for 3 mM samples.  The mean-centered form of the UV 

absorption spectra for the 3 and 12 mM sets of samples are shown in Figure 5.11A and B 

respectively.  The mean-centered spectra, which are labeled in terms of the mole fractions 

(to 2 dp) of the D-arabinose enantiomer, reveal in much detail the difference between the 

two sets of samples.  For example unlike the 3 mM samples, the 12 mM samples reveal 

two distinct wavelength regions (227-260 nm and 282-352 nm) of spectral variation.  In 
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addition, the 12 mM samples reveal clearly a pseudo isosbestic behavior centered on 265 

nm.  Compared to the mean-centered UV spectra of the amino acids discussed above, the 

shape or form of the mean-centered UV spectra for the 3 mM arabinose-S-PEA samples 

is similar to those described by the phenylalanine and alanine (see Figure 5.6 and 5.8B) 

samples while the mean-centered spectra for the 12 mM arabinose-S-PEA samples  

describe a shape or form that is similar to that for tyrosine.  As explained for the amino 
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Figure 5.10. UV absorption spectra of sample solutions made up of varying enantiomeric compositions of 
D- and L-arabinose dissolved in S-PEA solution.  A: samples prepared at 3 mM concentration level of 
arabinose and S-PEA.  B: sample solutions prepared at 12 mM concentration level of arabinose and 6 mM 
of S-PEA. 

 
 

acids, the difference in shape or form of the mean-centered spectra for the 3 and 12 mM 

arabinose-S-PEA samples indicate either the presence of two different forms of 

interaction or the formation of two types of non-covalent diastereomer.  While the present 

study is limited in providing information on the possible interactions, the mean-centered 

spectra for the 12 mM arabinose samples signify that the non-covalent diastereomers 

formed absorb UV light nearly equally around 265 nm (pseudo isosbestic behavior) and 

significantly differently in the regions 227-260 nm and 282-352 nm.  This spectral 
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Figure 5.11.  Mean-centered UV absorption spectra of sample solutions made up of varying enantiomeric 
compositions of D- and L-arabinose dissolved in S-PEA solution.  A: samples prepared at 3 mM 
concentration level of arabinose and S-PEA.  B: sample solutions prepared at 12 mM concentration level of 
arabinose and 6 mM of S-PEA.  The spectra are labeled in terms of the mole fractions (to 2 dp) of the D-
arabinose enantiomer. 
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Figure 5.12.  Plots of PLS-1 regression calibration model developed using the UV absorption spectral data and known enantiomeric compositions of 3 mM 
arabinose-S-PEA calibration samples.  A: scores plot, B: regression coefficient as a function of wavelength plot, C: percent explained variance as a 
function of principal component plot, and D: calibration and cross-validation regression lines for the fitted (black) and predicted (blue) mole fractions, 
respectively, versus the known mole fractions of calibration samples.  The model required two PCs (see below plot B or D).
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Figure 5.13.  Plots of PLS-1 regression calibration model developed using the UV absorption spectral data and known enantiomeric compositions of 12 
mM arabinose-S-PEA calibration samples.  A: scores plot, B: regression coefficient as a function of wavelength plot, C: percent explained variance as a 
function of principal component plot, and D: calibration and cross-validation regression lines for the fitted (black) and predicted (blue) mole fractions, 
respectively, versus the known mole fractions of calibration samples.  The model required two PCs (see below plot B or D).
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behavior is different from that revealed by the mean-centered spectra of the 3 mM 

samples.  This indicates differences in the effectiveness of the discrimination at the two 

concentration levels (3 and 12 mM).   

As usual, the original spectral data of the two sets of arabinose-S-PEA samples 

solutions were subjected to PLS-1 regression modeling in order to verify the correlation 

of the spectral differences shown by the samples with enantiomeric composition.   

Figures 5.12A to 5.12D and 5.13A to 5.13D show the PLS-1 calibration model 

plots developed using the spectral data and enantiomeric compositions for the 3 and 12 

mM arabinose-S-PEA calibration samples.  Each calibration model was developed using 

six calibration samples, which were randomly selected from the total samples prepared 

for analysis.  The calibration samples for the 3 mM solutions are made up of L-arabinose 

mole fractions of 0.0800, 0.110, 0.150, 0.450, 0.550, and 0.810.  Those for the 12 mM 

calibration samples are 0.0500, 0.0800, 0.190, 0.500, 0.550, and 0.810.  Figure 5.12A and 

5.13A are the respective scores plots for the 3 and 12 mM calibration samples.  Figure 

5.12B and 5.13B are theregression coefficient as a function of wavelength plots for the 3 

and 12 mM calibration samples, respectively.  The plots in Figure 5.12C and 5.13C are 

respectively the percent explained variance versus principal component plots for the 3 

and 12 mM calibration samples and Figure 5.12D and 5.13D, respectively, show the 

cross-validated regression line plots for the 3 and 12 mM arabinose-S-PEA calibration 

samples.   

Generally, the scores plots in Figure 5.12A and 5.13A for both sets of calibration 

samples reveal patterns describing the variation in enantiomeric compositions of the 

calibration samples.  The scores plot for the 3 mM samples show increasing order from 
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left to right of the mole fraction of the L enantiomer.  This is opposite to the order 

portrayed by the 12 mM samples: increase from right to left.  Compared to the 12 mM 

samples, the regression coefficient curve (Figure 5.12B) for the 3 mM samples is noisy, 

unlike the 12 mM regression coefficient curve (Figure 5.13B), which is smooth.  The 

explained variance plots (Figure 5.12C and Figure 5.13C) for the two sets of samples 

reveal for each a total of four PCs.  However, only the first two PCs were required in 

each case in developing the separate models.  For the 3 mM samples, less than 70 % of 

the variation in the spectral data is explained by both PCs: both PCs explained only 58 % 

of the variation.  Thus less than significant information is explained in the spectral data.  

However, the two PCs explained 99 % of the variation in enantiomeric composition.  On 

the other hand, the two PCs for the 12 mM model explained 95 % of the variation in the 

spectral data and 100 % of the variation in enantiomeric composition.  As such, a high 

percentage of information in the data on the 12 mM samples is accounted for by the 

model.  This is as a result of the increase in the effectiveness of the chiral discrimination 

reflected in the spectra of the samples due to the increase in concentration, which 

enhanced the effectiveness of the interaction in solution.  The less than enough 

information explained in the spectral data for the 3 mM calibration samples is clearly 

revealed by the cross-validation regression line plot shown in Figure 5.12D for the 3 mM 

calibration samples.  The cross-validated regression line, shown in blue, deviates 

significantly from the fitted calibration line shown in black.  This indicates poor 

correlation between enantiomeric composition and the spectral data.  This situation is 

completely different for the 12 mM samples, which reveal a strong correlation between 

enantiomeric composition and spectral data as shown in Figure 5.13D.  The cross-
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validation regression plot statistics for the two sets arabinose-S-PEA calibration samples 

are reported together with those computed for the amino acids in Table 5.6.  The values 

in the table clearly show that the cross-validation plot statistics for the 3 mM arabinose 

samples are extremely poor compared to the values computed for the other samples.  The 

values computed for the 12 mM samples, on the other hand, compare favorably with 

those for the amino acids.  The correlation coefficient computed for the 12 mM samples, 

for example, is 0.997.  This is significantly identical to the correlation coefficients 

computed for the amino acids, which vary from 0.996 to 0.998.   

As mentioned earlier, the calibration models for the two sets of arabinose samples 

were developed to predict in each case part of the samples (samples remaining after  

random selection of calibration samples) prepared for analysis.  Table 5.7 shows the mole 
 
 

Table 5.6 Comparison of the cross-validated PLS-1 regression plot statistics computed for the calibration 
samples of arabinose, alanine, phenylalanine, and tyrosine analyzed using (S)-(-)-1-phenylethylamine as a 

non-covalent chiral selector 
 

Cross-Validated PLS-1 Regression Plot Statistic Value PLS-1 
Regression Plot 
Statistic S-PEA NCAa 

of 3 mM Arab 
S-PEA NCA of 
12 mM Ara 

S-PEA NCA 
of Alanine 

S-PEA NCA of 
Phenylalanine 

S-PEA NCA 
of Tyrosine 

Slope  0.130 0.988 0.940 0.988 0.999 

Offset 0.241 0.00488 0.0398 0.00643 0.00221 

Correlation 
coefficient 
 

0.546 0.997 0.998 0.996 0.998 

RMSEPd 0.250 0.021 0.029 0.025 0.018 

SEPe 0.262 0.022 0.029 0.027 0.019 

Modeled 
wavelength 
range 

229-808 nm 220-400 nm 229-989 nm 223-360 nm 318-500 nm 

a. Non-covalent analysis, b Arabinose 
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fractions of L-arabinose predicted for the 3 and 12 mM arabinose-S-PEA samples used as 

validation samples in comparison with the actual mole fractions.  It is clear from Table 

5.7 that the prediction results for the 3 mM arabinose analysis are poor.  Except for one 

sample predicted with an absolute error of 0.0422, the absolute errors computed for all 

other samples are above 0.14.  The root-mean-squares error of prediction computed for 

the entire analysis is 0.18.  This error value is quite high for analyses such as this, which 

requires quite a high level of accuracy.  On the other hand, the predicted L-arabinose 

mole fractions for the 12 mM analysis reveal quite a high level of accuracy.  For this 

analysis, only one sample was predicted with an absolute error as high as 0.0457.  The 

root-mean-squares error of prediction computed for the entire analysis at the 12 mM 

concentration level is 0.025.  This error value compared to that for the 3 mM analysis  

shows that by increasing the concentration of arabinose from 3 to 12 mM and doubling 
 
 

Table 5.7.  Comparison of the mole fractions of L-arabinose predicted for 3 and 12 mM arabinose-S-PEA 
validation samples containing varying compositions of D- and L-arabinose but identical amounts of total 
arabinose.  The 3 mM samples were dissolved in 3 mM S-PEA and the 12 mM samples in 6 mM S-PEA 

 
Actual ø of 3 
mM L-Ara 

Predicted ø for 
3 mM L-Ara  

Absolute Error Actual ø of 12 
mM L-Ara 

Predicted ø for 
12 mM L-Ara 

Absolute Error 

0.0499 0.00767 -0.0422 0.890 0.905 -0.015 

0.191 0.332 0.141 0.851 0.823 -0.028 

0.500 0.347 -0.153 0.549 0.554 0.005 

0.849 0.656 -0.193 0.151 0.118 0.033 

0.920 0.674 -0.246 0.110 0.107 0.003 

0.950 0.731 -0.219 0.0808 0.0802 0.0006 

   0.0500 0.0957 0.0457 

RMSEP  0.18   0.025 
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the concentration of the S-PEA chiral selector, the efficiency of the discrimination 

increased by a factor of 7.2.  Compared to the analysis of the amino acids, analysis of 

arabinose at the 12 mM concentration level is significantly equally as accurate as the 

analysis of the amino acids.  This indicates that S-PEA is capable of discriminating 

enantiomeric pairs of non-carboxyl hydroxyl functional group containing chiral 

compounds.  S-PEA, therefore, is capable of molecular interactions other than the 

supposed ion pair formation interaction with carboxyl functional groups.  

Table 5.8 contains the results reported by Augusti et al. [115] for the enantiomeric 

composition analysis of selected sugars/carbohydrates using electrospray ionization 

tandem mass spectrometry technique.  The figures shown in the table are averages of five 

analyses in which combinations of divalent transition metal cations, coupled with  

modified amino acids, were used as chiral selectors.  The samples were reported to be  
 
 

Table 5.8.  Results for the enantiomeric composition analysis of selected sugars using metal-modified 
amino acid chiral selectors combined with electrospray ionization tandem mass spectrometry (results were 

compiled from reference 115) 
 

Enantiomeric Excess of D-Sugar (% ee) Carbohydrate/Sugar Chiral Selector CCa for 
Calibration Plot Actual Experimental 

Mannose Cu2+/N-Fmocb-
L-Pro 
 

0.9985 -52 -51.6 ± 0.5 

Mannose Cu2+/N-Fmoc-
L-Pro 
 

0.9985 -92 -94 ± 3 

Glucose Cu2+/N-Fmoc-
L-Pro 
 

0.9974 66 68 ± 2 

Galactose Ni2+/O-Mec-L-
Tyr 
 

0.9990 70 75 ± 6 

Galactose Ni2+/O-Me-L-
Tyr 
 

0.9990 40 40 ± 5 

Ribose Cu2+/N-Acd-L-
Phe 

0.9994 76 76 ± 3 

a Correlation coefficient, b N-(9-Fluorenylmethoxycarbonyl)-, c O-Methyl, d N-Acetyl 
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analyzed at a concentration of 0.2 mM. This concentration is significantly lower than the 

concentration at which arabinose was successfully analyzed in this present study.  That 

not withstanding, the correlation coefficients reported by Augusti et al. [115] are 

significantly identical to that obtained in our present study for the analysis of arabinose at 

a concentration of 12 mM using S-PEA as a non-covalent chiral selector combined with 

ordinary UV spectroscopy.  Compared to our error results for the 12 mM arabinose 

samples, Table 5.8 reveals that results obtained by Augusti et al. are within a slightly 

higher error margin than ours.  Generally, however, our non-covalent S-PEA 

discrimination strategy, combined with ordinary UV spectroscopy for chiral analysis by 

regression modeling of spectral data, is comparable in terms of accuracy with the mass 

spectrometric technique used by Augusti et al.  Regarding sensitivity, our technique can 

be improved through the use of fluorescence spectroscopy and/or a chiral amine with a 

more sensitive chromophore, and capable of interacting more strongly with sugars than 

S-PEA.  A study involving the testing of several potential chiral amines is underway by 

our research group.  In addition, the design and synthesis of a chiral amine with the  

appropriate properties for the above-mentioned purpose is being considered.  
 
 

Conclusion 

This study clearly shows that S-PEA is a potentially powerful and efficient chiral 

selector that can be used for the determination of the enantiomeric composition of amino 

acids, carbohydrates/sugars, and other chiral compounds containing similar functional 

groups.  The study also shows that while some chiral compounds can be analyzed 

effectively at low concentrations, for example, at 2.5 mM (analysis of tyrosine), analysis 

of others may require higher concentrations to be effective.  S-PEA, based on this study, 
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has shown consistency in terms of its effectiveness as a non-covalent chiral selector for 

various chiral analytes than any of our previously used non-covalent chiral selectors 

including: (1) native cyclodextrins, (2) derivatized cyclodextrins, and (3) mixed 

surfactant-cyclodextrin systems [55].  This is obvious from the prediction errors 

computed for the S-PEA analyses, which are consistently below 0.03 or 3 %.  In addition, 

S-PEA is more effective at relatively lower analyte concentrations than the above-

mentioned chiral selectors for UV studies.  In terms of RMSEP figure of merit, the non-

covalent, non-inclusion complex forming, S-PEA discrimination strategy compares 

favorably with the non-separative, covalent, chiral discrimination strategy (NSCCDS) 

described in Chapter 2.  However, both methods may have their limitations.  For 

example, the time required for the covalent reaction in the application of the NSCCDS 

may prolong the analysis.  The non-covalent S-PEA strategy on the other hand, may not 

work for certain analytes or may require higher concentrations than would be required for 

the NSCCDS strategy.  It should be noted, however, that S-PEA, similar to PD, can be 

used as a covalent chiral selector as well because its amine functional group can undergo 

several covalent reactions with a variety of functional groups.  Examples of these 

covalent reactions include amide and Schiff base formation with the carboxyl and 

carbonyl functional groups respectively.  As such, (R/S)-(+/-)-1-phenylethylamine is 

capable of being a versatile chiral selector for chiral analysis by regression modeling of 

spectral data (CARMSD) and promising for both industrial and research applications.   
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