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Gravitational Radiation and Black Hole Formation from Gravitational Collapse in
Theories of Gravity with Broken Lorentz Symmetry
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Advisor: Anzhong Wang, Ph.D.

Quantum gravity is expected to contain Lorentz symmetry only as an emergent

low energy symmetry, with the scale at which it is broken presently inaccessible

to current experiments. This dissertation is centered around understanding various

physical aspects of gravitational theories that modify general relativity by explicitly

breaking Lorentz symmetry in the gravitational sector (viz. Hořava-Lifshitz gravity

and Einstein-æther theory) such that they are consistent with all current observations.

This dissertation consists of an analytical study of black hole solutions in 2d Hořava

gravity which is non-minimally coupled with a non-relativistic scalar field with a focus

on understanding Hawking radiation and the properties of the universal horizons.

It includes an investigation of gravitational plane wave solutions in Einstein-æther

theory and their behavior, especially how they may be potentially distinguishable

by present or future detectors from the standard prediction of general relativity.

Lastly, it includes a numerical study of gravitational collapse of a massless scalar field

in Einstein-æther theory showing the existence of outermost “dynamical Universal

horizons (dUHs)”. Such a dUH evolves into the causal boundary, even for excitations

with arbitrarily large speeds of propagation.
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CHAPTER ONE

Introduction

Since the dawn of intelligent life, human beings have been intimately familiar

with the ubiquitous force of gravity, often succinctly captured in the form of the

following maxim “Everything that goes up, must fall down.” However for much of

human history this force has been misunderstood. The ancient Greek philosopher

Aristotle proclaimed heavier objects fall faster compared to the lighter objects. While

Galileo corrected this proclamation one and a half millenium later through repeated

experiments, gravity still remained very much an earthly phenomenon. It was with

the proverbial observation of a falling apple that Sir Isaac Newton famously realized

the universal nature of gravity. Newton went ahead and captured the entirety of

gravity through his universal law of gravitation, mathematically expressed as

~F = G
M1M2

r2
r̂. (1.1)

This neat and elegant formula tells us that any two objects in the universe with

masses M1 and M2 separated by a distance r, will attract each other by a force whose

magnitude is given by F acting along direction of the line joining these two objects.

With this simple formula for the next two centuries physicists, mathematicians and

astronomers successfully started charting the cosmos and deciphering its mysteries.

Such was the power and effect of this law that when the electrostatic force was

within experimental grasp, Coulomb gave a formula for electrostatic force exactly

mimicking Newton’s law of gravitation. Towards the end of nineteenth century, the

electric and the magnetic force were no longer described by a “Newton like” law but

rather a set of equations developed by Maxwell. In 1905, Einstein famously realized

that Maxwell’s equations are incompatible with Newtonian mechanics, which led him

to a special theory of relativity [1]. Soon after Einstein realized that if the special
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theory of relativity is indeed the correct description of motion, then it is incompatible

with all theories which relies on action-at-a-distance, including gravity as described

by Newton’s law. After almost a decade of deliberation and laborious research, he

successfully reconciled this apparent contradiction by proposing his general theory of

relativity in 1915 [2]. General relativity subsumed Newtonian gravity as an effective

approximation in weak gravitational fields and low velocities much much smaller than

the velocity of light. Just as Newton’s law of gravitation was a shining beacon in the

darkness of the cosmos for more than two centuries, Einstein’s general relativity has

been at the very core of our understanding of all gravitational physics, classical and

quantum, since 1915.

1.1 Rudiments of General Relativity

Shortly after Einstein’s paper on special relativity was published in 1905,

Minkowski realized that special relativity implies space and time should no longer

be considered on separate footing. Much of special relativity can be succinctly cap-

tured by demanding the separation of two events in spacetime be given by

ds2 = −dt2 + dx2 + dy2 + dz2 = ηµν dx
µ dxν , (1.2)

where t is the time coordinate, x, y, z are the usual Cartesian coordinates, ηµν =

diag(−1, 1, 1, 1) and xµ = (t, x, y, z).

The set of transformations which leaves ηµν invariant are the Lorentz transfor-

mations, which therefore are symmetries of spacetime in special relativity. Soon after

this Einstein correctly concluded that the principle of equivalence (which was an ac-

cidental feature in Newtonian gravity) must be a fundamental principle in any theory

of gravity. The crux of this principle states that locally an observer can never dis-

tinguish between a gravitational field and an appropriately accelerated frame. Since

special relativity applies only to objects which are unaccelerated, it was obvious that
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to successfully incorporate gravity with principles of relativity one must modify spe-

cial relativity. This modification culminated in the general theory of relativity which

will be discussed now briefly.

In general relativity (GR) gravitational interaction is no longer a force or a

Newtonian force, but rather an artifact of curvature of spacetime due to the presence

of massive objects. The spirit of GR was elegantly captured in the famous textbook

by Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler [3] as “Spacetime

tells matter how to move; matter tells spacetime how to curve.”

The starting point of GR is to consider that spacetime is endowed with a

local dynamical metric field : gµν(x) and that the strong equivalence principle is

obeyed. The strong equivalence principle states that (i) the weak equivalence principle

(WEP) is valid (WEP states that if an uncharged body is placed at an initial event

in spacetime, and is given an initial velocity there, then its subsequent world line will

be independent of its internal structure and composition) and (ii) the outcome of any

local test experiment either gravitational or non-gravitational is independent of the

location and time of the experiment being performed anywhere in the universe and

independent of the velocity of the freely falling apparatus.

These physical considerations suggest that the underlying symmetries are gen-

eral covariance and local Lorentz invariance. In the spirit of classical field theory one

should construct the most general action which is at most quadratic in the second

derivative of the metric field in addition to the covariantized matter action. Schemat-

ically, the action looks like

S =

∫ √
−g d4x (Lmetric + Lmatter) . (1.3)

Where, g = det (gµν), Lmetric and Lmatter are the metric and the matter Lagrangian

respectively. However, the metric part of the action should be such that the equation

of motion automatically satisfies the conservation of energy-momentum tensor T µν ,

i.e. ∇µT
µν = 0, where ∇µ is the covariant derivative with respect to the metric. This
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leads to the Einstein-Hilbert action given by

S =

∫ √
−g d4x

[
1

8πGc4
R + Lmatter

]
(1.4)

where R is the Ricci scalar, G is the gravitational constant, and c is the speed of light

in vacuum. The equations of motion derived by varying the metric are the famous

Einstein field equations,

Rµν −
1

2
gµν R =

8πG

c4
Tµν . (1.5)

Rµν is the Ricci curvature tensor. From now on in this thesis unless otherwise men-

tioned we will set c = 1.

The first exact solution of Einstein’s field equations was developed by Karl

Schwarzschild in 1916 [4]. It is one of the simplest, yet extremely interesting, solu-

tions describing a spherically symmetric, static vacuum solution due to a non rotating

massive object of mass m. Later in the 1960’s this was identified to describe what is

now known as a spherically symmetric black hole with mass m, zero angular momen-

tum and zero electric charge. The metric is given by

ds2 = −
(

1− 2Gm

r

)
dt2 +

1(
1− 2Gm

r

) dr2 + r2
(
dθ2 + sin2θ dφ2

)
. (1.6)

This spacetime has a curvature singularity (i.e. R diverges) at r = 0. The singularity

at r = 2Gm signals the breakdown of the (t, r, θ, φ) coordinate system and is not

a genuine singularity. The spherical surface r = 2Gm can be shown to be a null

surface and acts as a one way membrane enclosing the curvature singularity. All

physical information can cross this membrane from outside and fall inwards towards

the singularity but nothing can escape from inside. This membrane is known as the

event horizon of the Schwarzschild black hole.

Throughout the last century, numerous observational and experimental suc-

cesses have firmly established GR as one of the foundational paradigms in modern

physics. The story started with direct observation of bending of starlight during a
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solar eclipse. The next several decades saw the development of a standard model of

cosmology based on GR which finally shed light into numerous questions regarding

the origin and the basic nature of our universe. Quite recently, with the direct de-

tection of gravitational waves [5] and the first direct image of a supermassive black

hole [6] at the center of the galaxy M87 continue to reaffirm GR’s status as pinnacle

of human intellectual achievement.

1.2 Breakdown of General Relativity

Despite its many celebrated successes GR remains at its core a classical field

theory. Just as it was obvious to Einstein that Newtonian gravity, while extremely

successful in describing planetary motion, must necessarily be an approximation to

a larger theory (i.e. GR), similarly, for the last several decades it has become in-

creasingly clear to physicists that at extremely small length scales (or equivalently

high energies) the classical theory of GR must give way to a larger quantum theory

of gravity. However, all standard techniques of quantization known so far suggest

that general relativity will lead to a non-renormalizable quantum theory. GR is not

perturbatively renormalizable. One naive way to see this is to note that the coupling

constant present in GR is Newton’s gravitational constant (GN) which in natural units

(Planck constant ~ = speed of light c = 1) has negative mass dimension (mass)−2

in four-dimensional spacetime, whereas it should be larger than or equal to zero for

the theory to be perturbatively renormalizable [7]. This can be easily seen from the

kinetic term read off from the Einstein-Hilbert action.

S =
1

16πGN

{∫
M
d4x
√
−g (R− 2Λ) + 2

∮
∂M

d3x
√
|h|K

}
, (1.7)

where Λ is the cosmological constant, h is the determinant of the induced metric

on the boundary and K is the trace of the extrinsic curvature of the boundary. So,

[GN ] = 2 − d in d dimensional spacetime. This structure distinguishes gravity from

other fundamentally known interactions in nature, all of which have dimensionless
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coupling constants from the very beginning. So, the effective dimensionless coupling

of gravity that enables perturbative expansion is given by geff = GNE
2. If we consider

the expansion of any given physical quantity F in terms of small gravitational constant

GN

F =
∞∑
n=0

an
(
GNE

2
)n

(1.8)

where E is the energy of the system involved, at the energy scale where E2 � G−1
N ,

such expansions diverge. This seems to suggest that GR cannot be quantized in the

standard way which therefore poses a serious problem in our attempt to understand

quantum gravity.

There have been several independent attempts to develop a quantum theory

of gravity, the most prominent one being string theory and loop quantum gravity. So

far none of the attempts have yielded beyond doubt a unanimously accepted notion of

quantum gravity. However, these attempts seem to require (a) that GR is indeed the

correct classical description of gravity and (b) at some small enough length scale local

Lorentz symmetry seems to be broken, only to emerge as an approximate symmetry

at long distances. Therefore, it seems natural to ask whether one can write down

classical descriptions in the spirit of GR maintaining general covariance but not local

Lorentz invariance.

1.3 Violation of Local Lorentz Symmetry

Lorentz invariance (LI) is one of the fundamental symmetries of modern physics

and strongly supported by observations [8]. An immediate objection to explicit break-

ing of Lorentz symmetry is that it seems incompatible with all of our observations so

far. To date, no observational evidence shows that such a symmetry must be broken

at the present experimentally achieved energy scales. However, as we shall see, while

all present experiments and observations present a bound on the degree of violation

of Lorentz symmetry, it is possible to write down theories that are consistent with
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those bounds, as well as all other experiments done so far. The constraints of such

violations in the gravitational sector are much weaker than those in the matter sec-

tor because numerous observations strongly limit the violation of Lorentz symmetry

among the standard model fields [9,10]. Hence, it becomes of paramount importance

to closely analyze these theories and extract specific physical situations in which the

predictions of these theories differ from that of GR.

There are various reasons to construct gravitational theories with broken LI.

String theory, which has become one of the preeminent theories for addressing ques-

tions of quantum gravity has a fundamental length scale. At very high energy scale

i.e. in the Planck regime, quantum mechanics appears to be more fundamental than

symmetries of special or general relativity and continuous spacetime emerges as a

classical limit of some quantum gravity having discrete substratum [11]. Therefore,

many developments in this theory suggest that at a length scale which is of the or-

der of the string length, it is not unreasonable to think that space and time are

quantized. Lorentz invariance, which is a continuous symmetry may not be a funda-

mental symmetry of nature, but instead should be an emergent one at low energies.

Another motivation comes from the modification of gravity at long distances to ex-

plain the accelerated expansion of the late-time universe. Following these lines of

arguments, various Lorentz violating (LV) theories of gravity have attracted much

interest in recent years. These include ghost condensation [12], Einstein-æther theory

(æ-theory) [13,14] and more recently the Hořava-Lifshitz theory of gravity [15]. While

the ghost condensation and Einstein-æther theory are considered as the low energy

effective theories of gravity, the Hořava gravity is supposed to be ultraviolet (UV)

complete [16].

This thesis consists of a set of such investigations based on two specific theo-

ries, namely Hořava-Lifshitz gravity and Einstein-æther theory. With the advent of

technology relevant for experimental gravitational physics, it is extremely reasonable
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to expect that the ongoing experiments or the experiments planned in near future

can detect these specific physical cases. Therefore these detections can firmly estab-

lish the extent to which local Lorentz symmetry should be considered a symmetry of

classical gravity. The explicit breaking of local Lorentz symmetry in classical gravity

will have several interesting consequences. In particular, it may provide us with the

crucial insight required to find the correct quantum theory of gravity.

1.4 Plan of the Dissertation

In the rest of the thesis, a brief review of Hořava-Lifshitz theory of gravity and

Einstein-æther theory of gravity will be given in chapter 2. Chapter 3 [17], chapter

4 [18], and chapter 5 [19] are based on my own research work. Chapter 3 is based on

a special case of Hořava gravity, i.e. non-projectable Hořava gravity and the study of

the universal horizon and Hawking radiation in that theory. Chapter 4 is based on the

gravitational plane wave solutions in Einstein-æther theory of gravity. In chapter 5,

we will discuss gravitational collapse and formation of black holes in Einstein-æther

theory of gravity. We conclude in chapter 6 with a brief discussion of the results

obtained in this dissertation and some of the future questions opened up by these

investigations.
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CHAPTER TWO

Review of Gravitational Physics with Broken Lorentz Symmetry

Hořava-Lifshitz gravity and Einstein-æther theory are theories of gravity that

break local Lorentz symmetry but preserve general covariance. Hořava-Lifshitz grav-

ity is a scalar-tensor theory of gravity which breaks local Lorentz symmetry by

anisotropic scaling of space and time coordinates. It introduces a preferred folia-

tion defined by a dynamical scalar field φ called the khronon, which labels the leaves

of the foliation. Einstein-æther theory is a vector-tensor theory of gravity which in-

troduces at every point in spacetime, a dynamical unit timelike vector field ua to

choose a preferred frame. If the vector ua is restricted to be hypersurface orthogonal,

Einstein-æther theory is recovered as an infrared (IR) limit of the extended Hořava-

Lifshitz gravity [20]. Hypersurface orthogonal solutions of Einstein-æther theory are

also solutions to the IR limit of Hořava-Lifshitz gravity.

2.1 Hořava-Lifshitz Gravity

The non-renormalizability of GR from a field-theoretical perspective does not

rule out a quantum field theoretical description of gravity in the UV regime altogether.

It has been shown that higher order derivative operators appear to stabilize perturba-

tion theory [21]. So, several authors have suggested that the Einstein-Hilbert action

should be modified by adding terms containing non-minimal functional of the metric

tensor involving more than two derivatives. In 1977, K. Stelle included quadratic

curvature terms to the Einstein-Hilbert action.

S =

∫
d4x
√
−g
(
αRµνR

µν + βR2 + γR
)
, (2.1)

where, α, β, and γ are the coupling constants and a common factor 1
16πG

has been

absorbed into the coefficient of each term in the action.
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Stelle proved that gravity is renormalizable to all orders in perturbation the-

ory including all fourth-order derivative operators [22]. Unfortunately, the resulting

theory is not compatible with standard notions of perturbative unitarity due to the

appearance of time derivative operators of order greater than two, which leads to neg-

ative kinetic energy modes known as Ostrogradsky’s ghosts. In 1850, Ostrogadsky

gave a very powerful theorem which states that a system is not (kinematically) stable

if it is described by a non-degenerate higher time-derivative Lagrangian. [23]. This

makes the theory highly unstable as the negative energy modes make the energy of

the system unbounded from below. It can be shown that the Hamiltonians of these

systems will include terms linear in the canonical momentum so there exists no low-

est energy state rendering the system unstable. Therefore, in order to improve UV

behavior at short distance one can include only higher order spatial derivative opera-

tors in the Lagrangian and time derivative operators are still kept to be second order.

This approach was adopted by Hořava to propose a power counting renormalizable

theory of quantum gravity [15].

Among many other ways of breaking Lorentz symmetry Hořava chose to break

it by considering anisotropic scaling between space and time.,

t→ b−zt′, xi → b−1x
′i, (i = 1, 2, ....d), (2.2)

where z denotes the dynamical critical exponent. LI requires z = 1, and power

counting renormalizability requires z ≥ d, where d denotes the spatial dimension of

the spacetime. Because of this scaling, Hořava gravity is also known as the Hořava-

Lifshitz (HL) gravity as the transformation reminds us of Lifshitz scalar fields in

condensed matter physics [24]. The breaking of LI becomes evident from the above

scaling as we can see the dimensions of time and space now become

[t] = −z, [xi] = −1. (2.3)
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Whereas, in GR the theory is invariant under the diffeomorphism called general co-

variance

t→ t′(t, xk), xi → x′
i (
t, xk

)
. (2.4)

Hořava assumed a transformation that retained the spatial diffeomorphism but

broke general covariance in the sense that

t→ t′(t), xi → x′i(t, xk) (2.5)

This modified symmetry indicates that one cannot rotate the time direction but can

rescale the coordinate time in any arbitrary way. The above symmetry is called

foliation-preserving diffeomorphism. This makes the Hořava-Lifshtiz gravity power

counting renormalizable which can be understood from simple dimensional analysis

to be discussed later.

2.1.1 3+1 Decomposition of General Relativity

GR faces the problem where one cannot determine uniquely the time evolution

of the dynamical quantity, i.e. the gravitational field, originating from a given set

of initial value of the metric field and its first time derivative. The evolved metric

state at some later time can be modified by mere relabeling of the coordinate time

under which the theory preserves general covariance. This is why it is necessary to

separate the metric field into parts carrying the true dynamical information and the

parts characterizing the coordinate system.

In the canonical formulation of GR, one needs to introduce a choice of a

particular timelike direction and slice the entire manifold in a sequence of spacelike

hypersurfaces. The natural way to physically foliate time and space and put them

on different footings is to consider Arnowitt-Deser-Misner (ADM) decomposition.

The ADM decomposition requires splitting the four-dimensional metric into a spatial

scalar called the lapse function N , a spatial vector called the shift vector N i, and a
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three dimensional spatial metric gij. These spacelike hypersurfaces Σt are given at

the leaves t = constant, i.e.

M = R× Σt, (2.6)

where, t ∈ R . Thus the metric now is given by

ds2 = −N2dt2 + gij
(
dxi +N idt

) (
dxj +N jdt

)
(2.7)

In this formalism, the covariant action of general relativity (1.7) takes the form

S =
1

16πG

∫
d3x dt

√
(3)g N

(
KijKij −K2 + (3)R

)
, (2.8)

where, (3)g is the determinant of 3-metric gij,
(3)R is the intrinsic curvature of the

hypersurface, K is the trace of extrinsic curvature Kij of the hypersurface defined by

Kij =
1

2N
(−ġij +∇iNj +∇jNi) . (2.9)

Here ∇i represents the covariant derivative with respect to the 3-metric gij and ġij ≡
∂gij
∂t

. Note that the kinetic terms including the extrinsic curvature terms are the only

ones containing time derivatives, and (3)R contains only spatial derivatives which

can be regarded as the potential energy term. Hořava-Lifshitz gravity modifies the

potential term.

2.1.2 Foliation Preserving Diffeomorphism in Hořava-Lifshitz Gravity

Due to the non-relativistic nature of the theory, it is natural to use ADM-like

variables in Hořava-Lifshitz gravity. Therefore in three dimensions, the dimension of

N,N i, and gij under the scaling (2.2) are

[N ] = 0, [N i] = z − 1 = 2 (z = 3), [gij] = 0 (2.10)

Considering the anisotropic scaling of space and time, the theory is no longer invariant

under the full diffeomorphism allowed in general relativity, but there is a restricted

diffeomorphism on the spatial hypersurfaces only defined by (2.5). The group of
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foliation preserving diffeomorphism of M is denoted by DiffF(M). Foliations can

be equipped with a Riemannian structure. The ADM variables can be considered

as a decomposition of a Riemannian metric on M into the induced metric gij along

the leaves Σt, the shift vector Ni, and the lapse function N . In the adapted ADM

coordinate system, the infinitesimal generators of the DiffF(M) are given by

δxi = ζ i(t, x), δt = f(t) (2.11)

The generators of DiffF(M) act on the above fields via

δN = ζk∇kN + Ṅf +Nḟ,

δNi = Nk∇iζ
k + ζk∇kNi + gikζ̇

k + Ṅif +Niḟ , (2.12)

δgij = ∇iζj +∇jζi + fġij.

These transformation properties of the metric components guarantee the basic build-

ing blocks of the action invariant under the DiffF(M) to be the 3-dimensional Ricci

tensor Rij, the extrinsic curvature Kij, the covariant derivative with respect to 3-

metric ∇i, and the 3-vector ai ≡ d lnN
dxi

. Therefore, the most general action possible

in this scenario is

S =
1

16πG

∫
d3x dt

√
(3)g N

(
KijKij − λK2 + F ((3)gij, N)

)
, (2.13)

where F ((3)gij, N) is the potential term, and can in principle contain infinitely many

terms.

2.1.2.1 The Kinetic Term . The kinetic part of the Lagrangian LK is the

sixth-order derivative term in the momenta k,

LK =
1

ζ2

(
KijKij − λK2

)
, (2.14)

where ζ2 is the gravitational coupling constant having the dimension
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[ζ2] = [t].[xi]3 + [K]2 = −z − 3 + 2z = z − 3. (2.15)

For z = 3 the coupling constant becomes dimensionless and the theory becomes

power counting renormalizable for the scaling (2.2). The parameter λ is a dimen-

sionless coupling constant. In GR, diffeomorphism invariance guarantees λ = 1 even

after radiative corrections are taken into account. But, in Hořava-Lifshitz gravity, it

becomes a dynamical coupling constant due to the breaking of LI. The presence of

λ reflects the fact that each of the two terms in (2.14) is separately invariant under

DiffF(M). The requirement of DiffF(M) symmetry allows the generalized DeWitt

“metric on the space of metrics”

Gijkl =
1

2

(
gikgjl + gilgjk

)
− gijgkl, (2.16)

to contain a free parameter λ. The generalized DeWitt metric defines the form

quadratic in Kij which appears in the kinetic term [25]. The kinetic terms in the

action can be put into a symmetric form

KijKij −K2 = KijG
ijklKkl. (2.17)

The kinetic term LK is independent of z and the dimension of spacetime. Theories

with different z will differ from each other in the terms that are independent of time

derivatives in the action.

2.1.2.2 The Potential Term. The potential term in the general action (2.13)

will contain terms that are independent of time derivatives but depend on spatial

derivatives. It will contain terms that are scalars under foliation preserving diffeo-

morphism and are functional of Rij,∇i and ai. The large number of potential terms

that can be obtained in the gravitational sector can reduce the predictability of the

theory. To eliminate the number of independent coupling constants, two additional
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conditions were introduced by Hořava known as the projectability and detailed bal-

ance condition [15].

2.1.2.3 Projectability Condition. The projectability condition restricts the

lapse function to be a function of time only. Therefore, N = N(t) remains a constant

on each spacelike hypersurface. As a result, all terms involving ai will vanish. Hence,

when N depends on both space and time, it is called the non-projectable condition.

Therefore, there remains only seven sixth-order non-zero terms at high energy for

d = 3 and z = 3.

∇kRij∇kRij, ∇kRij∇iRjk, R∆R, Rij∆Rij,

R3, Ri
jR

j
kR

k
i , RRijR

ij (2.18)

where. ∆ ≡ gij∇i∇j. The first four terms modify the propagator, besides adding

interactions, and the last three terms represent pure interaction.

2.1.2.4 Detailed Balanced Condition. To reduce the number of independent

coupling constants, the detailed balanced condition was imposed by Hořava. The

potential part is assumed to be obtained from a superpotential W [gkl] [15]

LV = EijGijklEkl,

√
gEij =

δW [gkl]

δgij
, (2.19)

where

W =
1

κ2
W

∫
dDx
√
g (R− 2ΛW ) (2.20)

where Gijkl the generalized DeWitt metric.

Gijkl =
1

2

(
gikgjl + gilgjk

)
− λgijgkl. (2.21)
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This reduces the number of free parameters to five: the Newton constant GN , cosmo-

logical constant Λ, λ in the generalized DeWitt metric and the other two constants

κW and ΛW from the superpotential. Even though it may appear to be a promising

candidate for quantum gravity with UV completion due to the reduced free parame-

ters, it has several problems. It lacks the Newtonian limit and sixth order derivative

operators, which makes the theory power-counting non-renormalizable. It introduces

one more degree of freedom called the spin-0 mode of gravitons which introduces

ghosts and instability problems.

2.2 Introduction to Einstein-Æther theory of Gravity

In Einstein-æther theory, LI is broken only down to a rotation subgroup by the

existence of a preferred time direction at every point of spacetime, i.e., the existence of

a preferred frame of reference established by the æther vector field. This time-like unit

vector field can be interpreted as a velocity four-vector of some medium substratum

(æther, vacuum, or dark fluid), bringing into consideration non-uniformly-moving

continuous media and their interaction with other fields. Meanwhile, this theory can

be also considered as a realization of dynamic self-interaction of complex systems

moving with a spacetime-dependent macroscopic velocity.

In the Einstein-aether theory, the fundamental variables of the gravitational

sector are [13,14]

(gµν , u
µ, λ) , (2.22)

with the Greek indices µ, ν = 0, 1, 2, 3, and gµν is the four-dimensional metric of the

space-time with the signature (−,+,+,+) [26–28]. The four-vector uµ represents

the æther field, and λ is a Lagrangian multiplier which guarantees that the æther

four-velocity is always timelike. The general action of the theory is given by,

S = Sæ + Sm, (2.23)
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where Sm denotes the action of matter, and Sæ the gravitational action of the æ-

theory, given by

Sæ =
1

16πG

∫ √
−g d4x

[
R(gµν) + Læ (gµν , u

α, λ)
]
, (2.24)

Sm =

∫ √
−g d4x

[
Lm (gµν , u

α;ψ)
]
. (2.25)

Here ψ collectively denotes the matter fields, R and g are, respectively, the Ricci

scalar and determinant of gµν , and

Læ ≡ −Mαβ
µν (Dαu

µ) (Dβu
ν) + λ

(
gαβu

αuβ + 1
)
, (2.26)

where Dµ denotes the covariant derivative with respect to gµν , and Mαβ
µν is defined

as

Mαβ
µν = c1g

αβgµν + c2δ
α
µδ

β
ν + c3δ

α
ν δ

β
µ − c4u

αuβgµν . (2.27)

Note that here we assume that matter fields couple not only to gµν but also to the

æther field, which in general violates the weak equivalence principle [13, 14]. The

four coupling constants ci (c1, c2, c3, and c4) are all dimensionless. G is related to the

Newtonian constant GN via the relation [29],

GN =
G

1− 1
2
c14

, (2.28)

where cij = ci + cj for i and j=1, 2, 3, 4.

The variations of the total action given by Eq. (2.23) with respect to gµν , u
µ

and λ yield, respectively, the field equations,

Eµν = 8πGT µν , (2.29)

Æµ = 8πGTµ (2.30)

gαβu
αuβ = −1, (2.31)
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where

Eµν ≡ Rµν − 1

2
gµνR− T µνæ , (2.32)

T µν ≡ 2√
−g

δ (
√
−gLm)

δgµν
, (2.33)

Tµ ≡ −
1√
−g

δ (
√
−gLm)

δuµ
, (2.34)

Tæ
αβ ≡ Dµ

[
Jµ(αuβ) + J(αβ)u

µ − u(βJ
µ

α)

]
+c1

[
(Dαuµ) (Dβu

µ)− (Dµuα) (Dµuβ)
]

(2.35)

+c4aαaβ + λuαuβ −
1

2
gαβJ

δ
σDδu

σ,

Æµ ≡ DαJ
α
µ + c4aαDµu

α + λuµ, (2.36)

with

Jαµ ≡Mαβ
µνDβu

ν , aµ ≡ uαDαu
µ. (2.37)

From Eqs.(2.30) and (2.31), we find that

λ = uβDαJ
αβ + c4a

2 − 8πGTαu
α, (2.38)

where a2 ≡ aλa
λ.

2.2.1 Different Gravitational Modes in Einstein-Æther Theory

GR has two massless spin-2 modes traveling at the speed of light. Whereas,

Einstein-æther theory has five massless modes for each wave vector: two spin-2 (ten-

sor), two spin-1 (vector), and one spin-0 (scalar) mode. It can be shown that the

Minkowski spacetime is a solution of the Einstein-æther theory, where the æther is

aligned along the time direction. Linear perturbations around the Minkowski back-

ground yields the squared speeds (s2) of these modes relative to the æther rest frame

to be
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spin− 2 c2
T =

1

1− c13

Traceless metric mode

spin− 1 c2
V =

2c1 − c2
1 + c3

1

2c14(1− c13)
Transverse æther mode (2.39)

spin− 0 c2
S =

c123(2− c14)

c14(1− c13)(2 + c13 + 3c2)
Trace mode

where cT , cV , and cS are the speeds of the tensor, vector, and scalar modes respectively

[30]. We can see from the above equations that for very small values of ci s, the speed

of the spin-2, spin-1, and spin-0 mode tends to 1, c1
c14

, and c123
c14

respectively. If (s2) > 0

and finite for all modes, the linearized field equations are hyperbolic. It implies that

the theory is stable and has an initial value formulation. The presence of transverse

æther and trace modes suggest that dipole and monopole radiation will also exist

besides the quadruple radiation in GR.

2.2.2 Observational Constraints on Einstein-Æther Theory

Recently, the combination of the gravitational wave GW170817 [31] observed

by the LIGO/Virgo collaboration, and the gamma-ray burst GRB 170817A [32] events

provided a remarkably stringent constraint on the speed of the spin-2 graviton, −3×

10−15 < cT − 1 < 7 × 10−16. In the Einstein-æther theory, the speed of the spin-2

graviton is given by c2
T = 1/(1− c13) [30], so this implies

|c13| < 10−15 (2.40)

Together with other observational and theoretical constraints, the parameter space

of æ-theory is restricted to the intersection of the constraints [28],

|c13| < 10−15, 0 ≤ c14 ≤ 2.5× 10−5,

0 ≤ c2 ≤ 0.095, c4 ≤ 0 . (2.41)
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It should be noted that not all the points inside these ranges satisfy all the

observational and theoretical constraints, and additional conditions still exist even

inside these ranges. For example, for 0 ≤ c14 ≤ 2 × 10−7 we must further require

c14 . c2 . 0.095; and for 2 × 10−6 . c14 . 2.5 × 10−5, we need to further require

0 . c2 − c14 . 2× 10−7. For details, see [28].
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CHAPTER THREE

Nonprojectable 2d Hořava Gravity Non-Minimally Coupled with a Non-Relativistic
Scalar Field

This chapter is based on [17]: Bao-Fei Li, Madhurima Bhattacharjee, and Anzhong
Wang “Universal horizons and Hawking radiation in nonprojectable 2d Hořava

gravity coupled with a non-relativistic scalar field,” Phys. Rev. D 96, 084006(2017).

3.1 Introduction

Quantization of gravity has been a subject of intense study for over half a

century [11, 33, 34], and various candidates have been proposed, such as string/M-

Theory [35–37], Loop Quantum Gravity (LQG) [38–41], Causal Dynamical Triangu-

lation (CDT) [42], and Asymptotic Safety [43, 44], to name only a few of them. For

more details, see [45]. However, our understanding of each of them is still highly

limited. In particular, it is not clear how they are related (if at all), and which is the

theory we have been looking for over these years. One of the main reasons is the ab-

sence of experimental evidence for quantum gravitational effects. In a certain sense,

this is understandable, considering the fact that quantum gravitational effects are nor-

mally expected to become important only at the Planck scale, which currently is well

above the range of any man-made terrestrial experiments. However, the situation has

been changing recently with the arrival of precision cosmology [46–54]. Particularly,

it was recently shown that one of the approaches adopted in loop quantum cosmology

leads to inconsistency with current observations under certain circumstances [55,56].

In the original incarnation of Hořava gravity [15], the theory suffered several

problems, including instability in the IR, strong coupling, and inconsistency with ob-

servations [57–61]. Since then, various modifications have been proposed, and for a

recently updated review we refer readers to [16]. Among several important issues,

quantization of Hořava gravity has been considered only in some particular cases,
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despite the vast literature on the theory. In particular, in (3+1)-dimensional space-

times with the projectability and detailed balance conditions, the renormalizability of

Hořava gravity was shown to reduce to one of the corresponding (2+1)-dimensional

topologically massive gravity [62]. The latter is expected to be renormalizable [63],

although a rigorous proof is still absent. Lately, it was shown that the theory is renor-

malizable even without the detailed balance condition, by properly choosing a gauge

that ensures the correct anisotropic scaling of the propagators and their uniform falloff

at large frequencies and momenta [64].

The quantization of Hořava gravity has been studied with and without the

projectability condition in (1+1)-dimensional (2d) spacetimes [65, 66]. Due to the

foliation-preserving diffeomorphism, the theory is non-trivial even in 2d spacetimes,

in contrast to the relativistic case [67–69], although the total degree of freedom of

the theory is still zero [65, 66]. In particular, in the projectable case, when only

gravity is present, the system can be quantized by following the canonical Dirac

quantization [70], and the corresponding wavefunction is normalizable [65]. It is

remarkable to note that in this case the corresponding Hamiltonian can be written in

terms of a simple harmonic oscillator, whereby the quantization can be carried out

quantum mechanically in the standard way. When minimally coupled to a scalar field,

the momentum constraint can be solved explicitly in the case where the fundamental

variables are functions of time only. In this case, the coupled system can also be

quantized by following the Dirac process, and the corresponding wavefunction is also

normalizable.

In the non-projectable case, the analysis of the 2d Hamiltonian structure shows

that there are two first-class and two second-class constraints [66]. Then, following

Dirac one can quantize the theory by first requiring that the two second-class con-

straints be strongly equal to zero, which can be carried out by replacing the Poisson

bracket by the Dirac bracket [70]. The two first-class constraints give rise to the
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Wheeler-DeWitt equations. A remarkable feature is that orderings of the operators

from a classical Hamiltonian to a quantum mechanical one play a fundamental role

in order for the Wheeler-DeWitt equation to have nontrivial solutions. In addition,

the space-time is well quantized, even when it is classically singular. It was also

shown that the 2d projectable Hořava gravity is exactly equal to the 2d CDT [71].

Such studies were further generalized to the case coupled with a scalar field [72]. In

addition, the quantization of a 2d Friedman-Robertson-Walker universe was studied

in [73,74].

In this chapter, we investigate the 2d Hořava gravity with the non-projectable

condition, but focus on two related issues: the existence of universal horizons and

their Hawking radiations. The existence of black holes in gravitational theories with

LI is closely related to the existence of light cones [75]. It was expected that black

holes should not exist in theories of gravity where LI is broken as particles in such

theories can have speeds larger than that of light. Such particles are always able to

cross event horizons and escape to infinity, even if they are inside the event horizon

initially. Therefore, it was very surprising to discover that black holes exist even in

such theories, but now with universal horizons as the boundaries of black holes [76,77],

instead of Killing horizons [75].

Since then, universal horizons and their thermodynamics have been stud-

ied intensively (see, for example, [16] and references therein). In particular, it was

shown that universal horizons exist in the three well-known black hole solutions: the

Schwarzschild, Schwarzschild anti-de Sitter, and Reissner-Nordström [78], which are

also solutions of Hořava gravity [79]. At the universal horizon, the first law of black

hole mechanics exists for the neutral Einstein-aether black holes [80], provided that

the surface gravity is defined by [81],

κUH ≡
1

2
uαDα

(
uλζ

λ
)
, (3.1)
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which was obtained by considering the peering behavior of ray trajectories of constant

khronon field φ. However, for the charged Einstein-æther black holes, such a first law

is still absent [82]. The universal horizon radiates as a black-body at a fixed tem-

perature [83]. However, different species of particles, in general, experience different

temperatures [84],

T z≥2
UH =

2(z − 1)

z

(κUH
2π

)
, (3.2)

where κUH is the surface gravity calculated from Eq. (3.1) and z is the exponent of the

dominant term in the UV regime. When z = 2, we have the standard result, T z=2
UH =

κUH
2π

, which was first obtained in [81, 83]. More careful studies of ray trajectories

showed that the surface gravity for particles with a non-relativistic dispersion relation

is indeed given by [85],

κz≥2
UH =

2(z − 1)

z
κUH . (3.3)

The same results were also obtained in [86]. It is remarkable to note that in terms

of κz≥2
UH and T z≥2

UH , the standard relationship between the temperature and surface

gravity of a black hole still holds here.

The existence of universal horizons is closely related to the existence of a glob-

ally defined time-like khronon field ϕ [16]. Then, all the particles are assumed to move

in the increasing direction of ϕ. At the beginning, universal horizons were studied in

the framework of the Einstein-æther theory with spherical symmetry, in which the

time-like æther naturally plays the role of the khronon field [76, 77]. To generalize

such concepts to other theories, including Hořava gravity, in which the æther field is

not a part of the theory, one can consider the khronon field as a test field [87], a role

similar to a Killing vector field ξµ, which satisfies the Killing equations, ∇(νξµ) = 0, on

a given spacetime background gµν . In this chapter, we shall adopt this generalization,

and assume that the test khronon field satisfies the same equations as the æther field,

the most general second-order partial differential equations in terms of the æther
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four-velocity [88]. For more detail, we refer readers to [16] and references therein.

We shall study universal horizons and their thermodynamics in 2d non-projectable

Hořava gravity, coupled with a non-relativistic scalar field. The chapter is organized

as follows: in section 3.2, we present the general action of the coupled system and

derive the corresponding Hamiltonian structure and field equations. In section 3.3,

we find various diagonal and non-diagonal stationary solutions of the coupled system

in [89]. In section 3.4 we first study the existence of universal horizons in a rep-

resentative spacetime found in section 3.3, and then study its Hawking radiation by

using the Hamilton-Jacobi method. To compare it with the relativistic case, Hawking

radiation at Killing horizons is also studied in this section. The main conclusions are

presented in section 3.5.

3.2 2d Hořava Gravity Coupled with a Scalar Field

The general gravitational action of Hořava gravity is given by

SHL = ζ2

∫
dt dxN

√
g (LK − LV ), (3.4)

where ζ2 denotes the coupling constant of Hořava gravity, N the lapse function in

the Arnowitt-Deser-Misner (ADM) decomposition [90], and g ≡ det(gij), here gij is

the spatial metric defined on the leaves t = constant. LK is the kinetic part of the

action, given by

LK = KijK
ij − λK2, (3.5)

where λ is a dimensionless constant, and Kij denotes the extrinsic curvature tensor

of the leaves t = constant, given by

Kij =
1

2N
(−ġij +∇iNj +∇jNi) , (3.6)

and K ≡ gijKij. Here ġij ≡ ∂gij/∂t, ∇i denotes the covariant derivative with respect

to the metric gij, and N i the shift vector, with Ni ≡ gijN
j.
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LV denotes the potential part of the action, and in 2d spacetimes, it takes the form

[66],

LV = 2Λ− βaiai, (3.7)

where Λ denotes the cosmological constant, and β is another dimensionless coupling

constant.

On the other hand, the action for a non-relativistic scalar field takes the form

Sφ =

∫
dt dxN

√
g

{
1

2
(∂⊥φ)2 − α0 (∇iφ)2−V (φ)− f(φ)R

}
, (3.8)

where ∂⊥ ≡ N−1(∂t − N i∇i), α0 is a dimensionless coupling constant. In the rel-

ativistic case, it is equal to 1/2. The function f(φ) is arbitrary and depends on φ

only, and R denotes the Ricci scalar of the 2d spacetimes. The scalar field couples

non-minimally to gravity through the term f(φ)R. So, the total action is

S = SHL + Sφ = ζ2

∫
dt dxN

√
gL. (3.9)

3.2.1 Hamiltonian Structure

The 2d spacetimes are described by the general metric,

ds2 = −N2dt2 + γ2
(
dx+N1dt

)2
, (3.10)

subjected to the gauge freedom (2.5), where N,N1 and γ are in general functions of

t and x, and γ ≡ √g11. To be as general as possible, we shall not impose any gauge

conditions in this section. Then, the action (3.4) takes the form

SHL =

∫
dtdxNγ

[
(1− λ)K2 − 2Λ + βa1a

1
]
. (3.11)

where a1 = (lnN)′, and

K = − 1

N

(
γ̇

γ
− N ′1
γ2

+
N1γ

′

γ3

)
, (3.12)
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with γ′ ≡ ∂γ/∂x, and γ̇ ≡ ∂γ/∂t. In terms of N,N1 and γ, the matter action takes

the form 1

Sφ =

∫
dtdxNγ

{ 1

2N2

(
φ̇− N1φ

′

γ2

)2

− α0

γ2
φ′2 − V (φ)− f(φ)R

}
, (3.13)

where

R =
2

Nγ

[
∂µ(NγnµK)−

(
N ′

γ

)′]
. (3.14)

Here nµ ≡ N−1(1,−N1) denotes the normal vector to the hypersurfaces t = Constant.

Then, we find the conjugate momenta of N , N1, γ, and φ are given by

πN ≡
∂L
∂Ṅ

= 0, πN1 ≡
∂L
∂Ṅ1

= 0,

π =
∂L
∂γ̇

= 2K(λ− 1)− 2f ′
φ̇

N
+ 2f ′

φ′N1

Nγ2
,

πφ =
∂L
∂φ̇

=
γ

N
(φ̇−N1

φ′

γ2
) + 2f ′γK. (3.15)

After a Legendre transformation, it can be shown that the Hamiltonian can be cast

in the form

H0 = NH +N1H1 − 2β

(
N ′

γ

)′
, (3.16)

where

H1 = −π
′

γ
+
πφφ

′

γ2
, (3.17)

H = −πφπ
2f ′

+
(λ− 1)πφ

f ′
K + (1− λ)K2γ + 2Λγ + α0

φ′2

γ
+ γV (φ)

−γ
2

(
πφ
γ
− 2f ′K

)2

− 2

(
f ′φ′

γ

)′
+ β

N ′2

Nγ
+ 2β

(
N ′

Nγ

)′
. (3.18)

1It is more convenient to use Ni as the fundamental variables, instead of N i. Therefore, in
this chapter the fundamental components of the metric will be chosen as (N,N1, γ).
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Here K can be expressed in terms of the canonical fields and their conjugate momenta,

K =
πγ + 2f ′πφ

4γf ′2 − 2γ(1− λ)
. (3.19)

A straightforward evaluation of Poisson brackets between momentum constraints

yields {
H1(x),H1(x′)

}
=

(
H1(x′)

γ2(x′)
+
H1(x)

γ2(x)

)
∂x′δ(x− x′), (3.20)

which is the same as in the pure gravity case [66]. The Poisson bracket between H

and H1 will not vanish on the constraint surface because of the appearance of terms

related to the lapse function N in the Hamiltonian constraint H. Therefore, we need

to redefine the momentum constraint by adding a term proportional to the primary

constraint πN , which generates the diffeomorphisms of N ,

H̃1 = H1 +
N ′

γ2
πN . (3.21)

In principle, one can also add a term generating diffeomorphisms of N1. However, in

the present case, since the Hamiltonian constraint doesn’t depend on N1, this term

is not mandatory. In terms of H̃1, the structure of Eq. (3.20) will not change, while

one can show that H̃1 now commutes with H on the constraint surface,{
H̃1(x),H(x′)

}
= −

(
4cπ +

2bπφ
γ

)
H̃1(x)δ(x− x′) +

H(x)

γ2(x)
∂xδ(x− x′). (3.22)

Here c ≡ −α/2 − 2ξ2α2 and b ≡ αξ(2β − 1) − 1
2ξ

[1 + 2α(1 − λ)], where α−1 ≡

4ξ2 + 2(λ − 1). Note that in writing the above expression, we have set f(φ) = ξφ

for the sake of simplicity. Thus, the total Hamiltonian of the coupled system can be

written as

Ht = NH +N1H̃1 + σπN + σ1πN1 . (3.23)

For this coupled system, there are two first-class constraints H̃1 and πN1 , and two

second-class constraints H and πN .
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Note that no other constraints will be generated by the equations of motion

(E.O.M.) of the said four constraints because the secondary constraint H̃1 will not

give rise to any tertiary constraints due to Eq. (3.20) and Eq. (3.22), while on the

other hand the preservation of H will only produce two differential equations for lapse

function N and Lagrange multiplier σ since H is a second-class constraint. Thus,

the Dirac procedure of finding all the constraints in the Hamiltonian formulation

terminates at the level of secondary constraints, and the physical degrees of freedom

in the configuration space is one which is due to the introduction of the scalar field

into the whole system, while in the pure gravity case it is zero [66].

3.2.2 Field Equations

The variations of the total action S with respect to N,N1, γ and φ, yield,

respectively,

(1− λ)γK2 + 2β

(
N ′

Nγ

)′
+
βN ′2

N2γ
+ γ (2Λ + V ) +

γ

2N2

(
φ̇− N1φ

′

γ2

)2

+
α0φ

′2

γ
+

2K

N

(
f ′φ̇γ − f ′φ′N1

γ

)
−
(

2f ′φ′

γ

)′
= 0, (3.24)

2(1− λ)K ′

γ
+

φ′

Nγ

(
φ̇− N1φ

′

γ2

)
+

2f ′φ′K

γ
+

(
2f ′φ̇

Nγ
− 2f ′φ′N1

Nγ3

)′
+

2γ′

Nγ3

(
f ′φ̇γ − f ′φ′N1

γ

)
= 0, (3.25)

2(1− λ)

(
K̇ +

N1K
′

γ2
− NK2

2

)
− βN ′2

Nγ2
+

1

2N

(
φ̇− N1φ

′

γ2

)2

+
2N1φ

′

Nγ2

(
φ̇− N1φ

′

γ2

)
−N(2Λ + V ) + 2f ′φ̇K + 2f ′φ′

N1K

γ2

+ 2f ′φ′
N ′

γ2
+ α0φ

′2N

γ2
− 2K

(
f ′φ̇− f ′φ′N1

γ2

)
+

(
2f ′φ̇γ

Nγ
− 2f ′φ′N1

Nγ2

)
,t

− 2N ′1
γ2

(
f ′φ̇γ − f ′φ′N1

γ

)
+

4N1γ
′

Nγ4

(
f ′φ̇γ − f ′φ′N1

γ

)
+

(
2N1f

′φ̇

Nγ2
− 4f ′φ′N2

1

Nγ4

)′
= 0, (3.26)
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(
γφ̇

N
− N1φ

′

Nγ

)
,t

−

(
N1φ̇

Nγ
− N2

1φ
′

Nγ3

)′
− 2α0

(
Nφ′

γ

)′
+NγV ′

− 2f ′′φ̇γK + 2(f ′γK). + 2f ′′φ′
N1K

γ
− 2

(
f ′N1K

γ

)′
+ 2f ′′φ′

N ′

γ
− 2

(
f ′N ′

γ

)′
= 0. (3.27)

Here f ′(φ) ≡ df(φ)/dφ, etc. Note that Eqs. (3.24)-(3.27) hold for any function f(φ).

3.3 Stationary Spacetimes

In this section, we will study stationary spacetimes of the 2d Hořava gravity

coupled with a non-relativistic scalar field, presented in the last section. Setting all

the time derivative terms to zero in Eqs. (3.24)-(3.27), and

f(φ) = ξφ, (3.28)

where ξ is a constant, we find that

(1− λ)γK2 + 2β

(
N ′

Nγ

)′
+
βN ′2

N2γ
+
N2

1φ
′2

2N2γ3
+
α0φ

′2

γ
− 2Kξφ′N1

Nγ

+ γ(2Λ + V )−
(

2ξφ′

γ

)′
= 0, (3.29)

2(1− λ)K ′

γ
− N1φ

′2

Nγ3
+

2ξφ′K

γ
−
(

2ξφ′N1

Nγ3

)′
− 2ξφ′γ′N1

Nγ4
= 0, (3.30)

2(1− λ)

(
N1K

′

γ2
− NK2

2

)
− βN ′2

Nγ2
− 3N2

1φ
′2

2Nγ4
+ α0φ

′2N

γ2
+

4ξφ′
N1K

γ2
+ 2ξφ′

N ′

γ2
−N(2Λ + V ) +

2ξN ′1φ
′N1

γ3
− 4ξγ′φ′N2

1

Nγ5

−
(

4ξφ′N2
1

Nγ4

)′
= 0, (3.31)

(
N2

1φ
′

Nγ3

)′
− 2α0

(
Nφ′

γ

)′
+NγV ′ − 2ξ

(
N1K

γ

)′
− 2ξ

(
N ′

γ

)′
= 0.

(3.32)
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3.3.1 Diagonal Solutions

When the metric is diagonal, we have

N1 = 0, (3.33)

so the extrinsic curvature K vanishes and Eq. (3.30) holds identically, while Eqs.

(3.29), (3.31) and (3.32) reduce, respectively, to

2β (ν ′′ − ν ′µ′) + βν ′
2 − 2ξ (φ′′ − φ′µ′) + α0φ

′2 = −(V + 2Λ)e2µ, (3.34)

βν ′
2 − 2ξφ′ν ′ − α0φ

′2 = −(V + 2Λ)e2µ, (3.35)

2ξ
(
ν ′′ + ν ′

2 − ν ′µ′
)

+ 2α0 (φ′′ − φ′µ′ + ν ′φ′) = e2µV ′, (3.36)

where ν ≡ lnN and µ ≡ ln γ.

It should be noted that static diagonal solutions were studied recently in [89]

with Λ = 0 = ξ. However, comparing Eq. (3.34) with Eq. (12) given in [89], it can

be seen that the second-order derivative term ν ′′ (or N ′′) is missing there. This is

because, when taking the variation of the total action with respect to N , the authors

of [89] incorrectly assumed that a1 is independent of N . Unfortunately, as a result, all

the solutions resulted from Eq. (12) given in [89] in general are not solutions of the

field equations of the 2d Hořava gravity coupled with a non-relativistic scalar field.

Using the gauge freedom given by Eq. (2.5), without loss of the generality, we

can always set µ = −ν, i.e,

N =
1

γ
= eν . (3.37)

To solve Eqs. (3.34)-(3.36), let us further consider the case where V = −2Λ, so that

Eqs. (3.34)-(3.36) reduce to

2β
(
ν ′′ + ν ′

2
)

+ βν ′
2 − 2ξ (φ′′ + φ′ν ′) + α0φ

′2 = 0, (3.38)

βν ′
2 − 2ξφ′ν ′ − α0φ

′2 = 0, (3.39)
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ν ′′ + 2ν ′
2

+
α0

ξ
(φ′′ + 2ν ′φ′) = 0. (3.40)

Then, from Eqs. (3.38) and (3.39) we find that

ν ′′ + 2ν ′
2 − ξ

β
(φ′′ + 2ν ′φ′) = 0. (3.41)

Thus, Eqs. (3.40) and (3.41) show that there are two possibilities,

(i) α0β + ξ2 6= 0; (ii) α0β + ξ2 = 0. (3.42)

3.3.1.1 α0β + ξ2 6= 0. In this case we must have

ν ′′ + 2ν ′
2

= 0, (3.43)

φ′′ + 2ν ′φ′ = 0, (3.44)

which have the solutions,

N =
√
C0x+ C1,

φ = φ0 ln (C0x+ C1) + φ1, (3.45)

where Ci and φi are the integration constants. Without loss of generality, we can

always set C0 = 1, so the metric and scalar field finally take the form

ds2 = − (x− x0) dt2 +
dx2

x− x0

,

φ = φ0 ln (x− x0) + φ1, (3.46)

where x0 ≡ −C1. Clearly, the scalar field is singular at x = x0, and so is the

corresponding spacetime.

3.3.1.2 α0β+ ξ2 = 0. In this case, there are only two independent equations

which are Eqs. (3.39) and (3.40). Now if we substitute the relation α0 = −ξ2/β into

these equations and define a new constant κ = ξ/β, one can easily arrive at

ν ′2 − 2κφ′ν ′ + κ2φ′2 = 0, (3.47)
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ν ′′ + ν ′2 − κφ′′ − κ2φ′2 = 0. (3.48)

The first equation tells us that ν ′ and φ′ are linearly dependent, i.e.,

ν =
ξ

β
(φ− φ0) , (3.49)

which also makes the second equation hold identically, where φ0 is a constant. There-

fore, in the current case for any chosen φ, the solution (3.49) will satisfy the field

equations (3.38)-(3.40). The corresponding metric takes the form,

ds2 = −e
2ξ(φ−φ0)

β dt2 + e−
2ξ(φ−φ0)

β dx2, (3.50)

for α0 = −ξ2/β.

3.3.2 Non-diagonal Solutions

In this case, using the gauge transformations (2.5), without loss of generality,

we can always set

γ = 1, (3.51)

so the metric takes the form

ds2 = −N2(x)dt2 +
(
dx+ h(x)dt

)2
. (3.52)

Then, Eqs. (3.29)-(3.32) reduce to

(1− λ)K2 + 2β

(
N ′

N

)′
+
βN ′2

N2
+ 2Λ + V (φ) +

h2φ′2

2N2
+ α0 φ

′2

−2K ξ φ′ h

N
− 2 ξ φ′′ = 0, (3.53)

2(1− λ)K ′ − hφ′2

N
+ 2 ξ φ′K −

(
2 ξ φ′h

N

)′
= 0, (3.54)

2(1− λ)

(
hK ′ − NK2

2

)
− βN ′2

N
− 3h2φ′2

2N
−N(2Λ + V )

+α0 φ
′2N + 4 ξ φ′ hK + 2 ξ φ′N ′ + 2 ξ h′ φ′ h−

(
4 ξ φ′ h2

N

)′
= 0, (3.55)

33



(
h2 φ′

N

)′
− 2α0 (Nφ′)′ +NV ′ − 2 ξ(hK)′ − 2 ξN ′′ = 0, (3.56)

where

K =
h′

N
. (3.57)

To solve the above equations, we shall consider some particular cases.

3.3.2.1 N(x) = 1. In this case, let us first consider the solution with φ = φ0,

where φ0 is a constant. Then, from Eq. (3.53) we find that

h′
2

=
2Λ̂

λ− 1
, (3.58)

where Λ̂ ≡ Λ + V (φ0)/2. The above equation has the solution,

h(x) = ±

√
2Λ̂

λ− 1
x = ±ηx. (3.59)

It can be shown that in this case a Killing horizon exists, located at xKH = ±η−1.

3.3.2.2 ξ = 0. When ξ = 0, Eqs. (3.53)-(3.56) reduce to

(1− λ)

(
h′

N

)2

+ 2β

(
N ′

N

)′
+
βN ′2

N2
+ V̂ + α0φ

′2 +
h2φ′2

2N2
= 0, (3.60)

2(1− λ)

(
h′′

N
− h′N ′

N2

)
− hφ′2

N
= 0, (3.61)

2(1− λ)

(
h′′

N
− h′N ′

N2
− h′2

2hN

)
− βN ′2

hN
− 3hφ′2

2N
+
N

h

(
α0φ

′2 − V̂
)

= 0, (3.62)

(
h2φ′

N

)′
− 2α0(Nφ′)′ +NV̂ ′ = 0, (3.63)

where V̂ ≡ V + 2Λ. To solve the above equations, let us consider the case,

N = h, V̂ = 0, (3.64)

for which the above equations reduce to
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2βν ′′ + (1− λ+ β)ν ′
2

= −1 + 2α0

2
φ′

2
, (3.65)

2(1− λ)ν ′′ = φ′
2
, (3.66)

2(1− λ)ν ′′ − (1− λ+ β)ν ′
2

=
3− 2α0

2
φ′

2
, (3.67)

(1− 2α0) (eνφ′)
′
= 0, (3.68)

where ν = lnN . To solve the above equations, let us consider the cases α0 = 1/2 and

α0 6= 1/2, separately.

Case B.2.1) α0 = 1/2: This is the relativistic case, and Eq. (3.68) is satisfied

identically, while from Eqs. (3.65) and (3.67), we find

(1− λ+ β)ν ′′ = 0. (3.69)

If λ 6= β + 1, it can be shown that the above equations have only the trivial solution

in which ν and φ are all constants. On the other hand, when λ = β + 1, Eqs.

(3.65)-(3.67) reduce to a single equation,

2βν ′′ = −φ′2, (β = λ− 1), (3.70)

for the two arbitrary functions ν and φ. Again, similar to Case A.2 considered in the

last subsection, the solutions are not uniquely determined. In fact, for any given φ,

the solution

ν(x) = − 1

2β

∫ x

dx′
∫ x′

φ′
2
(x′′)dx′′ + C1x+ C0 (3.71)

will satisfy the field equations (3.65) and (3.67), where C1 and C0 are two integration

constants.

Case B.2.2) α0 6= 1/2: In this case, from Eq. (3.68) we find

φ′ = C0e
−ν , (3.72)
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where C0 is another constant. Substituting it into Eq. (3.66), we obtain

NN ′′ −N ′2 +D = 0, (3.73)

where D ≡ C2
0/(2(λ− 1)). The above equation has two particular solutions,

NA(x) =
1

2C2
1

eC1(x+C2) − D
2
e−C1(x+C2), (3.74)

NB(x) =
1

2C2
1

e−C1(x+C2) − D
2
eC1(x+C2), (3.75)

where C1 and C2 are two integration constants. Correspondingly, the scalar field φ is

given, respectively, by

φA(x) = − 2√
D

tanh−1

(
eC1(C2+x)

√
DC1

)
, (3.76)

φB(x) =
2√
D

tanh−1
(
C1

√
DeC1(C2+x)

)
. (3.77)

3.4 Universal Horizons and Hawking Radiation

In this section, we shall consider two issues, universal horizons and the corre-

sponding Hawking radiations. As a representative case, we shall focus on the solution

given by Eqs.(3.52) and (3.59) with N = 1. Without loss of generality, we consider

only the case with “-” sign, that is,

ds2 = −dt2 + (dx− ηxdt)2 = −
(
1− η2x2

)
dt2 − 2ηxdtdx+ dx2, (3.78)

where −∞ < t, x <∞. The corresponding inverse metric is given by

gtt = −1, gtx = −ηx, gxx = 1− η2x2, (3.79)

which is non-singular, except at the infinities x = ±∞. The latter are coordinate

singularities, similar to the 4d de Sitter space. In fact, the extrinsic curvature and 2d

Ricci scalar are all finite, and given by −η and 2η2, respectively. However, there exist

two cosmological Killing horizons, located, respectively, at xKH = ±η−1. Similar

to the 4d de Sitter space, the time-translation Killing vector, ξµ = δµt , is time-like
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only in the region x2 < x2
KH . In the regions x2 > x2

KH , the Killing vector becomes

spacelike, and only in these regions can the universal horizon exist, as the latter is

defined by [16]

(ξ · u) = 0. (3.80)

Since the four-velocity u of the khronon field is always time-like, Eq. (3.80) has

solutions only when ξ becomes spacelike, which are the regions in which x2 > x2
KH

holds.

To see the difference between the physics at Killing horizons and that at uni-

versal horizons, let us first consider Hawking radiation at the Killing horizon.

3.4.1 Hawking Radiation at the Killing Horizon

As shown in [84], at a Killing horizon only relativistic particles are radiated

quantum mechanically. So, in this subsection we consider only the relativistic limit

in which the dispersion relation of radiated massless scalar particles satisfies k2 ≡

kλk
λ = 0. Considering only the positive outgoing particles, kt = −ω < 0, we find

k±x =
ω(h± 1)

1− h2
, (3.81)

which is singular for k+
x at the Killing horizon at which we have h (xKH) = 1. Then,

from the following formula [84],

2ImS = Im

∮
k+

x dx =
ω

TKH

, (3.82)

we find that

TKH = −h
′(xKH)

2π
=

η

2π
, (3.83)

where xKH = −η−1. On the other hand, the surface gravity at the Killing horizon is

given by [75]

κKH ≡
√
−1

2
(Dµχν) (Dµχν) = η, (3.84)
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where Dµ denotes the covariant derivative with respect to the 2d metric gµν , and

χµ = δµt is the timelike Killing vector. Therefore, the standard form holds

TKH =
κKH
2π

. (3.85)

3.4.2 Hawking Radiation at the Universal Horizon

The existence of a universal horizon is closely related to the existence of a

globally defined timelike scalar field ϕ [16, 87],

uµ =
∂µϕ√

−gαβ∂αϕ∂βϕ
, uλu

λ = −1, (3.86)

where the equation of ϕ is given by the action [91],

Su =

∫
dtdxNγ

[κ1

2
FαβFαβ + κ2(Dαu

α)2 + σ(uαuα + 1)
]
, (3.87)

where Fαβ ≡ Dαuβ − Dβuα, σ is a Lagrange multiplier, and κ1,2 are two coupling

constants. It should be noted that the action (3.87) remains unchanged under the

transformations

ϕ = F(ϕ̃), (3.88)

where F(ϕ̃) is a monotonically increasing or decreasing function of ϕ̃ only. In the

following, we shall use this property to choose F(ϕ̃) so that dϕ is along the same

direction as dt in the regions we are interested in.

Under the background (3.78), we find that the equations of motion are given

by

κ1(1− η2x2)u′′0 − σu0 = 0, (3.89)

κ1ηxu
′′
0 + κ2(u1)′′ − σu1 = 0, (3.90)

u2
0 + 2ηxu0u1 − (1− η2x2)u2

1 − 1 = 0. (3.91)
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Generally, these coupled non-linear equations are difficult to solve. One simple solu-

tion can be obtained when κ1 = 0, in which we find σu0 = 0. Since u0 6= 0 we must

have σ = 0, and Eqs. (3.89)-(3.91) have the solution 2,

u0 =
ηxu1 −

√
G(x)

η2x2 − 1
, u1 = cx+ d,

G(x) ≡
(
c2 − η2

)
x2 + 2cdx+

(
d2 + 1

)
, (3.92)

or inversely

u0 = −
√
G(x),

u1 =
−(cx+ d) + ηx

√
G(x)

η2x2 − 1
, (3.93)

where c and d are two integration constants. In asymptotically flat spacetimes, these

two constants can be determined by requiring that [76,87]: (a) the solution be aligned

asymptotically with the time translation Killing vector; and (b) the khronon have a

regular future sound horizon. However, the spacetime we are studying is asymptoti-

cally de Sitter, and these conditions cannot be applied to the present case. Instead,

we shall leave this possibility open, as long as it allows a globally defined khronon

field ϕ since only the latter is essential for the existence of the universal horizon, as

explained previously in the introduction. Then, one may ask what is their physical

meanings. To see these, let us first calculate the quantity [92]

∇αuβ = csαsβ + ĉuαsβ, (3.94)

where

ĉ ≡ xη2 − c(cx+ d)√
1 + (cx+ d)2 − x2η2

. (3.95)

2Eq. (3.91) is a quadratic equation for u0, so in general it has two solutions. In the following
we shall consider only the one with the minus sign, as the one with the plus sign will give the same
results.
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Thus, c is directly related to the expansion of the æther. In fact, we have θ ≡

gαβ∇αuβ = c. On the other hand, assuming that the æther is moving along the

trajectory xµ = xµ(τ), where τ is the proper time measured by æther, from Eq.

(3.92) we find

u1 ≡ dx(τ)

dτ

∣∣∣∣
c=0

= d, (3.96)

that is, the parameter d is directly related to the constant part of the velocity of the

æther.

In order to have the solution (3.92) well-defined for all the values of x ∈

(−∞,∞), we must assume that G(x) ≥ 0, which yields

c2 ≥
(
1 + d2

)
η2. (3.97)

On the other hand, the universal horizon is located at [16], (u · ξ) = −
√
G(x) = 0.

Since G(x) ≥ 0 for x ∈ (−∞,∞), we must have [78]

G (xUH) = 0,
dG(x)

dx

∣∣∣∣
x=xUH

= 0, (3.98)

at the universal horizon x = xUH . Inserting Eq. (3.92) into the above equations, we

find that

c = εcη
√

1 + d2, xUH = −εc
√

1 + d2

ηd
, (3.99)

where εc = Sign(c). It is interesting to note that the above solution for c saturates

the bound of Eq. (3.97). We also note that

x2
UH − x2

KH =
1

(ηd)2
> 0, (3.100)

as expected.

On the other hand, from Eqs. (3.86) and (3.88), we find that the khronon field

takes the form

ϕ = t+ f(x), (3.101)
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Figure 3.1: The curves of ϕ = Constant. In this figure, we choose εc = 1, d = 1, η =
√

2.
The universal horizon (dot dashed vertical line) is located at xUH = −1, and the dashed
line denotes the location of the cosmological Killing horizon located at xKH = − 1√

2
.

where we had chosen F = −ϕ̃, and dropped the tilde from ϕ̃ for the sake of simplicity,

without causing any confusion. The function f satisfies the differential equation

f ′(x) =
u1 − ηx

√
G(x)

(η2x2 − 1)
√
G(x)

. (3.102)

In Fig. 3.1, we show the curves of constant ϕ, from which it can be seen clearly

the peeling behavior of the curves of constant ϕ at the universal horizon, while these

curves are well-behaved across the Killing horizon.

From Eq. (3.92), we can construct a spacelike unit vector sµ = s0δ
t
µ + s1δ

x
µ,

which is orthogonal to uµ. It can be shown that sµ has the non-vanishing components

s0 = −(cx+ d),

s1 =
ηxu1 −

√
G(x)

η2x2 − 1
. (3.103)

Then, we can project kµ onto uα and sα, and obtain

ku ≡ (k · u) = −ωu0 + kxu
1,

ks ≡ (k · s) = −ωu1 − kxu0. (3.104)
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To proceed further, we need to consider the æther four-velocity uµ in the regions

x > xUH and x < xUH , separately. In particular, we have

u0 = −|dηx+
√
d2 + 1|,

u1 = d,

u0 =
√
d2 + 1,

u1 = η
√
d2 + 1x+ d,

f ′ = − d

xηd+
√
d2 + 1

,

f = −1

η
ln
(
ηxd+

√
d2 + 1

)
, (3.105)

for x > xUH . When x < xUH , we find that u0 and u1 remain the same while u0, u1,

f ′ and f are changed to

u0 =
η2x2
√
d2 + 1 + 2dηx+

√
d2 + 1

η2x2 − 1
,

u1 = −2ηx
√
d2 + 1 + dη2x2 + d

η2x2 − 1
,

f ′ =
d

xηd+
√
d2 + 1

+
2ηx

1− x2η2
,

f =
1

η
ln

(
dxη +

√
d2 + 1

1− x2η2

)
, (x < xUH). (3.106)

At the universal horizon, similar to the (3+1)-dimensional case [84], relativistic par-

ticles cannot be emitted in the form of Hawking radiation. Thus, in the following we

consider only the particles with the following non-relativistic dispersion relation [84],

k2
u = k2

s + a2
k4
s

k2
0

, (3.107)
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where a2 is a dimensionless constant of order one, and k0 is the cutoff energy scale.

For k � k0, the particles become relativistic. Then, from Eq. (3.104) we find

ku = − 1

u0

(ksu
1 − ω),

kx = − 1

u0

(ωu1 + ks). (3.108)

Combined with the dispersion relation (3.107), we find that ks has a simple pole at

the universal horizon x = xUH with u0(xUH) = 0. Thus, we assume that near the

universal horizon we have

ks = −b(x)

u0

, (3.109)

where b(x = xUH) 6= 0. To calculate the temperature given by Eq. (3.82) but now at

the universal horizon, in principle we only need the Laurent expansion of kx in the

neighborhood of the universal horizon. Setting ε = x−xUH , for the special case given

by Eq. (3.105), we find

u0 = −dηε,

u1 = −1

d
+ εη
√
d2 + 1,

b(x) = b0 + b1ε+O
(
ε2
)
,

kx =
b0

η2d2ε2
+

1

ε

(
ω

η
+

b1

η2d2

)
+O (1) , (3.110)

for x > xUH , where

b0 = ± k0√
a2d

,

b1 = ηd2ω − ηdb0

√
d2 + 1. (3.111)

When x < xUH , the Taylor expansions of u1 and b(x) remain the same as in Eq.

(3.110) while u0 and kx are changed to

u0 = dηε,

kx =
b0

η2d2ε2
+

1

ε

(
−ω
η

+
b1

η2d2

)
+O (1) , (3.112)
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Correspondingly, with the help of dispersion relation Eq. (3.107), one can show

b0 = ± k0√
a2d

,

b1 = −ηd2ω − ηdb0

√
d2 + 1. (3.113)

In order to figure out the temperature at the universal horizon, one needs to analyti-

cally continue the radial momentum kx to the complex plane, combining Eqs. (3.110)

and (3.112), it’s easy to conclude that, by setting x = xUH + εeiθ, for θ ∈ (0, 2π)

kx =
b0

η2d2ε2e2iθ
+

2ω

ηεeiθ
− b0

√
d2 + 1

ηdε
. (3.114)

Then, using Eq. (3.82),

ω

TKH
= Im

∮
k+

x dx =
4πω

η
, (3.115)

we find that

TUH =
η

4π
. (3.116)

The surface gravity at the universal horizon is given by [16] 3,

κUH =
1

2
Du(u · ζ) =

η

2
, (3.117)

from which we find that the standard relation

TUH =
κUH
2π

, (3.118)

is satisfied at the universal horizon. This is similar to the (3+1)-dimensional case

[81,83,84]. For the more general case with the dispersion relation,

k2
u = k2

s

2z∑
n=0

an

(
ks
k0

)n
(3.119)

it can be shown that the (3+1)-dimensional results [84] can be also obtained

T z≥2
UH =

κz≥2
UH

2π
=

(
2(z − 1)

z

)(κUH
2π

)
. (3.120)

3It should be noted that κUH given by Eq. (3.117) can also be obtained by considering the
peeling behavior of the khronon field ϕ given by Eq. (3.101), as it was done in [81].
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3.5 Summary

In this chapter, we studied the non-projectable Hořava gravity coupled with a

non-relativistic scalar field, in which the coupling is in general non-minimal through

the interaction term f(φ)R. The Hamiltonian structure of this coupled system is very

similar to that of the pure gravity case. There exist two first-class constraints and two

second-class constraints. (The combinations of two second-class constraints will gen-

erate two global first-class constraints which account for global time reparametrization

symmetry of Hořava gravity as first pointed out in [93]). Therefore, the number of

local degree of freedom is one due to the presence of the scalar field.

We also found diagonal static solutions for the couplings f(φ) = ξφ, and

showed that Killing horizons exist in such solutions, but the scalar field turns out to

be singular at these Killing horizons. For the non-diagonal stationary solutions, when

the lapse function and the spatial metric component g11 are set to one, we found that

the solutions represent black holes, in which both Killing and universal horizons exist.

At the Killing horizon, the temperature of Hawking radiation is proportional to its

surface gravity defined as in the relativistic case [cf. Eq.(3.84)] [75].

To study locations of the universal horizons, we first considered a test timelike

scalar field in such a fixed background [87], and found solutions of the test field,

whereby the universal horizons located at χ·u = 0 were found. By using the Hamilton-

Jacobi method [84], we calculated the temperature at the universal horizon, and

found that it is proportional to the modified surface gravity defined by Eq. (3.117).

For z = 2 in the dispersion relation (3.119), the modified surface gravity given by

Eq. (3.117) satisfies the standard relation with its temperature, TUH = κUH/(2π),

similar to the (3+1)-dimensional case [81, 83]. But, in more general cases, both of

them will depend on z, as shown by Eq. (3.120), although the standard relation,

T z≥2
UH = κz≥2

UH /(2π), is still expected to hold [85,86].
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CHAPTER FOUR

Gravitational Plane Wave Solutions in Einstien-Æther Theory

This chapter is based on [18]: Jacob Oost, Madhurima Bhattacharjee, and Anzhong
Wang “Gravitational plane waves in Einstein–æther theory,” General Relativity and

Gravitation (2018) 50:124

4.1 Introduction

The recent observations of gravitational waves (GWs) emitted from distant

binary systems of black holes [94–96] and neutron stars [31] have opened a new era

of gravitational wave astronomy. These observations have once again verified the

general theory of relativity and its predictions, thus making GR to appear to be the

true theory of classical gravity. Hence, any alternative competing theory of gravity

other than GR must now predict gravitational wave solutions, otherwise the theory

must be ruled out.

Therefore it would be interesting to study whether or not spacetimes of grav-

itational plane waves are compatible with the presence of the timelike æther field

in Einstein-æther theory. However, due to the existence of a global timelike æther

field in Einstein-æther theory, this issue is not trivial. Gravitational plane waves, by

definition, propagate along congruences defined by a null vector. Plane gravitational

waves can be defined by analogy with plane electromagnetic waves; the analogy de-

pends on the symmetry properties of such waves. It is not expected to find plane

gravitational waves in nature, but we presume that gravitational waves from a finite

source at very large distance from the observer must appear to be approximately

planar. The plane-wave solutions, nevertheless, provide useful and interesting models

for studying the properties of gravitational waves.
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4.1.1 Polarizations and Interaction of Gravitational Plane Waves

The spacetimes for gravitational plane waves can be cast in various forms,

depending on the choice of the coordinates and gauge-fixing [97–99]. In this chapter,

we shall adopt the form originally due to Baldwin, Jeffery, Rosen (BJR) [100, 101],

which can be cast as [97,102]

ds2 = −2e−Mdudv + e−U
[
eV coshWdy2 − 2 sinhWdydz

+e−V coshWdz2
]
, (4.1)

where M,U, V and W are functions of u only, which in general represents a grav-

itational plane wave propagating along the null hypersurfaces u = constant. The

corresponding spacetimes belong to Petrov Type N [97–99]1. Choosing a null tetrad

defined as

lµ ≡ Bδµv , nµ ≡ Aδµu , mµ = ζ2δµ2 + ζ3δµ3 ,

m̄µ = ζ2δµ2 + ζ3δµ3 , (4.2)

where A and B must be chosen so that M ≡ ln(AB), and

ζ2 ≡ e(U−V )/2

√
2

(
cosh

W

2
+ i sinh

W

2

)
,

ζ3 ≡ e(U+V )/2

√
2

(
sinh

W

2
+ i cosh

W

2

)
, (4.3)

we find that the Weyl tensor has only one independent component, represented by

Ψ4, and is given by [97]

Cµναβ = 4
[
Ψ4l

[µmν]l[αmβ] + Ψ̄4l
[µm̄ν]l[αm̄β]

]
,

1By rescaling the null coordinate u→ u′ =
∫
e−M(u)du, without loss of the generality, one

can always set M = 0.
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Ψ4 = −1

2
A2

{
coshWVuu + coshW

(
Mu − Uu

)
Vu + 2 sinhWVuWu

+i
[
Wuu +

(
Mu − Uu

)
Wu − sinhW coshWV 2

u

]}
, (4.4)

where [A,B] ≡ (AB − BA)/2, and Vu ≡ ∂V/∂u, etc. To see the physical meaning

of Ψ4, following [97, 102], let us first introduce the orthogonal spacelike unit vectors,

Eµ
(a) (a = 2, 3), in the (y, z)-plane via the relations,

Eµ
(2) ≡

mµ + m̄µ

√
2

,

Eµ
(3) ≡

mµ − m̄µ

i
√

2
. (4.5)

We find that the Weyl tensor can be written in the form

Cµναβ =
1

2

[
eµναβ+

(
Ψ4 + Ψ̄4

)
+ ieµναβ×

(
Ψ4 − Ψ̄4

) ]
,

where

eµναβ+ ≡ 4
(
l[µE

ν]
(2)l

[αE
β]
(2) − l

[µE
ν]
(3)l

[αE
β]
(3)

)
,

eµναβ× ≡ 4
(
l[µE

ν]
(2)l

[αE
β]
(3) + l[µE

ν]
(3)l

[αE
β]
(2)

)
. (4.6)

Making a rotation in the
(
E(2), E(3)

)
-plane,

E2 = E ′(2) cosϕ+ E ′(3) sinϕ,

E3 = −E ′(2) sinϕ+ E ′(3) cosϕ, (4.7)

we find that

e+ = e′+ cos 2ϕ+ e′× sin 2ϕ,

e× = −e′+ sin 2ϕ+ e′× cos 2ϕ. (4.8)
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In particular, if we choose ϕ such that

ϕ =
1

2
tan−1

(
Im (Ψ4)

Re (Ψ4)

)
, (4.9)

we obtain

Cµναβ =
1

2
|Ψ4| e′+

µναβ
. (4.10)

Thus, the amplitude of the Weyl tensor is proportional to the absolute value of Ψ4,

and the angle defined by Eq.(4.9) is the polarization angle of the gravitational plane

wave in the plane spanned by
(
E(2), E(3)

)
, which is orthogonal to the propagation

direction lµ of the gravitational plane wave. It is interesting to note that the unit

vectors Eµ
(2) and Eµ

(3) are parallelly transported along lν ,

lνDνE
µ
(2) = 0 = lνDνE

µ
(3). (4.11)

Therefore, the angle defined by Eq. (4.9) is invariant with respect to the parallelly

transported basis
(
E(2), E(3)

)
along the propagation direction lµ of the gravitational

plane wave2. This is an important property belonging only to single gravitational

plane waves.

When W = 0, from Eq. (4.5) we find that

Im (Ψ4) = 0, (W = 0), (4.12)

and ϕ = 0. Then, the polarization is along the Eµ
(2)-direction, which is usually

referred to as the “+” polarization, characterized by the non-vanishing of the function

V . The other polarization of the gravitational plane wave, often referred to as the

“×” polarization, is represented by the non-vanishing of the function W , for which

generically we have Im (Ψ4) 6= 0 (W 6= 0) (cf. Fig. 1 given in [102]).

2Polarizations of GWs in weak-field approximations were also studied in [103] in the frame-
work of Einstein-æther theory.
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When M,U, V and W are functions of v only, the gravitational plane wave is

now propagating along the null hypersurfaces v = constant. In this case, by rescaling

the null coordinate v → v′ =
∫
e−M(v)dv, one can always set M(v) = 0.

When gravitational plane waves moving in both of the two null directions are

present, the metric coefficients M,U, V and W are in general functions of u and v.

An interesting case is the collision of two gravitational plane waves moving along

opposite directions, which generically produces spacetime singularities due to their

mutual foci [104]. Another remarkable feature is that one of the gravitational plane

waves can serve as a medium for the other, due to their non-linear interaction, so

the polarizations of the gravitational plane wave can be changed. The change of

polarizations due to the nonlinear interaction is exactly a gravitational analogue of

the Faraday rotation, but with the other gravitational plane wave as the magnetic

field and medium [97,102].

4.2 Linearly Polarized Gravitational Plane Waves

In this section, we shall consider gravitational plane waves moving along the

hypersurfaces u =constant only with one direction of polarization, which are usually

called linearly polarized gravitational plane waves. Without loss of the generality, we

shall consider only gravitational plane waves with the “+” polarization. Then, by

rescaling the u coordinate, without loss of the generality, we can always set M = 0,

so the metric takes the form,

ds2 = −2dudv + e−U(u)
(
eV (u)dy2 + e−V (u)dz2

)
. (4.13)

We also assume that the æther moves only in the (u, v)-plane, so its four-velocity uµ

takes the general form

uµ =
1√
2

(e−h, eh, 0, 0). (4.14)
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Since the spacetime is only of u dependence, it is easy to see that h = h(u). Then,

the non-vanishing components of the Einstein and æther tensors Gµν and Tæ
µν and

the æther vector Æµ are given, respectively, by Eqs. (A.1) and (A.2). In the vacuum

case, we have Tmµν = 0, Tµ = 0, and the Einstein-æther equations (2.29) reduce to

Gµν = Tæ
µν , (4.15)

which yield five equations3, given by Eqs. (A.4)-(A.8). The æther equations Æµ = 0

yield the same equation as given by Eq. (A.6).

It is remarkable to note that there are five independent field equations for

the three unknowns, U, V , and h. Therefore, in contrast to the situation of GR,

in which there is only one independent field equation, given by Eq. (4.16), for two

unknown functions U and V , here in the framework of the Einstein-æther theory, we

are facing an over-determined problem, instead of under-determined, and clearly only

for particular cases the above equations allow solutions for U, V and h.

From the constraint Eqs. (2.40) we can see that the current observations of

GW170817 and GRB170817A practically requires c13 ' 0. In addition, for the spin-

2 gravitons to move precisely with the speed of light, we also need to set c13 = 0.

However, in order for our results to be as generally applicable as possible, in the

rest of this section we shall not impose this condition, and consider all the possible

solutions with both c13 = 0 and c13 6= 0, separately.

4.2.1 Solutions with c13 = 0

When c13 = 0, Eqs. (A.4)-(A.8) reduce to

2Uuu −
(
U2
u + V 2

u

)
+ 2c14

(
huu − huUu − h2

u

)
= 0, (4.17)

3It is interesting to note that in Einstein’s theory the field equations Gµν = 0 yields only
a single equation [97,102],

2Uuu − U2
u = V 2

u , (4.16)

for the two unknown functions U(u) and V (u). In this sense, the problem is underdetermined in
Einstein’s theory. Thus, for any given gravitational wave V (u), we can always integrate the above
equation to find U(u).
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c2

(
Uuu − 2huUu − U2

u

)
+
(
c2 − c14

)(
huu − huUu − 2h2

u

)
= 0, (4.18)

c2Uuu +
(
c2 − c14

)(
huu − huUu − h2

u

)
= 0, (4.19)

c2

(
2Uuu − U2

u − 4huUu

)
+ 2c2huu −

(
3c2 + c14

)
h2
u = 0. (4.20)

Then, from Eqs. (4.18) and (4.19) we find

c2

(
U2
u + 2Uuhu

)
+
(
c2 − c14

)
h2
u = 0, (4.21)

c2

(
Uuu + U2

u

)
+
(
c2 + c14

)
Uuhu +

(
c2 − c14

)
huu = 0. (4.22)

To study the above equations further, we need to distinguish the cases c2 6= c14 and

c2 = c14 separately.

4.2.1.1 c2 6= c14. In this case, from Eqs. (4.21) and (4.22) we find that

h2
u =

c2

c14 − c2

(
U2
u + 2Uuhu

)
, (4.23)

huu =
1

c14 − c2

{
c2

(
Uuu + U2

u

)
+
(
c2 + c14

)
Uuhu

}
. (4.24)

Inserting the above expressions into Eq. (4.20), we find

c2c14

(
Uuu − U2

u − 2Uuhu

)
= 0, (4.25)

from which we can see that there are three different cases that need to be considered

separately

i) c2c14 6= 0, ii) c2 = 0, c14 6= 0, iii) c2 6= 0, c14 = 0. (4.26)

Case i) c2c14 6= 0: In this case we have

Uuu = U2
u + 2Uuhu, (4.27)
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which has the solution

Uu = α0e
U+2h, (4.28)

where α0 is an integration constant. Then Eq. (4.18) reduces to

huu − 2h2
u − huUu = 0, (4.29)

which has the solution

hu = α1e
2h+U , (4.30)

where α1 is an integration constant. Notice that hu ∝ Uu. In fact we may write

h = αU + h0, (4.31)

where α and h0 are constants. By substituting Eqs. (4.27) and (4.31) into Eq. (4.19)

or (4.20) we find that

α = −
√
c2√

c2 ±
√
c14

. (4.32)

By substituting Eqs. (4.27) and (4.31) into Eq. (4.17) we find

V = βU + V0, (4.33)

where V0 is another integration constant, and

β ≡ ±
√

1 + 4α + 2c14α2. (4.34)

Now combining Eqs. (4.31) and (4.28) we find

Uu = α̂0e
(2α+1)U , (4.35)

where α̂0 ≡ α0e
2h0 . Thus, we obtain

U(u) = − 1

2α + 1
ln [−α0(2α + 1)(u− u0)] , (4.36)
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where u0 is a constant of integration. Once U(u) is given the functions h(u) and V (u)

can be read off from Eqs. (4.31) and (4.33), respectively, i.e.,

V (u) =
β

2α + 1
ln [−α0(2α + 1)(u− u0)] + V0,

h(u) = − α

2α + 1
ln [−α0(2α + 1)(u− u0)] + h0, (4.37)

where β is given by Eq.(4.34) in terms of α and c14.

Case ii) c2 = 0, c14 6= 0: In this case from Eqs. (4.18) and (4.19) we find

that hu = 0, that is

h(u) = h0, (4.38)

where h0 is a constant. Then, Eqs. (4.18)-(4.19) are satisfied identically, while Eq.

(4.17) reduces to

2Uuu − U2
u = V 2

u , (4.39)

which is the same as in GR, that is, in the present case the functions U and V are

not uniquely determined. For any given U(u), one can integrate the above equation

to obtain V (u).

Case iii) c2 6= 0, c14 = 0: In this case from Eqs. (4.18) and (4.19) we find

that Uu + hu = 0, which has the solution

U = −h+ U0, (4.40)

where U0 is a constant. Inserting the above expression into Eq. (4.18) we find that

hu = 0, that is,

h = h0. (4.41)

Then, from Eq. (4.17) we obtain

V = V0, (4.42)
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where V0 is a constant. By rescaling the y and z coordinates, without loss of the

generality, we can always set V0 = U0 = 0, so the solution represents the Minkowski

spacetime. That is, in the current case only the trivial Minkowski solution is allowed.

4.2.1.2 c2 = c14. In this case, from Eq.(4.19) we find that

c2Uuu = 0. (4.43)

Therefore, depending on the values of c2, we have two different cases.

Case i) c2 = c14 6= 0: In this case, we must have Uuu = 0, which has the

general solution

U(u) = α0u+ U0, (4.44)

where α0 and U0 are two integration constants. On the other hand, from Eq. (4.18)

we find that

h(u) = −α0

2
u+ h0, (4.45)

while Eq. (4.20) is satisfied identically. Then, from Eq.(4.17) we find that

V (u) = ±
√

(c2 − 2)α2
0

2
u+ V0, (4.46)

where V0 is another integration constant.

Case ii) c2 = c14 = 0: In this case, Eqs. (4.18)-(4.20) are satisfied identically

for any given h(u), while Eq. (4.17) reduces to

2Uuu − U2
u = V 2

u , (4.47)

which is the same as in GR, that is, in the present case the functions U , V and h(u)

are not uniquely determined. For any given U(u) and h(u), one can integrate Eq.

(4.47) to obtain V (u).
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4.2.2 Solutions with c13 6= 0

When c13 6= 0, from Eqs. (A.7) and (A.8) we find that

Vuu − UuVu − 2huVu = 0, (4.48)

which has the solution

Vu = α0e
U+2h, (4.49)

where α0 is an integration constant. Inserting the above expression into Eqs. (A.4)-

(A.8), we obtain the following four independent equations for U and h:

2Uuu − U2
u + 2c14

(
huu − huUu − h2

u

)
= V 2

u , (4.50)

c2

(
Uuu − 2huUu − U2

u

)
+
(
c2 + c13 − c14

)(
huu − huUu − 2h2

u

)
= 0, (4.51)

2
(
c2 + c13 − c14

)(
huu − huUu − h2

u

)
+ 2c2Uuu + c13U

2
u+ = −c13V

2
u , (4.52)

(
c13 + 2c2

)(
2Uuu − U2

u − 4huUu

)
+ 4c2huu − 2

(
3c2 − c13 + c14

)
h2
u = −c13V

2
u . (4.53)

Combining Eqs. (4.50) and (4.52) we find

c123Uuu = (c13c14 + c2 + c13 − c14)(h2
u + huUu − huu), (4.54)

and by using Eqs. (4.50) and (4.53) we obtain

c123U
2
u = (c13c14 +2c13−2c14)(h2

u+huUu−huu)+(c13−c14−c2)h2
u−2c123huUu. (4.55)

To study the above equations further, we need to consider separately the cases c123 = 0

and c123 6= 0.

4.2.2.1 c123 = 0. In this case, from Eqs.(4.50) and (4.52) we find

c14(c13 − 1)(huu − h2
u − huUu) = 0. (4.56)
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The possibility of c13 = 1 is ruled out by observation [28], as mentioned above, leaving

the possibilities

c14 = 0, (4.57)

or

huu − huUu − h2
u = 0. (4.58)

Case A.1 c14 = 0: In the case of Eq. (4.57) we find that Eqs. (4.51) and

(4.53) reduce to

Uuu = 2huUu + U2
u , (4.59)

and

huu = 2h2
u + huUu, (4.60)

respectively, where we have used the fact that Eq. (4.50) reduces to 2Uuu = U2
u +V 2

u .

Then, both hu and Uu are proportional to e2h+U , and hence by Eq. (4.49) we find

h = αV + h0 U = βV + U0, (4.61)

where h0 and U0 are two integration constants, and the constants α and β can be

determined by substituting Eq. (4.61) and Eq. (4.59) into Eq. (4.50) or Eq. (4.52),

which yields

α =
1− β2

4β
. (4.62)

Inserting the above expressions into Eq. (4.49), we find that

V = − 2β

1 + β2
ln [α̂0 (u0 − u)] , (4.63)

where α̂0 ≡ α0 (2α + β) eU0+2h0 and u0 is an integration constant. Therefore, in this

case the solutions are given by Eqs. (4.61)-(4.63).
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Case A. 2 c14 6= 0: In this case we find that

hu = α1e
h+U , (4.64)

and by Eq. (4.53) that

h2
u

(
c14

c13

− 2

)
= 0. (4.65)

If hu = 0 (α1 = 0) then by Eq. (4.51) we have

Uu = α2e
U , (4.66)

and using this result with Eq. (4.50) we have

U = ±V + U0. (4.67)

Inserting the above expressions into Eq. (4.49), we find that

V = ∓ ln [∓α̂0(u− u0)] , (4.68)

where α̂0 ≡ α0e
2h0+U0 and where the choice of upper or lower sign must hold for both

Eqs. (4.67) and Eq. (4.68). Thus, in this case, the general solutions are given by

(U, V, h) = (±V + U0, V, h0) , (4.69)

where V is given by Eq. (4.68), and U0 and h0 are two integration constants. However,

if hu 6= 0 then Eq. (4.51) reduces to

Uuu − 2h2
u − U2

u − 2huUu = 0, (4.70)

and we add the LHS of Eq. (4.58) (which is zero) twice to the LHS of Eq. (4.70) to

get

Uuu + 2huu − 4h2
u − 4huUu − U2

u = 0, (4.71)

which simplifies to

2huu + Uuu = (2hu + Uu)
2. (4.72)
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If we define a function f(u) such that f(u) = 2h(u) + U(u), then Eq. (4.72) can be

written as

fuu = f 2
u , (4.73)

which has the solution

f = − ln (−α3(u− u0)) , (4.74)

where α3 and u0 are integration constants. If we multiply both sides of Eq. (4.64) by

eh we have

hue
h = α1e

2h+U , (4.75)

and making use of Eq. (4.74) we find

hue
h = −α1

α3

1

u− u0

, (4.76)

whereupon we find by integration

h = ln

(
−α1

α3

ln (u− u0) + h0

)
. (4.77)

So, for the functions U and V we have

U = − ln(−α3(u− u0))− 2h, (4.78)

V = −α0

α3

ln(u− u0) + V0. (4.79)

By substituting these results into Eq. (4.50) we find that α3 = ±α0.

4.2.2.2 c123 6= 0. In this case we can substitute Eqs. (4.54) and (4.55) into

Eq. (4.51), and by defining

Q ≡ c123 − c14 +
c2

c123

(c13 − c14 − c2), (4.80)

we have

Q(huu − 2h2
u − huUu) = 0. (4.81)
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Therefore we must consider the cases where Q 6= 0 and Q = 0.

Case B.1 Q 6= 0: In this case, we have

hu = α1e
2h+U ∝ Vu. (4.82)

Using this result with Eqs. (4.54) and (4.55) we find also that

Uu = α2e
2h+U ∝ Vu, (4.83)

and thus we can set

h = αV + h0, U = βV + U0, (4.84)

for some constants α, β, h0 and U0. Substituting Eqs. (4.84) and (4.74) into Eqs.

(4.50) and (4.52), we find that α and β must satisfy the relations,

β2 + 4αβ + 2c14α
2 − 1 = 0, (4.85)

2(c14 − c13 − c2)α2 − 4c2αβ − (c13 + 2c2)β2 − c13 = 0, (4.86)

which uniquely determine α and β, but the expressions for them are too long to be

presented here. Inserting the above expressions into Eq. (4.49), we find that

V = − 1

2α + β
ln
[
β̂0(u0 − u)

]
, (4.87)

where β̂0 ≡ α0(2α + β)eU0+2h0 . Therefore, in the present case, once α and β are

determined by Eqs. (4.85) and (4.86), the functions V (u), U(u) and the aether field

h(u) are given, respectively, by Eqs. (4.84) and (4.87).

Case B.2 Q = 0: We introduce a new parameter δ such that δ = 2c2 + c13

and solve for c14 in terms of other cis. From Eq. (4.80) we find that

c14δ = c13(c2 + δ). (4.88)
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If we consider δ = 0, then we have c2 = 0 since c13 6= 0. But by δ = 2c2 + c13, we

must have c13 = 0, which violates our assumption, and so we must have

δ 6= 0, (4.89)

and thus

c14 = c13

(
1 +

c2

δ

)
, (4.90)

is a general solution for the Q = 0 case. However, we can still have c2 = 0 in general.

If that is the case then we have c13 = c14 and from Eq. (4.52) we find that

V 2
u = −U2

u . (4.91)

So to have real functions we must have U and V constant in u. Then by considering

Eqs. (4.54) and (4.55) with a vanishing Uu we have

huu − h2
u = 0, (4.92)

which has the solution

h = − ln(α(u− u0)) + h0, (c2 = 0), (4.93)

where α and h0 are the integration constants. So, in the case of c2 = 0 we have a

static Minkowskian spacetime with a dynamical æther.

If c2 6= 0, then we find from Eqs. (4.54) and (4.55) that

Uuu − U2
u =

2c2

δ
(h2

u + huUu − huu) +
2c2

δ
h2
u + 2huUu, (4.94)

and

2Uuu − U2
u = +

2c2

δ
h2
u + 2huUu +D(h2

u + huUu − huu), (4.95)

where

D ≡ 2c2c
2
13

c123δ
+

1

δ
(c2

13 + 2c2). (4.96)
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These expressions can be substituted into Eqs. (4.50) and (4.53) to find

V 2
u =

(
c13

(c2 + δ)

c123

− 2c2

δ

)
+

2c2

δ
h2
u + 2huUu, (4.97)

and

V 2
u =

(
c13

(c2 + δ)

c123

− 2c2

c13

)
+

2c2

δ
h2
u + 2huUu. (4.98)

Equating these two gives us

c2(huu − h2
u − huUu) = 0. (4.99)

Since now we have c2 6= 0, then we must have

hu = αeh+U . (4.100)

In this case, Eq. (4.52) reduces to V 2
u = −2c2

c13
Uuu − U2

u , and by Eq. (4.50) we also

have

V 2
u = 2Uuu − U2

u , (4.101)

Therefore we we must have

Uuu = 0, (4.102)

since c123 6= 0 in this case. As Uu must be a constant, then by Eq. (4.101) we find

that Vu must be also a constant, and to keep the constants real we must have Uu and

Vu vanish, as before. Considering this result, Eq. (4.51) reduces to

h2
u = 0. (4.103)

Therefore, when c2 6= 0, the spacetime must be Minkowski and the aether field is

simply given by h(u) = h0, this is, the solution in the present case is

(U, V, h) = (U0, V0, h0) , (c2 6= 0), (4.104)

where U0, V0 and h0 are all constants.
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4.3 Summary

In this chapter, we have found all vacuum solutions of the linearly polarized

gravitational plane waves in Einstein-æther theory. In general, such waves need to

satisfy five independent Einstein-æther field equations, given by Eqs. (A.4)-(A.8),

for three unknown functions U(u), V (u), and h(u). Therefore, the problem in the

Einstein-æther theory is over-determined, and it is expected that gravitational plane

waves exist only for some particular choices of the coupling constants ci. This is in

sharp contrast to Einstein’s general relativity, in which the problem is actually under-

determined, i.e. the vacuum Einstein field equations Gµν only yield one independent

equation,

2Uuu − U2
u = V 2

u , (4.105)

for the two unknown functions U and V . Thus, for any given V (u), one can integrate

Eq. (4.105) to find the metric coefficient U(u). This implies that Einstein’s theory

allows the existence of any form of gravitational plane waves. This is no longer true

in Einstein-æther theory, due to the presence of the time-like æther field.

In particular, in order to have arbitrary forms of gravitational plane waves

exist in Einstein-æther theory, the coupling constants ci must be chosen so that one

of the following two conditions must be satisfied

(i) c13 = c2 = 0, c14 6= 0, h(u) = h0, or

(ii) c13 = c2 = c14 = 0, ∀ h(u). (4.106)

In the former case it can be seen that the æther must be a constant, while in the

latter the æther has no contributions to the spacetime, and Tæ
µν = 0 identically, as

can be seen from Eq. (A.1). In addition to the above two cases, in which any form

of gravitational plane waves are allowed to exist in Einstein-æther theory, there exist

also several particular cases in which the spacetime and the æther field take particular

forms. Non-trivial solutions exist in the other six particular cases,
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(iii) c13 = 0, c2 6= c14, c2c14 6= 0,

(iv) c13 = 0, c2 = c14 6= 0,

(v) c13 6= 0, c123 = c14 = 0,

(vi) c13 6= 0, c123 = 0, c14 6= 0, hu = 0,

(vii) c13 6= 0, c123 = 0, c14 6= 0, hu 6= 0,

(viii) c13 6= 0, c123 6= 0, Q 6= 0, (4.107)

in which the particular solutions of the vacuum Einstein-æther field equations are

given, respectively, by Eqs. (4.36)-(4.37); Eqs. (4.44)-(4.46); Eqs. (4.61)-(4.63); Eqs.

(4.68)-(4.69); Eqs. (4.77)-(4.79), and Eqs. (4.84)-(4.87), where Q is defined by Eq.

(4.80).

In the rest of the cases, the solutions are either not allowed or simply represent

the Minkowski spacetime with either a constant or dynamical æther field. Some of

these cases are problematic, as outlined in Jacobson’s review article [13,14]. Any case

in which c123 = 0 results in α2 diverging (suggesting that the current PPN analysis

is not valid here).4 In terms of the coupling constants of the Einstein-æther theory,

α2 is given by [105]

α2 =
α1

2
− (c1 + 2c3 − c4)(2c1 + 3c2 + c3 + c4)

c123(2− c14)
, (4.108)

where α1 =
−8(c33+c1c4)

2c1−c21+c23
. While any case in which c14 = 0 results in the speeds of the

scalar and vector modes (Eqs. (2.39)) diverging (suggesting that wave equations for

these modes do not exist).

In Case (iv), the squared speed of the spin-0 mode is given by c2
S = (2 −

c2)/(2 + 3c2). Thus, to have cS ≥ 1, we must require c2 = c14 < 0, which is in conflict

4Einstein-æther theory has only two post-Newtonian (PPN) parameters that deviate from
GR. They are α1 and α2, which measure the preferred frame effects.
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with the observational constraints of Eq. (2.41). Therefore, this case is ruled out by

observations.

If we require that the speeds of the scalar, vector and tensor modes are all

precisely equal to one, then we find that

c13 = c4 = 0, c2 =
c1

1− 2c1

, (cT = cV = cS = 1), (4.109)

which is satisfied only by Case (iii), and the corresponding solutions are still quite

different from those of GR, even if all of these gravitational modes now move at the

same speed as the spin-2 graviton in GR.
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CHAPTER FIVE

Dynamical Universal Horizons in Einstein-Æther Theory

This chapter is based on [19]: Madhurima Bhattacharjee, Shinji Mukohyama,
Mew-Bing Wan, and Anzhong Wang “Gravitational collapse and formation of
universal horizons in Einstein–æther theory,” Phys. Rev. D 98, 064010(2018)

5.1 Introduction

Faster-than-light propagation does not violate causality [16]. In particular,

gravitational theories with broken LI still allow the existence of black holes [76–78,

80,82,84,85,87,106–126]. However, instead of Killing horizons, now the boundaries of

black holes are hypersurfaces termed universal horizons, which can trap excitations

traveling at arbitrarily high velocities. (For more details, see, for example, [16] for a

recent review.) This universal horizon may radiate thermally at a fixed temperature

and strengthen a possible thermodynamic interpretation though there is no universal

light cone [83].

Once Lorentz Invariance is broken, different species of particles can travel with

different (sometimes arbitrarily large) speeds. This suggests that black holes may exist

only at low energies. At high energies, signals with sufficiently large speed emanated

from inside an event horizon (EH) can escape to infinity. However, in contrast to this

physical intuition, it was found that there still exist absolute causal boundaries, the

so-called universal horizons (UHs), and even particles with infinitely large velocities

would propagate along these boundaries and not escape to infinity [76, 77, 80]. This

is closely related to the causality in LV theories of gravity. Since the speeds of

particles can be arbitrarily large, similar to Newton’s theory, to preserve causality, it

is necessary to introduce a scalar field with a globally timelike gradient, the so-called

khronon, which defines an absolute time, and all particles are assumed to move along

its direction of increase, such that the causality in the sense of the past and the future
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Figure 5.1: (a) The light cone of the event p in special relativity. (b) The causal structure
of the point p in Newtonian theory.

is assured (Fig. 5.1). Then, in asymptotically flat stationary spacetimes, there might

exist a surface on which the timelike translation Killing vector becomes orthogonal

to the gradient of the khronon (Fig. 5.2).

Hence, a particle must cross this surface and move inevitably inward (towards

the increasing direction of the khronon), no matter how large its speed. This is a

one-way membrane, and particles even with infinitely large speed cannot escape from

it once they are trapped inside. The membrane acts as an absolute horizon to all

particles. UHs have been extensively studied (see e.g. [16] and references therein),

including their thermodynamics [81,83,84].

In GR, it is well known that EHs can be formed from gravitational collapse of

realistic matter, which implies that black holes with EHs as their boundaries exist in

our universe. However, since particles with speeds larger than that of light exist in LV

theories, such particles can cross the EHs and escape to infinity, even though initially

located inside EHs. So, EHs in such theories are no longer one-way membranes.

Instead, black hole boundaries are replaced by UHs, as argued above. Therefore, from

the same astrophysical considerations as in GR, a key issue is whether UHs can also

form from gravitational collapse in our universe [108,116,127]. In this chapter, we shall

address this important issue in the framework of æther theory, which propagates three
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Figure 5.2: φ denotes the khronon field, and t and r are the Painlev-Gullstrand coordinates.
The location of the Killing horizon, r = rKH is denoted by the vertical dashed line and
the location of the universal horizon, r = rUH is denoted by the vertical solid line. rUH is
always less than r = rKH . The Killing vector ζ = δµt always points upward at each point
of the plane.

kinds of modes: the usual spin-2 graviton, the spin-1 and the spin-0 gravitons [13].

We numerically show the formation of dynamical UHs (dUHs), the generalization

of UHs to dynamical spacetimes with spherical symmetry. We also find that the

proper distance of the outermost dUH from the apparent (or spin-0) horizon keeps

increasing on æther-orthogonal time slices. To our knowledge, this is the first time

to show explicitly that dUHs can be formed from gravitational collapse.

5.2 Æther Theory and Spherical Collapse

Gravitational collapse of a spherical massless scalar field in æther theory has

already been studied in some detail [27,128]. In particular, it was shown that for two

different sets of cis given by Eqs. (16) in [27], the first of which we will call GEJ1

c1 =
1

3
, c2 = −1

4
, c3 =

1

6
, c4 = − 1

12
, (6.1)
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and Eqs. (34) in [27] which we will call GEJ2, with c1 = 0.7, c3 = c4 = 0, and

c2 =
−c1

3

2− 4c1 + 3c1
2
. (6.2)

Such that for GEJ2, the spin-0 horizon coincides with the usual metric horizon. i.e.

cs = 1 = cT .

Both apparent horizons (AHs) and spin-0 horizons (S0Hs) are formed during

the collapse [27], and the configurations finally settle down to the regular static black

holes found numerically in [129]. For another set of ci’s, the collapse instead results

in the temporary formation of a white hole horizon [128], although the corresponding

static black hole exists [77]. It should be noted that neither GEJ1 nor GEJ2 satisfies

the constraints defined by Eq. 2.41.

Therefore, in this chapter our goals are two-fold: First, we show that even

within the range of the new constraints, AHs and S0Hs can be still formed from

gravitational collapse. Second, dynamical UHs can be also formed. To achieve these

goals, we choose to study the same setup as that studied in [27,128], closely following

their notation and conventions. This will in particular allow us to check our numerical

codes.

We choose the surfaces of constant time orthogonal to uµ and the gauge that

leads to the form of metric

ds2 = γabdx
adxb + Φ2

(
dθ2 + sin θ2dϕ2

)
, (6.3)

where,

γab dx
adxb = −α2dt2 + (dr + βrdt)2 , a, b = 0, 1; (6.4)

where α (lapse function), βr (shift vector) and Φ (area radius) are functions of

xa = (t, r) only; and uµdx
µ = uadx

a = −αdt, for which the time evolution vector is

given by tµ = αuµ + βµ with βµ∂µ = βr∂r.
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For the massless scalar field χ we have the matter Lagrangian

Lm = −DνψD
νψ/(16πGæ), (6.5)

where ψ ≡
√

8πGæ χ. The evolved quantities are then (ψ, P,K, ar,Φ), where P ≡

Luψ, K is the trace of the extrinsic curvature of constant-t surfaces, and ar is the

acceleration of the æther field. The dynamical equations and constraints are given,

respectively, by [27]

ψ̇ = αP + βrψ′, (6.6)

Ṗ = βrP ′ + α

(
PK + arψ′ + ψ′′ +

2Φ′

Φ
ψ′
)
, (6.7)

K̇ = βrK ′ +
α

3
K2 +

α

∆

[
2P 2 + 3 (1− c13)Q2

+ (c14 − 2)

(
a′r + 2ar

Φ′

Φ
+ a2

r

)]
, (6.8)

ȧr = βra′r + α

[(
2K

3
−Q

)
ar +

c13

c14 (1− c13)
Pψ′

− c123

c14 (1− c13)
K ′

]
, (6.9)

Φ̇ = βrΦ′ + αΦ

(
Q

2
− K

3

)
, (6.10)

and

Q′ = −3Q
Φ′

Φ
+

1

1− c13

(
∆

3
K ′ − Pψ′

)
, (6.11)

α′

α
= ar, (6.12)

βr ′ = α

(
Q+

K

3

)
, (6.13)

C = Φ′′ +
Φ′2 − 1

2Φ
+ c14arΦ

′ +
Φ

4

[
c14

(
2a′r + a2

r

)
+P 2 + ψ′

2
+

3

2
(1− c13)Q2 − ∆

3
K2

]
= 0, (6.14)
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with Q ≡ Kr
r −K/3, ∆ ≡ 2 + c13 + 3c2, ψ̇ ≡ ∂tψ, ψ′ ≡ ∂rψ, and so on. We consider

the collapse of a massless scalar field of the form [27]

ψ = a0 exp

[
−(r2 − r2

0)

s4

]
. (6.15)

It is initially at rest and it is a spherical shell of radius r0 = 10, thickness s = 4

and amplitude a0 = 0.15. P , Q, and K are chosen to be zero at a moment of time

symmetry. ar and ψ can be freely specified, so ar is chosen to vanish and ψ is specified

by Eq. (6.15).

The locations of the S0Hs is defined by

γ̃abnanb = 0, (6.16)

and AHs is defined by

γabnanb = 0 (6.17)

where na ≡ ∂aΦ, γ̃ab = (γ̃−1)ab and γ̃ab ≡ γab+(1−c2
S)uaub. Hereafter, by a S0H/AH

we shall denote an outer S0H/AH.

In stationary spacetimes, UHs are defined by

uaζ
a = 0, (6.18)

where ζa∂a is the time translation Killing vector [16, 76]. However, when spacetimes

are dynamical, such a vector does not exist any longer. Following [16,116] in defining

a dUH, we first introduce the Kodama vector [130] (See also Refs. [131,132]),

ka ≡ εab⊥nb =
(−Φ,r,Φ,t)

α
(6.19)

where εab⊥ is the Levi-Civita tensor with ε01
⊥ = −1/

√
−γ. It is clear that kana = 0.

For asymptotically flat spacetimes there always exists a region with sufficiently large

Φ in which na (ka) is spacelike (time-like). An AH may form, say, at r = rAH, where

na becomes null. Then, in the trapped region with γabnanb < 0, na (ka) becomes
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timelike (spacelike). Hence, we define the location of a dUH as the surface at which

uak
a = 0, (6.20)

where in the current case

uak
a = Φ,r. (6.21)

Since ua is globally timelike, Eq. (6.20) is possible only when ka is spacelike. Clearly,

this can be true only inside AH, that is, we must have rdUH < rAH. Eq. (6.20) may

have multiple roots, and what is relevant is the outermost dUH, i.e. the one with the

largest r (but not necessarily with the largest Φ). For the outermost dUH, we have

ΦdUH < ΦAH since Φ,r > 0 for r > rdUH. In the stationary spacetimes, the Kodama

vector coincides with the time translation vector, and the above definition reduces to

static spacetimes, and later generalized to various stationary spacetimes (see [16] and

references therein).

5.3 Numerical Setup and Results

Our simulations are performed with a finite-differencing code. The initial

data, numerical schemes and boundary conditions used in our code also closely follow

[27]. The set of PDEs are solved on a uniformly spaced r-domain, where r is the

proper radial coordinate spanning [0, rmax], rmax = 80 (or = 320) with a spacing of

∆r = 0.003125, 0.00625, 0.0125, the high, medium and low resolutions, respectively.

The timestep size is set to 0.2×∆r. In our code, the dynamical variables are integrated

in time using an iterated Crank-Nicholson scheme with two iterations. We apply the

4th-order Kreiss-Oliger dissipation with an amplitude of 0.9 to the time-integration

equations so as to damp out spurious high-frequency unstable modes of the solution.

The non-dynamical variables Q, α and βr are integrated through the r-domain at

every time step using the trapezoidal method. The integration for α is done from

r = rmax, whereas that for Q and βr are done from r = 0. Specifically, for smoothness
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Figure 5.3: Evolution of the scalar field profile, Ψ for the case GEJ1, using a medium-
resolution simulation.

we assume Q to be an even function of r and vanish at r = 0, and βr an odd function

of r. The boundary conditions for both dynamical and non-dynamical variables are

imposed at every time step. We shall choose three sets of ci’s, GEJ1, GEJ2, and NC,

where NC denotes the choice, c13 = 0, c2 = 2c14 = 2.0 × 10−7, which satisfies the

constraints of Eq. (2.41). For all three sets, the æther field is stable throughout and

beyond the collapse of the scalar field to the central region. During the collapsing

process, our code converges in a 2nd-order manner in line with the designed order of

convergence of the numerical schemes. We further validate our code by reproducing

the results of [27] for the parameter sets of GEJ1 and GEJ2. Different boundary

conditions for Q and βr at r = 0 or r = ∆r are tested, and we find that different

boundary treatments do not affect the behavior of the PDE system in the bulk of the

r-domain.

In our simulations for all the cases, the scalar field splits into two pieces, with

one collapsing under its self-gravity toward r = 0 and the other traveling to r → ∞
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(Fig. 5.3). As the collapsing piece reaches the central region, we see the formations

of the apparent, spin-0, and dynamical universal horizons at finite areal radii.

Fig. 5.4 shows the profiles of γabnanb, γ̃
abnanb, and uak

a(= ∂rΦ) of GEJ1

shortly after the respective horizons are formed. The finite areal radii of these horizons

are robust with respect to the resolutions used in this study, indicating that the system

has almost completely converged at ∆r = 0.0125, i.e., the low resolution (Fig. 5.4).

From tests carried out using rmax = 80, 320 at the medium resolution, we also see

that the results are robust with respect to the size of the r-domain. At t = 16.25, a

dUH forms at r ≈ 1.40 (Φ ≈ 0.95).

For GEJ2, we track the collapsing process using our high-resolution simulation

and similarly find the formation of all three horizons (Fig. 5.5). As noted in [27], the

AH and S0H in this case coincide since c2
S = 1 and thus γ̃ab = γab. Hereafter, all results

are obtained using high-resolution simulations, except for those with rmax = 320.

For NC, the AH forms at t ≈ 14 and becomes quasi-stationary beginning at

t ≈ 25 with Φ ≈ 0.8818 (Fig. 5.6a). The S0H forms at t ≈ 14.625 and achieves quasi-

stationarity from t ≈ 31.25 with Φ ≈ 0.8210 (Fig. 5.6b). At t ≈ 18.5, a dUH forms

as a double root of ∂rΦ at Φ ≈ 0.660 (r ≈ 2.0) (Fig. 5.6c). After that, the double

root splits into two single roots, i.e. the inner (smaller r, larger Φ) and outer (larger

r, smaller Φ) dUHs, and then the areal radius of the outer dUH decreases until it

becomes almost constant at t ≈ 31.25 with Φ ≈ 0.6232. The areal radius of the inner

dUH becomes almost constant already at t ≈ 21.25 with Φ ≈ 0.6538. At t ≈ 28.69,

an additional pair of dUHs forms outside the already existing pair and thus one of

the new pair of dUHs becomes the outermost dUH. The areal radii of the new pair

are between those of the old pair. At t ≈ 40.25, one more pair of dUHs forms outside

the two pairs and thus one of the newest pair becomes the outermost dUH. The areal

radii of the newest pair are between those of the second pair (Fig. 5.6c). As time

increases, the number of such pairs of dUHs keeps increasing, and one of the newest
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Figure 5.4: Formation of (a) AH, (b) S0H, and (c) dUH for GEJ1 at the respective times
indicated in each panel. The almost complete overlap of the curves obtained from simula-
tions with low, medium and high resolutions show that the system has almost completely
converged at the low resolution of this study.
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pair becomes the outermost dUH. This demonstrates that even after the first pair of

dUHs (denoted by the two black squares in Fig. 5.6c has become stationary, the region

outside i.e. with larger r (but with Φ’s between the first pair of dUHs) is still highly

dynamical. It is interesting to note that static black holes (in the decoupling limit)

also have infinite layers of UHs [76]. In Fig. 5.7, we show some physical quantities

nearby the locations of the dUHs. While their magnitudes are much higher than

those in the surrounding regions, they do not exhibit any blow-up in time, indicating

that the spacetime is regular at the locations of these horizons. We note that since

we have imposed the smoothness condition at r = 0, our simulations do not show any

blow-up of the curvature at r = 0.

Using the result of the medium-resolution simulation with rmax = 320, we

plot the change in the proper distance of the outermost dUH from both AH and

S0H in Fig. 5.8. The fact that these distances become longer and longer as time
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Figure 5.6: Locations of (a) AH (black dot in inset), (b) S0H (black triangle in inset), and
(c) dUHs (black squares in inset) for NC. The red line in each plot indicates the profiles
shortly after the respective horizons form.
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progresses indicates that the outermost dUH is evolving into the causal boundary,

even for excitations with large speeds of propagation.

5.4 Summary

In GR, EHs can be formed from gravitational collapse of realistic matter, so it

strongly suggests that black holes with EHs as their boundaries exist in our universe.

However, particles with speeds larger than that of light exist in gravitational theories

with broken Lorentz symmetry, so those EHs are no longer the one-way membranes

to such particles as they can cross those boundaries and escape to infinity, even if

they are initially located inside them. Instead, now the black hole boundaries are

defined by UHs. Therefore, astrophysically it is important to show UHs can also be

formed from the gravitational collapse of realistic matter, so that even with respect

to these particles black holes exist in our universe [108,116,127].
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CHAPTER SIX

Conclusions and Future Directions

In the last four years, the direct detection of gravitational waves and a black

hole opened a new window to the universe and have given gravitational physics a

new dimension. The observation of a gravitational wave from a primordial black hole

and/or the quantum fluctuations in the early universe will be a breakthrough and

take us closer to the mystery of the origin of the universe. Thus it is very exciting

to study theories of gravity that can be a true description of our universe. Most

importantly it is essential to verify if general relativity is actually the true theory of

gravity. Although all predictions made by Einstein’s GR have passed all experimen-

tal tests so far, making it the most successful theory of gravity at low energy, there

has been no success in the several attempts to quantize GR. Also, GR is unable to

describe the physics at the singularity inside a black hole where it breaks down. Any

observation which deviates from predictions of GR will provide a cause to consider

alternate theories of gravity. Even in the absence of such groundbreaking observa-

tions, a systematical study of alternate theories to GR can lead to a more detailed

theoretical understanding, vindicating GR’s position as the correct classical descrip-

tion of gravity. Therefore, it is essential to keep investigating alternative theories of

gravity that can lead to a sensible quantum theory of gravity and which also satisfy

all experimental tests such that GR can emerge as an approximation to an alternate

theory of gravity.

Black holes are the most intriguing and enigmatic objects of the universe.

Therefore it is of utmost importance to study the existence of these objects in an

alternative theory of gravity. In this thesis, we have mainly studied the existence of

black holes and gravitational radiation in two alternative theories of gravity, namely
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Hořava-Lifshitz theory and Einstein-æther theory. We studied the universal horizon

for black holes and the existence of gravitational plane wave solutions in theories of

gravity with broken Lorentz invariance.

We have found that in Hořava-Lifshitz gravity the existence of universal hori-

zons and their thermodynamics are independent of the dimensions of spacetimes

concerned. Therefore, the 2d Hořava gravity provides an ideal place to address the

important issues of formation of black holes and their thermodynamics, which often

technically become very complicated in higher dimensional spacetimes. Unlike in GR,

in 2d, now we have a local degree of freedom due to the presence of the scalar field.

We have found that gravitational plane wave solutions exist in Einstein æther

theory, but only for certain choices of the coupling constants ci s. This is good news,

as this prevents the æther theory from being ruled out completely as a potential al-

ternative theory of gravity. We know that the æther field is always unit normed and

timelike, while the gravitational plane waves propagate only along a null direction.

So, spacetimes, in general, depend on both u and v coordinates due to the scattering

between plane gravitational waves over the æther field. Thus, it would be very inter-

esting to study the interactions of a plane gravitational wave with the æther and other

matter fields, as well as with a gravitational plane wave propagating in the opposite

direction. In this scenario, we can pay particular attention to Faraday rotations and

the difference from those found in GR [97, 102], due to the presence of the timelike

æther field, which violates LI.

Lastly, we have numerically studied the gravitational collapse of a massless

scalar field with spherical symmetry in æther theory, and shown explicitly that all

three kinds of horizons, apparent, spin-0 and dynamical universal, can be formed from

gravitational collapse, by considering three representative sets, GEJ1, GEJ2, and NC,

of the free parameters ci’s. In the cases of GEJ1 and GEJ2, the collapse finally settles

down to the regular static black holes found numerically in [129], although neither
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of these two cases satisfies the constraints of Eq. (2.41). In the case of NC, which

satisfies Eq. (2.41), all three kinds of horizons are formed, and the spacetime in

the neighborhoods of these horizons is well-behaved and regular, while the spacetime

outside the apparent and spin-0 horizons soon settles down to a static configuration.

To conclude, we know, all experimental tests of GR so far are in the range of

µm-AU, where gravity is very weak. If we think in terms of curvatures, the range

in which we have tested GR appears to be very restricted. Neutron stars and stellar

and intermediate-mass black holes can exhibit curvatures which are many orders

of magnitudes larger than the usual weak-field experiments. Therefore, it will be

interesting to understand the phenomena that occur in their vicinity in alternative

theories of gravity. They are most likely the new frontier in gravitational physics.

Also, an important prediction of GR is the existence of only two gravitational wave

polarization tensor modes. Gravitational wave polarizations describe the distortion

of the pattern of these waves as they propagate through spacetime. However, any

alternate generic metric theory of gravity will allow only four additional polarization

modes viz. two vector and two scalar modes [133]. Therefore, in the future, it would

be interesting to study polarization in alternative theories of gravity as the observation

of vector or scalar modes would be in direct conflict with GR.
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APPENDIX A

Field Equations for the Linearly Polarized Gravitational Plane Wave Background in
Einstein-Æther Theory

For the spacetime of Eq. (4.13), the non-vanishing components of the Einstein

tensor Gµν and Tæ
µν are given by

G00 =
1

2

(
2Uuu − U2

u − V 2
u

)
,

Tæ
00 = −1

8

[
2c2Uuu + c13

(
V 2
u + U2

u

)
+2
(
c13 + c2 + 3c14

)(
huu − huUu − h2

u

)]
,

Tæ
01 =

e−2h

4

[
c2

(
Uuu − 2huUu − U2

u

)
+
(
c2 + c13 − c14

)(
huu − huUu − 2h2

u

)]
,

Tæ
11 = −e

−4h

8

[
2c2Uuu + c13

(
U2
u + V 2

u

)
+2
(
c2 + c13 − c14

)(
huu − huUu − h2

u

)]
,

Tæ
22 =

eV−U−2h

8

[
c13

(
2Vuu − V 2

u − 2UuVu − 4huVu

)
−
(
c13 + 2c2

)(
2Uuu − U2

u − 4huUu

)
−4c2huu + 2

(
3c2 − c13 + c14

)
h2
u

]
,

Tæ
33 = −e

−(V+U+2h)

8

[
c13

(
2Vuu + V 2

u − 2UuVu − 4huVu

)
+
(
c13 + 2c2

)(
2Uuu − U2

u − 4huUu

)
+4c2huu − 2

(
3c2 − c13 + c14

)
h2
u

]
, (A.1)

and Eµ =
(
E0, E1, 0, 0

)
, where

E0 = −Æ1e
2h = − e−h

4
√

2

[
2c2Uuu + c13

(
U2
u + V 2

u

)
+2
(
c2 + c13 − c14

)(
huu − huUu − h2

u

)]
. (A.2)
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In the vacuum case, we have Tmµν = 0, and the Einstein-æther equations Eq.

(2.29) reduce to

Gµν = Tæ
µν , (A.3)

which yield five independent equations

2Uuu −
(
V 2
u + U2

u

)
+ 2c14

(
huu − huUu − h2

u

)
= 0, (A.4)

c2

(
Uuu − 2huUu − U2

u

)
+
(
c2 + c13 − c14

)(
huu − huUu − 2h2

u

)
= 0, (A.5)

2c2Uuu + c13

(
U2
u + V 2

u

)
+ 2
(
c2 + c13 − c14

)(
huu − huUu − h2

u

)
= 0, (A.6)

c13

(
2Vuu − V 2

u − 2UuVu − 4huVu

)
−
(
c13 + 2c2

)(
2Uuu − U2

u − 4huUu

)
− 4c2huu + 2

(
3c2 − c13 + c14

)
h2
u = 0, (A.7)

c13

(
2Vuu + V 2

u − 2UuVu − 4huVu

)
+
(
c13 + 2c2

)(
2Uuu − U2

u − 4huUu

)
+ 4c2huu − 2

(
3c2 − c13 + c14

)
h2
u = 0, (A.8)

where in Eq. (A.4) we have used the fact that Tæ
00 can be expressed in terms of Tæ

11

which is equal to zero.
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tended Hořava-Lifshitz gravity”. Phys. Lett., B 688:650, (2010).

[21] M. Niedermaier. The asymptotic safety scenario in quantum gravity: An intro-
duction. Class. Quant. Grav, 24:R171, (2007).

[22] K. S. Stelle. Renormalization of higher derivative quantum gravity. Phys. Rev.,
D 16:953–969, (1977).

[23] M. Ostrogradsky. Memories on differential equations, relating to the problem
of isoperimeters. Mem. Ac. St. Petersbourg, VI 4:385, (1850).

[24] E. M. Lifshitz. On the Theory of Second-Order Phase Transitions 1 & 2. Zh.
Eksp. Teor. Fiz, 11:255–269, (1941).
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