ABSTRACT
Essential Elements of Proton Computed Tomography for Practical Applications
Blake Edward Schultze, Ph.D.
Mentor: Keith Evan Schubert, Ph.D.

The work presented in this dissertation all pertains to developments of proton com-
puted tomography (pCT) and the elements essential to its viability as a clinical imaging
modality. This includes methodological and implementational developments for reducing
reconstruction time and improving pCT image quality, each advancing pCT towards clini-
cal viability. The corresponding methods are presented in the chronological order of their
development.

Hull-detection, a method for differentiating voxels internal and external to an object,
is presented first. Hull-detection was specifically developed for pCT as a preferable means
for obtaining a binary image of the object, a preconditioning step often referred to as object
detection. The concept of hull-detection, similar to the way a sculptor chisels away portions
of material to produce the desired sculpture, is that voxels along the paths of protons that
completely miss the object can be carved away to reveal the object hull. However, this
neglects to account for the ramifications of uncertainties in the data, which was accounted
for in different ways. Several hull-detection algorithms were developed and compared to
the classic object detection method based on thresholding the filtered backprojection image.

The second topic presented is efficiently implementing the most-likely path (MLP)
formalism for pCT. This formalism was developed to more accurately approximate proton

paths within an object, increasing the achievable spatial resolution. Computing the MLP



is, by far, the most computationally expensive task performed during image reconstruction,
making it the biggest hurdle to achieving clinically viable image reconstruction times (be-
low 10 minutes). A computationally efficient implementation of the MLP was developed by
simplifying the associated equations and incorporating several software design principles
to reduce the number of compute operations and improve numerical stability.

The final topic presented is the incorporation of recent advancements of total vari-
ation superiorization (TVS) into pCT. A fixed parameter version of TVS was initially in-
corporated into the feasibility-seeking algorithms of pCT, which included a step verifying
successful TV reduction. Presented here is the modern version of TVS applied to pCT,
with user-control of parameters, removal of the verification step, and additional option to

perform repeated perturbations.



Essential Elements of Proton Computed Tomography for Practical Applications
by
Blake Edward Schultze, B.S., M.S.

A Dissertation

Approved by the Department of Electrical and Computer Engineering

Kwang Y. Lee, Ph.D., Chairperson

Submitted to the Graduate Faculty of
Baylor University in Partial Fulfillment of the

Requirements for the Degree
of

Doctor of Philosophy

Approved by the Dissertation Committee

Keith E. Schubert, Ph.D., Chairperson

Robert J. Marks II, Ph.D.

Jeffrey S. Olafson, Ph.D.

Reinhard W. Schulte, Ph.D.

Accepted by the Graduate School
August 2021

J. Larry Lyon, Ph.D., Dean

Page bearing signatures is kept on file in the Graduate School.



Copyright © 2021 by Blake Edward Schultze

All rights reserved



TABLE OF CONTENTS

LISTOFFIGURES . . . . . . . s ix
LISTOF TABLES . . . . . . e Xiii
ACKNOWLEDGMENTS . . . . . . . e e Xiv
ATTRIBUTIONS . . . . . e e e e e e e e XV
I Introduction . . . . . . . . . . . . . e e e 1
2 Historical Review and Literature Survey . . . . . . . .. ... .. ... ..... 6
3 Methods . . . . . . . 10
3.1 Image Reconstruction Software . . . . . . ... ... ... ......... 10
3.2 Methods Selected for Consistency . . . . .. ... ... .......... 12

4 Hull-Detection . . . . . . . . . . . . e 15
4.1 Introduction . . . . . . . . .. 15
42 InputData . . . . . . . . .. e 19
42.1 SimulatedData . . . ... ... ... ... ... . . 19

422 Experimental Data . . ... ... ... ... 0. 21

4.3 Hull-Detection Algorithms . . . . . . .. ... ... .. ... ....... 22
4.3.1 Filtered Backprojection (FBP) . . . . . ... ... ... ...... 23

4.3.2 Silhouette Carving (SC) . . . . . . . ... .. .. ... ... 24

4.3.3 Modified Silhouette Carving MSC) . . . . . ... ... ... ... 28

434 SpaceModeling(SM). . . . . ... ... .. 31



6

44 Results. . . . ... L e 35
44.1 Simulated DataResults . . . . ... ... ... ... ...... 35
4.42 Experimental DataResults . . . . .. ... ... ... ....... 37
45 DIscusSION . . . . . . ... e 38
4.6 Conclusion . . .. ... ... e 40
Most-Likely Path (MLP): Simplifications and Implementation Design . . . . . . 41
5.1 Imtroduction . . . . . . . . .. L 41
5.2 Mathematical Improvements of MLP Calculations . . . . . . ... ... .. 44
5.3 Converting MLP Data into Rows of System Matrix . . ... ... ..... 47
5.4 Computational Design and Implementation of MLP Calculations . . . . . . 49
5.5 Conclusion . . . .. ... L 54
Total Variation Superiorization (TVS) . . . . ... . ... ... ... ...... 56
6.1 Introduction . . . . . . . . . . . 56
6.2 Motivation . . . . . . ... e e e 60
6.3 Methods . . . . . . . . 62
6.3.1 TVS Algorithm . . . . .. ... ... ... ... ... 62
6.3.2 NTVS Algorithm . . . . . ... .. ... ... ... .. ... 63
6.3.3 Phantoms and DataSets . . . . .. .. ... ... ... .. ... 67
6.3.4 Image Reconstruction Details . . . . . . ... ... ... ...... 69
6.3.5 Reconstruction Parameter Space . . . . . .. ... ... ... ... 70
6.4 Computation Hardware and Performance Analysis . . . . . .. .. ... .. 72
6.5 Results. . . . .. .. . 74
6.5.1 Simulated CTP404 DataSet . . . . .. .. ... ... ... .... 74
6.5.2 Experimental CTP404 DataSet. . . . . . . ... ... ... .... 79

Vi



6.5.3 Experimental HN715 Pediatric Head Phantom Data Set . . . . . . . 84

6.6 Discussion . . . . . . ... e e 91

6.7 Conclusions . . . . . . . . .. e 95

7 Conclusion . . . . . . . . e e 96
APPENDICES . . . . . e 99
APPENDIX A Glossaryand Notation . . . . . . ... ... ... .......... 100
Al Glossary . . . . . .. e e e e 100
A2 Notation . . . . . . . . . e e e 103
APPENDIX B Voxel Walk Algorithm . . . . . .. ... . ... ... ........ 105
B.1 Three-Dimensional Voxel Walk Algorithm . . . . . .. ... ... ..... 105
B.1.1 Foundational Algorithm . . . . . ... .. ... ... ....... 107

B.1.2 3D-DDA (Voxel Walk) Algorithm . . . .. ... ... ....... 110
APPENDIX C Derivation Of Simplified MLP . . . . . .. ... ... ... .... 116

C.1 Integration and Algebraic Expansion of Prior Likelihood Scattering
Elements . . . . . . ... .. 116

C.2 Integration and Algebraic Expansion of Posterior Likelihood Scattering

Elements . . . . . . . . . . . 119

C.3 Evaluation of Terms Under Coordinate Transformations . . . . . . .. . .. 122
C.3.1 Evaluation of Terms Under Linear Coordinate Translation . . . . . 122

C.3.2 Evaluation of Terms Under Coordinate Rotation . . . . . . ... .. 126
APPENDIX D TVS Notation, Algorithm, and Procedure Definitions . . . . . . .. 128
D.1 Definitionof Terms . . . . . . . . . ... . ... .. 128
D.2 NTVS Algorithm . . . . .. .. .. ... 129

vii



D3 OTVS Algorithm . . . . . .. ... ..

D.4 Stepwise NTVS Procedure and Calculations . . . . . .. ... ... ....

BIBLIOGRAPHY

viii



3.1

4.1

4.2

4.3

4.4

4.5

5.1

6.1

6.2

6.3

LIST OF FIGURES

Ilustration of the first full iteration, starting from the initial iterate %, of
a fully-simultaneous projection algorithm with A® =1. . . ... ... ..

Digital head phantom used to generate simulated data in this work.

(a) Annotated image indicating the direction of rotation (curved arrow),
relative to the direction of the fixed horizontal beam line (straight arrow),
of the pediatric head phantom when mounted on the rotating platform
of the Phase I prototype pCT scanner system (Loma Linda University
Medical Center). (b) a representative slice of the reconstructed pCT image
of the pediatric head phantom. . . . . . . . . ... ... ... .......

(a) Original digital NEO head phantom; (b)-(e) approximate object hulls
generated by each hull-detection algorithm from the noiseless simulated
dataset. . . . . . ..

(a) Original digital NEO head phantom; (b)-(e) approximate object hulls
generated by each hull-detection algorithm from the noisy simulated data
SEL. © e e e

(a)-(d) Object hull approximations generated by the various hull-detection
algorithms using the experimental data set from the scan of the pediatric
head phantom. . . . . . . . .. ... L

[llustration of the MLP in the 7-u plane of the proton’s reference system.
The proton MLP starts at uy = 7, = 0 and is initially parallel to the u-axis
(6p = 0). A similar path can be drawn in the u-v plane. . . . . . . . . . ..

Catphan® CTP404 phantom composition and geometry of the material
inserts. © 20201EEE . . . . . . . . . ... ...

Representative reconstruction of the central slice of the CTP404 phantom
from simulated data. © 2020IEEE . . . . . .. ... ... ... .....

Representative reconstruction of the slice of the pediatric head phantom

containing the analyzed regions of interest (left); the analyzed regions of
interest are filled in white and labeled in the image on the right. . . . . . .

X

37

45

73



6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

TV as a function of N after each of the first 4 FS-DROP iterations for the
simulated CTP404 data set using OTVS and NTVS (TVRVS excluded)
with2=0.0001 anda=0.5. . . . . . . . . . . . .. ...

(a) TV and (b) standard deviation (LDPE) as a function of N after 12
FS-DROP iterations for the simulated CTP404 data set using OTVS and
NTVS including and excluding the TVRVS with 4 = 0.0001 and @ = 0.5.
The error bar at N = 5 denotes the variation in standard deviation (o0 =
0.00038) between 8 repetitions of reconstruction with N =5. . . . .. ..

(a) TV and (b) standard deviation (LDPE) as a function of N after 12
FS-DROP iterations for the simulated CTP404 data set using OTVS and
NTVS (TVRVS excluded) with 4 = 0.000l and @ =0.5. . . . . . ... ..

RSP error in the (a) Delrin and (b) polystyrene ROIs as a function of
N after 12 FS-DROP iterations for the simulated CTP404 data set using
OTVS and NTVS (TVRVS excluded) with 4 = 0.0001 and varying a. . . .

(a) TV and (b) standard deviation (soft tissue) as a function of N for A =
0.0001, k£ = 12; 4 = 0.00015, k = 8; and 1 = 0.0002, k = 6 iterations,
respectively, and @ = 0.75 for the simulated CTP404 dataset. . . . . . . .

TV as a function of N after each of the first 4 FS-DROP iterations for the
experimental CTP404 data set using OTVS and NTVS (TVRVS excluded)
with 4 = 0.0001 and @ = 0.5. ©2020IEEE . . ... ... ... .. ...

(a) TV and (b) standard deviation (LDPE) as a function of N after 12 FS-
DROP iterations for the experimental CTP404 data set using the OTVS
algorithm and the NTVS algorithm including and excluding the TVRVS
with 4 = 0.0001 and @ = 0.5 (note that the 2 NTVS curves overlap).
©20201EEE . . . . . ... e

(a) TV and (b) standard deviation (LDPE)as a function of N after 12 FS-
DROP iterations for the experimental CTP404 data set using the OTVS
algorithm and the NTVS algorithm including and excluding the TVRVS
with 4 =0.0001 and @ =0.75. © 20201IEEE . . . . . . ... .. ... ..

(a) TV and (b) standard deviation (LDPE) as a function of N after 12
FS-DROP iterations for the experimental CTP404 data set using OTVS
and NTVS (TVRVS excluded) with 4 = 0.0001 and different values of a.
©2020IEEE . . . . . . . . ..

RSP error (Delrin) for each value of « as a function of N after 12 FS
iterations for the experimental CTP404 data set using OTVS and NTVS
(TVRVS excluded) with 4 = 0.0001. © 2020IEEE . . . . ... ... ..

77

78

79



6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

B.1

(a) TV and (b) standard deviation (LDPE) as a function of N for 4 =
0.0001, k£ = 12; 2 = 0.00015, k = 8; and 2 = 0.0002, k = 6 FS-DROP
iterations, respectively, and @ = 0.75 for the experimental CTP404 data
set. ©20201IEEE . . . . . . . . ...

TV as a function of N after each of the first 4 FS-DROP iterations for the
experimental HN715 data set using OTVS and NTVS (TVRVS excluded)
with 4 =0.0001 and @ = 0.5. © 2020IEEE . . . ... ... ... ....

(a) TV and (b) standard deviation (soft tissue) as a function of N after 12
FS-DROP iterations for the experimental HN715 data set using the OTVS
algorithm and the NTVS algorithm including and excluding the TVRVS
with 4 = 0.0001 and @ = 0.5 (note that the 2 NTVS curves overlap).
©2020IEEE . . . . .. ...

(a) TV and (b) standard deviation (soft tissue) as a function of N after 12
FS-DROP iterations for the experimental HN715 data set using the OTVS
algorithm and the NTVS algorithm including and excluding the TVRVS
with 4 =0.0001 and @ = 0.75. © 2020 IEEE . . . . . . . ... ... ...

(a) TV and (b) standard deviation (soft tissue) as a function of N after
12 FS-DROP iterations for the experimental HN715 data set using OTVS
and NTVS (TVRVS excluded) with A = 0.0001 and different values of «.
©2020IEEE . . . .. . . . .

RSP error in the (a) brain tissue and (b) soft tissue ROIs as a function
of N after 12 FS-DROP iterations for the experimental HN715 data set
using OTVS and NTVS (TVRVS excluded) with 4 = 0.0001 and different
valuesof . ©20201EEE . . . . . . . . . . .. ... ... ... ...,

(a) TV and (b) standard deviation (soft tissue) as a function of N for
A = 0.0001, £ = 12; 2 = 0.00015, £k = 8; and 2 = 0.0002, k = 6 it-
erations, respectively, and for @ = 0.75 for the experimental HN715 data
set. ©2020IEEE . . . . . . . ...

Standard deviation in the ROI of trabecular bone as a function of N after
6 FS-DROP iterations for 4 = 0.0002 as compared to OTVS with 1 =
0.0001 and 2 = 0.0002. © 2020IEEE . . . ... .. ... .. ......

Diagram showing a line passing through an image annotated with the in-
tersection points/lenths and intersected voxels which a line algorithm must
determine. . . . . . . .. ...

X1



D.1

Ilustration of the ARSP differences, RSPy, — RSPy, in the horizontal and
vertical direction. The differences are normalized in Eqs. D.3 and D.4 and
then used in Eq. D.5 to calculate the RSP variation of the central (shaded)

Xii



4.1

4.2

6.1

6.2

LIST OF TABLES

Performance comparison of hull-detection algorithms for noiseless simu-
lateddataset . . . . ... ... L

Performance comparison of hull-detection algorithms for noisy simulated
dataset . . . . . ...

RSP of the material inserts for the simulated and experimental Catphan®
CTP404 datasets. © 2020IEEE . . . . . . ... ... ... .......

RSP of the tissue/bone regions of interest analyzed in the pediatric head
phantom. © 2020IEEE . . . . . . . . .. ...

Xiii



ACKNOWLEDGMENTS

Special thanks go to my long term mentor, Dr. Keith Schubert, and his wife Kym
Schubert for their support throughout my academic journey. I would also like to thank my
fellow Baylor student colleagues, professors, and support staff for their roles in my success,
particularly Minnie Simcik, Brian Sitton, Pat Hynan, Kay Riddering, Robert Marks II,
Paniz Karbasi, and Ritchie Cai. I would also like to extend my gratitude to those at CSUSB
that offered guidance and support along the way, particularly Dr. Paul K. Dixon, Dr. Laura
Woodney, and Dr. Ernesto Gomez.

Additional thanks go out to the pCT Collaboration and its members for their con-
tributions to and support of my research; in particular, I would like to thank Reinhard
W. Schulte, Vladimir A. Bashkirov, Yair Censor, Ford Hurley, Valentina Giacommetti,
Christina Sarosiek, George Coutrakon, and Robert P. Johnson.

The research in proton CT presented in this dissertation was supported by the Na-
tional Institute of Biomedical Imaging and Bioengineering (NIBIB) of the National Insti-
tute of Health (NIH) and the National Science Foundation (NSF) award no. ROIEB013118,
and the United States - Israel Binational Science Foundation (BSF) grants no. 2009012
and no. 2013003. The content of this paper is solely the responsibility of Blake Edward
Schultze and does not necessarily represent the official views of NBIB, NIH, or BSF. The
support of UT Southwestern and State of Texas through a Seed Grants in Particle Therapy

award is also gratefully acknowledged.

X1V



ATTRIBUTIONS

(1) B.E. Schultze, M. Witt, Y. Censor, K. E. Schubert, and R. W. Schulte, “Performance of

2)

hull-detection algorithms for proton computed tomography reconstruction,” in Infinite
Products of Operators and Their Applications, ser. Contemporary Mathematics, S.

Reich and A. Zaslavski, Eds., vol. 636. American Mathematical Society, 2015, pp.
211-224.

e [ (B. E. Schultze) was the sole investigator and primary author of the publication.

e M. Witt provided the simulated data sets used for the initial hull-detection investiga-

tions.

e Y. Censor, K. E. Schubert, and R. W. Schulte acted in a supervisory role on editing,
content accuracy, and approval of the final form submitted for publication.

B. E. Schultze, Y. Censor, P. Karbasi, K. E. Schubert, and R. W. Schulte, “An Im-
proved Method of Total Variation Superiorization Applied to Reconstruction in Proton

Computed Tomography,” IEEE Transactions on Medical Imaging, vol. 39, no. 2, pp.
294-307, 2020

e [ (B. E. Schultze) was the sole investigator and primary author of the publication.

e Y. Censor is among the original developers of the superiorization methodology,
which serves as the theoretical framework of total variation superiorization, and re-
quested the investigations be performed for pCT. He also provided approval of the
investigation results and final form submitted for publication.

e P. Karbasi was a colleague working independently on a related topic who partici-
pated in discussions to ensure our investigations did not overlap. She also assisted
in the editing of the final form submitted for publication.

e K. E. Schubert and R. W. Schulte acted in a supervisory role on editing, content

accuracy, and approval of the final form submitted for publication.

XV



CHAPTER ONE

Introduction

Interest in proton computed tomography (pCT) has increased due to the expanding
use of proton therapy for cancer treatment and the potential for reducing range uncertain-
ties in proton therapy using pCT for treatment planning and pretreatment verification [1, 2].
At present, x-ray CT imaging is used to develop a treatment plan for proton therapy, in-
troducing additional range uncertainty due to the conversion from Hounsfield units (HU)
(sometimes called CT numbers) to stopping power relative to water, referred to as relative
stopping power (RSP). It has been common practice to account for uncertainties by adding
a margin of 3.5% plus 1 mm to the nominal range of a proton beam [3], but this yields
larger uncertainty margins between clinical and planning target volumes than those asso-
ciated with photon therapy. Treatment planning using pCT images offers the potential to
remove the HU-RSP conversion uncertainty by reconstructing RSP values directly, which
can be far more accurate than the conversion in some materials. The low radiation dose of
pCT imaging also presents the opportunity to perform weekly, or even daily, scans to track
changes in patient anatomy and RSP distributions for adaptive proton therapy.

The possibility of pCT imaging had been proposed in the 1960s but, due to the
complicated paths of protons and inadequate measurement technologies, it was deemed
infeasible for decades. By the mid 2000s, high energy physics detector technology had
advanced to the point where it was feasible to track individual protons and measure their
energy loss. Coupled with the emerging interest in proton therapy, and ion therapy in
general, this sparked the development of a theoretical framework for pCT and a Phase I
preclinical proton scanner system at Loma Linda University [4, 5, 6]. The success of this
project as a proof of concept subsequently led to the development of a Phase II preclinical

scanner system which drastically improved the quality of scanner data [7, 8, 9].



Although the images reconstructed using the data from the Phase I/II preclinical
scanner system successfully demonstrated a proof of concept, there were several image
reconstruction hurdles remaining in advancing pCT to clinically feasibility. The image
reconstruction software developed for the Phase I/II preclinical scanner had computation
times far exceeding the clinically appropriate 10 min threshold. There were also aspects of
the reconstruction software, both theoretical and practical, that could be improved to yield
an increase in image quality. Around the time when the Phase II scanner was being com-
pleted, the image reconstruction software was advanced by two separate groups: one group
at Northern Illinois University (NIU) and one group initially at California State University,
San Bernardino (CSUSB) and later moving to Baylor University (BU).

The group at NIU initially focused primarily on reducing computation time down
to clinically feasible times by restructuring the reconstruction software to run efficiently on
an internode computation cluster. The CSUSB/BU group focused on rewriting the software
from scratch, simultaneously identifying and correcting any theoretical or implementation
errors and optimizing the code for execution on multi-GPU compute nodes. The early work
performed at CSUSB culminated in the thesis of an MS in Computer Science. However,
the majority of the pCT software design and development took place at BU and it is this
work that is the topic of this PhD dissertation. Clinically feasible reconstruction times have
been achieved on affordable computation hardware as a result of the work presented here.
Image quality has also been improved, to the point where pCT can now be argued to be
a viable imaging modality for proton treatment planning; the methods by which this was
achieved are also presented here.

This dissertation includes a historical review and literature survey on the general
technological development of pCT, which appears as Chapter 2. The methodological and
implementational aspects of pCT that are common and relevant to each of the presented
topics, as well as the associated image reconstruction software/hardware, are presented

inChapter 3 (Methods). Due to the fact that several unrelated theoretical and practical



aspects of pCT are addressed, the corresponding work on each of these topics is presented
in separate Chapters. Hence, in addition to the broad historical review and literature survey
of pCT in Chapter 2, each Chapter also contains a narrow historical review and literature
survey germane to the associated topic. Chapter 3 provides a general overview of the
methods of pCT that are relevant to every topic presented in this dissertation. Information
that is too long or otherwise inappropriate for inclusion within the Chapters, are provided
as Appendices in the dissertation’s back matter. The appendices are organized according to
the order in which the corresponding material is referenced within the main text, with the
content relevant to each chapter included in distinct, alphabetically numbered sections of
the appendix.

The order in which Chapters 3—6 appear reflects the order in which the correspond-
ing tasks are performed during image reconstruction; coincidentally, this is also the chrono-
logical order in which the associated methods were developed. To maintain conceptual
flow, each topic has its own methods, results, and discussion/conclusions Sections, rather
than collecting these from each topic and presenting them as separate chapters. There are
Chapters for each of the three topics of pCT presented here, each corresponding to the
methods developed for a particular task (or discrete step) of pCT image reconstruction.
These topics are hull-detection, most-likely path (MLP) calculations, and total variation
superiorization (TVS).

Chapter 4 presents hull-detection, a method for identifying the portions of the im-
age containing the scanned object and excluding those corresponding to air. The early
work on hull-detection took place while at CSUSB, but the first practically useful hull-
detection method which is presented here, modified silhouette carving (MSC), was de-
veloped while at BU. The development of hull-detection also required the development
of a three-dimensional line (or voxel) walking algorithm, so this is presented along with
hull-detection. The object hull image is also useful in defining the initial iterate of image

reconstruction, where it is applied as a mask to the median-filtered filtered backprojection



(FBP) image to set the RSP of all voxels outside the object to zero. This is not only of
practical convenience, but it also enables the subsequent iterative image reconstruction to
be performed within a reduced image space, thereby eliminating the unnecessary compu-
tations and undesired influence of voxels outside the object and improving computational
efficiency.

Chapter 5 presents the details of how the most-likely path (MLP) formalism, de-
veloped and later refined for the Phase I scanner system, was implemented to reduce its
computational burden. The MLP calculations represent the single largest computational
burden in pCT image reconstruction and, thus, the biggest challenge to achieving clinically
viable reconstruction times on a multi-GPU node. The scattering of a proton at a particu-
lar point along its path through an object depends on the energy it possesses at that point.
Hence, the integral equations for the elements of the MLP’s prior and posterior likelihood
scattering matrices include an energy dependent term, which appears in the denominator
of the integrands. An accurate analytical model of this relationship does not exist and is
currently infeasible, so the energy dependent term is approximated by fitting a fifth-degree
hexanomial to the scattering observed by conducting Monte Carlo simulations of 200 MeV
protons. Replacing the energy dependent term of each integrand with the hexanomial fit
yields integrable expressions for each element of the scattering matrices, but the definite
integration of the approximated integrand results in a large number of polynomial terms of
various degrees. definite integration of the product of the hexanomial with the other inte-
grand terms elements the MLP calculations were expanded and simplified and the approach
to storing and transferring the resulting MLP data was specifically designed to reduce both
the amount of data and the computation time.

Chapter 6 presents the work associated with implementing and investigating the
most recent version of total variation superiorization (TVS) as it applies to pCT. An older

and more rigid form of TVS was used in the initial image reconstruction software for the



Phase I scanner, but this version lacked the flexibility to change parameter values and in-
cluded safety checks that had been removed in other applications. There was also a struc-
tural change to the algorithm that had been proposed. The work presented here discusses
each of the algorithmic changes to TVS and demonstrates their effectiveness as applied to
pCT specifically. This work was published, in an alternative and abridged form, as:

The conclusory Chapter 7 provides a cumulative summary of the presented work
and conclusions regarding the merit and impact of these contributions to pCT. Following
this is a prospective on the future and advancement of pCT. This includes an overview
of several advancements that have already been developed and implemented in the BU
software, but have not yet been published.

Terminology that may be unfamiliar to readers and is not (adequately) defined
within the text is italicized, indicating that the corresponding word(s) are defined for the
present context in Appendix A.1. Likewise, mathematical notation relevant to pCT and the

content of this dissertation is defined in Appendix A.2.



CHAPTER TWO

Historical Review and Literature Survey

Ion radiation therapy has only recently become a clinical option for cancer treat-
ment, which has renewed interest in the development of proton computed tomography
(pCT or proton CT), but the potential of these technologies were first proposed more than
50 years ago. In 1946, the physicist Robert Wilson published a paper citing the potential
advantages of high energy (fast) protons and other heavier ions for radiation therapy [10].
In 1963 and 1964, Allan Cormack published papers introducing the concept of tomographic
image reconstruction [11, 12], for which he was awarded the 1979 Nobel Prize in Medicine.
Although Cormack understood the benefits of using protons for tomographic imaging, but
he felt that the Coulombic scattering of protons would result in blurry images, leading him
to the conclusion that x-rayswould be more useful than protons for tomographic imaging.

Despite Cormack’s initial skepticism on the efficacy of tomographic imaging with
protons, the 1970s and 1980s saw an increase in the technological development of proton
and ion imaging. In 1975, a team at Lawrence Berkeley National Laboratory demonstrated
the ability to track 900 MeV helium ions using a multi-wire proportional chamber (MWPC)
and measure their residual range with a stack of plastic scintillators [13]. This provided the
first indication that the concept of a particle-tracking CT scanner was technologically feasi-
ble. The team also used the acquired helium data to generate tomographic reconstructions,
which were then compared to those generated with the commercially available x-ray CT
scanners of the time. The dose of the single-particle-based helium CT was up to 50 times
lower than that of the conventional x-ray CT, a fact that the team emphasized in discussing

its potential beyond their proof of concept.



In the following year (1976), Cormack and his colleague at the Harvard Cyclotron
Lab, Andreas Koehler, published a paper demonstrating the first experimental pCT im-
ages [14]. A scan of radially symmetric acrylic phantom, 9.52 cm in diameter, was per-
formed with 158 MeV protons and the energy loss was measured. Analysis of the pCT
images generated from this data demonstrated superior performance in terms of density
resolution than the commercial x-ray CT scanners at that time; density differences as small
as 0.006 g/cm® could be distinguished, relative to the bulk acrylic material (1.17 g/cm?),
in the pCT images as compared to the approximately 1% density resolution of x-ray CT at
comparable imaging dose.

From the late 1970s to early 1980s, Kenneth Hanson and a team at the Los Alamos
Meson Physics Facility (LAMPF) designed the first series of pCT experiments with the
intention of closing the technological gap between physics laboratories and clinics. The
first of the experimental pCT systems Hanson developed used an MWPC to measure the
downstream exit position and a hyper-pure germanium detector (HPGe) to measure the
residual energy of each proton. The system was later modified to include a range telescope
composed of a stack of plastic scintillators. The performance and viability of the systems
were assessed in terms of achieving the minimum dose at the highest feasible count rate,
the results of which were presented in a series of landmark publications [15, 16, 17]. After
an upgrade of the readout electronics, a subsequent experiment was performed in which
sample human tissues were scanned and reconstructed as a proof of concept of the clinical
feasibility of pCT. These papers led to several important conclusions about pCT, the first
being that spatial resolution could be further improved by measuring the trajectory in addi-
tion to the position of protons exiting the phantom. Furthermore, it was concluded that the
dose advantage of pCT, relative to x-ray CT, was approximately 4:1 for a 20 cm diameter
phantom and 8:1 for a 30 cm diameter phantom for ideal systems.

Hanson’s experiments at L.os Alamos represented the end of the early proton and ion

CT exploration phases. It would be nearly 20 years before development of the next phase



began. This renewed interest was motivated by the emerging clinical use of protons, which
had begun to expand into hospital-based facilities at that time. As experience in proton
therapy increased, it became clear that the range uncertainties introduced into treatment
planning by the HU-RSP conversion of x-ray CT images would need to be addressed.
Coincidentally, at this time there was also a marked absence of image guidance technology
in the treatment rooms where proton therapy was performed. The resulting inability to track
tissues that have shifted in position and/or RSP, either between treatments or as a result of
internal organ movement during a treatment, leading to even larger range uncertainties.
Knowledge of Hanson’s work on pCT and its potential to reduce, or eliminate, some of the
sources of range uncertainty led to an increase in support for further development of pCT.

A two day meeting at Brookhaven National Laboratory led to the formation of the
U.S. pCT collaboration in early 2003. At this initial meeting, the collaboration discussed
plans to develop a pCT system using the most advanced particle tracking and energy de-
tector technology available at the time. The collaboration also identified the most-likely
path (MLP) concept, which had been proposed by Schneider and Pedroni [18], for further
development. The concept incorporates particle tracking information into the MLP formal-
ism [19], which is subsequently combined with iterative image reconstruction techniques.
The pCT collaboration successfully built a preclinical pCT scanner, funded by a 2011 grant
award from the National Institute of Biomedical Imaging and Bioengineering (NIBIB),
which was able to achieve the 1 million protons per second tracking and the 10 minute
threshold on a 360 ° pCT acquisition of a head phantom objectives of the grant [20, 21].

A number of groups have emerged in the field of proton/ion imaging for proton/ion
therapy over the last 20 years (e.g. see [22, 23]), including some than have developed dif-
ferent approaches than the pCT collaboration. A recent review provides an overview of the
different approaches [24]. Proton data acquisition approaches are typically divided into two

modes (types): particle tracking (list) mode and integration mode. Particle tracking mode



tracks and measures the energy loss of individual protons or ions traversing an object. Inte-
gration mode measures an integrated beam current, which depends on the water-equivalent
thickness (WET) of proton or ion beams traversing the patient and is typically acquired with
existing dosimetry equipment, using the lower intensity modes established for therapeutic
beam delivery. The particle tracking mode is more complicated and more expensive than
the integration mode, but it yields superior spatial resolution and lower patient dose [24],

both of which are attractive attributes of a clinical pCT system.



CHAPTER THREE
Methods

Each of the following Chapters correspond with a particular aspect of pCT and
the associated methods developed for each task. The order in which they are presented
here coincides with the order in which the corresponding method(s) are performed during

execution of the image reconstruction software, i.e., their execution order.

3.1 Image Reconstruction Software

The image reconstruction software developed and used at BU is designed such that
each high level task, or step, of pCT is implemented as a separate functional unit. The
main pCT program file calls these functional units in the appropriate order to enforce the
computational structure of pCT. The partitioning of the image reconstruction steps into
functional units is intended to capture and encapsulate the basic theoretical structure of pCT
image reconstruction, a structure which is independent of advancing theory and methods,
from those portions of the program that can be adapted now or in the future. There are
varying methods for accomplishing each task, so methods are designed as independent
modules, functionally equivalent to what are often called helper functions. The particular
methods that are called at execution depend on the value of the associated control variables;
control variables are boolean variables in the case of methods that can be turned on/off and
enumerated type variables in cases where there are multiple methods that can be chosen.
This programmatic structure provides a consistent framework for the use and advancement
of pCT image reconstruction.

A great deal of effort was spent on parallelizing every method for which this was
feasible. There are some portions of code that must be executed sequentially but for var-

ious reasons, are executed by a single thread of the GPU instead of by the host CPU. For
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example, sequential calculations performed between two GPU kernels and that are depen-
dent on existing GPU data may be more efficiently executed by a single GPU thread rather
than transferring the dependent data to the host for computation and back to the GPU for
use. This approach, where a single thread executes a sequential section of code, is herein
referred to as sequential gap parallelization (SGP). In some cases, data dependencies that
prevent parallelization can be eliminated by separately generating the required data on each
thread; often times this results in threads calculating one or more unnecessary values, but
this has negligible importance relative to achieving parallelization. This approach is herein
referred to as dependency distribution parallelization (DDP). Note that it is possible to
have a combination of these two cases, such as when the sequential portion of code gener-
ates data that the threads are subsequently dependent on, in which case the DDP approach
is typically the most appropriate. As a result of the natively parallel and forcibly parallel
steps in pCT, nearly all computation is performed on the GPU(s) and the host CPU operates
primarily as the master in evaluating conditional executions and initiating data transfers.
The work presented in this dissertation is not only presented in the order it is per-
formed during reconstruction, but this also the chronological order in which they were
developed. For the purpose of performance comparisons, all methods unrelated to the
method under development remained the same, providing the means to compare the newly
developed method to the one previously used in accomplishing a particular task. Since this
remained important throughout the development of each method presented here, the image
reconstruction program was configured with the same control variable values in each case.
Although many of the methods selected for these image reconstructions do not warrant dis-
cussion here, there are some methods that have a bearing on performance and could yield
slightly different results than those presented here, so these are discussed here. Details on
the acquisition, preprocessing, and preconditioning of pCT data for iterative image recon-

struction can be found in the recently published article “Particle-Tracking Proton Computed
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Tomography—Data Acquisition, Preprocessing, and Preconditioning” [25]. The terminol-
ogy used in the following sections and the associated mathematical notation are defined in

the Glossary and Notation sections, respectively, of Appendix A.

3.2 Methods Selected for Consistency

The BU image reconstruction program has the ability to perform several feasibility-
seeking algorithms from the fully simultaneous, block-iterative, and string-averaging classes,
as well as hybrids of these algorithmic classes. However, the feasibility-seeking algorithm
used for iterative image reconstruction throughout the entirety of the following work is the
fully simultaneous diagonally-relaxed orthogonal projection (DROP) algorithm, herein re-
ferred to as FS-DROP. This fully simultaneous projection method is based on the classic
Cimmino algorithm [26]. The structural form of the Cimmino and FS-DROP algorithms is
illustrated in Figure 3.1.

Although the block-iterative and string-averaging algorithms yield superior recon-
structed image quality, there are historical and practical reasons why the FS-DROP algo-
rithm remained the preferred approach in the work presented here. When the image recon-
struction program was initially developed, the technological state of GPU hardware and the
CUDA software platform made it difficult to attain computation times within the clinically
viable 10 min threshold. Since the fully simultaneous algorithms require less frequent data
transfers between host and GPU and are much more flexible in the way they can be paral-
lelized, these algorithms were the natural choice. The Cimmino algorithm applies an equal
weighting, !/m, to the contributions from each of the m hyperplane projections in the calcu-
lation of the image update. However, in the case of a highly sparse system matrix A, such
as those in pCT, it has been shown that a column (i.e. voxel) dependent weighting scheme
based on the number of nonzero values in the jth column yields superior performance [27].
Hence, the FS-DROP algorithm was chosen instead of the Cimmino algorithm.

There are practical reasons why the use of the FS-DROP algorithm continued in

later work. The fully simultaneous methods do not depend on the order in which projections

12



H0)

T

F

Hg

Figure 3.1: Illustration of the first full iteration, starting from the initial iterate 29 of a
fully-simultaneous projection algorithm with A = 1.

are performed, unlike block-iterative and string-averaging algorithms, yielding consistent
performance across data sets and eliminating history ordering methods from considera-
tion in the development and analysis of methodological changes. Since this development
proceeded roughly chronologically, it also made sense to retain the methods employed in
previous work such that the impacts of new methods can be isolated from other potential

sources.
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Although particular reconstruction algorithms have slightly better performance, ei-
ther in terms of speed or image quality, each feasibility-seeking algorithm exhibits the same
general behavior, particularly those that use a similar weighting scheme such as the com-
ponent weighted algorithms used in pCT. Hence, approaches that yield improved image
quality with one algorithm can be expected to yield similar, but not necessarily equal, im-
provements with other algorithms. Therefore, replacing FS-DROP with a block-iterative
or string-averaging algorithm will not negate the legitimacy of any of the methodological
developments or conclusions presented here.

The FS-DROP algorithm operates as follows: given a data set with m measured
proton histories and an image vector xX*) composed of n voxels, the kth iteration proceeds
by performing simultaneous orthogonal projections of the kth iterate onto each of the m
hyperplanes. The residual error is then calculated for each hyperplane, subsequently nor-
malized by its length, and then summed over all m hyperplanes. For each voxel j, the sum
of normalized residuals is divided by the number of hyperplanes with nonzero jth column.
The resulting component weighted sums are then added to the corresponding columns of
the kth iterate to produce the (k + 1)th iterate.

This can be expressed by the following equation:

bi - <¢_1)i, )?(k)>
=T

m
2 — o) /l(k)D(k)Z — L4 (3.1
il
D® = diag (min(l, ﬁ))
1<j<n J

where d;k) is equal to the number of proton paths intersecting the jth voxel.
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CHAPTER FOUR

Hull-Detection

Portions of the content presented in the following Chapter was previously pub-
lished, in an alternative and abridged form (Attribution 1), in the following AMS book:

B. E. Schultze, M. Witt, Y. Censor, K. E. Schubert, and R. W. Schulte, “Performance
of hull-detection algorithms for proton computed tomography reconstruction,” in Infinite
Products of Operators and Their Applications, ser. Contemporary Mathematics, S. Reich
and A. Zaslavski, Eds., vol. 636. American Mathematical Society, 2015, pp. 211-224.

The following notice is supplied in accordance with the AMS Copyright Policy
(available at http://www.ams.org/arc/ctp/copyright-policy.html):

First published in Contemporary Mathematics 636 (April 2015), published by the
American Mathematical Society. © 2015 American Mathematical Society.

4.1 Introduction

Proton computed tomography (pCT) is an attractive alternative to x-ray CT in the
planning of proton radiation therapy since it has the potential to more accurately predict
the range of proton beams delivered to the patient than those predicted using x-ray CT
images [28].

The data acquired from a pCT scanner includes position tracking information and
downstream energy measurements for individual protons traversing the target object. The
object is staged on a rotating platform such that the pCT data is acquired from many dif-
ferent directions, ensuring an ample coverage of the target object is obtained with the fixed
beam (which may also wobble). Modern pCT reconstruction has primarily moved away
from the direct use of energy measurements for image reconstruction and instead con-
verts energy detector measurements to water-equivalent path length (WEPL) values. In

the context of proton therapy, “water-equivalent” denotes that the objective measurement
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for a proton is the “path length” through water that would, on average, yield the same en-
ergy loss as that observed for the proton after traversing the object. These measurements
are then used to reconstruct the RSP according to the formula RSP = S ,,,//S yarer» Where
S ma = —dE/dL is the stopping power of a material, defined as the mean differential energy
loss (dE) of protons per unit path length (dL) through this material.

The viability of pCT image reconstruction for treatment planning depends on whether
tractable methods can be developed for the computationally intensive calculations involved
in the solution of the large sparse linear system of equations governing pCT imaging. As
with other imaging modalities, pCT images can be expressed as the solution X of the lin-
ear system AX = b. The system matrix A contains the proton path information, where
A;;j = dL; j for each voxel j intersected by the ith proton; voxels that aren’t intersected are
denoted by the assignment A; ; = 0. The vector b is composed of the WEPL values asso-
ciated with each proton. The solution X is the vector representation of the reconstructed
pCT image, whose components have the desired units of RSP as a result of the choice of
representing energy loss with WEPL. At the time when hull-detection was developed, the
size of the linear pCT system was on the order of 100-10°x 10°, which already represented
a computational challenge to achieving the reconstruction speeds necessary for the clinical
use of pCT. Moreover, despite having demonstrated that good quality pCT images could
be reconstructed using iterative projection (feasibility-seeking) methods [29, 30], image
quality was the most common criticism and clinical vulnerability cited in critiques of pCT.
Thus, improving the quality of reconstructed images remained a vital objective of the pCT
Collaboration.

If the quality of pCT images is to be not only maintained, but improved, then ap-
proximations and other simplifications that would typically be employed to reduce compu-
tational costs will not be viable options in the development of clinical pCT. The investiga-
tion of iterative projection method algorithms included the use of parallelization schemes,

which were implemented on a single GPU, to demonstrate the impact this could have on
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reconstruction times [29, 30]. Although reconstruction times were still well beyond clin-
ically appropriate time thresholds, these works laid the foundations for modern pCT and
demonstrated the direction that future developments would advance toward. Subsequent
developments were nearly all based on the assumption that efficient pCT reconstruction
would only be achieved with a parallelizable image reconstruction algorithm, and that im-
age reconstruction software must be implemented on a distributed computing system.

Hull-detection was one of the developments following soon after the initial GPU
based pCT software implementation. Accurate knowledge of the target object’s hull, i.e.
the smallest bounded region enclosing the object, can be used to expedite image recon-
struction. The object hull is represented as a binary (or Boolean) image, where the value
1 (or TRUE) represents voxels belonging to the object hull and the value O (or FALSE)
represented voxels outside the object hull (i.e. surrounding air). For a discrete target object
X c N3, representing a finite set of voxels, within a corresponding discrete (image) space
V c N? (such that X C V), the object’s hull, H, is defined as the smallest subset H C V
such that X € H. Of course, the objective of hull-detection is to obtain an object hull H
that is identical to the target object X, i.e. H = X, but there is only a requirement that
X C H to prevent complications with image reconstruction. Hence, in practice the object
hull is the smallest obtainable bounded region that completely encloses the object.

The MLP calculations that accompany image reconstruction, which are an impor-
tant step, require knowledge of the object boundary [19]. This boundary has classically
been acquired by thresholding, based on RSP value, the filtered backprojection (FBP) im-
age generated during preconditioning. However, the RSP values of an FBP image below a
threshold is not a reliable means for identifying object voxels since FBP images are noisy
and, partly due to proton scattering, suffer from artifacts that obscure edges.

Accurate knowledge of the object hull can also be used to remove voxels outside the
object from the FBP image, which is used as the initial iterate of image reconstruction, and

exclude them from consideration in the subsequent image reconstruction. This is achieved

17



by spatially filtering the FBP image using the object hull H as a mask. This process
effectively reduces the image space in which the pCT image X is reconstructed and, thus, the
number of columns of the system matrix A. On the other hand, the object image generated
by FBP thresholding can contain “holes” in the interior of the object, preventing it from
being used as mask without additional image processing.

Solutions of a linear system with m rows (i.e. proton histories) and n columns
(i.e. voxels) obtained using iterative solvers have (computation) time complexity O(mnK),
where K is the total number of iterations performed. At the time hull-detection was being
developed, the pCT system typically had 100n > m > 10n. The largest number of voxels
a proton can pass through occurs when it passes diagonally through the reconstruction
volume, which corresponds with approximately v/ voxels. This serves as an upper bound
on the number of nonzero elements of the system matrix A, thereby reducing the time
complexity from O(mnK) to O(n'3*K). The amount of memory required by the iterative
image reconstruction algorithms, i.e. the space complexity, is also reduced by the voxel
removal process; the less voxels misidentified as belonging to the hull, i.e. the closer
the hull approaches H = X, the greater the reduction in space complexity. This can be
particularly important for parallelized iterative image reconstruction algorithms, especially
in the case of GPU implementations given their memory size constraints.

Hull-detection offers the opportunity to more efficiently perform pCT image recon-
struction, improving both time and space complexity. It is also potentially more useful
for MLP calculations and defining the initial iterate than previous methods, both of which
have an impact on reconstructed image accuracy. Therefore, the preliminary objective is
the development of a hull-detection algorithm for pCT that can begin to realize its afore-
mentioned theoretical benefits. The work presented in this Chapter describes the initial
silhouette carving algorithm developed at CSUSB, the modified silhouette carving (MSC)
and space modeling (SM) algorithms developed later at BU, and compares and contrasts

their effectiveness versus that of the classic FBP thresholding method. Note that although
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“silhouette carving” is the more accurate descriptor, it was initially called “space carv-
ing”. The term “silhouette” was later added, but to balance accuracy with the desire for
terminological consistency, these intermediate publications used the term “silhouette/space
carving”. This dissertation will drop the previous terms and continue only with the more

apt “silhouette carving” name.

4.2 Input Data
There were two sources of data for this work. Initial feasibility testing of the con-
cept and underlying theory of hull-detection was performed using a simulated digital head
phantom, which was custom designed for pCT [31]. Subsequent testing of the practical
applicability of hull-detection was conducted using the pCT data acquired from an experi-
mental scan of a pediatric head phantom using the Phase I prototype pCT scanner at Loma
Linda University Medical Center [6, 32, 33]. Details of these phantoms and corresponding

data sets are described below.

4.2.1 Simulated Data

In the development of algorithms for use in pCT, it is difficult to separate out the
uncertainties arising from proton scattering and assess only the theoretical limits of an algo-
rithm itself. Hence, a pCT data simulator generating deterministic proton paths was specif-
ically designed for the developmental testing and analysis of algorithms [31]. The simula-
tor allows the user to define the internal/external anatomy and size of a non-homogenous
elliptical object (NEO), intended to approximate a head phantom. The user can add inter-
nal anatomical features, such as ventricles and the frontal sinus, which are represented by
simplified geometric shapes. Similarly, geometrically simple representations of external
anatomy, such as the ears and nose, can also be added to the NEO.

The digital phantom constructed and used in this work, shown in Figure 4.1, is
composed of isotropic 1 mm?® voxels . Its anatomical features include an outer elliptical

region representing skull bone, two inner elliptical regions representing fluid-filled, and
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Figure 4.1: Digital head phantom used to generate simulated data in this work.

all other enclosed regions representing brain matter. The simulator assigns realistic RSP
values to anatomical features, which for this phantom composition are: 1.6 for skull bone,
1.04 for brain matter, and 0.9 for the fluid-filled ventricles.

Two simulated scans of the NEO were produced to assess the performance and vi-
ability of each hull-detection algorithm. The resulting simulated pCT data sets were each
composed of 11,796,480 proton histories from a uniform 200 MeV proton cone-beam, ap-
proximated by randomly distributing each proton about the central beam axis. Simulations
include the effect that multiple Coulomb scattering (MCS) within an object has on exit dis-
placement and trajectory, relative to its entry displacement and trajectory, by considering
these to be bivariate normal random variables. However, the simulator does not incorporate
the impact that MCS has on the path inside the object, opting instead for the more easily
characterized straight-line path (SLP) between its object entry and exit points. The inter-
section length, i.e. the path length between the points where a proton enters and exits a
voxel (also referred to as chord length), is defined to be 1 mm for every voxel along the
proton’s SLP, yielding a system matrix A whose elements are either A;; = 1 or A;; = 0.
The WEPL value assigned to proton i is then defined as the sum, over all voxels intersected
by its SLP, of the product of the true RSP of voxel j and the corresponding chord length

A;; = 1; since the A;; = 1, the WEPL calculation is reduced to simply the sum of each
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intersected voxel’s RSP. This data set is herein referred to as the “noiseless” simulated data
set.

The second simulated data set was generated by adding noise to the “noiseless”
data set, generating what is herein referred to as the “noisy” simulated data set. This is
accomplished by converting the WEPL values of the noiseless data set into exit (residual)
energy, adding normally distributed noise with a standard deviation defined according to
Tschalar’s energy straggling theory [34], and subsequently converting the now noisy energy
value back to WEPL. The WEPL to exit energy conversion, as well as the exit energy to

WEPL conversion, is based on data from ICRU Report 49 [35].

4.2.2 Experimental Data

The experimental pCT data set was used to validate the practical efficacy of hull-
detection and determine the impact that realistic data has on the performance of each algo-
rithm. This data set, composed of 50,897,953 proton histories, was acquired by scanning
an anthropomorphic pediatric head phantom (model HN715, CIRS, Norfolk, VA, USA')
using the Phase I prototype pCT detector system illustrated in Figure 4.2. The medical
proton accelerator at Loma Linda University Medical Center was used to generate a cone-
beam composed of approximately 200 MeV protons. The head phantom was staged on a
rotating platform and iteratively rotated in 4 © increments through one complete revolution,
1.e. 360 °, relative to the fixed horizontal beam line axis.

Note that the cited number of proton histories refers to the number that the image
reconstruction software receives as input, not necessarily the number that are used for hull-
detection or subsequent iterative reconstruction. Unlike the pCT data simulator, which is
designed to solely generate useful data, experimental pCT data will include proton histories
that are unsuitable for hull-detection and/or pCT image reconstruction. For the purposes
of image reconstruction, only those protons that solely experienced MCS are sought; pro-

tons that underwent other physical interactions, such as elastic larger angle scattering or

Thttp://www.cirsinc.com/products/all/36/pediatric-anthropomorphic-training-phantoms
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(b)

Figure 4.2: (a) Annotated image indicating the direction of rotation (curved arrow), rela-
tive to the direction of the fixed horizontal beam line (straight arrow), of the pediatric head
phantom when mounted on the rotating platform of the Phase I prototype pCT scanner sys-
tem (Loma Linda University Medical Center). (b) a representative slice of the reconstructed
pCT image of the pediatric head phantom.

inelastic nuclear interactions, are removed (cut) from the data set. Another common source
for unsuitable proton histories is proton pile-up in the energy detector (calorimeter), i.e.
proton(s) entering the detector before the residual energy from a previous proton has dis-
sipated, resulting in this residual energy inappropriately being added to the subsequent
proton’s energy measurement. Efforts are also taken to identify and cut these from the data
set as well.

Hence, the number of protons that remain after identifying and removing as many
unsuitable proton histories as possible will be lower, up to half as many, than the number ac-
quired from the pCT scanner system. A detailed description of the various sources/types of
unsuitable data, as well as the preprocessing and preconditioning steps developed to iden-
tify and remove the corresponding proton histories, can be found in “Particle-Tracking Pro-

ton Computed Tomography — Data Acquisition, Preprocessing, and Preconditioning” [25].

4.3 Hull-Detection Algorithms
A hull-detection algorithm seeks, for an object X ¢ N* with hull H € V c N?,
an approximate hull, H’, such that H C H’ 2 V and the cardinality of the difference

between the sets H and H’, |H’ \ H|, H’ \ H, approaches as close to zero as possible. In
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other words, a hull-detection algorithm must generate an approximate hull "’ that includes
every voxel of H and a minimal number of voxels from outside the hull H, V \ H.

Three hull-detection algorithms were developed and are presented in this Chapter:
silhouette carving (SC), modified silhouette carving (MSC), and space modeling (SM).
Each of these are subsequently compared to the FBP thresholding approach to object de-
tection. FBP is a full image reconstruction algorithm and is used as such for other imaging
modalities. The reconstructed FBP image has been used in pCT as well, not only for object
detection but also as the basis for the initial iterate of the subsequent iterative reconstruc-
tion algorithms [29, 30]. However, FBP reconstruction is performed along straight rays
(lines), which is inconsistent with the curved paths of protons due to MCS, so FBP images
of pCT data are particularly noisy and prone to artifacts. In early hull-detection work, the
FBP thresholding approach was compared to SC in terms of computation time and recon-
structed image quality [36], but not a direct voxel-by-voxel comparison between the true
and approximate hull, as is done in this work to assess algorithm performance independent

of other factors.

4.3.1 Filtered Backprojection (FBP)

FBP was first proposed as an alternative to Fourier transform methods for the re-
construction of CT data in 1971 by Ramanchandran and Lakshminarayanan [37]. A variant
of the FBP algorithm that assumes straight ray paths (or SLPs) with a cone-beam geomtry,
known as the Feldkamp Davis Kress (FDK) algorithm [38], is implemented here using a
Shepp-Logan filter [39] (as in previous pCT work). The FDK algorithm is performed using
a 4° angular bin spacing, a 1 mm lateral bin size, and a 5 mm vertical bin size. The image
space in which reconstruction is performed is is 200 mm X 200 mmX 9.6 cm. Each slice
is 3 mm thick, yielding 32 reconstructed tomographic slices. The resulting image was then
thresholded to generate the approximate hull. Any voxel with RSP > 0.6 was assumed to
belong to the object and was assigned an RSP value of one. Voxels with RSP values below

this threshold were assigned an RSP value of zero.
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For the purposes of object detection, a threshold of RSP > 0.6 was applied to the
FBP image to generate a binary object image. This method does not strictly produce a hull,
since voxels within the object boundary may also be thresholded and become ‘“holes”, but
it will be considered comparable to a hull for the purpose of comparison analysis. Note
that the unsuitable data was cut, using the same statistical binning intervals as FBP, prior
to generating and using the FBP image for object detection. Details on the statistical cuts
and the use of the FBP image as a preconditioner are provided in the same publication as

the aforementioned unsuitable data discussion [25].

4.3.2  Silhouette Carving (SC)

SC is a hull-detection algorithm, developed specifically for pCT, that generates an
approximate hull by iteratively carving away undesired voxels from an initially entirely
filled image space, which can be visualized as a similar process as a sculptor chiseling away
portions from a solid block of material [36]. The concept was conceived based on shape
and space carving methods [40, 41, 42, 43, 44] and the fact that protons that never enter the
object, passing solely through air, experience negligible scattering and energy loss. Hence,
such protons traverse the reconstruction volume along nearly SLPs. If these protons can be
identified, and there is a sufficient number and angular distribution of them, then the SLP
approximation of their paths can be used as the geometric shape (line) for a carving method.
At the time this algorithm was developed, pCT scans acquired 10 million or more proton
histories, so the more challenging concern is how easily can they be identified. Perhaps
even more importantly, how well can protons that did traverse the object be excluded.

In principle, the lack of scattering (lateral displacement or angular deviation) or
energy loss (WEPL), either of individual protons or the mean for the protons in a bin, can
be used to identify the protons useful for SC. The initial development posited the use of
both scattering and energy as selection criteria. However, proton paths aren’t reliable since
a proton may have been measured to have identical angle before and after the object, but

this doesn’t guarantee that there was no scattering between them; after all, the expected
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deviations are expected to be normally distributed around zero. Therefore, a threshold on
the WEPL values (energy loss) is used to identify protons (or proton bins) that entirely
missed the object.

The value WEPL = 0 was initially selected as the RSP threshold for SC since this
implies that the proton went through 0 mm of water-equivalent material, i.e. missed the
object. However, WEPL values are based on an analysis of calorimeter readout measure-
ments and a subsequent WEPL calibration process [45]. A more accurate interpretation
of WEPL values is that they correspond to the central average, or expected value, of a
distribution of possible calorimeter ADC value measurements. In other words, a proton
that missed the object may have WEPL > 0 or WEPL < 0 but the calibration ensure that,
on average, their WEPL = 0. Similarly, protons that pass through small portions of the
object will sometimes have WEPL 0. To prevent such proton histories from being used
for SC, WEPL = —1 mm was used: protons at or below this threshold value are used for
hull-detection, whereas those above it are excluded.

The SC algorithm (see Algorithm 1 below) seeks an approximation, H, of the ob-
ject hull, H, using the protons that satisfy the threshold WEPLIe — 1 mm. The approximate
hull, H,, is initialized as encompassing the entire image space, i.e. H; = V, represented as
a binary image composed entirely of the value 1 (TRUE). For each proton below the WEPL
threshold, the voxels along the SLP defined by connecting the proton’s image entry and exit
points are carved from H; by assigning the corresponding voxels the value 0 (FALSE). For
a particular scan angle, the projected paths of protons missing the object produce a silhou-
ette of the object. Repeating this for successive scan angles advances H, closer to its final
approximation of . Note that once a voxel is carved, it does not need to be carved again,
so the number of voxels carved for successive scan angles tends to decrease. This can also
be visualized as the superposition of the silhouettes obtained for each scan angle, where
many of the silhouettes overlap. The nonzero voxels of H, remaining after performing SC

for each scan angle then defines the detected hull.
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The preceding was a conceptual description of the SC algorithm as implemented
for development. A formal definition of the general framework of the SC algorithm is now
presented in terms of set theory and operations, followed by the corresponding pseudocode
implementation. Note that although investigations of SC have not included a threshold on
the angular deviations of proton paths, future investigations may find some threshold on
angular deviation that aids the identification of suitable proton histories for SC. Hence, this
flexibility is included in the following definition of the SC algorithm. Furthermore, the
threshold selection criteria is stated in general terms of energy loss, rather than the spe-
cific WEPL representation. These decisions were made to provide a complete and generic
framework for the SC algorithm such that the underlying theory is completely conveyed
and the specific implementation decisions presented in this dissertation, which somewhat
depend on current pCT theory and data acquisition, are more likely to be reevaluated by
future investigators.

The notation used in the following definition of the SC algorithm is as follows:

pi: the ith proton (or proton bin)

AE(p;): (mean) energy loss of the i’ proton (bin)

AZ(p;): (mean) angular deviation of the ith proton (bin)

e E;: user-defined energy loss threshold for identifying protons the missing object

6.: user-defined angular deviation threshold for identifying protons missing object

I ={1,2,3,--- ,m} : sequential set of indices of the m protons (or proton bins)

V: the set composed of each voxel in the image space.

v;: the jth voxel of the image space V
For each proton (or proton bin) i, if AE(p;) < E; and AZ(p;) < 6, then proton (or
protons in bin) p; are identified as having missed the object. The set, 7, composed of the
indices of all protons (or proton bins) i satisfying the E; and 6, thresholds and subsequently

used in SC, is then defined as:

I ={iel|AE(p) < EL NAZL(pi) < 6.} 4.1
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For all i € I, the line, L;, is defined as the chord connecting the points where
proton (or proton bin) i entered and exited the image space V. The set, A;, is composed of
each voxel v; along the path L;, identified according to a maximum distance constraint dj
placed on the (user-defined) distance measure d(L;, v;); i.e. each voxel v; within distance

dy of the line L; comprises the set A;:
A ={v; € V|dLi.v)) < do} (4.2)
Therefore, the resulting hull H; generated by SC is defined as:
H, =V \ Uier, A, 4.3)

Given these definitions, a pseudocode definition of the SC algorithm is as follows:

Algorithm 1 Silhouette Carving (SC)
: -ZL — 0
: foralli e 7 do
if AE(p;)) < E; and AZ(p;) < 6, then
I, «—{I1,,i}
end if
end for
for allv; € V do
H(v)) 1
end for
foralli € 7; do
\.7(,' — 0
for allv; € V do
if d(Li, Vj) < d() then
A — { A;, Vj}
end if
end for
Hy — Hi \ A,
: end for

R A O o e
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The protons used as input to the SC algorithm were the same as those used in the
FBP thresholding approach, i.e. after applying statistical data cuts with the same bin sizes,
to remove unsuitable proton histories. The same image space and voxel dimensions were
also used for SC, the latter of which were used to define each proton path L;. A threshold
E; = 1.0 mm was placed on the mean WEPL of each bin, rather than the mean energy loss,
to identify proton bins for subsequent use in SC. If the mean WEPL of a bin satisfied the
threshold E;, the protons in that bin were identified as travelling exclusively through air;
the voxels v; along each L; (approximated by an SLP using the bin’s angle and displace-
ments), i.e. A;, were excluded from the approximate hull H;. The algorithm developed to
identify the voxels intersected by an SLP is presented in Appendix B. No angular deviation
threshold was employed in the SC algorithm implemented for these investigations.

Previous work [36] demonstrated that, although rare relative to the sizes of the date
sets, some unsuitable proton histories survive statistical data cuts (particularly those that
pass near to or through a small amount of the object surface) and result in some lines
through the object mistakenly being removed from the hull ;. To account for such pos-
sibilities and refill these portions, an averaging filter with 5 X 5 structural element was
applied to H;, where the filter assigns voxels with neighborhood average exceeding 0.4 the
value 1 (TRUE) and 0 (FALSE) otherwise. The 0.4 threshold corresponds to 10 of the 25
neighboring voxels having value 1 (TRUE) before filtering, but this is allowed to vary as a

user-defined parameter.

4.3.3 Modified Silhouette Carving (MSC)

The first investigations of the SC algorithm used a WEPL threshold E; = 1.0 mm,
but it was quickly observed that this resulted in nearly all voxels in the image space being
carved from the hull, i.e. H; = 0, and the threshold was changed to 0.0 mm < WEPL <
1.0 mm [36]. This resulted in highly accurate hull approximations from simulated data
sets, better than the FBP thresholding approach with both the noiseless and noisy data, but

was still inadequate for experimental data. Since there will inevitably be some unsuitable
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data that eludes statistical cuts and other attempts to remove undesired data, an effective
hull-detection algorithm must have some level of tolerance to their presence. The conclu-
sion drawn from this early work was that there were two basic options for nullifying, e.g.
averaging out, the impact of unsuitable data in future hull-detection development: (1) use
proton bin data, rather than individual protons, to identify the lines to carve along in the
SC algorithm or (2) develop alternative algorithms, either from scratch or as an adaptation
of SC. The former of these corresponds to the implementation of SC described above. The
latter led to an adaptation of SC, herein referred to as MSC.

MSC exploits the fact that the amount of unsuitable data remaining after cuts is only
a small fraction of the total number of proton histories. Unlike the SC algorithm, which
immediately removes all v; € A; from the hull /;, MSC maintains a running count of the
number of times, N;, a line L; passed through voxel v;. The assumption is that although
voxels inside the object may lie along one or more lines L; associated with unsuitable
proton data, the count N; for these interior voxels will be small relative to those that truly lie
outside the object. Furthermore, the unsuitable data do not contribute much to the count N;
of any voxel v;, whether inside or outside the boundary of the object, thereby reducing the
impact that unsuitable data can have. Therefore, MSC uses the N; to differentiate between
voxels within the object hull H and those outside of it (V \ H), thereby minimizing the
number of object voxels mistakenly excluded from the approximate hull H;.

The MSC algorithm (see Algorithm 2 below) seeks an approximation of the hull
H, herein referred to as H,, by deferring the voxel carving steps until the number of times,
Nj, each voxel v; was identified as external to the object has been determined. Then for
each voxel v; € V, C(v;) is defined as the set composed of the indices of each line, L;, that

passed through v;:

cop=lieli|v eA) (44)
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Similarly, for each voxel v;, the set, B(v;), composed of each voxel, w;, neighboring

v; is defined as:
B ={w;eV]dv,w)<1}. (4.5)

Let N(v;) = |C(v;)| and N(w;) = |C(w;)| be defined as the cardinalities of C(v;) and
C(w)), respectively. Given a strict threshold N, on the cardinality difference N(v;) — N(w;),

the approximate hull #, generated by MSC is given by:

7"{2:{1/‘/6(‘/

max)N(vj) - N(wj) < Nt} . 4.6)

w;€B(V;

Unlike the FBP thresholding and SC algorithms, the MSC algorithm was specifi-
cally designed to be performed prior to the statistical data cuts that remove the bulk of the
unsuitable proton histories. The reason for this deviation with the MSC algorithm is that
it was developed with the objective of providing a hull-detection algorithm that is toler-
ant to the unsuitable proton histories present in data acquired from an experimental pCT
scanner. A pseudocode definition of the MSC algorithm, written in terms of the preceding
definitions, appears in Algorithm 2.

The implementation of the MSC algorithm used individual protons histories, se-
lecting as those that satisfied the threshold WEPL < —1.0 mm, rather than the proton bins
used in SC. ns on whether protons missed the object were based on analysis of individual
WEPL values rather than bin averages. Thus, proton histories were not binned in this case.
Proton histories whose WEPL values were less than 1.0 mm were assumed to have missed
the object, which is the same WEPL cutoff value used for SC. A strict cardinality differ-
ence threshold N, = 50 was used to generate the results presented here since this was found
to be insensitive to the varying sizes of the data sets. Note that a threshold on individual
cardinalities, N(v;), was found to vary too much between slices and phantoms, so defining

an a priori threshold in future scans of difference objects was deemed to be infeasible and
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abandoned. On the other hand, the cardinality difference, N(v;) — N(w;), between neigh-
boring voxels proved to be far more stable and a more robust means for differentiating hull

voxels from surrounding (air) voxels.

Algorithm 2 Modified Silhouette Carving (MSC)
: IL — 0
: foralli € 7 do
if AE(p;)) < E; and AZ(p;) < 6, then
I {1}
end if
end for
for allv; € V do
Hr(vj)) <« 1;N(v;) <0
end for
forallie 7; do
for allv; € V do
if d(L;,v;) < dj then
N(@;) «< N@;) +1
end if
end for
: end for
: for allv; € V do
for all w; € B(v;) do
if N(v;) = N(w;) > N, then
Hr(vj)) <0
end if
end for
: end for

R AN T o o
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4.3.4 Space Modeling (SM)

Another hull-detection technique, developed along with MSC as alternatives to SC,
is SM. Rather than using protons that miss the object to carve away voxels external to
the object hull, SM only uses protons that pass through the object to construct, or model,
an approximate hull. Protons passing through the object tend to experience increasing
amounts of scattering and energy loss as their penetration depth within the object increases.

Hence, similar to the selection of protons for SC, SM can identify protons that passed
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through the object according to their energy loss (WEPL) and/or angular deviations. In this
case, SM selects protons that exceed a minimum bound (rather than a threshold) placed on
the energy loss (WEPL) and angular deviation measurements. In other words, the protons
that are selected for use are those whose energy loss (WEPL) and/or angular deviations
exceed the associated minimum constraints defined for these measures.

Protons that satisfied the minimum energy and/or angular deviation constraints are
subsequently projected along straight lines, defined according to their individual position
and angle measurements, and the voxel intersected along these paths are determined. Simi-
lar to MSC, SM maintains a record of the number of times, M, each voxel v; is intersected
by a proton passing through the object, thereby reducing the impact of unsuitable histories
on the misidentification of protons passing through the object. Unlike MSC, however, this
count is a requirement with SM since the projected lines pass through both voxels within
the object and external to it, so it is the values of M; for each voxel that are used as the
entire basis for constructing an approximate hull.

As predicted, it was found that the M; decline more sharply at the interface between
the object and its surrounding air than anywhere else. Hence, for each tomographic slice,
SM proceeds to automatically locate the voxel edge with largest gradient in M; and sub-
sequently records the largest value of M; on this edge as M,. These M, values define the
threshold applied to the M of each voxel v; in that slice to select voxels for membership in
the approximate hull; i.e. for each slice, every voxel v; for which M; > M, is defined as be-
longing to the object hull. After performing this procedure for each slice, the approximate
hull has been constructed.

The user-defined parameters used in the following definition of the SM algorithm,
and absent from preceding definitions, are defined as follows:

e Ey: minimum energy loss constraint for identifying protons traversing the object
e Oy minimum angular deviation constraint for identifying protons traversing the

object

32



The SM algorithm (see Algorithm 3 below) seeks a robust approximation of the
hull, H5, by backprojecting the silhouette of the object and recording the number of times,
M;, each voxel v; was intersected by a backprojected line. If AE(p;) or AZ(p;) exceed
the minimum constraints £y and 6y, respectively, then the proton (or proton bin), p;, is
considered to have traversed the object. The set, 7y, composed of the indices of these

protons (or proton bins) is then defined as:
fH:{ZEIlAE(p,)>EH} (47)

In this case (SM), for i € Iy, let L; be the line that connects the entry and exit points of
the ith proton (or proton bin) traversing the object (rather than missing the object, as in SC
and MSC). Given a (possibly different) distance measure d(-,-) and a maximum distance

constraint dj, the set, A;, composed of each voxel v; along L; is defined as:
A ={v;eV|dLiv) < do} . (4.8)

Then for each voxel v; € V, C(v;) is defined as the set composed of the indices of

each line, L;, that passed through v ;:
Cop={iely|vieAl. 4.9)

Let M(v;) = |C(v;)| and M(w;) = |C(w;)| be defined as the cardinalities of C(v;)
and C(w)), respectively. Given a strict minimum constraint M, on the cardinality M(v;), the

approximate hull H; generated by SM is given by:

Hy ={v; | M(v)) > M,} (4.10)
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Given the preceding definitions, a pseudocode definition of the SM algorithm is as

follows:

Algorithm 3 Space Modelling (SM)
: IH — 0
: forallie 7 do
if AE(p;)) > Ey or AZ(p;) > 6y then
Ty —{Ty,i}
end if
end for
forallv; € V do
H;(v;) <~ 0; M(v;) <0
end for
forallie 7y do
forallv; € Vdo
if d(L;,v;) < d, then
M©y;) < M@;)+1
end if
end for
: end for
: MaxSlope « 0,index < 0
: forallv; € Vdo
for all w; € B(v;) do
if M(v;) — M(w;) > MaxSlope then
MaxSlope < M(v;) — M(w;); index < v;
end if
end for
: end for
: M, « M(index)
: forallv; € V do
if M(v;) > M, then
Hy(v)) < 1
end if
: end for
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As with the MSC algorithm, unsuitable proton histories were not cut prior to hull-
detection and protons traversing the object were identified by the WEPL values of indi-
vidual protons (rather than mean WEPL values, as with SC).A minimum energy constraint

Ey = 5.0 mm was used, effectively eliminating 