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The effect of the ion wake downstream of grains immersed in a flowing plasma is observed exper-
imentally through the apparent non-reciprocal grain-grain interactions. Here we extend amplitude-
frequency response analysis to examine the nonlinear components of the interaction of a dust particle
pair aligned with the ion flow. The particle pair is modeled as two forced coupled oscillators, and
a new coordinate system is introduced in which the breathing and sloshing modes are linearly de-
coupled. Multiple-scale analysis is used to derive analytical expressions for the response in the
vertical direction for each mode in this coordinate system. By fitting the analytical expressions to
experimentally measured response curves, the nonlinear part of the wake-modified particle-particle
interaction is determined and identified as the source for the coupling between the sloshing and
breathing modes. It is found that the restoring force acting on the downstream particle is more
linear, thus stabilizing the oscillations of the downstream grain.

Keywords: complex plasma, non-reciprocal grain-grain interaction, ion wake, nonlinearity

1. INTRODUCTION

In a rf discharge plasma, dust particles levitated in the
plasma sheath region are greatly influenced by the ion
wake which is caused by the streaming ions scattered by
the negatively charged dust[1]. For dust particles aligned
with the ion flow, the ion wake field downstream of the
dust particles lead to an asymmetric interaction poten-
tial between the grains [2–11]. Thus the ion wake plays
an essential role in the dynamics of small grains in the
plasma environment.

Numerical models of the ion wake including Particle-
in-Cell (PIC) simulations [12–16], Monte Carlo simula-
tion [17], or a combination of the two method [18], gen-
erally focus on the dynamics of the electrons and ions.
These models have demonstrated that the wake poten-
tial behind dust grains takes a oscillating form which
facilitates the alignment of dust particles below the up-
stream grains [13–15]. From the molecular dynamic point
of view, the drag force from scattered ions stabilizes this
alignment [17]. The charge of the downstream dust grains
is also found to be decreased due to the wakefield [12, 16].
However, the dynamics of the dust particles affected by
the ion wake are usually not included in the models. With
static dust grain configurations in the models, it is not
possible to test the grains’ response especially when there
are multiple grains where grain-grain interaction become
dominant. Thus, the influence of the ion wake on the
grain-grain interaction cannot be studied directly in sim-
ulations where the dust grain positions are fixed.

In experiment, it is possible to examine the ion wake
in terms of the dynamics of the affected dust particles. A
paired dust particle structure provides a suitable config-
uration to examine the ion wake as it is the simplest 1-D
structure that can be formed which still involves all rele-
vant coupling interaction [6, 19]. Experiments have con-
firmed the ion-wake-induced decharging effect [5, 20], and

shown the instability triggered by the particle-particle in-
teraction under the influence of ion wake [19, 21–25]. Us-
ing a linear approximation of the interaction force, Kong
et al [26, 27] showed that the particle charge and effective
Debye length could be measured by investigating the cou-
pled oscillation of vertical dust pairs inside a glass box.
Goree et al [28, 29] employed velocity distribution cor-
relations to anlyze the oscillatory modes of dust particle
pairs, which allowed them to examine the heating effect
caused by the ion wake.

These previous experiments approximated the non-
reciprocal particle-particle interaction by assuming a lin-
ear interaction potential. To better understand how the
ion wake modifies the particle-particle interaction, it is
necessary to extend the theory to the nonlinear regime.
Nonlinear response analysis are so far limited to the dy-
namics of a single dust particle [30–32]. Ivlev et al [30]
studied the nonlinear amplitude-frequency response for
a single dust particle in order to test the anharmonic
potential in the sheath of a low-pressure rf discharge.
Zafiu et al [31] related the nonlinear response of a sin-
gle particle to the position dependent charge variation
as well as the asymmetric sheath potential. Wang et
al [32] showed the effects that other sources can have
on the nonlinear response of a single dust particle em-
ploying a technique numerically based on a model with
self-consistently determined sheath field and dust charge.
Shukla et al [33, 34] presented a mechanism for self ex-
cited large amplitude nonlinear oscillations at very low
discharge pressure and studied the response of a dust
grain attributing the parametric resonance to the plasma
density oscillation by studying the response curves.

Here, we extend the nonlinear-amplitude frequency re-
sponse analysis to a strongly coupled system with two
degrees of freedom for the first time in dusty plasma,
and apply amplitude-frequency response to measure the
nonlinear contributions of the ion wake to the particle-
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particle interaction force by studying the coupled mo-
tion of a dust particle pair structure aligned with the
ion flow and confined within a glass box. Rather than
considering the anharmonic sheath potential [30, 31], we
instead take the particle-particle interaction as the main
source of nonlinearity. We derive the analytical form of
particles’ motion governed by the nonlinear equations of
motion using the multiple scale method, and compare
with the experimentally measured response curves to de-
termine the quadratic terms for both the upstream and

downstream interaction forces.

2. THEORY

A confined, vertically paired dust particle structure
under sinusoidal excitation of small amplitude and fre-
quency Ω in a plasma discharge can be modeled as
two forced coupled oscillators. At equilibrium, with the
particle-particle interaction expanded to second order in
the Taylor expansion (here the particle-particle interac-
tion potential is not presumed to be of any specific form),
the equations of motion in the vertical direction are

ẍ1 + µẋ1 + ω2
1x1 + k1(x1 − x2) + k′1(x1 − x2)2 = F1exp(iΩt) + cc,

ẍ2 + µẋ2 + ω2
2x2 + k2(x2 − x1) + k′2(x2 − x1)2 = F2exp(iΩt) + cc,

(1)

where x1 and x2 are the displacements from equilibrium
(1 and 2 being the indices for the upstream and down-
stream particles), µ is the neutral gas drag coefficient, ω1

and ω2 are the frequencies of the vertical confinements
provided by the balance among the background electric
field, gravity and the particle-particle interaction, k1 and
k2 are the coefficients of the linear interaction between
the particles, k′1 and k′2 are the coefficients of the sec-
ond order terms in the Taylor expansion of the particle-
particle interaction forces, F1 and F2 are amplitudes of
the driving force. Here ’cc’ stands for the complex conju-
gate (for conciseness, ’cc’ will be dropped from the follow-
ing derivations, while all solutions are understood to be
accompanied by their complex conjugate components).
In most cases, k1 is not equal to k2 for two particles
aligned in a direction parallel to the ion flow, due to the
non-reciprocal ion wake.

To solve these coupled nonlinear equations, we first
eliminate the linear coupling terms in x1 and x2 by in-
troducing a new coordinate system: x+ = x1 − (α−)x2

and x− = x1− (α+)x2. Here α+ (α−) are the oscillation
amplitude ratios for particles 1 and 2 corresponding to
the breathing (sloshing) mode, which can be measured
experimentally employing the Scanning Mode Spectra
[35] technique (i.e., an extension of the traditional mode
spectra technique where the motion of the two particles is
projected onto all the possible eigenvectors). The original
equations of motion can now be written in the decoupled
form

ẍ+ + µẋ+ + ω2
+x+ + g1(c1x+ − c2x−)2 =f+exp(iΩt)

ẍ− + µẋ− + ω2
−x− + g2(c1x+ − c2x−)2 =f−exp(iΩt).

(2)

In Eq. (2) g1, g2, c1, c2 and f+, f− are related to the
original parameters k′1, k

′
2, F1 and F2 through the rela-

tionships:

g1 = (k′1 − α−k′2)/(α+ − α−)2,

g2 = (k′1 − α+k
′
2)/(α+ − α−)2,

(3a)

c1 = α+ − 1,

c2 = α− − 1,
(3b)

f+ = F1 − α−F2,

f− = F1 − α+F2,
(3c)

In the linear limit, Eq. (2) provides the equations of
motion for the two oscillation modes, i.e., the breathing
and sloshing mode, respectively. Their natural frequen-
cies ω+ and ω− are directly measured by the SMS tech-
nique. In the rest of this paper, we will call x+ (x−)
the breathing (sloshing) coordinate, α+, α− the decou-
pling parameters, and ω+ and ω− the frequencies of the
breathing and sloshing modes.

The nonlinear equations in Eq. (2) can be solved using
multiple scale perturbation theory by expanding a test
solution across different time scales [36]. In this case, we
assume an approximate solution keeping only terms to
the order of o(ε2) as:

x+ = εx+1(t, t1) + ε2x+2(t, t1),

x− = εx−1(t, t1) + ε2x−2(t, t1),
(4)

where ε is a small dimensionless parameter that is used
to indicate the order of approximation, x+1 and x−1 are
approximate solutions to first order in ε, x+2 and x−2 are
approximate solutions to second order in ε2, and t1 = εt
is the fast scale time. (See the Appendix A for the full
derivation of Eq. (4) - Eq. (9).) Inserting these test solu-
tions into Eq. (2) and equating terms at different orders
of ε, the equations can now be solved independently for
four different regions in terms of the driving frequency
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Ω: primary breathing (sloshing) regions where Ω is close
to the breathing (sloshing) mode frequency ω+(ω−) and
super-harmonic breathing (sloshing) regions where Ω is
close to half the breathing (sloshing) frequency ω+(ω−).

In the primary breathing region, Ω = ω+ + δε, where
δ is the deviation of the driving frequency Ω from the
breathing mode frequency ω+. The equations of motion
to first order take the form:

∂2x+1

∂t2
+ ω2

+x+1 = 0,

∂2x−1

∂t2
+ ω2

−x−1 = f−exp(iΩt),

(5)

with the solution:

x+1 = Aexp(iΩt),

x−1 = Bexp(iΩt) +
f−

−Ω2 + ω2
−
exp(iΩt),

(6)

while the equations of motion in second order (ε2) take
the form:

∂2x+2

∂t2
+ ω2

+x+2 = −2
∂2x+1

∂t∂t1
− µ∂x+1

∂t
− g1(c1x+1 − c2x−1)2 + f+exp(iΩt),

∂2x−2

∂t2
+ ω2

−x−2 = −2
∂2x−1

∂t∂t1
− µ∂x−1

∂t
− g2(c1x+1 − c2x−1)2,

(7)

It is well known that linear undamped theory predicts
unbounded oscillations when Ω is equal to ω+, irrespec-
tive of the excitation amplitude. However, in an actual
experimental system these oscillations are generally fi-
nite, limited by damping and nonlinearities within the
system. Thus, to obtain an uniformly valid approximate
solution it is necessary to consider the excitation term
(when at resonance) to the same order of ε used for the
damping and all other nonlinearities [36]. In this case, at
breathing resonance the excitation term in the breathing
coordinate f+exp(iΩt) appears in the equation of motion
to second order in ε (Eq. (7)) where both damping and
nonlinearity come into effect, while the excitation term in
the sloshing coordinate f−exp(iΩt) appears in the equa-
tion of motion to first order in ε (Eq. (6)). Substituting
the first order solution shown in Eq. (6) into the second
order equations of motion given in Eq. (7) and elimi-
nating the secular terms, A and B are found to be given
by

A =
f+

iω+(µ+ i2δε)
exp(iδt1) + Cexp(−µt1

2
),

B = C ′exp(−µt1
2

),

(8)

where C and C ′ are constants determined by initial con-
ditions. In this entire derivation, the situation of inter-
nal resonance ω+ ≈ 2ω− is avoided, i.e., the possibility of
the breathing mode being excited directly by the sloshing
resonance is theoretically prohibited.

Substituting Eq. (8) into Eq. (6), the solutions for the

primary breathing region yield:

x+1 =
−f+

ω+[µ2 + 4(Ω− ω+)2]
1
2

exp(i[Ωt+ arctg(
µ

2(Ω− ω+)
)])

+ Cexp(−µt1
2

+ iω+t),

(9a)

x−1 =
f−

−Ω2 + ω2
−
exp(iΩt) + C ′exp(−µt1

2
+ iω−t).

(9b)

Following the same procedure, the solutions for the
primary sloshing region to first order of approximation
take the form:

x+1 =
f+

−Ω2 + ω2
+

exp(iΩt) + Cexp(−µt1
2

+ iω+t),

(10a)

x−1 =
−f−

ω−[µ2 + 4(Ω− ω−)2]
1
2

exp(i[Ωt+ arctg(
µ

2(Ω− ω−)
)])

+ C ′exp(−µt1
2

+ iω−t).

(10b)

The relationship of the primary breathing response x+1

to the driving frequency is given by the first term in Eq.
(9a), while the primary sloshing response x−1 is given by
the first term in Eq. (10b). The second term in each of
these equations is a transient response corresponding to
the natural frequencies of each mode. As can be seen,
to first order of approximation, the primary responses
are independent of the nonlinear parameters g1 and g2.
Therefore at a presumed low excitation amplitude (i.e.,
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where only quadratic nonlinearity is considered) the pri-
mary response behavior is linear.

In the super-harmonic breathing (sloshing) regions,
since there is no primary resonance (i.e., Ω is not close to
either ω+ or ω−), all excitations need only be considered
to first order of ε, i.e., all excitation terms should appear
only to first order in the equations of motion. Following
the same procedure as before, we find the solution for the
secondary breathing region to be:

x+1 =−
g1[c1( f+

−Ω2+ω2
+

)− c2( f−
−Ω2+ω2

−
)]2

ω+[µ2 + 4(2Ω− ω+)2]
1
2

× exp(i[2Ωt+ arctg(
µ

2(2Ω− ω+)
)])

+
f+

−Ω2 + ω2
+

exp(iΩt) + Cexp(−µt1
2

+ iω+t),

(11a)

x−1 =
f−

−Ω2 + ω2
−
exp(iΩt) + C ′exp(−µt1

2
+ iω−t),

(11b)

while for the secondary sloshing region:

x+1 =
f+

−Ω2 + ω2
+

exp(iΩt) + Cexp(−µt1
2

+ iω+t),

(12a)

x−1 =−
g2[c1( f+

−Ω2+ω2
+

)− c2( f−
−Ω2+ω2

−
)]2

ω−[µ2 + 4(2Ω− ω−)2]
1
2

× exp(i[2Ωt+ arctg(
µ

2(2Ω− ω−)
)])

+
f−

−Ω2 + ω2
−
exp(iΩt) + C ′exp(−µt1

2
+ iω−t).

(12b)

The secondary responses corresponding to twice the
excitation frequencies 2Ω can be clearly seen in Eq. (11a)
and Eq. (12b) as the first terms in x+1 (Eq. (11a)) and
x−1 (Eq. (12b)). In contrast to the primary responses,
secondary responses are governed by the nonlinear pa-
rameters g1 and g2. Therefore, a secondary response with
shifted phase can be considered as a direct consequence
of the nonlinear particle-particle interaction.

3. EXPERIMENT

The experiment discussed here was conducted in a
modified Gaseous Electronics Conference (GEC) RF ref-
erence cell. The lower electrode was powered at 13.56
MHz while the upper electrode was grounded. A 20 mm
× 18 mm × 18 mm (height × length × width) glass box
was placed on the lower electrode in order to provide the
horizontal confinement required to form vertical chain

structures. Melamine Formaldehyde (MF) particles with
diameter of 8.89 ± 0.09 µm were dropped into the plasma
through a shaker mounted above the upper electrode,
and levitated inside the glass box. Initially, a long chain
structure inside the box was formed at a plasma power
of 1.96 W. By carefully reducing the plasma power, dust
particles were dropped to the bottom electrode until only
two were left in the box. Once a paired structure was
formed, the plasma power was increased to its experimen-
tal value, 9.82 W, where the small inter-particle distance
results in a strongly coupled pair structure.

A function generator coupled to the lower electrode
through an 20 dB attenuator was employed to provide
a sinusoidal driving force to the particle pair. During
the experiment, the driving frequency of the lower elec-
trode was increased from 1 Hz to 50 Hz in steps of 0.1 Hz
under a constant driving amplitude of 1 V. The trajec-
tories of the vertically aligned particles at each step were
recorded from the side using a high speed CCD camera
at 500 frames per second to collect a total of 5000 frames.
Throughout the experiment, the gas pressure was held at
40 mTorr, ensuring detection of particle thermal motion,
while the plasma power was maintained at 9.82 W.

A. Mode decoupling in the sloshing and breathing
coordinate

Since the particle pair is driven vertically, all the anal-
ysis here is based on the particles’ vertical motion. Typ-
ically the analysis is done using the coordinate of the
center of mass and positions relative to the center of
mass. The motion of the center of mass is commonly
related to the sloshing mode of the particle oscillation,
while the relative coordinate is related to the breath-
ing mode. However Fast Fourier Transformation (FFT)
of the time series of particles’ thermal center of mass
motion and relative motion, Fig. 1a and Fig. 1c show
that there is considerable response at the sloshing fre-
quency for the relative coordinate, and considerable re-
sponse at the breathing frequency for the center of mass
coordinate. The non-reciprocal property of the particle-
particle interaction (i.e., k1 6= k2) causes the center of
mass mode basis set to no longer be orthogonal to the
relative mode basis set. It is reasonable to observe both
sloshing and breathing components in the center of mass
and the relative coordinates, since they characterize the
‘pure’ sloshing mode (i.e., where the particles are oscillat-
ing in phase with the same amplitude of motion) and the
‘pure’ breathing mode (i.e., where the particles are oscil-
lating 180 degrees out of phase with the same amplitude
of motion), respectively.

To separate the different modes in the linear regime
for dust particles with nonreciprocal interaction, it is
necessary to apply the sloshing and breathing coordi-
nates introduced in Section II. Fig. 2 shows the Scanning
Mode Spectra (SMS) obtained from the particle thermal
motion [35]. The mode frequencies ω+, ω− and decou-
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FIG. 1. Fast Fourier Transform (FFT) of the thermal motion
of a particle pair for a) the conventional center of mass coordi-
nate (x1 +x2), b) the sloshing coordinate (x1 −α+x2), c) the
relative coordinate (x1 − x2) and d) the breathing coordinate
(x1 − α−x2).

pling parameters α+ and α− (i.e., the oscillation ampli-
tude ratio) for the two modes were directly measured
from the maxima in the SMS at the higher (ω+) and
lower (ω−) frequencies. The oscillation amplitude ra-
tios α+(= −0.35) and α−(= 0.81) can now be used to
transform the recorded time series of trajectories x1(t)
and x2(t) for the upstream and downstream particles
into decoupled coordinates x+(t) = x1(t) − (α−)x2(t)
and x−(t) = x1(t) − (α+)x2(t). The FFTs of the par-
ticles’ thermal motion in the sloshing and breathing co-
ordinates are shown in Fig. 1b and Fig. 1d, where the
the undesired component (i.e., the breathing component
in the sloshing coordinate and the sloshing component in
the breathing coordinate) is elimated from each mode.
Note that there are some frequency components appear-
ing around 30 Hz which comes from the intrinsic sys-
tem noise in our GEC reference cell (probably the cyclic
cooling pump), which should be distinguished from the
breathing component at 32 Hz. From the experimentally
measured values of ω+, ω−, α+ and α−, the linear coeffi-
cients and vertical confinements in Eq.(1) are calculated
to be k1 = 6733 s−2 and k2 = 22368 s−2, ω1 = 19.2 Hz
and ω2 = 16.2 Hz.

FIG. 2. Scanning Mode Spectra for the particles’ thermal
motion. The sloshing mode frequency ω− is approximately
18.5 Hz with polarization φ− = 1.05 [35]. The breathing
mode frequency ω+ is approximately 32 Hz with polarization
φ+ = 1.91. Decoupling parameters can be determined by
taking the cotangent of the polarizations, α− = cot(φ−) and
α+ = cot(φ+).

B. Experimental measurement of response curves

Primary and secondary responses can be determined
experimentally by driving the particle pair at a frequency
Ω and then calculating the FFT of the particles’ motion
in the decoupled coordinates x−(t) and x+(t). A rep-
resentive example is shown in Fig. 3, where FFT’s for
both the sloshing coordinate (3a) and breathing coordi-
nate (3b) are shown for a particle pair driven at 8.5 Hz.
Strong peaks, the primary response, appear at 8.5 Hz
(Ω) in both coordinates, accompanied by relatively weak
peaks at the secondary response at 17 Hz (2Ω). Desig-
nating the amplitude of the peaks corresponding to the
primary and secondary response at varying driving fre-
quencies as P (Ω) and S(Ω), the primary and secondary
response curves as a function of Ω can be obtained ex-
perimentally.

FIG. 3. Dust particle pair driven at 8.5 Hz. a) FFT of the
sloshing coordinate. b) FFT for the breathing coordinate.

It is important to note that there appears to be a con-
tradiction between the analytical solutions given in Eqs.
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FIG. 4. Primary response curves for a) sloshing coordinate
and b) breathing coordinate. The points are experimental
data while the lines are fits to the analytical solution (i.e.,
first terms in Eq. (9a) and Eq. (10b)).

(9)-(12) and the experimental observations. For the ana-
lytical solutions, the responses at the natural frequencies
ω+ and ω− are transient terms which decay as time in-
creases. However, in experimental observations, these
transient components remain throughout (Fig. 3). This
contradiction is reconciled by noting that under actual
experimental conditions, there are always thermal exci-
tations (kicks) such that the response reaches a steady
state.

4. RESULTS

A. Determination of the particle-particle
interaction to the nonlinear regime

The obtained experimental primary response curves
can be fitted by the theoretical primary responses (as
given by Eqs. (9)-(12)). Fig. 4 shows fits to the pri-
mary responses in sloshing (Fig. 4(a)) and breathing
(Fig. 4(b)) coordinates under these conditions. Since
the parameters ω+ and ω− have already been determined
from the SMS, there are only two parameters, µ and f+

(f−), left to be determined from each fit. As such, these
fits yield a drag coefficient [37] of µ = 7.7 s−1 within the
primary sloshing region and µ = 9.0 s−1 for the primary
breathing region, in agreement with the value of µ =

8.5±0.9 s−1 as measured employing a free fall technique
[38, 39]. This allows values for f+and f− to be deter-
mined from the fit as f+ = 0.67× 105 µm ·s−2 and f− =
3.34× 105 µm · s−2, respectively.

Before these fits can be employed to determine the sec-
ondary responses, the relative phase of the decoupled
driving forces f1exp(iΩt) and f2exp(iΩt) must first be
identified, i.e., whether f1 and f2 are of the same or op-
posite sign. This clarification can be made by taking
advantage of the following experimental observation: at
lower driving frequencies the magnitude of the oscillation
of the upstream particle is larger than that of the down-

FIG. 5. Experimental measurement of the oscillation ampli-
tudes (primary responses) for both the upstream (blue solid
line) and downstream particle (red dashed line).

stream particle, while at higher frequencies the situation
is reversed. Fig. 5 shows experimentally measured oscil-
lation amplitudes for both the upstream and downstream
particles. The blue line corresponds to the upstream par-
ticle x1(t) while the dashed red line corresponds to the
downstream particle x2(t). A transition point can be ob-
served at a driving frequency of approximately 34 Hz.

This phenomenon can be explained theoretically by
solving the equations of motion for two linear forced cou-
pled oscillators (see Eq. (1) without the nonlinear inter-
action terms k′1(x1 − x2)2 and k′2(x1 − x2)2). The non-
linear terms have little effect on the primary responses
observed under small excitation amplitudes, as discussed
in Section II. The ratio R between the response ampli-
tudes of the upstream and downstream particle can thus
be derived from the linear equations of motion as

R =
{[F1(−Ω2 + k2 + ω2

2) + k1F2][F2(−Ω2 + k1 + ω2
1) + k2F1] + µ2Ω2F1F2}

[F2(−Ω2 + k1 + ω2
1) + k2F1]2 + (µΩF2)2

+iµΩ
{F1[F2(−Ω2 + k1 + ω2

1) + k2F1]− F2[F1(−Ω2 + k2 + ω2
2) + k1F2]}

[F2(−Ω2 + k1 + ω2
1) + k2F1]2 + (µΩF2)2

.

(13)

For simplification we drop the damping terms in Eq. (13). This can be justified since the damping is of the
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same order of magnitude as the nonlinear force contribu-
tion. Therefore, neglecting the damping does not qual-
itatively affect the result. By doing so, the amplitude
ratio now reduces to

R =
η(−Ω2 + k2 + ω2

2) + k1

(−Ω2 + k1 + ω2
1) + ηk2

, (14)

where η = F1

F2
is defined as the ratio between the am-

plitudes of the excitation forces. Once f+ and f− are
determined from fitting the measured primary response
(as shown in Fig. 4), F1 and F2 are found using Eq.
(3c). For the response fits shown in Fig. 4, this allows
η to be calculated to be 0.62 when f+ and f− are of the
opposite sign (i.e., out of phase case) and 1.1 when f+

and f− are of the same sign (i.e., in phase case). Based
on the parameters k1, k2, ω1 and ω2 determined by em-
ploying the SMS method, the frequency ranges where the
oscillation amplitude for the upstream particle is larger
than that for the downstream particle (i.e., R > 1) can
now be calculated from Eq. (14). This frequency range
takes different form depending on the value of η, and it
is also conditional on whether ω2

1 − ω2
2 is greater or less

than 1−η
η (k1 + ηk2):

Ω2 ∈ (−∞, ω
2
1 − ηω2

2

1− η
) ∪ (k1 + ηk2 + ω2

1 ,+∞), η > 1

(15a)

Ω2 ∈ (
ω2

1 − ηω2
2

1− η
, k1 + ηk2 + ω2

1), 0 < η < 1 (15b)

For the situation η > 1 (i.e., in-phase driving), ω2
1−ω2

2

is found to be greater than 1−η
η (k1 + ηk2) based on the

experimental parameters derived for k1, k2, ω1, and ω2.
The corresponding frequency range that the oscillation
of the upstream particle is larger than that for the down-
stream particle (R > 1) is predicted by Eq. 15a to be
Ω > 34 Hz, while for the situation 0 < η < 1 (i.e., out of
phase driving), ω2

1 − ω2
2 is less than 1−η

η (k1 + ηk2) lead-

ing to a frequency range described in Eq. 15b as 24 Hz
≤ Ω ≤ 30 Hz. Thus the predicted result for in-phase
driving agrees with the observed experimental response
shown in Fig. 5, and we can conclude that f+ and f−
are of the same sign. As a side result, it is determined
that the driving force on the upstream particle is greater
than that acting on the downstream particle, F1 > F2,
in agreement with results reported by Carstensen et al
[10].

With f+ and f− now determined, the experimentally
determined secondary response curve can be compared
to the theoretically derived secondary response (Eq. (11)
and Eq. (12)). The fits with experiment are shown for
the sloshing coordinate with Ω ≈ 1

2ω− in Fig. 6(a), while

the fit for the breathing coordinate with Ω ≈ 1
2ω+ is

shown in Fig. 6(b). Since the secondary responses are
smaller than our camera resolution of 9.0 µm per pixel,
the errorbar caused by this uncertainty in measurement
is shown in Fig. 6. Here the free parameters in each fit

are g1 and g2, which are determined to be g1 = 283.2
µm−1s−2 and g2 = 31.1 µm−1s−2 respectively. The non-
linear coefficients k′1 and k′2 are then in turn calculated
to be −253.4 µm−1s−2 and −364.6 µm−1s−2 from Eq.
(3a).

FIG. 6. Fits for the measured secondary responses a) in the
sloshing coordinate at 1

2
ω− and b) breathing coordinate at

1
2
ω+ to the analytical response curves. The points show ex-

perimental data while the solid lines are fits using the theo-
retical solutions (i.e., first terms in Eq. (11a) and Eq. (12b)).
The errorbars are calculated from the measurement uncer-
tainty due to the resolution of the camera which is 9 microm-
eters per pixel.

B. Numerical results

Additional simulations were conducted to validate the
calculated values for k′1 and k′2 above. In this case, par-
ticle motions were simulated using a Velocity Verlet Al-
gorithm based on the parameters ω1, ω2, k1 and k2 mea-
sured from the SMS technique and µ, F1, F2, k′1 and k′2
calulated from the response fits. The particle motion was
simulated for for purely linear interactions (k′1 = k′2 = 0)
as well as non-linear interactions. The resulting time
series for the particle positions was then processed using
the same approach as for the experimental data to obtain
simulated response functions. The primary responses for
the x1(t) and x2(t) coordinates are shown in Fig. 7. As
can be seen, the simulation agrees well with experiment
(Fig. 5) and successfully reproduces the transition phe-
nomenon at around 34 Hz. The primary responses with
nonlinear interactions exhibit only slight deviations from
those with only linear interactions. This supports the
previous argument that for small excitation amplitudes,
the primary response is only minimally affected by the
nonlinear interaction.

Secondary responses obtained from simulations with
nonlinear interaction are indicated by the dashed line in
Fig. 8, for Ω ≈ ω− (Fig. 8(a)) and Ω ≈ ω+ (Fig. 8(b))
for both the breathing (x+(t), red curves) and sloshing
(x−(t), blue curves) coordinates. The consistency of the
simulation with experimental measurement (solid curves)



8

FIG. 7. Simulated response of upstream (blue) and down-
stream (red) particles. Solid lines show the results including
the non-linear interaction terms, while the dashed lines show
the response using only linear interaction terms.

confirms our calculation of the nonlinear coefficients k′1
and k′2. Fig. 8(d) shows the simulation without consider-
ing nonlinear interaction, i.e., k′1 = 0 and k′2 = 0. As can
be seen, when nonlinear interactions are not considered,
there is no secondary response excited, indicating that
secondary responses are purely caused by the nonlinear
interactions. It is also interesting to note that both ex-
periment and simulation show a secondary response in
the breathing coordinate when the excitation frequency
is around 18.5 Hz (the sloshing frequency ω−) as shown
in Fig. 8(c). Therefore, the breathing coordinate re-
sponds to the sloshing excitation. This is most likely a
consequence of mode coupling in the nonlinear regime.

5. DISCUSSION

In this research, the restoring force due to the sheath
potential is considered to be linear, leaving the source of
nonlinearity to be attributed to the particle-particle in-
teraction (k′1(x1 − x2)2 and k′2(x2 − x1)2) only. This as-
sumption can be justified based on the findings of Tomme
et al [40, 41], which showed that particle motion can be
extremely well modeled by a damped harmonic oscillator
for amplitudes approaching 20% of the sheath width. In
this research, small particle vibration amplitudes are en-
sured through application of a low driving amplitude (1
V) through an attenuator. This provides a maximum vi-
bration amplitude (appearing at the sloshing resonance)
of less than 250 µm, which is estimated to be approxi-
mately 2% of the total sheath width. (The sheath edge
is estimated to be at the plasma glow maxima.) As such,
it is safe to assume a parabolic sheath potential (i.e., a
linear electric field) and to ignore the effect of charge
fluctuations.

Additionally, the maximum vibration amplitude in the
breathing coordinate is less than 40 µm, which is small
compared to the equilibrium interparticle spacing which
is approximately 140 µm. Therefore, in theory, nonlin-

FIG. 8. Simulated secondary responses for a) the secondary
sloshing region near 1

2
ω− (around 9.5 Hz), b) the secondary

breathing region near 1
2
ω+ (around 16 Hz) and c) the pri-

mary sloshing region near ω− (around 18.5 Hz). Simula-
tions including nonlinear interactions are plotted as dashed
lines while experimental measurements are plotted as solid
lines. Simulations which do not include nonlinear interac-
tions (k′1 = 0, k′2 = 0) are plotted in Fig. 8(d). Lines plotted
in blue represent sloshing coordinates and those plotted in red
represent breathing coordinates.

ear effects in the particle-particle interaction beyond the
quadratic term can be ignored. With this approximation
both the theory (Eq. (9) and Eq. (10)) and simulation
(Fig. 7) show that the primary response in both slosh-
ing and breathing coordinates very weakly depends on
the nonlinear coefficients k′1 and k′2. Experimental re-
sults are in agreement with this conclusion, validiating
the choice of neglecting higher order nonlinear terms.

Further increasing the excitation amplitude produces
the spring hardening in the breathing coordinate, i.e., the
resonance frequency shifts towards higher frequencies,
which occurs as a consequence of a cubic nonlinearity.
In fact, even under small excitations (e.g., the excitation
in the presented experiment), the breathing mode is still
slightly affected by the cubic nonlinearities, which is the
reason that the primary breathing fit (Fig. 4a) is not as
good as the primary sloshing fit (Fig. 4b). Interestingly,
the spring hardening effect only appears in the breathing
coordinate, while in the sloshing coordinate there is no
obvious frequency shift. Since the breathing coordinate
characterizes the particles’ relative motion, this also con-
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firms that the nonlinearity of the system arises from the
particle-particle interaction rather than from the sheath,
as discussed above. The situation of large excitation (sig-
nificant spring hardening in the breathing coordinate cre-
ated by the cubic nonlinearity) will be examined in future
experiments.

Although the excitation (vibration amplitude) ob-
served in the current research is small, secondary re-
sponses in both the sloshing and breathing coordinates
are clearly seen. Since both theory and simulation show
that these vanish for purly linear interactions, they serve
as a signature of nonlinear particle-particle interactions.

It may be helpful here to compare our results to the
case of a reciprocal particle-particle interaction and iden-
tical background confinement for both particles. Consid-
ering a reciprocal interaction (k1 = k2 = k, k′1 = −k′2 =
k′) and identical confinement (ω1 = ω2) in Eq. (1), the
modes are now orthogonal and α+ = −1 while α− = 1.
For the ideal situation where both particles are driven
identically, i.e., F1 = F2 = F , the external driving term
disappears in the breathing coordinate while the driv-
ing magnitude equals 2F in the sloshing coordinate (Eq.
(3c)). In this case, the breathing mode cannot be excited.
However, in an actual experimental situation, any differ-
ence in the driving force or nonreciprocity in the particle-
particle interaction can cause the breathing mode to be-
come excited, in contrast to the result reported by Prior
et al [42]. As seen in Eq. (3c), even when α+/α− devi-
ates from -1 /1 (as is the case in the actual experiment),
the effective driving force f− is still much larger than
f+, explaining the much stronger primary response in
the sloshing coordinate than in the breathing coordinate
(see Fig. 4).

For F1 6= F2, excitations of the two modes for a system
with reciprocal interaction and an identical symmetric
background confinement obey

ẍ+ + µẋ+ + ω2
+x+ + 2k′x2

+ = (F1 − F2)exp(iΩt),

ẍ− + µẋ− + ω2
−x− = (F1 + F2)exp(iΩt).

(16)

In this case, nonlinear terms only appear for the breath-
ing coordinate, while the equation of motion for the slosh-
ing coordinate remains linear. Comparing Eq. (16) to
Eq. (2), we can conclude that it is the non-reciprocal in-
teraction and the non-identical background confinement
that couples the sloshing and breathing modes in a non-
linear manner. The secondary excitation observed in the
sloshing coordinate is thus purely a consequence of this
nonlinear coupling.

Finally, we define the nonlinearity length L1 = k1
k′1

and

L2 = k2
k′2

as the ratio of the linear coefficients k1, k2 to the

second order nonlinear coefficients k′1, k′2. This nonlin-
earity length L can be used as a measurement of nonlin-
earity scale for the particle-particle interaction. In this
case, for the upstream force L1 = k1

k′1
= −28 µm and for

the downstream force L2 = k2
k′2

= −65 µm. For compari-

son, we calculate L for a Yukawa potential as a function

of the Debye length λD:

LY ukawa = − 2dλ3
D + 2d2λ2

D + d3λD
6λ3

D + 6dλ2
D + 3d2λD + d3

, (17)

where d is the inter-particle spacing at equilibrium (ap-
proximately 140 µm for this experiment). This LY ukawa
approaches an asymptotic value of L = −d3 for large De-
bye length, which coresponds to the Coulomb interaction
potential (i.e., LCoulomb = −d3 ). Fig. 9 shows nonlinear-
ity length LY ukawa for a particle separation d = 140µm
as a function of λD. It can be seen that the value for

FIG. 9. The dependence of LY ukawa on the Debye length
λD for a Yukawa force with interparticle spacing d = 140
µm. As the Debye length increases, LY ukawa asymptoti-
cally approaches the value for a Coulomb interaction with
LCoulomb = −47 µm.

the upstream particle, L1 = −28 µm falls in the range
where the Debye length λD equals approximately 1/3 of
the inter-particle spacing, while the value for downstream
nonlinearity length L2 = −65 µm exceeds the asymptotic
value L = −47 µm (corresponding to the Coulomb inter-
action). Thus, due to the ion wake, the downstream force
is no longer a simple Yukawa or Coulomb interaction,
even though the upstream force can still be described as
an effective Yukawa interaction, in agreement with re-
sults reported in [43–46]. Furthermore, since |L1| < |L2|,
it appears that the downstream interaction is more lin-
ear than the upstream. This implies that when the paired
particles are at their equillibrium positions, the more lin-
ear restoring field for the downstream particle (effectively
from the particle-particle interaction), results in more
stable oscillations for the downstream particle.

6. CONCLUSIONS

A method to analyze nonlinear particle-particle inter-
actions for a paired particle structure aligned with the
ion flow in a complex plasma by experimentally measur-
ing the nonlinear amplitude-frequency response curves
has been presented. The method relies on examining the
particle motion in a new coordinate system, the ‘breath-
ing’ and ‘sloshing’ coordinates. Rewriting the system

Lorin_Matthews
Pencil

Lorin_Matthews
Pencil

Lorin_Matthews
Pencil

Lorin_Matthews
Pencil
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of equations for two coupled, forced oscillators in terms
of these coordinates allows the sloshing and breathing
modes to be linearly decoupled, as shown in Eq. (2) and
illustrated in Fig. 1. The coupling in the nonlinear term
is determined to result from the non-reciprocal particle
interaction caused by the ion wake.

Multiple-scale analysis is used to solve the system of
nonlinear coupled equations, and the motion is investi-
gated for the primary response region (frequency near
the driving frequency Ω) and the secondary response (fre-
quency near 2Ω). The primary response in the breathing
and sloshing coordinates are found to be independent
of the nonlinear parameters (Eq. (9a) and Eq. (10b)),
which only appear in the equations for the secondary re-
sponse (Eq. (11a) and Eq. (12b)).

Amplitude-frequency response curves are obtained ex-
perimentally by applying a sinusoidally varying voltage
to the lower electrode to drive the particles in the ver-
tical direction. Fitting the primary response curve, de-
termined from the amplitude of the FFT of the motion
in the breathing and sloshing coordinates at the driving
frequency Ω, with the analytical expression for the pri-
mary response allows the magnitude of the driving force
and the damping parameter to be determined (Fig. 4).
In turn, fitting the experimentally measured secondary
response curves (Fig. 6) allows the coefficients of the
non-linear coupling to be found.

Simulations of the particle motion using these mea-

sured parameters confirmed that the nonlinear terms con-
tribute very little to the primary response of the system
(Fig. 7), whereas excluding the nonlinear terms from
the interaction completely eliminates the secondary re-
sponse (Fig. 8). Thus, the existence of the secondary
response can be taken as a signature of the nonlinear-
ity present in the system. Non-reciprocal interactions
or differences in the background confinement, as would
be expected for a particle pair with the interaction me-
diated by the ion wake, results in equations of motion
which are similar to the coupled driven oscillators (c.f.
Eq. (2) and Eq. (16)). In this case, the coupling in the
nonlinear term is determined to result from the appar-
ent non-reciprocal particle-particle interaction caused by
the ion wake. Further analysis shows that the nonlin-
ear length scale, defined as the ratio of the coefficients of
the linear and non-linear terms, is greater for the down-
stream particle. Thus the restoring force acting on the
downstream particle is more linear than that acting on
the upstream particle, stabilizing the oscillations of the
downstream particle.
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Appendix A: Full derivation of the solutions at the primary breathing region

Consider the driving frequency near ω+, i.e., Ω = ω+ + δε. Writting out the drag force and the driving force at
resonance to the same order in the nonliner terms (i.e., µ = εµ′, f+ = ε2f ′+, f− = εf ′−), the equations of motion take
the following form

ẍ+ + εµ′ẋ+ + ω2
+x+ + g1(c1x+ − c2x−)2 = ε2f ′+exp(iΩt) + cc, (A1)

ẍ− + εµ′ẋ− + ω2
−x− + g2(c1x+ − c2x−)2 = εf ′−exp(iΩt) + cc. (A2)

By substituting in the test solution

x+(t0, t1) = εx+1(t0, t1) + ε2x+2(t0, t1), (A3)

x−(t0, t1) = εx−1(t0, t1) + ε2x−2(t0, t1), (A4)

where t0 = t and t1 = εt0, the equations of motion to second order in ε are given by

(
∂2

∂t20
+ 2ε

∂2

∂t0∂t1
+ ε2

∂2

∂t21
)(εx+1 + ε2x+2) + εµ′(

∂

∂t0
+ ε

∂

∂t1
)(εx+1 + ε2x+2)

+ ω2
+(εx+1 + ε2x+2) + g1[c1(εx+1 + ε2x+2)− c2(εx−1 + ε2x−2)]2 = ε2f ′+exp(iΩt0) + cc,

(A5)

(
∂2

∂t20
+ 2ε

∂2

∂t0∂t1
+ ε2

∂2

∂t21
)(εx−1 + ε2x−2) + εµ′(

∂

∂t0
+ ε

∂

∂t1
)(εx+1 + ε2x+2)

+ ω2
−(εx−1 + ε2x−2) + g1[c1(εx+1 + ε2x+2)− c2(εx−1 + ε2x−2)]2 = εf ′−exp(iΩt0) + cc.

(A6)
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The equations of motion are separated at different orders of ε, by equating all the terms of order of ε and ε2,
To first order in ε, the equations of motion are

∂2

∂t20
x+1 + ω2

+x+1 = 0, (A7)

∂2

∂t20
x−1 + ω2

−x−1 = f ′−exp(iΩt0) + cc, (A8)

with the solution to the first order

x+1 = Aexp(iω+t0) + cc, (A9)

x−1 = Bexp(iω−t0) +
f ′−

−Ω2 + ω2
−
exp(iΩt0) + cc. (A10)

Equating the terms which are second order in ε yields

∂2

∂t20
x+2 + ω2

+x+2 = −2
∂2

∂t0∂t1
x+1 − µ′

∂

∂t0
x+1 − g1(c1x+1 − c2x−1)2 + (f ′+exp(iΩt0) + cc), (A11)

∂2

∂t20
x−2 + ω2

−x−2 = −2
∂2

∂t0∂t1
x−1 − µ′

∂

∂t0
x−1 − g2(c1x+1 − c2x−1)2. (A12)

Substituting x+1 and x−1 given by A9 and A10 into A11 and A12

∂2

∂t20
x+2 + ω2

+x+2 = −2iω+
∂A

∂t1
exp(iω+t0)− µ′iω+Aexp(iω+t0) + f ′+exp(iΩt0)

− g1[c21A
2exp(i2ω+t0) + c22B

2exp(i2ω−t0)− 2c1c2ABexp(i(ω+ + ω−)t0)

− 2c1c2AB
∗exp(i(ω+ − ω−)t0)− 2c1c2A(

f ′−
−Ω2 + ω2

−
)exp(i(ω+ + Ω)t0

− 2c1c2(
f ′−

−Ω2 + ω2
−

)exp(i(ω+ − Ω)t0) + 2c22B(
f ′−

−Ω2 + ω2
−

)exp(i(ω− + Ω)t0)

+ 2c22B(
f ′−

−Ω2 + ω2
−

)exp(i(ω− − Ω)t0) + c22(
f ′−

−Ω2 + ω2
−

)2exp(i2Ωt0)

+ c21AA
∗ + c22BB

∗ + c22(
f ′−

−Ω2 + ω2
−

)2] + cc,

(A13)

∂2

∂t20
x−2 + ω2

−x−2 = −2iω−
∂B

∂t1
exp(iω−t0)− µ′iω−Bexp(iω−t0)

− µiΩ(
f ′−

−Ω2 + ω2
−

)exp(iΩt0)− g1[c21A
2exp(i2ω+t0) + c22B

2exp(i2ω−t0)

− 2c1c2ABexp(i(ω+ + ω−)t0)− 2c1c2AB
∗exp(i(ω+ − ω−)t0)

− 2c1c2A(
f ′−

−Ω2 + ω2
−

)exp(i(ω+ + Ω)t0 − 2c1c2(
f ′−

−Ω2 + ω2
−

)exp(i(ω+ − Ω)t0)

+ 2c22B(
f ′−

−Ω2 + ω2
−

)exp(i(ω− + Ω)t0) + 2c22B(
f ′−

−Ω2 + ω2
−

)exp(i(ω− − Ω)t0)

+ c22(
f ′−

−Ω2 + ω2
−

)2exp(i2Ωt0) + c21AA
∗ + c22BB

∗ + c22(
f ′−

−Ω2 + ω2
−

)2] + cc.

(A14)
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Since exp(iΩt0) = exp(iw+t0 + δt1), where Ω = ω+ + δε, then A13 and A14 become:

∂2

∂t20
x+2 + ω2

+x+2 = [−2iω+
∂A

∂t1
− µ′iω+A+ f ′+exp(iδt1)]exp(iω+t0)

− g1[c21A
2 + c22(

f ′−
−Ω2 + ω2

−
)2exp(i2δt1)− 2c1c2A(

f ′−
−Ω2 + ω2

−
)exp(iδt1)]exp(i2ω+t0)

− g1[2c22B(
f ′−

−Ω2 + ω2
−

)exp(iδt1)− 2c1c2AB]exp(i(ω+ + ω−)t0)

− g1[2c22B
∗(

f ′−
−Ω2 + ω2

−
)exp(iδt1)− 2c1c2AB

∗]exp(i(ω+ − ω−)t0)

− g1[c21AA
∗ + c22BB

∗ + c22(
f ′−

−Ω2 + ω2
−

)2 − 2c1c2A(
f ′−

−Ω2 + ω2
−

)exp(−iδt1)]

− g1c
2
2B

2exp(i2ω−t0) + cc.

(A15)

∂2

∂t20
x−2 + ω2

−x−2 = (−2iω−
∂B

∂t1
− µ′iω−B)exp(iω−t0)− µ′iΩ(

f−
−Ω2 + ω2

−
)exp(iδt1)exp(iω+t0)

− g2[c21A
2 + c22(

f ′−
−Ω2 + ω2

−
)2exp(i2δt1)− 2c1c2A(

f ′−
−Ω2 + ω2

−
)exp(iδt1)]exp(i2ω+t0)

− g2[2c22B(
f ′−

−Ω2 + ω2
−

)exp(iδt1)− 2c1c2AB]exp(i(ω+ + ω−)t0)

− g2[2c22B
∗(

f ′−
−Ω2 + ω2

−
)exp(iδt1)− 2c1c2AB

∗]exp(i(ω+ − ω−)t0)

− g2[c21AA
∗ + c22BB

∗ + c22(
f ′−

−Ω2 + ω2
−

)2 − 2c1c2A(
f ′−

−Ω2 + ω2
−

)exp(−iδt1)]

− g2c
2
2B

2exp(i2ω−t0) + cc.

(A16)

To ensure that there are no secular terms in the equations of motion for x+2 (A15) and x−2 (A16), the resonant terms
on the right hand side of A15 and A16 are forced to be ‘zero’, allowing the coefficients A and B to be determined
from

− 2iω+
∂A

∂t1
− µ′iω+A+ f ′+exp(iδt1) = 0, (A17)

− 2iω−
∂B

∂t1
− µ′iω−B = 0, (A18)

with the solutions

A =
f ′+

iω+(µ′ + i2δ)
exp(iδt1) + cexp(−µ

′t1
2

), (A19)

B = c′exp(−µ
′t1
2

). (A20)

Thus, the solutions to first order in ε are found to be

x+ =
−f+

ω+[µ2 + 4(Ω− ω+)2]
1
2

exp(i[Ωt+ arctg(
µ

2(Ω− ω+)
)])

+ Cexp(−µt1
2

+ iω+t) + cc,

(A21)

x− =
f−

−Ω2 + ω2
−
exp(iΩt) + C ′exp(−µt1

2
+ iω−t) + cc, (A22)

where C and C ′ are constants depending on the initial conditions and ‘cc’ stands for the complex conjugate. The
solutions for the other frequency regions are derived in a similar manner.
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