
ABSTRACT

Spatial Poisson Regression:
Bayesian Approach Correcting for Measurement Error with Applications

William H. Atkinson, Ph.D.

Chairperson: Thomas L. Bratcher, Ph.D.

Under and over reporting is a common problem in social science research,

adverse events associated with drug use, and many other areas of research. Further-

more, overdispersion is another common problem that plagues count data. McBride

(2006) proposed a Bayesian Poisson regression model which accounts for overdisper-

sion in count data. We extend this model by adding parameters to accommodate the

problems associated with under and over reporting in the count data. We then study

the model’s coverage, power, accuracy of point estimates, and credible set widths

through simulation using a spatial lattice grid. We find that our proposed model

produces reliable point estimates and reasonable credible set widths, coverage, and

power.

We also provide two examples of the models use: disease mapping of habitat

burglary from the city of Waco Texas and an analysis of sports data similar to

that of Albert’s (1992) analysis of homerun data. Research questions of interest

are answered using the subset selection procedure proposed by Bratcher and Bhalla

(1974), used by Hamilton, Bratcher, and Stamey (2008) and Stamey, Bratcher, and

Young (2004), to demonstrate the ease of use for combining the our model developed

here and the subset selection procedure itself, as was also done in McBride (2006).
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CHAPTER ONE

Introduction

As researchers we are interested in the behavior of a system under study and

often wish to establish a cause and effect relationship between some response vari-

ables and some treatment variable of interest. This process leads to experiments

which produce data. From these data, assuming ideal conditions, we are able to

answer certain questions of interests concerning the system under study. However,

ideal conditions are not always available due to the nature of problem. Consider

for instance trying to establish a causal effect of drinking paint and death. Clearly

ethical issues will arise in this otherwise pointless study.

In such situations we as researchers are left to rely on observational data of

which we are only able to answer limited questions and speculate as to the causal

relationship between response and treatment. Furthermore, observational data are

often riddled with errors of various sources: recall bias, over/under reporting, and

differing methods of collection over time, often the case with government data, just

to name a few. Observational data are often recorded in the form of event counts, a

non-negative integer valued observation describing the number of times a particular

event occurred during a specified time period or within a certain region. For example,

every ten years the United States Census collects count data of several responses on

the United States citizenry broken down by Census tracts.

Many applications of public health data, phase IV safety trials, criminology,

econometrics, and ecology studies all depend on data of a count nature. For example,

the number of adverse events attributed to a particular drug reported to regulatory

bodies and the number of traffic accidents at a certain intersection just to name two.

Both of these examples are of a count nature and the complexity of the issue stems
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from the research question of interest, typically attempting to associate the counts

with various predictor variables.

This process of associating a response variable with potential predictor vari-

ables, often termed regression analysis, is not new and can be dated to Sir Francis

Galton (1886). Galton studied the relationship between the heights of parents and

children and commented that the heights of children, from both tall and short par-

ents, seemed to regress to the mean of their respective group.

Analysis of count data using discrete parametric distributions for univariate

random variables has a rich history and many applications (Johnson, Kotz, and

Kemp, 1992). One very often used distribution for count data analysis is the Poisson

distribution which was originally developed as the limiting case of the binomial

(Poisson, 1837). A historically well known application using the Poisson distribution

is the analysis performed by Bortkiewicz (1898), a study of the annual deaths of

Prussian soldiers due to being kicked by mules. Another example is Albert’s (1992)

paper where he modeled the homerun hitting rates of historically famous baseball

players such as Micky Mantle and Babe Ruth. Spanning now over a century of

application and research we need only to search the literature and standard texts

briefly for countless uses of the Poisson distribution.

Count and event-location data have been used extensively in epidemiology and

disease mapping research. A classic example in which maps and the idea of clustering

was used goes back to the 1854 London cholera epidemic. Snow (1854) hypothesized

cholera was spread through contaminated drinking water after having extensively

mapped the cases. Plam (1890) showed that rickets occurred in locations with cold,

wet climates. Blum (1948) study where he used mapping to show that sunlight is a

factor in the onset of skin cancer. Today, more sophisticated modeling and statistical

methods specifically developed for spatial data are available to researchers tackling

complex problems.
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Volumes of work have been written on the subject of regression analysis for

count data, spatial statistics, and many texts have at least a section discussing

basic applications and refers the reader elsewhere. Here we refer the reader to the

following works for more information (Schabenberger and Gotway 2005; Cressie 1993;

Banerjee, Carlin, and Gelfand 2004; Lawson 2009; Cameron and Trivedi 1998).

In this dissertation we modify and expand the Bayesian hierarchical Pois-

son regression model developed by McBride (2006) to include misclassification and

measurement error, study some of the model’s properties through simulations, and

provide two examples of it’s use: disease mapping of habitat burglary from the city

of Waco Texas and sports data analysis similar to that of Albert’s (1992) analysis

of homerun data. We then combine the the model with an optimal subset selection

procedure developed by Bratcher and Bhalla (1974), used by Hamilton et al. (2008)

and Stamey et al. (2004), to answer various research questions of interest.

1.1 Count Regression Models

The Poisson distribution is typically the benchmark univariate distribution

used for the analysis of count data. A consequence of assuming a Poisson distri-

bution is the equality of mean and variance. However, this consequence is quite

restrictive and is often violated because of overdispersion (under dispersion) where

the variance of the data is greater (smaller) than the mean. One way to correct for

this phenomenon is to model the mean of the Poisson distribution, otherwise known

as the rate of occurrence or intensity rate (rate for short), as a function of covari-

ates, thus allowing for the mean to change. As a result the conditional variance

will change as well. However, conditional on the covariates the Poisson distribution

still requires equality of the mean and variance. This assumption, even after the

inclusion of covariates, is still often violated.
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This problem has many statistical researchers developing models to allow for

a relaxation of this assumption. What we provide here in this section is a brief

review of several proposed count regression models that are often used. This is not

a comprehensive inclusion of all such models but a good basis and starting point

for understanding how to correct for over/under dispersion. Cameron and Trivedi

(1998) discusses these models, as well as others, and also provides references to other

sources of interest concerning model properties and applications.

1.1.1 The Benchmark

Assume that for the ith sample or situation the response Yi is distributed as a

Poisson random variable with probability mass function,

f(yi|λi) =
e−λiλyii
yi!

, yi ∈ Z+, (1.1)

where the rate parameter λi = E(Yi). The parameter λi may be modeled using

covariates but this requires the choice of a link function relating the mean, λi, to

the chosen covariates. A commonly used link function is the conditional exponential

mean function known as the log-link. That is, λi = exp(xiβ), or,

log(λi) = xiβ. (1.2)

The log-likelihood, under the assumption of independent observations, is given as,

ln(L(β|x)) =
n∑
i=1

(yix
′
iβ − exp(x′iβ)− ln(yi!)) . (1.3)

This leads to the first-order conditions,
n∑
i=1

(yi − exp(x′iβ)) xi = 0, (1.4)

which the maximum likelihood estimator for β is the solution, β̂, to (1.4). Often

the solution is found using the Newton-Raphson iterative method. Convergence is

guaranteed since the log-likelihood is globally concave. If the actual data generat-

ing process is indeed Poisson, we may appeal to asymptotic results and the usual

maximum likelihood theory resulting in, β̂∼̇N(β,Σ), where,
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Σ = lim
n→∞

(
1

n

n∑
i=1

(λixix
′
i)

)−1

. (1.5)

Statistical inference can then follow and research questions of interest concerning

the system under investigation can be answered. Valid statistical inference requires

correct specification of both conditional mean and conditional variance. Under the

Poisson assumption this requires equality of both mean and variance.

It is well known that even if the assumption Yi ∼ Poisson(λi) is violated, the

MLE for β is still consistent assuming the the conditional mean is correctly specified

(Gourieroux, Monfort, and Trognon, 1984a), resulting from the fact the Poisson dis-

tribution is of the exponential family. However, issues arise when statistical inference

is attempted. If the data generating process is not Poisson, valid statistical inference

is still possible; but methods to correct for the maximum likelihood variance must

be used. One such method is to assume that the variance is a scalar multiple of the

mean resulting in what Cameron and Trivedi (1986) call the NB-1 model.

1.1.2 The NB-k Models

In the Poisson regression model we must assume equality of variance and

mean. This requires that the variance V (Yi) = E(Yi) = exp(xiβ). Here we relax

this assumption and allow the variance to take on a differing form. The NB-1 and

NB-2 models are similar with the only difference being the functional form of the

conditional variance. The NB-1 model assumes that the variance of Yi is a scalar

multiple of the mean while the NB-2 model assumes that the variance of Yi is a

quadratic function of the mean.

For notational purposes let ωi = V (Yi|xi) denote the conditional variance of

Yi. Since we are discussing functions, let ω(λi, α) = ωi. The NB-k model assumes

the functional form for ω to be,

ω(λi, α) = λi + αλki , (1.6)
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where the constant k is specified. Notice that for α = 0 we obtain the rather

restrictive Poisson variance form discussed in section 1.1.1. The NB-1 specifies k = 1

while the NB-2 specifies k = 2. For the NB-1 model we end up with the functional

form of the variance to be, (1 + α)λi, which is simply a constant multiple of the

mean. In practice the parameter α must be estimated using the data at hand. For

the NB-2 model we end up with the functional form of the variance to be, λi(1+αλi),

and again α must be estimated.

Using results from Gourieroux, Monfort, and Trognon (1984b), Cameron and

Trivedi (1986) provide the asymptotic distribution of the pseudo-MLE as, β̂ ∼̇ N(β,Σ),

where,

Σ = lim
n→∞

(
1

n

∑
(λixix

′
i)

)−1(
1

n

∑
(ωixix

′
i)

)(
1

n

∑
(λixix

′
i)

)−1

. (1.7)

From this formulation it’s clear that if the real variance, ωi, is equal to the variance

dictated by the assumed Poisson density, λi, then (1.7) reverts to (1.5). Thus the

usual maximum likelihood inference is valid.

Focusing on the NB-1 model we can consider the functional form of the con-

ditional variance to be, (1 + α)λi = φλi, where φ = (1 + α). As mentioned earlier,

the assumption that the data generating process be Poisson can be relaxed and still

maintain consistency (Gourieroux, Monfort, and Trognon, 1984a). Given this ro-

bustness we may still use the Poisson density to obtain the first-order conditions

arriving at an estimator if we use the Poisson density for a data generating process

that is not truly Poisson. This estimator is known as the pseudo-MLE or qusi -MLE

as it’s not truly an MLE for the Poisson distribution but is derived from the Poisson

density. The resulting variance structure for Σ under the NB-1 model is,

Σ = lim
n→∞

(
1

n

∑
(λixix

′
i)

)−1

φ, (1.8)

since ωi = φλi. The standard estimator for φ is,
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φ̂ =
1

n− p

n∑
i=1

(
yi − λ̂i

)2

λ̂i
, (1.9)

where p is the number of parameters to be estimated. The motivation for this

estimator is that the variance function, ω(λi, α) = φλi, and thus, φ = E( (yi−λi)2
λi

).

The division by n − p rather than n is a degrees of freedom correction and the

reader is refereed to Cameron and Trivedi (1998) for more information regarding

this estimator.

Turning our attention now to the NB-2 model, Cameron and Trivedi (1998)

provides the variance for the psuedo MLE as,

Σ = lim
n→∞

1

n3

(∑
(λixix

′
i)
)−1 (∑(

(λi + αλ2
i )xix

′
i

))(∑
(λixix

′
i)
)−1

. (1.10)

A method of moments estimator for α is motivated by the fact that, E((yi − λi)2 −

λi) = αλ2
i . Solving for α yields, α = E((yi−λi)2−λi)

λ2i
, motivating the estimator,

α̂ =
1

n− p

n∑
i=1

(
(yi − λ̂i

2
)− λ̂i

λ̂i
2

)
,

where p is the number of parameters to be estimated. The estimators provided

here for both α and φ are not the only estimators proposed. Further estimators for

both α, for the NB-2 variance function, and φ, for the NB-1 variance function, are

available in Cameron and Trivedi (1986).

1.1.3 Unspecified Variance Function

It is possible to have consistent estimators of the variance for the pseudo MLE

without specifying the functional form of ω, the variance of the data generating

process. One such method is to use the covariance matrix estimator,

Σ = lim
n→∞

(
1

n

∑
(λixix

′
i)

)−1(
1

n

∑(
(yi − λi)2xix

′
i

))( 1

n

∑
(λixix

′
i)

)−1

.

7



Cameron and Trivedi (1998) discusses this approach briefly and provides references

to Eicker (1967), White (1980), and Robinson (1987) for further information con-

cerning estimators of this type.

1.1.4 Poisson GLM

The Poisson density, using the log-link, can be expressed as,

f(yi|xi) = exp

(
x′iβyi − exp(x′iβ)

φ
+ c(yi, φ)

)
, (1.11)

where c(yi, φ) is a normalizing constant. Using general linear model theory we know

that V (Yi) = φλi, which is the variance function of the NB-1 model.

The estimator β̂ for the Poisson GLM maximizes the log likelihood corre-

sponding to (1.11), with respect to β. The first order conditions for this model

are,

n∑
i=1

(
1

φ
(yi − exp(xi′β))xi

)
= 0, (1.12)

which corresponds to (1.4) where φ is a weighting. The resulting estimator for the

Poisson GLM is the same as the estimator as the Poisson regression model described

in section 1.1.1 with the variance matrix,

V (β̂) =
(∑

(λixix
′
i)
)−1

φ, (1.13)

which corresponds to the NB-1 model. As such, the estimator for φ is often chosen

to be the consistent estimator found in (1.9). This estimator can be accessed in SAS

9.2 Proc GLM using the scale = Pearson command in the model statement.

Another method is to maximize the log-likelihood with respect to both β

and φ. However, this method poses problems due to the nature of the normalizing

constant c(yi, φ) (Cameron and Trivedi, 1998).
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1.2 Measurement Error

Another problem that arises in epidemiology, clinical trials, ecology, and public

health research to name a few is what is known as measurement error otherwise

known as the error in variables problem. Considered as early as Berkson (1950) and

Cochran (1968) the effect that errors in predictor variables have on estimators has

become a major statistical concern. The statistical literature is filled with authors

and books written on this specialized subject. Noteworthy works include, but are

not limited to, Fuller (1987), Gustafson (2004), Schwartz and Coull (2003), and

McGlothlin, Stamey, and Seaman (2008). An example where measurement error

may be an issue is when researchers are not able to measure the desired covariate

and instead are forced to measure a surrogate variable. This is often the case in

sociology when the desired covariate is poverty but is instead measured using infant

mortality due to the lack of information or arbitrary definitions of what poverty is

based on income (Pridemore, 2008).

Whittemore and Keller (1988) provide a classical example for Berkson mea-

surement error while Richardson and Gilks (1993) and Dellaportas and Stephens

(1995) discuss Bayesian approaches for handling both classical and Berkson mea-

surement error in binomial regression. Several books have been written on the topic

of measurement error including Fuller (1987), Gustafson (2004), and Carroll (2006).

Roy, Banerjee, and Maiti (2005) extend the research of a misclassified response

by including the case in which one or more covariates are also measured imperfectly.

They delvelop a maximum likelihood approach to find corrected estimates of the

regression coefficients and apply their method using the Life Span Study (LSS), a

study consisting of a large cohort of individuals who survived the atomic bombings

of Hiroshima and Nagasaki. This data set was also analyzed by Sposto, Preston,

Shimizu, and Mabuchi (1992) where the authors attempted to find the effect of

radiation dose on cancer mortality correcting for misclassification in deaths.
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As researchers, when there is reason to believe that the response and/or pre-

dictors could be measured with error, we must then use methods that account for

this possibility. Therefore, the model must be adapted appropriately for the type of

measurement error suspected. We provide here a discussion of why this is a problem

and a brief review of some of the proposed methods for such a task.

1.2.1 Simple Linear Regression

To understand the effect that measurement error poses on the relationship

between two variables consider the simple linear regression scenario when the pre-

dictor variables X are subject to measurement error. Here we will assume that the

response variable Y is related to the covariate X by Yi = β0 + β1Xi + εi where the

errors εi are distributed as Normal with mean zero and variance σ2.

We further assume that we are unable to measure X but are able to measure

Z where Zi = Xi + δi. We assume that δ is distributed Normal with mean zero

and variance σ2
z . We finally assume that ε and δ are independent, X and δ are

independent, and that X and ε are independent.

Figure 1.1 displays a random generation of y values when β0 = 3, β1 = 3, and

the error terms ε and δ are distributed as N(0, σ2 = 4). The graph on the left plots Y

vs X and the graph on the right plots Y vs Z. The lines displayed on the graph are

the obtained least squares fit and the actual line used to generate the data. Notice

the significant bias towards a zero slope in the least squares fit using the surrogate

variable Z in lieu of X. As a matter of fact the obtained least squares estimate for

β1 using the real X’s is 2.685 as compared to 0.9145 when using the Z’s which is a

substantial difference in the estimates. We are able to discern the fact that as the

measurement error becomes more severe, that is to say the variability of the error

increases, the slope becomes severely biased towards zero.

10



Figure 1.1: Measurement Error: Bias towards Zero.

Another problem is that measurement error often masks features in the data.

To illustrate this suppose that Y = sin(2X) + ε with ε ∼ Normal(0, 0.10) and

Z = X + δ with δ ∼ Normal(0, .7). Figure 1.2 displays 200 randomly generated

points with this structure. As in Figure 1.1 the left graph displays the true X and Y

data while the right graph displays the Z and Y data. Notice the sin curve, although

clearly visible when the X’s are known exactly, is no longer visible in the surrogate

data, and there is no clear relationship whatsoever between the response and the

surrogate. It is also important to note that in both of these examples the surrogate

variable Z is an unbiased estimator for the predictor of interest X.

Figure 1.2: Measurement Error: Hidden Features.
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1.2.2 Regression: The Details

Consider the scenario when a researcher is attempting to determine the effect

of nitrogen level on the yield of a crop. To do this we choose randomly from several

farms in the research region of interest. Since the level of nitrogen across several

farms will vary, due to heterogeneity of soil, we can consider the levels of nitrogen

as random. It is necessary to obtain a measurement of the nitrogen level in the soil

which can be done by sampling the soil and performing a laboratory analysis on the

sample. Clearly this is going to yield not only experimental error but also suffer

from sampling error. We will assume a linear relationship between soil nitrogen and

the crop yield.

We investigate the details here under the assumption that the covariate X is

a random variable. Assume,

Yi =β0 + β1Xi + εi

Zi =Xi + δi

Xi ∼N(µx, σ
2
x)

εi ∼N(0, σ2
ε )

δi ∼N(0, σ2
δ ),

for all i. We can think of the error terms δ as resulting from sampling and laboratory

analysis. Clearly the variables Y and Z are normal. Theory dictates that the joint

distribution of (Y, Z) will be a bivariate normal with mean vector µ = (β0+β1µx, µx)

and covariance matrix,

Σyz =

 β2
1σ

2
x + σ2

ε β1σ
2
x

β1σ
2
x σ2

x + σ2
δ

 .
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1.2.3 Classical Measurement Error

We assume that the surrogate variable Z is used in lieu of X and is related

through the additive relationship, Z = X + δ, where E(δ) = 0 and V ar(δ) = σ2.

This results in a additive variability giving, V ar(Z) = V ar(X)+V ar(δ) > V ar(X).

We make note that we are assuming that the variable X is a random variable. This

classical measurement error model is what we used in the regression example of

section 1.2.2.

1.2.4 Berkson Measurement Error

Unlike the classical measurement error model here we assume that the surro-

gate Z is related to the true X by the relationship, X = Z + δ, where E(δ) = 0

and V ar(δ) = σ2. Here notice that the true values X have more variability than the

observed surrogate. This is a result of the key difference from the classical model,

the assumed additive relationship is reversed.

When to choose this model over the classical measurement error model is up

for debate. Something worthy of mention is that although with the classical model,

in the simple linear regression case with continuous X, we found that the estimator

β̂1, using the surrogate Z in lieu of X, was biased towards zero. Using the Berkson

model does not result in this bias; however, this is not the case for using the surrogate

variables as predictors in logistic regression. See Carroll (2006) and Reeves et al.

(1998) for details.

1.2.5 Bayesian Methods

Measurement error in Poisson count regression can be encountered in several

situations. The first being measurement error in the exposure. For example, suppose

we are attempting to estimate the rate of occurrence of cancer for individuals exposed

to a source of radiation, as was done in the LSS study. In this case recall bias is

suspected for individuals report the amount of time they were exposed to the source
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of radiation. Here the amount of time exposed to the treatment, radiation source,

is then measured with error.

The second form of measurement error that can occur is simply an error related

to the recording of the response variable. For example, it is often the case that a

rape victim will not report the crime and so the true account of rapes within a region

(time period) is greater than the reported count by law enforcement agencies. This

is often the criticism criminologists has with the Universal Crime Reports (UCRs)

that the Federal Bureau of Investigation publishes.

The third form of measurement error that can bias statistical inference is a

measurement error in the regressors. We discussed the biases of this and measure-

ment error in the response variable in section 1.2.2 for continuous variables. However,

the effect is just as devastating for discrete data.

Many methods correcting for measurement error have been proposed from

the two predominate statistical schools of thought. One such approach is from the

Bayesian paradigm in which prior distributions are used on the variables subject to

measurement error. Often times a training sample is performed in which a gold stan-

dard method is used to obtain the exact value of the variable while also measuring

the variable with the error prone method. In this fashion an informative prior can

be constructed and then incorporated into the model. This prior is can be chosen

as the posterior distribution resulting from the training sample or a distribution

approximating it, same mean and overall shape, with more variability. A posterior

distribution is then calculated for the model using the data of real concern if it hap-

pens to be tractable which is a rather unrealistic expectation for complicated models.

In the event that the posterior distribution cannot be derived explicitly, Monte Carlo

methods (Monte Carlo Markov Chains - MCMC) are then implemented. See Nt-

zoufras (2009) for a detailed discussion on using WinBUGS and Gilks, Richardson,

and Spiegelhalter (1996), Gamerman and Lopes (2006), and Robert and Casella
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(2004) for details concerning MCMC methods. See Gustafson (2004) and Carroll

(2006) for a discussion of measurement error models.

In many applications the researcher is looking to model a binary response

variable as a function of several predictor variables. For example, we may wish

to model recovery from cancer as a function of age, gender, and dose level of a

particular drug. Commonly used regression techniques include probit or logistic

regression. McGlothlin, Stamey, and Seaman (2008) propose a Bayesian method

expanding on the work of Roy, Banerjee, and Maiti (2005) to handle situations of

this nature when Measurement Error is present in the predictor variables.

1.2.6 Classical Methods

We provide here some Classical methods specifically designed for use when

measurement error is suspected.

1.2.6.1 Measurement error in exposure. Consider the conditional mean

function, E(Yi) = λiti, where λi is the rate of occurrence, or intensity, per unit time

and ti is the length of the time period of exposure. Then the Poisson density is given

as,

f(yi|λiti) =
eλiti(λiti)

yi

yi!
.

We call this the exposure model. Assume that the conditional intensity function is

correctly specified. Now suppose that we are studying a system where we must rely

on a respondents own recollection of how long they were subjected to a particular

environmental hazard. Our outcome of interest is the onset of some disease. In

situations such as these it is possible that the respondence will suffer from recall

bias. For simplicity let us assume that the measurement error is uncorrelated with

the covariates, xi, chosen for the conditional intensity.
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One common approach to account for this fallible measurement in the exposure

time is to consider ti as a random variable from a gamma distribution. The resulting

marginal distribution for the response variable, Yi, is Negative-Binomial. Hence, a

possible explanation for overdispersion is the presence of measurement error in the

exposure time. Of course, we could choose any distribution for ti and Cameron

and Trivedi (1998) provide a derivation for the case of a general density g(·). After

choosing the density, g(·), computational details are all that remain for the analyst.

1.2.6.2 Additive measurement error in regressors. At times it is reasonable to

assume an additive gaussian error structure in the regressors. That is, W = X +U ,

where U ∼ N(0, σ2). Now if one has access to replicated measurements on each

regressor then we are able to obtain information about the moments of the error

structure. In such cases, Carroll (2006) propose two methods, both of which are

functional methods for generalized linear models. The first is called conditional score

method and the second is called corrected score method. Both of these methods

are computationally intensive and the reader is referred to the source for further

information. Jordan et al. (1997) provide a similar method that is Bayesian and

does not require replicated data.

1.2.6.3 Multiplicative measurement error in regressors. Multiplicative and

additive error structures in the exponential conditional mean function can be shown

to be algebraically similar. To see this assume, w = x + u, where we assume some

density for u.. The conditional mean for the additive error structure is given as,

exp(w′β) =exp((x + u)′β)

=exp(x′β)exp(u′β)

=exp(x′β)η,

where, η = exp(u′β).
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Now consider the multiplicative measurement error structure,

exp(X′β)ω =exp(X′β + ε),

where ε = ln(ω). Clearly, adding another coefficient, βε = 1, to the vector β will

provide an additive measurement error structure.

The effect of both additive and multiplicative errors are also algebraically

similar to a situation in which omitted regressors are important to the model. To

see this let the conditional mean be dependent upon the vectors x and z. Now

suppose we include the vector x in the model but not the vector z. Then the true

conditional mean is given as,

exp(x′β + z′γ) =exp(x′β)exp(z′γ)

=exp(x′β)ωz,

where ωz = exp(z′γ). Since we failed to include the vector z we may consider

the effect of z as an unobserved heterogeneity effect which could be interpreted as

measurement error in the regressors x.

Hence, the effect of additive and multiplicative measurement error are alge-

braically the same. Furthermore, qualitatively the effects are similar to the omission

of regressors important to the conditional mean. The difference lies in the interpreta-

tion of the error structure and how the error structure is to be modeled. For example,

additive error structure with mean zero would correspond to a multiplicative error

structure with mean unity.

1.2.6.4 Measurement error in counts. As briefly mentioned before the FBI

UCRs are often criticized for being fallible. One reason is that reporting to the

UCRs is voluntary and as such the data from a law enforcement agency may go

unreported for several months. This is often the case for agencies operating in small

rural communities. Furthermore, it is well documented that certain crimes often go
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unreported and so the reported counts are often inaccurate and the true count is

higher than the observed count.

The need for methods to account for underreporting is not simply limited to

the applications of crime data. Examples of research using methods to account for

underreporting can be found in applications from several different disciplines and

research areas. The following applications are just a few notable examples: absen-

teeism in the workplace (Bramby, Orme, and Treble 1991; Johansson and Palme

1996), reporting of industrial accidents (Russer, 1991), safety violations in nuclear

power facilities (Feinstein 1989; Feinstein 1990), criminal victimization (Feinberg

1981; Schneider 1981; Yannaros 1993), hospital medicine (Watermann, Jankowski,

and Madan, 1994), and earthquakes and cyclones (Solow, 1993).

One simple method for correcting for fallible, inflated, counts is to assume

that the True count, Y t, is Poisson distributed with rate parameter λt (Cameron

and Trivedi, 1998). Now let Y o be the observed fallible count and assume that ε

is Poisson distributed with rate λε. This gives the observed count, yo = yt + ε, a

Poisson distribution with rate λt + λε. However, considering the fact that, ε ∈ Z+,

the observed count will always be larger than the truth and as such this model is of

no use to us in the underreported scenario.

One method is to consider situations where ε can take on negative values,

however, since the observed count is restricted to nonnegative integers we are forced

to place restraints on the support of ε’s distribution conditional on, Y t = yt. It

would be unrealistic in this event to believe that Y t and ε are independent and

therefore a correlation structure would need to be considered. In this case a joint

distribution for yt and ε would be constructed and then the resulting distribution of

yo could be derived.

Binomial thinning is another method for modeling errors in counts (Cameron

and Trivedi, 1998). As its name suggests it is only useful for deflating counts and
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useful only for underreported counts. This mechanism operates on an event, condi-

tional the event occurs, with constant probability that the event will go unreported.

Thus, only true events are affected. That is, a Bernoulli process is responsible for

determining if the count is reported or not.

Let Y t ∼ Poisson(λt) and let π = P (event is observed). Then the distribution

of the observed counts, Y o, is Poisson with rate parameter πλt. Clearly this is

a downward bias in the rate parameter λt, the parameter often of interest, since

0 ≤ π ≤ 1.

We propose a method using our model, discussed later, by combining both a

Poisson over count and a Binomial thinning to accommodate for over/under counts.

Cameron and Trivedi (1998) makes the claim that models of this nature, methods

incorporating a nonnegative only and a nonpositive only corrections, are underde-

veloped and so this provides a large area of potential research.

1.3 Misclassification

Many obstacles pose severe problems when attempting to analyze count data

and attempting to find relationships with the outcome to some set of covariates.

Visibility bias (under counting), misclassification, and error measurements in the

covariates are all common problems with poisson regression in a non-ideal environ-

ment: the typical social scientists realm of research. Misclassification also poses

severe problems in medical, epidemiological, and the environmental sciences. Fail-

ing to account for misclassification can lead to biased estimates and underestimation

of standard errors which can result in over stating the risks of certain covariates, or

under stating them, leading to erroneous conclusions at best wasting valuable public

resources.

In the following sections we consider the problem of misclassification for pois-

son response variables and provide a literature review for this topic.
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1.3.1 Kutran 1975

Kutran (1975) proposed a Bayesian method to correct for visibility bias. Let

A be the known area of the sample region, X be the number of individuals observed

in this region, Y be the number of unobserved individuals in this region, and let

T = X + Y be the total individuals in the study region.

Now assume that x, y, and t represents the visible count, the non-visible count,

and the total count from a training sample obtained from a region with area a, where

a complete census was taken. Let λ be the population density, p be the visibility

bias parameter, and assume that,

T |(λ, p) = T |(λ) ∼ pois(λA),

X|(T, P, λ) = X|(T, p) ∼ Bin(T, p),

λ|p = λ ∼ Γ(ν, a),

p|λ = p ∼ Beta(α, β),

where α = x + 1, β = y + 1, and ν = t + 1. Here we see that the observed count

X is dependent on the total count and the visibility bias. Kutan then applies this

procedure to a bicycle counting problem and to counting Gallinule Nests.

1.3.2 Stamey 2000

Stamey (2000) considers an extension of Kutran’s (1975) work. Stamey ex-

tends the model to allow for the addition of misclassified terms considered to be

false positives whereas Kutran stopped after accounting for false negatives. We de-

fine a false positive as a reported count that is not, in truth, an event of interest.

Furthermore, a false negative is an event of interest, in truth, that is not counted as

an event of interest.

Let A be the known area of the study region. Let T be the true number of the

events of interest, Y be the number of false positives, and X be the number of false

negatives. Then Z ≡ T + Y −X is the number of reported events of interest. The
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unobservable variables T , Y , and X are given the following distributions assuming

that X and Y are independent:

T |λ ∼Poisson(λA)

Y |φ ∼Poisson(φA)

X|(t, θ) ∼Binomial(t, θ),

where θ is the probability of a false negative and φ is the rate at which false positives

are reported. Stamey then shows that the marginal distribution of the reported

events of interest is given as,

Z|(λ, φ, θ) ∼ Poisson(Aλ(1− θ) + Aφ).

The Bayesian approach proposed by (Stamey, 2000) uses conjugate priors for

λ, φ, and θ. Let us assume that t0 represents the true number of events of interest in

an area of A0. Let y0 be the number of false positives and x0 be the number of false

negatives. As described above we assume that T |λ and Y |φ are Poisson random

variables whereas X|(t, θ) is Binomial. Applying conjugacy for the priors we get,

λ ∼Gamma(t0 + 1, A0)

φ ∼Gamma(y0 + 1, S0)

θ ∼Beta(x0 + 1, v0 − x0 + 1),

where S0 is used in the prior for φ in lieu of A0 and v0 in the prior for θ in lue of

t0 to reflect the fact it may come from a different source; e.g., expert opinion or a

double sample. These priors are denoted as g(λ), g(φ), and g(θ) respectively. As in

the traditional interpretation we may think of x0 to be the prior number of observed

false negatives from a prior experiment or training sample of size v0 making the use

of prior data extremely intuitive.
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1.3.3 Stamey, Young, Seaman (2007)

Applying techniques from McInturff et al. (2004) and Paulino et al. (2003)

to both Whittemore and Gong (1991) and Sposto et al. (1992) Stamey, et al.

(2007) provide a new Bayesian approach to Poisson regression where misclassification

poses a problem. They do no rely on asymptotic distributions or assume that the

misclassification parameters are known. The model is shown to perform well under

simulation and is then applied to Atomic Bomb Survivor Data from Hiroshima and

Nagasaki. The model is also applied to a respiratory tract infection example.

1.3.4 Classical Corrections

Whittemore and Gong (1991) propose a classical solution where maximum

likelihood methods are used to obtain estimates. Their method is similar to that

of Kutran’s (1975) in that a training sample is conducted using a gold standard

and the misclassification parameter p (visibility bias) is estimated using a binomial

distribution.

The procedure is then applied to cervical cancer rates in major European

countries to ascertain if the observed rate differences are due to misclassification or

to actual cancer rates.

There have been of course many classical solutions for misclassification. One of

which is proposed by Sposto, Preston, Shimizu, and Mabuchi (1992) which extends

the results of Whittemore and Gong (1991) to allow for inferences across two groups

applying their method to mortality rate estimates from the Hiroshima and Nagasaki

survival data (LSS). A simple search in the literature will turn up many more.

1.4 Disease Mapping Basics

Consider a geographical area subdivided into multiple regions not necessarily

of equal size or density. Now assume that for region i we have counts yi of dis-

ease/crime occurrence from a total population ni which is at risk of contracting
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the disease/crime. The standard mortality ratio (SMR) is simply the ratio of the

observed counts yi to the expected number of counts Ei which as we will discuss

can be unstable for small expected counts. Various ways of calculating the expected

counts are available. Two popular methods are external standardization and internal

standardization.

External standarization makes use of an existing standard table of stratified

reference rates, rj, for the disease in question. Then the expected counts are calcu-

lated by stratifying the population and summing the product of the rate and number

of people at risk in stratum j. That is, Ei =
∑
j

nijrj where nij is the total number

of people at risk in stratum j of region i. However, the use of this procedure requires

the availability of reference rates which may or may not be feasible.

Internal standardization uses the observed data to estimate the overall disease

rate for the geographical area in question under a null hypothesis of constant disease

risk. The expected count for each region i is simply the product of the number of

people at risk in region i and the overall disease risk. That is, Ei = nir = ni

∑
i yi∑
i ni

.

Since reference rates may not be available in some cases, internal standardization is

not only the simplest method to obtain expected counts but also may be the only

way.

Once the expected counts have been calculated, we are faced with the task of

estimating the disease risk θi for each region i. When attempting to estimate the

disease risk within certain regions we might think to use the estimator
oi
ei

, commonly

called the Standard Mortality Ratio (SMR), or the estimator
oi
ti

for disease rate

where oi, ei, and ti represent the observed, expected, and total at risk for the ith

region. One major disadvantage to using these estimators is what is known as

the small number problem; the estimators become severely unstable when either

the expected number of incidents or total population at risk is small relative to

the observed count. In the example of habitat burglary the same residence can be
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burglarized multiple times within the time frame under consideration. In these cases

the estimators could report an inflated estimate. Furthermore, when dealing with

a very rare disease we might not observe even a single incident in a certain area

thereby giving an estimate of zero, which is very unrealistic for a known disease.

We refer the reader to Clayton and Kaldor (1987) for more information on why the

standard maximum likelihood estimator of disease risk, the SMR, is not necessarily

the best estimator.

Several methods have been proposed to circumvent the small number problem.

One such possible solution is to pool counts from neighboring regions in an effort to

increase the expected count. However, a tactic like this removes much of the spatial

resolution in the data and we are left with less geographical information. Another

possible solution is to employ a spatial smoother, a technique similar to that of

weighted moving averages used in time series. We refer the interested reader to the

plethora of literature concerning spatial smoothers.

1.5 Subset Selection

For completeness we provide here a brief review of Bratcher and Bhalla’s (1974)

subset selection procedure.

It is often the interest of a researcher to choose the best mean or rate pa-

rameter from several populations. A researcher might also be entrusted to make

a decision between several possible choices and need a formal approach upon how

to best accomplish this task. Bratcher and Bhalla (1974) proposed a subset selec-

tion procedure using a constant loss function and probabilities to make a decision

between several possible options. We review this procedure now and will use this

approach later for a few examples.

Let θ = {θi}i∈Ω be the set of possible parameters of interest where Ω is an

finite indexing set. An example for motivation might be a set of possible Poisson

24



rates, normal means, or binomial probabilities. Let θmax be the parameter that we

desire. Our objective is to provide a formal approach for constructing a subset of

the θi’s which we believe to be the most likely values of θmax. Since we are required

to make a decision, we will exclude the null set from being a possible choice; we have

a total of 2n − 1 possible subsets to choose from where n =| Ω |.

Each of these subsets is a possible choice for what we will call the superior

set S. That is, we will choose a subset of the θi’s to be our superior set S. When

considered as a collection of decisions we have a total of n two decisions problems:

include θi or exclude θi. From a notational standpoint we have the following decisions

pertaining to each θi:

di+ : θi ∈ S and di− : θi ∈ Sc.

We now adopt the constant loss function L defined as:

for the decision to include θi

Li+(θi) = c1I[θi 6= θmax]

and for the decision to exclude θi

Li−(θi) = c2I[θi = θmax],

where I[·] is the indicator function which has value 1 or 0 depending on the truth of

the argument.

Clearly we have no way of knowing which θi is θmax in practice and as such

our goal is to come up with some method upon which to choose the superior set S

in such a fashion as to minimize risk. To that end we note that once we have chosen

a superior set S we have made a total of m inclusions where 1 ≤ m ≤ n and as such

we have incurred a total loss of m ∗ c1 + c2 if we failed to include θmax and (m− 1)c1

if we included θmax.

With the consideration that our objective is to choose a subset which contains

θmax, albeit we want the smallest possible such subset, we will commit a more severe
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error if we fail to include θmax in the superior set S than if we include θmax with

other θi’s. As such we shall choose c2 to be greater than c1.

It should be clear that the decision to include or not to include the value θi

in the superior set should depend in some way the losses that will result from the

decision we make. It is desirable to make the choice that would result in the smallest

loss. However, since we do not know which θi is the value θmax we do not know which

decision will result in the smallest loss. Obviously, if we knew the value of θmax we

wouldn’t even be considering other values θi in practice. So, we make the decision

corresponding to the smallest expected loss, otherwise known as Risk. We let x

be a vector or sufficient statistics calculated from collected data. Since we want to

minimize the risk we will choose to include θi provided,

E(Li+(θi|x)) ≤ E(Li−(θi|x)).

Writting the above expectations as functions of P (θi = θmax) gives us,

E(Li+(θi|x)) = 0 ∗ P (θi = θmax|x) + c1 ∗ P (θi 6= θmax|x),

and,

E(Li−(θi|x)) = 0 ∗ P (θi 6= θmax|x) + c2 ∗ P (θi = θmax|x).

With some algebra we then obtain,

E(Li+(θi|x)) = c1 ∗ (1− P (θi = θmax|x)),

and,

E(Li−(θi|x)) = c2 ∗ P (θi = θmax|x).

Since we wish to have E(Li+(θi|x)) ≤ E(Li−(θi|x)) as our rule to include θi, our

decision is based on the relation,

c1 ∗ (1− P (θi = θmax|x)) ≤ E(Li−(θi|x)) = c2 ∗ P (θi = θmax|x),
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which reduces to,

P (θi = θmax|x) ≤ 1

1 + c2
c1

=
1

c+ 1
,

where we have chosen c =
c2

c1

. With this consideration we do not need to specify

each of the individual losses c1 and c2 but rather simply the ratio c.

We have now produced a formal approach to selecting various values for a

parameter of interest while minimizing the risk associated with such a decision. Our

rule for including a possible θi is P (θi = θmax|x) ≤ 1
c+1

.

1.6 The Model

1.6.1 A Conjugate Hierarchical Model

For the purpose of this dissertation we will use the following parametrization

of the gamma pdf,

f(t|(α, β)) =
βα

Γ(α)
tα−1exp(−tβ). (1.14)

In the course of this work we shall be using variations of the following hier-

archical model. First let yi be the observed count for the ith unit under study and

assume the structure,

Yi|λi ∼ Poisson(Eiλiη) (1.15)

η|(a, b) ∼ Beta(a, b)

λi|(µi, αi) ∼ Gamma(µiαi, αi)

αi|ν ∼ χ2(ν)

µi = γiκ

log(γi) = xβ

β ∼ h(·),

27



where Ei is the expected number of events for subject i, λi is the inflation factor

for subject i, 0 < η ≤ 1 is a parameter used to correct for under-counts, κ is used

to correct for over-counts and can possibly be dependent upon covariates, h(·) is a

probability distribution, and ν, a, and b are fixed. Notice that this means λi is a

multiplicative factor able to adjust the subject rate away from the expected Ei, which

we call the inflation factor. Secondly, note that the mean of the Gamma distribution

is µi which results in a log-linear model on the mean of the inflation factors λi rather

than the Poisson rates themselves. Furthermore, through the use of the ηi and κ

parameters we can adjust the model to incorporate misclassification/measurement

error (over and under counts) in the response variable. We make note that although

we include a parameter to correct for over-counts, namely κ, we do not analyze a

data set of such nature in this dissertation. We merely include this parameter for to

demonstrate the flexibility of this model for researchers. This model is an extension

of the one originally proposed by McBride (2006) where we have added the ηi and

κ parameters to correct for over and under counts in the data. If both ηi and κ are

equal to unity for all i then we would have the model proposed by McBride.

Several methods are available for corrections of measurement error in the co-

variates. One such possible method would be to place priors on the components

of x, considering the xi as random variables, and use a training sample scheme to

construct a posterior distribution for the xi which would be used to correct the ob-

served counts. The point is, the researcher is free to use reliable methods for such

corrections when certain covariates are suspected to be measured with error.

The expected counts Ei can be obtained via internal or external standardiza-

tion as discussed in detail in section 1.4. In the spatial example presented in this

dissertation we will calculate the Ei via internal standardization under the hypoth-

esis that the entire region has an overall constant disease rate. This is done as,
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Ei = nir = ni

∑
yi∑
ni
,

where ni is the number of subjects at risk for region i and r may be thought of as

an overall disease risk. The example using baseball homerun data does not use an

expected count and will be discussed in detail in section 2.2.

As mentioned, often times situations arise in count data where over and under

dispersion is present in the data. It is well known that although consistency may

hold for the estimator if the conditional mean is specified correctly the reported

standard errors may be overly optimistic leading to erroneous conclusions at best

(Cameron and Trivedi, 1998). Many efforts have been made to account for this

including quasi-likelihood methods, Generalized Count Regression, using a Negative

Binomial model instead of Poisson, and several Bayesian methods including Albert’s

(1992) model which mixes quasi likelihoods with Bayesian methods.

In our model we allow for the Poisson rates λi to vary about a mean E(λi) = µi.

This allows for the data to be over/under dispersed naturally. In addition to the

simple problem of over/under dispersion the concern that we have correctly specified

the conditional mean is relaxed. That is, we are able to incorporate covariates of

interest into the model, provide inference, while still allowing for the heterogeneity

that would be present in the absence of other significant and unknown or unmeasur-

able covariates. This is advantageous when we are interested in knowing if certain

covariates are useful predictors but realize that there may be other sources of vari-

ation for which we have not yet been able to accommodate, a common situation in

public health data and criminology research. This added error structure is then used

to correct for the missing covariates.

Our ability to control for these unobserved sources of variation is found in

the α, η, and κ parameters. The α parameter adjusts the variability of the gamma

distribution and, hence, is a measure of our confidence in the log-linear model.
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When we have reason to believe that we have not accounted for all the sources of

variation we can simply change ν to adjust the variance of the Gamma distribution

accommodating the overdispersion suspected in the data. The other two parameters

allow the researchers to control for under and over counts, ν and κ respectively,

when such problems are suspected to exist within the data.

Motivation for where we place the over and under count correction parame-

ters stems from how we envision the statistician collecting expert opinion and prior

information from the researchers. In order for an event to go unreported the event

must have already occurred and, hence, we chose to use a parameter effecting the

rate of the Poisson distribution directly. An inflation of counts resulting from over

reporting or false reports do not have the same requirement that the event did, or

did not, occur and so we chose to place the parameter as a multiplicative effect on

the mean of the inflation factors. Although we have listed these parameters as not

being dependent upon covariates such an adjustment would be relatively easily al-

lowing for the researchers to include a covariate suspected to influence the reporting

of these events.

1.6.2 Variance Relationship with ν

As we will discuss further in later chapters the choice of ν is extremely impor-

tant and can have a significant impact on the conclusions made by the researchers

concerning the observables relationship with the chosen regression parameters. What

we provide here are mathematical relationships of the observables variance and the

choice of ν. First, we note that for X ∼ χ2(ν), E
(

1
X

)
= 1

ν−2
.

Now notice that for model (1.15) we have E (Yi|(λi, Ei)) = Eiλi. Using the

double expectation formula, where we omit the conditioning on µi for notational

convenience, we have,
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V ar(Yi|Ei) =E(V ar(Yi|λi, Ei)) + V ar(E(Yi|λi, Ei))

=E(Eiλi) + V ar(Eiλi)

=Eiµi + E2
i (E (V ar (λi|αi)) + V ar(E(λi|αi)))

=Eiµi + E2
i

(
E

(
µi
αi

)
+ V ar(µi)

)
=Eiµi

(
1 +

Ei
ν − 2

)
.

We can think of the quantity
(
1 + Ei

ν−2

)
as a scale parameter similar to (1.9). Notice

that as ν gets asymptotically large the variance in the observables, Yi, approaches

their mean, Eiµi, satisfying the assumption of the Poisson distribution. An inter-

pretation then for ν is a measure of our confidence in the observables following a

Poisson distribution; that is, large values place more confidence on this assumption.

Furthermore, for small inflations of the variance above the mean, as expected if the

data were approximately Poisson, we would want to choose ν − 2 to be close to Ei.
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CHAPTER TWO

Homerun Modeling

In the sport of Baseball very few events rival that of a homerun, with the

exception of the very rare triple play. With a single hit the outcome of the game

can change and bring fans to their feet. Baseball fans are often attracted to the

powerhouse hitters such as Babe Ruth, Micky Mantel, and other well known players.

In this section we apply model (2.1) below to homerun rates for Marc McGuire,

Sammy Sosa, and Berry Bonds, previously considered by McBride (2006). Here we

expand on McBride’s analysis providing new plots and a comparison of the developed

Bayesian model with popular classical models designed for similar use.

2.1 Mathematical Model

Recognizing that there will not be under and over counts for this data set, for

a fixed player we define Yi be the observed count for year i and assume the following

hierarchical structure,

Yi|λi ∼ Poisson(tiλi) (2.1)

λi|(µi, αi) ∼ Gamma(µiαi, αi)

αi|ν ∼ χ2(ν)

log(µi) = xβ

βi ∼ hi(·),

where ti is the number of at-bats for year i, λi is the rate of homeruns for year i,

hi(·) is a uniform density, and ν is fixed.

Albert’s (1992) model and model (2.1) attempt to model the same type of data

just for a different set of players. Albert (1992) models the Poisson rates directly via
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the log link and uses quasi-likelihood methods to correct for overdispersion. Since we

are considering the homerun rate as a random variable from a gamma distribution,

we are modeling the mean of the homerun rates rather than the rates themselves.

A key difference in the interpretation between model (2.1) and (1.15) is that

we are not using ti as the expected number of homeruns. Rather ti is the total

number of at-bats for the given player in year i. However, we are modeling the

mean of the λi’s as done in model (1.15). Under the consideration that homeruns

are actually not at all common events in baseball, it is not unreasonable think of λi

as an approximation to the percentage of the at-bats that will result in a homerun

although this is not exactly true. As a result of this consideration we may consider

our log-linear model on the mean of the homerun rates as opposed to the mean of

inflation factors. We make note here that we could have chosen to take the players

average homerun rate, internal standardization with the assumption of a constant

rate, and used that as an expected count resulting in the interpretation found in

model (1.15). This shows, depending on how we use the parameter Ei in model

(1.15), the interpretations of the resulting model can be flexible.

2.2 The Analysis

In the context of this problem our parameter vector of interest is λj, the

individual homerun rates for each of the j players in question. To make compar-

isons between the players we could use a classical approach and compare confidence

intervals. Albert (1992) takes the Bayesian approach and compares posterior prob-

ability intervals. In this analysis we use the subset selection procedure developed by

Bratcher and Bhalla (1974), used by Hamilton et al. (2008) and Stamey et al. (2004),

to determine which of the three players were most likely, based on probabilities, the

better homerun hitter.
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2.2.1 Problem Set Up

It is generally believed that a player matures to a peak near the middle of his

career and then declines in performance until retirement. Such performance could be

modeled using a quadratic form. This quadratic like behavior is evident in Sammy

Sosa’s performance over his career of playing Baseball shown in Figure 2.1. The last

five years show a decreasing trend in his homerun hitting rate. As for both Berry

Bonds and Mark McGuire it appears that the quadratic behavior is also present but

not fully realized due to lack of end career data. Mark McGuire retired early and

his final year was near the peak of his career while Berry Bonds shows some decline

in his final few years.

Figure 2.1: Observed Log HR Rates

The model we use is structured as model (2.1) where we place the log linear

relationship on the rate means with the season of play and place uniform priors on

the coefficient terms. That is,

log(µi) = β0j + β1j(i− i) + β2j(i− i)2, (2.2)

βij ∼ Uniform(a, b),

where a and b are specified and λij is the homerun rate for the ith season for player

j. Two other hierarchical models proposed are Albert (1992) and (2000) which
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proposes a hierarchical GLM. We refer the interested reader for further information

to these sources.

In order to develop an understanding for a prior structure for each of the β

terms consider the following. We expect a player to have a homerun rate near zero

(say .01) near the beginning of the career and for some large value of i. During the

productive years of a player’s career we expect to see a homerun rate of no more than

0.17. With the assumption of a 20 year career, setting up a system of equations and

solving for the beta terms gives us β0 = −6.0, β1 = 0.82, and β2 = −0.041. Figure

2.2.1 displays this expected behavior. Hence, we choose uniform priors about these

values for our analysis.

Figure 2.2: Prior Belief of Expected Rates

2.2.2 Analysis with ν = 10

For the purposes of clarification we make note that the analysis using ν = 10

does not provide a resulting model where comfortable inference can be made. That

is to say, ν = 10 does not seem to provide good results for the observed data.

This analysis is placed here to demonstrate that improper choices for ν can lead to

erroneous conclusions due to inflated posterior variability.
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Using model (2.1) we use the program WinBUGS to estimate the posterior

distribution. This program is widely used and available free, as of the writing of this

dissertation, to any who wishes to acquire the program. WinBUGS uses Monte-Carlo

Markov chain (MCMC) methods to estimate the posterior distribution. With the

consideration of the expected behavior as discussed in section 2.2.1 we set uniform

priors of Uniform(-10,0), Uniform(-3,5), Uniform(-4,1) for the terms β0, β1, and

β2, respectively. We allow for some probability weight on positive values for the

quadratic term in the event that a player does not follow a decreasing trend in his

later seasons. Lastly a chi-square distribution with ν = 10 for the shape parameter

α of the gamma distributed λi’s is used.

We note that we have place relatively non-informative priors on the beta terms.

Unfortunately, this induces an informative prior on the µi’s for early seasons; how-

ever, as the seasons increase, the induced priors become relatively non-informative.

Since our objective is to choose which season was the best season for the players in

question, and then to choose which player had the best homerun hitting rate, we

accept the consequence of this induced prior as these seasons will most likely occur

in mid to late careers.

Three chains were run with a 30,000 burnin period using a thinner of 5 to

reduce autocorrelation; total sample size 90,000. Convergence diagnostics were used

to determine chain convergence and no issues were found: Gelman-Rubin statistic,

autocorrelation plots, trace plots and density plots. We then generated 30,000 fur-

ther iterations with a thinner of 5 to reduce autocorrelation. This resulted in an

effective sample of 90,000 from the posterior distribution. The density estimates

were smooth and bell shaped while the trace plots showed good mixing between

the three chains. Table 2.1 provides posterior point estimates resulting from the

generated chains.
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Table 2.1: Baseball Parameter Point Estimates ν = 10

Player Parameter Mean SD 2.5% 5% Median 95% 97.5%
Int. -2.183 0.238 -2.679 -2.590 -2.172 -0.182 -1.750

Mcguire Linear 0.046 0.037 -0.025 -0.013 0.045 0.109 0.123
Quadratic -0.003 0.009 -0.021 -0.0178 -0.002 0.116 0.014

Int. -2.205 0.199 -2.618 -2.546 -2.197 -1.892 -1.837
Bonds Linear 0.039 0.024 -0.007 1.27E-04 0.038 0.079 0.087

Quadratic -0.004 0.004 -0.012 -0.011 -0.004 0.003 0.004

Int. -2.246 0.233 -2.733 -2.645 -2.236 -1.886 -1.821
Sosa Linear 0.040 0.036 -0.029 -0.018 0.040 0.100 0.113

Quadratic -0.012 0.007 -0.027 -0.025 -0.012 -6.21E-05 0.002

In order to evaluate the need for the quadratic model, credible sets are con-

structed for the covariate parameters and presented in Table 2.1. For completeness

we have included credible sets for all terms in the model. Notice that for Mark

McGuire the 95% credible set, as well as the 90% credible set, for the quadratic

term includes zero. Although the quadratic behavior in the McGuire data is not

evident the quadratic behavior of the Sosa data is quite evident but the 95% cred-

ible set for Sosa’s quadratic term fails to exclude zero, although the upper bound

is near zero, and the 90% credible set has an upper bound is practically zero. The

Bonds data does show near quadratic behavior while the 95% credible set includes

zero along with the 90% credible set, although the upper bounds are near zero.

The issue of obtaining a credible set for the quadratic term for Sammy Sosa

that includes the value of zero when the plots of the observed data suggests that

these terms should be non-zero leads us to believe that either the model does not

fit the data well or that we have allowed for too much posterior variability, either

through the support of our uniform priors or the choice of the ν parameter. In

section 2.2.2.2 we rerun the analysis using other choices for the ν parameter and

demonstrate that the choice of ν is crucial.
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2.2.2.1 Subset selection. Until now we have focused on simply providing the

reader with the standard point estimates and credible sets for the parameters of

interest (namely the beta terms). However, our goal is to select which season was

the peak season for the individual players and select from the players which had the

highest homerun rate at the peak season. We use here the optimal subset selection

procedure developed by Bratcher and Bhalla (1974) to answer the question at hand.

A constant loss function is chosen with the ratio c = 24 giving rise to a probability

cut off value of 0.04.

We present here the probabilities of each season being the best season for

hitting homeruns by each player in Table 2.2. Using the subset selection procedure

discussed previously, we would conclude that McGuires best seasons were either 8,

10, 11, 13, 14, or 15; Bond’s best seasons were either 16, 19, or 20; Sosa’s best

seasons were either 10, 11, 13, or 14. However, as these values resulted from an

improper choice of ν we do not recommend that these conclusions be made base on

this model.

Table 2.2: PICs for each season ν = 10

Season McGuire Bonds Sosa Season McGuire Bonds Sosa
1 0.01311 0 5.56E-06 12 0.009156 0 0.01566
2 1.44E-04 0 0 13 0.2774 0 0.4994
3 0 0 0 14 0.08783 0.004022 0.04052
4 0 0 0 15 0.3009 0.004656 0.007522
5 0 0 0 16 0.01084 0.6444 0.00425
6 0 0 2.00E-04 17 na 0.03102 0
7 6.78E-04 1.11E-05 2.39E-04 18 na 0.03572 2.78E-05
8 0.1084 1.00E-04 0.01381 19 na 0.06259 na
9 0.003311 0.002211 5.56E-06 20 na 0.2147 na
10 0.1039 0 0.2283 21 na 5.56E-05 na
11 0.08436 4.44E-05 0.1901 22 na 4.56E-04 na

2.2.2.2 Sensitivity analysis. As illuded to in sections 1.6.2 and 2.2.2, men-

tioned by McBride 2006, and further discussed in section 3.2.2 the choice for ν
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can greatly influence the posterior distributions variance and thereby influence the

conclusions the researcher makes concerning the system under study. Therefore,

considerable care must be taken into account when making the choice for ν. That

is, too small values will greatly exaggerate over-dispersion increasing the posterior

variance and lead to erroneous conclusions. Furthermore, for too large values of ν

our credible sets may be overly optimistic and too tight leading researchers to falsely

conclude statistical relationships where there is none.

Here we provide a sensitivity analysis, in Table 2.3, where we change the value

of ν, leaving all other things equal, and report posterior mean, median, standard

deviation, and the standard quantiles of interest for ν = 15, 20, 25; for the value

ν = 10 the reader is refered to Table 2.1 above. To save space we abbreviate the

payers’ names by using the first letter of their last name; that is, M represents

Mcguire, ect.

Figures 2.3, 2.4, and 2.5 display the same results but for ν = 5 to 30. The

noticeable trend is in the posterior standard deviations for the parameters; as ν gets

large, the posterior standard deviation reduces. This trend is also noticed in section

3.2.2 where we comment on it further. Notice that the parameter point estimates

seem relatively stable, the scales on the graphs are relatively tight, and the only real

change is in the reduction of posterior variance resulting in tighter credible sets.

Figure 2.3: Baseball: Sensitivity Analysis for β0.
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Figure 2.4: Baseball: Sensitivity Analysis for β1.

Figure 2.5: Baseball: Sensitivity Analysis for β2.

2.2.3 Analysis with ν = 100

For purposes of demonstration on choosing ν to be large we rerun the analysis

here with ν = 100. With the consideration of the expected behavior as discussed in

section 2.2.1 we set uniform priors of Uniform(-10,0), Uniform(-3,5), Uniform(-4,1),

same as for the previous analyses, for the terms β0, β1, and β2 respectively. We

allow for some probability weight on positive values for the quadratic in the event

that a player does not follow this quadratic trend.

We note that we have place relatively non-informative priors on the beta terms.

However, this induces an informative prior on the µi’s for early seasons but as the

seasons increase the induced priors become relatively non-informative. Since our

objective is to choose which season was the best season for the players in question,
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then further choosing which player had the best homerun hitting rate, we accept the

consequence of this induced prior as these seasons will most likely occur in mid to

late careers.

We used WinBugs to simulate data from the posterior values for the beta

terms via Monte-Carlo Markov chain methods (MCMC). Two chains with a 10,000

burn in followed by 30,000 iterations from each chain after using a thinner of 10.

Table 2.4 gives point estimates and quantiles for the beta terms. Figure 2.6 is plot

of the estimated log rate curve by player while figure 2.7 gives a plot of the three

estimated curves for comparison of the players.

Figure 2.6: Baseball: Estimated Log Rate Curves

Figure 2.7: Baseball: Comparison of Players Estimated Curves
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Table 2.4: Baseball Parameter Point Estimates df = 100

Player Parameter Mean SD 2.5% 5% Median 95% 97.5%
β0 -2.346 0.112 -2.573 -2.534 -2.344 -2.165 -2.131

McGuire β1 0.055 0.018 0.021 0.026 0.055 0.085 0.091
β2 -0.002 0.004 -0.011 -0.010 -0.002 0.005 0.006

β0 -2.392 0.090 -2.574 -2.543 -2.390 -2.246 -2.219
Bonds β1 0.048 0.012 0.026 0.029 0.048 0.067 0.071

β2 -0.004 0.010 -0.008 -0.007 -0.004 -0.001 -0.001

β0 -2.422 0.104 -2.634 -2.597 -2.42 -2.254 -2.224
Sosa β1 0.056 0.019 0.020 0.025 0.056 0.088 0.095

β2 -0.015 0.004 -0.023 -0.022 -0.015 -0.009 -0.008

2.2.4 Subset Selection

Our goal is to select which season was the peak season for the individual

players and select from the players which had the highest homerun rate at the peak

season. We use here the optimal subset selection procedure developed by Bratcher

and Bhalla (1974) to answer the question at hand. A constant loss function is chosen

with the ratio c = 8.

These three players brought much excitement to the game of Baseball during

the final years of the twentieth century and the early few years of the twenty-first

century. It is these years that the race for the title of homerun king became a topic

of much conversation. So, for our considerations we will restrict our analysis to these

years when determining which season was the best season for each player; contrasted

from the analysis performed in section 2.2.2.1.

Table 2.5 table gives the probability of inclusion for each of these mentioned

seasons. Using the subset selection procedure referenced, for our chosen constant

c = 8 we would conclude that for Marc McGuire his peak season was his final season

of play, 2001. Barry Bonds peak season was either 2001, 2002, 2003, or 2005. For

Sammy Sosa we conclude his peak career was either 1999 or 2000.
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Table 2.5: PIC For Peak Season

Year McGuire Bonds Sosa
1995 0.013 NA NA
1996 0.046 NA 0.000225
1997 0.075 NA 0.00102
1998 0.080 NA 0.0743
1999 0.070 0.063 0.489
2000 0.056 0.143 0.350
2001 0.659 0.187 0.069
2002 NA 0.161 0.0120
2003 NA 0.117 0.00470
2004 NA 0.080 NA
2005 NA 0.246 NA

To answer the question of, “Who had the highest homerun hitting rate at

the peak of their career?” we apply the subset selection procedure. We obtain the

probability of inclusion (PIC) for Mcguire to be 0.88, Bonds to be 0.10, and Sosa to

be 0.012 (probabilities obtained with rounding). Therefore, we would conclude, using

a constant loss of c = 8, that McGuire had the greatest peak in hitting homeruns.

2.3 Bayes-Classical Comparison

In what follows we make comparisons in the performance of model (2.1), with

ν = 100, to the frequentist approach to the problem. The choice of ν = 100 is

arbitrary and only for the purposes of comparison as no studies have yet been done

on optimal choices for ν using model (1.15). We model the homerun rates directly

using the log-link and we perform two analyses: the first we model as,

log(λi) = β0 + β1si + β2s
2
i ,

and the second we model as,

log(λi) = β0 + β1si + β2s
2
i + β3ti,

where si and ti represent ith season and the number of at bats the player had in the

ith season. We note that for the more complicated model the Akaike Information
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Criterion (AIC) values are considerably larger than for the simpler model. If we

were to base our model choice on this value alone we would then choose to exclude

the number of at bats a player had in a given season, which of course defies intuition

considering the context of the problem. We first discus the results for the simpler

model. Furthermore, the results presented consider all parameters included in the

analysis, regardless of the achieved p-value, for purposes of comparison between the

competing models.

Table 2.6: AIC’s for Models Considered.

Model Sosa Bonds Mcguire
At Bats 99.2256 71.9674 56.6030

Non At Bats 61.9327 61.4531 29.0311

2.3.1 Ignoring At Bats

Using PROC GENMOD in SAS 9.2 with the Poisson distribution and log-link

we analyzed the number of homeruns directly (using the log link) as a function of

both season and the square of season. Due to lack of fit we set the scale parameter to

be estimated using the square root of the Pearson’s Chi-Square statistic divided by

it’s degrees of freedom which is used to accommodate for overdispersion. As for the

estimates of the coefficients we find similar results as found using model (2.1). Here

we display the estimated classical curves, the observed data, the estimated number

of homeruns for each player as obtained by model (2.1), and a comparison of the

95% confidence intervals and 95% credible set widths.

Notice that the classical approach models the trend in the mean of the home-

runs as a function of season rather well. However, this model does not use the

information available in the number of at bats a player has in a given season. The

dashed line in in Figures 2.8, 2.9, and 2.10 shows the estimated number of homeruns

for each player using model (2.1) and appears to be over fitting the data. This is

merely an illusion.

45



Figure 2.8: Baseball: Comparison of classical method and Bayesian method for
McGuire.

We first remind the reader that the general linear model and model (2.1) are

modeling differing responses. Model (2.1) models the mean rates of the players using

a log-link while the GLM models the rate of the observed homeruns directly through

the log-link. Furthermore, a difference in the Bayesian approach is that the rates are

considered random variables versus the classical approach that they are fixed but

unknown quantities. Second, using model (2.1), we construct the predicted number

of homeruns a player had in a given season based on an estimate of the players rates

multiplied by the number of at bats the player saw in a given season, something

this GLM does not account for. This is why model (2.1) more closely follows the

observed homeruns giving the appearance of over fitting the data.

If we were to make comparisons between players based on the GLM model

it is worthy to note that we would conclude the peak of Sammy Sosa’s career, his

10th through 14th seasons, appears to outperform Mark McGuire’s peak, his 11th

through 16th seasons. This is due to the fact that during these seasons Sammy Sosa

did indeed hit more homeruns. However, the fact that the number of at bats for

each player is not taken into account by this GLM poses a problem when attempting

to make decisions about the better homerun hitter.
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Figure 2.9: Baseball: Comparison of classical method and Bayesian method for
Bonds.

If the interest was about who hit the most homeruns then clearly we would

simply look at the observed counts and draw conclusions based on who had the

most. However, our interest in is who had the better homerun rate suggesting that

this model does not adequately answer our question of interest. The number of

at bats for Sammy Sosa during these years is 643, 625, 604, 577, and 556 whereas

McGuire only had 423, 540, 509, 521, 236, 299. With this information it is easy to

see that the number of opportunities for Sosa to hit more homeruns would increase

his overall homerun score, increasing the estimated expected number of homeruns

which is what this GLM models. Clearly for this data this GLM is not appropriate

for our question.

2.3.2 Incorporating At Bats

Using PROC GENMOD in SAS 9.2 with the Poisson distribution and log-link

we analyzed the number of homeruns directly (using the log link) as a function of

season, the square of season, and the number of at bats in the given season. Due

to lack of fit we set the scale parameter to be estimated using the square root of

the Pearson’s Chi-Square statistic divided by it’s degrees of freedom which is used
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Figure 2.10: Baseball: Comparison of classical method and Bayesian method for
Sosa.

to accommodate for overdispersion. As for the estimates of the coefficients we find

similar results as found using model (2.1) and the previously considered classical

model from section 2.3.1.

Here we display the estimated classical curves, the observed data, the es-

timated number of homeruns for each player as obtained by model (2.1), and a

comparison of the 95% confidence intervals and 95% credible set widths.

Figure 2.11: Baseball: Comparison of classical method, using at-bats, and Bayesian
method for McGuire.
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Figure 2.12: Baseball: Comparison of classical method, using at-bats, and Bayesian
method for Bonds.

We notice in this case that the classical method and model (2.1) behave very

similarly. Furthermore, incorporating the number of at bats for a player in a given

season does a significantly better job in tracking the data than did the model from

section 2.3.1. However, the AIC values for the model from section 2.3.1 were lower

than those for the model incorporating the number of at bats leading a naive analyst

to to conclude the model presented in section 2.3.1 to be a better choice.

It is worthy to note that the unscaled deviance, a measure of goodness of fit,

for the GLM including the number of at bats for each player is significantly less than

for the GLM which ignores this covariate; although the AIC is smaller for the later

model. Such considerations need to be made rather than blindly following an AIC

value when choosing an appropriate model.

We also make note that the credible set widths in the preceding analysis tend

to be comparable to the 95% confidence interval widths. These credible set widths

could be reduced arbitrarily depending on the chosen priors but caution must be

taken as to not make such priors too informative. Since we used uniform flat priors

over a relatively wide support for the given problem our intervals are rather wide.

Furthermore, we could have used a few other powerhouse hitters of the day to

49



Figure 2.13: Baseball: Comparison of classical method, using at-bats, and Bayesian
method for Sosa.

construct priors resulting in less posterior variance and thereby reducing the observed

credible set widths.

2.4 Discussion

We’ve provided an example showing that the model developed in section 1.6

performed well for the data set at hand. Secondly, the construction of model (2.1)

allows for the observed Poisson counts to be more closely fitted without over smooth-

ing the data because the counts themselves are not directly modeled. In addition,

model (2.1) is easily adaptable to any type of Poisson regression problem where

overdispersion (underdispersion) in the data may be a concern through the use of

the chi-square parameter.

Comparisons made with the classical counterpart showed that model (2.1)

behaves similarly with wide flat priors. Furthermore, model (2.1) holds great poten-

tial in outperforming the classical approach giving more precise estimators provided

good a priori information exists.
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CHAPTER THREE

Habitat Burglary

A common definition of disease found on many websites, such as Merriam-

Websters Online Dictionary, and hard print dictionaries, if not exact can be concisely

worded as, a condition of the living animal or plant body or of one of its parts that

impairs normal functioning and is typically manifested by distinguishing signs and

symptoms. If viewed at a very simple level, crime is nothing more than an event

within a society which disrupts the natural behavior of the victims involved. When

related to the above definition of disease we may consider crime to be a pathogen and

society or a community as the body within which the pathogen causes to malfunction

or display symptoms.

Billions of dollars are spent each year by corporations, small businesses, and

individuals on security personnel, security devices, and surveillance equipment in an

effort to keep inventory and buildings secure. In cases where such measures are not

adequate, thieves manage to pull off a heist. Lost inventory and labor are among the

costs to the company/individual in replacing the stolen goods while also repairing

any damage the thieves did to the facilities. Furthermore, the tax payer is now faced

with the burden of police investigations and court costs. These are just a few of the

observed symptoms of burglaries alone from the economic standpoint. With these

considerations it is not unrealistic to consider crime a disease and use appropriate

statistical modeling in an attempt to understand certain trends.

In this section we provide a spatial disease mapping example using habitat

burglary data from the city of Waco Texas. We then combine the the model with

an optimal subset selection procedure developed by Bratcher and Bhalla (1974)

and used by Hamilton et al. (2008) and Stamey et al. (2004) to determine which
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police beats have an elevated risk of habitat burglary. Furthermore, we consider the

possibility that not all habitat burglaries were reported to the authorities and thus

we attempt to correct for the naive estimates resulting in the analysis which does

not allow this possibility.

3.1 The Methodology

Using a simplified version of model (1.15) which ignores any issues with under

and over counts for this data set, let yi be the observed count for region i and assume

the following hierarchical structure,

Yi|λi ∼ Poisson(tiλi) (3.1)

λi|(µi, αi) ∼ Gamma(µiαi, αi)

αi|ν ∼ χ2(ν)

log(µi) = xβ + εi

β ∼ h(·),

where ti is the expected number of events, λi is the local relative risk for region i, h(·)

is a probability distribution, εi is a conditionally auto-regressive spatial error term,

and ν is fixed. Notice that this means λi is a multiplicative factor able to adjust

the local rate away from the expected ti, which we will call the inflation factor or

relative risk. Secondly, note that the mean of the gamma distribution is µi which

results in a log-linear model on the mean of the inflation factors λi (local relative

risk) rather than the Poisson rates themselves. We will calculate the ti via internal

standardization, discussed in section 1.4 under the hypothesis that the entire region

has an overall constant burglary rate. This is done as,

ti = nir = ni

∑
yi∑
ni
,

where ni is the number of households at risk for region i and r may be thought of

as an overall burglary risk.
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An advantage of model (3.1) is that we model the mean of the inflation fac-

tors (relative risks) which allows for the data to be over/under dispersed naturally.

Therefore, model (3.1) enables us to isolate regions with elevated local risks, asso-

ciated with high inflation factors, as compared to the expected risk which differs

from finding regions with the highest rate of occurrence thereby answering a dif-

ferent research question. Through the use of the ν parameter, we can adjust the

sensitivity of the obtained model to the dispersion of the data; small values of ν will

increase the variance of the Gamma distributed λ’s. This can be observed by notic-

ing that the variance of the gamma distribution, using the pdf described in equation

(1.14), is V ar(λi|αi) = µi
αi

. As this expression shows α, being dependent upon ν, can

have considerable influence on the posterior distribution of λi. We comment on this

further throughout this section.

3.2 Waco Crime Data

The data set that we analyze here was provided to us by the Waco Police

department. It contains the number of received phone calls concerning habitat

burglaries, broken down by police beats, for the City of Waco Texas during the year

2000. We use three covariates in our log-linear model. The first being the number of

households below the poverty level, the second being the number of households that

rent their habitat, and third is the area (in square miles) of the region in question.

Covariate information is from the US Census Bureau’s web site for the year 2000

and the area covariate was calculated using the boundary files and programs from

R.

Since the Census data are given in census tracts or census blocks which do

not correspond to the police beat regions provided to the authors, we used the

program ArcGIS to dissolve the data to the appropriate police beat. The data is

dissolved by considering the percent of area covered by a police beat from each
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census tract then taking that percentage of the covariate values from that census

tract, and repeating until each census tract a police beat covered is dissolved. We

then aggregate each of these values together to obtain the values for the covariates

for the police beats. Expected counts are calculated using internal standardization

as discussed previously.

3.2.1 The Analysis

Figure 3.1 is a map of the observed standard mortality ratios (SMRs) by police

beat. Notice the high density in the central part of the community. These regions

are the police beats 8, 9, and 10, respectively.

Figure 3.1: Raw SMR’s by PD Beat

We point out that Figure 3.1 plots the SMRs not the raw burglary counts.

Figure 3.2 presents the actual raw burglary counts. Notice the significant difference

in the regions with high counts as opposed to high SMRs. If interest is which regions

have the highest counts, we would focus on regions 14 and 22.
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Figure 3.2: Raw SMR’s by PD Beat

From this point on our focus will be on regions with high elevated risk as

opposed to regions with the highest counts. This is done by dividing the burglary

count by the expected count as calculated using the internal standardization method

discussed in section 1.4.

We use model (3.1) to obtain estimates of the burglary rates of each region

using an adjacency matrix where two regions are considered connected provided they

share a common boundary. This adjacency matrix is then used in conjunction with

the conditionally auto-regressive error term, εi, placed in the log-linear portion of

the model. We ran the model with the alpha parameter having degrees of freedom

of 5 and then applied the subset selection procedure (Bratcher and Bhalla, 1974) to

the regions with the highest elevated risks.

Using model (3.1), we placed diffuse Normal(0, 100) priors on the intercept,

poverty, renter, and area terms where the notation used is mean and standard devi-

ation. We place a χ2(5) prior on the αi terms. We used the program WinBUGS to

find the posterior estimates provided from three chains with a 10,000 burin in and
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Table 3.1: Posterior Estimates with αi ∼ χ2(5).

Covar. Mean MCErr. Std.Dev 2.5% Median 97.5%
Int. 0.2989 0.1377 7.56E-04 0.02546 0.2995 0.5668

Renter -0.7843 0.2031 0.001486 -1.191 -0.7816 -0.3905
Poverty 0.4291 0.2085 0.001516 0.02742 0.4265 0.8503

Area -0.08903 0.03713 1.98E-04 -0.1676 -0.08714 -0.02082

a sample size of 30,000 from each chain for a total of 90,000 after using a thinner of

30 to reduce autocorrelation. Convergence diagnostics were used to determine chain

convergence and no issues were found: Gelman Rubin statistic, posterior density

plots, and trace plots. The resulting posteriors for the beta terms were symmet-

ric and bell shaped and the chains showed good mixing. Table 3.1 provides point

estimates for the model where we have reported the estimated mean, standard devia-

tion, Monte Carlo (MC) error, and the standard quantiles of interest. The Deviance

Information Criterion (DIC) for this model was estimated to be 227.916.

Using the optimal subset selection procedure outlined in (Bratcher and Bhalla,

1974), with c = 30, we found that for all 30 regions only regions 9 and 10 had any

nonzero probability associated with being the highest risk regions. These probabil-

ities were 0.4132 and 0.5868 respectively. We then conclude that the regions 9 and

10 have the highest habitat burglary risk as compared to the rest of the community.

Figure 3.3 provides the spatial plot for the fitted inflation factors (relative

risks) by police beat. Notice the high concentration in the center of the community

associated with regions 8, 9, and 10. The interpretation of these results is that

these regions are associated with higher risk for habitat burglary relative to their re-

spective expected rates under the assumption of constant risk estimated via internal

standardization. This is in agreement with the results of the optimal subset selection

where regions 9 and 10 were found to be the most probable regions with the highest

inflation factors. Lastly, the resulting residuals from model (3.1) are presented in

Figure 3.4. Figure 3.5 displays the residuals from model (3.1) by predicted values.
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Figure 3.3: Fitted Inflation Factors for Bayes Model.

Recall that the parametrization of the Gamma distribution, as shown in equa-

tion (1.14), dictates the conditional variance, V ar(λi|αi) = µi
αi

. This parametrization

has the interpretation that for large values of αi, more likely generated by a large ν

value, we are very confident that the expectation of the inflation factors follow the

specified log-linear behavior. When our confidence in this model is reduced, either by

knowingly not including potentially significant covariates or due to over-dispersion

of the data, we would reduce the ν parameter and allow for the Gamma variability

to increase. We discuss this further in the next section.

3.2.2 Sensitivity Analysis

As reported by McBride 2006, and discussed briefly above, the posterior es-

timates are sensitive to the choice of the degrees of freedom parameter ν. In the

analysis of section 3.2.1 we chose to use ν = 5 to allow for moderate variability in

the gamma distribution. Here we reanalyze the data using varying choices for the ν

parameter leaving the same diffuse Normal(0,100) priors on the β’s. We present the
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Figure 3.4: Residuals for Bayesian Model.

posterior mean and standard deviation for each of the covariate parameters in Table

3.2. The posterior mean estimates and standard deviations appear to stabilize near

a ν value of 5 to 15.

Table 3.2: Posterior Estimates by choice of ν. *Thinner of 50 was used.

ν Int. (SD) Renter (SD) Poverty (SD) Area (SD) DIC
0.01 0.84 (0.30) -0.47 (0.42) 0.20 (0.45) -0.040 (0.084) 229.197
0.1 0.75 (0.27) -0.51 (0.38) 0.23 (0.40) -0.052 (0.070) 229.196
0.5 0.75 (0.27) -0.51 (0.38) 0.23 (0.40) -0.052 (0.070) 229.196
1.0 0.43 (0.19) -0.67 (0.26) 0.34 (0.27) -0.079 (0.070) 228.572
2.0 0.35 (0.16) -0.73 (0.23) 0.38 (0.24) -0.086 (0.043) 228.034
5 0.30 (0.14) -0.78 (0.20) 0.43 (0.21) -0.089 (0.037) 227.897
10 0.29 (0.13) -0.78 (0.19) 0.45 (0.20) -0.089 (0.033) 227.932
15 0.28 (0.12) -0.78 (0.19) 0.47 (0.20) -0.089 (0.031) 228.045
20 0.28 (0.12) -0.77 (0.19) 0.47 (0.20) -0.089 (0.031) 228.173
25* 0.28 (0.12) -0.77 (0.19) 0.48 (0.20) -0.089 (0.031) 228.246

The autocorrelation appears to increase as the degrees of freedom for the χ2

distribution increases. At df = 20 the auto correlation drops to zero by lag 25
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Figure 3.5: Bayesian Residuals by Predicted.

whereas a thinner of 50 is required to achieve the same goal when df = 25. The

general trend observed in Table 3.2 is that as we put more confidence in the log-

linear model the posterior standard deviation is reduced. As such, care must be

taken when choosing the degrees of freedom parameter ν to allow for over-dispersion

in the data if such behavior is either known a priori or suspected. The choice for ν

does not seem to affects the posterior estimates for the PIC’s obtained for the subset

selection. Table 3.3 displays this effect for the regions 9 and 10 which shows that

the PIC’s remain fairly stable with differing choices of ν > 5. We note that under

all choices for ν only regions 9 and 10 showed non-zero probability for the PIC.

As the value for ν is decreased the difference between the PICs of regions 9

and 10 appears to get larger. This makes sense when taken into account for the fact

that as ν goes to zero we are allowing the data to speak more loudly; our confidence

in the log-linear relationship is decreased. For larger values of ν we are restricting

the posterior distribution’s variance to be quite small and about the expectation µi
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which is a linear function of the predictors. The more we restrict the variability

around this function the more the ordering of the µi’s will affect the ordering of the

PIC’s. As such, similar covariates will generate similar expectations and the PICs

will grow together.

Table 3.3: PIC for regions 9 and 10 by ν. *Thinner of 50 was used.

ν Region 9 Region 10
0.01 0.3738 0.6262
0.1 0.3457 0.6543
1.0 0.3738 0.6262
2.0 0.3965 0.6035
5 0.4132 0.5868
10 0.4121 0.5879
15 0.4105 0.5895
20 0.4091 0.5909
25* 0.4101 0.5896

3.3 Under-reporting and Waco Habitat Burglary

It is a well known phenomenon that habitat burglary, like recreational use of

marijuana, often goes unreported (Liska, Sanchirico, and Reed (1988); Academies

(2005)). The factors influencing the victim(s) of habitat burglary to fail to report

such crimes may stem from lack of confidence in the police to recover the lost items

and apprehend the criminals responsible. Furthermore, the victim may have known

the assailant(s) and due to this connection, possibly a familial one, wants to protect

the individual(s). It is also possible that if such an investigation were to occur the

police may find that the victim is involved in criminal behavior and so the loss of

the stolen items is simply a price willing to be paid for their freedom and privacy.

3.3.1 The Analysis

Let us assume that the actual number of reported burglaries is less than actual

number of habitat burglaries. Let us place a Beta(15.0342,2.5594) prior on the η
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term in model (1.15). This beta distribution has 95% probability greater than 0.70

with a mode at 0.90. These values were chosen for the sake of demonstration rather

than based on actual data that the reporting rates in Waco Texas would result in

such a chosen prior. The resulting model becomes,

Yi|λi ∼ Poisson(tiλiη), (3.2)

η ∼ beta(15.0342, 2.5594),

λi|(µi, αi) ∼ Gamma(µiαi, αi),

αi|ν ∼ χ2(ν),

log(µi) = xβ,

β ∼ h(·),

where ti is the expected number of events, λi is the local relative risk for region i,

h(·) is a probability distribution, η is the under-count report correction, and ν = 5

is fixed. We choose for each βi a Normal(0, 10) prior where the notation used is

mean and standard deviation. We used MCMC methods to obtain estimates for the

posterior distribution. Three chains with a burnin of 30,000 iterations were used

and after the burnin period a sample size of 90,000 was collected (three chains with

30,000 updates each) resulting in the estimates displayed in Table 3.4. A thinner of

30 was necessary to reduce auto correlation to zero by lag 20. Various convergence

diagnostics were checked: trace plots, Gelman Rubin statistic, and density plots.

Posterior densities were smooth and bell shaped. Deviance Information Criterion

(DIC), originally proposed by Spiegelhalter, Best, Carlin, and van der Linde 2002

as a model selection tool, was estimated at 227.487.

The regions identified as having the highest habitat burglary risk were again regions

9 and 10 with probability of inclusions 0.411 and 0.589 respectively.
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Table 3.4: Posterior Estimates for Under-Count model with Normal(0,10) priors.

Covar. mean sd MC error 2.50% median 97.50%
Int. 0.5201 0.1889 0.001041 0.16 0.5149 0.9092
Area -0.08751 0.04044 1.80E-04 -0.1735 -0.08556 -0.01333

Poverty 0.3991 0.2219 0.001418 -0.03141 0.397 0.8408
Renter -0.7637 0.2183 0.001379 -1.199 -0.7609 -0.3408

3.3.2 Sensitivity Analysis

As we are often concerned with posterior sensitivity to prior selection we rerun

the analysis using more diffuse normal priors, Normal(0, 31.62), with the same num-

ber of updates, thinning rate, and using a χ2(5) distribution for the α parameter.

The DIC was estimated at 227.686 and the posterior estimates for this model are

displayed in Table 3.5. Notice that the results are quite similar as the results found

in Table 3.4. The regions identified as having the highest habitat burglary risk were

again regions 9 and 10 with probability of inclusions 0.4024 and 0.5976 respectively.

Table 3.5: Posterior Estimates for Under-Count model with Normal(0,31.62) priors.

Covar. mean sd MC error 2.50% median 97.50%
Int. 0.5189 0.1892 0.001163 0.1597 0.5136 0.906
Area -0.08743 0.04052 1.99E-04 -0.1737 -0.08534 -0.01316

Poverty 0.4002 0.2237 0.001368 -0.03179 0.398 0.849
Renter -0.7652 0.2193 0.00129 -1.205 -0.762 -0.3431

We also ran the model with very diffuse Normal(0, 100) priors resulting in the

posterior summary found in Table 3.6 and DIC of 227.658. The regions identified as

having the highest habitat burglary risk were again regions 9 and 10 with probability

of inclusions 0.4028 and 0.5971 respectively; the estimates are very similar.

Considering a more informative prior structure for the covariate terms we also

ran the model with Normal(0, 3.16) priors resulting in the posterior summary found

in Table 3.7. The regions identified as having the highest habitat burglary risk were

again regions 9 and 10 with probability of inclusions 0.4138 and 0.5832 respectively.
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Table 3.6: Posterior Estimates for Under-Count model with Normal(0,100) priors.

Covar. mean sd MC error 2.50% median 97.50%
Int. 0.5208 0.1899 0.001124 0.1633 0.5161 0.9098
Area -0.08744 0.04044 1.85E-04 -0.1733 -0.08538 -0.01404

Poverty 0.4003 0.2226 0.001338 -0.03223 0.3982 0.8456
Renter -0.7652 0.2179 0.001293 -1.204 -0.7609 -0.3467

Table 3.7: Posterior Estimates for Under-Count model with Normal(0,3.16) priors.

Covar. mean sd MC error 2.50% median 97.50%
Int. 0.5164 0.1888 0.001184 0.1585 0.5107 0.9044
Area -0.08699 0.04046 1.80E-04 -0.1728 -0.08498 -0.01252

Poverty 0.3939 0.2226 0.00142 -0.04094 0.3916 0.8365
Renter -0.7596 0.2178 0.001391 -1.195 -0.757 -0.3383

Table 3.8 provides the widths of the obtained 95% credible sets. Notice that

the widths are very similar.

3.4 Classical Comparison

In this section we perform the classical analysis of the same data, without

accounting for under-reporting, using the comparable classical model structure for

the purposes of comparison between classical analysis and the proposed model (3.1).

That is, we use a log-linear relationship between the rates of the Poisson distributed

burglaries and the covariates.

Using both a conditional auto-regressive (CAR) and a simultaneous auto-

regressive (SAR) model, we model the habitat burglary log-rates as a function of

Table 3.8: 95% credible set widths.

SD (precision) Int. Renter Poverty Area
3.16 (0.1) 0.7459 0.16028 0.87744 0.8567
10 (0.01) 0.7492 0.16017 0.87221 0.8582

31.62 (0.001) 0.7463 0.16054 0.88079 0.8619
100 (0.0001) 0.7465 0.15926 0.87783 0.8573
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the number of renter households, poverty, and region area in square miles. Both the

renter and poverty variables are standardized. Although we only report the results

for the SAR model, the analysis results are similar and the SAR model had a slightly

lower Akakie-Information-Criterion (AIC) of 64.495 vs 66.949 for the CAR model.

Figure 3.6 plots the residuals for the SAR model by police beat. Figure 3.7

plots the residuals vs the predicted values for the SAR model. Figure 3.8 plots the

fitted SAR model, the estimated burglary log-rates by region, for the community.

The resulting model displays high risk of habitat burglary in the central part of the

community relative to the regions on the outskirts.

Making comparisons between the Bayesian approach discussed in section 3.2.1,

we notice similar results between the two approaches. Although model (3.1) and the

classical approach place the log linear model on different outcomes the results are

similar. That is, regions 8, 9, and 10 have the highest relative risk and Figures 3.3

and 3.8 display this. Figure 3.4 show very similar characteristics as the residuals

from the classical approach displayed in Figure 3.7. As mentioned before model (3.1)

places the log-linear relationship on a different response and so Figure 3.5 does not

have the same scale for the predicted values as does Figure 3.7.

We make notice of the concentration of residuals in the middle of the commu-

nity where the model under predicts the observed log-rates. These regions are 8, 9,

10, 13, and 14. We tested for spatial dependence failing to reject the null hypothesis

of spatial correlation in these residuals (p-value = 0.11)

Parameter estimates and standard errors, obtained using the spautolm function

found in the spdep package for R, are displayed in Table 3.9. The parameter estimates

are similar to those found using model (3.1).
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Figure 3.6: Residuals for SAR Model

Table 3.9: Parameter estimates and standard errors.

Estimate Std. Error P-Value
Renter -0.660 0.162 < 0.0001
Poverty 0.534 0.189 < 0.0001

Area -0.079 0.0213 0.0002

3.5 Reparameterization of the Hierarchical Model

As we mentioned in the Introduction, there are several classical methods to

account for overdispersion in the response. Some popular methods assume a mean-

variance relationship and specify the polynomial degree of the relationship such as

linear or quadratic; see section 1.1.2. For (3.1), this relationship is linear with the

conditional variance µi
αi

. If the researcher believes that this relationship is quadratic

the parameterization of (3.3) found below provides the expectation µi on the λi’s

and has conditional variance,
µ2i
αi
,
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Figure 3.7: Predicted vs. Residuals for SAR Model

Yi|λi ∼ Poisson(tiλi) (3.3)

λi|(µi, αi) ∼ Gamma(αi,
αi
µi

),

log(µi) = xβ + εi,

β ∼ h(·),

where all variables represent the same values as model (3.1).

We reanalyze the Waco habitat burglary data set, ignoring the issue of under

counts here, using the parameterization of (3.3) where αi ∼ χ2(5) and Normal(0, 100)

priors for the β terms. Three chains with a burnin of 10,000 iterations was used

followed by a 30,000 iterations from each chain for the sample giving a total sample

size of 90,000. A thinner of 30 was used to reduce autocorrelation. Table 3.10

provides the posterior estimates for the mean, standard deviation, and the 95%

credible sets. Although the values are different than those obtained using model

(3.1), we do notice that the estimates are roughly similar. Regions 9 and 10 are
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Figure 3.8: Fitted log-rates for SAR Model.

Table 3.10: Posterior Estimates using model (3.3).

Covar. mean sd MC error 2.50% median 97.50%
Int. 0.3328 0.1351 5.59E-04 0.06552 0.3325 0.5991

Renter -0.7616 0.1986 0.001148 -1.159 -0.76 -0.3755
Poverty 0.4725 0.2103 0.001238 0.06743 0.4691 0.8937

Area -0.08905 0.03014 1.33E-04 -0.1482 -0.0892 -0.02909

again the only regions with associated non-zero PICs; 0.3897 for region 9 and 0.6103

for region 10. Using the parameterization found in model (3.3), care is still required

in choosing the value for ν as the variance for the gamma distributed λi’s is related

to the value of αi.

3.6 Discussion

The proposed hierarchical Bayesian model (3.1) provides the researcher with

the ability to control for overdispersion in their data with the αi ∼ χ2(ν) parameter.

However, caution must be taken when choosing the degrees of freedom associated
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with this chi-square distributed parameter as autocorrelation in the MCMC chains

and significant bias toward an equal mean-variance relationship can occur. This

parameter affects the posterior distribution of the covariate parameters. However,

for the Waco burglary data we found that the PICs the parameters tend to become

stable for ν ≥ 5. This is promising if the research interest lies in determining regions

with high associated risk but not parameter estimates and relationships between

chosen covariates and the outcome variable.

Model (3.1) can be easily reparameterized to allow for a quadratic mean-

variance relationship using model (3.3) demonstrating great flexibility in the variance-

mean relationship. This variance flexibility is not limited to simple linear and

quadratic behavior but can be constructed for any power of µi by adjusting the

rate and shape parameters of the gamma distribution while retaining the condi-

tional mean of µi. Both linear, model (3.1), and quadratic variance, model (3.3),

relationships provide results that are similar for the data we analyzed here. Fur-

thermore, model (3.1) provided estimates similar to those found using comparable

classical methods. Combined with the addition of the subset selection procedure the

researcher is able to easily provide inference, in terms of probability, on the regions

associated with the highest relative risk and inference on the parameters chosen.

Model (3.1) differs from the usual log-linear model where we place the log-

linear relationship on the mean of the Poisson rates rather than the Poisson rates

themselves. This allows us to use the ν parameter to adjust our confidence in the

Poisson assumption of equality between mean and variance. By using larger values

of ν we place more confidence in this assumption essentially making the claim that

over-dispersion in the data is small or non-existent.

Finally, the limitations of any model derived from (1.15), using independent

priors for the covariate terms, is that for large values of ν the autocorrelation in

the Markov chains becomes intolerable. This situation will occur in data sets where
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large expected counts, Ei, are common but over-dispersion is believed to be minimal,

say, variance is twice the mean. This limitation is a software based limitation from

what the authors have noticed using WinBUGS. To date, no study has been done

on this phenomenon using another MCMC software package.
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CHAPTER FOUR

A New Model

In the previous chapters we have taken McBride’s (2006) hierarchical model

and modified it to account for under counts in the data. We reexamined the homerun

and Waco habitat burglary examples he provided and compared them to a classical

analysis finding similar results for an appropriate choice of the parameter ν. Unfor-

tunately, what we discovered is that the model proposed by McBride, when using

independent priors for the covariate terms, performs poorly in the software program

WinBUGS; as autocorrelation for large values of ν, which correspond to moderate

to high confidence in a Poisson assumption of equality between mean and variance

for the system under study, becomes intolerable for complex data sets. This auto-

correlation in the Monte-Carlo Markov chains calls into question any inference made

and makes the proposed model, although theoretically reasonable, impractical for

common applications. Furthermore, in order for under-dispersion to be accounted

for the scale parameter (1 + Ei
1

ν−2
) must be less than one. This requires that,

−1 ≤ Ei
1

ν−2
< 0, in order to account for under-dispersion while retaining a positive

variance.

What we propose here is a more flexible approach to model (1.15). Our pro-

posed model is,

Yi|λi ∼ Poisson(Eiλiη) (4.1)

η|(a, b) ∼ Beta(a, b)

λi|(µi, αi) ∼ Gamma

(
µi
αi
,

1

αi

)
αi|(c, d) ∼ Beta(c, d)

µi = γiκ
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log(γi) = xβ

β ∼ h(·),

with the same stipulations as those in model (1.15). In model (4.1) we place a Beta

prior on the αi terms instead of a χ2 and change the parameterization of the Gamma

distributed λi’s. The Beta distribution is rich in shapes allowing for the researcher

great flexibility in their confidence of the Poisson assumption. Furthermore, the

beta(c, d) distribution, for constants c and d, can be transformed from the default

support of (0, 1) to any finite support, (r, s), using the transformation, z = (s −

r)x + r. The transformed Beta distribution will then have mean (s − r)( c
c+d

) + r.

Using model (4.1) provides the following variance for the observables Yi,

V ar(Yi|Ei) =E(V ar(Yi|λi, Ei)) + V ar(E(Yi|λi, Ei))

=E(Eiλi) + V ar(Eiλi)

=Eiµi + E2
i V ar(λi)

=Eiµi + E2
i (E(V ar(λi|αi)) + V ar(E(λi|αi)))

=Eiµi + E2
i (E(µiαi) + V ar(µi))

=Eiµi + E2
i (µiE(αi) + 0)

=Eiµi + E2
i

(
µi

c

c+ d

)
=Eiµi

(
1 + Ei

c

c+ d

)
.

(4.2)

An advantage of model (4.1) over model (1.15) is that the high autocorrelation

phenomenon when using WinBUGS seems to less problematic when values near

zero are chosen for the mean of the αi ∼ beta(c, d) parameter. This corresponds to

choosing large values of ν in model (1.15); that is, a-priori belief that over-dispersion

is small. Furthermore, model (4.1) enables a correction for under-dispersion, allows

for great flexibility in distribution shapes for the αi parameter, and seems to perform

better in WinBUGS for the data sets analyzed in this dissertation.
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In the remaining portion of this chapter we reanalyze the homerun and habitat

burglary data using model (4.1).

4.1 Habitat Burglary Revisited

We use the same covariates and model (4.1) we present the analysis of the

Waco Habitat burglary here. We place diffuse Normal(0, 100) priors on the inter-

cept, poverty, renter, and area terms where the notation used is mean and standard

deviation. We place a Beta(2.74, 34.20) prior on the αi terms. This beta has a

mean of 0.074, median 0.067, mode 0.05, and variance 0.0018. Although this prior

is informative we believe that for expected counts of 50, on average, we would see

a variance inflation of about 4.5 and for expected counts of 100 we would see an

inflation of 8. We have no prior data to base this expectation on other than the

observed data. Therefore, this choice is for demonstration purposes. We will ignore

the η parameter with the assumption that no reports go uncounted for the time

being.

We used the program WinBUGS to find the posterior estimates provided from

three chains with a 10,000 burin in and a sample size of 30,000 from each chain for a

total of 90,000 after using a thinner of 20, which is less than the thinning rate used

before to analyze the same data, to reduce autocorrelation. Convergence diagnostics

were used to determine chain convergence and no issues were found: Gelman Rubin

statistic, posterior density plots, and trace plots. The resulting posteriors for the

beta terms were symmetric and bell shaped and the chains showed good mixing. Ta-

ble 4.1 provides point estimates for the model where we have reported the estimated

mean, standard deviation, Monte Carlo (MC) error, and the standard quantiles of

interest. Notice the parameter estimates are similar to those found in section 3.2.2

for ν ≥ 10. The DIC for this model was estimated to be 227.902, which is very close

to the DIC’s found in section 3.2.2.
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Table 4.1: Posterior estimates where αi ∼ Beta(2.74, 34.20).

Covar. Mean Std.Dev MCErr. 2.5% Median 97.5%
Intercept 0.2893 0.1289 9.43E-04 0.03189 0.2904 0.5397
Renter -0.7833 0.1947 0.002095 -1.173 -0.7823 -0.3994
Poverty 0.4462 0.2008 0.002179 0.05504 0.4455 0.8477

Area -0.08897 0.03398 2.33E-04 -0.159 -0.08814 -0.02442

Figure 4.1 provides the spatial plot for the fitted inflation factors (relative

risks) by police beat. Notice the high concentration in the center of the community

associated with regions 8, 9, and 10. The interpretation of these results is that these

regions are associated with higher risk for habitat burglary relative to their respec-

tive expected counts under the assumption of constant risk estimated via internal

standardization. This is in agreement with the results of the optimal subset selection

where regions 9 and 10 were found to be the most probable regions with the highest

inflation factors. Lastly, the resulting residuals from model (4.1) are presented in

Figure 4.2. Figure 4.3 displays the residuals from model (4.1) by predicted values.

Using the optimal subset selection procedure outlined in (Bratcher and Bhalla,

1974), with c = 30, we found that for all 30 regions only regions 9 and 10 had any

nonzero probability associated with being the highest risk regions. These probabili-

ties were 0.4133 and 0.5867 respectively, nearly identical results previously reported

in section 3.2.2 for larger values of ν. We then conclude that the either regions 9 and

10 have the highest habitat burglary risk as compared to the rest of the community.

We now concern ourselves with the possibility that not all burglaries are re-

ported. What we provide here is an analysis similar to that found in section 3.3

where we use model (4.1). No matter the factors influencing the victims decision

not to report let us assume that the actual number of reported burglaries is less than

actual number of habitat burglaries. Let us place a Beta(15.0342,2.5594) prior on

the η term in model (4.1). This beta distribution has 95% probability greater than
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Figure 4.1: Fitted inflation factors for Bayes model (4.1).

0.70 with a mode at 0.90. These values were chosen for the sake of demonstration

rather than based on actual data that the reporting rates in Waco Texas would

result in such a chosen prior.

We used the program WinBUGS to find the posterior estimates provided from

three chains with a 30,000 burin in and a sample size of 30,000 from each chain for a

total of 90,000 after using a thinner of 22 to reduce autocorrelation; only a burning

of 10,000 was needed and we simply chose to leave out the first 30,000 to keep similar

sample sizes as used before. Furthermore, we note that this model had roughly the

same thinning rate and converged after the same number of iterations of the chain.

This was not the case with model (3.2) where a significantly higher thinning rate

was needed; in the previous analysis we needed a thinner of 30 for ν = 15.

It is possible that the observed decrease in thinning rate was due to a number

of different reasons. These may include an interaction between the specific data

available and the computer platform were were using, the specific chosen beta dis-
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Figure 4.2: Residuals for Bayesian model for (4.1).

tribution, the limited support of the beta distribution, or several other factors. We

seem to have stumbled on an example where we have better performance using our

proposed model as opposed to (1.15). Therefore, we believe that the current param-

eterization seemed to have behaved better in this application and may show promise

in out performing (1.15) in general but we have not tested this assertion.

Convergence diagnostics were used to determine chain convergence and no

issues were found: Gelman Rubin statistic, posterior density plots, and trace plots.

The resulting posteriors for the beta terms were symmetric and bell shaped and

the chains showed good mixing. We make note that a thinner of only 22 was need

to obtain acceptable autocorrelations, zero by lag 20, whereas for model (3.2) with

large ν significantly larger thinning intervals was needed to accomplish the same

goal. Table 4.2 displays the associated point estimates for the covariate parameters.

Using the optimal subset selection procedure, with c = 30, we found that for

all 30 regions only regions 9 and 10 had any nonzero probability associated with
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Figure 4.3: Bayesian residuals by predicted for (4.1).

being the highest risk regions. This is a reoccurring theme with this data set. These

probabilities were 0.4108 and 0.5892 respectively.

Figure 4.4 provides the spatial plot for the fitted inflation factors (relative

risks) by police beat. Notice the high concentration in the center of the community

associated with regions 8, 9, and 10. The interpretation of these results is that

these regions are associated with higher risk for habitat burglary relative to their re-

spective expected rates under the assumption of constant risk estimated via internal

Table 4.2: Posterior estimates where αi ∼ Beta(2.74, 34.20) and η ∼
Beta(15.03, 2.56).

Covar. Mean Std.Dev MCErr. 2.5% Median 97.5%
Intercept 0.4538 0.1627 0.00119 0.1515 0.4472 0.7964
Renter -0.7781 0.1916 0.001677 -1.16 -0.777 -0.4036
Poverty 0.4481 0.1989 0.00172 0.05919 0.4471 0.8445

Area -0.08887 0.03343 1.85E-04 -0.1576 -0.08799 -0.0254
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Figure 4.4: Fitted Inflation Factors for Bayes Model for model (4.1).

standardization. This is in agreement with the results of the optimal subset selection

where regions 9 and 10 were found to be the most probable regions with the highest

inflation factors. Lastly, the resulting residuals from model (4.1) are presented in

Figure 4.5. Figure 4.6 displays the residuals from model (4.1) by predicted values.

4.2 Homerun Data Revisited

We reanalyze the homerun data from chapter 2 here using model (4.1) and

ignore the possibility of undercounts as we are certain all homeruns were accounted

for. The majority of at bats ranges from about 200 to just over 500 for each player.

We do not expect to see a variance inflation, using equation (4.2), greater than 3

over the mean. That said, we choose to place an informative Beta(1.24, 48.60) prior

on the αi terms. This Beta distribution has a mean of 0.025, variance of 4.7E-4,

mode of 0.005, with the lower 2.5% and upper 97.5% percentiles of 0.0012 and 0.082

respectively.
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Figure 4.5: Residuals for Bayesian Model for model (4.1).

Figure 4.6: Bayesian Residuals by Predicted for model (4.1).
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With the consideration of the expected behavior as discussed in section 2.2.1

we set uniform priors of Uniform(-10,0), Uniform(-3,5), Uniform(-4,4) for the terms

β0, β1, and β2, respectively. Notice that these priors are considerably wider than

those chosen in section 2.2.2. We allow for some probability weight on positive values

for the quadratic term in the event that a player does not follow a decreasing trend in

his later seasons. We used three chains in WinBUGS with a burnin of 30000, thinner

of 5, and further updates of 30,000 for a total of 90,000 posterior samples for our

point estimates. Convergence diagnostics were used to determine chain convergence

and no issues were found: Gelman-Rubin statistic, autocorrelation plots, trace plots

and density plots. Posterior density estimates for the linear, quadratic, and intercept

terms were symmetric and bell shaped. Table 4.3 presents the associated posterior

point estimates.

Table 4.3: Parameter estimates for (4.1) where αi ∼ Beta(1.24, 48.60).

Player Para. Mean SD MC Err. 2.5% Median 97.5%
Int. -2.303 0.153 8.0E-04 -2.618 -2.300 -2.014

McGuire Lin. 0.054 0.024 9.5E-05 0.009 0.054 1.05E-01
Quad. -0.003 0.006 3.2E-05 -0.015 -0.002 9.40E-03

Int. -2.364 0.127 5.9E-04 -2.615 -2.364 -2.115
Bonds Lin. 0.047 0.015 5.6E-05 0.017 0.046 7.77E-02

Quad. -0.004 0.003 1.3E-05 -0.009 -0.004 1.17E-03

Int. -2.388 0.140 6.3E-04 -2.672 -2.385 -2.12E+00
Sosa Lin. 0.054 0.024 8.5E-05 0.008 0.0537 1.02E-01

Quad. -0.014 0.005 2.2E-05 -0.025 -0.0143 -4.58E-03

Notice that for McGuire, the 95% credible set for the quadric term includes

zero, although the upper bound is near zero. We choose to leave the quadratic term

in the model since this upper bound is near zero. The quadratic term for Bonds

appears to be needed as the upper bound is practically zero. The 95% credible set

for the quadric term for Sosa, as expected, excludes zero.
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To answer the question of which season was the best season for each of the

three players turn the the subset selection procedure. Our goal is to select which

season was the peak season for the individual players and select from the players

which had the highest homerun rate at the peak season. We use here the optimal

subset selection procedure developed by Bratcher and Bhalla (1974) to answer the

question at hand. A constant loss function is chosen with the ratio c = 24.

We present here the probabilities of each season being the best season for

hitting homeruns by each player in table 4.4. Using the subset selection procedure

discussed previously, with c = 24, we would conclude that McGuires best seasons

were either of the seasons 8, 10, 11, 13, 14, or 15; Bond’s best seasons were either of

the seasons 16, 19, or 20; Sosa’s best seasons were either of 10, 11, 13, or 14.

Table 4.4: PICs for each season using model (4.1).

Season Bonds McGuire Sosa Season Bonds McGuire Sosa
1 0 0.004992 0 12 2.15E-05 0.01224 0.02056
2 0 1.44E-04 0 13 0 0.2911 0.4791
3 0 0 0 14 0.004811 0.1079 0.04058
4 0 0 0 15 0.006296 0.3178 0.006849
5 0 1.03E-05 1.04E-05 16 0.6987 0.01846 0.00358
6 0 0 2.48E-04 17 0.03436 NA 1.04E-05
7 0 6.68E-04 2.59E-04 18 0.03964 NA 2.07E-05
8 1.61E-04 0.06562 0.01367 19 0.06804 NA NA
9 0.002013 0.003431 2.07E-05 20 0.1447 NA NA
10 0 0.0941 0.2329 21 8.61E-05 NA NA
11 9.69E-05 0.08351 0.2022 22 0.001087 NA NA

To answer the question of which of the three players was the best homerun

hitter over their career we also use the subset selection procedure. We answer the

question, “Which of the three players had the highest career peak?” We performed

the analysis in WinBUGS where we estimated the covariate terms for each of the

three players simultaneously, independently of each other, and then calculated the

PIC for each player having the highest career peak. The PIC for McGuire was esti-
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mated at 0.4601, for Bonds the PIC estimate was 0.5363, and for Sosa the estimated

PIC was 0.0036. Using our decision rule, we conclude that either Bonds or McGuire

was the better homerun hitter of the three players. If interest was in which of either

Bonds or McGuire was the better hitter, we estimate the probability that Mcguire

had a better career max than Bonds at 0.4619.

Figure 4.7 displays the estimated player rates on the same graph for compari-

son. Figures 4.8, 4.9, and 4.10 display the estimated number of homeruns for both

the classical analysis found in section 2.3.2 and model (4.1) for comparisons. We

make notice of the fact that both methods tend to track the observed homeruns

well with model (4.1) being slightly more accurate, although with wider probability

intervals than the classical confidence limits.

Figure 4.7: Comparison of players estimated curves using model (4.1).
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Figure 4.8: Comparison of classical method, using at-bats, and model (4.1) for
McGuire.

Figure 4.9: Baseball: Comparison of classical method, using at-bats, and and model
(4.1) for Bonds.

Figure 4.10: Baseball: Comparison of classical method, using at-bats, and and model
(4.1) for Sosa.
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CHAPTER FIVE

Simulation Studies

We are often interested in how well a proposed model tracks the truth in

any given situation. Unfortunately, the true relationship in any real application is

unknown to the researcher and, in fact, is what the researcher is attempting to model.

Under controlled experiments where we know the truth, we are able to ascertain the

model’s properties and behavior. This can be done under computer simulations.

In this chapter we consider some limited simulations where we study the prop-

erties of model (4.1) under a controlled environment where we know the truth.

Model (4.1) is designed to track what we have called inflation factors, otherwise

known as relative risks. Using the chosen fixed parameters and the covariate values,

we assumed a constant risk, r = 0.05, across the entire region. For perspective the

estimated constant risk of the Waco Habitat burglary data set was about 0.04. We

then calculate the constant mean, µr, as the product of the total households at risk

and the constant risk r. We then adjust µr up or down, based on the calculated

inflation factor, λi, with the relationship log(λi) = β0 + β1x1i + β2x2i and µi = µrλi.

Then for a single run of the simulation we generated one count yi for each of the 30

regions using a Poisson(µi) distribution where we assumed independence between

regions for simplicity. We repeated this process for 1000 total runs for each pair of

covariates (β1, β2) using the seeds 1 through 1000. Generated data was from R and

the model was run in WinBUGS using the R2WinBUGS package. The simulations

were run on 64 bit Windows Vista system with 8GB of RAM and a 2.4ghz Intel

Quad Core processor. The simulations took on average 33 to 34 hours to run when

using four sessions of R at the same time and running 250 total simulations each for

a sum of 1000.
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The generated model output from the simulations were based on model (4.1)

which assumed that the data were generated with spatial correlation. This was done

as it is often the case with spatial data that the researcher is not certain if there

is or is not spatial correlation, although there are tests to help with this decision.

We chose to model the independently generated data using spatial correlation to

determine how the model behaves as stated under the simplest case of independence.

Furthermore, the generated data are generated as a Poisson count where we satisfy

the equality of mean and variance. However, model (4.1) assumes that there is

over-dispersion in the data. We will discuss the results of this shortly in section 5.3.

We ran a total of 39 simulations, each as a pair (β1, β2), using the centered

covariate values for both renter and poverty from the Waco Habitat burglary appli-

cation found in section 3. We also used the spatial grid associated with the Waco

Habitat burglary study. We arbitrarily chose values for the β1 and β2 parameters

within and on the boundaries of the unit square. We set the intercept parameter β0

at zero and used chosen combinations of the values 1, .5, .25, .15, and 0, including

their negatives, except the pairs (1, 1), (−1, 1), (1,−1), and (−1,−1) which were

not run. We used all possible combinations of -0.15, 0, and 0.15; all combinations of

-0.25, 0, 0.25; all combinations of -1, -0.5, 0, 0.5, and 1 with the exceptions of those

listed above. For each chosen parameter pair we present in the following sections

properties determined by these simulation studies.

5.1 Coverage

We first consider how often model (4.1) produced credible sets that covered

the covariates. In our experiment we found that for each of the 90%, 95%, and 99%

credible sets for the β1 and β2 parameters had coverage of at least 0.999 or 1. Table

5.1 displays the coverage rates for the β1 parameter.

84



Table 5.1: Credible set coverage for β1.

(β1, β2) -0.15 0 0.15 -0.15 0 0.15
-0.15 1 0.999 1 1 1 0.999

0 1 1 1 1 1 1
0.15 0.999 1 1 1 1 1

The first column in Table 5.1 represents the values for β1, the top row repre-

sents the values for β2, columns four through six are for the 90% credible sets, and

columns seven through nine are for the 99% credible sets. We notice that only one

covariate pair (β1, β2) = (−0.15, 0.15) for the 99% credible sets has coverage of 0.999

for the β1 parameter, whereas the coverage for the β2 parameter was observed at 1

(not displayed). All the observed 95% credible sets achieved coverage of unity, for

both β1 and β2, for every studied covariate pair. However, the same cannot be said

for the observed 90% credible sets.

A total of three covariate pairs had observed coverage of 0.999. For the β1 pa-

rameter the two observed coverages of 0.999 where for the covariate pairs (−0.15, 0)

and (0.15,−0.15) displayed in Table 5.1. For the β2 parameter the single observed

coverage of 0.999 was for the covariate pair (0.25, 0) which is not displayed. All other

pairs had achieved coverage of unity.

We now take notice on the β0 parameter which we fixed at zero for the simu-

lation study. What we found is that the coverage for the covariate effects was nearly

unity for all covariate pairs for both β1 and β2. We do not observe this for the β0 = 0

case. As a matter of fact, we observe significantly changing coverage throughout the

covariate pairs. We discuss this now and display the information in the following

tables.

We first begin with the 90% credible set. For the covariate pair (β1, β2) =

(−0.5, 0.5) we see coverage of 0.05 whereas when (β1, β2) = (−0.5,−0.5) we see

coverage of 0.976. We also make mention that as the covariate pairs reach the

extremes, the corners in Table 5.2, the coverage approaches zero. This is due to
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the considerable negative bias we find in the estimates for β0 which we will discuss

further in section 5.3. Tables 5.3 and 5.4 display similar information but for the

95% and 99% credible sets respectively which shows an increasing coverage. This is

expected as the credible set widths increase.

5.2 Power

In this section we discus the power of the model to detect a covariate effect

when indeed one exists. That is, we present the percentage of times the obtained

credible sets exclude the value zero when indeed the covariate value is not zero.

Since we fixed the value for β0 at zero, we do not display any such results for this

parameter.

We first start with the 90% credible set for the parameter β1 which Table 5.5

displays the observed results from our simulation. Notice that for the covariate pair

(β1, β2) = (−0.25, 0.25) we observe a power of 0.995 whereas for the covariate pair

(−0.15,−0.15) we observe a power of 0.383. When β1 = 0 then we do not display any

information, represented by the value NA, since power is defined as the probability

of correctly rejecting the null hypothesis in the frequentist context. Tables 5.6 and

5.7 display similar information where the power tends to decrease, relative to Table

5.5, as the credible sets are wider and have more of a chance to include the value of

zero.

We now turn our attention to the power for the β2 parameter. Tables 5.8, 5.9,

and 5.10 display this information in the same format as above.
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Table 5.2: 90% Credible set coverage for β0.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0 0 0

-0.5 0 0.976 1 0.05 0
-0.25 1 1 1
-0.15 1 1 1

0 1 1 1 1 0.94 0.034 0 0
0.15 1 0.994 0.006
0.25 1 0.346 0
0.5 1 1 0 0 0
1 0 0 0

Table 5.3: 95% Credible set coverage for β0.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0 0.003 0

-0.5 0 0.999 1 0.288 0
-0.25 1 1 1
-0.15 1 1 1

0 1 1 1 1 0.997 0.217 0 0
0.15 1 1 0.081
0.25 1 0.782 0
0.5 1 1 0 0 0
1 0 0 0

Table 5.4: 99% Credible set coverage for β0.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0 0.371 0.104

-0.5 0 1 1 0.956 0
-0.25 1 1 1
-0.15 1 1 1

0 0.999 1 1 1 1 0.94 0 0
0.15 1 1 0.779
0.25 1 0.999 0
0.5 0.999 1 0 0 0
1 0 0 0
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Table 5.5: 90% Credible set power for β1.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 1 1 1

-0.5 1 1 1 1 1
-0.25 0.982 0.99 0.995
-0.15 0.383 0.398 0.405

0 NA NA NA NA NA NA NA NA NA
0.15 0.443 0.466 0.453
0.25 0.997 0.998 1
0.5 1 1 1 1 1
1 1 1 1

Table 5.6: 95% Credible set power for β1.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 1 1 1

-0.5 1 1 1 1 1
-0.25 0.9 0.917 0.952
-0.15 0.116 0.126 0.126

0 NA NA NA NA NA NA NA NA NA
0.15 0.155 0.149 0.163
0.25 0.962 0.984 0.986
0.5 1 1 1 1 1
1 1 1 1

Table 5.7: 99% Credible set power for β1.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1

β1

-1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 1 1 1

-0.5 1 1 1 1 1
-0.25 0.351 0.409 0.485
-0.15 0.002 0.004 0.001

0 NA NA NA NA NA NA NA NA NA
0.15 0.004 0.002 0.002
0.25 0.531 0.531 0.56
0.5 1 1 1 1 1
1 1 1 1
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Table 5.8: 90% Credible set power for β2.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 1 NA 1

-0.5 1 1 NA 1 1
-0.25 0.979 NA 0.995
-0.15 0.404 NA 0.433

0 1 0.986 0.408 NA 0.444 0.989 1 1
0.15 0.413 NA 0.418
0.25 0.988 NA 0.988
0.5 1 1 NA 1 1
1 1 NA 1

Table 5.9: 95% Credible set power for β2.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 1 NA 1

-0.5 1 1 NA 1 1
-0.25 0.905 NA 0.944
-0.15 0.161 NA 0.15

0 1 0.915 0.173 NA 0.148 0.94 1 1
0.15 0.171 NA 0.156
0.25 0.917 NA 0.94
0.5 1 1 NA 1 1
1 1 NA 1

Table 5.10: 99% Credible set power for β2.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 1 NA 1

-0.5 1 1 NA 1 1
-0.25 0.422 NA 0.518
-0.15 0.004 NA 0.006

0 1 0.438 0.004 NA 0.005 0.492 1 1
0.15 0.004 NA 0.005
0.25 0.424 NA 0.402
0.5 1 1 NA 1 1
1 1 NA 1
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5.3 Mean Estimates

In this section we consider the mean of the estimates for each of the parameters

β0, β1, and β2. We also provide the associated standard deviation for the distribution

of the observed Bayesian point estimates, based on squared error loss, returned from

model (4.1). For each of the 1000 simulated data sets, we obtained a Bayesian point

estimate using the posterior mean of the posterior distribution and display here the

mean of those estimates along with the sample standard deviation of those means.

Table 5.11 displays the mean for the resulting posterior mean estimates for β0 and

Table 5.12 displays the associated standard deviation.

What we notice in Table 5.11 is a significant negative bias when both β1 and β2

get positive and large. Furthermore, this bias is also evident in the upper left portion

of the table where β1 and β2 get negative and large, although the bias does not appear

to be as significant. For example, when the covariate pair (β1, β2) = (.5, .5) the mean

of the distribution of β̂0 is -0.832 with a estimated standard deviation of 0.023.

This could be a result of no over-dispersion in the generated data and since the

model places the log-linear relationship on the mean of the Poisson rates, assuming

that the Poisson rates are random, rather than the rates themselves model (4.1) uses

the β0 parameter to correct for this. That is to say, we observe the negative bias in

the β0 term as a result of the fact the data are distributed Poisson, with equality

of mean and variance, and model (4.1) assumes that there is over-dispersion in

the data. When this over-dispersion is not present the parameter β0 is adjusted

downward reducing the variance of the Gamma. This could also be a result of

an induced prior or the fact that the used covariates are probably correlated, the

poverty and renter terms from the Waco data set.

We notice in Tables 5.13 and 5.15 that model (4.1) provides quite accurate esti-

mates for the parameters β1 and β2 respectively. The associated standard deviations

of these distributions can be found in Tables 5.14 and 5.16 respectively.
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Table 5.11: Mean of Bayesian point estimates β̂0.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 -0.269 -0.159 -0.167

-0.5 -0.235 -0.621 -0.012 -0.115 -0.045
-0.25 0.033 0.015 -0.049
-0.15 0.037 0.001 -0.029

0 -0.04 0.047 0.031 -0.007 -0.066 -0.118 -0.3 -0.937
0.15 0.004 -0.052 -0.13
0.25 0.007 -0.095 -0.266
0.5 0.035 -0.006 -0.262 -0.832 -1.75
1 -0.351 -0.847 -1.649

Table 5.12: Standard Deviation of Bayesian point estimates β̂0.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0.022 0.018 0.017

-0.5 0.02 0.015 0.012 0.016 0.022
-0.25 0.009 0.011 0.013
-0.15 0.009 0.011 0.013

0 0.013 0.009 0.01 0.012 0.014 0.016 0.019 0.024
0.15 0.012 0.014 0.016
0.25 0.011 0.015 0.018
0.5 0.009 0.012 0.018 0.023 0.026
1 0.02 0.024 0.026

Table 5.13: Mean of Bayesian point estimates β̂1.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 -0.975 -0.987 -0.993

-0.5 -0.485 -0.494 -0.497 -0.498 -0.497
-0.25 -0.248 -0.248 -0.247
-0.15 -0.148 -0.149 -0.148

0 0.001 0.001 0.002 0.002 0.001 0.001 0.002 0.002
0.15 0.152 0.151 0.151
0.25 0.251 0.25 0.252
0.5 0.498 0.501 0.501 0.499 0.497
1 0.997 0.995 0.99
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Table 5.14: Standard Deviation of Bayesian point estimates β̂1.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0.058 0.051 0.043

-0.5 0.055 0.049 0.041 0.036 0.031
-0.25 0.04 0.039 0.035
-0.15 0.038 0.037 0.035

0 0.046 0.038 0.037 0.035 0.034 0.001 0.031 0.026
0.15 0.035 0.033 0.032
0.25 0.036 0.033 0.031
0.5 0.041 0.035 0.032 0.028 0.023
1 0.033 0.029 0.025

Table 5.15: Mean of Bayesian point estimates β̂2.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 -0.501 -0.001 0.499

-0.5 -0.997 -0.497 0.001 0.499 0.996
-0.25 -0.249 0 0.25
-0.15 -0.149 0 0.15

0 -0.994 -0.249 -0.15 0 0.15 0.249 0.496 0.991
0.15 -0.15 0.001 0.149
0.25 -0.25 0 0.246
0.5 -0.994 -0.499 -0.003 0.496 0.978
1 -0.498 -0.001 0.487

Table 5.16: Standard Deviation of Bayesian point estimates β̂2.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0.041 0.04 0.039

-0.5 0.045 0.043 0.041 0.039 0.036
-0.25 0.043 0.041 0.038
-0.15 0.041 0.04 0.039

0 0.047 0.042 0.041 0.04 0.036 0.038 0.035 0.031
0.15 0.041 0.04 0.038
0.25 0.041 0.039
0.5 0.049 0.042 0.038 0.036 0.033 0.028
1 0.041 0.035 0.029
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5.4 Credible Set Widths

In this section we display the mean credible set widths along with their as-

sociated standard deviations for each of the parameters β0, β1, and β2 for each of

the 90%, 95%, and 99% credible sets. Recall that we kept the sample size constant

at one observed yi for each of the 30 regions for the Waco Police Beat map. We

start with the 90% credible set widths for parameter β0 found in Table 5.17 and the

associated standard deviation found in Table 5.18. For example, the covariate pair

(−0.15, 0.15) results in a 90% credible set width of 0.176 with associated standard

deviation of 0.003 for the β0 parameter.

Tables 5.23 and 5.24 provide the mean widths for the 95% credible sets and

standard deviations respectively for β0 while Tables 5.29 and 5.30 provide the same

information but for the 99% credible set widths. Similar mean width information

for β1 can be found in Tables 5.19, 5.25, and 5.31 while Tables 5.20, 5.26, and 5.32

provide the associated standard deviations. Similar mean width information for β2

can be found in Tables 5.21, 5.27, and 5.33 while Tables 5.22, 5.28, and 5.34 provide

the associated standard deviations.

What we observe in these tables is that the credible set widths and associated

standard deviations are pretty stable until the parameters move to the extremes of

the table. Even in that scenario there appears to be only a moderate increase in

width and associated standard deviation.

5.5 Discussion

In our simulation studies we have found that model (4.1) provides coverage

of near unity, reasonable power for detecting a covariate effect when one is indeed

present while at the same time providing quite accurate point estimates with the

exception for the β0 parameter which shows considerable negative bias. It is our

hypothesis that this negative bias is a result of the fact that our model assumes the
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Table 5.17: Mean of 90% credible set widths for β̂0.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0.213 0.197 0.189

-0.5 0.205 0.186 0.177 0.181 0.201
-0.25 0.174 0.174 0.177
-0.15 0.173 0.174 0.176

0 0.184 0.172 0.172 0.175 0.178 0.181 0.194 0.23
0.15 0.174 0.177 0.182
0.25 0.174 0.18 0.19
0.5 0.176 0.175 0.189 0.225 0.288
1 0.195 0.227 0.283

Table 5.18: Standard deviation of 90% credible sets widths for β̂0.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0.006 0.005 0.004

-0.5 0.005 0.004 0.003 0.003 0.004
-0.25 0.003 0.003 0.003
-0.15 0.003 0.003 0.003

0 0.003 0.003 0.003 0.003 0.003 0.003 0.005 0.004
0.15 0.003 0.003 0.003
0.25 0.003 0.003 0.003
0.5 0.003 0.003 0.003 0.005 0.005
1 0.004 0.005 0.006

Table 5.19: Mean of 90% credible set widths for β̂1.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0.426 0.386 0.356

-0.5 0.408 0.367 0.336 0.32 0.319
-0.25 0.331 0.321 0.314
-0.15 0.321 0.316 0.312

0 0.359 0.318 0.315 0.311 0.308 0.307 0.308 0.33
0.15 0.311 0.308 0.307
0.25 0.312 0.308 0.308
0.5 0.333 0.316 0.311 0.325 0.375
1 0.329 0.339 0.375
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Table 5.20: Standard deviation of 90% credible sets widths for β̂1.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0.012 0.011 0.009

-0.5 0.01 0.009 0.007 0.006 0.006
-0.25 0.007 0.006 0.006
-0.15 0.006 0.006 0.006

0 0.007 0.006 0.006 0.006 0.006 0.006 0.008 0.005
0.15 0.006 0.006 0.006
0.25 0.006 0.006 0.005
0.5 0.006 0.006 0.006 0.009 0.005
1 0.007 0.01 0.011

Table 5.21: Mean of 90% credible set widths for β̂2.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0.34 0.327 0.32

-0.5 0.36 0.337 0.321 0.313 0.322
-0.25 0.325 0.317 0.313
-0.15 0.32 0.316 0.314

0 0.357 0.322 0.319 0.315 0.314 0.313 0.316 0.345
0.15 0.318 0.316 0.315
0.25 0.321 0.317 0.318
0.5 0.354 0.33 0.324 0.342 0.398
1 0.345 0.355 0.395

Table 5.22: Standard deviation of 90% credible sets widths for β̂2.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0.006 0.008 0.008

-0.5 0.007 0.006 0.006 0.006 0.006
-0.25 0.006 0.006 0.006
-0.15 0.006 0.006 0.006

0 0.007 0.006 0.006 0.006 0.006 0.006 0.008 0.006
0.15 0.006 0.006 0.006
0.25 0.006 0.006 0.006
0.5 0.007 0.006 0.006 0.009 0.006
1 0.007 0.01 0.012
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Table 5.23: Mean of 95% credible set widths for β̂0.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0.255 0.236 0.227

-0.5 0.246 0.223 0.211 0.217 0.241
-0.25 0.208 0.208 0.212
-0.15 0.207 0.208 0.211

0 0.22 0.206 0.207 0.209 0.214 0.217 0.232 0.275
0.15 0.209 0.212 0.218
0.25 0.208 0.215 0.227
0.5 0.211 0.21 0.226 0.27 0.345
1 0.233 0.272 0.339

Table 5.24: Standard deviation of 95% credible sets widths for β̂0.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0.007 0.006 0.005

-0.5 0.006 0.005 0.004 0.004 0.005
-0.25 0.004 0.004 0.004
-0.15 0.004 0.004 0.004

0 0.004 0.004 0.004 0.004 0.004 0.004 0.006 0.005
0.15 0.004 0.004 0.004
0.25 0.004 0.004 0.004
0.5 0.004 0.004 0.004 0.006 0.006
1 0.005 0.007 0.008

Table 5.25: Mean of 95% credible set widths for β̂1.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0.509 0.462 0.427

-0.5 0.489 0.44 0.403 0.384 0.384
-0.25 0.397 0.385 0.377
-0.15 0.385 0.379 0.375

0 0.43 0.382 0.378 0.373 0.37 0.369 0.37 0.396
0.15 0.373 0.37 0.369
0.25 0.374 0.37 0.37
0.5 0.399 0.379 0.374 0.392 0.452
1 0.395 0.408 0.452
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Table 5.26: Standard deviation of 95% credible sets widths for β̂1.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0.014 0.013 0.011

-0.5 0.012 0.01 0.008 0.008 0.007
-0.25 0.008 0.008 0.007
-0.15 0.007 0.007 0.007

0 0.009 0.008 0.007 0.007 0.007 0.007 0.01 0.006
0.15 0.007 0.007 0.007
0.25 0.007 0.007 0.006
0.5 0.008 0.007 0.007 0.012 0.007
1 0.008 0.013 0.015

Table 5.27: Mean of 95% credible set widths for β̂2.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0.408 0.392 0.384

-0.5 0.431 0.404 0.384 0.376 0.387
-0.25 0.389 0.38 0.375
-0.15 0.384 0.379 0.376

0 0.427 0.386 0.382 0.378 0.376 0.376 0.379 0.415
0.15 0.382 0.379 0.378
0.25 0.385 0.38 0.382
0.5 0.424 0.396 0.388 0.411 0.48
1 0.414 0.427 0.476

Table 5.28: Standard deviation of 95% credible sets widths for β̂2.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0.007 0.01 0.01

-0.5 0.009 0.008 0.007 0.007 0.007
-0.25 0.007 0.007 0.007
-0.15 0.007 0.007 0.007

0 0.009 0.007 0.007 0.007 0.007 0.007 0.01 0.007
0.15 0.007 0.007 0.007
0.25 0.007 0.007 0.007
0.5 0.009 0.008 0.007 0.012 0.008
1 0.008 0.013 0.016
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Table 5.29: Mean of 99% credible set widths for β̂0.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0.339 0.314 0.301

-0.5 0.326 0.296 0.281 0.289 0.321
-0.25 0.277 0.277 0.283
-0.15 0.275 0.276 0.28

0 0.293 0.274 0.275 0.279 0.284 0.29 0.309 0.366
0.15 0.278 0.283 0.29
0.25 0.278 0.286 0.302
0.5 0.28 0.279 0.301 0.358 0.46
1 0.31 0.362 0.452

Table 5.30: Standard deviation of 99% credible sets widths for β̂0.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0.01 0.009 0.009

-0.5 0.008 0.007 0.006 0.006 0.007
-0.25 0.006 0.005 0.006
-0.15 0.006 0.005 0.006

0 0.006 0.005 0.005 0.006 0.006 0.006 0.009 0.008
0.15 0.006 0.006 0.006
0.25 0.006 0.006 0.006
0.5 0.006 0.006 0.006 0.01 0.009
1 0.007 0.012 0.012

Table 5.31: Mean of 99% credible set widths for β̂1.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0.677 0.616 0.569

-0.5 0.651 0.586 0.538 0.513 0.515
-0.25 0.529 0.514 0.504
-0.15 0.514 0.507 0.501

0 0.572 0.51 0.505 0.499 0.496 0.494 0.496 0.534
0.15 0.499 0.496 0.494
0.25 0.5 0.495 0.497
0.5 0.533 0.507 0.502 0.527 0.612
1 0.53 0.549 0.611
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Table 5.32: Standard deviation of 99% credible sets widths for β̂1.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0.019 0.019 0.017

-0.5 0.018 0.015 0.012 0.011 0.011
-0.25 0.012 0.011 0.011
-0.15 0.011 0.011 0.01

0 0.013 0.011 0.011 0.011 0.011 0.011 0.017 0.01
0.15 0.011 0.011 0.011
0.25 0.011 0.011 0.01
0.5 0.012 0.011 0.011 0.021 0.012
1 0.012 0.022 0.028

Table 5.33: Mean of 99% credible set widths for β̂2.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0.545 0.523 0.512

-0.5 0.576 0.538 0.513 0.502 0.519
-0.25 0.519 0.508 0.501
-0.15 0.512 0.506 0.502

0 0.569 0.514 0.51 0.505 0.502 0.502 0.507 0.558
0.15 0.51 0.506 0.506
0.25 0.514 0.508 0.512
0.5 0.565 0.528 0.52 0.552 0.648
1 0.553 0.574 0.642

Table 5.34: Standard deviation of 99% credible sets widths for β̂2.

(β1, β2) -1 -0.5 -0.25 -0.15 0 0.15 0.25 0.5 1
-1 0.011 0.016 0.016

-0.5 0.013 0.011 0.011 0.011 0.011
-0.25 0.011 0.011 0.011
-0.15 0.01 0.011 0.011

0 0.013 0.011 0.011 0.011 0.011 0.011 0.017 0.011
0.15 0.011 0.011 0.01
0.25 0.011 0.011 0.011
0.5 0.013 0.012 0.011 0.02 0.013
1 0.012 0.022 0.029
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the variance of the observations is greater than that of the mean, however, under

the simulations we assumed both independence and equality of mean and variance

for the generated data. Therefore, it appears that model (4.1) adjusts downward

the mean of the assumed Gamma distributed Poisson rates through a negative bias

on the β0 parameter to account for this lack of over-dispersion. The credible set

widths, and associated standard deviations, seem rather stable for all the covariate

pairs chosen until the values of β1 and β2 move to extreme values.

In short, the model behaved quite well under our limited simulation studies.

Further simulations would be recommended to study the case where spatial correla-

tion and over-dispersion are also present in the observed yi.
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CHAPTER SIX

Discussion

Public health researchers, criminologists, biologists, ecologists, and many other

forms of science rely on observed count data as opposed to controlled experiments

to construct hypotheses about a system under study. It is desirable to determine a

cause and effect relationship from data, unfortunately in the absence of a controlled

experiment we are unable to do this effectively and efficiently most of the time.

In this dissertation we have studied the Poisson regression model outlined

in McBride (2006), changed the parameterization and proposed prior distributions

which improved model behavior when using the software WinBUGGS, and rean-

alyzed the original baseball and habitat burglary data using the newly proposed

model. We then studied the proposed model (4.1) under the simplified assumptions

of independence between regions, no over-dispersion, and no spatial correlation. As

unrealistic as that scenario is in practice we found that model (4.1) provided stable

credible set widths and quite accurate point estimates for the parameter effects while

the intercept term proved to be heavily biased toward large negative values.

There are many potential explanations for the observed bias in the β0 term.

On explanation is that the generated data were not over-dispersed. Recall that

the log-linear relationship is placed on the mean of the assumed gamma distributed

inflation factors. Since the variance of the gamma distribution is a linear multiple

of its mean, V (X) = α
β2 = E(X)

β
, model (4.1) seems to down play the variability

in this distribution by correcting the mean downward through the β0 term. This

effectively reduces the variability in the gamma distribution, which in the absence of

over-dispersion we would not need this level of the hierarchy at all. That is to say,

if we knew a-priori that the data were indeed Poisson and satisfied the equality of
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mean and variance we would expect a near exact log-linear relationship as opposed

to a log-linear mean relationship. It is also possible that this bias is due to the fact

that we did not include an interaction term and used covariates that, in reality, are

correlated; however, the generated data did not include an interaction term. It is

also possible that the induced prior on the actual mean of the Gamma distribution

is causing the bias.

The observed autocorrelation problem in the chains was discussed with the

assumption that we used independent priors for the covariate terms. As suggested

by some researchers including Ntzoufras (2009) we could have adopted a multivariate

normal prior for these terms to have helped alleviate this issue. This would require

prior information on the correlation structure of the covariate terms. In our habitat

burglary example we used both poverty and the number of renters as covariates

and there is good reason to believe that there would be a positive and moderate to

high correlation structure between these two covariates. However, in the absence

of such a priori information it using independent priors may be desirable since the

a priori assumption of independence does not force independence in the posterior

distributions of the covariate terms.

We did consider this option, using (1.15), for the habitat burglary data at the

end of our research on this issue and it did help considerably with the autocorrelation

in the chains. We chose to use a multivariate normal prior for just the renter and

poverty terms and assumed independence between the area and intercept terms; the

correlation value we chose was 0.75 and we did not spend much time considering this

model structure instead focusing on the independence structure, nor did we present

this approach in this work.

It is possible that the observed decrease in thinning rate using our suggested

structure was due to a number of different reasons. These may include an interaction

between the specific data available and the computer platform were were using, the
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specific chosen beta distribution, the limited support of the beta distribution, or

several other factors. We seem to have stumbled on an example where we have

better performance using our proposed model as opposed to 1.15. Therefore, we

believe that the current parameterization seemed to have behaved better in this

application and may show promise in out performing 1.15 in general but we have

not tested this assertion. For reference the machines used in this work were three

Windows Vista operating systems with 8GB of RAM with 2.4 Intel Quad Core

processors.

Another observation we have made concerning our proposed model was that

the computer run time was decreased and that the time taken per update using

WinBUGS was overall much faster than with (1.15). Although we did not test this

assertion this was observed for the Waco data set as well as a current work using

the entire State of Texas county map under similar assumptions. The Waco data

set was run with only a few seconds difference while using the entire State of Texas

county map was significantly faster with (4.1).

As shown throughout the body of this work, model (4.1) has shown adaptabil-

ity to many different applications including spatial disease mapping. This allows for

great flexibility in the possible areas that we envision the model to be used. Further-

more, although we have only presented two applications, we believe the model has

performed well both in application and under simulations. Although further simula-

tion studies are warranted and greatly recommended we believe that our new model

(4.1) shows real promise to applications in public health data and any situation

where over/under-dispersion may be suspected.
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