
ABSTRACT

Solving the F/A-18 Mission Computer Virtual Memory Problem

Adam L. Sealey, M.S.

Chairperson: David B. Sturgill, Ph.D.

The F/A-18 has a mission computer that requires physical memory be mapped

into a very limited amount of virtual memory space. As requirements for this

aircraft have expanded, the mission computer must perform increasingly complex

computations without using any additional virtual memory. The elements required

by the computations must be assigned physical and logical addresses in a manner

that satisfies a variety of constraints imposed by the system. Determining these

addresses is an NP-Complete problem, to which the only known way of finding a

solution is exponential-time search. We present a formalization and analysis of the

problem, along with an analysis of the feasibility of performing search. Additionally,

we explore a variety of incomplete search techniques with the goal of producing an

acceptable mapping of elements to addresses that satisfies all constraints within a

reasonable amount of time.



Solving the F/A-18 Mission Computer Virtual Memory Problem

by

Adam L. Sealey, B.S.

A Thesis

Approved by the Department of Computer Science

Donald L. Gaitros, Ph.D., Chairperson

Submitted to the Graduate Faculty of
Baylor University in Partial Fulfillment of the

Requirements for the Degree
of

Master of Science

Approved by the Thesis Committee

David B. Sturgill, Ph.D., Chairperson

Gregory J. Hamerly, Ph.D.

Michael W. Thompson, Ph.D.

Accepted by the Graduate School
August 2009

J. Larry Lyon, Ph.D., Dean

Page bearing signatures is kept on file in the Graduate School.



Copyright c© 2009 by Adam L. Sealey

All rights reserved



TABLE OF CONTENTS

LIST OF FIGURES vi

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

DEDICATION x

1 Introduction 1

1.1 Mapping Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Automated Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Mapping and Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Search-Based Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Related Work 11

2.1 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Full-Candidate Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Partial-Candidate Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.4 Systematic Search Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Incomplete Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Hill Climbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Genetic Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

iii



3 Formal Complexity and Search Characterization 32

3.1 The MEM-MAP Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 MEM-MAP Problem Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 MEM-MAP Mapping Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.3 MEM-MAP Mapping Validity Constraints . . . . . . . . . . . . . . . . . . 34

3.2 NP-Completeness Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Enumerating Mappings via Element Sequences . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Equivalence Class and Canonical Candidates . . . . . . . . . . . . . . . . 44

3.3.2 Using Oracles to Represent Compressed Candidates . . . . . . . . . . 48

3.3.3 Formal Examination of Compressed Mappings and Oracles . . . . 51

4 Design and Implementation 73

4.1 Search Framework Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Framework Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.1 Symbol Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.2 Problem Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.3 Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.4 Generalized Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.5 Mapping Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.6 Mapper Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.7 Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.8 Search Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.9 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.10 Map Emitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Search Methods Evaluated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

iv



4.3.1 Depth-First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.2 Hill Climbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.3 Genetic Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Evaluation 105

5.1 Base Problem Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Alternate Problem Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3 Performance Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.1 Test Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.2 Test Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Performance Results and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.1 Execution Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.2 Effectiveness on Base Problem Instance . . . . . . . . . . . . . . . . . . . . 115

5.4.3 Analysis of Multiple Extended Runs of Genetic Search . . . . . . . 119

6 Conclusion 122

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

BIBLIOGRAPHY 125

v



LIST OF FIGURES

1.1 Example problem task requirements . . . . . . . . . . . . . . . . . . . . . 4

1.2 A successful 4-element mapping . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 An unsuccessful 4-element mapping . . . . . . . . . . . . . . . . . . . . . 6

2.1 Example search space without structure . . . . . . . . . . . . . . . . . . 12

2.2 Example search space with graph structure . . . . . . . . . . . . . . . . . 14

2.3 Example search space with tree structure . . . . . . . . . . . . . . . . . . 16

2.4 Pruning example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Local vs. Global optima . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Example Map2 format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Stevenson’s Memory Map Editor . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Element ordering issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Element ordering solution . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Canonical representation of candidate space . . . . . . . . . . . . . . . . 45

3.4 Compressed vs. Uncompressed mappings . . . . . . . . . . . . . . . . . . 46

3.5 Single compression step . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Partition reorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Cascading compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Example oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Fitness measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Common output format . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Example SVG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Example swap operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

vi



4.6 Example move operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.7 Example multi-move operation . . . . . . . . . . . . . . . . . . . . . . . 99

5.1 Comparison of element sizes . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Comparison of block sizes . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Number of elements and blocks in each generated problem instances . . . 109

5.4 Comparison of performance on problem instances . . . . . . . . . . . . . 116
(a) Complete Search . . . . . . . . . . . . . . . . . . . . . . . . . . 116
(b) Heuristic Search . . . . . . . . . . . . . . . . . . . . . . . . . . 116
(c) Incomplete Search . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.5 Comparison of performance on problem instances (continued) . . . . . . 117
(a) Standard Hill Climbing . . . . . . . . . . . . . . . . . . . . . . . 117
(b) Persistent Hill Climbing . . . . . . . . . . . . . . . . . . . . . . 117
(c) Multiple-Stage Hill Climbing . . . . . . . . . . . . . . . . . . . 117
(d) Genetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.6 Comparison of quality of procedure on base instance . . . . . . . . . . . 118

5.7 Results from extended length genetic search . . . . . . . . . . . . . . . . 120

vii



LIST OF TABLES

2.1 Map2 File Format Specification . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Memory Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Base Problem Instance Statistics . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Generated Problem Instance Statistics . . . . . . . . . . . . . . . . . . . 110

5.3 Kodiak Cluster Specifications . . . . . . . . . . . . . . . . . . . . . . . . 112

viii



ACKNOWLEDGMENTS

I first acknowledge God, who has given me the grace to finish this journey. He

is my shining light and redeemer.

I would like to thank Dr. David Sturgill for his wisdom, advice, direction, and

patience during this long journey. I also acknowledge the support and direction of Dr.

Russell Duren and Dr. Michael Thompson who presented the problem and provided

necessary details to perform the analysis. Dr. Greg Hamerly has been a great resource

for the formal portions of my arguments, as well as general guidance. Additionally, I

woud like to thank Mike Hutcheson and Baylor University Academic and Research

Computing Services for providing access to the High Performance Computing Cluster

which allowed me to run the performance tests in parallel. Finally, I thank my family

and friends for their support and encouragement along this journey.

ix



DEDICATION

For my wife, Lisa, who has continually supported me through this process. Her

unwavering commitment and stability through the tough times is a testament to her

character and devotion.

For her worth is far above jewels.
The heart of her husband trusts in her,

and he will have no lack of gain.
Proverbs 31:10-11

In honor of my grandfather, Gerald Lee Sealey.

x



CHAPTER ONE

Introduction

The Boeing F/A-18 Hornet is an advanced, multipurpose warplane used by

the United States and its allies in a variety of missions around the world. It is a very

versatile platform capable of many different types of operations including air-to-air,

close air support, maritime strike, in-flight refueling, reconnaissance, and forward

air control. These varying mission types require the plane to carry a wide variety of

payloads in addition to a very flexible flight control mission computer (Naval Air

Systems Command, 2009)(Carder and Guse, 2009).

An integral component of the F/A-18’s continued success is an extremely

robust mission computer that controls everything from flight plan and objectives to

communication and target acquisition. This system was designed to be completely

fault tolerant, with redundant hardware and software at every point. If any component

of the mission computer fails during a mission, the redundant component takes control

in a seamless transition. A significant amount of both time and money have been

invested in this hardware, specifically the in CPU and logical components.

As its objectives have become more complex and the mission computer has been

required to perform more tasks, upgrades have been made to the mission computer

system to expand its functionality and extend the service life of the aircraft. These

upgrades have focused on the most cost-effective portions of the computer, specifically

the storage system. Since the CPU and logical components are the most complex and

expensive portion of the system, they cannot be replaced or upgraded cost-effectively.

Unfortunately, this also includes the memory addressing architecture, which is limited

to 64 kilobytes of concurrently addressable logical memory. Thus, the system has

1



plenty of physical memory, but is only able to access a relatively small portion of it

at any given time, limiting the usefulness of the memory.

The mission computers are based on a time-sliced architecture, where a series

of tasks are executed in order and then repeated. Each task has 64 kilobytes of

virtual memory available for code storage, and another 64 kilobytes of virtual memory

available for data storage. Each type of virtual memory is represented by a page

table consisting of 64 slots. Each slot in the page table is a reference to a one-kilobyte

page of physical memory. Upon initialization, the task loads pages into its page table

and executes.

Each task requires certain data elements for successful execution. These

elements must be mapped to memory by being located on a page that is referenced

in the page table of the task. The elements range in size from one byte to more

than thirty kilobytes, and each element has a potentially unique set of tasks that

require it. Elements can only occupy one location in physical and logical memory

due to the compiler and verification techniques employed. This restriction makes it

extremely important to decide which page to assign each element in order to ensure

all required elements are available when needed, without exceeding virtual memory

capacity. Since there are only 64 page slots available for each task, most tasks require

multiple elements be assigned to the same page. This sharing of pages allows tasks

to access all required elements, but it also complicates the problem.

Each change to code on the mission computer defines a new instance of the

mapping problem. We define a problem instance as all the pertinent information

about the problem, including the number of tasks and elements, and requirements

between tasks and elements. For example, in a new version of code, a certain task

might need access to a data element it previously did not need. This slight change in

requirements can completely change the problem and invalidate any solutions that

had been found for a previous problem instance. Each problem instance needs to be

2



evaluated separately, since a solution for one problem instance might not work for

another, even if the problems are very similar.

When a task initializes, it needs to load pages into its page table in order to

execute. A mapping is a record of how each page table is constructed, including

what pages each element resides on and where the pages are loaded into the page

table for each task. Each problem instance has many different possible mappings,

each with its own ordering of pages and element assignments. The details of the

hardware implementation impose validation constraints on where some elements can

be placed in the mapping. Some examples are that elements may not overlap in

physical memory, pages must be loaded into the same slot for all tasks that require

the page, and certain elements cannot share the same page. We consider a mapping

to be valid if it assigns the elements and pages in such a way that it satisfies all

the validation constraints and no page table exceeds the virtual memory capacity.

Conversely, we would consider a mapping to be invalid if its assignments break any

constraints or oversubscribes the virtual memory capacity in any of the page tables.

Finding a valid mapping for a problem instance is the ultimate goal of MEM-MAP.

1.1 Mapping Problem Overview

Currently, typical problem instances are quite large, consisting of hundreds

of elements being mapped to over 60 tasks. Candidate mappings are difficult to

visualize, which makes them hard to validate by hand. A less complicated example

helps illustrate some of the concepts of the problem without getting bogged down in

details. Figure 1.1 shows the an example problem instance, with Figures 1.2 and 1.3

showing two attempts at mapping the example instance.

This problem instance has four data elements (d1, d2, d3, d4) that need to be

mapped to four tasks (Task 1, Task 2, Task 3, Task 4). For these examples, assume

there are only four logical slots available for storing pages, which can each store 1024

3



]

Figure 1.1: Task requirements for an example problem instance. Tasks are represented
by columns, and elements are represented by colored blocks and placed into the
columns of the tasks that require them. The height of the element block indicates
the size of the element.

Figure 1.2: The elements for the problem instance are successfully mapped into the
page table space. In this example, each task has a four-slot page table to store its
required elements.

bytes. These slots are shown as rows in Figures 1.2 and 1.3. Tasks are displayed as

vertical columns, with the elements they require being placed in their appropriate

column. The height of each element indicates its size in bytes. It is clear that d1 and

d3 are 1024 bytes in size, since they completely fill one page. The significantly larger

d2 is 3072 bytes in size since it completely fills 3 full pages. Element d4 is a much

smaller element, only requiring 64 bytes, but it still plays an important part in the

mapping.

4



Figure 1.2 is a clever mapping of the elements to the slots. All elements are

assigned to slots in the page table in just the right way that allows each task to

access its required elements without running off the page table. There are a couple

key things to note in this figure. First, the placement of d2 in Slots 2-4 and d3 in

Slot 2 dictate where they are placed in the other tasks, since elements can only be

mapped to one physical and one logical address. This forces Task 2, which only

requires element d3, to place d3 in Slot 2, even thought Slot 1 is vacant. This vacant

space is limited to the one page in Slot 1, since Slot 2 already has a page assigned to

it in Task 2.

This limited space is an example of fragmentation of the available free space, in

which free space is broken up into smaller blocks, reducing or eliminating its ability

to store large blocks. A small element with less than 1024 bytes, or a group of small

elements totaling in size to less than 1024 bytes, could be mapped into this space, but

any larger element would be forced to start after d3. The fragmentation is a major

concern because it limits the effectiveness of the free space. Another important thing

to note is that Task 3 has no room to spare; its elements fit perfectly in the table,

but a slight modification to their placement could cause some of the elements to fall

off the page table, rendering the mapping invalid. There are in fact only two ways for

Task 3 to order its elements: either d1 comes before d2 in Slot 1, or d1 comes after d2

in Slot 4. Assigning d1 to any other slot would cause Task 3 to overrun the table.

To illustrate some of the more complex issues with the problem, Figure 1.3

shows the same problem instance being mapped with a slight variation. Instead of

placing d4 in Slot 3 after d3, it is placed at the beginning of Slot 1. This minor change

has major consequences for the other elements in the mapping. Since elements cannot

overlap in logical space, d1 is forced to start later in the page, thus spilling over into

another page. Since Task 3 is the most constrained task, this modification of the

location of d1 has a cascading effect, forcing d2 to fall partially off the table. The key

5



Figure 1.3: An example of an unsuccessful mapping attempt that results from a very
minor modification in the ordering of the elements. This forces d2 to require more
space than is available in the page table.

difference in this example is that the page loaded into Slot 2 in Task 2 and 3 now

contains elements that are not strictly required by each of the tasks. The beginning

of the page holds the end of d1, which is not a required element for Task 2. Task

3 requires d1 so it must load the page, but in addition it loads the first part of d3,

which it does not need. We call this space that contains unrequired elements polluted

space in the task. Pollution occurs when elements with differing task requirements

are mapped to the same page. Whenever that page is loaded into a slot by a task,

any elements in the page that are not required by the task are occupying space that

could otherwise be used by other elements that are required in the task. In this case,

pollution could have been reduced by pushing d3 back to Slot 3, although d4 would

continue to pollute Slot 1. Reducing the pollution does not solve all the problems

with the mapping, though, since such a modification still would not enable all the

elements to fit. This change would allow d2 to share the page in Slot 2 with d1,

but it would still not fit in the page table. Pollution is undesirable, but it is also

unavoidable. The key to dealing with it is to minimize polluted space on the most

constrained tasks.

6



Realistic problem instances typically include elements similar to d4 that are

not perfectly sized for their pages. Many of the elements are much smaller than

a page, allowing multiple elements to be stored on the same page, while other

elements are much larger and span multiple pages. This mixture of large and

small elements, along with their varying task requirements, makes creating a valid

mapping very difficult. Fragmentation can significantly reduce the effectiveness of

vacant space, while pollution can quickly reduce the available space for constrained

tasks. Subtleties of element positioning can have huge effects on other elements and,

eventually, the validity of a mapping. Figures 1.2 and 1.3 contain the same elements,

but a seemingly minor change in positioning can result in the mapping becoming

invalid by oversubscribing the virtual memory of the page table.

1.2 Automated Validation

Since verifying that the elements are assigned to positions that will satisfy all

required tasks is a difficult job, the Department of Defense (DOD) created a set

of programs to work with mappings. These tools were originally designed to parse

a problem instance and automatically generate a valid mapping. Eventually, the

complexity of the problem instances reached the point where the programs were no

longer able to create valid mappings. Fortunately, the programs are still able to

validate mappings and serve as the official validators for the system. Whenever a

change to the mapping is required via a code or hardware change, a human expert

must manually inspect the mapping and find a location for the new or changed

element. Due to the extremely complex nature of the mappings, this can take months,

and only a handful of people in the world are capable of accomplishing this process

manually. Once the mapping is hand modified, it is run through the validation

programs before being loaded onto the aircrafts’ mission computer.

7



The current method of finding mappings that relies on human assistance is not

a scalable solution. The people with the experience necessary to find mappings are

approaching retirement, requiring the extensive knowledge necessary to be communi-

cated to new employees. Developing an algorithm and computer implementation that

can efficiently find a valid mapping for a problem instance would allow the process

to be completely automated, reducing time and cost required for code upgrades.

1.3 Mapping and Computational Complexity

The size and complexity of the problem causes the number of possible mappings,

valid or not, to be extremely high for any given problem instance. A reference instance

of the problem has 61 tasks and 943 elements, with almost 9000 requirements linking

them. Each task then has 64 slots to store pages that can each hold 1024 bytes.

Since each element could start at any byte in a page, and that page could be loaded

into any slot for any task, there are 4 million possible starting locations for each

element: 61 Tasks × 64 Slots/Task × 1024 Bytes/Slot = 3, 997, 696 possible starting

locations. As shown in the previous example, even slight modifications to the ordering

of elements in memory can cause major issues.

Ideally, an algorithm could be designed and implemented that would be able to

find a valid mapping for a problem instance, if one exists, in a reasonable amount of

time. Formally, a reasonable amount of time is defined as time polynomial in the size

of the input. These problems are said to have polynomial time complexity (Sipser,

1997).

Unfortunately, this problem is much harder than that. Formal analysis reveals

an equivalence to other well known optimization problems in computer science that

are very hard, known as NP-Hard problems. These problems are so hard, in fact,

that there are no known algorithms that can solve them in polynomial time, assuming

NP 6= P . Current algorithms that can solve these problems need time exponential in

8



the size of the problem instance, and are said to have exponential time complexity

(Sipser, 1997). As the problem size increases, the time required to find a solution

quickly exceeds a reasonable amount of time.

1.4 Search-Based Solvers

The complexity associated with completely searching the entire search space

motivates the examination of alternate search procedures that can potentially provide

solutions in less time. These techniques are referred to as incomplete search methods,

which only explore a portion of the search space. Incomplete search methods apply

heuristics to the problem instance to reduce the size of the search space and focus the

search on mappings that are most likely to be valid for the problem instance. These

methods can potentially find a valid solution quickly, but they don’t systematically

search the entire space. This means they can’t guarantee that a valid solution does

not exist if they don’t find one, or that they’ll find the solution if one exists. Also, lack

of systematicity means that they may search the same group of mappings multiple

times, which is wasted effort.

There are a variety of incomplete search methods. This work examines a few of

the most applicable incomplete search methods, including variations on hill climbing

search, genetic search, and heuristically-guided depth-first search. These incomplete

search methods are readily adapted to the problem definition, and provide a good basis

for creating a system that is capable of automatically finding solutions to problem

instances. A reference implementation is provided that facilitates performance

comparisons between each of the approaches. These comparative tests provide insight

into the performance qualities of each of the variations, as well as provide direction

for further modifications and improvements.

9



1.5 Overview

The remainder of this document will investigate a variety of approaches to

finding a valid mapping for a given problem instance. Chapter 2 explores the existing

body of work, including previous attempts at visualizing the problem, as well as

standard algorithms and techniques that are applicable to similar problems. Chapter

3 begins by laying the foundation for the work by formally defining the problem,

proving that it is NP-Hard, and developing a set of refinements to reduce the

size of its search space. This is followed with Chapter 4 offering an explanation

of the techniques that are implemented as part of the work, as well as the custom

modifications that are made to apply standard algorithms to the problem. Chapter

5 provides the exploratory results of our experiments. Finally, Chapter 6 offers

concluding thoughts and suggestions for future work in this space.

10



CHAPTER TWO

Related Work

MEM-MAP is an interesting problem which has real world applications for the

U.S. military forces. Some attempts have been made to apply computer algorithms

to solve the problem, but there are no current implementations that are capable

of producing a solution in a reasonable amount of time without human assistance.

Since MEM-MAP is a NP-Complete problem, some form of search will be required

to find a solution. An examination of established search techniques provides the

background necessary to design procedures that are tailored to this problem.

2.1 Search

Search problems typically have multiple candidates for solutions but only

a limited number actually solve the problem. Finding one of these solutions in

the veritable sea of possibilities requires a disciplined approach to examining the

candidates. The set of all candidates is called the search space of the problem.

For MEM-MAP, we define the Basic Example to be a search space defined as all

possible combined assignments of starting logical addresses to elements. The valid

mappings are nodes in the search space that we must identify. There are a variety

of ways to explore the search space of the problem, called search procedures. Each

search procedure has strengths and weaknesses unique to its approach (Luger and

Stubblefield, 1998).

With non-trivial search spaces, such as the one for this problem, systematically

exploring the space is valuable. A systematic approach guarantees that a solution

will be found if one exists, and each candidate will be examined at most once

during the search. The first guarantee is important because search is an expensive

11



b
b aa

b c

a
c c

a
b a

b
c c

a
c a

b
c a

Figure 2.1: The Basic Example search space with no structure imposed upon it. The
green node represents a solution.

operation, and it is important that a definitive answer is generated after spending

the required time. The second guarantee is a constraint on wasted time, because in

a well organized search space, any effort spent re-examining candidates that have

already been examined is wasted.

Search relies on the search space having structure, which provides relationships

between nodes in the space. These relationships are the paths which the search

traverses during execution. Without these relationships, search diverges to randomly

sampling the space, with no organization available to guide further examinations.

Figure 2.1 shows the Basic Example search space with no structure imposed. Be-

ginning a search with any node in the space does not lead to other nodes in the

space.

There are two primary structures used for organizing large search spaces: a

search space that only consists of fully defined candidates, and a search space that

consists of partially formed candidates. These structures each have advantages and

disadvantages, as well as specific search procedures that benefit from particular

structure methods. To facilitate describing these structures and relevant search

procedures, it is helpful to use the Basic Example which defines how some of the

12



concepts in MEM-MAP can be represented. In Figures 2.1, 2.2, and 2.3, candidates for

the Basic Example are represented by circles, with letters inside the circle representing

the order that elements occur in the memory read top to bottom, left to right. In

addition, a candidate is considered to be a solution if it has assigned a starting logical

and physical address to all elements in the problem instance, and all the validation

constraints are satisfied. These solution candidates are represented by a green circle.

Finally, a partial candidate does not define a starting position for some or all of the

elements in the problem. Partial candidates are only found in Figure 2.3.

Applying a structure to the search space facilitates considering candidates both

explicitly and implicitly. An explicit representation of a candidate is the specific

assignment of starting logical addresses to elements, and all the data structures that

are associated with the assignment. Unstructured search spaces deal with explicitly

represented candidates. Imposing structure on the search space allows candidates

to be represented implicitly by virtue of their relative location in the search space

according to the structure. This allows a search to be defined as explicitly representing

a candidate and testing if that candidate is a solution. Only the current candidate

needs be explicitly represented at any given time, because the structure provides a

path for choosing other candidates to explicitly represent and examine.

2.1.1 Full-Candidate Representation

The first, most straightforward approach for representing the search space is

to consider all nodes in the search space as a candidate solution that needs to be

investigated. Search methods that work through these spaces need to examine each

node and test its validity until a valid solution candidate is found. The strength of

this representation is that it only has as many nodes as there are candidates. While

the space of all candidates is extremely large and needs to be represented implicitly,

13



b
b aa

b c

a
c c

a
b a

b
c c

a
c a

b
c a

Figure 2.2: The Basic Example search space with a graph structure imposed upon
it. This graph structure is one way to facilitate systematic exploration of the search
space. Each node in the graph is a fully formed candidate.

search algorithms using this representation can immediately being examining actual

candidates.

The organization method used for this representation is a Graph, as presented

in Figure 2.2. Each candidate in the search space is represented by a node in a large,

implicit graph. The neighboring nodes are generated by expanding the current node.

The expand operation produces a set of neighbors that are connected via an edge

to the current node. These neighbors are other candidates that are the result of a

minor change to the current candidate. A graph-based search procedure might start

at an arbitrary node, test its validity as a solution, then expand the node. It would

continue this testing and expanding until a solution is found, hopefully after only a

few expansions (Luger and Stubblefield, 1998).

A graph-based approach can easily be applied to the mapping problem. Using

the Basic Example, a simple graph-based search procedure could start at a node,

check its validity, then generate a neighbor by making a small change to the starting

logical address of an element in the original candidate, and continue to test and

14



generate until a valid solution is found. Each neighbor that is generated is part of

the neighbor set of the node.

The graph-based approach is a simple organization method for the search

space. However, it does not have many features built in that facilitate a systematic

search. Since the graph will very likely have many loops, ensuring that each node

is examined at most once requires using additional data structures to keep track of

visited nodes. The large size of the search space renders the maintenance of this

complete list infeasible. There are also difficulties associated with ensuring that

all possible solution candidates are examined, if the graph were disconnected, for

example.

Despite the difficulties associated with performing a systematic search on a

graph-based organization, there are other, non-systematic search procedures that

perform well in the graph environment. These approaches apply heuristics in an

attempt to explore the areas of the search space that are most likely to contain a valid

solution. For example, a heuristic-based search may generate all the neighbors for a

node and test them, then chose the best neighbor, as determined by the heuristic,

for continued exploration.

2.1.2 Partial-Candidate Representation

An alternate representation is to consider the space as a collection of partially

constructed candidates, with only a subset of elements assigned to logical addresses.

This assignment of an element to a logical address is called a commitment. Search

methods that use this representation look for a solution by making additional

commitments until all elements are assigned a logical address, which is a full candidate.

The organization method used for the partial-candidate representation is a tree.

Each candidate is represented as a leaf node in a very large tree, with a series of

internal nodes forming the path from the root node to the leaves. The structure

15



Figure 2.3: The Basic Example search space with a tree structure imposed upon it.
The root of the tree is at the top, which has made no commitments. At each level
of the tree, more commitments are made until a fully formed candidate is formed,
which are the candidates in the search space.

16



of the tree is usually guided by the principle of least commitment, in which nodes

are a single step on the path towards constructing a candidate (Weld, 1994). The

root node starts by not making any commitments at all. Starting with the root

node, each internal node is expanded to create children that represent all possible

commitments that can be made in addition to the node’s current commitments.

These commitments continue to be expanded until all necessary commitments have

been made, resulting in a candidate. A tree-based search procedure would start at

the root node, expanding and examining all children nodes until it finds a solution

candidate, or has explored all candidates in the space (Luger and Stubblefield, 1998).

The mapping problem can be understood as a tree-based search problem.

Using the Basic Example, each commitment made in the internal node could be an

assignment of an element to a starting logical address. The root node for the tree is

a partial candidate that makes no commitments at all. As each internal node adds

a commitment to the partial candidate, it assigns a starting logical address to an

element that did not previously have a starting logical address. Once all elements

have been assigned a starting logical address, the node is a candidate that may be

tested for validity.

A tree-based characterization of the search space lends itself well to a systematic

search. By definition, a tree does not contain any loops, preventing a search procedure

from examining the same candidate multiple times. It also facilitates examining all

candidates, because the root node starts with no commitments. While each node has

many children nodes, it is clear that there will always be a path from the root to any

conceivable candidate. In addition, the concept of least commitment provides a good

basis for performing prune operations, which can significantly reduce the size of the

effective search space (Cormen et al., 2003).

17



Figure 2.4: The effects of two different pruning choices are shown via the red and
orange nodes. If node X already violates one of the solution requirements, the red
nodes are not examined. If it were determined that node Y violates one of the
solution requirements, neither the orange nor the red nodes are examined. Simply
moving the pruning up one level in the tree has a significant effect on the number of
nodes pruned.

2.1.3 Pruning

One of the key advantages of using a tree-based method for organizing the

search space is that it enables the search procedure to prune the search space as it

goes. Pruning is the act of eliminating a portion of the search space that is known

to contain no solutions. Figure 2.4 shows how pruning can be applied at various

locations in a tree to reduce the number of nodes that are examined. Notice that

pruning higher in the tree results in a more significant reduction in the size of the

examined portion of the search space.

18



In a partial candidate representation, if an assignment of a starting logical

address to an element in an internal node causes any subsequent assignments of

logical addresses to elements to result in an invalid candidate, then none of the

children nodes or leaves need be examined. This could happen if the assignment of

the logical address results in a physical address being assigned such that elements

overlap in physical memory, for example.

A pruning function applies logic that identifies which commitments ultimately

result in invalid children. These functions can be very powerful in speeding up search,

but they can be difficult to create. The goal for the pruning function is to be able

to prune as early as possible in the tree. This maximizes the reduction in search

space of each successful prune. The problem is that there typically is not enough

information at the early nodes in the tree to know if the decision made in the node

was a poor one. Thus we are left with pruning functions that operate in the middle

to lower nodes of the tree, and are less effective (Reed, 1993).

2.1.4 Systematic Search Methods

Regardless of the representation chosen, there are a variety of approaches to

examining the search space in a systematic manner. The most common approaches

are broadly classified as Breadth-First Search (BFS) and Depth-First Search (DFS).

When the tree-based method is used, these approaches start at the root of the tree

and move down. In a graph-based method, an arbitrary starting point is selected,

and the search proceeds from there (Cormen et al., 2003).

2.1.4.1 Breadth-First search Breadth-First Search (BFS) examines the search

space in a level-by-level fashion, where all nodes in a level must be inspected before

any nodes in the next level. It relies on a First-In-First-Out (FIFO) queue for

maintaining the set of generated nodes. It maintains a queue which contains nodes

that need to be examined, called the open queue. It also maintains a list of nodes

19



that have already been examined, called the closed list. BFS initializes by pushing

the starting node onto the open queue. It then proceeds by popping a node from

the open queue and examining it. If the node is a valid solution, then the search is

complete. Otherwise, it expands the node to generate all of the its neighbors and

places the ones that aren’t in the closed list or already open into the open queue.

Once the node has been expanded, it is placed into the closed list, and the process

continues (Luger and Stubblefield, 1998).

BFS can be very useful with tree-based organizations because the tree inherently

prevents loops, which eliminates the need to keep and reference the closed list.

However, BFS is most useful for instances where the goal is to identify the solution

that is closest to the starting node. This can permit guarantees that the first solution

found is, in some way, the smallest or simplest.

2.1.4.2 Depth-First search Like the Breadth-First Search, Depth-First Search

(DFS) explores the space by maintaining a list of open nodes and successively

expanding one of them. Instead of managing this list in queue order, it is maintained

in Last-In-First-Out(LIFO) stack order. DFS initializes in similar manner to BFS by

pushing the starting node on the open-stack. The search then proceeds by popping a

node from the open stack and examining it. If the node is a solution, then search is

done. Otherwise, it expands the node, pushing all the neighbors of the node that have

not already been examined onto the open stack. Once the node has been expanded,

it is added to the closed list.

The minor change from a FIFO queue to a LIFO stack has major impact on the

manner in which nodes are inspected. Instead of moving level by level like BFS, DFS,

as the name implies, searches as deep as possible in the search space for a solution

before backtracking and searching deep elsewhere. This approach is very useful for

trees, and particularly useful for our method of storing data in the tree. Since it dives

as deep as possible in its search for a solution, it quickly reaches the leaves of the

20



tree, where it can evaluate the validity of fully formed candidates. Additionally, DFS

only maintains state for its current path from the root node, giving it a polynomial

memory requirement, as opposed to BFS’s exponential memory requirement.

2.1.4.3 Best-First search BFS and DFS each have their own strengths and

weaknesses. Combining these two approaches into a blended approach can draw

on the strengths and reduce the impact of the weaknesses. Best First Search is

a systematic search approach that blends the two. It utilizes a heuristic to dive

depth-first into areas of the tree that seem most promising.

A heuristic is a formalized set of rules that guide the exploration of the search

space in a direction that is most likely to lead to a solution. Heuristics are typically

based on previous experience that indicates which direction has resulted in solutions

before. Humans use heuristics, or rules of thumb, every day to guide their decisions,

in situations ranging from choosing the fastest route to the grocery store to choosing a

move in chess that brings them one step closer to checkmate (Luger and Stubblefield,

1998).

The quality of the heuristic is critical to the success of best-first search. A

good heuristic will lead the search to a solution quickly, while a poor heuristic could

lead the search into a portion of the search space that does not contain any solutions.

The limitation of heuristics is that they can only make an informed guess of the best

next step given the current information. Even the best guess at a decision point

can lead the search into a poor area of the search space from a given location. This

cannot be eliminated by better heuristics or more efficient search algorithms (Garey

and Johnson, 1973).

Best-first search, similar to the breadth-first search, maintains a list of open

and closed nodes, except the open nodes are stored in a priority queue which uses the

heuristic to determine order. Nodes are expanded, and all their neighbors that aren’t

in the closed list are added to the open priority queue. The search then continues its

21



search by expanding the first node in the open priority queue, which the heuristic

identifies as closest to a solution (Luger and Stubblefield, 1998).

Applying best-first search to MEM-MAP is simple in concept, but difficult

in practice, for similar reasons to difficulties encountered using breadth-first search.

The typical problem instance is so large that maintaining a full list of closed nodes is

not feasible. One modification that helps with the memory size is to limit the size

of the closed list. This reduces the effectiveness of the search because it can result

in the search examining the same portion of the space multiple times (Luger and

Stubblefield, 1998).

2.2 Incomplete Search

Systematic search is the obvious method of finding a solution in the search

space if it can complete in a reasonable amount of time. It not only guarantees

that a solution will be found if one exists, but it can also conclusively determine

when a solution does not exist. Since a typical problem instance for MEM-MAP has

hundreds of elements, each with thousands of potential starting logical addresses, the

search space is extremely large. Even application of the most sophisticated pruning

functions may not allow exhaustive exploration of the search space in a reasonable

amount of time.

Incomplete search techniques are one way to focus the effort on the most

interesting portions of the search space. These search techniques do not give any

guarantee of exploring all candidates. Instead, they apply heuristics to guide the

search towards areas of the search space that seem more likely to contain a solution.

There are a variety of incomplete search techniques available, each with its

own approach to exploring the search space and identifying promising regions. We

anticipate the need to establish a set of tools based on these techniques that will

allow us to test the application of the techniques.

22



Since incomplete search does not have any systematicity requirements, the full-

candidate, graph-based representation of the search space is a good characterization.

Each node in this representation contains a fully formed candidate, allowing the

incomplete search to quickly begin evaluating actual candidates without having to

move through the partial candidates. The elimination of the systematicity requirement

also eliminates the need to maintain the open and closed lists for the graph. One

advantage of applying heuristics is that they generally prevent loops in the search.

Since they continually try to move the search towards better candidates, searches

that utilize them typically will not visit the same portion of the search space twice.

One thing that all incomplete search methods have in common is the need

compare how close different candidates are to a solution. The Fitness score is a

quantitative score that indicates how close invalid candidates are to a solution (Thede,

2004). There are a variety of fitness scoring systems available. For our application, a

simple fitness scoring system might return how many elements overlap, where two

or more elements that are required by the same task and occupy the same logical

address location. In this case, the lower the score the better. Even though the fitness

score is calculated on invalid candidates, it can identify those which are closer to a

solution than others.

2.2.1 Hill Climbing

Hill Climbing is a basic greedy optimization algorithm that attempts to find a

solution by always choosing the best option in the short term. It starts by expanding

the current node to generate all of its neighbors. Each neighbor is evaluated to

determine its fitness. The neighbor with the best score is designated the current node

for future expansion while all other neighbors and the current node are discarded.

The search halts when it reaches a state that has a better fitness score than any of

its neighbors, a local optimum, as indicated in Figure 2.5. Hill climbing searches

23



Figure 2.5: An example showing local and global optima. Some search techniques
risk getting caught in local optima, and are unable to locate the global optimum.
Escaping local optima requires accepting temporarily worse scores with the goal of
finding the globally best score.

can be either maximizing or minimized in the fitness function, despite the naming

convention. In this case, lower fitness scores are better, so the hill climbing search

works to minimize the fitness score. Thus, the local and global optima are present at

local and global minimas in the figure. Since it does not keep any history of where

it has been or other alternative paths, there is no backtracking available when it

reaches a local optimum (Luger and Stubblefield, 1998).

Hill climbing is clearly an incomplete search technique. Using a heuristic to

choose the next best neighbor without providing backtracking does not allow for a

systematic search of the space, since other candidates that appear less fit could start

a path to a solution that would not be examined. The value of hill climbing is the

simplicity of the approach. Since no data is maintained from one decision to the

next, there is no need to maintain open and closed lists. It is also highly sensitive

to the heuristic, since it does not allow for any alternative decisions. We use this

straightforward approach as the basis for other incomplete searches.

Hill climbing is the most simple application of a heuristic to MEM-MAP. In

order to improve its effectiveness and increase the portion of the search space that it

24



examines, some minor modifications are necessary. If simple hill climbing is directly

applied to the problem, consistently using the same root for a starting point, it would

always find the same local optimum. An effective modification to hill climbing that

addresses this problem is to restart the hill climbing procedure with a randomly

generated starting point whenever it reaches a local optimum that is not a solution.

This modification is called random restart, or shotgun hill climbing (Ghannadian and

Shonkwiler, 1996).

An alternative option to the random restart modification is the persistent mod-

ification, which modifies the fitness score to take into account additional information

about the candidate. This provides more information to score the candidate, and

reduces the number of local optima encountered. However, this more complex fitness

function is more difficult to compute, increasing the time spent at each stage of the

search. Even though it extends the length of each attempt and reduces the number

of local optima in the space, it is still not guaranteed to find a valid solution. Both

of these modification need to be examined, but a hybrid approach is likely the best

application of hill climbing (Luger and Stubblefield, 1998).

2.2.2 Genetic Search

Hill climbing and best-first search are good applications of heuristics to search,

but they are not the only useful applications of a heuristic to the search. One

limitation of these approaches is that, given a starting point, they will always follow

the same path through the search space based on the heuristic. Randomization must

be added to the searches to allow the techniques to explore a larger portion of the

search space.

Genetic search is another tool in the set of incomplete search techniques. It

creates a population of candidate solutions for the problem, then allows them to

evolve over the course of many generations. In the context of search, evolution is

25



the process of creating a generation of candidates, mutating them, then selecting

the best candidates from the mutated ones to constitute the next generation. As

new candidates are formed and examined through the evolution process, the search

space is explored. Natural selection helps to move the search toward more promising

candidates by utilizing the fitness score to prefer mutated candidates that are better

than others in the new generation. In order to prevent all the candidates in the

new generation from being worse than the current generation, a limited number

of candidates are allowed to survive from one generation to the next, if they have

comparable fitness scores (Thede, 2004).

Genetic search can be applied to MEM-MAP. It is an incomplete search tech-

nique that uses a graph-based representation of the search space. A straightforward

application might use a simple mutation function that applies a single mutation to

the parent node. This single mutation could consist of swapping the starting logical

addresses of two randomly selected elements in the candidate. The resulting mu-

tated candidate would be identical to the parent, with the exception of the swapped

elements.

If the neighbor relation is based upon swapping the starting address of two

candidates, then the mutated child candidate would be a neighbor of the parent in

the search space graph. From a graph perspective, the mutation can be considered

to be a random selection of one of the parent node’s neighbors for expansion and

potential inclusion into the next generation. More complex mutation functions can

be achieved by chaining a random number of mutations together, with each mutant

randomly selecting a neighbor for the next mutation in the chain.

A simple mutation function effectively makes genetic search a randomized,

incomplete version of depth-first search. Even though it is not guaranteed to select the

best neighbor at each expansion, it collects a subset of the neighbors, and prioritizes

26



#@PHASE VARICORE 140000 0
VARICORE, Q2IMXB, 0000335 ,D, CORERW , ,0 , 140000 ,2 , , 0 ,

00000000 ,3 ,M00,MIO,M01,M02,M03,M04,M05,M06,M07,M10,M11,M12,M13,M14,M20,M21,M22,
M23,M24,M25,M26,M40,M41,M42,M43,M44,M45,M50,M51, S00 , S01 , S02 , S03 , S04 , S05 , S06 , S07
, S10 , S11 , S12 , S13 , S14 , S15 , S16 , S17 , S20 , S21 , S30 , S31 , S32 , S33 ,MRM,SRM

VARICORE, Q2IMXE, 0000015 ,D, CORERW , Q2IMXB, 2 , ,0 , , 0 ,
, 0 ,M00,MIO,M01,M02,M03,M04,M05,M06,M07,M10,M11,M12,M13,M14,M20,M21,M22,M23,M24,
M25,M26,M40,M41,M42,M43,M44,M45,M50,M51, S00 , S01 , S02 , S03 , S04 , S05 , S06 , S07 , S10 , S11
, S12 , S13 , S14 , S15 , S16 , S17 , S20 , S21 , S30 , S31 , S32 , S33

Figure 2.6: Excerpt from an input file in Map2 format which shows two elements,
Q2IMXB and Q2IMXE, along with their information and tasks which require them.

the better candidates via the fitness function. This will tend to focus the search on

better candidates and hopefully find a solution.

2.3 Previous Work

The DOD has been working on this problem since it became apparent that

upgrades were necessary to keep the F/A-18 in service and competitive with other

warplanes worldwide. They developed a series of programs with the goal of automating

the search for solutions. Map1 (Map, 2007a), the first stage in the process, gathers

the data sources for the problem and condenses them into a standard format of the

problem instance for entry into Map2. Map2 takes the standard format and applies

a variety of tools in an attempt to assign an address to every element in a manner

that satisfies all constraints. The ability to check the satisfaction of constraints also

makes Map2 the canonical validator of any solution (Map, 2007b). Once Map2 has

generated and/or validated a solution, it passes the standard format to Map3 to

generate the sysgnctl file for loading on the warplane.

The Map2 file format serves as the official description of the problem instance.

The format contains information about the problem instance, as well as recommended

address specifications. Each field is separated by a comma for easy parsing. The

fields in the file are specified in Table 2.1. Figure 2.6 shows a portion of a file in

Map2 format.

27



Table 2.1: Specification for the Map2 file format. Fields are separated by commas
for easy parsing. The total number of columns is determined by the number of task

requirements for the given element.

Field# Contents Description
1 Phase-Name Suggested name of the phase
2 Element-Name 8 or fewer characters. Used to identify

the element
3 Size of Element Octal number. Represents the number

of 8-bit data words required
4 Data/Code Type Data (D) or Code(C)
5 Type 8 or fewer characters. Name of the

memory type for the element
6 Concat Relationship Specifies that this element should im-

mediately follow another specified ele-
ment. Must match an element name
specified in the file

7 Concat-Rel Strength Strength of 0-3
8 Virtual-Addr Relationship Octal location in the 64K memory map
9 Virtual-Addr Strength Strength of 0-3
10 Vir/Phys Offset Value that, when added to the virtual

address, must equal the physical ad-
dress

11 Vir/Phys Strength Strength of 0-3
12 Physical-Loc-Rel Octal physical location. If it starts

with “+”,understood to be offset from
virtual relationship

13 Physical-Loc-Rel Str Strength of 0-3
N Task Requirement List of tasks that require the element

An important piece of information for each element is its memory type, which

is the kind of memory that is needed to store the element. The possible memory

types are shown in Table 2.2.

The specific compilation techniques employed by the mission computer require

careful consideration be given to the memory types of the elements stored on them.

Pages must only contain elements with compatible memory types. Each memory

type is clearly compatible with itself, but there is also an expanded concept of

compatibility, in which elements with the same Read(R), Read-Write(RW), Read-

28



Table 2.2: Memory Types

Generic Type Memory Type

Read-Only MEEPR

Read-Only SEEPR

Read-Only CORER

Read-Write MRAMRW

Read-Write SRAMRW

Read-Write CORERW

Read-Write-Execute MRAMRWE

Read-Write-Execute SRAMRWE

MEEP MEEP

SEEP SEEP

Write-Execute(RWE) permission are considered compatible. This reduces the effective

number of memory types, and makes the problem easier to solve.

As the complexity of the system has increased, Map2 has ceased to be capable

of generating valid solutions. The set of tools it utilizes to search for solutions is

simply too limited. It still maintains the validation capabilities, and its role in the

process has changed to that of the de facto validator. In order to find solutions, it

is now necessary for a human to inspect the standard format and modify it to fit

all the elements while satisfying the constraints. Once the human has modified the

file in a way that solves the problem, they pass the solution to Map2 for validation

before continuing the process.

Since Map2 now serves only as a validation tool and humans are the only

method for finding solutions, work has concentrated on developing tools that assist

the humans in visualizing the mapping problem. Baylor’s electrical engineering

department, in a partnership with DOD, is assisting in development of these tools.

Jeremy Stevenson, a graduate electrical engineering student, developed the first

29



Figure 2.7: Output of the Memory Map Editor implemented by Stevenson. Different
elements are colored with different colors, and size of the blocks indicate the element
size in bytes. The editor provides the ability to parse a problem file, and perform
basic modifications.

automated visualization tool in MatLab called Memory Map Editor (Stevenson,

2007). This program applies some basic reorganization and validation strategies in

an effort to come as close to a solution as possible. Once these strategies are applied,

the program presents the user with a basic editing interface for further modifications.

One of the strategies that Stevenson developed is the concept of Fall Through

Gravity. This approach attempts to condense the elements in the mapping by pushing

elements as early in the address space as possible. Elements continue to be reordered

in an effort to reduce the height of as many elements as possible (Stevenson et al.,

2006).

30



Stevenson’s editor is a first attempt at visualizing the problem, but the auto-

mated techniques applied are not capable of finding solutions even for known solvable

problems in a reasonable amount of time. The user still must do significant reordering

in order to find a valid solution.

In an attempt to reduce the amount of user interaction required, Ray Holder

re-implemented the algorithms from Stevenson’s work into a Java-based visualization

application. Holder’s implementation provides a visualization interface for humans

to use, but it continues to have difficulty providing an efficient, automated search for

a solution. The compiled Java sped up the computation, but the algorithms that are

used were not efficient enough to find a solution in a reasonable amount of time.

Both the Stevenson and Holder implementations attempted to find a solution

by applying developed techniques that were not based on a complete search. The

developed techniques can best be described as informal attempts that incorporated

ideas found in gradient search, multistage gradient search, genetic search and sim-

ulated annealing search algorithms. A more formal analysis of the problem and

systematic application of standard methods is needed to explore the possibilities of

developing an automatic mapping generator.

31



CHAPTER THREE

Formal Complexity and Search Characterization

We have shown that there are a variety of approaches to finding a solution for

MEM-MAP. The motivation to explore incomplete searches is based on the premise

that MEM-MAP is an NP-Complete problem, which prevents complete search from

producing a solution in a reasonable amount of time using known algorithms. We

describe a formal specification for the problem to support this claim, in addition to

proving that compressed mappings and oracles are sufficient for exploring the space

of candidates.

3.1 The MEM-MAP Problem

A more formal definition of MEM-MAP will allow a proof of NP-Completeness

and will permit various equivalence-preserving transformations of the problem. In

formalizing the problem, we abstract away some of the details specific to the problem.

3.1.1 MEM-MAP Problem Instance

A MEM-MAP problem instance defines a set of tasks, data elements and a

requirement relation between them. It consists of:

(1) A set of tasks, T .

(2) A set of data elements, D.

(3) A set of memory types, Y .

(4) A set of pairs, R, that describes which data elements are needed by each

task. If element d ∈ D is required by task t ∈ T , then 〈t, d〉 ∈ R.

In addition to these core components of the problem, there are also some key

constraints to the problem that directly affect potential solutions. These include:

32



(1) Data elements may differ in size. Each data element d ∈ D occupies s(d) ∈ Z+

contiguous bytes of memory.

(2) Each data element d ∈ D has an associated memory type, represented as

y(d) ∈ Y .

(3) Physical memory is organized into pages, each P bytes in length.

(4) Each task employs a page table with Q slots, permitting access to Q pages

of physical memory.

(5) Each data element d ∈ D has a memory type denoted as y(d).

3.1.2 MEM-MAP Mapping Solution

A solution to a MEM-MAP is called a mapping. It specifies a physical memory

location for each data element and page table contents for each task. A mapping M

consists of:

(1) An assignment of a starting address in physical memory, M(d) ∈ Z, for

each data element d ∈ D. Any data element d is understood to occupy s(d)

contiguous bytes of physical memory starting at M(d).

(2) For each task, identify Q physical pages to be mapped into the logical address

space. For every task t ∈ T and every logical page q ∈ {0, . . . , Q− 1}, the

function M(t, q) ∈ Z defines a starting physical address for the page. Since

the page table must reference physical memory pages, M(t, q) must be evenly

divisible by P . Also, since no physical memory page may be mapped into

two different page table slots, M(t, q1) = M(t, q2) only if q1 = q2.

A valid solution to a MEM-MAP problem instance yields a logical address space

for each task that makes available every required data element. It must also satisfy

certain validity constraints.

33



3.1.3 MEM-MAP Mapping Validity Constraints

The various requirements for a valid MEM-MAP solution are simplified by

making reference to the physical address space and the logical address space of

each task. For task t ∈ T and data element d ∈ D, we define a logical address

l(t, d) ∈ Z
⋃
{⊥}, where ⊥ represents an undefined logical address. If d starts in a

page that is mapped into the page table of t, then l(t, d) ∈ Z. More specifically, if

there is a logical page q ∈ {0, . . . , Q− 1} such that M(t, q) ≤M(d) < M(t, q) + P ,

then l(t, d) = qP + (M(d) mod P ). If there is no such page, then l(t, d) = ⊥.

The logical address of an element has some limitations. Because of the compi-

lation techniques employed, the logical address for all data items must be the same

across all tasks. For any data element d ∈ D and any two tasks t1 ∈ T and t2 ∈ T , if

t1 6= t2, then one of the following holds:

(1) l(t1, d) = ⊥

(2) l(t2, d) = ⊥

(3) l(t1, d) = l(t2, d)

This consistency of logical addresses leads to a single parameter version of the

logical address notation l(d) = l(t, d) for some t ∈ T for which l(t, d) /∈ ⊥. This

single-parameter version is useful for discussing the logical address of an element

without making a commitment to the set of tasks for which the element is required.

It is understood that the l(d) is only meaningful for tasks that have defined l(t, d).

Using this definition of the logical and physical address spaces, the requirements

can be effectively and concisely described. A mapping must satisfy all of these

constraints to be considered valid.

(1) Element Visibility Constraint: The logical address space for each task must

include every byte of every required element. If 〈t, d〉 ∈ R, then all pages

containing d must be contiguously mapped into the page table for task t. If

the element spans multiple pages, extra care needs to be taken to ensure all

34



pages that contain the element are available. Some definitions are necessary

to verify that all necessary pages are required.

(a) Address of the first physical page that contains d is defined as

firstd =

⌊
M(d)

P

⌋
· P

(b) Number of pages on which d occurs is defined as

countd =

⌊
M(d) + s(d)

P

⌋
−
⌊

M(d)

P

⌋
+ 1

Each of the countd pages that contain d must be accessible to t. Since the

pages must be mapped contiguously, they must be loaded into neighboring

slots in the page table. First, there must exist some q1 ∈ {0, . . . , Q− 1} such

that M(t, q1) = firstd, which satisfies the visibility of the first page that the

element occupies. The slot q1 must occur early enough in the page table to

allow the rest of the pages to be mapped contiguously and still fit in the

page table, where q1 + countd − 1 < Q. If countd > 1, then all subsequent

pages must be mapped in order. That is, ∀i ∈ {2, . . . , countd} it is the case

that M(t, qi) = M(t, qi−1) + P .

(2) Mutual Exclusion Constraint: The mapping must organize data elements so

that they do not overlap in physical memory. In particular, for any two data

elements, d1 ∈ D and d2 ∈ D, if d1 6= d2, then either M(d1) + s(d1) ≤M(d2)

or M(d2) + s(d2) ≤M(d1).

(3) Type Homogeneity Constraint: Each page of physical memory must contain

only data elements of a single memory type, or multiple memory types which

are compatible. The compatible memory types are statically defined, so we

still use equality of y to indicate that two elements either have the same

memory type, or a compatible memory type. If two data elements d1 ∈ D

and d2 ∈ D occupy the same page, they must have a compatible memory

type. More precisely, either y(d1) = y(d2) or {M(d1), . . . ,M(d1) + s(d1)−

1} ∩ {M(d2), . . . ,M(d2) + s(d2)− 1} = ∅.

35



(4) Ordering Constraint: The order in which elements are placed in a page is

important. If multiple elements are stored in the same page, they must

be ordered such that every element is required by at least one task that

requires an element earlier in the page. The first element that occurs in

a page is not affected by this requirement, because there are no preceding

elements to check. Formally, this can be described as ∀t ∈ T,∀q ∈ Q,

there exists D′ ⊂ D such that ∀d ∈ D′, M(t, q) ≤ M(d) < M(t, q) + P

or M(t, q) ≤ M(d) + s(d) < M(t, q) + P . This criterion requires that

∀d ∈ D′, either d is the first element on the page, such that @d′ ∈ D′ where

l(t, d′) < l(t, d), or d is required by at least one task that requires a preceding

element, ∀d′ ∈ D′ where d′ 6= d and l(t, d′) < l(t, d), ∃t ∈ T such that

〈t, d〉 ∈ R and 〈t, d′〉 ∈ R.

3.2 NP-Completeness Proof

We use the formal definition of MEM-MAP as the language for proving that

it is NP-Complete. We begin by showing that MEM −MAP ∈NP, followed by

showing that MEM-MAP is NP-Hard. Demonstration of these two characteristics

form the proof that MEM-MAP is NP-Complete.

Theorem 3.2.1. MEM-MAP∈NP

Proof. It is clear that MEM-MAP ∈ NP , since a nondeterministic algorithm could

simply guess the assignment of data elements D to physical addresses, and then

guess the assignment of physical addresses to the slots in the page table. The

nondeterministic algorithm would then need to verify the solution was valid by

performing a polynomial-time check to ensure all requirements of a valid solution are

satisfied.

Theorem 3.2.2. MEM-MAP is NP-Hard

36



Proof. In order to show NP-Hardness, we reduce GRAPH K-COLORABILITY

(Garey and Johnson, 1973), a known NP-Complete problem, to MEM-MAP in

polynomial time. The specification of GRAPH K-COLORABILITY we will use is:

(1) A graph G is denoted by an ordered pair 〈V, E〉 where V is the set of vertices,

and E is the set of edges.

(2) There are K integer colors available for coloring, and the available colors are

numbered {0, . . . , K − 1}.

(3) A coloring C is an assignment of a color from {0, . . . , K − 1} to each v ∈ V

where C(v) is the color of v.

(4) The coloring C is valid only when, for every u and v ∈ V , if (u, v) ∈ E, then

C(u) 6= C(v)

(5) A graph is considered K-colorable if there exists a valid coloring C for G

using K colors.

3.2.1 Construction

In order to show that MEM-MAP is NP-Hard, we define a construction method

to create an instance of MEM-MAP from an instance of GRAPH K-COLORABILITY.

Let an instance of GRAPH K-COLORABILITY be denoted by the graph G with

K colors available for coloring. We construct a MEM-MAP problem instance I to

represent G such that I has a mapping if and only if G is K-colorable.

We first define the construction of the MEM-MAP instance, defining all required

terms. Once the construction has been defined, we ensure that a valid mapping for I

will exist if and only if G is K-colorable. First, we must ensure that the existence of

a valid mapping for I results in a K-colorable graph. Second, if G is K-colorable,

then the constructed I will have a valid mapping.

The construction works by creating a data element in I for each vertex in G.

The color of the vertices will be represented by the logical address of the corresponding

37



elements, so there will be only K logical addresses possible. Each edge in G has a

corresponding task in I, and the data elements in I corresponding to the vertices

connected by the edge are specified as required by the task. This requirement prevents

the elements from being located in the same logical address, and thus from their

corresponding vertices from having the same color.

Additionally, a task is created for each isolated vertex. Since it is not connected

to any other vertex, a single required data element is created for the vertex in its

task. This single requirement allows the element to occupy any slot in the page table

for its task.

First, the constructed I will have K single-byte page slots in each task’s page

table, where Q = K and P = 1. Since pages are only one byte long, only one element

can be stored on each page. This allows only one memory type to be required,

Y = {MEEPR}. Then, for each vertex vi ∈ V , create a corresponding element

di ∈ D that has m(di) =MEEPR. Set s(di) = 1, which forces each element to only

occupy a single page, and each page may contain at most one element. Finally, for

each edge (vi, vj) ∈ E, create a new task ti,j ∈ T along with a requirement for the

element associated with each vertex connected by the edge: 〈ti,j, di〉 , 〈ti,j, dj〉 ∈ R.

This construction of a MEM-MAP problem instance for a given instance of

GRAPH K-COLORABILITY can be completed in time polynomial to the size of

the graph. Each vertex has a single corresponding element and each edge has a

corresponding task. Each edge also has two requirements present in I. Since K is

bounded by |V |, where each vertex would be assigned its own unique color, there

will be at most V slots in the page table.

3.2.2 Validation

All that remains to be shown is that G is K-colorable if and only if I has a

mapping.

38



Lemma 3.2.3. If I has a mapping, the original graph G is K-colorable

Let I have a valid mapping M . Using M , a valid K-coloring C for G can be

obtained. First, let K = Q. Each vi ∈ V will be colored by the logical address of the

corresponding di such that C(vi) = l(di). To be valid, coloring C must only assign

one color to each vertex. The construction of C from M guarantees this because of

the mapping validity constraints. One of the requirements on the logical address is

that the data element must have the same logical address in all tasks which require

the element. This ensures that there is no confusion about which color to assign to

the element.

The validity requirement for GRAPH K-COLORABILITY states that vertices

that are connected by an edge may not have the same color. The construction

prevents this assignment from occurring. Suppose two vertices, vi and vj, connected

by edge (i, j) were colored the same color, creating an invalid coloring. This coloring

could only occur if the corresponding elements di and dj were assigned the same

logical address in M such that l(di) = l(dj). Since the construction creates a

requirement for task ti,j for both of the elements, they must both be available in

its page table, preventing them from occupying the same logical address. Recall

that the construction of MEM-MAP dictated that P = 1, s(di) = 1, and s(dj) = 1,

ensuring that each page table slot can only contain one element. Since both of the

elements are required by the same task and only one element may occupy a slot, a

valid mapping must assign them different logical addresses, so l(di) 6= l(dj).

Lemma 3.2.4. If G is K-colorable, then I has a valid mapping

Any valid K-coloring, C, for G can be easily converted into a valid mapping M

for I. The construction begins with assigning each di to a physical address, M(di).

Since s(di) = 1, a trivial and valid physical address assignment is ∀di ∈ D, let

M(di) = i.

39



The page table that is built from this conversion will be very sparse: tasks

will reference one or two pages. These references are built according the coloring.

In order to ensure that each slot in each page table has a page reference defined,

we create pseudo-pages which contain pseudo-elements, which are referenced in the

otherwise unoccupied page table slots.

Since K = Q, each slot in logical memory corresponds directly to a color in

the coloring. For each task t ∈ T , and all that that task’s requirements 〈t, di〉 ∈ R,

element di must be mapped into the page table of t in order for it to have access to

the necessary data. The coloring C provides information about which slot should

contain di. Since the set of colors and set of pages table slots are the same, slot C(vi)

in task t should point to the physical memory of di, which can be formally specified

as M(t, C(vi)) = M(di).

In addition to assigning physical addresses to necessary elements, we also create

Q pseudo-elements to fill in page tables for tasks requiring fewer than Q elements.

These pseudo-elements will occupy the physical addresses |D|, . . . , |D|+ Q− 1. We

then use these pseudo-elements to fill the undefined slots in the page table, ∀t ∈ T ,

∀q ∈ {0, . . . , Q− 1} where M(t, q) = ⊥, assign M(t, q) = |D|+ q. This ensures that

no slot has an undefined page reference; it either references an actual physical page,

or one of the pseudo-pages that contain pseudo-elements.

The construction of the mapping M from the coloring C ensures that no element

is mapped into more than one logical address. Suppose an element d were mapped into

different slots for two tasks such that M(t1, x) = M(d), M(t2, y) = M(d), and x 6= y,

causing an invalid mapping. The construction of M from C defines the correspondence

from virtual to physical address space such that M(t, C(vi)) = M(di). The invalid

mapping could only result if M(t1, C(vi)) = M(t2, C(vi)) and C(vi) 6= C(vi). Since

the coloring function C(d) is deterministic, such an invalid mapping could not occur.

40



To verify that the constructed mapping M is valid, we must ensure each validity

constraint is satisfied.

(1) Element Visibility Constraint: Since s(d) = 1 and P = 1, we are guaranteed

that each element fits onto a single page, requiring us only to ensure that the

starting logical address of the required data element in each requirement is

available in logical space in the necessary task. For all 〈t, d〉 ∈ R, there exists

a q ∈ Q such that M(t, q) = M(d). The second step of the construction of

M explicitly handles each requirement in T , ensuring that a specific slot,

M(t, C(d)) contains the physical page for the element, M(d).

(2) Mutual Exclusion Constraint: Each element is assigned its own page in

physical memory, M(di) = i. Our assertion that s(d) = 1 prevents elements

from overlapping using this assignment. Since we ensure they don’t start at

the same logical address, we also ensure they don’t overlap one another.

(3) Type Homogeneity Constraint: Each page only has enough space for one

element, since s(d) = 1 and P = 1. Since elements can only have one memory

type, the memory types contained on each page will be homogeneous.

(4) Ordering Constraint: Each element starts its own page, which satisfies the

first criteria for the Ordering Constraint.

Theorem 3.2.5. MEM-MAP is NP-Complete

Proof. A problem is NP-Complete if it is shown to be in the class NP and is also

NP-Hard. Theorem 3.2.1 shows that MEM-MAP is in the class NP . Theorem 3.2.2

provides a polynomial-time reduction from GRAPH K-COLORABILITY, a known

NP-Complete problem, to MEM-MAP, which indicates that MEM-MAP isNP-Hard.

Given these two theorems, we conclude that MEM-MAP is NP-Complete.

41



3.3 Enumerating Mappings via Element Sequences

The only known way to conclusively find a solution NP-Complete-type prob-

lems is exponential-time exhaustive search, which requires a way to enumerate each

node in the search space. Incomplete search techniques also require this enumera-

tion capability. We now move away from the examination of NP-Completeness to

discuss search space representation, specifically using element sequences to provide

enumeration capabilities.

So far, we have considered a candidate to be an assignment of starting logical

addresses to all elements and placements into physical pages. This simple definition

is sufficient for illustrating basic concepts, but it entails a very large search space that

is not feasible to search in a reasonable amount of time. The assignment of specific

physical and logical addresses to elements facilitates examination and validation, but

it also requires search to make commitments that may be unnecessarily strict.

An example helps illustrate the strict commitment to specific logical addresses

of the candidate. Figure 3.1 shows three simple candidates that could be examined

during a search of the candidate search space. In this example, l(d1) ≤ l(d3) ≤ l(d2),

and they all have incompatible memory types which prevents them from sharing

pages. d1 has been assigned a starting logical address, and the current choice revolves

around the commitment for d3. These three situations are only a small subset of the

large number of commitments that would need to be evaluated for d3 at this point in

the search. Even a very minor change in position for d3 leads to a different candidate

in the search space. For each situation, d2 is placed in the earliest logical address

possible, taking into account the placement of d3.

The issue with this commitment to specific logical addresses is that it is very

difficult to know which of the commitments, if any, will lead to solutions. Here, the

very fact that d3 is being placed between d1 and d2 is the reason that d2 cannot fit

into the page table. Figure 3.2 shows that changing the order such that d3 comes

42



Figure 3.1: If the elements d1, d2, and d3 are ordered such that d3 is between d1 and
d2, the candidate cannot be valid. The small size of d3 results in many candidates
that all exhibit the same ordering problem.

43



Figure 3.2: Placing d3 before d1 allows all elements to fit. The order of elements is an
important characteristic of a candidate.

before d1 results in a valid mapping. Under this näıve characterization of the search

space, much effort could be wasted searching the variety of ways that d3 could be

tweaked between d1 and d2 instead of getting to the actual solution.

Since the space of all candidates is so large, it is critical to find a less strict,

smaller search space that is equivalent in some way. The goal is to explore the space

of possible candidates by searching this smaller space that captures some of the

essential qualities of a candidate.

3.3.1 Equivalence Class and Canonical Candidates

One way to develop a substitute search space is to find a special candidate

which represents all three candidates in Figure 3.1. This representative candidate

could then represent all similar cases that place d3 between d1 and d2. The space

of all representative candidates would be significantly smaller than the space of all

candidates. We use equivalence classes to identify this smaller search space. An

equivalence class is a group of candidates that have similar characteristics. This

allows many states from the näıve search space to be folded into fewer equivalence

classes, resulting in a smaller search space.

44



Invalid Candidates

Valid Mappings

Canonical Mapping

Invalid Canonical
Candidate

Equivalence Classes

Figure 3.3: The space of candidates can contain invalid candidates, as well as
candidates that are valid mappings. Each valid mapping has a canonical form that
can represent multiple valid mappings.

The equivalence class space can be examined by choosing a representative

candidate from each class. This representative candidate is called a canonical

candidate for its equivalence class. The canonical candidate for an equivalence class is

equivalent to the candidates in the class under some equivalence relation. In this case,

two elements are considered to be equivalent if they compress to the same compressed

element. This compressed candidate is considered the canonical candidate for the

equivalence class. The set of all canonical candidates forms a smaller search space

that is analogous to the original candidate search space, ensuring that if a valid

mapping exists in the space of candidates, a valid canonical mapping will also exist

in the space of canonical mappings. Figure 3.3 illustrates a portion of a search space,

including equivalence classes and their representative, canonical candidates. Note

that we do not require that all canonical candidates be valid, they simply represent

an equivalence class of candidates. However, we critically depend on the requirement

45



Figure 3.4: All elements in a compressed mapping must either start on a page
boundary or immediately follow another element in a page.

that a canonical candidate be valid when any candidate in its equivalence class is

valid.

We define our canonical candidate by eliminating unnecessary space between

elements in the logical address space. We call this type of candidate a compressed

candidate. This compression of space represents a reduced commitment with respect

to the logical address assignments, allowing a compressed candidate to represent all

the uncompressed candidates in its equivalence class. A valid compressed mapping

is a valid mapping that satisfies an additional requirement to the standard validity

requirements. The extra requirement is that every element must either immediately

follow another element, or start on page boundary such that it cannot start on

the preceding page due to a validity constraint. Formally, this can be described as

∀d ∈ D, t ∈ T , either:

• d is not referenced in t and thus its logical mapping is undefined, l(t, d) = ⊥

• d immediately follows another element: ∃d′ ∈ D such that d′ 6= d and

l(t, d′) + s(d′) = l(t, d)

46



• d starts on a page boundary, l(d) mod P = 0, and cannot be placed onto a

page in the preceding slot. We define q =

⌊
l(d)

P

⌋
to be the current slot for

d. Using this definition, d can be placed onto a preceding page if one of the

following cases occur:

(1) Empty preceding page: ∀t ∈ T , either l(t, d) = ⊥, or M(t, q − 1) = ⊥

(2) Single compatible preceding page: ∃p such that ∀t ∈ T , either l(t, d) = ⊥,

or M(t, q − 1) = {p,⊥}. This p must have some specific qualities,

mostly revolving around the set of of elements that occur on p. Let

Dp =

{
d′ ∈ D |

⌊
M(d′)

P

⌋
≤ p ∧

⌊
M(d′ + s(d′))

P

⌋
≥ p

}
. Using this def-

inition, the following must hold for p to be a valid preceding page:

(a) All the elements have compatible memory type to d: ∀d′ ∈

Dp, y(d′) = y(d)

(b) The last byte of the page is empty: ∀d′ ∈ Dp, (l(d′) + s(d′)) ≤

(l(d)− 1).

If either of these cases is true, then d can be further compressed, and the

requirement is not satisfied.

Elements that satisfy these criteria are considered to be compressed elements, while

those that do not are considered uncompressed elements.

This definition of canonical candidate can be used to define the membership

criteria of an equivalence class of candidates as the set of all candidates that result

in the same compressed mapping after removing any unnecessary space. All three

of the candidates in Figure 3.1 would be part of the same equivalence class, with

Candidate 1 being the compressed representation for that class.

Using the compressed mapping for the canonical candidate allows us to preserve

the most important aspects of the candidates, the order in which elements are

present in memory, while factoring out insignificant commitments. We will show

47



that the gaps between elements are unimportant to any of the validity constraints

by proving that any equivalence class that contains a valid mapping will have a

corresponding compressed candidate that is also valid. This makes the space of

compressed candidates just as good as the space of all candidates, but with far fewer

states to be searched. Figure 3.4 shows a portion of an uncompressed mapping

and its canonical representative in the same equivalence class. The relative position

of each element is maintained. Additionally, elements that start earlier in logical

address space are not altered.

3.3.2 Using Oracles to Represent Compressed Candidates

The space of compressed mappings is a useful substitute search space, but a

method for enumerating elements in the space is needed. The compressed candidates

can be easily generated from any given candidate, but the goal is to generate the

compressed candidates without first generating the space of all candidates. We use

an oracle to represent a compressed candidate in the search space. An oracle is an

element sequence that contains all elements d ∈ D, indicating where each element

is stored in logical memory with respect to the other elements in the sequence. If

a problem instance only contains three elements, an oracle o for the instance could

be defined as 〈d1, d2, d3〉. The oracle also provides a function to access its elements,

where o[0] would return the first element in the oracle, in this case d1. Oracles are a

good way to explore the space of compressed candidates because they are easy to

work with, since they are simply a sequence that can be easily modified. This allows

the space of oracles to be easily enumerated.

In addition to the standard, fully formed oracle which defines a sequence of

all elements d ∈ D, we also need the concept of partial-oracle, which only defines

the sequence for some D′ ⊂ D. This is necessary to facilitate representing the

partial-candidates discussed as part of the depth-first search.

48



Informally, we use an oracle to capture the essential details of their placement

in logical address space. If element d1 comes before d2 in the oracle, then d1 can be

expected to have a logical address that starts no later than l(d2).

3.3.2.1 Mapper function Consider an oracle o. The information about the

relative order of elements in o can be used to construct a compressed candidate c.

The construction greedily places elements as early as possible in the logical address

space of c while still satisfying all validity constraints.

Consider each element, d, in the order that they appear in o. Per the definition

of oracle, we require that l(d) ≥ l(d−1). Beginning at l(d−1), check to see if assigning

d to the logical address would satisfy all validity constraints. If the assignment would

break any validity constraint, consider each successive logical address that could be

assigned to d.

Once d has been assigned a logical address, the physical address space and page

tables must be updated. Since an element can only occur once in physical memory,

each task in Td = {∀t ∈ T | ∃ 〈t, d〉 ∈ R} must reference the same pages in its page

table to access d. For each slot q that contains d, if any t ∈ Td has a page p assigned

to slot q, specifically M(t, q) = p, verify that @t1, t2 ∈ Td, where l(t1, q) 6= l(t2, q).

If two tasks have different pages mapped to q, then a new logical address must be

found for d. If the slot does not have a page allocated: ∀t ∈ Td, where M(t, q) = ⊥,

then allocate the next page from physical memory, p′, store the element on the page,

and reference p′ from q for each task, specifically ∀t ∈ Td, specify that M(t, q) = p′.

Once an assignment has been found that satisfies all validity requirements,

move on to the next element in o. Once all elements have been assigned a logical

address, and all necessary pages have been created and mapped to slots in the

page tables, the compressed candidate c is considered to be fully constructed. The

following psuedocode demonstrates this process.

MapperFunction ( o )

49



cu r rLog i c a l ← 0

cur rPhys i ca l ← 0

Foreach d in sequence o

Td ← {forallt ∈ T | ∃ 〈t, d〉 ∈ R}

Foreach 〈t, d′〉 ∈ R where d′ = d

While s e t t i n g ( l(t, d) =cu r rLog i c a l ) v i o l a t e s any v a l i d i t y c on s t r a i n t s

cu r rLog i c a l ← cu r rLog i c a l+1

l (d) ← cu r rLog i c a l

For each s l o t q ∈
—

l(d)

P

�
, . . . ,

—
l(d) + s(d)− 1

P

�ff
I f ∃t ∈ Td where M(t, q) 6= ⊥

Ensure that ∀t1, t2 ∈ Td , e i t h e r M(t1, q) = ⊥ or M(t2, q) = ⊥ or M(t1, q) = M(t2, q)

I f @t ∈ Td where M(t, q) 6= ⊥

Create a phy s i c a l page s t a r t i n g at cu r rPhys i ca l to s t o r e d

∀t ∈ Td , s e t M(t, q)← currPhysical

cu r rPhys i ca l ← cu r rPhys i ca l + P

3.3.2.2 Example An example helps illustrate the process of generating an

oracle from a compressed mapping, and applying the mapper function to the oracle

to construct the original, compressed mapping. Consider an oracle o = 〈d3, d1, d2〉

that corresponds to the compressed candidate c presented in Figure 3.2. Application

of the mapper function to o will produce a compressed candidate. The construction

places d3 at the earlist possible logical address, which is the first logical address in

the page tables for Task 1 and Task 2. Since there were no pages created before this

placement, a page is created to store d3, which is then referenced by the first slot in

each task’s page table. The next element to be placed is d1. Since d3 and d1 have a

common task requirement, Task 1, the Mutual Exclusion constraint specifies that

they cannot be placed into the same logical address. Additionally, since they do not

have the same memory type, the Type Homogeneity constraint requires that they

not be placed onto the same page. The mapping procedure will consider successive

logical addresses until d1 is assigned its own page, and that page is mapped to Slot 2

of the page table for Task 1. Finally, d2 is placed into the candidate. Since it does

not share a task requirement with d1, it can be placed into the same logical address

50



as d1. It is assigned its own page, and loaded into Slot 2 for Task 2 and Task 3. The

resulting candidate is the same compressed candidate that is presented in Figure 3.2.

3.3.3 Formal Examination of Compressed Mappings and Oracles

We have suggested that a search for valid mappings in the space of candidates

need not explore the entire space of candidates. Compressed candidates can be

used as canonical representatives for their equivalence class, resulting in a smaller

search space. Oracles can then be used to facilitate the enumeration and search

of the compressed space. We have given an overview of how these concepts work

together, but proofs are needed to verify that the exploration of these reduced spaces

is sufficient. There are two specific points that need to be proven:

(1) If a mapping exists in the space of candidates, a compressed mapping

also exists. This proof will provide a demonstration of how to generate a

compressed mapping for any given mapping.

(2) Each compressed mapping has a corresponding oracle that contains enough

information to reconstruct the original compressed mapping. Given a com-

pressed mapping, M ′, there exists an oracle o that will yield M ′ under the

mapping function.

3.3.3.1 Compressed mapping existence We can show that a compressed

mapping will exist if a mapping exists. In order to show the existence of this

compressed mapping, we present a construction that produces a compressed mapping

given a mapping.

The first part of the construction is the definition of an elementary move that, if

the mapping is not already compressed, moves elements in a way that eliminates some

unnecessary space without compromising validity constraints. This elementary move

consists of two parts: a compression step, potentially followed by a reordering step to

maintain validity. Repeated application of the elementary move will eventually yield

51



Figure 3.5: Application of a compression step to a non-compressed mapping M that
produces M ′. For this example, d∗ = d3. Note that all other elements occupy the
same physical and logical address space, and only two bytes, d∗+ and d∗− are ultimately
changed after compression.

a compressed mapping. In order to ensure progress, we identify a bound function that

ensures that each elementary move is progressing towards a compressed mapping.

Each move must produce a mapping that is closer to the bound, with a reduced

bound function value.

An example helps illustrate the compression process. Let M be a non-

compressed mapping. According the definition of compressed mapping, there must

exist some element d∗ ∈ D that violates the compressed mapping requirement by

not starting on a page boundary and having at least one empty byte immediately

preceding it.

The compression step, when applied to M , produces M ′, which has the same

page table as M , with physical and logical addresses modified as:

M ′(d) =


M(d) if d 6= d∗

M(d)− 1 if d = d∗

The physical and logical address space M ′ is identical to the M , except that the

compressible element d∗ is moved forward by one byte.

52



Observe that this single-byte move ultimately modifies only the occupation

status of two bytes in physical memory. First, the previously unoccupied preceding

byte d∗+ = M(d∗)− 1 now contains data for d∗. Second, moving the element forward

in memory causes the succeeding byte d∗− = M(d∗) + s(d∗)− 1, which contained the

last byte of d∗, to be vacated. All other bytes in physical memory remain unchanged

with respect to the elements they store.

Lemma 3.3.1. Application of the compression step to a non-compressed mapping M

preserves validity.

Proof. We can consider each validation constraint individually to demonstrate that

a compression step will not compromise validity.

(1) Element Visibility Constraint: All non-compressed elements occupy the same

physical and logical address in M ′ that they do in M . Since their address

doesn’t change, they will still be fully visible to all tasks that referenced

them in their page tables in M . The compressed element, d∗, occupies the

same bytes that it does in M , with the exception of the new starting byte

d∗+, and the vacated byte d∗−.

Pretend task t requires d∗, and in M was capable of seeing every byte of

d∗ via its page table allocation. We must show that in M ′, task t is still

capable of seeing every byte of d∗. Since d∗ no longer occupies d∗−, we are

not concerned with the visibility of d∗− to t. All locations from d∗+ + 1 up to

d∗− − 1 are still visible to t in M ′, since d∗ occupies them in both M and M ′.

The byte of concern is d∗+.

The starting logical address of d∗ is new, but the definition of a compressible

element ensures that d∗+ will be accessible to t. The first possibility is that

d∗+ occurs on the same page as the starting logical address of d∗ in M , where⌊
d∗+
P

⌋
=

⌊
M(d∗)

P

⌋
. In this case,d∗ starts on the same page in M ′ that it

53



does in M ,

⌊
M ′(d∗)

P

⌋
=

⌊
M(d∗)

P

⌋
. Since t references that page in its page

table in M ′, d∗+ will be visible to t.

The other possibility is that d∗+ is in the slot immediately preceding the

slot that d∗ occupies in M ,

⌊
d∗+
P

⌋
=

⌊
M(d∗)

P

⌋
− 1. The definition of a

compressible element explicitly specifies the circumstances under which this

scenario can occur.

(a) Empty preceding page: The preceding slot is vacant in all tasks which

require d∗. Simply allocate a page, and modify the page table to use

that page in the preceding slot. Since the compression step only moves

in increments of a single byte, d∗+ will be the last byte on the created

page, which will be vacant since the page contains no other elements.

(b) Single compatible preceding page: The definition of compression explicitly

defines the situation in which the page stored in the preceding slot is

the same across all tasks which require d∗, or empty. One requirement

on this page is that the last byte be vacant. Thus, d∗+ will not overlap

with any elements on the preceding page. If t maps the page to the

preceding slot, than d∗+ is immediately visible. If t is does not map the

page, than the definition requires that it be vacant, which can be easily

remedied by mapping the page into the vacant preceding slot.

(2) Mutual Exclusion Constraint: Since M is valid, it contains no overlapping

elements, so the only places where M ′ might violate mutual exclusion are

at d∗+ and d∗−. The address d∗− is unoccupied in M ′, so it can’t be the cause

for a new element collision. The address d∗+ is empty in M , but, in M ′, it

contains the first byte of d∗. Since it was empty in M , storing an element in

d∗+ in M ′ will not cause an element overlap since d∗ is the only element that

changes position.

54



(3) Type Homogeneity Constraint: During the compression step, all elements

d ∈ D where d 6= d∗ keep the same physical and logical address in M ′ that

they have in M . The only element which moves is d∗. Again, there are two

cases for the location of d∗+. If

⌊
d∗+
P

⌋
=

⌊
M(d∗)

P

⌋
, then d∗ starts on the

same page in M ′ that it does in M . Since the elements stored on the page

in M are known to all have compatible memory type, and no elements were

added to the page, all elements on the page in M ′ will also have compatible

memory types.

If

⌊
d∗+
P

⌋
6=
⌊

M(d∗)

P

⌋
, then d∗ will start on the preceding page. The definition

of a compressible element explicitly specifies the circumstances under which

this scenario can occur.

(a) Empty preceding page: The preceding slot is vacant in all tasks which

require d∗. Simply allocate a page, and modify the page table to have

all tasks which require d∗ use that page in the preceding slot. The

newly created page will only contain d∗ in M ′, so the Type Homogeneity

constraint is trivially met for d∗+.

(b) Single compatible preceding page: The definition of compression explicitly

defines the situation in which the page stored in the preceding slot is the

same across all tasks which require d∗, or empty. One requirement on

this page is that all elements which occur on the page have a compatible

memory type to d∗. Thus, adding d∗ to the page will not violate the

Type Homogeneity constraint for d∗+.

The set of elements located on the page that contains byte d∗− may change.

If d∗− is the first byte on the page, such that d∗− mod P = 0, then d∗ is no

longer present on the page in M ′, and the set of elements on page

⌊
d∗−
P

⌋
is

smaller. Since all elements in the set have the same memory type in M , and

the set is identical in M ′ with the exception of d∗, all the elements in set still

55



have the same memory type in M ′. This ensures that the homogeneity is

maintained.

(4) Ordering Constraint: The single-byte compression move does not alter the

order that elements occur within the page on which d∗ starts, since d∗ is

moving into a previously vacant d∗+. In M ′, d∗ is either moved forward in

the same page it starts in M , or onto a compatible preceding page. Per the

definition of a compressible element, d∗+ is either the first byte on the page,

last byte on a compatible preceding page, or a vacant byte between elements.

If d∗+ is the first byte on the page, such that d∗+ mod P = 0, then d∗ is

the first element on the page in both M and M ′, and satisfies the Ordering

Constraint. If d∗+ is the last byte on a preceding page, then the page has

either been newly created and only contain d∗, or the page is required by at

least one task which requires d∗. If d∗+ is a byte between elements, d∗ simply

moved forward by one byte. Since d∗+ is vacant in M , this movement will

not change the order that elements occur on the page. Since d∗ shares a

task with an element that precedes it on the page in M , and the order of

elements did not change during compression, the Ordering Constraint will be

satisfied with this page in M ′ as it was in M . Unfortunately, there are cases

where the vacated byte d∗− can violate the Ordering Constraint when d∗− is

the first byte on the page, d∗− mod P = 0. This scenario must be handled by

a partition/reorder operation to restore validity.

There are cases when a compression step breaks the Ordering Constraint of a

valid mapping. This occurs when d∗ spans multiple pages in M , and d∗− is the first

byte of its page. The compression move changes the contents of d∗− to be vacant.

Depending on the order that elements occur on the page containing d∗−, there may be

elements that relied on a task requirement of d∗ to satisfy the Ordering Constraint.

Since d∗ is no longer present on the page, the Ordering Constraint would not be

56



satisfied in M ′, even if it is satisfied in M . Modifications need to be made to M ′ to

fix the Ordering Constraint without breaking any of the other validity constraints.

Some additional notation is helpful to formally examine this scenario and the

associated modifications. First, let page p be the page that is affected by the vacation

of d∗− during compression of d∗ in M , such that p = d∗−. Next, let D∗ be all elements

that start on page p in M ′, such that D∗ = {d ∈ D | p ≤ M ′(d) < p + P}. Finally,

let T ∗ be all tasks that require an element in D∗, such that T ∗ = {t ∈ T | ∃d ∈

D∗, 〈t, d〉 ∈ R}.

We specify a partition/reorder process that partitions the set of tasks in T ∗

and elements in D∗ into subsets. We can show that each subset can be reordered

so that the Ordering Constraint is satisfied, while continuing to satisfy the other

validity constraints and requiring no additional pages.

The first step is to partition T ∗ into independent subsets. We define two subsets,

T ∗i and T ∗j to be independent with respect to D∗ if no element in D∗ is required

by both a task in T ∗i and a task in T ∗j . Next, we define a partitioning of D∗ into

independent subsets by utilizing the partitioning of T ∗. Each subset T ∗i ⊆ T ∗ has a

corresponding element subset D∗i ⊆ D∗ which represents the set of all elements that

are required by the tasks in T ∗i . Formally, D∗i = {d ∈ D∗ | ∃t ∈ T ∗i , 〈t, d〉 ∈ R}.

Partitioning T ∗ using this definition of independence is critical to satisfying

the Ordering Constraint. The independent task subsets do not have any element

requirements in common. This allows each task subset to map the elements in the

corresponding element subset to the same slot as other element subsets without

causing any elements to overlap. Each element subset is assigned to its own page

and mapped to the same slot in the required tasks. Figure 3.6 shows this process

after the compression of d4.

Once the tasks and elements have been partitioned into independent sets, more

work is needed to satisfy the Ordering Constraint. Each element subset must be

57



Figure 3.6: Application of the partion/reorder process to Page 2 following the
compression of d4 can result in multiple pages being created. Elements that do not
share any task requirements, such as d5 and d6 can then occupy the same logical
address, since they are stored on separate pages.

ordered appropriately. We specify a construction of a new page for each element

subset D∗i . This page will satisfy the Ordering Constraint without invalidating any

of the other validation constraints.

An independent partitioning of tasks must exist for any T ∗. Let T ∗1, . . . , T
∗
k

be a partitioning of T ∗ into k independent subsets with respect to D∗. At a minimum,

T ∗ can be trivially partitioned into a single subset, such that k = 1 and T ∗1 = T ∗.

This satisfies the independence requirement since there is only one set, and there is

no other task set with which elements may share task requirements. The singular

partitioning is not always useful. We need another notion to indicate that each subset

has been partitioned as much as possible.

We define a partitioning to be minimally dependant if there is no way to further

partition any of its subsets into independent subsets. The partitioning T ∗1, . . . , T
∗
k

is minimally dependant if each partition cannot be partitioned further, into subsets

T ′ ⊂ T ∗i and T ′′ ⊂ T ∗i which are independent with respect to D∗.

Ensuring that a partitioning is minimally dependant guarantees that each

element subset can be ordered in a manner that satisfies the Ordering Constraint.

Consider a non-minimally dependant partitioning T ∗1, . . . , T
∗
k. Let T ∗i be a subset

58



which can be further partitioned into independent subsets T ′ ⊂ T ∗i and T ′′ ⊂

T ∗i , which makes the partitioning non-minimal. These additional task subsets

have corresponding element subsets, D′ ∈ D∗i and D′′ ∈ D∗i . By the definition

of independent task subsets, there does not exist a d ∈ D∗i that is a member of both

D′ and D′′. Since such a d does not exists, there is no way to order the elements in

D∗i in a manner that will satisfy the Ordering Constraint. If the first element on

the page is a member of D′, then no element in D′′ can be placed because there can

never be an element that shares a task requirement earlier in the page. Starting the

page with an element from D′′ presents similar problems.

Producing an order of elements that satisfies the Ordering Constraint from a

minimally dependent subset is straightforward. This order can then be used to build

an assignment of physical and logical addresses to the elements.

Lemma 3.3.2. If a compression step invalidates the Ordering Constraint for M ′, an

M ′′ can be constructed which fits in memory and satisfies the Ordering Constraint

while preserving all other validity constraints.

Proof. The construction of M ′′ procedes as follows. First, let all elements not affected

by the compression of d∗ occupy the same physical and logical addresses in M ′′ that

they do in M ′, specifically ∀d ∈ D, if d /∈ D∗, then M ′′(d) = M ′(d). Determining the

addresses for elements that are part of D∗ requires more work.

A new page pi is constructed for each D∗i ⊂ D∗ in a minimally dependant

partitioning of D∗. This construction is specified inductively, which provides a

straightforward method for allocating elements while also facilitating verification of

the validity constraints.

Placing the first element on a page is easy. The base case for the inductive

construction occurs when pi is empty. In this case, select any element d1 ∈ D∗i and

assign it to be the first element on the page, specifying that M ′′(d1) = pi. Being the

first element on the page, d1 trivially satisfies the ordering constraint.

59



The inductive case follows when one or more elements have been placed onto

pi and more elements must be placed onto the page. To keep track of which elements

have been placed on a page and which tasks have been covered by the placed elements

during construction, we define more notation. Let Dc
i ⊂ D∗i be the set of elements

from the ith subset that have been placed onto a page, while letting Du
i = D∗i −Dc

i

be the elements that have not been placed onto the page. Additionally, let T c
i

be the set of all tasks that require an element that has been placed, specifically

T c
i = {t ∈ T ∗i | ∃d ∈ Dc

i , 〈t, d〉 ∈ R}. It then follows that T u
i = T ∗i − T c

i .

More elements need to be placed when Du
i 6= ∅. Choose an element dn from Du

i

which is required by at least one covered task tc ∈ T c
i , such that 〈tc, dn〉 ∈ R. Place

dn onto page pi immediately following dn−1, such that M ′′(dn) = M ′′(dn−1) + s(dn−1).

It is important to note that such a dn must exist in Du
i by the definition of a

minimally dependant partitioning, because each task requires at least one element

that is required by another task in T u
i . This prevents Du

i from having no tasks

in common. If such a case were to exists, the elements would have been further

partitioned. Selecting dn which is required by a covered task ensures that satisfaction

of the Ordering Constraint is maintained.

Once all elements in D∗i have been placed onto pi, pi can be added to the

page table of each task in T ∗i . Since the partitioning produced independent task

subsets, the tasks can place the page into the slot q that had previously contained p,

specifically ∀t ∈ T ∗i , M ′′(t, q) = pi.

Application of the partition/reorder process to M ′ produces a M ′′ which satisfies

all validity constraints and restores the validity contraint that was compromised

when d∗− was vacated. Inspection of each constraint verifies that it is still satisfied in

M ′′.

(1) Element Visibility Constraint: Assume task t ∈ T requires element d /∈ D∗.

Since M ′′(d) = M ′(d) for all non-affected elements and the slot for t that

60



references the page containing d was not altered, the page table of t will

continue to contain the required non-affected elements.

Next, assume that t ∈ T ∗ requires element d ∈ D∗. The definition of the

independent partitioning ensures that if t ∈ T ∗i , then d ∈ D∗i . Once the

page for D∗i has been constructed, the construction specifies that the page

be referenced by the page table for t in the same slot that p had previously

been located. The allows d to be fully visible to t.

(2) Mutual Exclusion Constraint: Each element d /∈ D∗ will retain the same

physical and logical address in M ′′ that it does in M ′. Since they do not

change location, no non-affected element will overlap with another. The

affected elements need to be inspected to verify that they do not overlap

with one another, or with a non-affected element.

Utilizing a proof by contradiction assists this inspection. Pretend da and

db are two elements that overlap in memory, such that M ′′(da) ≤M ′′(db) ≤

(M ′′(da) + s(da)). There are a variety of cases that need to be inspected.

(a) Case: Both da and db are part of the same minimally dependent subset,

da ∈ D∗i and db ∈ D∗i . If the da and db are both members of the

same minimally dependant set, the construction explicitly prevents

the overlap from occurring. An element either starts the page, or is

placed immediately following the previously placed element, such that

M ′′(dn) = M ′′(dn−1) + s(dn−1). This prevents elements from the same

minimally dependant subset from overlapping.

(b) Case: Both da and db members of D∗, but not in the same subset. If

both of the da and db are affected, but not members of the same subset,

then by definition of independent subset, @t ∈ T such that 〈t, da〉 ∈ R

and 〈t, db〉 ∈ R. Additionally, the definition of the construction builds a

61



separate page for each subset D∗i . This guarantees that the elements

occupy different pages.

(c) Case: One element is affected, but the other is not. The definition of

the construction ensures that affected elements are placed onto a page

only with elements from the same subset. During this page construction,

affected elements are not placed onto pages with unaffected elements.

As such, an overlap cannot occur between da and db when only one of

them is affected.

(3) Type Homogeneity Constraint: Once again, non-affected elements maintain

the same physical and logical address and page membership in M ′′ that they

do in M ′. Additionally, the subsets of D∗ are each mapped to their own

page. This construction of new pages prevents any affected elements from

being stored on a page with non-affected elements. Since M ′ is valid, all the

elements stored on p must have the same memory type. We defined D∗ as all

elements that start on p, so its elements will also be of homogeneous memory

type. Regardless of the manner in which the elements are partitioned,

any page that includes only elements that are part of D∗ will also have

homogeneous memory types.

The partition/reorder process ensures that a page that lost an element due to

compression will satisfy the Ordering Constraint. Additionally, the virtual memory

footprint of the elements will not increase during this process, and in many cases

will be reduced, requiring fewer pages in the page table. This reduction in memory

footprint can cause an Ordering Constraint issue on the page that immediately follows,

if an element spanned from the affected page onto the following page in M ′, and no

longer spans in M ′′. Figure 3.7 shows an example of such an element, d6 in M ′, which

is removed from Page 3 after partition/reorder is applied to Page 2, resulting in M ′′.

This situation can be remediated by simply applying the partition/reorder process

62



to the following page, ultimately resulting in M ′′′. Since the process cannot cause

Ordering Constraint issues on any preceding pages, at most Q− 1 partition/reorders

will be required.

Application of the partition/reorder process, potentially repeatedly, to M ′ pro-

duces a new mapping M ′′ which satisfies the Ordering Constraint while maintaining

the satisfaction of all other constraints that were satisfied in M ′. When used in

conjunction with the compression step, this forms an elementary move that can

be used to compress any mapping into a compressed mapping that is a canonical

representation for its equivalence class of candidates.

The elementary move, consisting of a compression step and a partition/reorder

process, results in a single compressible element being moved one byte earlier in

logical memory, while maintaining all validity constraints. A single application of an

elementary move results in a mapping M ′ which is more compressed than the base

mapping M , but in most cases there are still compressible elements in the mapping.

Fortunately, since the satisfaction of all validity constraints is maintained in M ′, it

can be used as a base mapping to which another elementary move can be applied.

This process can then be repeated as many times as necessary until the produced

M ′ does not contain any compressible elements.

Lemma 3.3.3. Repeated application of the elementary move will result in a compressed

mapping within a finite number of steps.

Proof. Repeated application of the compression move is only useful if it continues to

make progress. A minor change to the selection of which compressible element d∗ to

compress provides this guarantee. Application of the compression move to d∗ moves

it forward in logical address space. This move does not affect any elements that come

before it in the space, but can affect elements that come after it. Ensuring that each

compression move selects the first compressible element possible, that which has the

63



F
ig

ur
e

3.
7:

A
p
p
li
ca

ti
on

of
a

p
ar

ti
ti

on
/r

eo
rd

er
p
ro

ce
ss

to
a

p
ag

e
ca

n
re

su
lt

in
th

e
re

m
ov

al
of

an
el

em
en

t
fr

om
th

e
fo

ll
ow

in
g

p
ag

e.
E

le
m

en
t

d
4

is
co

m
p
re

ss
ed

,
p
ro

d
u
ci

n
g

M
′ ,

w
h
ic

h
d
o
es

n
ot

sa
ti

sf
y

th
e

O
rd

er
in

g
C

on
st

ra
in

t
on

P
ag

e
2.

A
p
p
li
ca

ti
on

of
p
ar

ti
ti

on
/r

eo
rd

er
to

th
e

el
em

en
ts

on
P

ag
e

2
re

su
lt

s
in

M
′′ ,

w
it

h
a

n
ew

ly
cr

ea
te

d
p
ag

e
st

or
in

g
d

6
.

T
h
e

re
m

ov
al

of
d

6
fr

om
P

ag
e

3
ca

u
se

s
an

ot
h
er

v
io

la
ti

on
of

th
e

O
rd

er
in

g
C

on
st

ra
in

t,
th

is
ti

m
e

on
P

ag
e

3.
P

ar
ti

ti
on

/r
eo

rd
er

is
ap

p
li
ed

ag
ai

n
,

re
su

lt
in

g
in

th
e

fi
n
al

,
fu

ll
y

co
m

p
re

ss
ed

m
ap

p
in

g
M
′′′

.
N

ot
e

th
at

th
er

e
is

si
gn

ifi
ca

n
tl

y
le

ss
p

ol
lu

te
d

sp
ac

e
in

th
is

fi
n
al

m
ap

p
in

g.

64



lowest logical address, guarantees that repeated application of the elementary move

will terminate with a compressed mapping in a finite number of steps.

Applying an elementary move to d∗ will not alter the logical address of any

elements that precede it. The definition of the compression step of the elementary

move specifies that all elements d 6= d∗ maintain the same physical and logical address,

specifically M ′(d) = M(d). The partition/reorder process can change the physical

and logical address of other elements, but it only operates on elements that begin

after d∗, since they are elements that start on the page that begins with d∗− in M .

Thus, the only elements that can change logical address during the elementary move

are d∗ and other elements that have a later starting logical address and have the

same memory type, since they shared a page in M .

Since elements that start before d∗ are not affected by the elementary move,

the move cannot introduce any compressible space before any of these elements. This

guarantees that once an element has been compressed to the point that it no longer

has empty space before it, compressing other elements will not create any gaps. This

is useful because each elementary move can be applied at most P − 1 times to each

compressible element, each moving it one byte forward in the page until it is adjacent

to another element, or is the first element on the page. At most P elementary moves

will be applied to each of at most |D| elements, so the upper bound on elementary

moves performed is P · |D|.

Theorem 3.3.4. If a mapping exists, a compressed mapping also exists.

Proof. We have defined a set of methods that can be used together to produce a

compressed mapping given any valid mapping. The elementary move consists of

two steps. The compression step, presented in Lemma 3.3.1, moves a compressible

element one byte earlier in the mapping, while guaranteeing that most validity

constraints are still satisfied, with the potential exception of the Ordering Constraint.

In cases that result in the Ordering Constraint being invalidated, the partition/reorder

65



construction defined in Lemma 3.3.2 shows that it is always possible to adjust and

reorder elements on a subsequent page so as to satisfy the Ordering Constraint

without invalidating any other validity constraints. This elementary move can be

repeated until a compressed mapping is produced, as shown in Lemma 3.3.3.

3.3.3.2 Candidate enumeration via oracle Theorem 3.3.4 shows that a valid

compressed mapping will exist in the space of compressed candidates if a valid

mapping exists in the space of candidates. This allows the compressed mapping to

serve as a canonical representation for its equivalence class of mappings. As long as

we can consider all compressed mappings, we are guaranteed to find a representative

for any valid mapping in the search space. Of course, this requires an effective

procedure for traversing the space of compressed mappings. Fortunately, we can show

that there is a natural correspondence between compressed mappings and oracles.

This lets us explore, and even prune, the space of candidates by exploring the space

of oracles.

Theorem 3.3.5. Exploration of the space of oracles O produces a mapping in the space

of candidates C if one exists.

Proof. Theorem 3.3.4 guarantees that, for every valid mapping in C, a compressed

mapping exists which is also valid. We show a correlation between the space of

compressed mappings and O.

We can construct an ordering, o, that yields M under mapping. To do this,

the elements in o must be ordered based on their logical address in M , with ties

broken arbitrarily. In constructing ordering o, we define the rank of element di as

the number of elements that must come before di in the ordering.

rank(di) =
∣∣∣{dj ∈ D | l(dj) < l(di) ∨ (l(dj) = l(di) ∧ j < i)}

∣∣∣
66



We can then build the ordering as the sequence of elements ordered by rank:

o[rank(di)] = di

In order to ensure that M will be examined during a search of O, we must

show that application of the mapper function specified in 3.3.2.1 to o will produce a

compressed mapping M ′ such that M ′ = M . For the purposes of this proof, we need

to easily reference the logical address of elements with respect to both M and M ′.

Let lM(d) to be the logical address of d in the mapping M . Similarly, let lM ′(d) be

the logical address of d in the constructed mapping M ′.

Since the mapper function proceeds through the data elements according to

the order specified in o, we can use induction over the placement of elements to show

that each element is placed in the same logical address in M ′ that it occupies in M .

The base case is trivial; when no elements have been placed in M ′, have the placed

elements been placed into the same logical address in M ′ that they do in M? Since

no elements have been placed, all the mapped elements agree with their location in

M .

For the inductive case, we examine the status of M ′ after the placement of an

arbitrary element d∗, where d∗ = do[i] for some i ∈ {0, . . . , (|D| − 1)}. For any such

d∗, assume that ∀j ∈ {0, . . . , i− 1}, logical address lM ′(do[j]) has been assigned such

that lM ′(do[j]) = lM(do[j]). To ease validation, we define the set of placed elements

to be Dp ⊂ D. This subset is the first i elements in D according to the ordering,

specifically, Dp = {do[0], . . . , do[i−1]}. Similarly, we define the set of elements that

have not been placed to be Ds = {D −Dp − d∗}.

Since o is defined in terms of M , elements occur in o in the order of their logical

addresses in M . The placement of d∗ is highly dependent on the logical address of

the element that precedes it in the oracle, do[i−1]. Since d∗ can start no earlier than

do[i−1] in logical memory, we can be sure that lM (d∗) ≥ lM (do[i−1]). Additionally, since

M is valid, we can be sure that lM(d∗) ≤ (QP − s(d∗)), since starting d∗ any later

67



would not allow it to fit into page table space, thus violating the Element Visibility

constraint. These restrictions provide a range of possible logical addresses to be

considered: {lM ′(do[i−1]), . . . , QP − s(d∗)}.

The mapper function examines each logical address a ∈ {lM ′(do[i−1]), . . . , QP −

s(d∗)}. It starts with the first possible logical address, and continues to examine

successive logical addresses until it finds a logical address which satisfies all validity

constraints. Such a logical address is considered to be a valid logical address with

respect to M ′. Once a valid logical address is found with respect to M ′, lM ′(d
∗)← a,

and the next element is considered.

In order to verify that the logical address chosen by the mapper function for

lM ′(d
∗) is the same as lM(d∗), we consider each value for a that is tested during

execution of the mapper. These logical addresses can be divided into two cases:

either a < lM(d∗) or a = lM(d∗). Each logical address that matches the first case is

clearly not the correct assignment, so we must show that the mapper function will

never find that address to be valid. Conversely, the second case is the correct value

for a, so the mapper function must find it to be valid and use it for lM ′(d
∗).

Case 1 (a < lM(d∗)): This is the incorrect logical address for d∗, so the mapper

should find a to be invalid. This can be demonstrated via proof by contradiction.

Pretend that a is valid in M ′. We show that placing d∗ into lM(d∗) makes it an

uncompressed element, which causes a violation of the compressed quality of M , a

contradiction.

Since M is a compressed mapping, it must satisfy all criteria for a compressed

mapping, specified in Section 3.3.1. Specifically, we examine whether d∗ is a com-

pressed element in M . If d∗ is uncompressed, then M would also be uncompressed,

resulting in a contradiction. The element d∗ is a compressed element in a task when

either:

(1) d∗ is not referenced by the task

68



(2) d∗ immediately follows another element

(3) d∗ starts on a page boundary, and cannot be placed on the preceding page

We consider d∗ with respect to the tasks that require it, specifically Td∗ =

{t ∈ T | 〈t, d∗〉 ∈ R}. This definition of Td∗ allows us to focus on the second two

requirements of a compressed element, since the first criterion would not apply to

these tasks. It is also important to note that since a is a valid logical address for

d∗ in M ′′, which differs only in the assignment of logical address to d∗, all elements

in Dp must be placed into logical address space of M before a in a manner that

does not overlap with a. At a minimum, all elements in Dp which are required by a

task in Td∗ must end before a. We call this requirement Precedence Requirement #1.

Additionally, any elements in Dp which occur in the page on which a starts, even

those that are not required by a task in Td∗ , must also end before a, specifically

∀d ∈ Dp where

⌊
lM(d′) + s(d′)

P

⌋
=
⌊ a

P

⌋
, end before a, lM(d) + s(d) < a. We call

this requirement Precedence Requirement #2.

The second and third requirements are easily examined if we consider two cases:

either lM(d∗) is in the middle of its page and immediately follows another element,

or lM(d∗) is the first address on its page and cannot be placed onto the preceding

page, lM (d∗) mod P = 0. We show that neither of these cases can occur, and thus d∗

is uncompressed in M .

(1) Immediately follow another element: No element d ∈ D can exist which

immediately precedes d∗ when placed at logical address lM (d∗). Our definition

of o requires d ∈ Dp, which ensures that it has the same address in M ′ that

it does in M . There are two scenarios that need to be examined:

(a) a is on the same page as lM(d∗), such that
⌊ a

P

⌋
=

⌊
lM(d∗)

P

⌋
: Since

all elements in Dp which occur on page
⌊ a

P

⌋
must end before a, and

a < lM (d∗), none of them can occupy lM (d∗)-1, and thus cannot precede

d∗ in M .

69



(b) a is on an earlier page than lM(d∗), such that
⌊ a

P

⌋
<

⌊
lM(d∗)

P

⌋
: In

this scenario, d may or may not have any common requiring tasks with

d∗, but the Ordering Constraint requires that there be some preceding

element in the page that is required by a common task with d∗. This

preceding element is in Dp and is required by a task in Td∗ , thus it must

end before a, by Precedence Requirement #1. Since a does not occur

on the same page as lM(d∗), it must occur in a preceding page. Thus,

such a preceding element cannot exist.

(2) Start on page boundary, and cannot be placed on the preceding

page: If lM(d∗) occurs on a page boundary, such that lM(d∗) mod P = 0, it

is compressed if one of the following criterion is true. We show that none of

the criterion can be satisfied for placement of d∗ into lM(d∗), which makes

d∗ uncompressed in M .

• Any two tasks in Td∗ map different pages, p1 and p2 where p1 6= p2, into

the preceding slot, specifically ∃t1, t2 ∈ Td∗ where both are defined and

M

(
t1,

⌊
lM(d∗)

P

⌋
− 1

)
6= M

(
t2,

⌊
lM(d∗)

P

⌋
− 1

)
.

• The preceding page p is incompatible with d∗

• There is no space available at the end of the preceding page p.

Each task t1 and t2 must require at least one element stored on their page in

order to map it into the slot. Any such element would be required by at least

one task in Td∗ , and also be a member of Dp. Since all elements in Dp which

are required by a task in Td∗ must end before a by Precedence Requirement #1,

this scenario requires that a occur after these elements end. Since a must

be mapped to the same page in all tasks, it cannot occur on either p1 or p2,

since p1 6= p2. Thus, this situation cannot occur.

70



Like the first scenario, the p must contain at least one element which is

required by a task in Td∗ . Precedence Requirement #1 necessitates that a

must occur after these required elements, which would place it on p. Since p

is incompatible with d∗, a cannot occur on p as such a placement would cause

a violation of the Type Homogeneity constraint. Thus, such an incompatible

preceding page p cannot exist.

Finally, the last scenario provides two options. If a is not on p, there must

exist some element d on p which is required by a task in Td∗ for p to be

mapped. Precedence Requirement #1 requires a to occur after such a d,

which cannot occur since a is not on p, and p immediately precedes the page

that lM (d∗) starts. Thus, such a d cannot exist. If a does occur on p, then p

cannot be full. Any element which occupies the last byte in p would be a

member of Dp and also occur on the same page as a, which means that it

must end before a, by Precedence Requirement #2.

We have shown that d∗ cannot satisfy any of the criterion necessary for a

compressed element. Thus, in M , it is an uncompressed element. The definition of a

compressed mapping necessitates that it not contain any uncompressed elements, thus,

this case requires that M be an uncompressed mapping: a contradiction. This proof

by contradiction is based upon the premise that a is valid in M ′ while a < lM(d∗).

The contradictions provided show that a cannot be valid in M ′. Each time a logical

address less than lM(d∗) is encountered in the mapper function, it will be found

invalid and discarded.

Case 2 (a = lM(d∗)): This is the correct logical address which should be as-

signed to lM ′(d
∗), resulting in lM ′(d

∗) = lM(d∗). In order for the mapper to select

a for assignment, a must be valid in M ′. We examine each validity constraint to

ensure that it is satisfied in M ′ when using a.

71



(1) Element Visibility: Since lM (d∗) is assigned such that all tasks can access all

the bytes of d∗, a will also allow every task in M ′ to access d∗. Assigning d∗

to a in M ′ cannot violate this constraint.

(2) Type Homogeneity: Validity of a in M indicates that no element in D violates

homogeneity when d∗ is assigned to a. Since Dp ⊂ D, no element in Dp,

which are the only elements mapped in M ′, can violate homogeneity in M ′.

(3) Mutual Exclusion: Validity of a in M ensures that no element in D can

overlap with d∗ if it is assigned to a. Since Dp ⊂ D, no element in Dp, which

are the only elements mapped in M ′, can overlap with d∗ in M ′, which would

violate Mutual Exclusion.

(4) Ordering Constraint: Since a is valid in M , either a is the first logical address

on its page where a mod P = 0, or ∃d ∈ D where
⌊ a

P

⌋
P ≤ lM (d) + s(d) < a

which has a task requirement in common with d∗, such that ∃t ∈ T where

〈t, d∗〉 ∈ R and 〈t, d〉 ∈ R. Recall that Dp is a very specific subset of D,

containing all elements which have a lower rank than d∗. Since lM(d) < a,

we can be sure that rank(d) < rank(d∗), which requires that d ∈ Dp and the

Ordering Constraint be satisfied in M ′.

Since none of the validity constraints can be violated in M ′ when a is valid in

M , we know that a also must be valid in M ′. This results in the mapper function

correctly setting lM ′(d
∗)← a.

Analysis of these two cases shows that the mapper function will assign logical

address a to lM ′(d
∗) only when lM(d∗) = a. This extends the set of placed elements

which have the same logical address in both M and M ′. Since the inductive step

holds when applied to the placement of any element in o into the mapping, we can

be sure that after all elements have been placed, the constructed mapping M ′ will

be identical to M .

72



CHAPTER FOUR

Design and Implementation

We have shown via formal examination that MEM-MAP requires search. We

have also presented some techniques to reduce the number of nodes that need to

be examined during the search, such as only considering compressed candidates,

but even this reduced search space is likely to overwhelm näıve, exhaustive search

methods. The search space of all possible oracles is asymptotically bound as O
(
n!
)
,

where n is the number of data elements.

We provide a search framework that is extensible enough to evaluate a variety

of search-based procedures with the goal of identifying a class of procedures that

are best suited to finding solutions to the problem. This framework must be well

designed to support the different needs of the various search procedures. A well-

written implementation based on this framework provides the vehicle for analyzing

and testing the procedures.

4.1 Search Framework Design

The first step of the search framework design is to define primary design

elements that the design should adhere to. Since the goal of the framework is to be

extensible for evaluating various procedures, the design should focus on making the

framework as configurable as possible. We use C++ for our implementation, which

permits the use of objects and abstraction to build the extensible modules.

The size of the problem necessitates that the design also take into account

the performance of the implementation. Since we expect to evaluate each procedure

experimentally, as many inefficiencies as possible need to be eliminated from the

implementation. Using C++ for the implementation helps with the speed because the

73



code can be highly optimized for performance once the class of most effective search

procedures is identified. This varying amount of optimization allows the code to be

designed using extensible modules, which can be interchanged during prototyping

and initial tests. These modules can be manually modified and slimmed down to a

present more efficient approach during performance tests.

One of the most important ways to make the search procedures more efficient

is to reduce the search space to the smallest possible increment that still allows

solutions to be found if they do, in fact, exist. In Chapter 3, we showed that searching

the space of oracles is sufficient for finding solutions if they exist in the space of all

candidate. The implementation utilizes this relationship in all search procedures.

The base representation and search procedures work with oracles to explore the

search space.

Using these goals, we have designed a framework that is divided into low-level

representation and modification modules, and high-level search procedure logic. The

low-level modules provide the key functionalities necessary to perform a search,

without relying on details about the search procedure. Search procedures can be

expected to reuse the low-level modules to interface with the representation, while

providing their own approach to exploring the space. This allows search procedures

to be rapidly prototyped and tested.

The working implementation includes the following low-level modules that form

the foundation for the framework.

• Problem Representation

• Problem File Parser

• Mapping Representation

• Fitness Function

74



• Mapper Function to convert from an Oracle to a Mapping

• Mapping Visualization

• Solution File Emitter

4.2 Framework Modules

The implementation of the search framework provides the necessary functional-

ity in a manner that is both extensible and efficient. The major design elements in

the framework that need to be extensible are implemented as either C++ classes or

structs. Different versions of these classes can be implemented and interchanged as

desired to test various performance characteristics.

4.2.1 Symbol Table

A symbol table is used to convert strings used in the problem, such as names of

elements, tasks, or memory types, into integers. The integers are used instead of the

strings since they are more easily indexed, stored, compared, and referenced. The

symbol table is built during parsing by looking up strings via the lookup function.

This has log performance during the initial lookup and generation of the symbol, but

constant time performance when comparing symbols during time-critical portions of

the search procedures. A symbol can be easily converted back to a string when a

corresponding string is needed during the output of a solution.

class SymbolTable {

. . .

public :

int lookup ( s t r i n g const &s ) ;

s t r i n g const &ge tS t r i ng ( int i ) ;

} ;

75



4.2.2 Problem Representation

The input file, which is in Map2 file format, provides a wealth of informa-

tion about the problem description. This file format, however, is redundant in its

specification. Since the implementation needs to be efficient, we need an internal

representation of the problem that captures the minimal amount of information

necessary to perform the search. The list of elements, elist, and list of tasks, tlist,

capture this necessary information.

struct Problem {

. . .

vector<Element> e l i s t ;

vector<Task> t l i s t ;

} ;

4.2.2.1 Element The Element represents a data element from the mapping

problem; it is the structure that is mapped into pages of the page table. It contains

a name and memory type, memtype, for the element, each stored as an int index into

the symbol table. It also has a size, which is the number of bytes that it requires in

both logical and physical memory for it to be useful. The pred reference indicates

the element that it should immediately follow in the mapping, per the specification

of the Map2 input file. The dctype indicates if the element is a data or code element,

which is again references as an int against the symbol table. The biggest hurdle in

mapping current instances of the problem revolve around mapping the data elements,

although the code elements also need to be tracked. Finally, the element keeps a

list of all tasks that require it, ref, stored as a sequence of task indices into the

problem’s tlist vector.

struct Element {

int name ;

int s i z e ;

int memtype ;

int pred ;

int dctype ;

76



vector<int> r e f ;

} ;

4.2.2.2 Task A Task is a particular slice in the time-slice architecture of the

mission computer. It is also identified by an integer name field, which references a

name stored in the SymbolTable. The req vector stores the integer indices into the

problem’s elist of all elements that are required by the task. Each of these elements

must be completely mapped into the task’s page table in order for the mapping to be

considered valid. The size integer is a convenience variable for quickly identifying

how many total bytes the task requires. This can be useful when deciding which

task’s page table is the most critical to save space in. A task is identified by its index

in the tlist vector, which is considered to be this the task’s taskID.

struct Task {

int name ;

vector<int> req ;

int s i z e ;

} ;

4.2.3 Parser

The Parser builds an instance of Problem from a given input problem file in

Map2 format, specified by filename. During construction, the parser creates each

element and task specified in the input file and adds them to the problem. It also

populates all necessary reference variables so that they are internally consistent

and match the input problem. During this process, any unnecessary, redundant

information present in the file is eliminated, so the problem contains only the

minimal information necessary to represent the problem instance in filename. In

particular, any existing physical and logical address assignments specified in filename

are discarded, allowing the implementation to start with a clean slate of address

assignments.

bool parseProblem ( Problem &prob , s t r i n g f i l ename ) ;

77



4.2.4 Generalized Representation

The information directly parsed from the Map2 file format provides an explicit

definition of the problem, but the Problem module distills this information to a mini-

mal representation. Creating additional data structures from the base representation

facilitates efficient search procedure design. The EBlock module, for example, is not

a structure specified in the Map2 file format, but it is used to represent groups of con-

tiguous elements. This additional data is stored in the Representation module, which

also has a copy of the internal Problem definition. Note that the Representation

contains the parse method, described in Subsection 4.2.3, which allows it to parse a

Map2 problem specification file into its associated problem instance.

class Representat ion {

public :

Problem prob ;

vector<EBlock> b l i s t ;

void parse ( s t r i n g f i l ename ) ;

void buildGenericMemMap ( ) ;

int lookupGenericMemType ( int memType) ;

map<int , int> genericMemMap ;

. . .

} ;

4.2.4.1 Blocks The Map2 input file format allows the specification that certain

elements must immediately follow other elements. This is facilitated in the Element

module by pred. Ensuring that all of these precedence rules are satisfied by inspecting

each element is not an efficient representation. A Block is a grouping of multiple

elements together into a single representation. This allows procedures to deal with

the groups of elements, rather than individual elements. When a block is mapped,

the elements in the block are mapped contiguously, which satisfies the precedence

requirements. The EBlock struct provides this aggregation.

78



In addition to the precedence relationship defined in the file format, blocks are

also used to group elements that have a compatible memory type and are required

by the same set of tasks. This task requirement fingerprint, the tasks which require

the element, is important to consider since elements with the same fingerprint will be

required in the exact same tasks. Since they are compatible for storing on the same

page, and are needed in the same tasks, mapping them contiguously is an efficient

use of space.

Each EBlock contains a list of all elements that are in the block, elist, as well

as all tasks constitute the fingerprint of the elements in the block, ref. In certain

cases, due to predefined precedence relationships, not all elements in the block will

have the same task requirement fingerprint. In this case, the fingerprint of the block

is the union of the tasks in each element’s fingerprint. The convenience members

memType, genericMemType, and size provide convenient access to details about the

elements stored in the EBlock during mapping.

Every EBlock is stored in the blist vector of the mapping. The index of the

block in the vector is that block’s blockID.

struct EBlock {

vector<int> e l i s t ;

vector<int> r e f ;

int memType ;

int genericMemType ;

int s i z e ;

} ;

4.2.4.2 Generic Memory Types The Type Homogeneity constraint specifies

that all elements on a Page must have a compatible memory type. Rather than spec-

ifying a function to check compatibility of each memory type during mapping, which

would be heavily used, we pre-compute a generic memory type for each memory type.

This precomputed generic memory type serves as a canonical representative for its

class of equivalent memory types. The blocks then keep track of the generic memory

79



type of the elements stored on the page. This allows a constant-time comparison

of compatibility during element assignment to a page, which helps performance.

The mapping of a specific memory type to its generic counterpart is stored in the

genericMemMap vector. The buildGenericMemMap and lookupGenericMemType func-

tions provide the means for building the mapping from a specific memory type to the

generic counterpart, and performing the lookup during parsing and block generation.

4.2.5 Mapping Representation

Once the problem has been built by the parser, a means of representing both

the physical and logical address space is necessary. The Mapping class provides the

structures necessary to represent an assignment of physical addresses to blocks of

elements, and the population of the page table for each task. Once a mapping has

been fully constructed, it can be tested for satisfaction of the validity constraints. If

all validity constraints are satisfied, a mapping can be combined with information

from the problem to completely specify a solution to the problem instance. The

mapping is only valid in the context of the problem and representation and thus it

maintains the Representation rep on which it is applicable.

class Mapping {

public :

Representat ion rep ;

vector<Page> pages ;

vector<vector<int> > pageTable ;

vector<pair<int , int> > addressTable ;

vector<vector<int> > block2page ;

// V i s u a l i z a t i o n f u n c t i o n s

void writeCommonFormat ( s t r i n g f i l ename = ” so lut ionCandidate . txt ” ) ;

void writeSVG( s t r i n g f i l ename ) ;

. . .

} ;

80



4.2.5.1 Page The Page class is needed to ensure that elements are only stored

in one physical location in the entire mapping. A Page represents a section of physical

memory that is mapped into the page table for one or more tasks. Each Page keeps

track of how much space is used on the page, represented by size. Since the mapper

function builds compressed mappings, it is understood that any free space on a page

is at the end. As each Page is allocated, the mapping stores it in the pages vector

of the mapping. The page is assigned an index based on its location in the pages

vector, called the pageID.

To facilitate checking the Type Homogeneity constraint, each page keeps track of

the memory type of the elements stored on it via the genericMemType variable. Since

the mapper function obeys the validity constraints during construction of the page

table, no elements are added to a page that would conflict with the genericMemMap

of that page.

The mapper function allocates the physical addresses after the logical addresses

have been assigned. As such, each page does not keep track of its specific location in

memory. Simply maintaining which page follows the current page via the nextPage

variable is sufficient for placing the page in physical memory.

The most important aspect of a page is the location of each block that is stored

on it. The blockPositions vector maintains this information by storing pairs of

blockID’s, and their starting position on the page. If an element started on an earlier

page and continued onto the the current page, its starting position is indicated by

−1. Since every element starts on a page, the the logical address of each element

can be recovered from the page on which it starts. Once the pages have been placed

into physical memory, the actual physical address of each element can be determined

by adding the page’s physical starting address to the location of the element on the

page.

struct Page {

unsigned int s i z e ;

81



int genericMemType ;

int nextPage ;

vector<pair<int , int> > b l o ckPo s i t i on s ;

} ;

4.2.5.2 Page table The page table in the mapping specifies where each task

should load pages necessary to satisfy execution requirements. Since both tasks and

pages have integer ID numbers, a simple two-dimensional vector is used to maintain

a record of which page each task loads into each slot of the page table. The integer

pageTable[i][j] stores the index of the page that should be loaded into the j’th slot

of task i’s page table.

4.2.5.3 Block to page While each page keeps track of the blocks that are

stored on it, it is also very helpful to keep a reverse lookup index of this information

for verification purposes. The block2page vector of vectors keeps track of all pages

that each block is stored on. block2page[i] is a vector of all pages on which blockID

i is stored on. When validating requirements, this allows each task to verify that it

maps all necessary pages into its page table to satisfy its requirements.

4.2.6 Mapper Function

We have shown in Chapter 3 that enumerating mappings is straightforward,

but not practical. Instead, we enumerate oracles during search. These oracles cannot

be directly examined for satisfaction of validity constraints. Instead, they must

be converted into a mapping for such examinations, a conversion process that we

introduced in Chapter 3 as a mapper function. This conversion is a critical piece,

since each oracle that is examined must be converted. An efficient mapper function

is crucial to the performance of the implementation.

There are a variety of approaches to constructing the mapping. The abstract

MappingMethod class is used to facilitate developing different methods. Each subclass

82



of MappingMethod class must provide both an explicit and implicit method for per-

forming the mapping, in addition to methods to calculate the fitness of the mapping.

The explicit mapper, called slowMap, must explicitly define the location of every

element, while the implicit mapper, called fastMap, is allowed to take shortcuts in

an attempt to optimize. Since they use take different approaches to placing elements,

a means of verifying that that elements are placed into the same place is needed.

Each method has its own fitness calculation function which can be compared to

provide this verification. Additionally, the validateSlowFitness function verifies

that that all requirements are truly satisfied during after explicitly mapping the oracle

by inspecting every byte in logical and physical memory. Since this byte-by-byte

examination requires an explicit definition of where each element is stored, it must

be run after slowMap has been performed.

class MappingMethod : public Mapping {

public :

virtual void slowMap ( const Oracle &o r a c l e ) = 0 ;

virtual void fastMap ( const Oracle &o r a c l e ) = 0 ;

virtual Fi tne s s s l owF i tne s s ( const Oracle &o r a c l e ) = 0 ;

virtual Fi tne s s f a s t F i t n e s s ( const Oracle &o r a c l e ) = 0 ;

bool va l i da t eS l owF i tne s s ( ) ;

. . .

} ;

4.2.6.1 Oracle Since the implementation deals with blocks during the mapping

process instead of individual elements, each search procedure considers an Oracle to

be a sequence of blocks, instead of a sequence of elements, as described in Chapter 3.

Since a block is simply an aggregation of elements with compatible memory types,

potentially only containing a single element, this modification of the definition of

oracle is very useful. There are typically fewer blocks than elements, and the blocks

can be assigned physical and logical addresses just like an element. The oracle is

simply a vector of IDs for each block. Figure 4.1 shows an example oracle, in which

83



Figure 4.1: An example oracle, which specifies the insertion blocks b1, . . . , b9 into the
mapping. This representation of an oracle depicts block insertion order moving from
left to right.

blocks are are inserted into the mapping as they appear left to right, starting with

block b1 and ending with block b9.

struct Orac l eSt ruct {

int blockID ;

. . .

} ;

typedef vector<Orac leStruct> Oracle ;

4.2.6.2 Explicit mapper The accuracy of the Mapper Function is critical to

the correct functioning of the implementation. The Explicit Mapper, defined in the

slowMap function of a MappingMethod, converts an oracle into a mapping by assigning

each element a logical address in the page table. Each block position in the page

table is kept until the mapping has been fully generated. Each task that references

the element stores the block in that logical address of its page table. When the

Explicit Mapper has finished, every block has been placed into the page table.

4.2.6.3 Implicit mapper Explicitly mapping the entire contents of the page

table is necessary for building a mapping that has enough information to produce

a full Map2 output file, but it stores more information than is strictly necessary to

evaluate quality of the oracle. Typically, each fully-formed oracle is evaluated based

on the oversubscription fitness measure, which is not concerned with the individual

placement of each element.

The Implicit Mapper, defined in the fastMap function, only maintains enough

information to evaluate the oversubscription fitness measure of each oracle. It

84



accomplishes this by only storing the last slot and page used for each task, the

addressTable of the mapping. The assignment addressTable[i] = pair(j,k) would

indicate that task i has last used slot j with page index k stored there. This is

sufficient to determine the placement of the next block, since each block can start

no earlier than any block that precedes it in the oracle. This simplification of the

representation results in a significant performance increase, since each task need only

keep track of its last logical address used, instead of storing all blocks that were

placed into each task during the mapping.

4.2.7 Fitness Function

We have discussed how some oracles will produce a valid mapping, while other

will not. In most cases, the majority of oracles analyzed will be invalid. We need

some metric to distinguish the quality of these invalid oracles, which we call the

fitness of the oracle. The value of this metric is defined as a vector<unsigned int>,

with each element of the vector representing a different measure of fitness for the

mapping. This supports a flexible fitness measure, allowing secondary measures

to break ties between primary measures, and providing the ability to easily sort

mappings based on more than one specific measurement.

There are a variety of approaches to measuring the fitness of an oracle. We

define a set of fitness components that measure different aspsects of an oracle. Each

search procedure has its own requirements for how the fitness should be calculated,

so having a set of fitness components to build a custom fitness function provides

some flexibility. Figure 4.2 provides an example oracle and resulting mapping that

demonstrate each of the fitness measures.

• Oversubscription: One method of measuring the fitness of an oracle is to

loosen the restrictions on a specific validity constraint that is easy to measure:

the size of the page table. When using this method, the mapper function

85



Figure 4.2: An example mapping of an oracle that shows each of the fitness measures.
The oracle (b4, b1, b3, b2) is mapped into a page table containing four tasks with four
slots. Oversubscribed space is the portion of the blocks that does not fit in the page
table. Polluted space is indicated in black, while wasted space is indicated by grey.

86



must make sure that the produced mapping satisfies all validity constraints,

except that it may allow the mapping to overrun its page table. We call a

task that has overrun its page table an oversubscribed task. The degree to

which the page table length is overrun can serve as a basis for calculating

the fitness metric.

There are a variety of ways to utilize this oversubscription to measure the

fitness of an oracle. These include measuring the number of elements that do

not fit into the page table, counting the number of bytes that are required in

excess of the page table capacity, or finding the maximum number of bytes

that any task requires beyond the page table capacity. Each MappingMethod

can provide a different method for calculating the oversubscription fitness

score. The oversubscription fitness score cannot be effectively calculated on a

partial-oracle since, in most cases, a partial-oracle will not oversubscribe the

page table, preventing this score from differentiating between partial-oracles.

• Wasted Space: There are cases where an element is mapped in a manner that

leaves unallocated space between the element and its predecessor. This can

occur due to a variety of reasons. The most common reason is the elements

having different memory types, which prevents them from being mapped

to the same page. The issue is that once an element is placed in a manner

that leaves this unused space, the strict ordering of an oracle dictates that

no other element can be assigned to the empty space, which is effectively

wasted.

The wasted space fitness method keeps a running total of all wasted space

that occurs during the mapping process. In most cases, wasted space will be

unavoidable, even in valid solutions. However, significant amounts of wasted

space can quickly prevent mappings from being valid. Typically, mappings

87



with less wasted space are more desirable. Since the wasted space can be

tracked during the application of the mapper function, the wasted space

method can be applied to any oracle, including partial-oracles. Wasted space

is displayed in Figure 4.2 in grey. In this example, wasted space is found in

whole-page increments, although that is not necessary.

• Polluted Space: The concept of pollution is defined in Chapter 1 as the

presence of elements with differing task requirements on the same page. The

space is considered polluted because the page is loaded into memory for all

the required tasks, but any element that is not required by the specific task

is effectively wasted space for that task.

Like wasted space, polluted space is generally unavoidable, even in valid

mappings, since it is not feasible to ensure that all elements on a page have

the exact same task requirement list. Polluted space is undesirable, but it

has less of a negative impact than wasted space, since the polluted space is

used by at least some task, as opposed to wasted space which is not used at

all. It is, therefore, generally better to pollute a page with an element that

has a different task requirement list than to eliminate pollution by starting a

new page and wasting the space. The polluted space method measures the

degree to which elements with differing task requirements are assigned to the

same page. Reducing this pollution will generally lead to a mapping that

is closer to being valid. Similar to the wasted space method, the pollution

method maintains how much space has been polluted during the application

of the mapper function, so it is able to provide fitness information for both

oracles and partial-oracles. Polluted space is displayed in Figure 4.2 in black.

88



4.2.8 Search Procedures

An important aspect of the implementation is to provide the ability to test

a variety of search procedures for performance and effectiveness. The abstract

GenericAlgorithm class is designed to provide a common base for developing these

procedures. The runMain() and initialize() functions provide bootstrapping capabil-

ity, while the createMappingMethod() function creates an instance of a MappingMethod

to be used for converting oracles into mappings and calculating fitness. The process

function parses the input file and kicks off the search. The intent is that these will

be overridden or extended by the derived classes as necessary. The algName string

is kept so that runMain can display which algorithm is being used during execution.

The primary piece that must be extended by each search procedure is the doSearch

function. This contains the details of how each search procedure operates.

class GenericAlgorithm {

public :

virtual int runMain ( int argc , char∗ argv [ ] ) ;

virtual void i n i t i a l i z e ( ) ;

virtual void createMappingMethod ( ) ;

virtual void proce s s ( s t r i n g f i l ename ) ;

virtual void doSearch ( ) = 0 ;

protected :

s t r i n g algName ;

Representat ion rep ;

MappingMethod ∗method ;

} ;

4.2.9 Visualization

The Map2 file format is very precise, but reading through a file in this format

does not give a reader a good idea for how the page table is allocated or where spaces

occur. The Mapping class provides a pair of visualization functions for converting

the assignments made to the page table into a more human-readable format. The

writeCommonFormat function produces a file that concisely specifies the elements

89



# Common Output Format
. . .
Page 574 R 0

0 CKSSDB 3
3 %CSLADB1 1
4 Q2D20R 1

Page 575 RW 0
0 Q2EABO 3

Page 576 R 0
0 %CSLADB0 1

Page 577 RW 0
0 Q2EM1O 1

. . .
PageMap 161

309 262 −1 −1 −1 −1 −1 −1 −1 327 295 −1 −1 −1 −1 −1 −1 −1 −1 321 333 . . .
310 263 −1 −1 −1 −1 −1 −1 −1 328 296 −1 −1 −1 −1 −1 −1 −1 −1 322 334 . . .

Figure 4.3: An excerpt from a file in common file format. Each page specifies the
elements that it stores along with offset. The PageMap defines the way that pages
are loaded into virtual memory.

assigned to each page, and the contents of each task’s page table. This differs from

the Map2 file format in that it more directly specifies which elements are stored on

each page, and which page is stored in each slot of the page table. Care is taken to

make the common file format both specific and easy to read. Figure 4.3 provides a

portion of an example file in common file format.

The writeSVG function produces an image file for the mapping in Scalable

Vector Graphics (SVG) format. Different elements are colored differently and empty

space in the page table is colored white. Polluted space is colored black. Slots that

are needed to store elements that have oversubscribed the page table are colored

darkly, to give the reader a visual cue for where the page table ends. This visual

representation gives the user a more intuitive feel for how elements are stored and

what impact assignment of an element has on the mapping. Figure 4.4 shows an

example SVG for a solution to an instance of MEM-MAP.

90



Figure 4.4: An example SVG image for a solution a MEM-MAP problem instance.
Data elements are represented by colored blocks, and slots are separated by light
green horizontal lines. This example is a valid mapping, and thus all elements fit
into the page table.

91



4.2.10 Map Emitter

Once a valid mapping has been found by a search procedure, the implementation

needs a means of generating a Map2 file that corresponds to the assignments made

in the mapping. The Map Emitter module translates the page table and element

assignments from internal representation to the standard Map2 format. Since the

problem was originally parsed from a Map2 input file, many of the details about the

problem are available for converting into the file. The portions of the Map2 input

file that were discarded during parsing, specifically the logical and physical address

of elements, have been determined during the building of the page table using the

explicit mapper. Converting the information from problem and page assignments

from mapping into Map2 format is straightforward.

4.3 Search Methods Evaluated

The implementation includes a variety of search procedures that are readily

adapted to this problem. Due to the specifics of the this problem, each procedure

is specifically tailored to apply to this problem, while still adhering to the general

principles of the technique described in Chapter 2.

4.3.1 Depth-First Search

Since the problem requires search, including a variety of depth-first search

procedures in the implementation provides a good baseline for evaluating other

procedures, despite the performance issues associated with the complexity of the

problem. In addition to the complete search, we also examine some alterations to

the order that child nodes are examined after expansion which attempt to focus the

search on the most interesting portions of the search space.

4.3.1.1 Complete Our implementation of the depth-first complete search is a

straightforward application of depth-first search, with only basic attempts to optimize

performance or reduce the size of the space explored, such as pruning. This allows it

92



to serve as a reference implementation which is guaranteed to find a valid oracle, if

one exists, when given enough time. The various oracles are examined systematically,

without any application of heuristics.

Since it is depth-first, the complete search utilizes a LIFO-stack, with each node

in the stack representing a block. This uses a specially defined TotalOrderMapper

mapping method that provides the ability to incrementally add and remove com-

mitments to a partial-oracle. The removal is accomplished by keeping a vector of

commitments made, and providing a backtrack function which restores the mapping

to the state specified by an index in the commitment vector. A search based on a

LIFO-stack guides us to use a recursive function for the search. As each commitment

is pushed onto the stack, the function recurses deeper. When commitments are

popped off of the stack, the recursive function backtracks and returns.

Mapper myMapper ;

s earch ( Oracle O, unmapped )

i f unmapped = ∅

return TRUE

for each element ∈ unmapped

Oracle O′ ← O + element

i f myMapper . f i t n e s s ( O′ ) = 0

i f search ( O′ , unmapped − { element } )

return TRUE

return FALSE

Each recursive step considers every unmapped block as the next block in the

partial-oracle. Once a block is placed, the resulting mapping is examined to see if it

fits into the page table. If the insertion fits, then the function recurses deeper with

the partial-oracle that contains the inserted block.

If an insertion of a block causes a validity constraint to be broken, the insertion

is retracted, during which all modifications made during the insertion are undone.

If none of the unplaced blocks can be inserted into the mapping, then one of the

insertions during a previous recursion step caused the mapping to be invalid, so the

93



recursive function backtracks and returns to the previous step. This backtracking

effectively prunes all subsequent block assignments that would have occurred after

making the invalid assignment.

4.3.1.2 Heuristic The complete depth-first search is a good reference imple-

mentation, but it pays no attention to the quality of the nodes that it is expanding.

In pathological cases, the worst expansions could be explored first, leaving the most

promising expansions for much later in the search. This would result in the search

taking a significant amount of time to find a solution.

The heuristic-based search implementation is a variation of the complete depth-

first search, specifically addressing the order that child nodes are explored during

recursion. Instead of systematically expanding child nodes according to their block

ID’s regardless of their quality, it applies a heuristic to first expand child nodes that

are more likely to lead to a solution.

Mapper myMapper ;

s earch ( Oracle O, unmapped )

i f unmapped = ∅

return TRUE

for each element ∈ unmapped

h [ element ] ← myMapper . f i t n e s s ( O + element )

s o r t unmapped by h

for each element ∈ unmapped

i f h [ element ] = 0

i f search ( O + element , unmapped − { element } )

return TRUE

return FALSE

The concept of fitness provides a basis for defining this heuristic. The process

in which nodes are expanded gives guidance for which fitness components to utilize

in this search. It is important to note that, in a heuristic search, the fitness score

is required at internal nodes, when only a partial-oracle has been constructed.

Oversubscription is generally unable to differentiate between partial-oracles, especially

94



those containing only a few blocks, since, in most cases, none of the partial-oracles

would oversubscribe the page table. In these cases, all of the partial-oracles would

have the same oversubscription score of 0.

Fortunately, the wasted space and polluted space fitness approaches are directly

applicable to measuring the relative fitness of partial-oracles. Both the wasted and

polluted space are tracked during block insertion, and it is very unlikely that a

mapping will have absolutely no wasted or polluted space. This means that different

partial-oracles will most likely have wasted space and polluted space fitness scores

that are reasonably comparable, even when they do not contain an order for all

elements.

Once fitness has been computed for each block that is eligible for insertion in

the mapping, the blocks are ordered according to their fitness score. Each block is

then reconsidered for insertion, beginning with the best block. During this pass, each

block that satisfies the validity constraints results in a recursive step. This approach

allows the blocks with the best fitness functions to be evaluated first, which will

hopefully lead to a solution being found sooner. The heuristic-based search will still

completely search the space, if given enough time. It simply applies heuristic logic in

an attempt to first focus on block placements that are the best choice at each step in

the search.

4.3.1.3 Incomplete While the heuristic-based search attempts to focus the

complete search on the most promising regions of the search space, it is still a

complete search. Both the complete and heuristic search systems attempt to exhaust

the search space. However, the size of the mapping search space may be so large as

to render these approaches impractical. In an effort to focus attention on the most

promising regions of the search space, we also investigate an incomplete, depth-first

search procedure which ignores large portions of the search that seem unlikely to

contain a solution. Although there is some risk that this procedure will miss a

95



solution, the hope is that the heuristic is good enough to guide the search towards a

portion of the search space that contains a solution.

It is easy to adapt the complete, heuristic search so that it ignores many of

the least promising regions of the search space. Once the children of a search node

have been heuristically ordered, only the best k expansions are considered, while

the remaining least preferred expansions are discarded from consideration. For our

tests, we specify that k =
blist .size()

2
. Using this value for k allows the algorithm

to keep a higher percentage of possible expansions at each level. This relies on the

premise that, if the best expansions for a node are unable to lead towards a solution,

then the least preferred expansion will likely not either. After the subtrees rooted

at the best k children have been explored, the search backtracks to the parent node

and continues. This limit prevents the incomplete search from searching the entire

space, but it aims to reduce the amount of time spent stuck searching uninteresting

portions of the search space. This code is the same as the heuristic recursive function,

except it imposes the MAX EXPAND limit.

Mapper myMapper ;

MAXEXPAND ←
|blist|

2

search ( Oracle O, unmapped )

i f unmapped = ∅

return TRUE

for each element ∈ unmapped

h [ element ] ← myMapper . f i t n e s s ( O + element )

s o r t unmapped by h

for each element ∈ unmapped l im i t MAXEXPAND

i f h [ element ] = 0

i f search ( O + element , unmapped − { element } )

return TRUE

return FALSE

96



Figure 4.5: An example swap operation, which swaps the location of blocks
b3 and b7 in the oracle.

4.3.2 Hill Climbing

The hill climbing family of implementations is a major portion of the incomplete

search techniques that are part of the implementation. In the application of hill

climbing to the problem, each oracle is represented by a state in the space; no partial

candidates are considered. We impose a neighbor relation on the set of oracles using

a variety of schemes, some dense, some sparse. These schemes consider oracles to

be neighbors if one or many elementary operations can be performed to convert one

oracle into the other, depending on the scheme. The elementary operations include:

• Swap: A swap exchanges the location of two blocks in the oracle, keeping

everything else in place. Figure 4.5 presents an example swap operation on

an oracle.

void swap ( Oracle &orac l e , int a , int b) {

swap ( o r a c l e [ a ] , o r a c l e [ b ] ) ;

}

• Move: A move is simply the movement of a block from one location in the

oracle to another. All elements that follow the block are moved forward

97



Figure 4.6: An example move operation, which moves block b3 right before
block b7. The relative order of all other blocks remain unchanged.

to make room for the element and to fill in vacated space. Because of the

operation of the mapper, this movement can have a significant effect on the

resulting logical address to which the block is assigned. Figure 4.6 shows an

example move operation.

void move( Oracle &orac l e , int a , int b) {

Oracle : : i t e r a t o r itA = o r a c l e . begin ( ) + a ;

Orac l eSt ruct elem = ∗ itA ;

o r a c l e . e r a s e ( itA ) ;

i f (b > a )

b−−;

Oracle : : i t e r a t o r itB = o r a c l e . begin ( ) + b ;

o r a c l e . i n s e r t ( itB , elem ) ;

}

• MultiMove: Depending on the desired density of the neighbor scheme, blocks

can also be moved in groups of various sizes. This group movement signifi-

cantly increases the density of each neighbor set, but it has some advantages.

If a specific ordering of a subgroup of elements is optimal, this subgroup can

be kept intact during the multi-moves, preserving the good subgrouping.

98



Figure 4.7: An example multi-move operation, which moves the group of 3
blocks b6, b7, and b8 before block b2 in the oracle. The relative order of all
other blocks remain unchanged.

Groups of varying size are inspected, ranging from just a single block, up

to maxMoveGroup blocks, which, for our tests, is set at 20. This allows group

representing up to about 7% of the total blocks in a typical problem instance

to be moved during a multi-move. Each possible group of num blocks is

moved to all possible move locations, and tested for fitness.

void multiMove ( Oracle &orac l e , int a , int b , int num) {

Oracle : : i t e r a t o r groupFi r s t = o r a c l e . begin ( ) + a ;

Oracle : : i t e r a t o r groupLast = o r a c l e . begin ( ) + a + num;

Oracle currGroup ( groupFirst , groupLast ) ;

ne ighbor . e r a s e ( groupFirst , groupLast ) ;

o r a c l e . i n s e r t ( o r a c l e . begin ( )+b , currGroup . begin ( ) , currGroup . end ( ) ) ;

}

We use the fitness function to evaluate the quality of each neighbor in relation

to the others when determining which direction to move. In order to produce a search

space which is relatively smooth with respect to fitness, the elementary operations

are designed to produce neighbors which generally do not have markedly different

fitness scores. Hill climbing deals with fully constructed oracles and thus any of

the fitness criteria can be used. Since the ultimate goal of the search is to find a

99



mapping that fits into the page table while satisfying all validity constraints, all

our hill climbing techniques rely heavily on the oversubscription fitness calculation

method which directly measures how well the oracle fits into memory.

In order to enumerate the set of all neighbor oracles, a neighbor is generated for

each possible move or swap in the oracle. This set is quite large, but enumerating it is

straightforward. As each neighbor is generated, its fitness is calculated for comparison

with the other neighbors. Once all neighbors have been generated and evaluated for

fitness, the neighbor with the best fitness is chosen for the next candidate in the

search.

4.3.2.1 Standard hill climbing with random restart The most basic implemen-

tation of hill climbing utilizes the standard neighbor generation methods of move and

swap. In order to keep the search going after encountering a local minima, random

restart is employed which randomly generates a new seed whenever a local minima is

encountered. This implementation is simple called hc.

4.3.2.2 Persistent/Deep The persistent hill climbing approach is a modification

to the random restart hill climbing which represents an attempt to reduce the number

of local optima encountered. The persistent implementation uses a very dense

neighbor scheme which includes all possible single-block swaps and moves, as well

as the set of neighbors generated by performing the multi-moves. This dense space

provides a larger pool of neighbors to check for the best neighbor.

In addition to the dense neighborhood space, the persistent implementation

also includes all the fitness score approaches in its fitness score vector. Since it still

places emphasis on the oversubscription score, that score is stored in the first slot

of the vector, followed by the pollution and wasted space scores. These additional

scores provide additional information for neighbor comparisons, which reduce ties

in neighbor selection and allows the process to continue even when the primary

100



fitness criterion of oversubscription cannot discriminate between two similar oracles.

Additionally, if a tie is encountered in all fitness scores, the procedure chooses an

arbitrary neighbor and continues the search. In order to prevent a needlessly long

search of a poor portion of the space, a bound is placed on the number of times that

a tie may be selected for the next step in the search. For our tests, this bound is

set at 5. Once the limit has been reached, a new seed is randomly selected, and the

search begins again. This implementation is called persistentHC.

4.3.2.3 Multi-Stage The multi-stage variation of hill climbing is based on

the concept that, typically, the larger blocks are harder to map that smaller blocks.

This approach breaks the search into multiple stages, each containing progressively

smaller blocks. Once the blocks in the current stage have been ordered in such a way

that all validity constraints are satisfied, that relative order of those blocks is frozen,

and the elements of the next stage are inspected. The generation of neighbors at

each stage only considers movements or swaps of blocks in the current stage.

The multi-stage implementation accommodates a variety of ways to group

blocks into stages. The most easy to test is a static definition of the minimum size

for each group. Our implementation of the multi-stage search defaults to using three

stages, based upon the size of each block b, s(b), which is defined as the sum of the

sizes of all elements that are members of the block. Using these definitions, block b

will be inserted into the oracle during stage:

stage(b) =


1 if 1024 < s(b)

2 if 128 < s(b) ≤ 1024

3 if 0 < s(b) ≤ 128

This static definition of which elements are in each stage allows the performance

of the multi-stage implementation to be easily compared across multiple problem

101



instances. These specific break points were selected in light of the original problem

instance, in that they divide the blocks into three stages with roughly the same

number of blocks per stage. The first stage contains all blocks that are larger than a

page. The second stage is the in-between sized blocks blocks, while the last stage is

all smaller blocks that should be easier to place. The goal is to make the first stages

sufficiently difficult that a reasonable ordering of difficult elements is produced, while

not spending too much time in the first stage. Once a valid partial-oracle is found, it

is passed to the next stage. If any stage reaches a local optima that is not valid, or

the next stage is unable to find a solution within the drop limit, it re-drops the stage.

For our tests, this drop limit is set to 1000 drops per stage. The implementation of

multi-stage hill climbing is referred to as multiHC.

4.3.3 Genetic Search

The genetic search technique presented in Chapter 2 is an alternative, incom-

plete search technique that utilizes randomness to build a generation of oracles.

This randomness allows different test runs to have very different results. The im-

plementation has many tunable parameters, which allow the search to be easily

modified.

The genetic search begins by creating a random common ancestor oracle, noah,

which is used as the basis for all mutations that occur during the search. A series of

generations are then generated by applying random mutations to members of the

previous generation. The best member of each generation is compared to the global

best member found thus far in the search, allowing the best member found during

the search to be kept for the final reporting, in the case that a solution is not found.

The search stops when a valid oracle is found, one which has an oversubscription

fitness score of 0, indicating that no tasks have oversubscribed page tables. If no

valid oracle is found within NUM_GENERATIONS generations, then the search terminates.

102



Mapper myMapper

search ( )

Oracle noah ← generateRandomOracle ( )

Oracle bes t ← noah

Oracle [ ] g ene ra t i on ← {noah}

for each i ∈ {0, . . . , NUMGENERATIONS}

gene ra t i on ← c reateGenerat ion ( gene ra t i on )

i f myMapper . f i t n e s s ( gene ra t i on [0]) < myMapper . f i t n e s s ( bes t )

bes t ← gene ra t i on [0]

i f myMapper . f i t n e s s ( bes t ) = 0

return TRUE

return FALSE

New generations are created by applying a random mutation to each member

of the parent generation. A certain number of oracles are allowed to survive from

one generation to the next. For our tests, this threshold is specified using the

MAX_GENERATION_HOLDOVER constant set to 100. This holdover is particularly useful

when none of the oracles in the new generation are better than the parent generation.

It also randomly allows good oracles to persist. Once the new generation has been

fully populated, it is sorted according to the fitness of each child oracle, and only the

best GENERATION_SIZE children are kept as parents for the next generation.

MAX GENERATION HOLDOVER ← 100

CHILDREN PER PARENT ← 100

GENERATION SIZE ← 500

createGenerat ion ( prevGenerat ion )

Oracle [ ] c h i l d r en ←

{prevGeneration[1], . . . , prevGeneration[MAX GENERATION HOLDOV ER]}

f o r each parent ∈prevGenerat ion

fo r each childNumber ∈ {1, . . . , CHILDREN PER PARENT}

Oracle mutant ← mutateOrdering ( parent )

ch i l d r en ← ch i l d r en + mutant

for each ch i l d ∈ ch i l d r en

h [ c h i l d ] ← myMapper . f i t n e s s ( c h i l d )

s o r t ch i l d r en by h

return {children[1], . . . , children[GENERATION SIZE]}

103



The mutations are an application of the same elementary operations used

for defining the set of neighbors in hill climbing. The difference is that the blocks

involved in the operation are selected randomly during each mutation. The rate

defines an upper bound on the number of operations performed during during a

mutation. In our tests, rate is set to 10% of the blocks being mutated. After the

mutation has been applied to the child, it is returned to be considered for inclusion

in the next generation

RATE = 10

mutateOrdering ( Oracle parent )

Oracle c h i l d ← parent

randomRate ← randomlySelectFrom ({1, . . . , RATE})

f o r each mutation ∈ {1 . . . randomRate}

a =randomlySelectFrom ({1, . . . , |blist|})

b =randomlySelectFrom ({1, . . . , |blist|})

move( ch i ld , a , b)

return ch i l d

104



CHAPTER FIVE

Evaluation

We have shown that MEM-MAP requires search to determine if a solution exists

for a specific problem instance. Additionally, we have provided a search framework

that serves as a foundation for testing a variety of approaches to finding solutions.

The implementation based upon this framework allows the various search procedures

to be tested against one another. These tests offer insight into which procedures are

most effective.

5.1 Base Problem Instance

The DOD has provided a single problem instance file to support efforts to

solve this problem. This problem instance, which we refer to as the base problem

instance, is a known solvable problem instance. While we are sure that at least

one solution exists for the base problem instance, solutions may not be easy to find

using automated techniques. The goal is to use the implementation to produce an

equivalent solution within a reasonable amount of time.

Some basic statistics about the base problem instance portray the key elements

that affect the number of solutions that can exist. Table 5.1 provides an overview of

the key characterization statistics for the base problem instance.

Even though there are 943 elements, only about half of them are data elements

with which we are concerned. The remaining code elements are easily mapped into

their own, separate page tables. These 485 data elements are grouped into 274 blocks

by our search techniques, using the fingerprint of task requirements and precedence

relationships specified in the input file to define groups. Element sizes, and the

resulting block sizes, vary widely, as shown in Figures 5.1 and 5.2. The requirements

105



Table 5.1: Base Problem Instance Statistics

Number of Elements 943

Number of Data Elements 485

Number of Blocks 274

Number of Tasks 61

Number of Requirements 8819

Median Element Size 145

Median BlockSize 434

statistic measures the total number of times that a task requires an element. The

number of blocks, combined with the number of requirements, help to define how

difficult a particular problem is to solve. The search space of all oracles of blocks is

274!, or 3.673× 10550.

5.2 Alternate Problem Instances

The base problem instance is the definitive instance, but it is also the only

problem instance that is provided by DOD. Since they do not make many changes to

the mission computer, there is not a wide selection of problem instances to evaluate

the search procedures.

In order to fully evaluate our implemention, we need more data points in the

form of more problem instances. Since these are not readily available, we generate

our own test suite to evaluate the methods. This is obviously not as desirable as

testing on real data, but it provides a more complete testing scope. Since the base

problem instance is difficult to solve, we create new problem instances by reducing

the complexity of the base instance, thus making them easier to solve.

A way to modify the base problem instance in a manner that makes it easier

to find a solution is to delete random elements from the instance. This has the effect

of reducing the total number of elements and blocks which need to be placed. It

106



0

10

20

30

40

50

60

70

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

# 
o

f 
El

e
m

e
n

ts

Size of Element (bytes)

Figure 5.1: A histogram showing the distribution of the number of data elements of
each size. The x-axis indicates the bytes represented by the histogram bin for the
bar. Each bin contains all elements that are at least as large as the bin minimum,
and smaller than the next bin minimum. The height of each bar indicates how many
elements are in the size range specified by the x-axis.

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

# 
o

f 
B

lo
ck

s

Size of Block (bytes)

Figure 5.2: A histogram showing the distribution of the number of blocks of each size.
The x-axis indicates the bytes represented by the histogram bin for the bar. Each
bin contains all elements that are at least as large as the bin minimum, and smaller
than the next bin minimum. The height of each bar indicates how many blocks are
in the size range specified by the x-axis.

107



also reduces the number of requirements that need to be satisfied in a solution. Our

generated instances are the result of deleting random elements until the sum of all

element sizes has been reduced by a specified percentage.

In order to generate these modified problem instances, we create a function,

deleteElements, that performs these deletions. During this process, deleteElements

ensures that every task still requires at least one element, in order to prevent tasks

from being effectively deleted as well. A modification to this straightforward approach

is that deleteElements does not consider elements larger than 10,000 bytes in size

for deleting, since they would quickly fill the quota and are typically not required

by many of the most critical tasks. The other consideration is that it makes no

guarantee that an exact number of bytes are deleted; in most cases it goes over

slightly during a deletion.

It is important to note that each instance is generated independently of the other

generated instances. As such, different elements may be deleted from one instance

but not from another. Independent selection of elements for deletion can ultimately

generate an instance that may have deleted more elements, but is ultimately harder

due to more difficult elements being retained.

5.3 Performance Tests

We use the deleteElements function to generate 18 problem instances of varying

difficulty in addition to the base problem instance. Table 5.2 provides a description

of each generated instance. The difference between each instance is the percentage

of the element size that is deleted, ranging from 5% to 90% at intervals of 5%. This

distribution of deletion rates provides a basis for comparing even the procedures with

poor performance. Instances with higher percentage of elements deleted will have

more valid candidates in their search space, and thus be easier to solve than those

with lower percentages deleted. For the purposes of the tests and results analysis,

108



0

100

200

300

400

500

600

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%

# 
O

f 
D

at
a 

El
e

e
m

tn
s/

B
lo

ck
s

Percentage of Data Element Size Deleted

NumDataElements 

NumBlocks 

Figure 5.3: Comparison of the number of elements and blocks present in each problem
instance. Reduced instances will have fewer elements, which eventually reduces to
each element having its own block.

instances are identified by the percentage of element size that is deleted. The 00%

instance is the base problem instance, which has no elements deleted.

The 90% instance is the easiest of the generated instances. In this instance, each

task requires very few elements, and many oracles in the space are valid. This serves

as a trivial test of how fast each implementation finds a solution in a solution-rich

search space. Figure 5.3 shows that, as more elements are deleted, the total number

of blocks is also reduced. This ultimately reduces the size of the search space, since

there are fewer permutations possible for each oracle. Any approaches that have

difficulty finding a solution in this space will likely continue to have problems once

the problems get more difficult.

As the instances get progressively harder, the implementations are expected

to take longer to find a solution. This allows us to measure how performance of

each tested system changes with problem difficulty. Running the search procedures

against the same test suite allows direct performance comparison.

5.3.1 Test Methodology

The method for running this suite of tests is a straightforward application of

each search procedure to each of the 19 generated problem instances, as well as the

base problem instance. There are two primary data points that need to be collected

109



T
ab

le
5.

2:
K

ey
st

at
is

ti
cs

ab
ou

t
ea

ch
of

th
e

ge
n
er

at
ed

p
ro

b
le

m
in

st
an

ce
s.

A
s

m
or

e
el

em
en

ts
ar

e
d
el

et
ed

to
re

d
u
ce

th
e

to
ta

l
el

em
en

t
si

ze
,

th
e

n
u
m

b
er

of
b
lo

ck
s

ar
e

al
so

re
d
u
ce

d
,

si
n
ce

th
er

e
ar

e
fe

w
er

fi
n
ge

rp
ri

n
ts

av
ai

la
b
le

to
co

m
b
in

e
el

em
en

ts
in

to
b
lo

ck
s.

S
im

il
ar

ly
,

th
e

to
ta

l
n
u
m

b
er

of
re

q
u
ir

em
en

ts
d
ec

li
n
es

as
m

or
e

el
em

en
ts

ar
e

d
el

et
ed

.
S
in

ce
on

ly
el

em
en

ts
sm

al
le

r
th

an
10

,0
00

ar
e

d
el

et
ed

,
th

e
m

ed
ia

n
el

em
en

t
si

ze
in

cr
ea

se
s

as
m

or
e

el
em

en
ts

ar
e

d
el

et
ed

.
T

h
e

to
ta

l
n
u
m

b
er

of
ta

sk
s

re
m

ai
n
s

co
n
st

an
t,

si
n
ce

ca
re

is
ta

ke
n

to
en

su
re

th
at

ev
er

y
ta

sk
co

n
ti

n
u
es

to
re

q
u
ir

e
at

le
as

t
on

e
el

em
en

t.

P
er

ce
n
ta

g
e

o
f
el

em
en

t
si

ze
d
el

et
ed

S
ta

ti
st

ic
0
0

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

#
o
f
E

le
m

en
ts

9
4
3

9
2
4

9
0
9

8
9
0

8
6
9

8
6
1

8
0
3

7
8
8

7
7
0

7
3
3

7
0
6

6
7
7

6
6
0

6
3
8

6
2
0

5
8
3

5
4
5

5
2
0

5
0
4

#
o
f
D

a
ta

E
le

m
en

ts
4
8
5

4
6
6

4
5
1

4
3
2

4
1
1

4
0
3

3
4
5

3
3
0

3
1
2

2
7
5

2
4
8

2
1
9

2
0
2

1
8
0

1
6
2

1
2
5

8
7

6
2

4
6

#
o
f
B

lo
ck

s
2
7
4

2
6
4

2
5
9

2
5
1

2
4
0

2
3
5

2
1
6

2
0
9

1
9
9

1
8
2

1
6
9

1
5
4

1
4
2

1
2
7

1
1
2

8
9

6
8

4
9

3
7

#
o
f
T
a
sk

s
6
1

6
1

6
1

6
1

6
1

6
1

6
1

6
1

6
1

6
1

6
1

6
1

6
1

6
1

6
1

6
1

6
1

6
1

6
1

#
o
f
R

eq
u
ir

em
en

ts
8
8
1
9

8
5
7
5

8
4
0
2

8
0
9
1

7
7
6
3

7
6
7
7

6
8
4
5

6
7
3
8

6
5
1
8

5
8
7
8

5
6
6
3

5
2
7
2

5
0
6
4

4
8
7
2

4
6
3
7

4
1
3
7

3
4
7
5

3
1
4
2

2
9
9
2

M
ed

ia
n

E
le

m
en

t
S
iz

e
1
4
5

1
4
6

1
4
5

1
4
6

1
4
8

1
4
5

1
5
2

1
5
2

1
5
2

1
7
4

1
8
4

1
9
3

2
0
4

1
5
7

1
5
3

1
5
3

2
2
1

3
3
0

3
7
4

M
ed

ia
n

B
lo

ck
S
iz

e
4
3
4

4
3
1

4
2
8

4
0
7

4
0
7

4
0
6

4
1
4

4
0
7

4
0
7

4
2
7

4
1
4

4
2
8

4
2
8

4
2
4

4
4
1

4
0
1

4
0
1

5
2
8

6
2
5

110



about each individual test: what was the best candidate found, and how long did it

take to find it. The goal is for the best candidate to be a valid mapping, but, in the

absence of a solution, the fitness of the best candidate found will give us some basis

for comparing results. Each implementation is designed to display the best oracle

that it found during the run. Of course, if a solution is found, the search terminates

immediately.

The length of time spent looking for a solution is measured in seconds of

execution. Since the tests can easily run for multiple days if the problem instance is

sufficiently hard, we impose an execution time limit of 24 hours, or 86,400 seconds, on

CPU time. After 24 hours have elapsed, if the search has not found a valid solution,

the best oracle is returned, along with its corresponding oversubscription fitness score.

This allows comparison of techniques, even if they failed to produce a valid solution

in the required time.

5.3.2 Test Hardware

Applying the search procedures to each generated problem instance requires a

significant amount of processing power. Each of the procedures is single-threaded

and can make effective use of one processor core.

Baylor University maintains a High Performance Computer (HPC) named

Kodiak for research projects that require significant amounts of processing power.

Key information about the Kodiak cluster is shown in Table 5.3. It has 128 nodes,

each with dual-quadcore processors. This totals to 1024 total cores available for

computation tasks. A batch processing systems allows multiple users to utilize the

cluster at the same time. Once a job is submitted to the batch system, the job

has an entire core dedicated to its processing for the duration of execution. This is

important to consider because it ensures that each test is given the same computing

resources for the duration of each test. The memory on each node is shared across

111



Table 5.3: Kodiak Cluster Specifications

Model HP C3000BL

Operating System Red Hat Enterprise Linux

Kernel 2.6.9-67.0.4.EL SFS2.3 0smp

Cluster Mgt. Software Platform Manage

Hardware
128 nodes (HP Proliant BL460C blades)

Dual quadcore Intel Xeon 5355, 16 GB RAM

each of the 8 cores. Fortunately, the 16GB of memory available to each node is more

than enough to support 8 concurrent searches, one on each core.

5.4 Performance Results and Comparison

We design a set of experiments to measure the performance of the various

search techniques on the set of problem instances. Analysis of these experiments

provides insight into the effectiveness of each procedure and guides selection of the

procedure best suited for automatic application.

5.4.1 Execution Time Analysis

Figure 5.4 shows a comparison of the execution time for each procedure against

each of the test instances. Each chart shows the performance of a different search

procedure on the original and generated problem instances. Individual problem

instances are ordered on the x-axis from largest to smallest total element size.

Solution time for each problem instance is reported on the Y axis, with the height of

the line indicating the number of seconds of user time consumed. As the problems

become more difficult, some approaches are not able to find a solution within the

24 hour time limit. This failure to find a solution is indicated by an entry at 86400

seconds. Note that the y-axis is presented in log-scale, to accommodate viewing both

small and large running times.

112



As expected, the easier instances, with more elements deleted, are solved much

more quickly than the difficult problem instances. Additionally, each of the depth-first

search procedures has difficulty finding solutions for all but the most trivial problem

instances. The genetic and hill climbing procedures show the most promise for dealing

with the larger problem instances.

The complete depth-first search almost immediately finds a solution for in-

stances with greater that 70% of the element size deleted, but fails to find a solution

at all for any instances with less than 65% deleted. This indicates that the search

space in the higher deletion percentages must be solution-rich. As more elements

are added, it becomes more difficult for this technique to recover from a poor choice

made closer to the root of the search tree. As expected, complete search does not

find a solution to the base case within the 24 hour time limit. During the course

of its search, complete search examines 7.104× 1010 internal nodes of the tree, and

does not examine any leaf nodes due to pruning. The pruning function allows it to

effectively exhaust 5.813× 10475 oracles from the search space. While this seems like

a large number of oracles, it is only 1.582× 10−75% of the 274! possible oracles in

the search space. This still leaves 3.673× 10550 oracles that must be examined. Even

though these numbers appear to indicate that the complete search made no progress

at all, complete search did make progress, just none that is measurable at this level

of detail.

The heuristic and incomplete depth-first searches perform approximately the

same, finding a solution extremely quickly for instances with 45% or more of the

element size eliminated. This should be expected, since they are optimized versions

of the complete depth-first search with the goal of finding interesting portions of the

search space, but they still must perform exponential-time search to escape from

subtrees of the search that are void of solutions.

113



The standard hill climbing search does very well on the medium to easy problem

instances, but does not find a solution for any of the instances with less than 30% of

the element size deleted. The success experienced on the easier instances suggests

that it may have found a solution to some of these if it were given an additional 24

hours of search time.

The persistent hill climbing closely mirrors the performance of the standard

hill climbing implementation. The search is able to make improvements at each step,

but they are relatively minor with respect to the total oversubscription score. It is

thus unable to quickly identify solutions to the larger problems that prevent it from

being valid. Even though it is able to find a better neighbor many times, each of

these neighbor selections ultimately end up in a local minima. Each time a local

minima is found that it is unable to escape, it starts over with a new random drop.

It finds solutions for instances with greater than 20% deleted, but takes longer than

genetic to find them.

The performance of the multi-stage hill climbing is disappointing; it fails to find

a solution for any instance harder than 45%, which is on par with the heuristic-based

depth-first searches. Unlike the heuristic-based searches, it does not quickly find

a solution even to the easier instances. This shows that the stage-based code is

sufficient for finding as solution, but more research needs to be done to find better

stage partitioning.

The genetic search procedure provides the most promising results of all the

search procedures, finding a solution for all instances with greater than 10% of the

element size deleted. This leaves only the base instance, along with the 5% and 10%

instances, as unsolved. The fact that it solves most of the instances within 24 hours

is encouraging. One anomaly in the results is the amount of time taken to find a

solution for the 25% problem instance. This problem takes significantly longer than

both the 20% and 30% instances. This can be attributed to a variety of factors,

114



most likely being the random nature of the genetic search, and the fact that each

problem instance is independently generated. These random operations can have

varying effects on the inherent difficulty of the problem and on the effectiveness of

the procedure. It is notable, however, that the genetic procedure is the only one that

finds a solution to the 25% instance within the 24 hour testing period. These results

indicate that genetic is one of the most effective procedures.

5.4.2 Effectiveness on Base Problem Instance

Figures 5.4 and 5.5 provide insight into which procedures are the most promising.

However, none of the procedures find a solution to the base problem instance within

the 24 hour period specified by the test. In order to run extended tests with the goal

of finding a solution to the base problem, we analyze the fitness function over time

with respect to the base problem instance for each of the most promising procedures,

as identified in Figures 5.4 and 5.5. Figure 5.6 shows this comparison of fitness for

the best candidate found by the genetic, standard hill climbing, and persistent hill

climbing searches when applied to the base problem instance. This is shown over the

course of the 24 hour testing period.

Once again, the y-axis in Figure 5.6 is presented in log scale to facilitate close

examination of results as they approach a valid mapping with zero oversubscribed

bytes. Time is presented on the x-axis in hours.

Both the standard and persistent hill climbing procedures report the oversub-

scription fitness during each roll. This presents sawtooth lines in Figure 5.6 since

the procedures generate a new seed when no more expansions can be performed that

produce a better oversubscription. These sawtooth spikes do not even approach a

valid solution, they are all well above 100 bytes oversubscribed. This means that the

flatter green and red lines indicate the best oversubscription fitness level found so

far by the search. Each time a hill climbing attempt ends with a better solution for

115



0
.11

1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

0
%

5
%

1
0
%

1
5
%

2
0
%

2
5
%

3
0
%

3
5
%

4
0
%

4
5
%

5
0
%

5
5
%

6
0
%

6
5
%

7
0
%

7
5
%

8
0
%

8
5
%

9
0
%

Number of seconds to find a solution

P
e

rc
e

n
ta

ge
 o

f 
e

le
m

e
n

t 
si

ze
 d

e
le

te
d

(a
)

C
om

pl
et

e
Se

ar
ch

0
.11

1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

0
%

5
%

1
0
%

1
5
%

2
0
%

2
5
%

3
0
%

3
5
%

4
0
%

4
5
%

5
0
%

5
5
%

6
0
%

6
5
%

7
0
%

7
5
%

8
0
%

8
5
%

9
0
%

Number of seconds to find a solution

P
e

rc
e

n
ta

ge
 o

f 
e

le
m

e
n

t 
si

ze
 d

e
le

te
d

(b
)

H
eu

ri
st

ic
Se

ar
ch

0
.11

1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

0
%

5
%

1
0
%

1
5
%

2
0
%

2
5
%

3
0
%

3
5
%

4
0
%

4
5
%

5
0
%

5
5
%

6
0
%

6
5
%

7
0
%

7
5
%

8
0
%

8
5
%

9
0
%

Number of seconds to find a solution

P
e

rc
e

n
ta

ge
 o

f 
e

le
m

e
n

t 
si

ze
 d

e
le

te
d

(c
)

In
co

m
pl

et
e

Se
ar

ch

F
ig

ur
e

5.
4:

P
er

fo
rm

an
ce

re
su

lt
s

fr
om

ap
p
ly

in
g

al
l

im
p
le

m
en

te
d

p
ro

ce
d
u
re

s
to

th
e

te
st

su
it

e.
T

h
e

y
-a

x
is

,
p
re

se
n
te

d
in

lo
g-

sc
al

e,
in

d
ic

at
es

th
e

n
u
m

b
er

of
se

co
n
d
s

of
u
se

r
ti

m
e

u
se

d
b
y

th
e

p
ro

ce
d
u
re

fo
r

a
sp

ec
ifi

c
p
ro

b
le

m
in

st
an

ce
.

P
ro

b
le

m
in

st
an

ce
s

ar
e

or
d
er

ed
on

th
e

x
-a

x
is

b
y

p
er

ce
n
ta

ge
of

to
ta

l
el

em
en

t
si

ze
d
el

et
ed

.
A

ti
m

e
li
m

it
of

86
,4

00
is

im
p

os
ed

;
p
ro

ce
d
u
re

s
th

at
fa

il
to

fi
n
d

a
so

lu
ti

on
in

th
at

ti
m

e
si

m
p
ly

re
p

or
t

86
,4

00
se

co
n
d
s

as
re

tu
rn

ti
m

e.

116



0
.11

1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

0
%

5
%

1
0
%

1
5
%

2
0
%

2
5
%

3
0
%

3
5
%

4
0
%

4
5
%

5
0
%

5
5
%

6
0
%

6
5
%

7
0
%

7
5
%

8
0
%

8
5
%

9
0
%

Number of seconds to find a solution

P
e

rc
e

n
ta

ge
 o

f 
e

le
m

e
n

t 
si

ze
 d

e
le

te
d

(a
)

St
an

da
rd

H
ill

C
lim

bi
ng

0
.11

1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

0
%

5
%

1
0
%

1
5
%

2
0
%

2
5
%

3
0
%

3
5
%

4
0
%

4
5
%

5
0
%

5
5
%

6
0
%

6
5
%

7
0
%

7
5
%

8
0
%

8
5
%

9
0
%

Number of seconds to find a solution

P
e

rc
e

n
ta

ge
 o

f 
e

le
m

e
n

t 
si

ze
 d

e
le

te
d

(b
)

P
er

si
st

en
t

H
ill

C
lim

bi
ng

0
.11

1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

0
%

5
%

1
0
%

1
5
%

2
0
%

2
5
%

3
0
%

3
5
%

4
0
%

4
5
%

5
0
%

5
5
%

6
0
%

6
5
%

7
0
%

7
5
%

8
0
%

8
5
%

9
0
%

Number of seconds to find a solution

P
e

rc
e

n
ta

ge
 o

f 
e

le
m

e
n

t 
si

ze
 d

e
le

te
d

(c
)

M
ul

ti
pl

e-
St

ag
e

H
ill

C
lim

bi
ng

0
.11

1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

0
%

5
%

1
0
%

1
5
%

2
0
%

2
5
%

3
0
%

3
5
%

4
0
%

4
5
%

5
0
%

5
5
%

6
0
%

6
5
%

7
0
%

7
5
%

8
0
%

8
5
%

9
0
%

Number of seconds to find a solution

P
e

rc
e

n
ta

ge
 o

f 
e

le
m

e
n

t 
si

ze
 d

e
le

te
d

(d
)

G
en

et
ic

F
ig

ur
e

5.
5:

P
er

fo
rm

an
ce

re
su

lt
s

fo
r

va
ri

at
io

n
s

on
h
il
l

cl
im

b
in

g
se

ar
ch

an
d

ge
n
et

ic
se

ar
ch

.

117



10
00

10
00

0

10
00

00

Oversubscribed bytes

Pe
rs

is
te

nt
 H

C 
-M

in

St
an

da
rd

 H
C-

M
in

G
en

et
ic

11010
0

10
00

10
00

0

10
00

00

0
2

4
6

8
10

12
14

16
18

20
22

24

Oversubscribed bytes

El
ap

se
d 

Ti
m

e 
(in

 h
ou

rs
)

Pe
rs

is
te

nt
 H

C 
-M

in

St
an

da
rd

 H
C-

M
in

G
en

et
ic

F
ig

ur
e

5.
6:

P
er

fo
rm

an
ce

d
u
ri

n
g

se
ar

ch
fo

r
ea

ch
of

th
e

th
re

e
m

os
t

p
ro

m
is

in
g

se
ar

ch
p
ro

ce
d
u
re

s.
T

h
e

gr
ap

h
p
lo

ts
th

e
ov

er
su

b
sc

ri
p
ti

on
fi
tn

es
s

m
ea

su
re

on
th

e
y
-a

x
is

ag
ai

n
st

u
se

r
C

P
U

ti
m

e
co

n
su

m
ed

in
h
ou

rs
on

th
e

x
-a

x
is

fo
r

th
e

b
as

e
p
ro

b
le

m
in

st
an

ce
.

A
s

ti
m

e
p
as

se
s,

th
e

th
re

e
se

ar
ch

p
ro

ce
d
u
re

s,
ge

n
et

ic
se

ar
ch

,
st

an
d
ar

d
h
il
l

cl
im

b
in

g,
an

d
p

er
si

st
en

t
h
il
l

cl
im

b
in

g
fi
n
d

or
ac

le
s

w
it

h
b

et
te

r
ov

er
su

b
sc

ri
p
ti

on
sc

or
es

.
G

en
et

ic
se

ar
ch

q
u
ic

k
ly

fi
n
d
s

or
ac

le
s

w
it

h
fe

w
er

th
an

10
0

b
y
te

s
ov

er
su

b
sc

ri
b

ed
,

an
d

co
n
ti

n
u
es

to
im

p
ro

ve
,

w
h
il
e

b
ot

h
h
il
l

cl
im

b
in

g
se

ar
ch

es
ar

e
li
m

it
ed

ar
ou

n
d

th
e

40
0

b
y
te

m
ar

k
.

118



the search, this value is reduced. During the 24 hours of execution, the standard

and persistent hill climbing procedures examine 1.515× 109 and 1.499× 109 oracles

in the search space, respectively. The incomplete nature of these search procedures

means that some oracles could be examined multiple times.

The genetic approach, which always maintains its best oracle as part of the

population, presents a continually decreasing oversubscription line. Within the first

few minutes of the genetic search, it identifies an oracle that is better than the best

oracle found by either of the hill climbing procedures in an entire day. Once this

initial progress is made, however, progress is significantly slower. At about 4 hours,

a good mutation is identified which drops the oversubscription to 20 bytes. This is

the last major progress, and the procedure never gets below 18 bytes oversubscribed.

During 24 hours of execution, genetic search examines 1.142 × 109 oracles in the

space, although the incomplete nature of genetic search means that some oracles

could be examined multiple times.

5.4.3 Analysis of Multiple Extended Runs of Genetic Search

Of the most promising procedures identified in Figures 5.4 and 5.5, the genetic

search appears to be the most effective in quickly getting close to a valid solution, as

shown in Figure 5.6. Based on these results, we perform a set of extended runtime

tests using the genetic search procedure on the base problem instance. Figure 5.7

shows the results of these extended tests.

The time limit for the extended tests is 7 days, or 168 hours. As with previous

figures, the y-axis in Figure 5.7 is presented in log scale to allow the wide range of

oversubscription scores to be easily viewed.

Of the 50 genetic search instances tested, 6 found a solution to the base problem

within the 7 day timeframe. Figure 5.7 graphs the fitness score of the best oracle

found by each of these instance as time progresses, in addition to a non-solving

119



10
0

10
00

10
00

0

10
00

00

rsubscription Fitness Score

G
en

et
ic

 0
8

G
en

et
ic

 1
4

G
en

et
ic

 1
8

G
en

et
ic

 2
1

G
en

et
ic

 2
2

0.
111010
0

10
00

10
00

0

10
00

00

0
24

48
72

96
12

0
14

4

Oversubscription Fitness Score

El
ap

se
d 

Ti
m

e 
(in

 h
ou

rs
)

G
en

et
ic

 0
8

G
en

et
ic

 1
4

G
en

et
ic

 1
8

G
en

et
ic

 2
1

G
en

et
ic

 2
2

G
en

et
ic

 4
3

G
en

et
ic

 4
9

F
ig

ur
e

5.
7:

P
er

fo
rm

an
ce

of
th

e
b

es
t

p
er

fo
rm

in
g

se
ar

ch
in

st
an

ce
s

fr
om

50
se

p
ar

at
e

ge
n
et

ic
se

ar
ch

in
st

an
ce

s
ru

n
ov

er
th

e
co

u
rs

e
of

7
d
ay

s.
T

h
e

gr
ap

h
p
lo

ts
th

e
ov

er
su

b
sc

ri
p
ti

on
fi
tn

es
s

m
ea

su
re

on
th

e
y
-a

x
is

ag
ai

n
st

u
se

r
C

P
U

ti
m

e
co

n
su

m
ed

in
h
ou

rs
on

th
e

x
-a

x
is

.
O

f
th

e
50

in
st

an
ce

s
ru

n
on

th
e

b
as

e
p
ro

b
le

m
in

st
an

ce
,

6
fo

u
n
d

a
so

lu
ti

on
w

it
h
in

th
e

ti
m

ef
ra

m
e,

w
it

h
m

os
t

of
th

e
ot

h
er

s
co

m
in

g
w

it
h
in

10
ov

er
su

b
sc

ri
b

ed
b
y
te

s.
In

st
an

ce
49

is
an

ex
am

p
le

in
st

an
ce

w
h
ic

h
fi
n
d
s

a
b

es
t

ov
er

su
b
sc

ri
p
ti

on
sc

or
e

of
4.

120



instance. Genetic #18 finds a solution the fastest in just under 100,000 seconds;

almost 28 hours. Genetic #43 is the last instance to find a solution within the

timeframe, solving in 486,000 seconds, which is 135 hours. Genetic #49 is an example

instance which does not find a solution within the timeframe, bottoming out at 5

bytes oversubscribed.

Since each instance generates its own set of random generations starting from

a randomly generated starting oracle, each instance is an independent test. It is

interesting that all of the selected instances converge at approximately the same rate

during the first 24 hours. Once the oversubscription gets below 100 bytes, progress

becomes more difficult. Ultimately, the instances that find a solution do so via a

mutation from an oversubscription of less than 10 bytes.

It is encouraging that some of the test instances found a solution within the

specified timeframe on our test hardware, despite the use of a randomized incomplete

search procedure. The random nature of the search does not make any guarantees

about future performance results on the same base problem instance, but it is

encouraging that more than one instance found a solution. Even a 12% success rate

in 7 days demonstrates that automated search techniques can be effectively applied

to MEM-MAP.

121



CHAPTER SIX

Conclusion

This work explores a variety of topics related to the MEM-MAP problem, from

formal analysis, to framework design and implementation, and finally analysis of

performance results. This process provides some contributions to research in this area,

in addition to providing guidance for future efforts to develop automated solutions.

Our hypothesis is that the total order depth-first search based algorithms will

be the least effective, since there is simply too much search space to be analyzed.

The genetic and hill climbing variants are expected to produce the best results.

6.1 Contributions

One of the largest contributions of this project is the formal analysis of the

problem. The formal definition of the problem provides a common language for

discussing and examining the problem. This formal definition permits a rigorous

evaluation of the problem’s complexity.

The NP-Completeness proof indicates that search is the only method that can

be guaranteed to find a solution if one exists. This knowledge guides the development

of search procedures, since we can be assured that we won’t find a silver bullet that

is guaranteed to efficiently find a solution.

In addition to formal analysis, this work provides a well designed and extensible

framework for evaluating a variety of search procedures. The extensible nature of the

framework allows it to serve as a basis for future research into search procedures, as

well as adapting it to accommodate future changes in the definition of the problem.

A reference implementation based upon the framework is provided for both

testing and production-level use for producing mappings. We use this implementation

122



to thoroughly evaluate the performance of a variety of search procedures. These

procedures are tested for both speed and quality of search on the base problem

instance, as well as our suite of generated test instances. The variety of testing

instances provides a method of comparing the performance of the procedures quanti-

tatively against one another. Through these tests, we find that the genetic search

method provides the most promising results, often solving the base problem in only

a few days. This demonstrates that the problem, although difficult, will respond to

automated search techniques.

6.2 Future Work

While this project provides some significant contributions to the problem, more

work can be done to improve the performance of the procedures. A good next step

is to run more tests on actual historical problem instances, especially ones that are

known to be solvable. This will provide a larger test pool to compare the performance

of the procedures, since the actual problem instances are more realistic than any

instances we could generate. Since the problem has become more complex over

the years, the historical instances may contain more solutions, providing additional

information into how to customize the procedures.

Customization of the procedures is a major opportunity for future research

with this problem. Each of the procedures is designed to be flexible and tunable,

but we have limited our testing to a small set of possible values for the tunable

parameters. Additional testing on the many refinements to the procedures will likely

produce procedures which are more customized to the problem instance, producing a

more efficient search.

It is interesting to note from Figure 5.6 that, within 10 hours, the genetic

procedures has made all the progress it will make for the entire 24 hour period. This

flatlining of progress might be addressed by making the search more aggressive. A

123



possible refinement would be to increase the mutation rate of the genetic search when

progress has waned, allowing it to escape a local optima of fitness that is produced

by a limited mutation rate.

In addition to making genetic search more aggressive, it might be helpful to

parse element ordering from the Map2 input file. This order could serve as the

base oracle for genetic search, potentially providing a shorter path to a solution by

utilizing intelligent decisions made in previous versions of the instance.

124



BIBLIOGRAPHY

Map1 Documentation. McDonnell Aircraft and Missile Systems, 2007a. Map1.doc.

Map2 Documentation. McDonnell Aircraft and Missile Systems, 2007b. Map2.doc.

Carder, Philip, and Paul Guse. “Boeing F/A-18E/F Super Hornet Block II.” Tech-
nical report, 2009.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, 2003, second edition.

Garey, M[ichael] R., and D[avid] S. Johnson. Computers and Intractibility: A Guide
to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences.
W. H. Freeman, 1973.

Ghannadian, F. Alford, and R. C. Shonkwiler. “Applications of Random Restart to
Genetic Algorithms.” Information Sciences 95, 1/2: (1996) 81–102.

Luger, George F., and William A. Stubblefield. Artificial Intelligence, Structures and
Strategies for Complex Problem Solving. Addison-Wesley, 1998, third edition.

Naval Air Systems Command. “United States Navy Fact File: F/A-18 Hornet
strike fighter.” http://www.navy.mil/navydata/fact display.asp?cid=1100&tid=
1200&ct=1, 2009.

Reed, R. “Pruning Algorithms-A Survey.” IEEE Transaction on Neural Networks 4,
5: (1993) 740–747.

Sipser, Michael. Introduction to the Theory of Computation. PWS, 1997, first
edition.

Stevenson, Jeremy. Memory Map Editor User’s Guide. Baylor University, 2007.

Stevenson, Jeremy, Russsel W. Duren, and Michael W. Thompson. Fall Through
Gravity. Baylor University, 2006.

Thede, Scott M. “An introduction to genetic algorithms.” J. Comput. Small Coll.
20, 1: (2004) 115–123.

Weld, D. S. “An Introduction to Least Commitment Planning.” AI Magazine 15, 4:
(1994) 27–61.

125


