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Mentor: Keith Evan Schubert, Ph.D.

The work presented in this dissertation all pertains to developments of proton com-

puted tomography (pCT) and the elements essential to its viability as a clinical imaging

modality. This includes methodological and implementational developments for reducing

reconstruction time and improving pCT image quality, each advancing pCT towards clini-

cal viability. The corresponding methods are presented in the chronological order of their

development.

Hull-detection, a method for differentiating voxels internal and external to an object,

is presented first. Hull-detection was specifically developed for pCT as a preferable means

for obtaining a binary image of the object, a preconditioning step often referred to as object

detection. The concept of hull-detection, similar to the way a sculptor chisels away portions

of material to produce the desired sculpture, is that voxels along the paths of protons that

completely miss the object can be carved away to reveal the object hull. However, this

neglects to account for the ramifications of uncertainties in the data, which was accounted

for in different ways. Several hull-detection algorithms were developed and compared to

the classic object detection method based on thresholding the filtered backprojection image.

The second topic presented is efficiently implementing the most-likely path (MLP)

formalism for pCT. This formalism was developed to more accurately approximate proton

paths within an object, increasing the achievable spatial resolution. Computing the MLP



is, by far, the most computationally expensive task performed during image reconstruction,

making it the biggest hurdle to achieving clinically viable image reconstruction times (be-

low 10 minutes). A computationally efficient implementation of the MLP was developed by

simplifying the associated equations and incorporating several software design principles

to reduce the number of compute operations and improve numerical stability.

The final topic presented is the incorporation of recent advancements of total vari-

ation superiorization (TVS) into pCT. A fixed parameter version of TVS was initially in-

corporated into the feasibility-seeking algorithms of pCT, which included a step verifying

successful TV reduction. Presented here is the modern version of TVS applied to pCT,

with user-control of parameters, removal of the verification step, and additional option to

perform repeated perturbations.
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CHAPTER ONE

Introduction

Interest in proton computed tomography (pCT) has increased due to the expanding

use of proton therapy for cancer treatment and the potential for reducing range uncertain-

ties in proton therapy using pCT for treatment planning and pretreatment verification [1, 2].

At present, x-ray CT imaging is used to develop a treatment plan for proton therapy, in-

troducing additional range uncertainty due to the conversion from Hounsfield units (HU)

(sometimes called CT numbers) to stopping power relative to water, referred to as relative

stopping power (RSP). It has been common practice to account for uncertainties by adding

a margin of 3.5% plus 1 mm to the nominal range of a proton beam [3], but this yields

larger uncertainty margins between clinical and planning target volumes than those asso-

ciated with photon therapy. Treatment planning using pCT images offers the potential to

remove the HU-RSP conversion uncertainty by reconstructing RSP values directly, which

can be far more accurate than the conversion in some materials. The low radiation dose of

pCT imaging also presents the opportunity to perform weekly, or even daily, scans to track

changes in patient anatomy and RSP distributions for adaptive proton therapy.

The possibility of pCT imaging had been proposed in the 1960s but, due to the

complicated paths of protons and inadequate measurement technologies, it was deemed

infeasible for decades. By the mid 2000s, high energy physics detector technology had

advanced to the point where it was feasible to track individual protons and measure their

energy loss. Coupled with the emerging interest in proton therapy, and ion therapy in

general, this sparked the development of a theoretical framework for pCT and a Phase I

preclinical proton scanner system at Loma Linda University [4, 5, 6]. The success of this

project as a proof of concept subsequently led to the development of a Phase II preclinical

scanner system which drastically improved the quality of scanner data [7, 8, 9].
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Although the images reconstructed using the data from the Phase I/II preclinical

scanner system successfully demonstrated a proof of concept, there were several image

reconstruction hurdles remaining in advancing pCT to clinically feasibility. The image

reconstruction software developed for the Phase I/II preclinical scanner had computation

times far exceeding the clinically appropriate 10 min threshold. There were also aspects of

the reconstruction software, both theoretical and practical, that could be improved to yield

an increase in image quality. Around the time when the Phase II scanner was being com-

pleted, the image reconstruction software was advanced by two separate groups: one group

at Northern Illinois University (NIU) and one group initially at California State University,

San Bernardino (CSUSB) and later moving to Baylor University (BU).

The group at NIU initially focused primarily on reducing computation time down

to clinically feasible times by restructuring the reconstruction software to run efficiently on

an internode computation cluster. The CSUSB/BU group focused on rewriting the software

from scratch, simultaneously identifying and correcting any theoretical or implementation

errors and optimizing the code for execution on multi-GPU compute nodes. The early work

performed at CSUSB culminated in the thesis of an MS in Computer Science. However,

the majority of the pCT software design and development took place at BU and it is this

work that is the topic of this PhD dissertation. Clinically feasible reconstruction times have

been achieved on affordable computation hardware as a result of the work presented here.

Image quality has also been improved, to the point where pCT can now be argued to be

a viable imaging modality for proton treatment planning; the methods by which this was

achieved are also presented here.

This dissertation includes a historical review and literature survey on the general

technological development of pCT, which appears as Chapter 2. The methodological and

implementational aspects of pCT that are common and relevant to each of the presented

topics, as well as the associated image reconstruction software/hardware, are presented

inChapter 3 (Methods). Due to the fact that several unrelated theoretical and practical
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aspects of pCT are addressed, the corresponding work on each of these topics is presented

in separate Chapters. Hence, in addition to the broad historical review and literature survey

of pCT in Chapter 2, each Chapter also contains a narrow historical review and literature

survey germane to the associated topic. Chapter 3 provides a general overview of the

methods of pCT that are relevant to every topic presented in this dissertation. Information

that is too long or otherwise inappropriate for inclusion within the Chapters, are provided

as Appendices in the dissertation’s back matter. The appendices are organized according to

the order in which the corresponding material is referenced within the main text, with the

content relevant to each chapter included in distinct, alphabetically numbered sections of

the appendix.

The order in which Chapters 3–6 appear reflects the order in which the correspond-

ing tasks are performed during image reconstruction; coincidentally, this is also the chrono-

logical order in which the associated methods were developed. To maintain conceptual

flow, each topic has its own methods, results, and discussion/conclusions Sections, rather

than collecting these from each topic and presenting them as separate chapters. There are

Chapters for each of the three topics of pCT presented here, each corresponding to the

methods developed for a particular task (or discrete step) of pCT image reconstruction.

These topics are hull-detection, most-likely path (MLP) calculations, and total variation

superiorization (TVS).

Chapter 4 presents hull-detection, a method for identifying the portions of the im-

age containing the scanned object and excluding those corresponding to air. The early

work on hull-detection took place while at CSUSB, but the first practically useful hull-

detection method which is presented here, modified silhouette carving (MSC), was de-

veloped while at BU. The development of hull-detection also required the development

of a three-dimensional line (or voxel) walking algorithm, so this is presented along with

hull-detection. The object hull image is also useful in defining the initial iterate of image

reconstruction, where it is applied as a mask to the median-filtered filtered backprojection
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(FBP) image to set the RSP of all voxels outside the object to zero. This is not only of

practical convenience, but it also enables the subsequent iterative image reconstruction to

be performed within a reduced image space, thereby eliminating the unnecessary compu-

tations and undesired influence of voxels outside the object and improving computational

efficiency.

Chapter 5 presents the details of how the most-likely path (MLP) formalism, de-

veloped and later refined for the Phase I scanner system, was implemented to reduce its

computational burden. The MLP calculations represent the single largest computational

burden in pCT image reconstruction and, thus, the biggest challenge to achieving clinically

viable reconstruction times on a multi-GPU node. The scattering of a proton at a particu-

lar point along its path through an object depends on the energy it possesses at that point.

Hence, the integral equations for the elements of the MLP’s prior and posterior likelihood

scattering matrices include an energy dependent term, which appears in the denominator

of the integrands. An accurate analytical model of this relationship does not exist and is

currently infeasible, so the energy dependent term is approximated by fitting a fifth-degree

hexanomial to the scattering observed by conducting Monte Carlo simulations of 200 MeV

protons. Replacing the energy dependent term of each integrand with the hexanomial fit

yields integrable expressions for each element of the scattering matrices, but the definite

integration of the approximated integrand results in a large number of polynomial terms of

various degrees. definite integration of the product of the hexanomial with the other inte-

grand terms elements the MLP calculations were expanded and simplified and the approach

to storing and transferring the resulting MLP data was specifically designed to reduce both

the amount of data and the computation time.

Chapter 6 presents the work associated with implementing and investigating the

most recent version of total variation superiorization (TVS) as it applies to pCT. An older

and more rigid form of TVS was used in the initial image reconstruction software for the
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Phase I scanner, but this version lacked the flexibility to change parameter values and in-

cluded safety checks that had been removed in other applications. There was also a struc-

tural change to the algorithm that had been proposed. The work presented here discusses

each of the algorithmic changes to TVS and demonstrates their effectiveness as applied to

pCT specifically. This work was published, in an alternative and abridged form, as:

The conclusory Chapter 7 provides a cumulative summary of the presented work

and conclusions regarding the merit and impact of these contributions to pCT. Following

this is a prospective on the future and advancement of pCT. This includes an overview

of several advancements that have already been developed and implemented in the BU

software, but have not yet been published.

Terminology that may be unfamiliar to readers and is not (adequately) defined

within the text is italicized, indicating that the corresponding word(s) are defined for the

present context in Appendix A.1. Likewise, mathematical notation relevant to pCT and the

content of this dissertation is defined in Appendix A.2.
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CHAPTER TWO

Historical Review and Literature Survey

Ion radiation therapy has only recently become a clinical option for cancer treat-

ment, which has renewed interest in the development of proton computed tomography

(pCT or proton CT), but the potential of these technologies were first proposed more than

50 years ago. In 1946, the physicist Robert Wilson published a paper citing the potential

advantages of high energy (fast) protons and other heavier ions for radiation therapy [10].

In 1963 and 1964, Allan Cormack published papers introducing the concept of tomographic

image reconstruction [11, 12], for which he was awarded the 1979 Nobel Prize in Medicine.

Although Cormack understood the benefits of using protons for tomographic imaging, but

he felt that the Coulombic scattering of protons would result in blurry images, leading him

to the conclusion that x-rayswould be more useful than protons for tomographic imaging.

Despite Cormack’s initial skepticism on the efficacy of tomographic imaging with

protons, the 1970s and 1980s saw an increase in the technological development of proton

and ion imaging. In 1975, a team at Lawrence Berkeley National Laboratory demonstrated

the ability to track 900 MeV helium ions using a multi-wire proportional chamber (MWPC)

and measure their residual range with a stack of plastic scintillators [13]. This provided the

first indication that the concept of a particle-tracking CT scanner was technologically feasi-

ble. The team also used the acquired helium data to generate tomographic reconstructions,

which were then compared to those generated with the commercially available x-ray CT

scanners of the time. The dose of the single-particle-based helium CT was up to 50 times

lower than that of the conventional x-ray CT, a fact that the team emphasized in discussing

its potential beyond their proof of concept.
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In the following year (1976), Cormack and his colleague at the Harvard Cyclotron

Lab, Andreas Koehler, published a paper demonstrating the first experimental pCT im-

ages [14]. A scan of radially symmetric acrylic phantom, 9.52 cm in diameter, was per-

formed with 158 MeV protons and the energy loss was measured. Analysis of the pCT

images generated from this data demonstrated superior performance in terms of density

resolution than the commercial x-ray CT scanners at that time; density differences as small

as 0.006 g/cm3 could be distinguished, relative to the bulk acrylic material (1.17 g/cm3),

in the pCT images as compared to the approximately 1% density resolution of x-ray CT at

comparable imaging dose.

From the late 1970s to early 1980s, Kenneth Hanson and a team at the Los Alamos

Meson Physics Facility (LAMPF) designed the first series of pCT experiments with the

intention of closing the technological gap between physics laboratories and clinics. The

first of the experimental pCT systems Hanson developed used an MWPC to measure the

downstream exit position and a hyper-pure germanium detector (HPGe) to measure the

residual energy of each proton. The system was later modified to include a range telescope

composed of a stack of plastic scintillators. The performance and viability of the systems

were assessed in terms of achieving the minimum dose at the highest feasible count rate,

the results of which were presented in a series of landmark publications [15, 16, 17]. After

an upgrade of the readout electronics, a subsequent experiment was performed in which

sample human tissues were scanned and reconstructed as a proof of concept of the clinical

feasibility of pCT. These papers led to several important conclusions about pCT, the first

being that spatial resolution could be further improved by measuring the trajectory in addi-

tion to the position of protons exiting the phantom. Furthermore, it was concluded that the

dose advantage of pCT, relative to x-ray CT, was approximately 4:1 for a 20 cm diameter

phantom and 8:1 for a 30 cm diameter phantom for ideal systems.

Hanson’s experiments at Los Alamos represented the end of the early proton and ion

CT exploration phases. It would be nearly 20 years before development of the next phase
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began. This renewed interest was motivated by the emerging clinical use of protons, which

had begun to expand into hospital-based facilities at that time. As experience in proton

therapy increased, it became clear that the range uncertainties introduced into treatment

planning by the HU-RSP conversion of x-ray CT images would need to be addressed.

Coincidentally, at this time there was also a marked absence of image guidance technology

in the treatment rooms where proton therapy was performed. The resulting inability to track

tissues that have shifted in position and/or RSP, either between treatments or as a result of

internal organ movement during a treatment, leading to even larger range uncertainties.

Knowledge of Hanson’s work on pCT and its potential to reduce, or eliminate, some of the

sources of range uncertainty led to an increase in support for further development of pCT.

A two day meeting at Brookhaven National Laboratory led to the formation of the

U.S. pCT collaboration in early 2003. At this initial meeting, the collaboration discussed

plans to develop a pCT system using the most advanced particle tracking and energy de-

tector technology available at the time. The collaboration also identified the most-likely

path (MLP) concept, which had been proposed by Schneider and Pedroni [18], for further

development. The concept incorporates particle tracking information into the MLP formal-

ism [19], which is subsequently combined with iterative image reconstruction techniques.

The pCT collaboration successfully built a preclinical pCT scanner, funded by a 2011 grant

award from the National Institute of Biomedical Imaging and Bioengineering (NIBIB),

which was able to achieve the 1 million protons per second tracking and the 10 minute

threshold on a 360 ° pCT acquisition of a head phantom objectives of the grant [20, 21].

A number of groups have emerged in the field of proton/ion imaging for proton/ion

therapy over the last 20 years (e.g. see [22, 23]), including some than have developed dif-

ferent approaches than the pCT collaboration. A recent review provides an overview of the

different approaches [24]. Proton data acquisition approaches are typically divided into two

modes (types): particle tracking (list) mode and integration mode. Particle tracking mode
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tracks and measures the energy loss of individual protons or ions traversing an object. Inte-

gration mode measures an integrated beam current, which depends on the water-equivalent

thickness (WET) of proton or ion beams traversing the patient and is typically acquired with

existing dosimetry equipment, using the lower intensity modes established for therapeutic

beam delivery. The particle tracking mode is more complicated and more expensive than

the integration mode, but it yields superior spatial resolution and lower patient dose [24],

both of which are attractive attributes of a clinical pCT system.
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CHAPTER THREE

Methods

Each of the following Chapters correspond with a particular aspect of pCT and

the associated methods developed for each task. The order in which they are presented

here coincides with the order in which the corresponding method(s) are performed during

execution of the image reconstruction software, i.e., their execution order.

3.1 Image Reconstruction Software

The image reconstruction software developed and used at BU is designed such that

each high level task, or step, of pCT is implemented as a separate functional unit. The

main pCT program file calls these functional units in the appropriate order to enforce the

computational structure of pCT. The partitioning of the image reconstruction steps into

functional units is intended to capture and encapsulate the basic theoretical structure of pCT

image reconstruction, a structure which is independent of advancing theory and methods,

from those portions of the program that can be adapted now or in the future. There are

varying methods for accomplishing each task, so methods are designed as independent

modules, functionally equivalent to what are often called helper functions. The particular

methods that are called at execution depend on the value of the associated control variables;

control variables are boolean variables in the case of methods that can be turned on/off and

enumerated type variables in cases where there are multiple methods that can be chosen.

This programmatic structure provides a consistent framework for the use and advancement

of pCT image reconstruction.

A great deal of effort was spent on parallelizing every method for which this was

feasible. There are some portions of code that must be executed sequentially but for var-

ious reasons, are executed by a single thread of the GPU instead of by the host CPU. For
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example, sequential calculations performed between two GPU kernels and that are depen-

dent on existing GPU data may be more efficiently executed by a single GPU thread rather

than transferring the dependent data to the host for computation and back to the GPU for

use. This approach, where a single thread executes a sequential section of code, is herein

referred to as sequential gap parallelization (SGP). In some cases, data dependencies that

prevent parallelization can be eliminated by separately generating the required data on each

thread; often times this results in threads calculating one or more unnecessary values, but

this has negligible importance relative to achieving parallelization. This approach is herein

referred to as dependency distribution parallelization (DDP). Note that it is possible to

have a combination of these two cases, such as when the sequential portion of code gener-

ates data that the threads are subsequently dependent on, in which case the DDP approach

is typically the most appropriate. As a result of the natively parallel and forcibly parallel

steps in pCT, nearly all computation is performed on the GPU(s) and the host CPU operates

primarily as the master in evaluating conditional executions and initiating data transfers.

The work presented in this dissertation is not only presented in the order it is per-

formed during reconstruction, but this also the chronological order in which they were

developed. For the purpose of performance comparisons, all methods unrelated to the

method under development remained the same, providing the means to compare the newly

developed method to the one previously used in accomplishing a particular task. Since this

remained important throughout the development of each method presented here, the image

reconstruction program was configured with the same control variable values in each case.

Although many of the methods selected for these image reconstructions do not warrant dis-

cussion here, there are some methods that have a bearing on performance and could yield

slightly different results than those presented here, so these are discussed here. Details on

the acquisition, preprocessing, and preconditioning of pCT data for iterative image recon-

struction can be found in the recently published article “Particle-Tracking Proton Computed
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Tomography—Data Acquisition, Preprocessing, and Preconditioning” [25]. The terminol-

ogy used in the following sections and the associated mathematical notation are defined in

the Glossary and Notation sections, respectively, of Appendix A.

3.2 Methods Selected for Consistency

The BU image reconstruction program has the ability to perform several feasibility-

seeking algorithms from the fully simultaneous, block-iterative, and string-averaging classes,

as well as hybrids of these algorithmic classes. However, the feasibility-seeking algorithm

used for iterative image reconstruction throughout the entirety of the following work is the

fully simultaneous diagonally-relaxed orthogonal projection (DROP) algorithm, herein re-

ferred to as FS-DROP. This fully simultaneous projection method is based on the classic

Cimmino algorithm [26]. The structural form of the Cimmino and FS-DROP algorithms is

illustrated in Figure 3.1.

Although the block-iterative and string-averaging algorithms yield superior recon-

structed image quality, there are historical and practical reasons why the FS-DROP algo-

rithm remained the preferred approach in the work presented here. When the image recon-

struction program was initially developed, the technological state of GPU hardware and the

CUDA software platform made it difficult to attain computation times within the clinically

viable 10 min threshold. Since the fully simultaneous algorithms require less frequent data

transfers between host and GPU and are much more flexible in the way they can be paral-

lelized, these algorithms were the natural choice. The Cimmino algorithm applies an equal

weighting, 1/m, to the contributions from each of the m hyperplane projections in the calcu-

lation of the image update. However, in the case of a highly sparse system matrix A, such

as those in pCT, it has been shown that a column (i.e. voxel) dependent weighting scheme

based on the number of nonzero values in the jth column yields superior performance [27].

Hence, the FS-DROP algorithm was chosen instead of the Cimmino algorithm.

There are practical reasons why the use of the FS-DROP algorithm continued in

later work. The fully simultaneous methods do not depend on the order in which projections
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Figure 3.1: Illustration of the first full iteration, starting from the initial iterate ~x(0), of a
fully-simultaneous projection algorithm with λ(0) = 1.

are performed, unlike block-iterative and string-averaging algorithms, yielding consistent

performance across data sets and eliminating history ordering methods from considera-

tion in the development and analysis of methodological changes. Since this development

proceeded roughly chronologically, it also made sense to retain the methods employed in

previous work such that the impacts of new methods can be isolated from other potential

sources.
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Although particular reconstruction algorithms have slightly better performance, ei-

ther in terms of speed or image quality, each feasibility-seeking algorithm exhibits the same

general behavior, particularly those that use a similar weighting scheme such as the com-

ponent weighted algorithms used in pCT. Hence, approaches that yield improved image

quality with one algorithm can be expected to yield similar, but not necessarily equal, im-

provements with other algorithms. Therefore, replacing FS-DROP with a block-iterative

or string-averaging algorithm will not negate the legitimacy of any of the methodological

developments or conclusions presented here.

The FS-DROP algorithm operates as follows: given a data set with m measured

proton histories and an image vector x(k) composed of n voxels, the kth iteration proceeds

by performing simultaneous orthogonal projections of the kth iterate onto each of the m

hyperplanes. The residual error is then calculated for each hyperplane, subsequently nor-

malized by its length, and then summed over all m hyperplanes. For each voxel j, the sum

of normalized residuals is divided by the number of hyperplanes with nonzero jth column.

The resulting component weighted sums are then added to the corresponding columns of

the kth iterate to produce the (k + 1)th iterate.

This can be expressed by the following equation:

~x(k+1) = ~x(k) + λ(k) D(k)
m∑

i=1

bi −
〈
~ai, ~x(k)

〉
∥∥∥~ai

∥∥∥2 ~aT
i (3.1)

D(k) = diag
1≤ j≤n

(
min

(
1, 1

d(k)
j

))

where d(k)
j is equal to the number of proton paths intersecting the jth voxel.
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CHAPTER FOUR

Hull-Detection

Portions of the content presented in the following Chapter was previously pub-

lished, in an alternative and abridged form (Attribution 1), in the following AMS book:

B. E. Schultze, M. Witt, Y. Censor, K. E. Schubert, and R. W. Schulte, “Performance
of hull-detection algorithms for proton computed tomography reconstruction,” in Infinite
Products of Operators and Their Applications, ser. Contemporary Mathematics, S. Reich
and A. Zaslavski, Eds., vol. 636. American Mathematical Society, 2015, pp. 211–224.

The following notice is supplied in accordance with the AMS Copyright Policy

(available at http://www.ams.org/arc/ctp/copyright-policy.html):

First published in Contemporary Mathematics 636 (April 2015), published by the
American Mathematical Society. © 2015 American Mathematical Society.

4.1 Introduction

Proton computed tomography (pCT) is an attractive alternative to x-ray CT in the

planning of proton radiation therapy since it has the potential to more accurately predict

the range of proton beams delivered to the patient than those predicted using x-ray CT

images [28].

The data acquired from a pCT scanner includes position tracking information and

downstream energy measurements for individual protons traversing the target object. The

object is staged on a rotating platform such that the pCT data is acquired from many dif-

ferent directions, ensuring an ample coverage of the target object is obtained with the fixed

beam (which may also wobble). Modern pCT reconstruction has primarily moved away

from the direct use of energy measurements for image reconstruction and instead con-

verts energy detector measurements to water-equivalent path length (WEPL) values. In

the context of proton therapy, “water-equivalent” denotes that the objective measurement
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for a proton is the “path length” through water that would, on average, yield the same en-

ergy loss as that observed for the proton after traversing the object. These measurements

are then used to reconstruct the RSP according to the formula RS P = S mat/S water, where

S mat = −dE/dL is the stopping power of a material, defined as the mean differential energy

loss (dE) of protons per unit path length (dL) through this material.

The viability of pCT image reconstruction for treatment planning depends on whether

tractable methods can be developed for the computationally intensive calculations involved

in the solution of the large sparse linear system of equations governing pCT imaging. As

with other imaging modalities, pCT images can be expressed as the solution ~x of the lin-

ear system A~x = ~b. The system matrix A contains the proton path information, where

Ai, j = dLi, j for each voxel j intersected by the ith proton; voxels that aren’t intersected are

denoted by the assignment Ai, j = 0. The vector ~b is composed of the WEPL values asso-

ciated with each proton. The solution ~x is the vector representation of the reconstructed

pCT image, whose components have the desired units of RSP as a result of the choice of

representing energy loss with WEPL. At the time when hull-detection was developed, the

size of the linear pCT system was on the order of 100 ·106×106, which already represented

a computational challenge to achieving the reconstruction speeds necessary for the clinical

use of pCT. Moreover, despite having demonstrated that good quality pCT images could

be reconstructed using iterative projection (feasibility-seeking) methods [29, 30], image

quality was the most common criticism and clinical vulnerability cited in critiques of pCT.

Thus, improving the quality of reconstructed images remained a vital objective of the pCT

Collaboration.

If the quality of pCT images is to be not only maintained, but improved, then ap-

proximations and other simplifications that would typically be employed to reduce compu-

tational costs will not be viable options in the development of clinical pCT. The investiga-

tion of iterative projection method algorithms included the use of parallelization schemes,

which were implemented on a single GPU, to demonstrate the impact this could have on
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reconstruction times [29, 30]. Although reconstruction times were still well beyond clin-

ically appropriate time thresholds, these works laid the foundations for modern pCT and

demonstrated the direction that future developments would advance toward. Subsequent

developments were nearly all based on the assumption that efficient pCT reconstruction

would only be achieved with a parallelizable image reconstruction algorithm, and that im-

age reconstruction software must be implemented on a distributed computing system.

Hull-detection was one of the developments following soon after the initial GPU

based pCT software implementation. Accurate knowledge of the target object’s hull, i.e.

the smallest bounded region enclosing the object, can be used to expedite image recon-

struction. The object hull is represented as a binary (or Boolean) image, where the value

1 (or TRUE) represents voxels belonging to the object hull and the value 0 (or FALSE)

represented voxels outside the object hull (i.e. surrounding air). For a discrete target object

X ⊂ N3, representing a finite set of voxels, within a corresponding discrete (image) space

V ⊂ N3 (such that X ⊆ V), the object’s hull, H , is defined as the smallest subset H ⊆ V

such that X ⊆ H . Of course, the objective of hull-detection is to obtain an object hull H

that is identical to the target object X, i.e. H = X, but there is only a requirement that

X ⊆ H to prevent complications with image reconstruction. Hence, in practice the object

hull is the smallest obtainable bounded region that completely encloses the object.

The MLP calculations that accompany image reconstruction, which are an impor-

tant step, require knowledge of the object boundary [19]. This boundary has classically

been acquired by thresholding, based on RSP value, the filtered backprojection (FBP) im-

age generated during preconditioning. However, the RSP values of an FBP image below a

threshold is not a reliable means for identifying object voxels since FBP images are noisy

and, partly due to proton scattering, suffer from artifacts that obscure edges.

Accurate knowledge of the object hull can also be used to remove voxels outside the

object from the FBP image, which is used as the initial iterate of image reconstruction, and

exclude them from consideration in the subsequent image reconstruction. This is achieved
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by spatially filtering the FBP image using the object hull H as a mask. This process

effectively reduces the image space in which the pCT image ~x is reconstructed and, thus, the

number of columns of the system matrix A. On the other hand, the object image generated

by FBP thresholding can contain “holes” in the interior of the object, preventing it from

being used as mask without additional image processing.

Solutions of a linear system with m rows (i.e. proton histories) and n columns

(i.e. voxels) obtained using iterative solvers have (computation) time complexity O(mnK),

where K is the total number of iterations performed. At the time hull-detection was being

developed, the pCT system typically had 100n ≥ m ≥ 10n. The largest number of voxels

a proton can pass through occurs when it passes diagonally through the reconstruction

volume, which corresponds with approximately 3
√

n voxels. This serves as an upper bound

on the number of nonzero elements of the system matrix A, thereby reducing the time

complexity from O(mnK) to O(n1.333K). The amount of memory required by the iterative

image reconstruction algorithms, i.e. the space complexity, is also reduced by the voxel

removal process; the less voxels misidentified as belonging to the hull, i.e. the closer

the hull approaches H = X, the greater the reduction in space complexity. This can be

particularly important for parallelized iterative image reconstruction algorithms, especially

in the case of GPU implementations given their memory size constraints.

Hull-detection offers the opportunity to more efficiently perform pCT image recon-

struction, improving both time and space complexity. It is also potentially more useful

for MLP calculations and defining the initial iterate than previous methods, both of which

have an impact on reconstructed image accuracy. Therefore, the preliminary objective is

the development of a hull-detection algorithm for pCT that can begin to realize its afore-

mentioned theoretical benefits. The work presented in this Chapter describes the initial

silhouette carving algorithm developed at CSUSB, the modified silhouette carving (MSC)

and space modeling (SM) algorithms developed later at BU, and compares and contrasts

their effectiveness versus that of the classic FBP thresholding method. Note that although
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“silhouette carving” is the more accurate descriptor, it was initially called “space carv-

ing”. The term “silhouette” was later added, but to balance accuracy with the desire for

terminological consistency, these intermediate publications used the term “silhouette/space

carving”. This dissertation will drop the previous terms and continue only with the more

apt “silhouette carving” name.

4.2 Input Data

There were two sources of data for this work. Initial feasibility testing of the con-

cept and underlying theory of hull-detection was performed using a simulated digital head

phantom, which was custom designed for pCT [31]. Subsequent testing of the practical

applicability of hull-detection was conducted using the pCT data acquired from an experi-

mental scan of a pediatric head phantom using the Phase I prototype pCT scanner at Loma

Linda University Medical Center [6, 32, 33]. Details of these phantoms and corresponding

data sets are described below.

4.2.1 Simulated Data

In the development of algorithms for use in pCT, it is difficult to separate out the

uncertainties arising from proton scattering and assess only the theoretical limits of an algo-

rithm itself. Hence, a pCT data simulator generating deterministic proton paths was specif-

ically designed for the developmental testing and analysis of algorithms [31]. The simula-

tor allows the user to define the internal/external anatomy and size of a non-homogenous

elliptical object (NEO), intended to approximate a head phantom. The user can add inter-

nal anatomical features, such as ventricles and the frontal sinus, which are represented by

simplified geometric shapes. Similarly, geometrically simple representations of external

anatomy, such as the ears and nose, can also be added to the NEO.

The digital phantom constructed and used in this work, shown in Figure 4.1, is

composed of isotropic 1 mm3 voxels . Its anatomical features include an outer elliptical

region representing skull bone, two inner elliptical regions representing fluid-filled, and
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Figure 4.1: Digital head phantom used to generate simulated data in this work.

all other enclosed regions representing brain matter. The simulator assigns realistic RSP

values to anatomical features, which for this phantom composition are: 1.6 for skull bone,

1.04 for brain matter, and 0.9 for the fluid-filled ventricles.

Two simulated scans of the NEO were produced to assess the performance and vi-

ability of each hull-detection algorithm. The resulting simulated pCT data sets were each

composed of 11,796,480 proton histories from a uniform 200 MeV proton cone-beam, ap-

proximated by randomly distributing each proton about the central beam axis. Simulations

include the effect that multiple Coulomb scattering (MCS) within an object has on exit dis-

placement and trajectory, relative to its entry displacement and trajectory, by considering

these to be bivariate normal random variables. However, the simulator does not incorporate

the impact that MCS has on the path inside the object, opting instead for the more easily

characterized straight-line path (SLP) between its object entry and exit points. The inter-

section length, i.e. the path length between the points where a proton enters and exits a

voxel (also referred to as chord length), is defined to be 1 mm for every voxel along the

proton’s SLP, yielding a system matrix A whose elements are either Ai, j = 1 or Ai, j = 0.

The WEPL value assigned to proton i is then defined as the sum, over all voxels intersected

by its SLP, of the product of the true RSP of voxel j and the corresponding chord length

Ai, j = 1; since the Ai, j = 1, the WEPL calculation is reduced to simply the sum of each
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intersected voxel’s RSP. This data set is herein referred to as the “noiseless” simulated data

set.

The second simulated data set was generated by adding noise to the “noiseless”

data set, generating what is herein referred to as the “noisy” simulated data set. This is

accomplished by converting the WEPL values of the noiseless data set into exit (residual)

energy, adding normally distributed noise with a standard deviation defined according to

Tschalar’s energy straggling theory [34], and subsequently converting the now noisy energy

value back to WEPL. The WEPL to exit energy conversion, as well as the exit energy to

WEPL conversion, is based on data from ICRU Report 49 [35].

4.2.2 Experimental Data

The experimental pCT data set was used to validate the practical efficacy of hull-

detection and determine the impact that realistic data has on the performance of each algo-

rithm. This data set, composed of 50,897,953 proton histories, was acquired by scanning

an anthropomorphic pediatric head phantom (model HN715, CIRS, Norfolk, VA, USA1)

using the Phase I prototype pCT detector system illustrated in Figure 4.2. The medical

proton accelerator at Loma Linda University Medical Center was used to generate a cone-

beam composed of approximately 200 MeV protons. The head phantom was staged on a

rotating platform and iteratively rotated in 4 ° increments through one complete revolution,

i.e. 360 °, relative to the fixed horizontal beam line axis.

Note that the cited number of proton histories refers to the number that the image

reconstruction software receives as input, not necessarily the number that are used for hull-

detection or subsequent iterative reconstruction. Unlike the pCT data simulator, which is

designed to solely generate useful data, experimental pCT data will include proton histories

that are unsuitable for hull-detection and/or pCT image reconstruction. For the purposes

of image reconstruction, only those protons that solely experienced MCS are sought; pro-

tons that underwent other physical interactions, such as elastic larger angle scattering or

1http://www.cirsinc.com/products/all/36/pediatric-anthropomorphic-training-phantoms
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(a) (b)

Figure 4.2: (a) Annotated image indicating the direction of rotation (curved arrow), rela-
tive to the direction of the fixed horizontal beam line (straight arrow), of the pediatric head
phantom when mounted on the rotating platform of the Phase I prototype pCT scanner sys-
tem (Loma Linda University Medical Center). (b) a representative slice of the reconstructed
pCT image of the pediatric head phantom.

inelastic nuclear interactions, are removed (cut) from the data set. Another common source

for unsuitable proton histories is proton pile-up in the energy detector (calorimeter), i.e.

proton(s) entering the detector before the residual energy from a previous proton has dis-

sipated, resulting in this residual energy inappropriately being added to the subsequent

proton’s energy measurement. Efforts are also taken to identify and cut these from the data

set as well.

Hence, the number of protons that remain after identifying and removing as many

unsuitable proton histories as possible will be lower, up to half as many, than the number ac-

quired from the pCT scanner system. A detailed description of the various sources/types of

unsuitable data, as well as the preprocessing and preconditioning steps developed to iden-

tify and remove the corresponding proton histories, can be found in “Particle-Tracking Pro-

ton Computed Tomography — Data Acquisition, Preprocessing, and Preconditioning” [25].

4.3 Hull-Detection Algorithms

A hull-detection algorithm seeks, for an object X ⊂ N3 with hull H ⊆ V ⊂ N3,

an approximate hull, H ′, such that H ⊆ H ′ ⊇ V and the cardinality of the difference

between the setsH andH ′, |H ′ \ H|,H ′ \ H , approaches as close to zero as possible. In
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other words, a hull-detection algorithm must generate an approximate hullH ′ that includes

every voxel ofH and a minimal number of voxels from outside the hullH ,V \H .

Three hull-detection algorithms were developed and are presented in this Chapter:

silhouette carving (SC), modified silhouette carving (MSC), and space modeling (SM).

Each of these are subsequently compared to the FBP thresholding approach to object de-

tection. FBP is a full image reconstruction algorithm and is used as such for other imaging

modalities. The reconstructed FBP image has been used in pCT as well, not only for object

detection but also as the basis for the initial iterate of the subsequent iterative reconstruc-

tion algorithms [29, 30]. However, FBP reconstruction is performed along straight rays

(lines), which is inconsistent with the curved paths of protons due to MCS, so FBP images

of pCT data are particularly noisy and prone to artifacts. In early hull-detection work, the

FBP thresholding approach was compared to SC in terms of computation time and recon-

structed image quality [36], but not a direct voxel-by-voxel comparison between the true

and approximate hull, as is done in this work to assess algorithm performance independent

of other factors.

4.3.1 Filtered Backprojection (FBP)

FBP was first proposed as an alternative to Fourier transform methods for the re-

construction of CT data in 1971 by Ramanchandran and Lakshminarayanan [37]. A variant

of the FBP algorithm that assumes straight ray paths (or SLPs) with a cone-beam geomtry,

known as the Feldkamp Davis Kress (FDK) algorithm [38], is implemented here using a

Shepp-Logan filter [39] (as in previous pCT work). The FDK algorithm is performed using

a 4◦ angular bin spacing, a 1 mm lateral bin size, and a 5 mm vertical bin size. The image

space in which reconstruction is performed is is 200 mm × 200 mm× 9.6 cm. Each slice

is 3 mm thick, yielding 32 reconstructed tomographic slices. The resulting image was then

thresholded to generate the approximate hull. Any voxel with RSP ≥ 0.6 was assumed to

belong to the object and was assigned an RSP value of one. Voxels with RSP values below

this threshold were assigned an RSP value of zero.
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For the purposes of object detection, a threshold of RSP ≥ 0.6 was applied to the

FBP image to generate a binary object image. This method does not strictly produce a hull,

since voxels within the object boundary may also be thresholded and become “holes”, but

it will be considered comparable to a hull for the purpose of comparison analysis. Note

that the unsuitable data was cut, using the same statistical binning intervals as FBP, prior

to generating and using the FBP image for object detection. Details on the statistical cuts

and the use of the FBP image as a preconditioner are provided in the same publication as

the aforementioned unsuitable data discussion [25].

4.3.2 Silhouette Carving (SC)

SC is a hull-detection algorithm, developed specifically for pCT, that generates an

approximate hull by iteratively carving away undesired voxels from an initially entirely

filled image space, which can be visualized as a similar process as a sculptor chiseling away

portions from a solid block of material [36]. The concept was conceived based on shape

and space carving methods [40, 41, 42, 43, 44] and the fact that protons that never enter the

object, passing solely through air, experience negligible scattering and energy loss. Hence,

such protons traverse the reconstruction volume along nearly SLPs. If these protons can be

identified, and there is a sufficient number and angular distribution of them, then the SLP

approximation of their paths can be used as the geometric shape (line) for a carving method.

At the time this algorithm was developed, pCT scans acquired 10 million or more proton

histories, so the more challenging concern is how easily can they be identified. Perhaps

even more importantly, how well can protons that did traverse the object be excluded.

In principle, the lack of scattering (lateral displacement or angular deviation) or

energy loss (WEPL), either of individual protons or the mean for the protons in a bin, can

be used to identify the protons useful for SC. The initial development posited the use of

both scattering and energy as selection criteria. However, proton paths aren’t reliable since

a proton may have been measured to have identical angle before and after the object, but

this doesn’t guarantee that there was no scattering between them; after all, the expected
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deviations are expected to be normally distributed around zero. Therefore, a threshold on

the WEPL values (energy loss) is used to identify protons (or proton bins) that entirely

missed the object.

The value WEPL = 0 was initially selected as the RSP threshold for SC since this

implies that the proton went through 0 mm of water-equivalent material, i.e. missed the

object. However, WEPL values are based on an analysis of calorimeter readout measure-

ments and a subsequent WEPL calibration process [45]. A more accurate interpretation

of WEPL values is that they correspond to the central average, or expected value, of a

distribution of possible calorimeter ADC value measurements. In other words, a proton

that missed the object may have WEPL > 0 or WEPL < 0 but the calibration ensure that,

on average, their WEPL = 0. Similarly, protons that pass through small portions of the

object will sometimes have WEPL 0. To prevent such proton histories from being used

for SC, WEPL = −1 mm was used: protons at or below this threshold value are used for

hull-detection, whereas those above it are excluded.

The SC algorithm (see Algorithm 1 below) seeks an approximation,H1, of the ob-

ject hull,H , using the protons that satisfy the threshold WEPLle−1 mm. The approximate

hull,H1, is initialized as encompassing the entire image space, i.e. H1 = V, represented as

a binary image composed entirely of the value 1 (TRUE). For each proton below the WEPL

threshold, the voxels along the SLP defined by connecting the proton’s image entry and exit

points are carved fromH1 by assigning the corresponding voxels the value 0 (FALSE). For

a particular scan angle, the projected paths of protons missing the object produce a silhou-

ette of the object. Repeating this for successive scan angles advancesH1 closer to its final

approximation ofH . Note that once a voxel is carved, it does not need to be carved again,

so the number of voxels carved for successive scan angles tends to decrease. This can also

be visualized as the superposition of the silhouettes obtained for each scan angle, where

many of the silhouettes overlap. The nonzero voxels ofH1 remaining after performing SC

for each scan angle then defines the detected hull.
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The preceding was a conceptual description of the SC algorithm as implemented

for development. A formal definition of the general framework of the SC algorithm is now

presented in terms of set theory and operations, followed by the corresponding pseudocode

implementation. Note that although investigations of SC have not included a threshold on

the angular deviations of proton paths, future investigations may find some threshold on

angular deviation that aids the identification of suitable proton histories for SC. Hence, this

flexibility is included in the following definition of the SC algorithm. Furthermore, the

threshold selection criteria is stated in general terms of energy loss, rather than the spe-

cific WEPL representation. These decisions were made to provide a complete and generic

framework for the SC algorithm such that the underlying theory is completely conveyed

and the specific implementation decisions presented in this dissertation, which somewhat

depend on current pCT theory and data acquisition, are more likely to be reevaluated by

future investigators.

The notation used in the following definition of the SC algorithm is as follows:

• pi: the ith proton (or proton bin)

• ∆E(pi): (mean) energy loss of the ith proton (bin)

• ∆∠(pi): (mean) angular deviation of the ith proton (bin)

• EL: user-defined energy loss threshold for identifying protons the missing object

• θL: user-defined angular deviation threshold for identifying protons missing object

• I = { 1, 2, 3, · · · ,m} : sequential set of indices of the m protons (or proton bins)

• V: the set composed of each voxel in the image space.

• v j: the jth voxel of the image spaceV

For each proton (or proton bin) i, if ∆E(pi) ≤ EL and ∆∠(pi) ≤ θL, then proton (or

protons in bin) pi are identified as having missed the object. The set, IL, composed of the

indices of all protons (or proton bins) i satisfying the EL and θL thresholds and subsequently

used in SC, is then defined as:

IL = { i ∈ I | ∆E(pi) ≤ EL ∧ ∆∠(pi) ≤ θL} (4.1)
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For all i ∈ IL, the line, Li, is defined as the chord connecting the points where

proton (or proton bin) i entered and exited the image spaceV. The set,Ai, is composed of

each voxel v j along the path Li, identified according to a maximum distance constraint d0

placed on the (user-defined) distance measure d(Li, v j); i.e. each voxel v j within distance

d0 of the line Li comprises the setAi:

Ai =
{

v j ∈ V
∣∣∣ d(Li, v j) ≤ d0

}
(4.2)

Therefore, the resulting hullH1 generated by SC is defined as:

H1 = V \ ∪i∈ILAi. (4.3)

Given these definitions, a pseudocode definition of the SC algorithm is as follows:

Algorithm 1 Silhouette Carving (SC)
1: IL ← ∅

2: for all i ∈ I do
3: if ∆E(pi) < EL and ∆∠(pi) < θL then
4: IL ← {IL, i}
5: end if
6: end for
7: for all v j ∈ V do
8: H1(v j)← 1
9: end for

10: for all i ∈ IL do
11: Ai ← ∅

12: for all v j ∈ V do
13: if d(Li, v j) ≤ d0 then
14: Ai ←

{
Ai, v j

}
15: end if
16: end for
17: H1 ← H1 \ Ai

18: end for
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The protons used as input to the SC algorithm were the same as those used in the

FBP thresholding approach, i.e. after applying statistical data cuts with the same bin sizes,

to remove unsuitable proton histories. The same image space and voxel dimensions were

also used for SC, the latter of which were used to define each proton path Li. A threshold

EL = 1.0 mm was placed on the mean WEPL of each bin, rather than the mean energy loss,

to identify proton bins for subsequent use in SC. If the mean WEPL of a bin satisfied the

threshold EL, the protons in that bin were identified as travelling exclusively through air;

the voxels v j along each Li (approximated by an SLP using the bin’s angle and displace-

ments), i.e. Ai, were excluded from the approximate hullH1. The algorithm developed to

identify the voxels intersected by an SLP is presented in Appendix B. No angular deviation

threshold was employed in the SC algorithm implemented for these investigations.

Previous work [36] demonstrated that, although rare relative to the sizes of the date

sets, some unsuitable proton histories survive statistical data cuts (particularly those that

pass near to or through a small amount of the object surface) and result in some lines

through the object mistakenly being removed from the hull H1. To account for such pos-

sibilities and refill these portions, an averaging filter with 5 × 5 structural element was

applied toH1, where the filter assigns voxels with neighborhood average exceeding 0.4 the

value 1 (TRUE) and 0 (FALSE) otherwise. The 0.4 threshold corresponds to 10 of the 25

neighboring voxels having value 1 (TRUE) before filtering, but this is allowed to vary as a

user-defined parameter.

4.3.3 Modified Silhouette Carving (MSC)

The first investigations of the SC algorithm used a WEPL threshold EL = 1.0 mm,

but it was quickly observed that this resulted in nearly all voxels in the image space being

carved from the hull, i.e. H1 = ∅, and the threshold was changed to 0.0 mm ≤ WEPL ≤

1.0 mm [36]. This resulted in highly accurate hull approximations from simulated data

sets, better than the FBP thresholding approach with both the noiseless and noisy data, but

was still inadequate for experimental data. Since there will inevitably be some unsuitable
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data that eludes statistical cuts and other attempts to remove undesired data, an effective

hull-detection algorithm must have some level of tolerance to their presence. The conclu-

sion drawn from this early work was that there were two basic options for nullifying, e.g.

averaging out, the impact of unsuitable data in future hull-detection development: (1) use

proton bin data, rather than individual protons, to identify the lines to carve along in the

SC algorithm or (2) develop alternative algorithms, either from scratch or as an adaptation

of SC. The former of these corresponds to the implementation of SC described above. The

latter led to an adaptation of SC, herein referred to as MSC.

MSC exploits the fact that the amount of unsuitable data remaining after cuts is only

a small fraction of the total number of proton histories. Unlike the SC algorithm, which

immediately removes all v j ∈ Ai from the hull H1, MSC maintains a running count of the

number of times, N j, a line Li passed through voxel v j. The assumption is that although

voxels inside the object may lie along one or more lines Li associated with unsuitable

proton data, the count N j for these interior voxels will be small relative to those that truly lie

outside the object. Furthermore, the unsuitable data do not contribute much to the count N j

of any voxel v j, whether inside or outside the boundary of the object, thereby reducing the

impact that unsuitable data can have. Therefore, MSC uses the N j to differentiate between

voxels within the object hull H and those outside of it (V \ H), thereby minimizing the

number of object voxels mistakenly excluded from the approximate hullH1.

The MSC algorithm (see Algorithm 2 below) seeks an approximation of the hull

H , herein referred to asH2, by deferring the voxel carving steps until the number of times,

N j, each voxel v j was identified as external to the object has been determined. Then for

each voxel v j ∈ V, C(v j) is defined as the set composed of the indices of each line, Li, that

passed through v j:

C(v j) =
{

i ∈ IL

∣∣∣ v j ∈ Ai

}
(4.4)
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Similarly, for each voxel v j, the set, B(v j), composed of each voxel, w j, neighboring

v j is defined as:

B(v j) =
{

w j ∈ V
∣∣∣ d(v j,w j) ≤ 1

}
. (4.5)

Let N(v j) = |C(v j)| and N(w j) = |C(w j)| be defined as the cardinalities of C(v j) and

C(w j), respectively. Given a strict threshold Nt on the cardinality difference N(v j) − N(w j),

the approximate hullH2 generated by MSC is given by:

H2 =

{
v j ∈ V

∣∣∣∣∣∣ max
w j∈B(v j)

N(v j) − N(w j) < Nt

}
. (4.6)

Unlike the FBP thresholding and SC algorithms, the MSC algorithm was specifi-

cally designed to be performed prior to the statistical data cuts that remove the bulk of the

unsuitable proton histories. The reason for this deviation with the MSC algorithm is that

it was developed with the objective of providing a hull-detection algorithm that is toler-

ant to the unsuitable proton histories present in data acquired from an experimental pCT

scanner. A pseudocode definition of the MSC algorithm, written in terms of the preceding

definitions, appears in Algorithm 2.

The implementation of the MSC algorithm used individual protons histories, se-

lecting as those that satisfied the threshold WEPL ≤ −1.0 mm, rather than the proton bins

used in SC. ns on whether protons missed the object were based on analysis of individual

WEPL values rather than bin averages. Thus, proton histories were not binned in this case.

Proton histories whose WEPL values were less than 1.0 mm were assumed to have missed

the object, which is the same WEPL cutoff value used for SC. A strict cardinality differ-

ence threshold Nt = 50 was used to generate the results presented here since this was found

to be insensitive to the varying sizes of the data sets. Note that a threshold on individual

cardinalities, N(v j), was found to vary too much between slices and phantoms, so defining

an a priori threshold in future scans of difference objects was deemed to be infeasible and
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abandoned. On the other hand, the cardinality difference, N(v j) − N(w j), between neigh-

boring voxels proved to be far more stable and a more robust means for differentiating hull

voxels from surrounding (air) voxels.

Algorithm 2 Modified Silhouette Carving (MSC)
1: IL ← ∅

2: for all i ∈ I do
3: if ∆E(pi) < EL and ∆∠(pi) < θL then
4: IL ← { IL, i }
5: end if
6: end for
7: for all v j ∈ V do
8: H2(v j)← 1; N(v j)← 0
9: end for

10: for all i ∈ IL do
11: for all v j ∈ V do
12: if d(Li, v j) ≤ d0 then
13: N(v j)← N(v j) + 1
14: end if
15: end for
16: end for
17: for all v j ∈ V do
18: for all w j ∈ B(v j) do
19: if N(v j) − N(w j) ≥ Nt then
20: H2(v j)← 0
21: end if
22: end for
23: end for

4.3.4 Space Modeling (SM)

Another hull-detection technique, developed along with MSC as alternatives to SC,

is SM. Rather than using protons that miss the object to carve away voxels external to

the object hull, SM only uses protons that pass through the object to construct, or model,

an approximate hull. Protons passing through the object tend to experience increasing

amounts of scattering and energy loss as their penetration depth within the object increases.

Hence, similar to the selection of protons for SC, SM can identify protons that passed
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through the object according to their energy loss (WEPL) and/or angular deviations. In this

case, SM selects protons that exceed a minimum bound (rather than a threshold) placed on

the energy loss (WEPL) and angular deviation measurements. In other words, the protons

that are selected for use are those whose energy loss (WEPL) and/or angular deviations

exceed the associated minimum constraints defined for these measures.

Protons that satisfied the minimum energy and/or angular deviation constraints are

subsequently projected along straight lines, defined according to their individual position

and angle measurements, and the voxel intersected along these paths are determined. Simi-

lar to MSC, SM maintains a record of the number of times, M j, each voxel v j is intersected

by a proton passing through the object, thereby reducing the impact of unsuitable histories

on the misidentification of protons passing through the object. Unlike MSC, however, this

count is a requirement with SM since the projected lines pass through both voxels within

the object and external to it, so it is the values of M j for each voxel that are used as the

entire basis for constructing an approximate hull.

As predicted, it was found that the M j decline more sharply at the interface between

the object and its surrounding air than anywhere else. Hence, for each tomographic slice,

SM proceeds to automatically locate the voxel edge with largest gradient in M j and sub-

sequently records the largest value of M j on this edge as Mt. These Mt values define the

threshold applied to the M j of each voxel v j in that slice to select voxels for membership in

the approximate hull; i.e. for each slice, every voxel v j for which M j ≥ Mt is defined as be-

longing to the object hull. After performing this procedure for each slice, the approximate

hull has been constructed.

The user-defined parameters used in the following definition of the SM algorithm,

and absent from preceding definitions, are defined as follows:

• EH: minimum energy loss constraint for identifying protons traversing the object

• θH: minimum angular deviation constraint for identifying protons traversing the

object
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The SM algorithm (see Algorithm 3 below) seeks a robust approximation of the

hull,H3, by backprojecting the silhouette of the object and recording the number of times,

M j, each voxel v j was intersected by a backprojected line. If ∆E(pi) or ∆∠(pi) exceed

the minimum constraints EH and θH, respectively, then the proton (or proton bin), pi, is

considered to have traversed the object. The set, IH, composed of the indices of these

protons (or proton bins) is then defined as:

IH = { i ∈ I. | ∆E(pi) > EH} . (4.7)

In this case (SM), for i ∈ IH, let Li be the line that connects the entry and exit points of

the ith proton (or proton bin) traversing the object (rather than missing the object, as in SC

and MSC). Given a (possibly different) distance measure d(·, ·) and a maximum distance

constraint d0, the set,Ai, composed of each voxel v j along Li is defined as:

Ai =
{

v j ∈ V
∣∣∣ d(Li, v j) ≤ d0

}
, (4.8)

Then for each voxel v j ∈ V, C(v j) is defined as the set composed of the indices of

each line, Li, that passed through v j:

C(v j) =
{

i ∈ IH

∣∣∣ v j ∈ Ai

}
. (4.9)

Let M(v j) = |C(v j)| and M(w j) = |C(w j)| be defined as the cardinalities of C(v j)

and C(w j), respectively. Given a strict minimum constraint Mt on the cardinality M(v j), the

approximate hullH3 generated by SM is given by:

H3 =
{

v j

∣∣∣ M(v j) > Mt

}
(4.10)
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Given the preceding definitions, a pseudocode definition of the SM algorithm is as

follows:

Algorithm 3 Space Modelling (SM)
1: IH ← ∅

2: for all i ∈ I do
3: if ∆E(pi) > EH or ∆∠(pi) > θH then
4: IH ← { IH, i}
5: end if
6: end for
7: for all v j ∈ V do
8: H3(v j)← 0; M(v j)← 0
9: end for

10: for all i ∈ IH do
11: for all v j ∈ V do
12: if d(Li, v j) ≤ d0 then
13: M(v j)← M(v j) + 1
14: end if
15: end for
16: end for
17: MaxSlope← 0, index← 0
18: for all v j ∈ V do
19: for all w j ∈ B(v j) do
20: if M(v j) − M(w j) ≥ MaxSlope then
21: MaxSlope← M(v j) − M(w j); index← v j

22: end if
23: end for
24: end for
25: Mt ← M(index)
26: for all v j ∈ V do
27: if M(v j) > Mt then
28: H3(v j)← 1
29: end if
30: end for

As with the MSC algorithm, unsuitable proton histories were not cut prior to hull-

detection and protons traversing the object were identified by the WEPL values of indi-

vidual protons (rather than mean WEPL values, as with SC).A minimum energy constraint

EH = 5.0 mm was used, effectively eliminating the potential misidentification of protons
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that actually missed the object. The neighborhood cardinality comparison used in MSC

was not effective in SM. Instead, the maximum distance constraint Mt was determined, for

each individual slice, using a modified version of the Canny edge-detection algorithm [46].

4.4 Results

4.4.1 Simulated Data Results

Figure 4.3 shows, for each hull detection algorithm, the binary image of the approx-

imate (NEO object) hull generated from the noiseless simulated data. Each image slice is

200 voxels × 200 voxels, representing a 200 mm × 200 mm area. Table 4.1 summarizes

the performance of each algorithm in terms of computation time and the quality of the hull

approximation. Hull approximation quality is evaluated in terms of (1) the number of tar-

get object (NEO) voxels missing from the approximation and (2) the number of voxels in

the approximate hull that do not belong to the target object (NEO) hull. This evaluation is

performed using a voxel-by-voxel comparison of the digital NEO head phantom and each

approximate hull.

(a) Phantom (b) FBP (c) SC (d) MSC (e) SM

Figure 4.3: (a) Original digital NEO head phantom; (b)-(e) approximate object hulls gen-
erated by each hull-detection algorithm from the noiseless simulated data set.

Table 4.1: Performance comparison of hull-detection algorithms for noiseless simulated
data set

Measurement FBP SC MSC SM
Computation Time 16.70 s <0.10 s 5.95 s 5.52 s

Missing Voxels 50 0 0 0
Extra Voxels 116 345 488 5802
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The same performance analysis, for each algorithm, was applied to the hull approx-

imations from the noisy simulated data set. The results of the noisy simulated data analysis

are shown in Figure 4.4 and in Table 4.2, respectively.

(a) Phantom (b) FBP (c) SC (d) MSC (e) SM

Figure 4.4: (a) Original digital NEO head phantom; (b)-(e) approximate object hulls gen-
erated by each hull-detection algorithm from the noisy simulated data set.

Table 4.2: Performance comparison of hull-detection algorithms for noisy simulated data
set

Measurement FBP SC MSC SM
Computation Time 16.72 s <0.10 s 6.14 s 5.86 s

Missing Voxels 88 0 0 0
Extra Voxels 831 461 716 4563

The FBP thresholding approach was the only algorithm, for both the noiseless and

noisy simulated data sets, that generated an approximate hull that did not include every

voxel of the NEO object, i.e. voxels were missing from the approximate hull. Additionally,

the streak artifacts often seen in FBP images resulted in voxels well outside the object

being misidentified as part of the hull, yielding similar artifacts in the hull approximations

in Figure 4.3(b) and, particularly, Figure4.4(b).

On the other hand, the SC, MSC, and SM algorithms all successfully identified

each voxel belonging to the target object. The primary difference between the three hull-

detection algorithms is the number of voxels that were misidentified as belonging to the

object, which varied considerably. SC generated the fewest and SM generated, by far, the

most, whereas MSC performed close to SC and considerably better than SM. With the
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noiseless simulated data, the FBP thresholding approach generated fewer extra voxels than

any of the three hull-detection algorithms, but with the noisy data, it generated the second

most (after SM) extra voxels.

In terms of computational performance (see Tables 4.1 and 4.2), SC was by far

the fastest with computation times two orders of magnitude lower than any of the other

algorithms. MSC and SM, as could be predicted given the additional steps they perform

compared to SC, were slower than SC but comparable to one another. On the other hand,

the FBP thresholding approach was consistently slower than any of the hull-detection algo-

rithms. As a full image reconstruction algorithm, which must subsequently be thresholded

to approximate the object hull, it is understandably slower.

4.4.2 Experimental Data Results

Figure 4.5 shows, for each hull detection algorithm, the binary image of the approx-

imate (pediatric head phantom object) hull generated from the experimental pCT data set.

Each image slice is 192 voxels × 192 voxels, representing a 200 mm × 200 mm area. Note

that a direct voxel-by-voxel comparison is not possible in this case since there is no “true”

image of the head phantom to compare results to.

(a) FBP (b) SC (c) MSC (d) SM

Figure 4.5: (a)-(d) Object hull approximations generated by the various hull-detection al-
gorithms using the experimental data set from the scan of the pediatric head phantom.

As with the simulated data, the FBP thresholding approach generated an approxi-

mate hull containing artifacts, more so than with the simulated data, and with missing target

object voxels. The approximate hull also contains three of the aforementioned “holes” in
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the interior of the hull, corresponding with the (low RSP) nasal passages, which in actuality,

is only two passages separated by the nasal septum.

The SC and MSC algorithms (Figures 4.5(b) and 4.5(c), respectively) both gen-

erated an approximate hull that visually closely matches the shape of the pediatric head

phantom and are free of artifacts. The SM algorithm, however, generates an approximate

hull (Figure 4.5(d)) that is clearly too large and doesn’t appear to match the shape of the

head phantom well.

4.5 Discussion

The development of the three hull-detection algorithms investigated as potential

alternative to FBP-based object detection is an extension of early work [36]. This early

work demonstrated that the number and spatial/angular distribution of proton histories in

contemporary pCT data sets was sufficient for carving voxels at the resolution of typically

pCT images, i.e. there was enough coverage of the image space and enough projection

lines (Li) generated to completely carve voxels out to the edges of the image. However,

for experimental pCT data, the SC algorithm generated hull approximations that indicated

protons traversing the object had been misidentified as missing the object and subsequently

used to errantly carve out voxels actually belonging to the target object. Two sources were

found to explain this performance deficiency: (1) the WEPL value threshold used to iden-

tify protons was too inclusive and (2) proton histories unsuitable for image reconstruction

also interfered with hull-detection. The results of the investigations of hull-detection algo-

rithms presented here indicate that the issues encountered with the original SC algorithm

can potentially be eliminated.

To isolate the impact of unsuitable proton histories on SC, the statistical data cuts

performed as part of preconditioning image reconstruction were applied prior to perform-

ing SC, thereby eliminating all identifiable unsuitable data. The binned proton histories

associated with statistical cuts were retained for use in the SC algorithm, where each bin’s

mean WEPL value was used to identify protons missing the object, rather than individual
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WEPL values as had been done previously. To account for potential missing voxels in the

interior of the object hull, a blurring filter was used to “fill” such holes and enlarge the

outer boundary slightly. These advancements were shown to be effective for their intended

purpose.

Other schemes for overcoming the issues encountered in early SC work also led to

the development of two novel hull-detection algorithms: MSC and SM. These continued

the use of individual proton histories for identifying protons that miss the object as in the

early SC work. Similarly, unsuitable data was not removed from consideration for MSC

and SM. For the simulated data sets, MSC and SM both generated approximations of the

NEO hull that contained every voxel of the NEO object. It was not possible to determine

this for the hull approximations from experimental data and remains to be investigated.

However, the results suggest that the binning of protons and removal of unsuitable data is

not a requirement of MSC or SM. This makes it possible to perform hull-detection with

MSC or SM in an online mode setting during pCT scans. Their computational inefficiency

relative to SC would be moot in this case, since hull-detection would be complete prior

to the point in reconstruction when SC can be used. The immediate availability of an

approximate hull after a pCT scan is an attractive property of the MSC and SM algorithms.

For these data sets, SC appears to have the superior performance and is certainly

a viable hull-detection algorithm. It is also clear that SM is unlikely to be a viable option

since its projection paths intersect both voxels internal and external to the hull, making

it difficult to differentiate between the two. However, there remains much to investigate

of MSC and its performance approached that of SC in terms of hull-detection accuracy.

The scheme for converting the voxel intersection counts is not quite mature and has am-

ple opportunity for improvement. Whether energy constraints can be adjusted to improve

performance remains to be investigated, but it is clear that the FBP threshold approach

is inferior to both SC and MSC in terms of computational efficiency and quality of hull

approximations.

39



4.6 Conclusion

This work has investigated the suitability of two existing and two new hull-detection

algorithms for pCT reconstruction. The results obtained with SC, MSC, and SM are

promising and represent a significant step toward an effective and robust hull-detection

algorithm. SC performed best, but MSC and SM could be further improved. FBP was not

adequate for efficient and accurate hull-detection.
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CHAPTER FIVE

Most-Likely Path (MLP): Simplifications and Implementation Design

Portions of the content presented in the following Chapter is currently being pre-

pared, but has not yet been submitted or approved, for publication. This forthcoming pub-

lication will serve as a companion to, and provide the remaining details of current pCT

technology which were not presented in, the recently published journal article:

B. E. Schultze, P. Karbasi, C. Sarosiek, G. Coutrakon, C. E. Ordo˜nez, N. T. Ka-
ronis, K. L. Duffin, V. A. Bashkirov, R. P. Johnson, K. E. Schubert, and R. W. Schulte,
“Particle-tracking proton computed tomography—data acquisition, preprocessing, and pre-
conditioning,” IEEE Access, vol. 9, pp. 25 946–25 958, 2021.

5.1 Introduction

The spatial resolution that can be obtained with pCT depends on how accurately

proton paths through the object can be determined from their entry and exit information.

The MLP formalism provides for more accurate approximations of proton paths through

an object than those approximated with other means (e.g. cubic splines) [50]. Since the

definition of the object produced by hull detection is not in the form of an equation defining

the object boundary, but a binary object image, there is no algebraic solution for the proton’s

entry and exit points. Hence, the entry and exit points are calculated using the same 3D-

DDA (voxel walk) algorithm developed for hull-detection (see Appendix B). The voxel

walk begins at the points where the proton enters and exits the reconstruction volume,

which are calculated early in preconditioning [25]. The voxel walk proceeds from one

voxel intersection to the next until a voxel belonging to the binary object is encountered.

The edge of the voxel at the interface between the object and surrounding air is used defined

the coordinates of the entry and exit points. These two points define the starting- and end-

point of the MLP and the subsequent iterative image reconstruction is performed between

these two points.
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In the initial image reconstruction program [51, 29], reconstruction was also per-

formed along the portions of the entry and exit SLPs between the object and reconstruction

cylinder. This was partially motivated by the fact that since hull-detection was not per-

formed during preconditioning, it was necessary to employ some method to remove the

artifacts outside the object in the FBP image and reduce their RSPs down close to zero.

This can indeed be accomplished by reconstructing along the SLP portions of a proton

path, but the WEPL measurement associated with the proton should not be used to do so.

A WEPL calibration procedure is performed prior to each scan to account for potentially

time-varying beam line conditions. Calibrated WEPL values are defined such that, on av-

erage, WEPL = 0 when there is no object present. In other words, the air outside the object

is accounted for in the WEPL calibration. Hence, WEPL values associated with proton

histories correspond to energy losses solely within the object. By considering the WEPL

measurement to be associated with the MLP and the entry/exit SLP, the WEPL of each

proton traversing the object was undervalued and, consequently, the convergence rate of

feasibility-seeking is reduced.

Of course, there are a large number of protons that pass solely through air and help

reduce the RSPs of voxels outside the object without affecting internal WEPL assumptions.

This helps to drive the RSP of voxels outside the object towards zero fairly quickly, thereby

reducing the negative impacts of assigning WEPL to the SLPs. However, although the neg-

ative impacts are primarily restricted to the first few iterations, since it does not conform

to theory and can only be detrimental, this was corrected in the BU reconstruction soft-

ware. Since hull-detection provides a binary object image, the voxels outside the object are

removed from consideration by applying the hull as a mask to the FBP image.

Protons not removed by the preconditioning cuts [25] are influenced by repeated

small-angle multiple Coulomb scattering (MCS), resulting in a curved path [52, 18]. There

are no abrupt changes in direction due to large-angle scattering events as these are likely

to be removed by the statistical cuts described in [25]. The MLP formalism was developed
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assuming a bivariate normal distribution of T and Θ as a function of depth to describe

proton scattering in water [53, 54]. The resulting 2-dimensional vector yMLP that maximizes

the prior and posterior likelihoods results in the following formula [19]:

yMLP =

T1

Θ1

 =
(
Σ−1

1 + RT
1Σ
−1
2 R1

)−1 (
Σ−1

1 R0~y0 + RT
1Σ
−1
2 ~y2

)
(5.1)

where

~y0 =

T0

Θ0

 R0 =

1 U1 − U0

0 1

 Σ1 =
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2
T1

σ2
T1Θ1

σ2
T1Θ1

σ2
Θ1

 (5.2)

~y2 =

T2

Θ2

 R1 =

1 U2 − U1

0 1

 Σ2 =

 σ
2
T2

σ2
T2Θ2

σ2
T2Θ2

σ2
Θ2

 (5.3)

The elements of the covariance matrices Σ1 and Σ2, given by σTi , σΘi , andσTΘi for

i = 1 and i = 2, respectively, are defined as:

σ2
T1

(U0,U1) = C(U1 − U0)

U1∫
U0

(U1 − U)2

β2(U)p2(U)
dU
X0

(5.4)

σ2
Θ1

(U0,U1) = C(U1 − U0)

U1∫
U0

1
β2(U)p2(U)

dU
X0

(5.5)

σ2
T1Θ1

(U0,U1) = C(U1 − U0)

U1∫
U0

U1 − U
β2(U)p2(U)

dU
X0

(5.6)
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and

σ2
T2

(U1,U2) = C(U2 − U1)

U2∫
U1

(U2 − U)2

β2(U)p2(U)
dU
X0

(5.7)

σ2
Θ2

(U1,U2) = C(U2 − U1)

U2∫
U1

1
β2(U)p2(U)

dU
X0

(5.8)

σ2
T2Θ2

(U1,U2) = C(U2 − U1)

U2∫
U1

U2 − U
β2(U)p2(U)

dU
X0

(5.9)

where

C(U) = E2
0

[
1 + 0.038 ln

(
U
X0

)]2

(5.10)

with E0 = 13.6 MeV/c and X0 = 36.1 cm is the radiation length of water.

5.2 Mathematical Improvements of MLP Calculations

The scattering of the proton at a particular depth depends on its kinetic energy,

which decreases as the proton traverses the object. Accurate calculation of the proton

energy without a priori knowledge of the object composition is computationally expensive

and currently not implemented. Hence, scattering calculations assume the object has a

homogeneous composition of water; the energy-dependent term was approximated by a

5th degree hexanomial as follows:

1
β2(U)p2(U)

≈ a0 + a1U + a2U2 + a3U3 + a4U4 + a5U5 (5.11)

The coefficients of this hexanomial are determined by conducting Monte Carlo sim-

ulations for protons with the expected accelerator energy and performing a best fit analysis

to the observed scattering. Note that although the fit obtained for a particular proton energy
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remains adequate for a reasonable range of energies, such simulation studies should be per-

formed separately for significant energy differences, particularly for lower energies where

even small energy differences have a more significant impact on scattering. The coefficients

obtained for 200 MeV protons are:

• a0 = 7.457 × 10−6

• a1 = 4.548 × 10−7

• a2 = −5.777 × 10−8

• a3 = 1.301 × 10−8

• a4 = −9.228 × 10−10

• a5 = 2.687 × 10−11

Equations 5.4-5.9 are translationally and rotationally invariant. This provides free-

dom in the definition of the local coordinate system (t, u, θ) of each proton used for the

proton’s MLP calculation. This has the advantage that many of the terms in the polynomial

after integration become zero and the yMLP terms simplified by assigning the origin at the

object entry point and aligning the coordinate system with the incoming proton trajectory,

or mathematically, u0 = t0 = 0 and θ0 = 0 (Figure 5.1).

Figure 5.1: Illustration of the MLP in the t-u plane of the proton’s reference system. The
proton MLP starts at u0 = t0 = 0 and is initially parallel to the u-axis (θ0 = 0). A similar
path can be drawn in the u-v plane.
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Replacing the energy dependent term with the polynomial approximation of Equa-

tion 5.11 and expanding the integral yields the following equations:

σ2
t1(u0, u1) = C(u1)

u1∫
u0

(u1 − u)2

β2(u)p2(U)
du
X0

= C(u1)P1(u1) (5.12)

σ2
θ1

(u0, u1) = C(u1)

u1∫
u0

1
β2(u)p2(u)

du
X0

= C(u1)P2(u1) (5.13)

σ2
t1θ1

(u0, u1) = C(u1)

u1∫
u0

u1 − u
β2(u)p2(u)

du
X0

= C(u1)P3(u1) (5.14)

and

σ2
t2(u1, u2) = C(u2 − u1)

[
P1(u2) − u2

2P3(u1) + 2u2P4(u1) − P5(u1)
]

(5.15)

σ2
θ2

(u1, u2) = C(u2 − u1) [P2(u2) − u2P3(u1) + P4(u1)] (5.16)

σ2
t2θ2

(u1, u2) = C(u2 − u1) [P3(u2) − P3(u1)] (5.17)

where the polynomials PN(u) are defined as follows:
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These equations are evaluated at incrementally increasing depths within the object,

over the open interval u1 = (0, u2), to produce a sufficiently smooth series of coordinates

to reliably identify the voxels intersected by the MLP. The PN(u) and C(u) terms are rela-

tively expensive to compute, particularly given the number of depths u1 at which they must

be recalculated. This is compounded by the cost of manipulating the memory for its data

dependencies and output path data. With respect to the other preconditioning and recon-

struction tasks, MLP represents the dominant portion of reconstruction time. Depending on

the computational hardware used for reconstruction, the explicit implementation of these

equations can incur a prohibitive cost. However, several approaches can be employed to

optimize computation and reduce the resource burden, which will be discussed in detail in

Chapter 5.4.

The impact that the coordinate system translations and rotation have on the vectors

~y0 and ~y2 characterizing the path of a proton at the object entry and exit points is derived

in Appendix C.3.2. The resulting equations which are relevant to the MLP calculations are

given by:

~y0 =

t0

θ0

 =

00
 (5.19)

R0~y0 =

00
 (5.20)

~y2 =

t2

θ2

 =

sin Θ0 (U2 − U0) + cos Θ0 (T2 − T0)

Θ2 − Θ0

 (5.21)

5.3 Converting MLP Data into Rows of System Matrix

For each proton i, we have the following relation:

exiti∑
entryi

∆`i, jRSP j = WEPLi (5.22)
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where RSP j is the RSP of object voxel j, ∆`i, j is the path length of the ith proton within

voxel j, and WEPLi is the WEPL measured for the ith proton. The objective of pCT

reconstruction is to determine the RSP j from the WEPL measurements and each proton’s

path. This problem takes the well-known form of Ax = b, where Equation 5.22 is the ith

equation of the linear system.

For an acquisition scan of m individual protons and an n-dimensional RSP vector

space x, the system matrix A is an m × n matrix whose components are ai, j = ∆`i, j. Voxels

that are not intersected by the proton are assigned ai, j = 0. Each voxel j intersected by the

ith proton is determined by its MLP. The MLP is divided into incremental steps ∆u and the

corresponding voxel j is recorded at each discrete depth u1 = u0+k∆u. Note that depending

on the spacing ∆u, voxels intersected with ai, j < ∆u can be missed. Hence, steps should

be made based on the ai, j lengths deemed important to be included in reconstruction. Note

that a voxel can be encountered at multiple consecutive steps but is only recorded once.

Calculating the exact path length ai, j of the MLP for each intersected voxel requires

the coordinates of its entry and exit points and an integrable expression for the curved

path. This is a nontrivial task given the complexity of the analytical expression governing

the MLP. Since the MLP has low curvature, the path length is well approximated using a

straight-line path inside the voxel, herein referred to as the chord length.

The endpoints of the chord are also difficult to determine. It is possible to employ

an iterative search algorithm, such as successive projections onto the voxel boundary plane.

A parametric expression for the MLP could also be formulated, allowing the endpoints to

be calculated analytically. However, performing such tasks for each intersected voxel is

computationally expensive. Thus, the approach currently in use is that of an effective mean

chord length, as described and formulated in (Mean Chord Length 2009) [].

The effective mean chord length is calculated for each proton i, based on voxel

dimensions, the MLP step length ∆u, and representative T − U and U − V angles for the

overall MLP trajectory with respect to the image coordinate system (X,Y,Z). The derivation
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considers the chord length in the T − U axial plane and applies a 3D scaling factor for the

U − V skew, taking into account the probability of an undetected voxel, i.e. an MLP step

skips over an intersected voxel. The objective is for the sum of all the ai, j to be a good

approximation of the total path length. The approach is to augment the mean detected

chord length with a correctional term given by the mean undetected chord length weighted

by the probability of undetection. The derived expression for the effective mean chord

length, ∆̄eff, is:

∆̄eff(θ) = ∆̄d(θ) + pu(θ)∆̄u(θ) (5.23)

where ∆̄d is the mean detected chord length, ∆̄u is the mean undetected chord length, pu is

the probability of undetection, and θ is the effective angle of the MLP.

The effective mean chord length ∆̄eff is subsequently assigned to each voxel j inter-

sected and successfully detected, i.e. ai, j = ∆̄eff∀ j ∈ MLPi(∆u).

Note that the inaccuracies in the approximated ai, j effectively increases the inconsis-

tency in the data and, hence, the size of the feasible region. This is an undesired effect, but

it was shown to have minor impact on the solution [55]. This may not continue to be true

in the future, particularly once the convergence rate of the pCT reconstruction algorithms

can be accelerated.

5.4 Computational Design and Implementation of MLP Calculations

The simplified mathematical expressions presented in Section are computationally

more efficient to evaluate in software, even in the case of a naive implementation lacking

basic software design principles, due simply to the fact that there are fewer terms and some

of the remaining terms are common to two or more scattering elements. For example, note

that several of the PN(u) terms appear as components of multiple scattering elements (e.g.

P3(u1) appears in four elements), providing an opportunity to compute these terms once

per MLP step to reduce the number of compute operations. The PN(u2) terms need only
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be calculated once per MLP (proton) since u2 remains constant. For those polynomials

that need to be evaluated, rather than naively computing the individual terms of a polyno-

mial separately, it is considerably more efficient to evaluate a polynomial using Horner’s

rule [56]:

a0 + a1x + a2x2 + a3x3 + · · · + anxn

= a0 + x
(
a1 + x

(
a2 + x

(
a3 + · · · + x(an−1 + x an) · · ·

)))
. (5.24)

Furthermore, since the majority of factors comprising the MLP are a combination

of constants and depth 0 < u1 < u2 dependent terms, the operation count can be drastically

reduced by precalculating C(u) and the PN(u) over a sufficiently large range of depths

(e.g., the longest feasible path within the reconstruction cylinder). Submillimeter depth

granularity yields a lookup table (LUT) occupying ≈ 10 MB for each tabulated term, which

fits easily in constant (or texture) GPU memory for quick and easy access. Accuracy within

numerical error can be achieved without dipping into micrometer granularity.

The system matrix A ∈ R+
m×n, with typical values of m ∼ 350×106 proton histories

and n ∼ 2 × 106 voxels, consumes a large volume of data when the entire matrix is stored

in memory. This is alleviated by the fact that any single proton only passes through a small

number of the n voxels, resulting in a highly sparse A, but the size is still a challenge for

parallelization given current GPU capacities. Fortunately, construction of the entire A ma-

trix is not required for image reconstruction, since the iterative reconstruction algorithms

project onto individual rows of A, either one row at a time or a group of rows simultane-

ously. The fact that projections are independently performed onto each hyperplane pro-

vides a natural framework for the parallelization of the image reconstruction algorithms:

each row of the system is assigned to a single GPU thread on which all calculations for

that row are performed. This also provides some leeway in how row (hyperplane) data is

managed and effectively parallelized by the image reconstruction software.
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There are a number of schemes for storing a sparse matrix more efficiently, e.g.

compressed sparse row (CSR, a.k.a. compressed row storage (CRS) or Yale) format or

compressed sparse column (CSC, a.k.a. compressed column storage (CCS)) format and

variations of both. There are other sparse matrix formats, but they are typically more

useful in efficient matrix construction, not for the purpose of efficiently accessing matrix

elements or performing efficient matrix operations as their use in pCT would demand. The

modern CUDA platform for (Nvidia) GPU computing now includes support for sparse ma-

trices and there are a number of highly efficient, task specific CUDA implementations made

freely (e.g. via Creative Commons license) available by members of the GPU computing

community. Such resources were an attractive option in the development of an efficient

MLP computation routine, but the potential use of these was abandoned after careful con-

sideration. If, at some point in the future, pCT can make use of the entire system matrix

A for some, as yet, unidentified benefit, sparse matrix formatting schemes would become

highly beneficial.

At present, however, operations performed on rows of A are computationally inde-

pendent of each other. Aside from the accumulation (i.e. summation operations) of update

contributions from each row, the rows are also data independent. The objective MLP data

represents the set of voxels intersected by the corresponding proton, which is simply a bi-

nary assignment of set membership, and their associated path (chord) lengths. However,

the path lengths are currently assigned according to the effective mean chord length, which

is calculated based on the path angle and subsequently assigned to each voxel intersected

by the path. Hence, it is redundant to store this path length for every voxel. Therefore,

the practical objective is to determine an efficient scheme for storing the set of intersected

voxels.

Set membership is a logical, or binary, property whose explicit (Boolean) stor-

age format would identify an intersected voxel by the value one (TRUE) and the value

0 (FALSE) for all other voxels. An important caveat is that the order of the members of
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this set is inconsequential since summations are unaffected by the order of its terms; i.e.

there is no restriction on the order of the rows ~ai, which can be inferred from Equation 3.1

and remains true for other iterative projection methods used in pCT (e.g. block-iterative

DROP, component-averaged row projections (CARP)).

Consideration of each of the aforementioned properties led to the development of

a row storage format with a similar scheme as the list of lists (LIL) format. The LIL

format stores, for each row, a list composed of tuples representing the column index and

corresponding value. Unlike the LIL format, the lists for each row are stored separately,

not stored in a higher-level list. Consequently, since each column of a row has the same

value, the format chosen for pCT is a list solely composed of column indices, where each

index uniquely identifies a particular voxel in the image space. This will henceforth be

referred to as the pCT row (data) format. At some point in pCT development, path lengths

will likely be calculated for each individual voxel. The pCT row format can be extended

to accommodate this in one of two ways: either by storing the column index/value tuple

as in LIL or as an entirely separate, but equivalently ordered, list. The CUDA platform

has increased support for C++ data structures, but this flexibility often comes at the cost of

efficiency. Therefore, the most reliably efficient option is to store the column index lists,

and column value lists if applicable, as individual (C language) arrays. Each array is stored

in the local memory of the GPU thread that allocated it, which provides for considerably

more efficient access to the array data.

Given an MLP data storage scheme, the next design decisions are the parallelization

of MLP computations and the efficient communication of its output path data. Solutions of

linear A~x = ~b systems whose system matrix A or measurement vector ~b are composed of

elements with uncertain values, often seek to iteratively reduce the uncertainties and update

the system. This is not currently employed in pCT, so the system matrix A remains unal-

tered throughout iterative image reconstruction. Hence, the ideal situation is calculating
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MLP data once and then storing and reusing it throughout the remainder of reconstruc-

tion. Unfortunately, this currently isn’t a feasible option because there simply isn’t enough

global GPU memory to store all m rows, even by utilizing the pCT row format. The pri-

mary reason for this is the sheer amount of data required as input to MLP calculations.

In fact, although FS-DROP is theoretically a fully-simultaneous algorithm, the number of

hyperplanes (rows) that can be projected onto at one time. The GPU memory constraint

results in an inability to explicitly perform FS-DROP in the form defined by Equation 3.1.

The actual implementation of FS-DROP on a GPU currently requires the m hyperplanes

to be partitioned into groups that will each fit on the GPU, then successively process each

group. This implementation is mathematically equivalent to FS-DROP but takes the form:

~x(k+1) = ~x(k) + λD(k)
G∑

g=1

S g∑
i=1

bi −
〈
~ai, ~x(k)

〉
∥∥∥~ai

∥∥∥2 ~aT
i (5.25)

D(k) = diag
1≤ j≤n

(
min

(
1, 1

d(k)
j

))

where G is the number of groups (i.e. partitions), g is the group index, and all other param-

eter remain the same. The GPU memory constraint also places limits on block sizes and

string lengths in other pCT reconstruction algorithms, but these details will not add to the

current discussion and have been omitted.

One option that was considered was calculating the MLP data on the host (i.e.

CPU) once and storing the results in host memory, which is typically large enough to

accommodate this. This data would then be transferred to the GPU each time it was needed

for image reconstruction. Alternatively, MLP data could be generated on the GPU for each

group g, then transferred to the host and accumulated from all G groups. In this case, all

m rows would be stored on the host, more like the LIL format except in the presumed

data structure. Implementing this entails a fairly complicated programmatic design, which

differs between first iteration and all other iterations, but it is a manageable difficulty. An

attractive consequence of such an approach is that most of the data transferred to the GPU
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for MLP calculations doesn’t need to be retained after the first iteration. This is only true

for the current approach using effective mean chord length, however, otherwise it would

be needed to calculate individual path lengths. This is also only applicable if the system

matrix A is constant, not if it is improved and updated.

Given some of the shortcomings of this approach, especially in terms of future com-

patibility, ultimately it was deferred until it could be determined whether the impact of all

of the MLP work presented here yielded sufficiently efficient reconstructions or not. To

this end, tremendous effort was put into minimizing the number of operations performed

in calculating MLP, going so far as to include LUTs for sine and cosine values and reusing

variables in tu− and uv−coordinate plane MLP calculations. The results were an 80%+

reduction in total compute operations and among the remaining operations, several were

simply LUT accesses, exceeding even the most optimistic expectations. With this imple-

mentation, the Baylor pCT software was able to perform image reconstructions under the

clinical viability constraint of 10 minutes for the first time.

5.5 Conclusion

The addition of the MLP formalism, which models proton behavior within a target

volume, represented an important step forward in the development of pCT. The MLP more

accurately approximates the path of a proton through an object than other methods, such as

cubic splines, thereby increasing the achievable spatial resolution. Although the improved

MLP model is only moderately more accurate the cubic splines and much more computa-

tionally demanding, since spatial resolution is a key measure of image quality and the most

commonly cited deficiency of pCT, the additional computational cost of MLP was deemed

to be an acceptable tradeoff.

Calculating each proton’s MLP is the most compute intensive task of pCT and has

been the primary factor affecting pCT image reconstruction time. The objective of the work

presented in this Chapter was to alleviate the resource and computational burden of MLP

calculations as part of an effort to drive reconstruction times below the practical 10 minute

54



limit. The combination of mathematical manipulations of MLP equations (Section 5.4)

and a computationally efficient MLP implementation (Section 5.4) resulted in image re-

construction times that were under 10 minutes for the first time.

The effectiveness of the MLP implementation far exceeded expectations. Prior to

this development, it was still unclear whether the Baylor software, which is designed for

execution on a single GPU node, could ever perform pCT image reconstruction sufficiently

quickly. Advancements in GPU hardware and the Baylor pCT software since then have

further reduced reconstruction times, in some cases generating pCT images in under 2 min.

These performance capabilities provide an opening for potential pCT advancements, both

methodologically and practical applications. For example, in an effort to reduce complex-

ity, several approximations are performed at various steps in the reconstruction process, but

these should be revisited to determine whether each is still worthwhile.

The replacement of effective mean chord length with more accurate voxel depen-

dent path lengths is of particular interest; although it was determined to have negligible

impact on early pCT reconstructions, the advancements in iterative projection algorithms

currently being developed are likely to render this false. Other possibilities include (1) the

iterative improvement of the system matrix A (typically alternating with updates of ~x) and

(2) the extension of the MLP formalism to inhomogeneous material compositions. Each of

these were considered at one point and rejected in favor of less expensive approaches, but

it may now be possible to incorporate one or more of these improvements while still sat-

isfying the 10 minute constraint. Reconstruction times in the 1-2 minute range could also

be useful for patient alignment and verification procedures. In any case, the fact that pCT

images can be generated from a typically sized data set in under 10 minutes on a relatively

low cost compute system (i.e. $5k-$10k) is an important achievement in the development

of a clinical pCT system.
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CHAPTER SIX

Total Variation Superiorization (TVS)

The content presented in the following Chapter was previously published, in an al-

ternative and abridged form, and corresponds to Attribution 2. In accordance with the “Dis-

sertation Reuse” guidelines of IEEE (available at https://www.ieee.org/content/

dam/ieee-org/ieee/web/org/pubs/permissions_faq.pdf), we note that this chap-

ter contains content that was originally published in the following IEEE journal article [57]:

B. E. Schultze, Y. Censor, P. Karbasi, K. E. Schubert, and R. W. Schulte in the IEEE
Transactions on Medical Imaging journal under the title “An Improved Method of Total
Variation Superiorization Applied to Reconstruction in Proton Computed Tomography”

© 2011 IEEE

Furthermore, figures and tables appearing in this Chapter that were published in the

preceding article include the copyright notice “© 2020 IEEE” in the corresponding caption.

6.1 Introduction

The hull-detection methods and computational advancements of the MLP formal-

ism presented thus far have primarily represented efforts towards achieving the objective of

reconstructing pCT images on a single GPU node in under 10 minutes using the BU pCT

software. This capability is a minimum requirement for a clinical pCT system and having

achieved this is an important step in the development of pCT. Naturally, the quality of re-

constructed pCT images, in terms of both RSP accuracy and noise, is also of paramount

clinical importance. The use of hull-detection for object detection was shown to have a

positive impact on RSP accuracy, reducing the error to below 1% [58]; RSP accuracy is

determined based on region of interest (ROI) analyses of the RSP within different material

regions. However, the noise in the reconstructed RSP values is also an important measure

of pCT image quality.
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Noise is a particularly challenging aspect to deal with in pCT, which has a number

of sources of noise. In addition to the typical noise associated with experimental detector

measurements, the scattering of protons as they traverse an object results in moderately

large variations in trajectory and energy. The pCT imaging model is based on the MCS

theory of proton scattering, with considerable effort placed in the removal of pCT data

associated with protons that underwent any other scattering. The selection of MCS proton

histories narrows the distribution of proton variations, but it is still a considerable source

of uncertainty. There isn’t much that can be done to reduce the variations in calibrated

WEPL values, but the MLP formalism was developed to reduce the uncertainty from MCS

in proton paths. The voxels that a proton passed through can be identified fairly accurately

from MLP calculated paths, but the actual path through each voxel has more variation.

The combination of uncertainties in proton paths and energies (WEPL), which man-

ifest in the system (path) matrix A and (WEPL) measurement vector ~b, yield a moderately

inconsistent linear system. The use of an effective mean chord length, rather than indi-

vidual path length approximations, for all voxels intersected by a proton further increases

the inconsistency of the system (as well as the condition number of A). The accuracy of

the solutions obtained with the feasibility-seeking algorithms used in pCT is fairly tolerant

of data inconsistencies, but the noise is propagated through each iteration and eventually

grows to dominate the resulting image. In other words, the algorithms are quite sensitive to

RSP variations, which provide for good spatial RSP accuracy, but tends to magnify noise

with compounding effect through successive iterations. This noise propagation ends up

being the basis for halting reconstruction, rather than simply approaching convergence as

closely as possible.

Although noise propagation occurs at each feasibility-seeking iteration, it becomes

more apparent once the solution has converged to the point where the noise is a larger

portion of the subsequent RSP updates. At this point, the standard deviations in RSP,

σRSP, within each ROI reaches a minimum and subsequent iterations are accompanied by

57



a sharp increase in σRSP. The exact behavior observed varies depending on the data set

and configuration of the image reconstruction software, e.g. size and segementation (voxel

dimensions) of the image space and the particular reconstruction algorithm and associ-

ated parameter values selected, but the general behavior is ubiquitous in pCT. Since RSP

noise is not only an impediment in using pCT image for treatment planning, it effectively

places a limit on the number of feasibility-seeking iterations that can be performed and,

consequently, RSP accuracy. This situation demanded the development of some method

for reducing the noise, or the propagation of noise, in pCT imaging.

A recently developed approach that has been applied in other medical physics appli-

cations is the superiorization methodology (SM), which lies somewhere between feasibility-

seeking and constrained optimization [59]. The superiorization methodology has also been

tested in pCT, where it was performed in conjunction with DROP and shown to improve

image quality, particularly in terms of noise [30]. The objective of superiorization is to re-

duce, but not necessarily minimize, the value of a cost function (often called target function

in SM literature) while maintaining compatibility with the problem constraints. Compati-

bility is maintained by analyzing the perturbation resilience of the underlying algorithm, in

our case feasibility-seeking. The iterates of feasibility-seeking are then perturbed accord-

ingly, steering the solution towards a feasible point with a lower cost function value. The

computational cost of adding these perturbation steps, when implemented appropriately, is

negligible.

The mathematical principles underlying the SM, over general consistent “prob-

lem structures” with the notion of bounded perturbation resilience, were introduced in

2010 [60]. The SM framework was subsequently expanded to apply to the case of incon-

sistent data, such as pCT (sometimes referred to as ill-posed problems), using the concept

of strong perturbation resilience [61, 62]. Subsequent investigations demonstrated its effi-

cacy in comparison to the projected subgradient method in their application to constrained
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minimization [62]. There are a number of works on the topic of superiorization, from gen-

eralized theory and applications [63, 64] to its use in single- and multi-energy x-ray CT

imaging[65, 66, 67, 68]. A comprehensive list of SM publications, updated continuously

with the latest in active research, appears on a website managed by the foremost expert and

originator of the work [69].

In the application of the SM to pCT, the cost function selected is the total variation

(TV) of RSP in reconstructed images, where total variation is defined as:

TV(k) =

n∑
j=1

V (k)
j (6.1)

where V (k)
j is the neighborhood RSP variation of the jth voxel, calculated as the normalized

sum of (RSP) subgradients into and out of the voxel, and TV is the sum of these variations

over all n voxels. In other words, TV is a measure of local RSP variations summed over all

voxels in the image ~x(k). A stepwise description of the calculations performed in TVS (e.g.

V (k)
j ) is provided in Appendix D.4). For a more detailed introduction to the use of TV for

image analysis, see [70].

With TV defined as the cost function, the implementation of SM is referred to as

total variation superiorization (TVS). Although TVS has been applied previously to pCT,

showing respectable improvements, the theory and implementations of SM have advanced

considerably since then. Hence, the objective here is to investigate these advancements and

determine their applicability to TVS applied to pCT image reconstruction. These investiga-

tions include both assessment of image quality (RSP accuracy and associated σs and TV)

and the computational efficiency of TVS after incorporating the recent novel adaptations of

SM.
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6.2 Motivation

Iterative feasibility-seeking projection methods have been shown to be effective

pCT image reconstruction algorithms [71], but the noise content in the reconstructed im-

ages appears as local RSP variations that the algorithms cannot reduce. The aforementioned

statistical variations in WEPL manifest as locally (neighborhood) correlated fluctuations

in RSP. The feasibility-seeking projection algorithms were specifically selected for their

higher noise tolerance [72], as compared to transform methods such as filtered backpro-

jection (FBP) [73, 37], but these algorithms do propagate the noise introduced by WEPL

uncertainties. As a result, the noise content of successive iterations of reconstruction ex-

hibit increasing levels of noise, i.e. each feasibility-step amplifies the current noise content.

Hence, after a certain number of iterations, which depends on the particular algorithm and

its parameters, image quality begins to be degraded by each subsequent iteration. This is ex-

plained by the fact that as feasibility-seeking approaches convergence, the updates applied

to the image decrease and the noise becomes the dominant content of the updates. This

behavior forces image reconstruction to be halted well before the solution has converged

to a steady-state. The iterations performed before noise sharply increases are sometimes

referred to as “useful iterations”.

Given the unavoidable WEPL uncertainty and the accumulating effect of noise

propagation, any approach that provides the means to reduce noise before and/or during

feasibility-seeking will have compounding benefit. The potential benefit is not only the

reduction of RSP fluctuations (clearer images) but can also have an accelerating effect on

the convergence behavior. Improving convergence rate is a key objective of future pCT

development, as it permits the options to either achieve the same accuracy with fewer iter-

ations (speed benefit) or achieve better accuracy with the same number of iterations (image

quality benefit.

Although the feasibility-seeking algorithms used for pCT have a tendency to ac-

centuate the noise content, i.e. reduce the signal-to-noise (SNR) ratio, their sensitivity to
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RSP fluctuations also results in a sharpening of the boundaries (or edges) between disparate

materials. This can be observed in RSP line profiles through one or more material regions,

which demonstrate the effect that successive feasibility-seeking iterations have on RSPs

at the interface between two materials. Note that the RSP gap (discontinuity) between

neighbors represents an impulse, which are known to be impossible to construct through

any finite actions and are prone to behaviors like “ringing” (i.e. Gibb’s phenomena); the

typical voxel dimensions of pCT images are too large to observe ringing clearly, but the

general s-curve shape can be observed at RSP transitions. Since the sensitivity to RSP

variations improves transitional RSP edges, which has a direct impact on achievable spatial

resolution, it is important that this behavior is not disturbed by any noise reduction method.

The reason TVS was selected for noise reduction is because of its so called “edge

preserving” property. This is not strictly true or an inalienable property of TVS, but within

the context of superiorized feasibility-seeking with appropriately chosen TVS parameter

values, it retains edges quite well. On the other hand, poorly selected TVS parameters

can result in inappropriately large perturbations, which can not only blur edge RSP but,

perhaps more alarmingly, can also effectively shift the location of the edge. Thus, the in-

vestigations of TVS herein include a thorough search of the TVS parameter space. When

TVS is incorporated into feasibility-seeking projection algorithms the resulting reconstruc-

tion algorithms are referred to as the superiorized (version of) feasibility-seeking algo-

rithms. These superiorized feasibility-seeking algorithms interleave feasibility-steps with

TVS perturbation steps in alternating succession. For the purposes of these investigations,

feasibility-seeking steps precede TVS perturbation steps.

There are two metrics used herein to approximate the noise content in the recon-

structed pCT images: the TV of the image as a whole and the σRSP within specific ROIs.

The TV is an effective measure of the prevalence and magnitude of local RSP variations,

but TV alone is unable to differentiate between RSP variations caused by noise and those

that are faithful to the object composition. To isolate and analyze the RSP variations due
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solely to noise, regions known to be composed of homogenous material (with known RSP)

are selected for ROI analysis. A statistical analysis of the reconstructed RSP values within

these ROIs provides measures of regional RSP accuracy and the standard deviations associ-

ated with regional fluctuations in RSP. These two measures provide the basis for assessing

the performance of TVS for different structural and parameter configurations.

6.3 Methods

6.3.1 TVS Algorithm

The first application of TVS to pCT image reconstruction demonstrated the efficacy

of the approach [30]. The SM has evolved since then (see Appendix of [74]), particularly in

terms of algorithmic structure, and these advancements are potentially beneficial for pCT.

There were also some existing aspects of the SM that were not included in these initial

investigations. The objective of the work presented here is to incorporate the existing and

newly established features of TVS into the BU pCT software and perform analyses of the

structural changes under a breadth of parameter conditions. Note that the original TVS

implementation was rewritten and incorporated into the BU software to permit appropriate

comparisons. For the purposes of the forthcoming discussions, the previous implementa-

tion of TVS will be referred to as the “old” TVS (OTVS) algorithm and the version inves-

tigated here will be referred to as the “new” TVS (NTVS) algorithm. Note, however, this

is not a recommended terminology outside the context of this dissertation. The usage of

the terms OTVS/NTVS herein is merely for the sake of brevity and clarity, but in contexts

outside these investigations they will henceforth be known simply as TVS.

The mathematical notation associated with the forthcoming discussions is defined

in Appendix D.1. Pseudocode definitions of the NTVS and OTVS algorithms are provided

in this notation in Appendix D.2 and D.3, respectively. As previously mentioned, there

is also a step-by-step definition of the calculations involved in the NTVS algorithm in

Appendix D.4.
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6.3.2 NTVS Algorithm

The NTVS algorithm is an amalgamation of advancements from a scattered set of

publications on the use of TVS in x-ray CT (see Appendix of [74]). Although each of the

newly developed properties included in the NTVS algorithm have been investigated for x-

ray CT, this is the first time they have been combined into a single implementation of TVS

for either x-ray CT or pCT. The properties that were incorporated into the OTVS algorithm

to generate the NTVS algorithm are enumerated below:

(1) Exclude step (10) of OTVS (Appendix D.3) verifying TV reduction.

(2) Use a perturbation kernel α and perturbation step counter ` to control the pertur-

bation step-size β(k).

(3) Add capability to perform a user-selected number N of perturbation steps (step (8)

of NTVS (Appendix D.2)) per feasibility-seeking step.

(4) Add the formula `(k+1) = rand
(
k, `(k)

)
to (randomly) decrease the perturbation ker-

nel exponent `(k) (step (6) of NTVS (Appendix D.2)) used to calculate the pertur-

bation step-size β(k) = α`
(k)

between feasibility-seeking steps

The TV reduction verification step of OTVS, step (10) of OTVS (Appendix D.3),

after each perturbation is not a particularly expensive task, but such conditional branching

can be detrimental to the computational efficiency of a GPU implementation of TVS in the

BU software. The majority of the computations comprising an implementation of TVS are

parallelizable, but some steps have data dependencies and/or represent innately sequential

operations. Fortunately, these parallelization impediments were successfully eliminated

by rearranging and/or reformulating some of the governing formulae and employing SGP

and DDP parallelization schemes. Furthermore, if the TV reduction verification step can

safely be removed without a degradation of pCT image quality, the NTVS algorithm can be

implemented to achieve up to a 30% reduction in sequential operations and eliminate the

need to perform repeated perturbations until the TV reduction constraint is fulfilled. This
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yields a reduction in computation time and, in the latter case, an increase in computational

efficiency.

Verification steps like the TV reduction requirement are often added to a theoreti-

cal model as a part of a proof of its behavior in the presence of conceivable outlier cases.

Mathematical rigor is an important part of algorithm development, but in practical appli-

cations such verification steps primarily serve as “safety checks” that are often unneces-

sary, or even detrimental. In fact, the classical TVS algorithm includes a computationally

expensive feasibility proximity verification step [75, 76, 77], but investigations were per-

formed during the development of the OTVS algorithm which found it could safely be

removed [30]. The removal of the TV reduction verification step, henceforth referred to

by the acronym TVRVS, represents a continuation of the process of removing such safety

checks. Since the TVRVS is a structural feature of the TVS algorithm, rather than simply

a manageable parameter, there are two versions of the NTVS algorithm written in pseu-

docode in Appendix D.2: the first without the TVRVS and the second with the TVRVS.

These two versions of NTVS are investigated as a function of each TVS parameter for

every combination of parameter values.

The OTVS algorithm is implemented with initial perturbation step-size β0 = 1,

which is subsequently halved after each perturbation step. In terms of the NTVS notation,

this halving corresponds with a perturbation kernel α = 0.5. This limits the adaptability

of the algorithm and provides no control over the aggressiveness of the applied perturba-

tions. For example, in cases where image reconstruction is performed using block-iterative

or string-averaging algorithms with TVS applied to each block or each step along a string,

respectively, the equivalent α = 0.5 of OTVS is much too aggressive and results in highly

smoothed feature reconstructions. Hence, for these scenarios with frequent perturbation

steps, the OTVS algorithm simply isn’t a viable option and can only be applied once per

full iteration. However, a perturbation step once per feasibility-seeking step yields a de-

cently sized initial perturbation step, but a halving of the step-size rapidly decreases β(k) to
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the point where, after the first few feasibility-seeking steps, subsequent perturbation steps

are too small to have a meaningful impact on image quality or the suppression of prop-

agated noise. This scenario represents a sub-optimal utilization of TVS. Therefore, the

NTVS algorithm includes the parameter α to provide user-control of the rate of decay of

the perturbation step-size β(k). The performance of TVS is investigated for a range of α val-

ues to determine whether values of α > 0.5 yield improved image quality relative to OTVS.

Note that the convergence of the underlying feasibility-seeking algorithm is preserved by

imposing the constraint 0 < α < 1.

The permutation kernel α has two related impacts on TVS performance: α dictates

(1) the size of perturbation steps and (2) the rate of decay (with respect to k) of the size of

perturbation steps. Hence, a larger α will result in larger initial perturbation steps but the

selected value also dictates a slower decaying perturbation step-size β. This inseparable

relationship prevents TVS from being configured to, e.g., apply large initial perturbation

steps which quickly decay in successive perturbations. Another feature of the NTVS algo-

rithm that helps to counteract the inseparability is the introduction of a parameter N that

specifies the number of consecutive perturbations to perform per feasibility-seeking iter-

ation. This provides the ability to impart larger perturbations without altering α, thereby

achieving larger TV reductions with the same β decay rate.

A potential drawback of performing N moderately sized perturbation steps, as op-

posed to a single large step, is the fact this causes the perturbation kernel exponent to be

incremented N times per feasibility-seeking step. Since perturbation step-size β(k) = α`

is governed by `, larger values of N cause perturbations to decay more quickly towards

zero. Consequently, as β(k) approaches zero, which can occur early in feasibility-seeking

depending on the value of N, subsequent applications of TVS are characterized by a gen-

eral lack of any sizeable benefit. To counteract this accelerated β(k) decay and preserve

meaningful perturbations throughout reconstruction, the perturbation kernel exponent `(k)
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is reassigned an integer value selected via random sample of the closed interval
[
k, `(k)

]
; i.e.

`(k+1) = rand
(
k, `(k)

)
.

This approach was developed and investigated for biomedical applications [78, 79],

but it has also been applied to maximum likelihood expectation maximization (MLEM) [80]

and linear superiorization (LinSup) algorithms [74, Algorithm 4]. In cases where the se-

lected N is small, the interval
[
`(k), k

]
is also small, so a random sample from the nar-

row (closed) interval will generate roughly comparable perturbation step-size. For N = 1

specifically, the interval is only nonzero if TVS includes the TVRVS step and at least one

of the perturbation steps failed, otherwise `(k) = k throughout reconstruction. On the other

hand, in cases where the selected N is large, the difference between iteration k and `(k) is

also large, so a random sample from the wider (closed) interval will, on average, yield a

value that results in a considerably larger perturbation step. The importance of this random

decrease in `(k) become increasingly apparent as N increases, which causes perturbation

step-sizes to decay to negligible levels increasingly early in feasibility-seeking. The rela-

tive behavior at N = 1 and N >> 1 coincide with the features desired for permitting larger

perturbations that persist for an increased number of feasibility-steps, which is not possible

to decouple in the case without N. At N = 1, the TVS behavior is effectively unaltered,

where its convergence property is preserved by defining k as the lower bound on the sam-

pling interval, thereby guaranteeing that the perturbation step-size will decay to zero since

k is incremented sequentially.

Note that the preceding discussion of the recently developed TVS features included

in the NTVS algorithm indicate relationships between the various TVS parameters. There-

fore, investigations of the efficacy and performance of the NTVS algorithm include detailed

analyses of the impact that each parameter has on one another. For the purposes of these

analyses, although the TVRVS step is more aptly classified as an algorithmic structure, it

is regarded as another TVS parameter with binary (or Boolean) values: Inclusion of the

TVRVS corresponds to the value 1 (or TRUE) and exclusion of the TVRVS is represented
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by the value 0 (or FALSE). Details of the TVS parameter space, as well as the pCT data

and image reconstruction software configurations, are each presented in the following sub-

sections.

6.3.3 Phantoms and Data Sets

6.3.3.1 Simulated pCT Data.

The simulated pCT data set was generated, using the simulation toolkit geant4 [81],

with proton cone beam projections at 90 fixed angular step intervals of 4 degrees ranging

from 0 to 356 degrees. The simulation was configured such that the resulting data set

contained approximately 120 million proton histories. The simulated data was used for

preliminary investigations of NTVS, particularly to assess the variations introduced by the

random decrease in `(k) between feasibility-seeking steps (step 6 of Algorithm 9). A full

description of the platform developed to produce data for pCT has been published [82].

6.3.3.2 Experimental pCT Data.

The experimental pCT data sets were generated, using an experimental pCT scan-

ner [83], with the phantoms mounted on a (platform) stage rotating relative to a fixed hori-

zontal proton beam line producing a rectangular field (using a magnetically wobbled beam

spot) over a continuous range of projection angles between 0 and 360 degrees. The con-

figuration of the pCT scanner results in the production of data sets with approximately

250 million proton histories. The experimental data sets were used for practical viabil-

ity investigations of NTVS in the case of two, anatomically and compositionally different,

phantoms.

The definitive investigations were then performed using two experimental data sets:

(1) the same Catphan® CTP404 phantom and (2) an HN715 pediatric anthropomorphic

head phantom, both obtained with an experimental pCT scanner [83] yielding approxi-

mately 250 million proton histories for each object.
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6.3.3.3 Catphan® CTP404 Phantom.

A Catphan® CTP404 phantom module (The Phantom Laboratory Incorporated,

Salem, NY, USA) was selected, for both simulated and experimental data sets, due to the

simplicity of its anatomical structures and the accuracy to which their sizes, locations, and

compositions (in terms of RSP) are known (see Figure 6.1).

Figure 6.1: Catphan® CTP404 phantom composition and geometry of the material inserts.
© 2020 IEEE

It is a 15 cm diameter by 2.5 cm tall cylindrical phantom composed of an epoxy

material with RSP ≈ 1.144. In the geant4 simulation, the epoxy RSP was explicitly set

to that of water (RSP = 1.0) because, at the time, the RSP of the epoxy had not been

determined. The RSP values used in the simulation and the experimentally measured RSP

values for each phantom material are defined in Table 6.1.

Table 6.1: RSP of the material inserts for the simulated and experimental Catphan®

CTP404 data sets. © 2020 IEEE

Data Set Air PMP LDPE Epoxy
Simulated 0.0013 0.877 0.9973 1.024
Experimental 0.0013 0.883 0.979 1.144

Data Set Polystyrene Acrylic Delrin Teflon
Simulated 1.0386 1.155 1.356 1.828
Experimental 1.024 1.160 1.359 1.79
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The phantom is composed of three geometrically different types of contrasting

material inserts, each of whose geometric centers are evenly distributed around circu-

lar patterns of varying diameter d. The inserts of interest for the present investigations

are those associated with the eight 12.2 mm diameter cylindrical holes in the phantom

at d = 120 mm. In this case, two of the holes are not filled, resulting in two air-filled

regions. The other six are each filled with a unique material of known composition:

acrylic, polymethylpentene (PMP), low density polyethylene (LDPE), Teflon®, Delrin®,

and polystyrene.

6.3.3.4 HN715 Pediatric Anthropomorphic Head Phantom.

The pediatric anthropomorphic head phantom (model HN715, CIRS, Norfolk, VA,

USA) is designed to accurately represent the head of a young human. The phantom contains

anatomically accurate features composed of tissue equivalent materials. For the purposes

of these investigations, the materials of interest are soft tissue, brain tissue, and trabecular

bone; the RSP of each of these materials is provided in Table 6.2. Since the geometry of

the anatomical features cannot be accurately characterized by simple geometric shapes and

positions, these are not given. The method for identifying ROIs will be explained in the

following subsection.

Table 6.2: RSP of the tissue/bone regions of interest analyzed in the pediatric head
phantom. © 2020 IEEE

Data Set Soft Tissue Brain Tissue Trabecular Bone
Experimental 1.037 1.047 1.108

6.3.4 Image Reconstruction Details

Configuration of the BU pCT software is the same as that described in Chapter 3.

The details of the BU software implementation used in these investigations has been de-

scribed in a previous publication [58]. Details of the WEPL calibration, preprocessing,
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and preconditioning steps have also been described, in detail, in a recent publication [25].

Image reconstruction was performed within a 20 × 20 × 5 cm3 volume and partitioned into

1.0 × 1.0 × 2.5 mm3 voxels, thereby yielding 200 × 200 images for each axial slice.

The implementation of the random decrease of `(k) made use of a random number

generator which was given a random seed (based on the Julian time of BU pCT software

execution). This ensures that a different set of random numbers is generated for each image

reconstruction, thereby preventing biased effects in the pCT images which would skew

analysis.

6.3.5 Reconstruction Parameter Space

The TVS parameters and corresponding values that were systematically investi-

gated are described in the following. Note that, for the purposes of this investigation of

NTVS viability, each parameter was given fixed values for the entirety of the correspond-

ing image reconstruction.

6.3.5.1 Inclusion or Exclusion of TVRVS.

To isolate the impact of removing the TVRVS constraint of OTVS from the other

changes in NTVS, this constraint is considered another parameter variable. Hence, a sec-

ond version of NTVS (Algorithm 10) that includes the TVRVS was defined solely for the

purpose of comparing the impact of excluding TVRVS for all combinations of parameters

and parameter values.

6.3.5.2 The Number of TV Perturbations per Feasibility-Seeking Iteration.

Preliminary investigations revealed a considerable degradation of image quality

when exceeding N ≈ 10. To account for this, while providing some flexibility for the

potential differences with experimental data or other phantoms, the investigated range of

values is 1 ≤ N ≤ 12.
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6.3.5.3 The Perturbation Kernel Coefficient.

Previous (unpublished) investigations with the OTVS algorithm indicated that α =

0.5 had only produced negative results when it was applied for each block of a block-

iterative feasibility-seeking algorithm, which would correspond to 10s-1000s of individual

perturbation steps per full iteration of feasibility-seeking. Hence, the decision was made

not to test any values lower that the α = 0.5 equivalent to OTVS. However, α = 0.5 was

included in these investigations to allow overlap with OTVS. Hence, the values that are

investigated are α = { 0.5, 0.65, 0.75, 0.85, 0.95} .

6.3.5.4 The Selection of Relaxation in Feasibility-Seeking.

As the relaxation parameter λ increases beyond its optimal fixed value (associated

with a particular block or group size), the noise content (in terms of ROI standard devi-

ations in RSP) of the resulting images increases. Increasing λ results in faster rates of

convergence, but also increasing levels of noise. Hence, investigations only include the op-

timal and larger than optimal values of λ to investigate its interaction with TVS parameters

and determine if NTVS would reduce noise enough to permit larger λ. Therefore, the relax-

ation parameter values investigated are λ = { 0.0001, 0.00015, 0.0002} . Note that a direct

comparison of performance for different values of λ is impossible since λ dictates the rate

of convergence of the feasibility-seeking algorithm. Hence, comparisons of performance

after a fixed number of feasibility-seeking steps (iterations) correspond to wildly different

point of convergence for each λ. The approach taken here is to define an RSP accuracy

based on λ = 0.0001 after k = 12 iterations and determine the number of iterations it takes

for each of the other λ values to reach a comparable accuracy. The comparison of perfor-

mance is then performed using the results obtained with the other λ after the number of

iterations k that produced comparable RSP. Of course, the RSP accuracies are not identical

or completely consistent across all ROI, but are (perhaps surprisingly) reasonably close to

each other to be sufficient for general behavior inferences.
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6.4 Computation Hardware and Performance Analysis

The BU pCT software was executed on a single node of the Tardis GPU cluster

at the Baylor Research and Innovation Collaborative (BRIC) facility. The program read

the input pCT data from a local SSD and performed all parallel computation on a single

NVIDIA k40 GPU. Including the time dedicated to reading pCT data from disk and writing

reconstructed images to disk, reconstruction times were about 6 minutes for the most de-

manding cases (i.e. k = 12 feasibility-seeking steps, each with N = 12 perturbation steps)

and slightly faster for less demanding cases.

Analyses of the CTP404 phantom were performed on the central slices of the re-

constructed images. This slice was selected due to the presence of five acrylic spheres

(diameters 2,4,6,8,10 mm) arranged more centrally than cylindrical inserts (d = 30 mm) at

the middle height of the phantom (i.e. 1.25 cm down its cylindrical axis). Their presence

results in a greater variation in material composition traversed by the protons, and, hence,

a greater variation in their paths and WEPL values. As previously noted, such variations

manifest in the image as noise, resulting in these central slices possessing higher RSP fluc-

tuations. Therefore, these slices were selected for their greater levels of noise as an ideal

scenario for comparative analyses of the ability of the OTVS and NTVS algorithms to re-

duce noise content. A representation reconstruction of this central slice is shown below in

Figure 6.2.

Figure 6.2: Representative reconstruction of the central slice of the CTP404 phantom from
simulated data. © 2020 IEEE
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The quantitative analyses of pCT image quality were performed using an automated

analysis program developed specifically for pCT image analysis at BU. This program per-

forms higher level tasks and interfaces with macros from the image analysis program Im-

ageJ2 1.51r [84] to utilize its ROI analysis tools. For the CTP404 phantom, the cylindri-

cal inserts were analyzed using a circular ROI with 10 mm diameter (from insert center)

and calculating the mean and standard deviation in RSP associated with the voxels lying

entirely within the ROI. For the HN715 head phantom, ROI selections are composed of

polygonal shapes (i.e. polygonal chains or, colloquially, polylines) which attempt to select

a region containing only the desired material, with as few voxels of disparate composition

as possible. The resulting ROIs defined for analysis are illustrated as shaded regions with

annotated labels in Figure 6.3.

Figure 6.3: Representative reconstruction of the slice of the pediatric head phantom con-
taining the analyzed regions of interest (left); the analyzed regions of interest are filled in
white and labeled in the image on the right.

The RSP error, calculated as a percentage for each ROI (given arbitrary indices i),

used for these analyses is defined as:

ERSP,i =
RSPi − RSPi

RSPi
× 100 (6.2)

where RSPi is the mean measured RSP within the ith ROI, and RSPi is the known RSP (i.e.

Tables 6.1 and 6.2) of the ith ROI material.

In accordance with [70], total variation was calculated according to Equation 6.1.
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6.5 Results

The results of the multi-parameter space investigation of NTVS, including the re-

lationships between TVS parameters, is presented in the following three subsections. The

preliminary investigation of NTVS using the simulated CTP404 is presented first, followed

by the investigations using the experimental pCT data sets for, in order of presentation,

the CTP404 and HN715 phantoms. The following presentation is in the context of image

reconstruction and, thus, feasibility-seeking steps are henceforth referred to as feasibility-

seeking iterations. Note that the data points appearing in plots in the following presentation

each correspond to an independently executed image reconstruction with associated fixed

value parameters. The parameter values and combinations are also fixed, i.e., the same set

of parameter configuration are investigated for each of the three investigated pCT data sets.

For the sake of brevity, in some cases the acronym FS is used to refer to feasibility-seeking

in a general context, but this does not apply to the “FS” in the acronym FS-DROP, which

remains as defined in Chapter 3.2. Similarly, in discussions of performance with respect

to the standard deviation in RSP within a particular material insert ROI, the ROI is simply

referenced by its constituent material; e.g. standard deviation in LDPE or standard devia-

tion (LDPE) refer to the standard deviation in RSP within the ROI defined for the LDPE

material insert.

6.5.1 Simulated CTP404 Data Set

6.5.1.1 Number of TVS Steps (N).

The number of TV perturbations per FS-DROP iteration, N, was varied between

1 and 12 in increments of 1. Figure 6.4 shows the dependence of TV as a function of

N for each of the first four FS-DROP iterations with the TVRVS excluded. As will be

shown later, a similar pattern was observed with the TVRVS included. The general effect

of increasing N was a reduction in TV that leveled off after N ≥ 5 steps, as best seen in the

k = 1 iteration plot (top left of Figure 6.4). An irregular oscillation in TV as a function of
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Figure 6.4: TV as a function of N after each of the first 4 FS-DROP iterations for the
simulated CTP404 data set using OTVS and NTVS (TVRVS excluded) with λ = 0.0001
and α = 0.5.

increasing N appeared for k ≥ 2 and increased in magnitude as the number of FS-DROP

iterations k increased.

To determine whether the observed fluctuations were random, an analysis of 8 sep-

arate reconstructions with N = 5, α = 0.5, and the TVRVS excluded were performed for

k = 12 FS-DROP iterations. The standard deviation within the LDPE insert varied between

reconstructions with a standard deviation of σLDPE = 0.00038 (shown as an error bar on the

point at N = 5 in Figure 6.5(b)); similar variations were also seen in the ROI of the other

materials. Note that the standard deviation obtained within the LDPE insert at N = 5 with

the TVRVS excluded was nearly 2σLDPE less than that obtained with the requirement in-

cluded and just under 4σLDPE less than that obtained with OTVS. In addition, the standard

deviation obtained with N = 5 was at least 1.5σLDPE less than that obtained with any other
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value of N. These differences are large enough to conclude that the observed fluctuation in

standard deviation as a function of N was not random.

For 3 ≤ N ≤ 6, there was a benefit from NTVS compared to OTVS, which persisted

throughout all twelve FS-DROP iterations (see Figure 6.5(a) and (b)). However, for N ≥ 7

the benefits of NTVS were increasingly lost as N and k increased. This can be explained by

the decreasing magnitude of TV reducing perturbations with increasing N and the overall

increase in TV from each FS-DROP iteration. Although not shown here, a similar depen-

dence on N and k was seen for regional standard deviations. However, the benefit of NTVS

in terms of standard deviation was consistently seen, including for N ≥ 7, after twelve

FS-DROP iterations (see, e.g., Figure 6.5(b)).

6.5.1.2 Inclusion/Exclusion of TVRVS.

To determine if the exclusion of the TVRVS in the definition of the NTVS algorithm

(Appendix D.2) is an appropriate decision, reconstructions were also performed with a

variation of the NTVS algorithm that included the TVRVS; the definition of the algorithm

used for these investigations is provided for reference at the end of Appendix D.2.

Figures 6.5(a) and 6.5(b) show the comparison of TV and standard deviation, re-

spectively, for OTVS and NTVS with relaxation parameter λ = 0.0001, median filter radius

r = 2 applied to the initial iterate [58], and 12 FS-DROP iterations. In each plot, the results

for NTVS with and without inclusion of the TVRVS are shown as a function of N. The

horizontal line corresponds to the result of OTVS (N = 1, α = 0.5).

In the range of 3 ≤ N ≤ 6, including the TVRVS had practically no benefit, whereas

its removal yields up to a 5.7% reduction in the standard deviation in RSP within the LDPE

material insert and up to a 1.2% reduction in overall TV. Similar results were obtained for

other values of α, λ, and, in the case of standard deviation, for different materials. One can

conclude that imposing the TVRVS does not provide a consistent benefit in terms of TV

and standard deviation. Therefore, for the remainder of the parameter space exploration,

the TVRVS was excluded.
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Figure 6.5: (a) TV and (b) standard deviation (LDPE) as a function of N after 12 FS-
DROP iterations for the simulated CTP404 data set using OTVS and NTVS including and
excluding the TVRVS with λ = 0.0001 and α = 0.5. The error bar at N = 5 denotes the
variation in standard deviation (σ = 0.00038) between 8 repetitions of reconstruction with
N = 5.

6.5.1.3 Perturbation Kernel (α).

Further investigations were performed to determine the effect of the perturbation

kernel α (see step (10) of the NTVS algorithm in Appendix D.2) on TV and standard de-

viation for 0.5 ≤ α ≤ 0.95 and 1 ≤ N ≤ 12. Increasing α produces larger perturbations

and results in the perturbation magnitude β(k) converging to zero more slowly. Thus, one

can expect a larger reduction of TV and standard deviation for larger values of α. Fig-

ures 6.6(a) and 6.6(b) demonstrate this effect.
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Figure 6.6: (a) TV and (b) standard deviation (LDPE) as a function of N after 12 FS-DROP
iterations for the simulated CTP404 data set using OTVS and NTVS (TVRVS excluded)
with λ = 0.0001 and α = 0.5.
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Figures 6.7(a) and 6.7(b) show the effect of α on the accuracy of reconstructed RSP

values in the Delrin and polystyrene inserts, respectively. These two materials were chosen

because they were most affected by the value of α. From these plots, one can see that for

α > 0.75, perturbations have a growing effect on RSP accuracy as α and N increase. This

leads to changes in error greater than 1% for Delrin and greater than 0.5% for polystyrene.

Although increasing α to decrease TV and standard deviation is a worthwhile goal, one

cannot do so without considering its effect on RSP error. On the other hand, increasing

α from α = 0.5 to α = 0.75 yielded up to a 39.3% reduction in the standard deviation in

RSP within the LDPE material insert and up to an 8.2% reduction in overall TV without

negatively impacting RSP error.
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Figure 6.7: RSP error in the (a) Delrin and (b) polystyrene ROIs as a function of N after 12
FS-DROP iterations for the simulated CTP404 data set using OTVS and NTVS (TVRVS
excluded) with λ = 0.0001 and varying α.

6.5.1.4 Relaxation Parameter (λ).

Increasing the relaxation parameter accelerates the rate of convergence of the FS-

DROP algorithm. To investigate the impact of NTVS independent of convergence rate, the

number of iterations was adjusted for λ = 0.00015 and λ = 0.0002 to obtain the same RSP

accuracy as for λ = 0.0001 and 12 iterations. For this comparison, α = 0.75 was chosen.
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Figures 6.8(a) and 6.8(b) show TV and standard deviation within the LDPE ROI,

respectively, for three combinations of λ and k. For most values of N, the relative im-

provements in TV and standard deviation increased as λ increased. Note that the trend for

standard deviation was not as pronounced for other materials, but increasing λ consistently

produced comparable or larger reductions in TV and standard deviation in each material

region.
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Figure 6.8: (a) TV and (b) standard deviation (soft tissue) as a function of N for λ = 0.0001,
k = 12; λ = 0.00015, k = 8; and λ = 0.0002, k = 6 iterations, respectively, and α = 0.75
for the simulated CTP404 data set.

6.5.2 Experimental CTP404 Data Set

6.5.2.1 Number of TVS Steps (N).

Figure 6.9 shows plots of TV as a function of N = 1..12 for the first four FS-

DROP iterations when the TVRVS is excluded. As compared to the corresponding plots

from the simulated data set, TV can be seen to exhibit the same general behavior but with

less fluctuation: increasing N is accompanied by a monotonic TV reduction for the first

iteration, but the TV for larger values of N can be seen to increase with successive iterations

and eventually surpass that obtained with OTVS. Repeating TVS 3 ≤ N ≤ 6 times per FS

iteration yielded a consistent improvement relative to OTVS, similar to the observations
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for the simulated data, and can be deemed advantageous. On the other hand, N ≥ 7 can be

seen to be too many TVS repetitions to be beneficial throughout reconstruction.
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Figure 6.9: TV as a function of N after each of the first 4 FS-DROP iterations for the
experimental CTP404 data set using OTVS and NTVS (TVRVS excluded) with λ = 0.0001
and α = 0.5. © 2020 IEEE

6.5.2.2 Inclusion/Exclusion of TVRVS.

Selected results of an investigation of the exclusion of the TVRVS in NTVS are

shown for λ = 0.0001 in Figures 6.10(a) and (b) for α = 0.5 and Figures 6.11(a) and (b)

for α = 0.75, demonstrating a comparison of performance in terms of TV and standard

deviation (LDPE), respectively, for inclusion and exclusion of the TVRVS as a function of

N.

For α = 0.5, the plot lines for inclusion and exclusion of the TVRVS are not distin-

guishable and completely overlap, which was also observed for each of the other values of
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Figure 6.10: (a) TV and (b) standard deviation (LDPE) as a function of N after 12 FS-
DROP iterations for the experimental CTP404 data set using the OTVS algorithm and the
NTVS algorithm including and excluding the TVRVS with λ = 0.0001 and α = 0.5 (note
that the 2 NTVS curves overlap). © 2020 IEEE
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Figure 6.11: (a) TV and (b) standard deviation (LDPE)as a function of N after 12 FS-
DROP iterations for the experimental CTP404 data set using the OTVS algorithm and the
NTVS algorithm including and excluding the TVRVS with λ = 0.0001 and α = 0.75.
© 2020 IEEE

λ. As for standard deviation, the same overlap was observed for each material insert ROI.

On the other hand, for α = 0.75, excluding the TVRVS consistently yielded lower TV and

standard deviation (LDPE). Again, this behavior was observed for each value of λ and for

each material insert ROI.

Notice the difference in the scale of the α = 0.5 and α = 0.75 plots, indicating

(relative to OTVS) relatively small improvements in TV and standard deviation for α =

0.5 but sizeable improvements for α = 0.75 even for N ≥ 7. The 50% increase in α

yielded improvements relative to OTVS with approximately the same magnitude as the
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peak difference in performance as a function of N. The range 3 ≤ N ≤ 6 exhibited this

behavior more prominently, where the improvement in standard deviation (LDPE) relative

to OTVS was more than double the peak difference in standard deviation for the N in

this range. This behavior was also observed, with slight variation in magnitudes, for each

material ROI.

6.5.2.3 Perturbation Kernel (α).

Selected results of an investigation of the perturbation kernel α of NTVS (TVRVS

excluded) are shown for λ = 0.0001 , demonstrating a comparison of performance in terms

of TV (Figure 6.12(a)), standard deviation (LDPE,Figure 6.12(b)), and RSP error (Delrin,

Figure 6.13) as a function of N.
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Figure 6.12: (a) TV and (b) standard deviation (LDPE) as a function of N after 12 FS-
DROP iterations for the experimental CTP404 data set using OTVS and NTVS (TVRVS
excluded) with λ = 0.0001 and different values of α. © 2020 IEEE

Figures 6.12(a) and (b) demonstrate performance that coincides with expectations:

increasing α, which governs perturbation step-sizes and decay) yields increasing reductions

in TV and standard deviation. The improvements are not as large as those for the simulated

data, but the same general trend as a function of N is observed: incrementally increasing

α by 0.1 yields increasingly larger improvements each time. However, it can also be seen

that as N increases beyond some point, the result of incrementing `(k) so many times per
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Figure 6.13: RSP error (Delrin) for each value of α as a function of N after 12 FS iterations
for the experimental CTP404 data set using OTVS and NTVS (TVRVS excluded) with
λ = 0.0001. © 2020 IEEE

iteration causes diminishing improvements for each additional increment of N. In other

words, at some (inconsistent) value of N the TV and standard deviation begin to increase.

The behavior of NTVS as a function of α essentially mirrors expectations. The

primary unknown was the value of α that resulted in perturbations larger than the resilience

of FS-DROP, thereby actively affecting the reconstructed RSP values. This was observed

for each material insert, but was particularly profound for the Delrin insert (Figure 6.13),

where values of α >≈ 0.75 have a pronounced effect on reconstructed RSP error. For

α > 0.75, RSP error was seen to increase for every material ROI. However, such RSP

errors effects are not always omnidirectional, on the contrary, results indicating increases

and decreases in RSP error were observed for different material ROIs with the simulated

data. For example, the error in Delrin here is seen to increase, whereas for the simulated

data, the error was seen to decrease for the same ROI.

6.5.2.4 Relaxation Parameter (λ).

Selected results of an investigation of the relaxation parameter λ are shown for

α = 0.75 and the TVRVS excluded in Figures 6.14(a) and (b), demonstrating a comparison

of performance in terms of TV and standard deviation (LDPE), respectively, as a function of

N. The RSP accuracy for λ = 0.0001 after k = 12 iterations was comparably obtained with

k = 8 iterations for λ = 0.00015 and k = 6 iterations for λ = 0.0002. The TV comparison
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plot demonstrates larger reductions in TV as λ increases. This is primarily due to the

fewer number of iterations performed in obtaining the same RSP accuracy, as FS tends to

propagate and amplify noise with each successive iteration. However, in contrast to the

simulated data results, the standard deviation (LDPE) plot demonstrates a slight increase in

standard deviation for the same LDPE insert. The best results for TV and standard deviation

were obtained with N = 5 for each λ investigated, which was consistently observed for each

material ROI. In fact, each λ yielded nearly identical behavior as a function of N for every

material ROI.
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Figure 6.14: (a) TV and (b) standard deviation (LDPE) as a function of N for λ = 0.0001,
k = 12; λ = 0.00015, k = 8; and λ = 0.0002, k = 6 FS-DROP iterations, respectively, and
α = 0.75 for the experimental CTP404 data set. © 2020 IEEE

6.5.3 Experimental HN715 Pediatric Head Phantom Data Set

6.5.3.1 Number of TVS Steps (N).

Figure 6.15 shows plots of TV as a function of N for the first four FS-DROP iter-

ations for the case where λ = 0.0001 and the TVRVS is excluded. These results are very

similar to those of the experimental CTP404 phantom, particularly for N ≤ 6, but unlike

for both the simulated and experimental CTP404 data sets, the benefits of NTVS do not

degrade as quickly for N ≥ 7 and continue to outperform OTVS for all values of N. How-

ever, the optimal values of N after 4 FS-DROP iterations occur at N = 2 and N = 5 for all

3 data sets.
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Figure 6.15: TV as a function of N after each of the first 4 FS-DROP iterations for the
experimental HN715 data set using OTVS and NTVS (TVRVS excluded) with λ = 0.0001
and α = 0.5. © 2020 IEEE

As previously noted, repeated reconstructions with the same value of N yield slight

variations in TV and standard deviation. Again, however, the difference in TV and standard

deviation as a function of N is seen to be a property of the algorithm and its relationship

with FS-DROP, not the result of the variations arising from random decreases in `(k). The

objectives of FS-DROP and TVS are somewhat opposed; FS-DROP tends to amplify noise,

thereby increasing TV, while each TVS perturbation may drive the solution to a more or

less feasible solution. The resulting push back and forth begins to produce small differ-

ences in TV between successive values of N after the first two FS-DROP iterations and

these subsequently increase as each additional FS-DROP iteration amplifies the resulting

differences. Simultaneously, TV perturbations and updates applied by FS-DROP both de-

crease in magnitude as k increases, diminishing their ability to counteract the impact of a
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previous, less optimal solution. Hence, a solution that is less optimal after the first few

iterations will rarely overcome its performance deficit and will far more often become in-

creasingly suboptimal, particularly if parameter values are held fixed and not adapted based

on performance as in the present case. Hence, values of N that yield a larger reduction in

TV early in reconstruction also experience a lesser amplification of noise at each FS-DROP

iteration, resulting in a compounding effect that accounts for the relatively large differences

in TV between similar values of N.

As can be seen in Figure 6.16, showing the TV and standard deviation within the

soft tissue ROI as a function of N after all 12 FS-DROP iterations for λ = 0.0001 and

α = 0.5, NTVS including and excluding the TVRVS both yield larger reductions in TV

and standard deviation for every value of N except for the slight increase in TV obtained

with N = 12. Repeating these reconstructions with α = 0.75 consistently yields images

with significantly larger reductions in both TV and standard deviation for every value of N,

with similar standard deviation results obtained for every material ROI. These results also

demonstrate that the smallest reductions in TV and standard deviation obtained with N = 1

and N = 12 were approximately 50% larger than the largest difference between varying

values of N and more than twice as large for 3 ≤ N ≤ 6.

6.5.3.2 Inclusion/Exclusion of TVRVS.

Selected results of an investigation of the exclusion of the TVRVS in NTVS are

shown for λ = 0.0001 in Figures 6.16(a) and (b) for α = 0.5 and Figures 6.17(a) and

(b) for α = 0.75, demonstrating a comparison of performance in terms of TV and standard

deviation (soft tissue), respectively, for inclusion and exclusion of the TVRVS as a function

of N.

For α = 0.5, the plot lines for inclusion and exclusion of the TVRVS are not distin-

guishable and completely overlap, which was also observed for each of the other values of

λ. As for standard deviation, the same overlap was observed for each material insert ROI.

These results mirror those observed for the experimental CTP404 phantom.
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Figure 6.16: (a) TV and (b) standard deviation (soft tissue) as a function of N after 12
FS-DROP iterations for the experimental HN715 data set using the OTVS algorithm and
the NTVS algorithm including and excluding the TVRVS with λ = 0.0001 and α = 0.5
(note that the 2 NTVS curves overlap). © 2020 IEEE
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Figure 6.17: (a) TV and (b) standard deviation (soft tissue) as a function of N after 12
FS-DROP iterations for the experimental HN715 data set using the OTVS algorithm and
the NTVS algorithm including and excluding the TVRVS with λ = 0.0001 and α = 0.75.
© 2020 IEEE

On the other hand, for α = 0.75, excluding the TVRVS consistently yielded lower

TV and standard deviation (LDPE, for each value of λ and for each material insert ROI, but

larger values of N yielded results increasingly closer to, and exceeding slightly beyond in

the case of TV with N = 12, those of OTVS. This is in sharp contrast to the experimental

CTP404 results, which showed marked improvement for all values of N. As with the

previous data sets, all subsequent analyses for this data set were performed using the NTVS

algorithm with the TVRVS excluded (i.e. as defined in Appendix D.2).
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6.5.3.3 Perturbation Kernel (α).

Selected results of an investigation of the perturbation kernel α of NTVS (TVRVS

excluded) are shown for λ = 0.0001 , demonstrating a comparison of performance in terms

of TV (Figure 6.18(a)), standard deviation (soft tissue,Figure 6.18(b)), and RSP error (brain

tissue, Figure 6.19(a) and soft tissue, Figure 6.19(b)) as a function of N. Figures 6.12(a)

and (b) demonstrate performance that coincides with expectations: increasing α, which

governs perturbation step-sizes and decay) yields increasing reductions in TV and standard

deviation. These results mirror those obtained with the simulated and experimental CTP404

data sets, indicating the same trend in TV and standard deviation (soft tissue) as a function

of α, but the standard deviation was less sensitive to N than those observed with the CTP404

data sets.
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Figure 6.18: (a) TV and (b) standard deviation (soft tissue) as a function of N after 12
FS-DROP iterations for the experimental HN715 data set using OTVS and NTVS (TVRVS
excluded) with λ = 0.0001 and different values of α. © 2020 IEEE

Similarly, RSP error as a function of α exhibits the same trends as those observed

with the simulated and experimental CTP404 phantoms: for α > 0.75, RSP error was seen

to increase for every material ROI. The direction that RSP was driven was more similar to

those with the simulated CTP404 data, varying between increasing and decreasing RSP for

different material ROI, thereby improving RSP error in some material ROIs and worsening

RSP error in others.
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after 12 FS-DROP iterations for the experimental HN715 data set using OTVS and NTVS
(TVRVS excluded) with λ = 0.0001 and different values of α. © 2020 IEEE

6.5.3.4 Relaxation Parameter (λ).

Selected results of an investigation of the relaxation parameter λ are shown for α =

0.75 and the TVRVS excluded in Figures 6.20(a) and (b), demonstrating a comparison of

performance in terms of TV and standard deviation (soft tissue), respectively, as a function

of N. The RSP accuracy for λ = 0.0001 after k = 12 iterations was comparably obtained

with k = 8 iterations for λ = 0.00015 and k = 6 iterations for λ = 0.0002. Plots of standard

deviation for the ROI of other materials displayed the same dependence on N and λ.
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Figure 6.20: (a) TV and (b) standard deviation (soft tissue) as a function of N for λ =

0.0001, k = 12; λ = 0.00015, k = 8; and λ = 0.0002, k = 6 iterations, respectively, and for
α = 0.75 for the experimental HN715 data set. © 2020 IEEE

These results mirror those observed with the CTP404 data sets: increasing λ con-

sistently yielded larger TV reductions for each value of N. The standard deviation (soft
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tissue) exhibited similar behavior as those observed with the experimental CTP404 data

set: a slight increase in standard deviation as a function of λ for each value of N. However,

the TV and standard deviation (soft tissue) results obtained for 3 ≤ N ≤ 6 are consistently

and considerably better for each value of λ than those obtained with NTVS for N = 1 and

with OTVS for the less noise sensitive λ = 0.0001 (see Figure 6.17(a) and (b)).

Permissibility of larger λ with NTVS can be observed by comparing the perfor-

mance in terms of standard deviation (trabecular bone) for λ = 0.0002 with NTVS and

OTVS for λ = 0.0001 and λ = 0.0002, which is demonstrated in Figure 6.21. For OTVS,

the performance for λ = 0.0001 is noticeably better than for λ = 0.0002 for the same

(comparable) RSP accuracy. This coincides with previously observed behavior, which has

been used to justify using λ = 0.0001 for FS-DROP. On the other hand, the performance

of NTVS for λ = 0.0002 and α = 0.75 demonstrates considerably lower standard devia-

tions (trabecular bone) for each value of N. Combining these observations with the fact

that larger TV reductions are obtained with λ = 0.0002, it is reasonable to posit that the

previously inappropriately large λ = 0.0002 is now an appropriate option when the NTVS

algorithm is employed to replace OTVS.
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6.6 Discussion

The objective of these investigations has been to assess whether the recently de-

veloped features of TVS (as well as those existing but not included in OTVS), reflected

in the NTVS algorithm, were beneficial to its use in pCT. Preliminary investigations were

performed using simulated data of the cylindrical CTP404 phantom, followed by practical

viability investigations using experimental data of the same CTP404 phantom as well as an

anatomically realistic head phantom. Improvements in noise measures (TV and standard

deviation) obtained with NTVS are small to moderately sized (less than 5% in most cases),

but in some cases there was no observed improvement. However, such improvements are

not meaningless and can have real world impact for treatment planning. Improvements are

also expected to be proportionally larger in the presence of greater noise content, such as

in the case of very low fluence or fluence-modulated pCT [85, 86]. Given the consistent

improvements with NTVS, especially the potentially detrimental and unnecessary TVRVS

constraint, and the absence of drawbacks, it can be concluded that the innovative features

of NTVS should be incorporated into pCT image reconstruction.

For each of the three data sets, investigations of all combinations of values in the

reconstruction parameter space (2{TVRVS on/off} · 5{α} · 3{λ} · 12{N}) required 360 indi-

vidual reconstructions. A striking observation from these investigations is an alternating

oscillation in TV and standard deviation as a function of N, which was observed with each

data set. Furthermore, this behavior was observed to be independent of the other parame-

ters, which consist of 30 combinations of parameter values for each value of N. The most

likely cause was thought to be the random decrease in `(k), but this was eliminated from

consideration after performing repeated reconstructions (8-10) with the same combination

of parameters and observing that the resulting performance fluctuations were not nearly

large enough to account for the observed behavior. A series of discussions with member
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of the pCT and superiorization communities regarding the larger set of results and the po-

tential theoretical explanations yielded no definitive explanation, but it did establish a basic

supposition that the behavior is a result of the competing objectives of FS and TVS.

Although the performance oscillated as a function of N, the benefits of NTVS were

observed to have a recognizable trend dependent on N. The largest benefits of NTVS were

consistently obtained for 3 ≤ N ≤ 6, with N = 5 generating the best results most often

and consistently near best otherwise. On the other hand, the benefits of NTVS continually

decreased as a function of FS iteration k for N ≥ 7 except for α ≥ 0.85. However, α ≥ 0.85

demonstrated an unpredictable effect on reconstructed RSP, a wholly undesirable feature

of superiorization that indicates perturbations beyond the resilience of the underlying FS

algorithm. This is due to the effect that α has on the perturbation step-size β(k) = α`
(k)

.

Larger α not only generates larger perturbations, but as α → 1.0, the size of the perturba-

tion steps decays too slowly and produce perturbations that are inappropriately large when

nearing convergence. The same effects can be seen with smaller α when N is relatively

large (e.g. N ≥ 7). In this case, since `(k) is incremented after each of the N perturbations,

β(k) = α`
(k)

can decrease too quickly and produce meaningful perturbations for only the first

few FS iterations, resulting in an under utilization of TVS and an inability to reduce error

propagation in all subsequent FS iterations. In either scenario, it can be inferred that the

perturbation step-size β(k) = α`
(k)

has a complicated relationship with α and N and, there-

fore, selecting a desired value for one necessitates consideration for selecting the value

of the other. The investigations presented provide a cursory view of this relationship, but

higher resolution parameter value investigations are needed.

When the TVRVS constraint is included, the perturbation kernel exponent `(k) is in-

cremented after each TVRVS failure, resulting in successively smaller perturbations each

time. Failure of the TVRVS constraint typically only occurs early in reconstruction (first

few FS iterations) before convergence directions have stabilized for each voxel. Hence, by

the time convergence behavior has settled, the `(k) increments result in smaller perturbation
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step-sizes and an under utilization of TVS throughout all subsequent FS iterations. This

effect becomes even more pronounced as N increases. Excluding the TVRVS avoids this

early reduction in perturbation step-sizes, thereby maintaining meaningful perturbations

throughout reconstruction and generating larger reductions in TV and standard deviation.

Naturally, the increases in TV that this permits are an undesired result, but the persistence

of larger perturbations for the remainder of reconstruction more than offset any such tem-

porary increases in TV. For example, for 3 ≤ N ≤ 6, excluding the TVRVS yielded at least

comparable, and often superior, TV and standard deviation for all three data sets. Compa-

rable results were typically associated with α = 0.5, whereas the results for α = 0.75 were

consistently superior and most clearly observed with the experimental data sets.

Excluding the TVRVS also allowed for a fully parallelized implementation of the

NTVS algorithm, resulting in a more computationally efficient TVS due to the elimina-

tion of the TVRVS conditional branch and the successive perturbations it performs until

TVRVS is satisfied. The data dependencies within TVS (e.g. discrete `2 norm) that act

like a computational bottleneck were eliminated via DDP schemes, and SGP schemes were

employed in the integration of TVS with FS-DROP. The overall reduction in sequential

compute operations due to the full parallelization resulted in an approximately 30% reduc-

tion in computation time.

One of the most influential features included in NTVS is user control of the pertur-

bation kernel α, which in OTVS had been a fixed hardcoded value equivalent to α = 0.5.

Larger reductions in TV and standard deviation are observed as α increases, but α > 0.75

was shown to affect reconstructed RSP is an unpredictable direction depending on the ma-

terial ROI. In some cases, the effect on the RSP of an ROI was in opposite directions for

the simulated and experimental CTP404 data sets. These results indicate that the direc-

tion that RSP is driven by inappropriately larger perturbations is not simply a property of

the phantom or its material composition, nor is it a product of any single parameter or

parameter combination. In accordance with the observed behaviors with respect to α and
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its relationship with other parameters, a practical suggestion for safely reliable and bene-

ficial behavior is α = 0.75 since this yields nearly optimal reductions of TV and standard

deviation without the potentially detrimental effects observed for larger α.

The most potentially rewarding benefit of NTVS is its larger permissible relaxation

parameter λ values relative to OTVS. It was demonstrated that NTVS was able to achieve

the same RSP error with λ = 0.0002 after k = 6 FS-DROP iterations without the ac-

companying larger standard deviations observed with OTVS. The larger standard deviation

observed for larger λ using OTVS led to the use of λ = 0.0001 in previously published

work involving simulated CTP404 data [87, 58]. Generating pCT images in fewer itera-

tions has twofold benefit: fewer iterations requires less computation time and yields fewer

error propagation steps, thereby yielding superior noise performance. Hence, the capability

of using larger λ represents a potentially invaluable development in pCT.

These NTVS investigations represent a thorough assessment of TVS parameter im-

pacts and interactions, as well as their relationship with relaxation parameter λ, and provide

a good reference to guide future investigations. The most obvious directions for future in-

vestigations are (1) a finer resolution of parameter values within the ranges suggested or

inferred here and (2) allowing parameter values to vary during reconstruction in different

ways.

Other directions to explore involve the decoupling of the relationship between α

and N. It is currently unclear whether the diminished benefits for N ≥ 7 are solely a result

of an over utilization of TVS or a consequence of β(k) decreasing too quickly (due to N

increments of `(k) per FS step), causing an under utilization of TVS.

A more flexible implementation would provide for the independent control of α

and the decay rate of β(k) as a function of k. These two features are currently insepa-

rable since β(k) = α`
(k)

and `(k) implicitly depends on r and k. One possible solution is

the introduction of another parameter γ f (k), where f (k) is some function of k with desired
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properties, that controls the β(k) rate of decay as a function of k. With this additional param-

eter, α would then be responsible for controlling only the β(k) rate of decay as a function of

r = 1, 2, . . . ,N. This yields the equation β(k,r) = αrγ f (k) for the perturbation step-size. Note

the elimination of the perturbation step counter `(k), as this is no longer needed to ensure

decaying perturbations for the preservation of convergence. Note that to guarantee conver-

gence is preserved, 0.0 < γ < 1.0 and f (k) must be chosen such that limk→∞ f (k) = ∞

(e.g., f (k) = k). With this new feature, the decay rate of β(k,r) can be independently con-

trolled as a function of k and r without disturbing the superiorization perturbation constraint

limk→∞ β
(k,r) = 0.

6.7 Conclusions

These investigations demonstrate the efficacy of the NTVS algorithm and the clear

advantages its use offers, in terms of both image quality and computational efficiency, in

comparison to the OTVS algorithm. Future investigations should include (1) an assessment

of whether or not the TVS parameters can be varied as a function of iteration k in some

way so as to yield superior performance and/or (2) whether the perturbation step-size rate

of decay between FS iterations as a function of k and within FS iterations as a function of

N can be controlled independently to increase the performance benefits of NTVS.

The investigations performed in this work demonstrate that the modifications im-

plemented by the NTVS algorithm provide clear advantages over the OTVS algorithm in

terms of both quality and computational cost. Future work should include investigating

whether varying parameters during reconstruction or controlling the decrease of the per-

turbation magnitude independently during iterations and repeated perturbation steps can

further increase the advantages of the NTVS algorithm.
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CHAPTER SEVEN

Conclusion

Confidence in the feasibility of clinical pCT continues to rise as new advancements

in detector technologies and image reconstruction methods are developed. The work pre-

sented in this dissertation represents several important contributions toward viable pCT

image reconstruction software for clinical applications. The pCT image reconstruction

software used to generate the pCT images in this dissertation was primarily developed at

Baylor University over the course of several years. The contributions that were presented

here were developed at the time when the associated pCT task was being implemented in

software. Hence, although the same software was used for each contribution to the disser-

tation, other software and hardware improvements were being made throughout this same

time period, so the software was more mature for each successive topic of investigation.

However, this fact does not obscure the validity of any of the separate works since each

of these were performed in isolation of external influence. Furthermore, the three steps of

pCT image reconstruction that were selected for development do not influence each other

and all comparison data/images were generated using the same software and configurations

as the data/images under investigation. Given that the primary objective for developing the

pCT software entirely from scratch and that computation time was the largest deficiency

in the initial pCT software developed at Loma Linda University, computational concerns

were addressed to some degree in every contribution.

Hull-detection, as presented here, has taken considerable strides since its initial

conception and investigatory work. The improvements of the SC algorithm and the devel-

opment of the MSC algorithm were proposed as two possible options to resolve the poor

performance observed in early SC work. The SC and MSC algorithms both performed

well in terms of successful identification of every target object voxel, but they have room

96



for improvement. The other algorithm proposed, SM, performed considerably worse than

the other hull-detection algorithms. Whereas SC and MSC both represent possible founda-

tions for a fully mature hull-detection algorithm, it is hard to conceive of a way to adjust or

modify SM that would lead it to have comparable performance as SC and MSC. Although

SC performed best of the investigate algorithms, MSC performed similarly and has several

desired properties that SC does not: (1) it can generate hull approximations with small con-

cavities; (2) its input data does not need to be binned or have unsuitable proton histories

removed, permitting use in an online-mode pCT system scan; (3) can be performed using

online-mode data streams and generate an approximate hull by the time the pCT scan is

complete, well before when SC or any other preconditioning task is performed. Hence,

MSC is the algorithm with the greatest potential for application, but it must be able to

perform at least as well as SC before this can be realized.

An efficient implementation of the MLP formalism was described in this disserta-

tion, accomplished by both mathematical simplification and careful software design con-

siderations. Although the entirety of this work has yet to be published, it corresponds to the

most mature of the topics described here. An abridged version of the text on this topic is

currently being prepared as part of a publication on pCT image reconstruction, intended to

be a companion to the recent IEEE Access publication “Particle-Tracking Proton Computed

Tomography—Data Acquisition, Preprocessing, and Preconditioning”. The computational

improvements of the MLP implementation resulted in a more than 70% reduction in com-

pute operations. Careful consideration of memory usage and the incorporation of MLP

component lookup tables yield computation times (typically less than 1 minute) that are no

longer an obstacle for fast pCT image reconstruction. Given this fact, it may be possible

to revisit the possibility of developing an improved MLP formalism, either involving re-

moving small-angle and other approximations or by extending the theory to account for the

non-homogenous material compositions observed in practice. Such advancements of MLP

were deemed infeasible given the computational burden observed for the MLP formalism
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based on a homogenous material composition assumption. In fact, the reduction in compu-

tation time is so large that, it may be possible to revisit several other tasks involved in pCT

and any such approximations they include be considered for removal.

The modern TVS algorithm was incorporated into the Baylor image reconstruction

software and its performance investigated for every permutation of the values tested of sev-

eral different parameters, yielding over 1000 individual image reconstructions. Given the

combinatorics with several parameters, each parameter was investigated with a relatively

small number of values. Hence, there weren’t enough values tested of some parameters to

determine a definitive optimal value (or range). However, these investigations were able

to identify small regions of superior performance, so it was possible to present reasonable

suggestions for the values of each parameter. Future development can then begin investiga-

tions of parameters with the suggested values and finer resolution searches of surrounding

values.
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APPENDIX A

Glossary and Notation

The following is a description of the terminology and an outline of the notation that

is relevant to the content of the dissertation.

A.1 Glossary

The following is a non-exhaustive list of terms used in the context of this disserta-

tion, or pCT in general, and for which there is no (or an indequate) definition accompanying

its use. Note that the glossary items whose specific context is unclear include a parentheti-

cal term that helps to establish the context in which they are defined.

• wobble (beam): a beam line configuration where the beam spot is wobbled in one

or more directions using a magnetic deflector.

• voxel: the elements of a three-dimensional image, equivalent to a pixel with a

nonzero thickness. Etymologically, it is the combination of volumetric and pixel.

• WEPL, water-equivalent path length: the unit of measure of energy loss appearing

in the measurement vector ⇀b . A WEPL value is assigned to each proton history

according to the length of water that the proton would have had to traverse in order

for the observed energy loss to occur.

• RSP, relative stopping power: a unitless measure of a material’s impact, rela-

tive to water, on WEPL; i.e. the WEPL per unit length of the material. Im-

age reconstruction yields this measure for each voxel. For example, for a pro-

ton history with WEPL = 1.5 mm that traversed a 1 mm thick material, the

RSP = WEPL/∆` = 1.5 mm/1 mm = 1.5

• proton history: A triggered proton event with registered tracking data ((t,u,v) for

all 4 tracker planes) and associated WEPL value (converted from energy loss, cal-

culated as the difference between scanner energy and measured output energy).
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• hyperplane: a single isolated row of the linear system A~x = ~b.

• projection methods (iterative image reconstruction): methods based on projections

of the image vector ~x(k) onto the m hyperplanes of the linear system A~x = ~b.

• feasibility-seeking: an approach in which a feasible solution, rather than an exact

solution, is sought. In the case of inconsistent data, an exact solution does not exit,

so a feasible solution is found instead. In other cases, an exact solution may exist,

but due to some additional constraint (e.g. computation time), a feasible solution

may be the preferred approach.

• fully simultaneous (feasibility-seeking): a feasibility-seeking algorithm perform-

ing (typically orthogonal) projections onto all m hyperplanes simultaneously (e.g.

Cimmino or FS-DROP algorithms)

• partial iteration (feasibility-seeking): completion of simultaneous (typically or-

thogonal) projections onto all hyperplanes within a block (block-iterative) or com-

pletion of projections onto a single hyperplane within a string.

• full iteration (feasibility-seeking): completion of projection operations onto each

of the m hyperplanes (i.e. proton histories), either all at once (fully simultane-

ous) or in a sequence of partial iterations composed of partitions of hyperplanes

(blocks-iterative or string-averaging).

• block-iterative (algorithm): a feasibility-seeking algorithm that partitions the m

hyperplanes into groups, called blocks, and performs a sequence of partial itera-

tions; each partial iteration is composed of simultaneous orthogonal projections

onto each hyperplane within the corresponding block and updates the solution,

with a full iteration complete once partial iterations have been performed for each

block.

• string-averaging (algorithm): a feasibility-seeking algorithm that partitions the m

hyperplanes into groups, called strings, and each string performs an independent

sequence of partial iterations; each partial iteration corresponds to a (typically or-

thogonal) projection onto a single hyperplane, with a full iteration complete once
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each string has performed partial iterations for each hyperplane in the correspond-

ing string.

• index set: a mathematical set is a set whose members label (or index) members of

another set. For the purposes of this dissertation, an index set dictates the order in

which the elements of an unordered source set (w/ N elements) are to be processed,

i.e. defining how the source set should be reordered. The index set is an ordered

set composed of the integers (1..N), where the position of each integer i indicates

the desired position of the ith element of the source set within the reordered source

set. For example, index set (3, 2, 1) indicates the reversal of the source set.

• helper function: a subfunction that performs a portion, typically a particular task,

of the parent function.

• kernel (GPU): a function that is executed (on a GPU) as a set, or array, of compu-

tationally independent threads performing identical code instructions.

• (proton) pile-up: refers to the scenario where the time between consecutive protons

entering the calorimeter is smaller than the time it takes for the calorimeter mea-

surement signal to decay back down to baseline, i.e. there is a pile-up of residual

proton energies in the detector signal. This scenario results in the residual energy

signal from the earlier proton being added to that of the next proton, which yields

and unsuitable proton history.

• sequential gap parallelization: an approach where a sequential section of code pre-

venting full parallelization is executed on a single thread rather than transferred

to/from the host CPU, thereby reaching full parallelization at a minor GPU effi-

ciency cost.

• dependency distribution parallelization: an approach where inter-thread data de-

pendencies are eliminated by generating all the necessary data on each thread,

thereby reaching full parallelization at a minor cost in thread-local memory and

computation time.
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A.2 Notation

• m : total # of proton histories

• n : total # of image vector voxels

• k : full iteration # of iterative projection (feasibility-seeking) algorithms

• kp : partial iteration # within the kth full iteration of iterative projection (feasibility-

seeking) algorithms

• K : # of full iterations that an iterative projection (feasibility-seeking) algorithm is

to perform

• λ(k) : relaxation parameter at the kth iteration

• D = diag1≤ j≤n

(
1
d j

)
: the diagonal matrix where d j is the # of nonzero elements of

the jthth column of A, i.e., the # of times the jth voxel was intersected by a proton

path

• P(k) : total # of BIP blocks at iteration k

• S (k) : total # of SAP strings at iteration k

• A∗, j : Column vector composed of all ∗ = 1:m rows of the jth column of the

matrix A

• A i,∗ : Row vector composed of all ∗ = 1:n columns of the ith row of the matrix A

• ~x(k) : Image vector ~x at iteration k

• P =
{
Pp | 1 ≤ p ≤ P

}
: is the ordered set of blocks/strings

• B =
{
Bp | 1 ≤ p ≤ P

}
: is the unordered set of blocks

• S =
{
Sp | 1 ≤ p ≤ P

}
: is the unordered set of strings

• I = {1, 2, 3, · · · ,m} : the (sequentially ordered) index set of all proton history

indices

• f(k) :I → B(k) =
{

f(k)(1), f(k)(2), f(k)(3), · · · , f(k)(m)
∣∣∣ f(k)(i) = b ∈ B(k), i ∈ I

}
:

surjective function f(k) mapping each of the m proton histories to one of the B(k) BIP

blocks, which may vary as a function of k, thereby establishing the # of histories

in each block and the order they are processed.

• J(k) =
{

1, 2, 3, · · · , B(k)
}

: the (sequentially ordered) index set of all BIP block

indices, where the # of BIP blocks B(k) may vary as a function of iteration k.
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• f(k) :I → J(k) =
{

f(k)(1), f(k)(2), f(k)(3), · · · , f(k)(m)
∣∣∣ f(k)(i) = j ∈ J(k), i ∈ I

}
:

surjective function f(k) mapping each of the m proton histories to one of the B(k) BIP

blocks, which may vary as a function of k, thereby establishing the # of histories

in each block and the order they are processed.

• M j(k) =
{

i ∈ I
∣∣∣ f(k)(i) = j ∈ J(k)

}
: the ordered set of proton history indices

assigned to the j-th BIP block by the function f(k)

• M(k) =
⋃
j∈J(k)

M j(k) =
{
M1(k),M2(k), · · · ,MB(k)

}
: the family of sets (BIP blocks) of

proton history indices for iteration k, assigned according to the function f(k)

• g(k) :J(k) → J(k) =
{

g(k)(1), g(k)(2), g(k)(3), · · · , g(k)
(
B(k)

) ∣∣∣ g(k)(i) = j ∧ i, j ∈ J(k)
}

: bijective function g(k) imposing an order on the sets (BIP blocks) of proton histo-

ries to define the sequence that the BIP blocks are procecessed at iteration k.

• B(k) =

{ (
M j(k)

)
j∈J(k)

∣∣∣∣∣M j(k) <Mi(k) ⇔ g( j) < g(i)
}

: the ordered family of sets

(BIP blocks) of proton histories generated by the bijective mapping function g(k).

• Hi =
{
x ∈ Rn |

〈
Ai,∗, x

〉
= bi, i ∈ I

}
: the hyperplane corresponding to the ith row

of the m × n linear system A~x = ~b upon which the image vector x(k) is projected

• H = {Hi | i ∈ I} : the set of hyperplanes corresponding to the m × n linear system

A~x = ~b upon which the image vector x(k) is iteratively projected
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APPENDIX B

Voxel Walk Algorithm

The history of the design and implementation of the voxel walk algorithm, initially

developed for use in hull-detection, is presented in the following sections.

B.1 Three-Dimensional Voxel Walk Algorithm

In order to carve voxels out of the object along the path of a proton that missed

the object, the voxels intersected by the path must be accurately identified. Therefore,

hull-detection had to include a procedure for sequentially stepping along the path from

one voxel intersection to the next, herein referred to as a voxel walk algorithm, in order to

accomplish this task. A similar task is common in the context of computer graphics, where

a line L passes through a discretized 2D rectangular grid (typically an image I) with an

orientation defined as the angle θ between L and a line normal to either the image’s x− or

y−axis. The geometry for the case where θ is defined with respect to the line normal to the

x−axis is illustrated in Figure B.1. The coordinates of the points where the lineL intersects

a particular pixel Pn, often called (pixel) intersection points, and the length λ of the chord

connecting these points are typically calculated as well.

A common application of this is determining which pixels to fill in an image, or

partially fill in the case of anti-aliasing, to render an approximation of a straight line. A

number of effective and efficient algorithms exist for performing such tasks with 2D im-

ages, such as the digital differential analyzer (DDA) and Bresenham’s [47] and Xiaolin

Wu’s [48, 49] line algorithms, but these do not extend well to 3D images. In fact, there

is no obvious extension of these algorithms to three or more dimensions because of their

reliance on the binary nature of pixel intersections: if the next pixel intersection is not in the

x-direction, then it must be in the y-direction. In addition, these algorithms are specifically
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designed for computer graphics, which has an entirely different objective than that of its

intended use in hull-detection.

There is another type of computer graphics algorithms, called ray marching, that

performs essentially the same task as the one sought for hull-detection. A similar type of

algorithm is called ray tracing (or ray casting). They are both methods for determining

the intersection of a ray (i.e. SLP) with an object, but the former performs an iterative

search along the ray for an intersection and the latter seeks to do solve for the intersection

algebraically. Each of these methods is conceptually sufficient for the purposes of hull-

detection, but detailed descriptions of efficient implementations of these algorithms are

difficult to obtain. This is partly owing to the fact that the field of computer graphics

is highly competitive and efficient algorithms are developed for proprietary, rather than

public, use.

A complicating factor is the variation in terminology used to refer to these algo-

rithms and the lack of literature that can be used as a resource for identifying the algorithm

name variations. In fact, the terms ray marching and, subsequently, ray tracing were only

discovered by happenstance in a short paper (more like an advertisement) touting Dream-

Works graphical tools, though it provided no implementation details. For the examples of

ray marching and ray tracing I could find freely available, their methods were quite crude

and presented at a rudimentary conceptual level. Nearly all of the ray marching algorithms

I found performed iterative steps of constant length along the ray and included a concept

of “close enough” in reference to identifying intersected voxels. In the case of ray tracing,

it was only presented in the context of rendering scene illumination. In both cases, there

was little to no mathematical prescriptions nor even a passing reference to implementation

design considerations. None of the resources I found on these two algorithms were ad-

equately detailed for them to be implemented, nor did discussions include consideration

for the parallelization and numerical stability of the algorithms that would be expected in a

computer graphics context. Hence, the search for resources on these algorithms was halted.
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The task of determining the voxels intersected by a line (SLP) and the coordinates

of the corresponding intersection points is a relatively simple concept. It was inconceivable

that there wouldn’t be an existing 3D algorithm for such a basic procedure. Although there

is no doubt that these algorithms exist, the lack of fruitful searches for these led to the

independent development of a voxel walk algorithm that can efficiently accomplish the

desired task. This algorithm is primarily based on an implementation of the DDA method,

though it incorporates concepts from Bresenham’s line algorithm, and is herein referred

to as the 3D-DDA method. Unlike the ray marching and ray tracing methods, the DDA

method has a plethora of resources, though it has the same lack of resources with formal

definitions, descriptions, and potential implementations.

B.1.1 Foundational Algorithm

Despite the challenges, a logical framework for the development of the 3D-DDA

was established based on Figure B.1.

This figure was created as a visual representation of the version of the DDA algo-

rithm that was found having a form that is most easily extended to 3D. Whether this truly is

an implementation of the DDA algorithm or is some combination of algorithms is inconse-

quential to the present discussion. Initially the plan was to present the 3D-DDA algorithm

at a conference so that it would become available to others in the conference record, but

this never came to pass. The intent of presenting it here is merely to have it recorded in a

formal setting so others can find it and use it without having to develop their own algorithm

from scratch. Hence, for the purpose of the following discussions, it will be assumed that

Figure B.1 indeed represents some implementation of the DDA algorithm. The notation

used in the figure is defined as:

• I = represents the image

• L = the line passing through image I

• θ = the angle of line L with respect to the image I
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Figure B.1: Diagram showing a line passing through an image annotated with the intersec-
tion points/lenths and intersected voxels which a line algorithm must determine.

• δ = the maximum vertical distance ∆y the line L can travel within a pixel before

intersecting another pixel.

• τ = the maximum horizontal distance ∆x the lineL can travel within a pixel before

intersecting another pixel.

• P0 = the coordinates (x, y) corresponding to the leftmost edge of the first pixel

intersected by line L.

• A = the coordinates (x0, y0) corresponding to the point where the line L first inter-

sects the image I.

• B,C,D, . . . = the coordinates (x1, y1), (x2, y2), (x3, y3), . . . corresponding to the first,

second, third, etc. pixels intersected after successive steps along L.

• p = the function that maps the tuple (x0, y0, θ0) onto the corresponding pixel P.

• Pn =
(
Pn,x,Pn,y

)
the pixel

• ` (Pn) = the length of the chord connecting the points whereL intersected pixelPn.
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The following is a pseudocode definition, in terms of the preceding definitions, of a

common implementation of the DDA algorithm illustrated in Figure B.1:

Algorithm 4 Standard DDA
1: procedure DDA(I, δ,L, θ)
2: τ ..= δ tan θ
3: λ ..= δ/ cos θ = δ sec θ
4: A = (x0, y0) =

⇀
L ∩ I

5: P0 = p(x0, y0, θ) . p : (x, y, θ)→ pixel P
6: χ0 = A − P0 = x0 mod δ
7: while (xn, yn) ∈ I do
8: if χn + τ < δ then
9: `(Pn) = λ . chord length ⇀L ∩ Pn

10: χn+1 = χn + τ
11: Pn+1 =

(
Pn,x,Pn,y + 1

)
. down 1 pixel

12: else
13: `(Pn) = λ

(
δ−χn
τ

)
14: Pn+1 =

(
Pn,x + 1,Pn,y

)
. right 1 pixel

15: if χn + τ = δ and Pn ∈ I then
16: n = n + 1
17: l(Pn) = λ

(
χn+τ−δ

τ

)
18: χn+1 = χn + τ − δ
19: Pn+1 =

(
Pn,x,Pn,y + 1

)
. down 1 pixel

20: end if
21: end if
22: xn+1 = xn + τ
23: yn+1 = yn + δ
24: n = n + 1
25: end while
26: end procedure

Note that in the case illustrated in the figure, unit increments are taken in the y

dimension since the slop of the line is skewed towards the y−axis, but the procedure with

the roles of x and y reversed is mathematically equivalent. For convenience, let the direction

in which unit increments are taken be referred to as the control dimension, which is y in

the present case. The algorithm begins by calculating the change in x (y), τ, associated

with moving one pixel (w × h = δ × δ) in the vertical (horizontal) direction. At each

step, the value of τ is compared to the remaining distance in the x (y) direction before
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the next pixel, ∆ = δ − χ, to determine if the next pixel is in the horizontal or vertical

direction. When the remaining distance ∆ > τ, the next pixel is in the vertical direction and

the length of the chord connecting the current and next intersection points is the constant

` = δ/ cos θ = δ sec θ. On the other hand, when the remaining distance ∆ ≥ τ, the next

pixel intersected is in the horizontal direction. The case where ∆ = τ, i.e. the line passes

through the corner of a pixel, is handled as a subcondition of ∆ ≥ τ. Since ∆ = τ is a

relatively rare case, it makes more sense to handle it as a subcondition of the else clause,

rather than implementing the three possible relations as an if/else if/else conditional.

B.1.2 3D-DDA (Voxel Walk) Algorithm

B.1.2.1 Design Considerations and Decisions.

The binary decision of x− or y−direction pixel steps is reflected in the test condition

of the conditional if branch: χn + τ < δ. In an extension of the notation to 3D, this test

condition could be represented as χn,x +τx < δx, where δx = δy are still equal but referenced

independently. For demonstration purposes, assume (1) that δz = δx = δy = δ and (2)

that the y−direction still has the greatest slope. Then there would be χn,x + τx < δ and

χn,z + τz < δ test conditions, as well as comparisons of χn,x + τx and χn,z + τz in the case

where both x and z satisfy their associated test condition. This can be formulated as a

ternary logic decision (e.g. if-else if-else conditional) with test conditions having

carefully chosen binary relations. However, situations where L intersects the corner of a

voxel do not immediately fit into the ternary branching scheme without modifications and

a moderate increase in complexity. Further complicating matters is the fact that in pCT,

δx = δy < δz, making it impossible to perform direct comparisons of these test conditions.

Therefore, this adaptation of notation and test conditions for a 3D implementation is not

well suited for the task.

A more suitable approach involves the rewriting of tests conditions as, e.g., ρ =

δ − χn > τ. This seemingly innocuous change actually represents a foundational shift

110



in perspective; rather than maintaining a value χn for the current depth within the nth

voxel, the distance remaining before reaching the next voxel, ρ, is maintained. In pCT,

the z−dimension of the image space, representing axial slices of the tomographic image

space, has a relatively large thickness compared to the (square) xy−dimensions of each

slice. Hence, the 3D-DDA uses the z−dimension in the role that the y−dimension has in

Figure B.1 and the corresponding DDA algorithm (Algorithm 4. The reason the control

dimension is not simply chosen as the direction with the largest slope, which is slightly

more efficient, is that this would require separate routines for each direction and condi-

tional branches for selecting the appropriate routine to execute. Note that the stream mul-

tiprocessors (SMs) of a GPU can only be utilized simultaneously if they are executing the

same exact sequence of operations. In the case of conditional if-else branches, only

the threads for which the condition is evaluated TRUE are executed simultaneously, fol-

lowed by simultaneous execution of all the threads for which the condition is FALSE after

all TRUE thread operations are complete. Thus, branching on a GPU should be avoided

whenever possible, particularly if the number of operations within each branch is more than

just a handful of basic access/write operations. Any efficiency loss due to atypical cases

where z is not the largest slope are more than made up for by the more efficient and reliable

computations.

B.1.2.2 Implementation Details.

The 3D-DDA (voxel walk) algorithm iteratively steps from one intersected voxel

to the next along a line L. In the case of pCT, the line L does not explicitly exist, it is

merely an implied structure based on the position and angle of a proton as it enters and

exits the reconstruction volume. Note that for the purposes of pCT, the chord lengths for

each intersected voxel are not calculated, but they easily could be if the need arose. The

axial direction z remains the control dimension regardless of whether or not the slope if

largest in this direction. The test condition data relates to a new parameter ρX representing

the remaining distance before the next voxel in the X−direction.
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The notation used in the following description and implementation of the 3D-DDA

(voxel walk) algorithm is given by:

• ∆YX = ∆Y/∆X =
Yexit−Yentry

Xexit−Xentry
: the slope in Y relative to X, where X,Y ∈ { x, y, z}

• ∆ =
{

∆xy,∆yx,∆xz,∆zx,∆yz,∆zy

}
: set of the slopes associated with each possible

pairing of (x, y, z)

• X± = ±1: an integer variable with value +1 representing a proton heading in

the direction of increasing X (i.e. (+X)−direction) and -1 representing a proton

heading in the direction of decreasing X. (i.e. (−X)−direction).

• X+ ± 1: indicates whether voxel numbers increase in the positive (+1) or negative

(-1) X−direction.

• ρ =
{
ρx, ρy, ρz

}
: the set composed of distances remaining until the next voxel

edge in each direction.

• V =
{
Vx,Vy,Vz

}
: the current voxel, represented by a tuple of voxel indices

associated with each direction.

• XV0: the X−coordinate on the edge of the voxel with index 0 with the point p0 =

{ x0, y0, z0} on the edge of the first intersected voxel.

• PX: operator for projecting the current point p = { x, y, z} onto the edge of the

next voxel in the X−direction for the purpose of determining the corresponding

distance traveled in the z−direction.

The basic concept of the algorithm is the comparison of the distance ρz to the edge

of the next voxel in the z−direction with the distances travelled in z by stepping to the edges

of the next voxels in the x and y directions. In other words, the current point is projected

onto the next x and y voxel edges according to the distances ρx and ρy, respectively, and

multiplied by their associated slopes dz/dx and dz/dy to convert all three into measures of dis-

tances in z. Direct comparisons of the three directions can then be performed to determine

which direction the next intersected voxel is in. This is a ternary decision implemented

as an if-else if-else conditional branch, representing the entirety of the high-level

structure of the voxel walk algorithm.
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The remaining tasks are performed within the branches and amount to nearly the

same operations, differing only in the roles that x, y, and z have in each branch. These tasks

represent a basic logical scheme, but including their implementations directly within the

branches makes it too cluttered to follow and understand the governing logic. Hence, there

are three subroutines (i.e. helper functions) that encapsulate the basic tasks performed in

each branch: project onto the next voxel edge in the direction associated with the branch

(Algorithm 5, determine the corresponding coordinates of this edge point in the other two

dimensions (Algorithm 6, then update the ρ variables with the new distance to edge values

(Algorithm 7. These subroutines are defined, in this order and in terms of pseudocode, as

follows:

Algorithm 5 Edge Projection Helper Function
1: function Proj(VX, XV0 , X+, X±, δX)
2: if X± = X+ then
3: EX ←VX

4: else
5: EX ←VX + 1
6: end if
7: return XV0 + { X+ · EX · δX}

8: end function

Algorithm 6 Edge Component Helper Function
1: function Edge(m, X, X0,Y0)
2: return m · (X − X0) + Y0

3: end function

Algorithm 7 Distance Remaining Helper Function
1: function δToGo(VX, XV0 , X0, X+, X±, δX)
2: VX ←VX + X+ · X±
3: EX+1 ← Proj(XV0 ,VX, δX, X+, X±)
4: return |EX+1 − X0|

5: end function
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With the encapsulation of these helper function tasks, the logic of the 3D-DDA al-

gorithm is considerably easier to recognize and understand. Algorithm 8 (shown on the

next page) is a pseudocode definition of the 3D-DDA (voxel walk) algorithm as it is cur-

rently implemented in the BU pCT software. Note that this algorithm is itself designed as

a subroutine, requiring initialization data to be provided as input arguments to the function.

This, as well as the use of its own subroutines, is not purely for the sake of code readability.

It is primarily a subdivision of independent tasks such that other steps in pCT reconstruc-

tion can make use of one or more of these subroutines without requiring other tasks to be

executed as well. This will also make it easier to add support for chord length calculations

since the requisite information is already present in a routine that called 3D-DDA.
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Algorithm 8 3D-DDA (Voxel Walk) Algorithm

Require: p0 = { x0, y0, z0} , p± = { x±, y±, z±} , ρ =
{
ρx, ρy, ρz

}
,V =

{
Vx,Vy,Vz

}
Require: ∆ =

{
∆xy,∆yx,∆xz,∆zx,∆yz,∆zy

}
1: procedure 3D-DDA(I,V,∆, ρ, p0, p±)
2: while STOP = FALSE do
3: Px = ∆zx · ρx

4: Py = ∆zy · ρy

5: if ρz ≤ Px and ρz ≤ Py then
6: Vz ←Vz − z± and ρz ← δz . up/down 1 slice
7: z← Proj(zV0 ,Vz, δz, z+, z±)
8: x← Edge(∆xz, z, z0, x0)
9: y← Edge(∆yz, z, z0, y0)

10: ρx ← δToGo(xV0 , x, x+, x±, δx,Vx)
11: ρy ← δToGo(yV0 , y, y+, y±, δy,Vy)
12: else if Px ≤ Py then
13: Vx ←Vx + x± and ρx ← δx . right/left 1 voxel
14: x← Proj(xV0 ,Vx, δx, x+, x±)
15: y← Edge(∆yx, x, x0, y0)
16: z← Edge(∆zx, x, x0, z0)
17: ρy ← δToGo(yV0 , y, y+, y±, δy,Vy)
18: ρz ← δToGo(zV0 , z, z+, z±, δz,Vz)
19: else
20: Vy ←Vy − y± and ρy ← δy . up/down 1 voxel
21: y← Proj(yV0 ,Vy, δy, y+, y±)
22: x← Edge(∆xy, y, y0, x0)
23: z← Edge(∆zy, y, y0, z0)
24: ρx ← δToGo(xV0 , x, x+, x±, δx,Vx)
25: ρz ← δToGo(zV0 , z, z+, z±, δz,Vz)
26: end if
27: if ρx = 0 then
28: ρx ← δx andVx ←Vx + x±
29: end if
30: if ρy = 0 then
31: ρy ← δy andVy ←Vy − y±
32: end if
33: if ρz = 0 then
34: ρz ← δz andVz ←Vz − z±
35: end if
36: Vz ← max (Vz, 0) andV ← Vx +Vy · COLUMNS +Vz · COLUMNS · ROWS

37: if 〈STOP CONDITION〉 then STOP = TRUE

38: end if
39: end while
40: end procedure
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APPENDIX C

Derivation Of Simplified MLP

C.1 Integration and Algebraic Expansion of Prior Likelihood Scattering Elements

The algebraic expansion and definite integration of the prior likelihood scattering

elements σ2
t1(u0, u1), σ2

θ1
(u0, u1), and σ2

t1θ1
(u0, u1) is shown step-by-step in the following:

σ2
t1(u0, u1) = C(u1 − u0)

u1∫
u0

(u1 − u)2

β2(u)p2(u)
du
X0

=
C(u1 − u0)

X0

u1∫
u0

(u1 − u)2
(
a0 + a1u + a2u2 + a3u3 + a4u4 + a5u5

)
du

=
C(u1 − u0)

X0

u1∫
u0

(
u2

1 − 2u1u + u2
) (

a0 + a1u + a2u2 + a3u3 + a4u4 + a5u5
)

du

=
C(u1 − u0)

X0

u1∫
u0

[
u2

1

(
a0 + a1u + a2u2 + a3u3 + a4u4 + a5u5

)
− 2u1u

(
a0 + a1u + a2u2 + a3u3 + a4u4 + a5u5

)
+u2

(
a0 + a1u + a2u2 + a3u3 + a4u4 + a5u5

)]
du

=
C(u1 − u0)

X0

u1∫
u0

[
u2

1

(
a0 + a1u + a2u2 + a3u3 + a4u4 + a5u5

)
− 2u1

(
a0u + a1u2 + a2u3 + a3u4 + a4u5 + a5u6

)
+

(
a0u2 + a1u3 + a2u4 + a3u5 + a4u6 + a5u7

)]
du

=
C(u1 − u0)

X0

[
u2

1

(
a0u +

a1u2

2
+

a2u3

3
+

a3u4

4
+

a4u5

5
+

a5u6

6

)
− 2u1
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a0u2

2
+
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3
+

a2u4

4
+

a3u5

5
+
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6
+
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7

)
+

(
a0u3

3
+

a1u4

4
+

a2u5

5
+

a3u6

6
+

a4u7

7
+

a5u8

8

)]u1

u=u0

116



=
C(u1 − u0)

X0

[(
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1
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+
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1
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+

a3u6
1
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+
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+
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1

6
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0
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+
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+
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0
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+
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+
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0

6

)
− 2
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+
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+
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+
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+
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+
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1
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)
+ 2u1
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0
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+
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0

3
+
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0
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+
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0

5
+
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0
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+
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0

7

)
+

(
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1
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+
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+
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+
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+
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1
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+
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1
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)
−
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+
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4
+
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+
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+
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+
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0
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)]
=
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−
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−
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(
1
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−
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+
1
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1

(
1
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2
6

+
1
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)
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1

(
1
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−

2
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+
1
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)
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1

(
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a1u2
0

2
+
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3
+

a3u4
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4
+
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0

5
+
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0

6

)
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(
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0

2
+
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3
+

a2u4
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+
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0

5
+

a4u6
0
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+
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+
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0
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+
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0
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+

a3u6
0
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+

a4u7
0

7
+

a5u8
0

8

)}

σ2
t1(u0, u1) =

C(u1 − u0)
X0

{
a0u3

1

3
+

a1u4
1

12
+

a2u5
1

30
+

a3u6
1

60
+

a4u7
1

105
+

a5u8
1

168

−u2
1

(
a0u0 +

a1u2
0

2
+

a2u3
0

3
+

a3u4
0

4
+

a4u5
0

5
+

a5u6
0

6

)
+2u1

(
a0u2

0

2
+

a1u3
0

3
+

a2u4
0

4
+

a3u5
0

5
+

a4u6
0

6
+

a5u7
0

7

)
−

(
a0u3

0

3
+

a1u4
0

4
+

a2u5
0

5
+

a3u6
0

6
+

a4u7
0

7
+

a5u8
0

8

)}

σ2
θ1

(u0, u1) = C(u1 − u0)

u1∫
u0

u1 − u
β2(u)p2(u)

du
X0

=
C(u1 − u0)

X0

u1∫
u0

(u1 − u)
(
a0 + a1u + a2u2 + a3u3 + a4u4 + a5u5

)
du
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=
C(u1 − u0)

X0

u1∫
u0

[
u1

(
a0 + a1u + a2u2 + a3u3 + a4u4 + a5u5

)
−u

(
a0 + a1u + a2u2 + a3u3 + a4u4 + a5u5

)]
du

=
C(u1 − u0)

X0

u1∫
u0

[
u1

(
a0 + a1u + a2u2 + a3u3 + a4u4 + a5u5
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(
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+
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+
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+
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+
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+
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+
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+
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+
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+
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+
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+
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+
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+
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+
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+

a4u5
0

5
+
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+
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+
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+
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+
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+

a5u7
1

7
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+
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+
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+
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+
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+
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+
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=
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−
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1

(
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−
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(
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−

1
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−
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+
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+
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+
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+
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+
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+
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4
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5
+

a4u6
0

6
+
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0

7
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σ2
θ1
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a0u2

1

2
+

a1u3
1

6
+

a2u4
1

12
+

a3u5
1

20
+

a4u6
1

30
+

a5u7
1

42

)
−u1

(
a0u0 +

a1u2
0

2
+

a2u3
0

3
+

a3u4
0

4
+

a4u5
0

5
+

a5u6
0

6

)
+

(
a0u2

0

2
+

a1u3
0

3
+

a2u4
0

4
+

a3u5
0

5
+

a4u6
0

6
+

a5u7
0

7

)]
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σ2
t1θ1

(u0, u1) = C(u1 − u0)

u1∫
u0

1
β2(u)p2(u)

du
X0

=
C(u1 − u0)

X0

u1∫
u0

(
a0 + a1u + a2u2 + a3u3 + a4u4 + a5u5

)
du

=
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C.2 Integration and Algebraic Expansion of Posterior Likelihood Scattering Elements

The algebraic expansion and definite integration of the prior likelihood scattering

elements σ2
t2(u1, u2), σ2

θ2
(u1, u2), and σ2

t2θ2
(u1, u2) is shown step-by-step in the following:

σ2
t2(u1, u2) = C(u2 − u1)

u2∫
u1

(u2 − u)2

β2(u)p2(u)
du
X0

=
C(u2 − u1)

X0

u2∫
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C.3 Evaluation of Terms Under Coordinate Transformations

C.3.1 Evaluation of Terms Under Linear Coordinate Translation

The path of a proton is independent of the coordinate system under which its be-

havior is analyzed. Inspection of the equations defining the prior and posterior likelihood

scattering elements reveals that they are both translationally and rotationally invariant, indi-

cating that the theory coincides with intuition of the underlying physical processes a proton

undergoes while traversing an object. Considering the translational invariance first, the im-

mediately obvious choice is to translate the coordinate system such that either the object

entry or exit points lie at the origin, which is arbitrarily chosen to be the object entry point

such that t0 = u0 = 0. Note that the posterior likelihood scattering elements have no u0 or t0

dependency, so the linear translation does not affect them. Hence, evaluating only the prior

likelihood scattering elements under this coordinate system translation yields the following

simplified equations:
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The simplified polynomial equations for each of the prior likelihood scattering el-

ements, as well as the previously simplified posterior likelihood scattering elements, are

summarized as follows:
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A careful inspection of the polynomial terms comprising Equations C.1–C.6 reveals

several common polynomial terms; some of the polynomials appear identically in multiple

equations, whereas others have the same structure (i.e. same coefficients appearing with

the same polynomial degrees) but are a function of a different depth parameter (e.g. u1 or

u2). The scattering elements terms can be simplified considerably by exploiting this fact

to identify and define common polynomial equations of a generic depth u, then rewriting

the equations for the scattering elements in terms of these common polynomials, where the

generic depth parameter is defined as u = u1 or u = u2 as the case dictates.

These common polynomial equations, PN(u), of generic proton depth u, are defined

according to the following system of equations:
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Rewriting Equations C.1–C.3 and Equations C.4–C.6 in terms of these PN(u) yields

the following simplified equations for the prior and posterior likelihood scattering elements,

respectively:

σ2
t1(u0, u1) = C(u1)P1(u1) (C.8)

σ2
θ1

(u0, u1) = C(u1)P2(u1) (C.9)

σ2
t1θ1

(u0, u1) = C(u1)P3(u1) (C.10)

and

σ2
t2(u1, u2) = C(u2 − u1)

[
P1(u2) − u2

2P3(u1) + 2u2P4(u1) − P5(u1)
]

(C.11)

σ2
θ2

(u1, u2) = C(u2 − u1) [P2(u2) − u2P3(u1) + P4(u1)] (C.12)

σ2
t2θ2

(u1, u2) = C(u2 − u1) [P3(u2) − P3(u1)] (C.13)

Equations C.8 – C.10 and Equations C.11 – C.13 are the final forms of the prior

and posterior likelihood scattering elements and are provided without derivation in Equa-

tions 5.12 – 5.17 of the main text. The substitution matrix above in Equation C.7 is also

provided in the main text in Equation 5.18. The vectors ~y0 and ~y2, which characterize the

path of a proton as it enters and exits the object, respectively, are also transformed in their

t components by the linear translation, but the derivation of the resulting equations is de-

ferred until the coordinate system rotation transforming the θ components is also evaluated.

The combined transformation of the vectors is described next.

C.3.2 Evaluation of Terms Under Coordinate Rotation

The scattering matrices Σ1 and Σ2 are unaffected by the coordinate rotation since

none of their elements contain any angle dependent terms. On the other hand, the vectors

~y0 and ~y2 characterizing the path of a proton at the object entry and exit points are affected

by both the linear translation and rotation transformations. Since the vector ~y0 only appears
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in yMLP in conjunction with the (small-angle approximated) rotation matrix R0, this is also

evaluated:
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00
 (C.14)
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and

u2

t2

 = RΘ0

U2 − U0
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cos Θ0 − sin Θ0

sin Θ0 cos Θ0
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 (C.17)

=⇒ ~y2 =

t2

θ2

 =

sin Θ0 (U2 − U0) + cos Θ0 (T2 − T0)

Θ2 − Θ0

 (C.18)

127



APPENDIX D

TVS Notation, Algorithm, and Procedure Definitions

D.1 Definition of Terms

The list below defines the terms and mathematical notation used in describing the

OTVS and NTVS algorithms:

• k : full iteration #, i.e., k-th iteration of superiorized FS.

• K : total # of full iterations, i.e., total # of iterations of superiorized FS.

• r : TV perturbation step #, 1 ≤ r ≤ N.

• ~x(k) : image vector ~x at cycle k.

• x̄ : initial iterate ~x(0) of image reconstruction.

• N: # of TV perturbation steps per FS iteration.

• α : perturbation kernel, 0 < α < 1.

• `(k) : perturbation kernel exponent.

• β(k,r): perturbation (magnitude) coefficient β(k,r) = α`
(k)

at TV perturbation step r of

FS iteration k.

• φ : the cost function to which superiorization is applied; here, φ = TV, the TV of

the image vector.

• φ(~x(k,r)) : TV of image vector ~x(k,r) at TV perturbation step r and FS iteration k.

• v(k,r) : normalized non-ascending perturbation vector for φ at ~x(k,r), i.e.,

v(k,r) = −
∇φ(~x(k,r))∥∥∥∇φ(~x(k,r))

∥∥∥ = φ′(~x(k,r))

• PT : projection operator representative of an iterative FS algorithm.
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D.2 NTVS Algorithm

A pseudocode definition of the NTVS algorithm, written in terms of the notation

defined in Appendix D.1, is as follows:

Algorithm 9 NTVS Algorithm
1: set k = 0
2: set `−1 = 0
3: set ~x(k) = x̄
4: while k < K do
5: set r = 0
6: set `(k) = rand(k, `k−1)
7: set ~x(k,r) = ~x(k)

8: while r < N do
9: set ~v(k,r) = φ′(~x(k,r))

10: set β(k,r) = α`
(k)

11: set ~x(k,r+1) = ~x(k,r) + β(k,r)~v(k,r)

12: set r = r + 1
13: set `(k) = `(k) + 1
14: end while
15: set ~x(k+1) = PT (~x(k,N))
16: set k = k + 1
17: end while
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FOR REFERENCE ONLY: A pseudocode definition of the NTVS algorithm with the

TVRVS (TV reduction verification step) included:

Algorithm 10 NTVS Algorithm
1: set k = 0
2: set `−1 = 0
3: set ~x(k) = x̄
4: while k < K do
5: set r = 0
6: set `(k) = rand(k, `k−1)
7: set ~x(k,r) = ~x(k)

8: while r < N do
9: set ~v(k,r) = φ′(~x(k,r))

10: set β(k,r) = α`
(k)

11: set loop = true
12: while loop do
13: set ~z(k,r) = ~x(k,r) + β(k,r)~v(k,r)

14: if φ(~z(k,r)) ≤ φ(~x(k,r)) then
15: set ~x(k,r) = ~z(k,r)

16: set loop = f alse
17: end if
18: set `(k) = `(k) + 1
19: end while
20: set r = r + 1
21: end while
22: set ~x(k+1) = PT (~x(k,N))
23: set k = k + 1
24: end while

Note that this version of the NTVS algorithm was only used to isolate and investi-

gate the impact that including/excluding the TVRVS constraint has on image quality as a

function of the other NTVS parameter values. Algorithm 10 above is not intended for use,

it is only defined here to provide readers with the precise definition of the algorithm used

to compare NTVS performance with and without the TVRVS constraint.
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D.3 OTVS Algorithm

A pseudocode definition of the OTVS algorithm, translated from the notational

form presented in previous publications and rewritten in terms of the same notation used to

define the NTVS algorithm (Appendix D.1), is as follows:

Algorithm 11 OTVS Algorithm
1: set k = 0
2: set ` = 0
3: set β = 1
4: set ~x(k) = x̄
5: while k < K do
6: set ~v(k) = φ′(~x(k))
7: set loop = true
8: while loop do
9: set ~z = ~x(k) + β~v(k)

10: if φ(~z) ≤ φ(~x(k)) then
11: set ~x(k) = ~z
12: set loop = f alse
13: end if
14: set ` = ` + 1
15: set β = (1

2 )` (originally β← β/2)
16: end while
17: set ~x(k+1) = PT (~x(k))
18: set k = k + 1
19: end while
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D.4 Stepwise NTVS Procedure and Calculations

The TV-superiorized feasibility-seeking algorithms used in pCT are implemented

by adding the following steps between each feasibility-seeking step:

(1) For each axial slice of the current iterate of the pCT solution vector ~x(k), calculate

the RSP differences, ∆x(X,Y) and ∆y(X,Y), of each voxel (X,Y) relative to its

immediate neighbors in the positive orthogonal directions, respectively, as:

∆x(X,Y) = RSP(X + 1,Y) − RSP(X,Y) (D.1)

∆y(X,Y) = RSP(X,Y + 1) − RSP(X,Y) (D.2)

These are illustrated as green arrows in the following figure (Figure D.1).:

Figure D.1: Illustration of the ∆RSP differences, RSPtip − RSPtail, in the horizontal and
vertical direction. The differences are normalized in Eqs. D.3 and D.4 and then used in Eq.
D.5 to calculate the RSP variation of the central (shaded) pixel.

(2) For each voxel (X,Y), calculate the normalized differences δx and δy as:

δx(X,Y) =
∆x(X,Y)√

∆2
x(X,Y) + ∆2

y(X,Y)
(D.3)

δy(X,Y) =
∆y(X,Y)√

∆2
x(X,Y) + ∆2

y(X,Y)
(D.4)
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(3) For each voxel (X,Y), calculate the RSP variation V(X,Y) as:

V(X,Y) = δx(X-1,Y) + δy(X,Y-1)

−
(
δx(X,Y) + δy(X,Y)

)
(D.5)

(4) The variations of all pixels in the image set form components of the variation

vector ~V (k).

(5) The n-dimensional perturbation vector ~v(k) is calculated by normalizing the RSP

variation vector ~V (k):

~v(k) =
~V (k)∥∥∥∥~V (k)

∥∥∥∥ (D.6)

(6) The N perturbations to be applied to the image are then calculated by multiplying

the perturbation vector ~v(k) by a scalar multiplier β(k,r) that determines the magni-

tude of each perturbation, yielding the following for each perturbation repetition

r, 0 ≤ r ≤ N − 1:

~x(k,r+1) = ~x(k,r) + β(k,r)~v(k) (D.7)

where β(k,r) = α`
(k,r)
, (D.8)

`(k,r+1) = `(k,r) + 1 (D.9)

and α is the perturbation kernel 0 < α < 1, and `(k,r) is the perturbation kernel

exponent, where `(0,0) = 1. Note that the perturbation vector v(k) remains constant

for each repetition r and is only calculated once for each FS-DROP step k.

(7) Randomly decrease `(k,N) to an integer from the closed interval [k, `(k,N)] to generate

the starting value of the next iteration `(k+1,0) , i.e. `(k+1,0) = rand
(
k, `(k,N)

)
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