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A Hubbard tree is a set of points at the core of dendritic Julia sets. These trees encapsu-

late all the information about the larger Julia set, but in a much smaller, easier to understand

structure. We discuss the structure of Hubbard trees, in particular, we provide a useful def-

inition of branch point and endpoint. Afterwards, we demonstrate the existence of some

trees that cannot be Hubbard trees in any meaningful context. Later, we turn our attention

to the structure of inverse limits of Hubbard trees, making use of the definition of branch

point and endpoint tenured earlier in the work and demonstrate that one Hubbard tree, with

minor alterations, can generate infinitely many mutually non-homeomorphic inverse limits.





Copyright © 2023 by Cordell Hammon

All rights reserved



iv 

 

TABLE OF CONTENTS 

LIST OF FIGURES .............................................................................................................v 

ACKNOWLEDGMENTS ................................................................................................. vi 

DEDICATION .................................................................................................................. vii 

CHAPTER ONE ..................................................................................................................1 

    Introduction and Preliminaries .........................................................................................1 

        Overview ......................................................................................................................1 

        Preliminary Definitions, Notation, and Concepts .......................................................9 

CHAPTER TWO ...............................................................................................................18 

    Branch Points and The Structure of Hubbard Trees ......................................................18 

        Branch Points.............................................................................................................18 

        The Structure of Hubbard Trees ................................................................................20 

CHAPTER THREE ...........................................................................................................30 

    Trees That Cannot Be Hubbard Trees ...........................................................................30 

        Two Sufficient Conditions for non-Hubbardizablity ..................................................32 

        A Full Classification of all Hubbardizable Trees with Fewer than Four 

            Branch  Points........................................................................................................39 

 

CHAPTER FOUR ..............................................................................................................51 

    Branch Points and Endpoints of Hubbard Tree Inverse Limits .....................................51 

CHAPTER FIVE ...............................................................................................................57 

    Constructing Infinite Families with Pairwise Non-Homeomorphic 

        Inverse Limits ............................................................................................................57 

        Different Hubbard Tree, Same Dendrite, Different Inverse Limit .............................61 

        Same Hubbard Tree, Same Dendritic Julia Set, Different Inverse Limits .................69 

CHAPTER SIX ..................................................................................................................76 

    Further Work ..................................................................................................................76 

        Future Directions for Chapter Three .........................................................................76 

        Future Directions for Chapter Five ...........................................................................76 

APPENDIX ........................................................................................................................79 

    Kneading Sequence Arguments .....................................................................................80 

BIBLIOGRAPHY ..............................................................................................................92 



v 

LIST OF FIGURES 

The Mandelbrot Set..............................................................................................................1 

A zoomed in Mandelbrot set ................................................................................................2 

A QR Code for a gif zooming into the Mandelbrot Set .......................................................3 

Multibrot sets for 𝑓(𝑧) = 𝑧𝑑 + 𝑐 for 𝑑 ∈ {3,4,5,6}.............................................................4 

A QR Code for a video of multibrot sets for powers 0 ≤ 𝑑 ≤ 8 .........................................5 

Examples of Julia sets ..........................................................................................................6 

Comparison Between Different Definitions of Endpoints .................................................18 

Examples of Hubbard Trees...............................................................................................21 

Hubbard Tree with Kneading Sequence ∗ 110 ..................................................................26 

A tree, 𝑇, for which there does not exist a function 𝑓: 𝑇 → 𝑇 such that (𝑇, 𝑓) is a  

    Hubbard tree...................................................................................................................32 

The trees 𝐹1
4, 𝐹2

4, and 𝐹3
4 ....................................................................................................35 

𝐹2
4 with branch points labeled ............................................................................................36 

Using 5.2.1 to construct a Hubbard tree with different kneading sequences .....................74 



ACKNOWLEDGMENTS

Thank you, of course, to my loving parents without whom I would not be here. Your

support through these many years of life is priceless. Many thanks as well to my pals Davis,

John, and Mitch for helping form me into the man I am now. To Mylan Redfern, you were

the first math professor to take an interest in me, the first who made it seem like I could

be a mathematician too. You inspired me. This dissertation would not be possible without

the many hours of help from Jonathan Meddaugh. Without your guidance and expertise,

this may well have taken two more years. I owe much to the people on the board. Brian

Raines, your introductory Topology course is what first made me interested in the subject.

Thank you for taking me on as a pupil. Scott Varda, thank you for taking a step out of your

comfort zone to read a Mathematics dissertation. David Ryden, thank you for putting in

the time to do this.

Shout-outs to Beartown: Alden, Emily, Jacob, James, Josefina, and Sunday for the

laughs, the meals, and the high spirits throughout our shared time at Baylor. Along these

same lines, my dog, Mango, is always a bright spot whose boundless enthusiasm rubs off

on me on particularly stressful days.

To my in-laws, Maddie, Ronnie, and Candice: thank you for making me feel like a part

of the family. Nana and Papa, y’all are the coolest grandparents a boy can have.

vi



To Ayra

vii



CHAPTER ONE

Introduction and Preliminaries

1.1 Overview

There is an old joke that goes:

Q: What does the “B.” in Benoit B. Mandelbrot stand for?

A: Benoit B. Mandelbrot.

The black shape seen in Figure 1.1 is called the Mandelbrot set and is named after

Benoit B. Mandelbrot who popularized it in 1982 [Man82], although it was likely first

described by Brooks and Matelski in 1981 [BM81]. We say “likely first described” because

the question of “who discovered the Mandelbrot set?” is surprisingly difficult to answer.

The 1990 article by Horgan [Hor90] does a fantastic job of digging into the history of the

beloved shape.

Figure 1.1. The Mandelbrot Set
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The beginning joke is funny (or, at the very least, funny to some mathematicians) be-

cause the Mandelbrot set is “quasi-self-similar”. That is, when one zooms in on certain

portions of the Mandelbrot set, one can find another almost exact copy of the Mandelbrot

set. In fact any neighborhood of a point in the boundary of the Mandelbrot set, contains

infinitely many embedded copies of the Mandelbrot set [Mil89]. Such a zoom in can be

found in Figure 1.2. This figure is magnified roughly two hundred thousand times com-

pared to Figure 1.1. Both figures were created by Wolfgang Beyer with the program Ultra

Fractal 3., CC BY-SA 3.0 http://creativecommons.org/licenses/by-sa/3.0/, via Wikimedia

Commons.

Figure 1.2. A zoomed in Mandelbrot set centered at −.743643135 + .131825963i

To see a gif zooming in on the Mandelbrot set scan the QR Code in Figure 1.3. The gif

was created by Simpsons contributor at English Wikipedia, Public domain, via Wikimedia

Commons. For those people reading a digital version of this dissertation, you can view the

gif by clicking here.

The Mandelbrot set, denotedM, is of primary importance in the study of iteration of

complex polynomials and, not surprisingly, is constructed via iteration of complex valued
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Figure 1.3. A QR Code for a gif zooming into the Mandelbrot Set

polynomials. For a given complex number, c we define fc(z) : C→ C by fc(z) = z2 + c.

The Mandelbrot set is defined as follows:

Definition 1.1.1: M = {c ∈ C : limn→∞ f
n
c (0) 6=∞}.

So, for example, consider c = i. Then fi(z) = z2 + i. Now consider the points to which

0 maps under iteration of fi.

• fi(0) = 02 + i = i,

• fi(i) = i2 + i = −1 + i,

• fi(−1 + i) = (−1 + i)2 + i = −i,

• fi(−i) = (−i)2 + i = −1 + i

From here, if we continue to iterate fi we get repeating outputs −i,−1 + i,−i,−1 + i, . . .

and so it is clear that limn→∞ f
n
i (0) 6=∞. Thus i is in the Mandelbrot set. In this way, the

Mandelbrot set is made by varying c and iterating fc(z) = z2 + c starting with z = 0.

While there is only one set known as “The Mandelbrot Set” (the set associated with

the function f(z) = z2 + c), there are similar sets corresponding to different functions
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f(z) = zd + c. These sets are often called “multibrot sets” to distinguish them from

“The” Mandelbrot set. Figure 1.4 shows the multibrot sets for the powers 3, 4, 5, and

6. All multibrot set images were created by Cuddlyable3, Public domain, via Wikimedia

Commons.

(a) multibrot set for f(z) = z3 + c (b) multibrot set for f(z) = z4 + c

(c) multibrot set for f(z) = z5 + c (d) multibrot set for f(z) = z6 + c

Figure 1.4. Multibrot sets for f(z) = zd + c for d ∈ {3, 4, 5, 6}

To see a video of various multibrot sets for f(z) = zd + c as d varies from zero to

eightscan the QR Code in Figure 1.5. For those people reading a digital version of this

dissertation, you can view the video by clicking here. The video was created by George,

Public domain, via Wikimedia Commons.

There is another structure ; similar to the Mandelbrot set and closely related but discov-

ered nearly a half century earlier. This structure is the Julia set of a polynomial. Whereas
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Figure 1.5. A QR Code for a video of various multibrot sets for f(z) = zd + c as d varies
from zero to eight

M is made by fixing z = 0 and varying c in fc(z) = z2 + c, the Julia set of fc(z) is made

by fixing c and varying the inputs z.

Definition 1.1.2: For a complex polynomial, f , the filled Julia set of f , denoted K(f),

is the set {z ∈ C : limn→∞ f
n(z) 6=∞}. The Julia set of f, denoted J(f), is the boundary

of K(f), i.e. J(f) = ∂K(f).

If the polynomial is of the form fc(z) = z2 + c, we write Kc and Jc for the filled Julia

set of fc(z) and the Julia set of fc(z).

Julia sets are named after Gaston Julia, who first described them in [Jul18]. Examples

of Julia sets can be found in Figure 1.6. Figure 1.6b is cropped from the original by Morn,

CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons.

Figure 1.6c was made by Adam majewski, CC BY 3.0

https://creativecommons.org/licenses/by/3.0, via Wikimedia Commons.

So, although there is only one Mandelbrot set, each complex parameter c has its own

Julia set. As is evident from the definitions, the Mandelbrot sets and Julia sets are closely

linked. In fact, a result from [Jul18] which states that Kc is connected if and only if Kc
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contains 0, gives an alternate characterization of the Mandelbrot set, equivalent to that

found in Definition 1.1.1.

Theorem 1.1.3: M = {c ∈ C : 0 ∈ Kc} = {c ∈ C : Kc is connected}.

(a) Julia set of c = −0.4 + 0.6i

(b) Julia set of c ≈ −0.5125 + 0.5213i

(c) The Julia set of c = i

Figure 1.6. Examples of Julia sets
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But there is a deeper connection still. In [Tan90] it was shown that, if c ∈ M, then

sufficiently small neighborhoods of c inM and Jc are asymptotically similar [that is, they

behave similarly under iteration of fc and more visually inspiring, they neighborhoods

around c inM and Jc look indistinguishable]. For some truly inspiring visualizations of

the similarities between Jc andM around c we point the interested reader to [Tan90], in

particular Figures 9 - 12. Along these lines of connection, it has been shown that boundary

of the Mandelbrot set has Hausdorff dimension 2 and, there exists a dense set of points in c

in ∂M for which Jc has Hausdorff dimension 2 [Shi98].

The Julia set found in Figure 1.6c is Ki [i.e. the filled Julia set for fi(z) = z2 + i]. A

special property of this filled Julia set is that it has no interior [i.e. Ji = Ki]. Such Julia

sets are called dendritic Julia sets and always arise when 0 is strictly pre-periodic under fc

but can arise when 0 is periodic under fc. If 0 is strictly pre-periodic under fc, then c is

a Misurewicz point so named after Michał Misurewicz who studied pre-periodic points in

[Mis81]. The name “dendritic” Julia set follows from the fact that these Julia sets are, in

fact, dendrites. We fully define the term dendrite in Definition 1.2.2.

In 1984 and 1985 Adrien Douady and John Hubbard released the monumental Étude

dynamique des polynômes complexes. Partie I. and Étude dynamique des polynômes com-

plexes. Partie II. ([DH84; DH85]). These books are collectively referred to as the “Orsay

Notes” since they are based on notes written by Douady for a course he taught on holomor-

phic dynamical systems at Paris-Sud 11 University, Orsay in 1983-84.

In the Orsay Notes, Douady and Hubbard focus on holomorphic dynamical systems

and, in particular, the iteration of those polynomials x2 + c whose Julia set is dendritic.

They showed that to each dendritic Julia set, Jc, there belongs a core, called a Hubbard
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tree. The Hubbard tree is the the convex hull — in Jc — of the orbit of 0 under fc. When

studying dendritic Julia sets, it is often sufficient to study the Hubbard tree, a much simpler

structure. In fact, the Hubbard tree captures all the dynamics of the dendritic Julia set in the

sense that, if Tc is the Hubbard tree of fc(z) = z2 + c, then Jc =
⋃
n∈ω f

−n
c (T ). For more

information about Hubbard trees and their relation to Julia sets, we point the interested

reader to [Poi10].

Like many things in mathematics, the concept of “Hubbard tree” has been generalized.

These generalized Hubbard trees — which are officially called “generalized Hubbard trees”

— are trees, T , along with associated functions, f , such that the pair (T, f) shares many of

the same properties that a standard Hubbard tree and its quadratic polynomial possess and

are the main focus of this work. The full definition of generalized Hubbard tree is given in

Definition 1.2.17.

However, Hubbard trees and Julia sets are not the only tools used to understand dynam-

ical systems. One such useful tool is that of the inverse limit. Inverse limits originated in

the field of category theory but have been quickly adopted by those studying dynamical

systems. We give the dynamical systems definition here.

Definition 1.1.4: Given a sequence of spaces 〈Xi〉i∈N and functions fi : Xi+1 → Xi,

we say the inverse limit of the system {Xi, fi}, denoted lim←−{Xi, fi}, is the subset of the

product space
∏
Xi to which the point x belongs if and only if fi(xi+1) = xi for all i ∈ N.

This is especially useful if each Xi, fi is the same (e.g. the polynomial f(z) = z2 + c

iterating on C). In this case, instead of writing lim←−{Xi, fi} we simply write lim←−{X, f}.

In this case, an inverse limit is a single object that is related to a dynamical system and
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that captures all the dynamics of the associated system. Each point in the inverse limit

space is a thread that contains the entire history of a single point in the underlying space

X . Similarly, for any point p ∈ X , one can consider the set of all the points in lim←−{X, f}

which have p in their first coordinate. This set of points is the set of all possible paths one

can take to arrive at p.

For the purposes of this paper, each space Xi is the same space and each function fi is

the same

Inverse limits of Julia sets and other closely related structures have been studied by

many (e.g. [Bal07], [RŠ07], [Ing95], [Ing00]). In this paper we will study, in part, the

various functions f that can be associated with a single tree T such that (T, f) is a gener-

alized Hubbard tree, as well as the various inverse limits which arise from these different

functions.

1.2 Preliminary Definitions, Notation, and Concepts

We will use N,Z,R,C are the sets of positive integers, integers, real numbers, and

complex numbers, respectively, and we let ω = N ∪ {0} denote the set of nonnegative

integers.

For a function f : X → X , fn denotes the composition of f with itself n times (with

f 0 being the identity function). For x ∈ X , the orbit of x under f is the set Orbf (x) =

{fn(x)}n∈ω. If f is clear from context we writeOrb(x) forOrbf (x). If fn(x) = x for some

n ∈ N, then x is said to be a periodic point of period n. If n is minimal in this regard, we

say that x has prime period n. If there exists a minimal n ∈ N such that fn(x) is periodic
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under f but fn−1(x) is not periodic under f , we say that x is pre-periodic with respect to

f .

We adopt the following notation concerning sequences. A sequence in a space X is a

function whose domain is some (possibly unbounded) interval in Z. A sequence is right-

infinite if its domain is of the form [n,∞) for some n ∈ Z. A right-infinite sequence with

unspecified domain will be assumed to have domain equal to ω. Similarly, a left-infinite

sequence is one with domain of the form (−∞, n] for some n ∈ Z and a left-infinite

sequence with unspecified domain will be assumed to have domain (−∞, 0]. A bi-infinite

sequence is one with domain equal to Z. A finite sequence is one with domain of the form

[n,m] for some n < m ∈ Z and is said to have length m − n + 1. A finite sequence of

length l and unspecified domain will be assumed to have domain equal to [0, l − 1].

It will be useful in the development of our results to discuss the restriction of a (finite or

infinite) sequence to a smaller domain. If [n,m] is a subset of the domain of a sequence z,

we use z[n,m] to denote the restriction of z to the domain [n,m] and zn to denote the image

of n. If z is left or right infinite, we use z(−∞,n] or z[n,∞) to denote the appropriate restricted

sequence.

For clarity and convenience, it will be useful to tell whether a sequence is bi-inifite,

left-infinite, or right-infinite at a quick glance. To make this distinction, we will use a bar,

left-arrow, or right-arrow over a symbol to emphasize that it is bi-infinite (z), left infinite

(←−z ), or right infinite (−→z ), respectively. If z is a bi-infinite sequence and n ∈ Z, we will use

←−z n to denote the left-infinite sequence z(−∞,n] and−→z n is the right infinite string z[n,∞). We

will also use this system of notation for domain-restriction on left/right-infinite sequences,
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e.g. if−→z is a right-infinite sequence, then−→z n = −→z [n,∞) and←−z n =←−z (−∞,n] (and similarly

for left-infinite sequences).

Finally, we define the shift map, σ on the space of right- or bi-infinite sequences as

follows. If α is a right-infinite (or bi-infinite sequence), then the shift of α, denoted σ(α),

is the right-infinite (or bi-infinite) sequence β such that βn = αn+1 for all n in the domain

of α. So, if α = α0α1α2 . . . then σ(α) = α1α2α3 . . . Note that σ is invertible on the space

of bi-infinite sequences.

We end our barrage of definitions associated with sequence with an operation that helps

us work with sequences.

Definition 1.2.1: We use _ to notate string concatenation. For example, if α = 110

and β = ABC then α_β = 110ABC. Furthermore, we use an overline to denote infinite

repeating strings. So 1 = 111111 . . .

Our primary method for investigation of Julia sets will be through the use of abstract

dendritic Julia sets, which we formally define in Definition 1.2.10 after the following pre-

liminary notions which are adapted from [Bal07].

A continuum is a compact, connected, metric space. A continuum X is uniquely arc-

wise connected provided that, for any two distinct points p, q ∈ X , there is exactly one

arc in X with p and q as endpoints. We will use [p, q] to denote this arc, and define

(p, q) = [p, q] \ {p, q}.

Definition 1.2.2: A dendrite is a uniquely arcwise connected, locally connected con-

tinuum.
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Note that finite acyclic graphs consisting of exactly one non-trivial component are den-

drites. However, dendrites can also have significantly more complicated structure.

Definition 1.2.3: We say that a function f : D → D is locally one-to-one at a point

x ∈ D if there is a neighborhood U of x such that f |U is one-to-one. A point at which f is

not locally one-to-one will be called a turning point of f . A map from a dendrite into itself

will be called unimodal if it has at most one turning point. A map f : D → D is locally

eventually onto (l.e.o) if for any open set U ⊂ D there exists n ∈ ω with fn(U) = D.

Lemma 1.2.4: Let D be a dendrite and f : D → D be continuous. Then f is injective

on any connected subset which does not contain a turning point.

Proof. Suppose x and y are distinct points of D with f(x) = f(y). Let p = f(x) and let

I = f([x, y]). If I is a singleton, then every point in [x, y] is a turning point. Otherwise,

since I is a dendrite, I has at least two endpoints (one of which may be p). Let q be an

endpoint of I distinct form p and let r ∈ [x, y] be a preimage of q. Then f cannot be locally

one-to-one at r so r is a turning point.

Definition 1.2.5: Let f : D → D be a unimodal map on a dendrite with turning point

t. We define a leg of D (with respect to t) to be a component of D − {t} and a pseudoleg

of D to be a union of legs of D on which f is one-to-one.

Definition 1.2.6: Let f : D → D be a unimodal map on a dendrite with turning point t

and let S be a partition of D \ {t} into (pseudo)legs.

12



The itinerary of a point x ∈ D with respect to f and S is the sequence ι(x, f,S) =

ι0ι1ι2 . . . of labels defined by ιn = k if and only if fn(x) ∈ Sk.

The kneading sequence of the function f with respect to S, written τ(f,S), is defined as

the sequence ι(t, f,S). If f , S, and t are obvious from context, we write ι(x) for ι(x, f,S)

and τ for τ(f,S).

Definition 1.2.7: If α = a0a1 . . . an is periodic with α0 = ∗, and β = b0b1 . . . are two

strings, we define the product α ◦ β = b0a1a2 . . . anb1a1a2 . . . anb3 . . . .

We say a kneading sequence is a composite sequence if it is the product of two strings,

and prime otherwise.

It is common in the literature to use a ∗ in place of ◦ in the definition above. We use ◦

instead since for us ∗ signifies the third symbol of our alphabet.

Definition 1.2.8: Let f : D → D be a unimodal map on a dendrite with turning point t

and let S be a partition of D \ {t} into (pseudo)legs. The map f has the unique itinerary

property with respect to S provided that if ι(x) = ι(y), then x = y.

Definition 1.2.9: A unimodal map f : D → D with turning point t is said to be self-

similar if there is a partition S of D \{t} into (pseudo)legs so that for each (pseudo)leg M ,

f(M ∪ {t}) = D.

Definition 1.2.10: An abstract dendritic Julia set is a pair (D, f) where D is a den-

drite and f : D → D is a unimodal map such that there is a partition S of D \ {t} into

(pseudo)legs with respect to which f is self-similar and has the unique itinerary property.

13



An abstract dendritic Julia set is said to be quadratic provided that no point has more

than two pre-images under f . In this case, we say that the dendrite is a triple, (D,H, f)

such that f : D → D is a unimodal map such that there is a partition {S1, S0} of D \ {t}

into (pseudo)legs such that f(S0 ∪ {t}) = f(S1 ∪ {t}) = D. H is the Hubbard tree of f

and is the convex hull of Orbf (t) in D.

From here on, anytime we discuss an abstract dendritic Julia set, we mean a quadratic

abstract dendritic Julia set.

Note that the class of quadratic abstract dendritic Julia sets contains the class of den-

dritic Julia sets arising from the iteration of quadratic complex polynomials [Bal10, Theo-

rem 2.5]. In this case, for itinerary purposes, we denote the set containing the turning point

with “∗”. So our partition of D is S = {S0, S1, ∗}.

Furthermore, in this case, the kneading sequence τ of such a Julia set satisfies the

criterion set forth in the following definition.

Definition 1.2.11: A sequence τ is said to be acceptable if it begins with ∗, is not

constant, τn = ∗ implies σn(τ) = τ , and for every n ∈ N with σn(τ) 6= τ , there exists

k ∈ ω with ∗ 6= τk 6= σn(τ)k 6= ∗.

It will often be useful to talk about the space of itineraries. Let P = {0, 1, ∗} with

topology given by {∅, {0}, {1}, {0, 1, ∗}}. Then P ω (with the product topology) is called

itinerary space. When considering τ as an element of the itinerary space, acceptability

simply indicates that the iterates of τ are either equal to τ or can be separated by open sets

in P ω.
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We can identify a quadratic abstract Julia set (D,H, f) with a subset of itinerary space

defined solely in terms of its kneading sequence as follows.

Definition 1.2.12: Let τ be the kneading sequence of the quadratic abstract dendritic

Julia set (D, f). An element α ∈ P ω is called τ -admissible provided that

1. σn(α) = τ if αn = ∗ and,

2. for all i ∈ ω with σi(α) 6= τ , there exists n ∈ ω with ∗ 6= αi+n 6= τn 6= ∗.

Note that τ -admissibility is also a condition concerned with the ability to separate a

point from the kneading sequence.

Definition 1.2.13: Let τ be an acceptable sequence in P ω. Define Dτ = {α ∈ P ω :

α is τ -admissible}.

With this terminology in place, the following result is a rephrasing of results of Baldwin

[Bal10, Theorems 2.2 and 2.4].

Theorem 1.2.14: (D,H, f) is a quadratic abstract dendritic Julia set if and only it is

conjugate to (Dτ , σ) for some acceptable sequence τ . In particular, this conjugacy holds if

and only if τ is the kneading sequence of (D, f).

It is worth noting that the family of quadratic abstract dendritic Julia sets contains the

family of dendritic Julia sets that arise in complex dynamics, as is seen in the following

theorem, again slightly paraphrased from [Bal10].

Theorem 1.2.15: Let fc(z) = z2 + c. If Jc is a dendrite, then there is an acceptable τ

such that (Jc, fc) is conjugate to (Dτ , σ).
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Since we will be identifying dendrites with sets of right-infinite sequences in the itinerary

space, the usual notation for inverse limits becomes cumbersome. Since the bonding map

that we will be using is the shift map σ, the following conventions are useful.

Remark 1.2.16: Let A be a set of right-infinite sequences in P ω and σ : A → A the

shift map. Then the inverse limit of the inverse system {A, σ} can be identified with the set

of bi-infinite sequences

{a ∈ P Z : −→a −n ∈ A for all n ∈ ω}

by identifying the point 〈−→ai 〉i∈ω ∈ lim←−{A, σ} with the point a ∈ P Z whose j-th coordinate

is the 0-th coordinate of −→a−j if j is non-positive and is equal to the j-th coordinate of −→a0 if

j is non-negative.

As we have seen, for each dendritic Julia set there is an associated Hubbard tree. As we

are concerned with abstract dendritic Julia sets, we will make use of the generalized notion

of Hubbard trees.

Definition 1.2.17: A generalized Hubbard tree (hereafter referred to as “Hubbard tree”)

is a pair (T, f) where T is a tree and f : T → T is a function with a distinguished point

t ∈ T , satisfying the following conditions:

1. f is continuous (and surjective);

2. every point in T has at most two preimages under f ;

3. f is locally one-to-one at all points other than t;
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4. all endpoints of T are in the orbit of t;

5. t is periodic or preperiodic, but not fixed;

6. if x 6= y are branch points or in the orbit of t, then there is an integer n ≥ 0 such that

t ∈ fn([x, y]).

Note that throughout the paper we will sometimes use the term “Hubbard Tree” to refer

to the dynamical system (T, f) and sometimes to refer to the underlying space, T . Context

will make evident what we mean.

Just like in the case of absract dendritic Julia sets, we partition generalized Hubbard

trees into three sets S = {S1, S0, ∗} where ∗ is the set containing the turning point t, S1 is

the component of T \ ∗ which contains f(t) and S0 = T \ (S1 ∪ ∗).
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CHAPTER TWO

Branch Points and The Structure of Hubbard Trees

2.1 Branch Points

Branch points and endpoints are essential in the study of Hubbard trees. A common

definition of endpoints comes from [Bin51] and is as follows:

Definition 2.1.1: We say a point x in a continuum X is an endpoint if for any two

subcontinuua, A,B of X , each of which contain x, either A ⊆ B or B ⊆ A.

The problem, though, is that under this definition, the point x in Figure 2.1 is not an

endpoint since the arc from x to y and the arc from x to z both contain x, but neither

contains the other.

x

y

z

Figure 2.1. Comparison Between Different Definitions of Endpoint

Definition 2.1.1 is useful is the context of arclike continua, but we need a definition for

endpoints better suited for our purposes. It warrants mentioning, that endpoint only makes

sense in the context of 1-dimensional continua. But our definition also must ensure that

not all 1-dimensional continua have endpoints. Circles should not have endpoints. So, in
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order to properly define endpoint we need to have a definition of dimension. We defer to

classical notion of dimension coming from [Leb21].

Definition 2.1.2: We call a space X is n-dimensional if, given any open cover U of X ,

there exists a refinement V of U such that no point in X is contained in more than n + 1

sets in V and n is maximal with respect to this property.

Definition 2.1.3: We say a point x in a 1-dimensional continuumX is of degree at least

n if there exist n subcontinua of X , call them A1, A2, . . . , An, such that {x} ( Ai for each

i ∈ {1, . . . , n} and Ai ∩ Aj = {x} for 1 ≤ i < j ≤ n.

We further say that x is of degree exactly n, if x is degree at least n and not degree at

least n + 1, i.e. there is no collection of n + 1 subcontinua satisfying the aforementioned

criteria. Typically, instead of saying “of degree exactly n”, we say “of degree n”. If x is

of degree n > 2, then we say x is a branch point, and if x is a point of degree exactly 1,

then we call it an endpoint. If there exist infinitely many subcontinua A1, A2 . . . such that

{x} ( Ai for each i ∈ N and Ai ∩ Aj = {x} for i, j ∈ N, then we call x a branch point

of degree infinity. This can be countable or uncountable infinity. An example of a branch

point with uncountable degree is the vertex of the cone of the Cantor set. However, for our

purposes here, every degree infinity point from hereafter will have countable degree.

We denote the degree of x in X via degX(x). If the ambient space is made clear from

context, we will write deg(x).

This definition of branch point is consistent with the notion of saying x is the branch

point of an n-od, but not of an (n+ 1)-od. The definition of endpoint is similar to the stan-
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dard notion of endpoint found in [BM95; Bin51]. The difference is that under Definition

2.1.3 we would say that the point x in Figure 2.1 is an endpoint.

Armed with an understanding of branch points and endpoints, we can now discuss the

structure of Hubbard trees.

2.2 The Structure of Hubbard Trees

Recall that when we say “Hubbard Tree” we usually mean “generalized Hubbard tree”

which is a pair (T, f) where T is a tree and f : T → T is a function with a unique “turning

point” t, satisfying the following conditions:

1. f is continuous and surjective;

2. every point in T has at most two preimages under f ;

3. f is locally one-to-one at all points other than t;

4. all endpoints of T are in the orbit of t;

5. t is periodic or preperiodic, but not fixed;

6. if x 6= y are branch points or in the orbit of t, then there is an integer n ≥ 0 such that

t ∈ fn([x, y]).

Some examples of Hubbard trees can be seen in Figure 2.2.

The following notion from [BKS09] is helpful. Let (T, f) and (T0, f0) be two Hubbard

trees with turning points t and t0 respectively. Let P = {p : p is a branch point of T

or in Orbf (t)} and Q = {q : q is a branch point of T0 or in Orbf0(t0)}. We say (T, f)

and (T0, f0) are equivalent if there is a bijection, g : P → Q which is respected by the
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Figure 2.2. Examples of Hubbard trees

dynamics, and if p1, p2 ∈ P such that (p1, p2) ∩ P = ∅ then (g(p1), g(p2)) ∩Q = ∅. This

is weaker than a topological conjugation.

Recall that two systems (X, f), (Y, g) are topologically conjugate if there exists a home-

omorphism h : X → Y such that f = h−1 ◦ g ◦ h. However, for (T, f) and (T0, f0) to be

considered equivalent, all we need is for f |P and f0|Q behave the same; f |T\P and f0|T0\Q

can behave very differently.

The following Lemma, rephrased from [BKS09, Lemma 2.3], details some of the basic

properties of Hubbard trees.

Lemma 2.2.1: The turning point t divides the tree into two parts and f(t) is an endpoint.

Each branch point is periodic or pre-periodic and never maps onto the critical point. If b

is a periodic branch point and p is in the orbit of b, then deg(p) = deg(b). Lastly, any arc
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which does not contain the turning point in its interior maps homeomorphically onto its

image.

Also recall that we can break the T into three sets, ∗, S1, and S0 where ∗ = {t}, S1 is

the component of T \ ∗ which contains f(t) and S0 is the other component of T . With this

in mind, we can prove the following useful fact.

Lemma 2.2.2: f |Si
, i ∈ {0, 1} is an embedding.

Proof. f |Si
, i ∈ {0, 1} is injective, surjective onto its range, and continuous. Moreover,

Si is a continuum. The continuous image of a continuum is a continuum, so f(Si) is a

continuum. Thus f |Si
: Si → f(Si) is a homeomorphism by [Mun00, Theorem 26.6].

Moreover, the fracturing of T into ∗, S1, and S0 allows us to, given a point p ∈ T ,

define the itinerary of p as the infinite string ι(p) = p0p1p2 . . . where

pi =



∗ if f i(p) ∈ ∗

1 if f i(p) ∈ S1

0 if f i(p) ∈ S0

The itinerary of the turning point t is called the kneading sequence of (T, f) and is typically

denoted τ. Lastly, we often refer to the turning point as the critical point — owing to the

fact that in Hubbard trees of quadratic polynomials f(z) = z2 + c, the turning point of T

is the critical point of f — and denote the critical point c0. Further, we often write ci to

denote the f i(c0). Generally speaking, a Hubbard tree can have multiple points which each

share the same itinerary, however, if there are two points p, p′ with the same itinerary, than
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every point in [p, p′] has the same itinerary [BKS09, Lemma 2.8]. If a Hubbard tree is such

that no two points have the same itinerary, we say that the Hubbard tree has the unique

itinerary property.

Remark 2.2.3: The language of itineraries allows a convenient rephrasing of the sixth

property of Hubbard trees: Let (T, f) be a Hubbard tree and let I = {p ∈ T : p is a branch

point or in Orb(t)}. Then no two points in I have the same itinerary.

Definition 2.2.4: We say a kneading sequence, τ is acceptable if τ0 = ∗, τ 6= ∗, if

τn = ∗ then τn+j = τj for all j ∈ ω, and for all n ∈ ω there exists some j ∈ ω such that

∗ 6= σn(τ)j 6= τj 6= ∗.

This definition indicates that any shift of τ can be sepeartaed from τ in P ω. While

this may seem random and arbitrary, it leads to the following beautiful result which is a

combination of Theorem 2.29 and Proposition 3.17 of [Bal07].

Lemma 2.2.5: If τ is acceptable, then there is a Hubbard tree with kneading sequence

τ which has the unique itinerary property.

With this in mind, for the rest of the chapter, we treat all Hubbard trees as having the

unique itinerary property. If a tree has the unique itinerary property, then we refer to a point

and its itinerary interchangeably. So, if a point p has itinerary 110 then we refer to it as

both p and 110 and make no distinction.

Kneading sequences fully classify Hubbard trees, as the following Theorem from [BKS09,

Proposition 3.5] says:
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Theorem 2.2.6: Any two Hubbard trees with the same kneading sequence are equiva-

lent.

Not only can kneading sequences be used to tell if two Hubbard trees are equivalent, a

kneading sequence can be used to construct a Hubbard tree. In fact:

Theorem 2.2.7: Every periodic or pre-periodic kneading sequence is realized by a

unique (up to equivalence) abstract Hubbard tree.

But how can we use the kneading sequence alone to build the Hubbard tree? For any

three points, s, t, u in a tree T , the intersection [s, t] ∪ [t, u] ∪ [u, v] is a single point. If

the three points are colinear, then this intersection gives the point in the middle. If they are

not colinear, then this intersection is the unique branch point which separates each point in

{s, t, u} from the other two.

We use what is called the voting sequence which, as shown in shown in [Bal07], gives

the itinerary of the point at this intersection. The voting sequence is defined as follows:

Definition 2.2.8: Given three points s, t, u of a Hubbard tree and a critical point, τ , the

voting sequence of s, t, u is the infinite string V (s, t, u) where

V (s, t, u) =



s_0 V (σ(s), σ(t), σ(u)) if s0 = t0 = u0

τ if {s0, t0, u0} = {0, 1, ∗}

s_0 V (σ(s), σ(t), σ(τ)) if s0 = t0 6= u0

s_0 V (σ(s), σ(τ), σ(u)) if s0 = u0 6= t0

t_0 V (σ(τ), σ(t), σ(u)) if t0 = u0 6= s0
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Notice, then, that order of the triple does not matter. So V (s, t, u) = V (s, u, t) =

V (t, s, u) etc.

Example. Suppose τ = ∗110, s = 10 ∗ 1, t = 110∗, and u = 0 ∗ 11. Then since

s0 = t0 6= u0 we have V (s, t, u) = 1_V (σ(s), σ(t), σ(τ)). Now, since σ(s) = u, σ(t) = s,

and σ(τ) = t, we have V (s, t, u) = 1_V (u, s, t) = 1_V (s, t, u). Thus V (s, t, u) = 1.

If |Orb(τ)| = n then τ and its shifts give us the itinerary of n different points in the

Hubbard tree. Importantly, among these n itineraries are the itineraries of every endpoint.

For each branch point, b, T \{b} has at least three components, so there exists at least three

end points e1, e2, e3 with b = [e1, e2]∩ [e2, e3]∩ [e1, e3]. Thus, running the voting sequence

on every possible set of three distinct shifts of τ gives us the itinerary every branch point

in the Hubbard tree. Running the voting sequence on every possible triple comprised of

branch points or endpoints gives us enough information to determine where each branch

point must lay in relation to each other. This then defines the tree. With this in mind, we

can use the voting sequence to build a tree from a kneading sequence.

So, in our previous example, we know there is a branch point with itinerary 1̄ that lies

between s, t and u. If we run the voting sequence on all possible sets of 3 shifts of τ we

find that there is only one branch point and its itinerary is 1̄.

The tree made from τ = ∗110 can be found in Figure 2.3.

A fixed branch point with itinerary 1̄ is not unique to this kneading sequence. The

following Lemma is a rephrasing of [Bal07, Theorem 1.22].
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1̄
c3

c0

c1

c2

Figure 2.3. Hubbard tree with kneading sequence ∗110

Lemma 2.2.9: In every Hubbard tree, there exists a fixed point with itinerary 1. More-

over, if the tree’s kneading sequence τ begins ∗1n0 . . . then the fixed branch point will be

degree n+ 1.

We always call this point the fixed branch point even though its degree may be only

two.

Knowing that every Hubbard tree has a fixed point in S1 begs the question, do they all

have a fixed point in S0?

Theorem 2.2.10: If (H, f) is a Hubbard tree with a fixed point in S0, then that point

must be an endpoint.

Proof. Suppose (H, f) is a Hubbard tree with kneading sequence τ and a point p with

p = 0. By way of contradiction, suppose that no endpoint has itinerary 0. Then, since p is

not an endpoint of H , there exists an endpoint e such that p ∈ [c0, e]. Then V (p, τ, e) gives

the itinerary of [c0, p] ∩ [p, e] ∩ [c0, e] = p. Since e 6= 0, there is some minimal n such that

fn(e) /∈ S0. Then V (0, τ, e) = 0n−1_V (0, σ(τ), fn(e)). Since σ(τ) and fn(e) both do not
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start with a 1, we get

V (0, τ, e) = 0n−11_V (σ(τ), σ2(τ), fn+1(e))

or 0n−1τ. Neither of these sequences are the itinerary of p, a contradiction. Thus, p is an

endpoint.

Corollary 2.2.11: If a Hubbard tree has a fixed point in S0, then the kneading sequence

terminates in 0.

Proof. As previously seen, if there is a point with itinerary 0 then it is an endpoint. The

kneading sequence must contain the itineraries of each endpoint and thus must contain

0.

So if we know an endpoint has itinerary 0, then we know something about the kneading

sequence. This works in reverse too. If we know something about the longest block of 0s

in the kneading sequence, then we know something about the endpoints.

Theorem 2.2.12: Let (H, f) be a Hubbard tree with kneading sequence τ. Let n ∈

N, k ∈ N∪{∞} be such that τ[n,k) is a string of all 0s and k−n is maximal with respect to

this property (note that since the turning point of a Hubbard tree must be (pre)periodic, this

is well defined). If there are multiple blocks of the same length, let n be minimal. Then cn

is an endpoint of H . If τk = ∗ then cn+1 is not an endpoint.

Proof. Let n and k be as stated. If k = ∞, then from Theorem 2.2.10 we know that cn is

an endpoint of H . So, suppose k <∞. If cn were not an endpoint, then there would be be
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some endpoint e with cn ∈ (c0, e) which means [c0, e] ∩ [cn, e] ∩ [c0, cn] = cn. With this

in mind, we can demonstrate that cn is an endpoint by verifying V (c0, cn, e) 6= cn for all

endpoints e.

Furthermore, instead of running the voting sequence V (c0, cn, cj) for all j ∈ ω, we are

able to restrict to V (c0, cn, cj) for all j < n. This is because f is locally injective at all

points except c0. So the only non-endpoint that can map to an endpoint is c0. So, if there

is some t > 0 such that cn+t is an endpoint, then there must be some m < t such that

cn+m = c0. So if there is some j > n such that cj is an endpoint satisfying cn ∈ (c0, cj),

then there is some j′ < n with cj′ = cj.

With all this in mind, fix 0 < j < n. If cj ∈ S1 then V (τ, cj, cn) = τ 6= cn. If,

on the other hand, cj ∈ S0, let m be minimal so that fm(cj) /∈ S0. By assumption,

m < k − n so fm(cn) ∈ S0. Thus V (τ, cj, cn) = 0m−1_V (σ(τ), fm(cj), f
m(cn)) =

0m−11_V (σ2(τ), fm+1(cj), σ(τ)) 6= cn. Thus there is no endpoint e such that cn ∈ (c0, e).

Therefore, cn is an endpoint.

Now, we show cn+1 is not an endpoint if τk = ∗ that is, if the block of 0’s is the

last block before τ repeats. Notice that fk−n−1(cn) ∈ S0 and fk−n−1(cn+1) = c0. So

V (τ, cn, cn+1) = 0k−n−1_V (σ(τ), fk−n−1(cn), τ) = 0k−n−1τ.

We end our discussion on the structure of Hubbard trees with a demonstration that these

trees can have a variety of forms.

Theorem 2.2.13: Hubbard trees can have arbitrarily many branch points of arbitrarily

large degree.
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Proof. To construct a Hubbard Tree with n colinear branch points of degree m in S0, a

fixed branch point of degree x in S1, x many branch points of degree m in S1, and no other

branch points, one can use the following kneading sequence:

τ = ∗(1x0n)m−1.

(See A.0.1).

An example of such a Hubbard tree with 4 branch points of degree 6 can be found in

Subfigure 2.2b which has kneading sequence

τ = ∗(110000)5.

Moreover, to construct a Hubbard Tree with exactly n branch points, each of degree m

one can let x = 1. In this case we get the following kneading sequence:

τ = ∗(10n−1)m−1.

(See A.0.2).

An example of a Hubbard tree with exactly 4 branch points each of degree 6 can be

found in Subfigure 2.2c. This tree has kneading sequence τ = ∗(1000)5.
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CHAPTER THREE

Trees That Cannot Be Hubbard Trees

Results like those in Section 2.2 may lead one to believe that any tree can be a Hubbard

tree if it is equipped with the right function. But this is not true. In order to see why, we

first introduce a few notions.

Definition 3.0.1: We say two points p, q from a tree, T , are in a free arc if (p, q) contains

no branch points of T .

Definition 3.0.2: We say a tree T is Hubbardizable if there exists a function f : T → T

such that (T, f) is a generalized Hubbard tree.

Definition 3.0.3: Given a point p in a tree T , the trees emanating from p are the closures

of the components of T \ {p}.

Definition 3.0.4: For a tree, T we use end(T ) to denote the set of endpoints of T .

Lemma 3.0.5: If T,W are trees with W ⊂ T, then |end(W )| ≤ |end(T )|.

Proof. Let b be a branch point in W . Since W ⊂ T, b is also a branch point of T . For each

endpoint, e ∈ end(W ) there is at least one endpoint e′ ∈ end(T ) such that e ∈ [b, e′].

So, for each endpoint e in W choose such a corresponding endpoint e′ in T . This gives

an injection from end(W ) to end(T ) proving the claim.
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Definition 3.0.6: Given a Hubbard Tree, (H, f), let b be the fixed point in S1. The

existence of such a point is guaranteed by Lemma 2.2.1. We define T0, T1, ...Tn be the

trees emanating from b enumerated in the order which the critical point travels to them, i.e.

S0 ⊂ T0. For simplicity of notation, we define Tn+1 = T0 and we use T ∗0 to denote T0∩S1.

Lemma 3.0.7: For all 0 < i ≤ n, f(Ti) ⊆ Ti+1 and f(T ∗0 ) ⊆ T1.

Proof. Fix 0 ≤ i ≤ n. If 0 = i let Ti = T ∗0 . Then Ti ⊂ S1 and Ti has 1 as an endpoint.

By definition of Ti+1 we have f(Ti) ∩ Ti+1 6= ∅. Suppose there exists a point p ∈ Ti

with f(p) /∈ Ti+1. Let q ∈ Ti \ {1} be such that f(q) ∈ Ti+1. Then, f([p, q]) meets two

different trees Tj and Ti+1 where j 6= i + 1 and thus 1 ∈ (f(p), f(q)). So there exists a

point c ∈ (p, q) with f(c) = b. But f(b) = b and f |Ti is injective, a contradiction.

Lemma 3.0.8: Let T,W be two trees. If |end(T )| > |end(W )| then T cannot map

injectively into W.

Proof. Suppose f : T → W is injective. Let W ′ = f(T ). Then f is a bijection between

the continuua T and W ′ and is thus a homeomorphism between the two. So T and W ′

must have the same number of endpoints. But, by Lemma 3.0.5, |end(W ′)| ≤ |end(W )| <

|end(T )|, a contradiction.

This immediately leads to a nice corollary:

Corollary 3.0.9: For 0 < i ≤ n, |end(Ti)| ≤ |end(Ti+1)| and |end(T ∗0 )| ≤ |end(T1)|.

We are now ready to see some trees that are not Hubbardizable.
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3.1 Two Sufficient Conditions for non-Hubbardizablity

Lemma 3.1.1: Let T be a tree such that T has at least two branch points and there exists

a branch point b with deg(b) strictly larger than that of all other branch points. Let p be

a branch point in a free arc with b. Then T \ (p, b) has two components. Let A1 be the

component which contains b and let A2 be the other component. Lastly, suppose that there

are two subtrees of A2 emanating from p which have more end points than every subtree of

A1 emanating from b. Then T is not Hubbardizable.

An example of such a tree can be found in Figure 3.1.

b p

(a) The Tree

b

(b) A1

p

(c) A2

Figure 3.1. A tree, T , for which there does not exist a function f : T → T such that (T, f)
is a Hubbard tree

Proof. Assume hypotheses as stated. Let k = deg(b) and let V,W be two trees in A2

emanating from p that have more endpoints than any tree in A1 emanating from p. By

way of contradiction, suppose there exists an associated function f such that (T, f) is

a Hubbard tree. As shown in Lemma 2.2.9, every Hubbard tree has a fixed point with
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itinerary 1. Here, the fixed point must be b since no neighborhood of b can map injectively

to any neighborhood of a point of lower degree.

Recall that T0 is the tree emanating from 1 which contains c0 and by Corollary 3.0.9,

|end(Ti)| ≤ |end(Ti+1 mod k)| and |end(T ∗0 )| ≤ |end(T1)|. With this in mind, c0 cannot

lie in A1 since otherwise the tree emanating from b which contains p would be some Ti

with more end points than T0. Moreover, c0 cannot lie in A2 since in this case T ∗0 must

contain one of the trees emanating from p that has more end points than any subtree of A1

emanating from b. But then, |end(T ∗0 )| > |end(T1)|, a contradiction. Thus c0 ∈ (b, p).

Since f(c0) ∈ S1, we also have f(c0) ∈ A1.

Now that we have determined the locations of c0 and f(c0), we aim to find the location

of f(p). Suppose f(p) = b. Then, since f |S0 is an embedding by Lemma 2.2.2, at most

one tree emanating from p has a point which maps to c0, and thus there is at most one tree

in A2 emanating from p whose image under f meets S0. But, that means that at least one

of W,V maps injectively into S1, and more specifically, maps injectively into a subtree of

A1 emanating from b = f(p). But, by Lemma 3.0.8, no such injection can exist. So f(p)

cannot be b.

Suppose f(p) is a branch point in A1 \{b}. Then f(p) ∈ Ti for some 0 < i ≤ k−1. By

similar reasoning to the above, all of the subtrees in A2 emanating from p (with possibly

one exception) must then map injectively into Ti. But, this means at least one of W,V must

map injectively into Ti contradicting Lemma 3.0.8.

Lastly, suppose f(p) is some other branch point in A2. Call this point q. Let T qp be

the tree emanating from p which contains q. Then, since T qp ⊂ S0 and f |S0 is a home-
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omorphism, we have f |T q
p

is a homeomorphism. So no point in T qp except p can map to

q.

By way of contradiction, suppose f(T qp ) 6⊆ T qp . Then there is a point in T qp ,that maps

outside of T qp which means there must be a point w ∈ T qp such that f(w) = p. Then, since

p ∈ (c0, w) we have q = f(p) ∈ (c1, f(w)) = (c1, p). But then q /∈ T qp , a contradiction.

So f(T qp ) ( T qp and, in particular, f(T qp ) contains fewer branch points of S0 than T qp does

meaning f cannot be injective, a contradiction.

Thus the only point to which p can map is itself, and so p is a branch point with itinerary

0, contradicting Theorem 2.2.10.

Thus, there can be no function associated with T that satisfies all the condition to be a

Hubbard Tree, so T is not Hubbardizable.

Although the hypotheses in Lemma 3.1.1 are sufficient to tell that a tree is not Hub-

bardizable, they are not necessary as we will see in the following.

Definition 3.1.2: For k ≥ 3, let F k
0 be a tree with a single branch point of degree k.

Continuing recursively, for n ≥ 1 let F k
n be obtained by taking F k

n−1 and adding k− 1 arcs

to each endpoint, thus turning every endpoint in F k
n−1 into a branch point of degree k in

F k
n . Figure 3.2 shows F 4

1 , F 4
2 , and F 4

3 .

Lemma 3.1.3: F k
i is Hubbardizable if and only if i < 2.

Proof. We first prove F k
i is not Hubbardizable for i ≥ 2. In order to do so, fix k > 2, i ≥ 2

and suppose that there is a function, f such that (F k
i , f) is a Hubbard tree. Figure 3.3 is
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Figure 3.2. The trees F 4
1 , F 4

2 , and F 4
3

a labelled diagram accompanying the proof. While the tree pictured is F 4
2 , the proof is

sufficiently general.

Let B0 denote the central branch point of F k
0 and let Bj denote the set of branch points

in F k
j that are not branch points of F k

j−1. In this way, the points in Figure 3.3 labeled

α, β, γ, δ comprise B1.

Claim: B0 must be fixed.

Proof of claim: By way of contradiction, suppose f(B0) 6= B0. Notice that every tree

emanating from B0 has the same number of endpoints. Call this number E. As such,

the injective images of these trees must have at least E endpoints. Let W denote the tree

emanating from f(B0) which contains B0.

W is only one tree emanating from f(B0) with at least n endpoints. So W is the only

tree with enough endpoints to contain the injective images of the trees emanating from

B0 and as such, by Lemma 3.0.5, all trees emanating from B0 (except possibly the tree

containing c0) must map into W . Let α, β, γ ∈ B1. Then these three branch points are in a

free arc with B0.
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α

c1

β

γ

δB0
ε η

ζ

Figure 3.3. F 4
2 with branch points labeled

Let z be the branch point in W closest to f(B0). Note that z may be one of α, β, γ. So,

we must have that at least two of f((B0, α)), f((B0, β)), and f((B0, γ)) meet (f(B0), z).

But then f is not locally injective at B0, so B0 is both a branch point and the critical point,

contradicting Lemma 2.2.1. This proves the claim.

Claim: f(B1) = B1.

Proof of claim: As we have already seen, f(B0) = B0. Observe that, for j > 0, a point

z ∈ Bj if and only if there are j − 1 many branch points between z and B0.
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Let z be a point inB1. If z ∈ S1 then z ∈ Tn for some n > 0.As such, by Lemma 3.0.7,

Tn embeds into Tn+1. So the number of branch points in [z,B0] must equal the number of

branch points in [f(z), B0]. Thus both z and f(z) belong to B1.

If z ∈ S0, then we have two possibilities, either c0 is in (B0, z) or c0 is not in (B0, z).

If c0 /∈ (B0, z) then f |[B0,z] is an embedding and by similar reasoning to the above, both z

and f(z) are in B0.

If, on the other hand, c0 ∈ (B0, z) then f |[B0,z] is not injective. f([B0, c0]) = [B0, c1]

and f([c0, z]) = [c1, f(z)].

By definition of F k
i every branch point has degree k so the number of trees emanating

from z is k. Exactly k − 1 of the trees have the same number of endpoints (the only

exception is the tree containing c0 and B0 since this tree contains all of S1). The number of

endpoints is (k − 1)i−1, but for the sake of conciseness, let r = (k − 1)i−1.

Let κ denote the union of these k− 1 trees. Then f |κ is an embedding, so f(z) must be

a branch point from which exactly k trees emanate. Among these, k − 1 must have at least

r endpoints, so f(z) is either in B0 or B1.

If f(z) 6= T1 ∩ B1 then no points in κ can map into T1. Then the only endpoint in T1

that has a preimage is c1, a contradiction. So, if z ∈ B1 ∩ S0, then f(z) ∈ B1 ∩ T1.

Thus, f(B1) = B1.

Then, since no two branch points can share the same itinerary, there must be a branch

point b1 ∈ B1 such that c0 ∈ (B0, b1). Otherwise, every branch point in B1 would have the

same itinerary, 1.

We have that T1 is the tree emanating fromB0 which contains c1. Let p ∈ T1∩B1. Note

that p is unique and f(b1) = p. Let q be a branch point in B2 such that q ∈ (p, c1). Such a
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q exists by definition of F k
i since i > 2. Since q ∈ T1 all of q’s preimages must be in T0 by

Lemma 3.0.7. Moreover, since q ∈ (p, c1), the preimage of q under f |S0 must be in (c0, b1).

Similarly, the preimage of q under f |S1 must be in (c0, B0). However, neither of these arcs

contain branch points and f([c0, B0]) = [c1, B0] and f([c0, b1]) = [c1, p]). So none of the

branch points (or endpoints) in a free arc with q other than those in [B0, c1] have preimages,

so f is not surjective. Thus, F k
i is not a Hubbard tree for i > 2.

What remains to be show is that F k
i is Hubbardizable for i < 2. We demonstrate this by

defining the function f such that (F k
i , f) is a Hubbard tree. F k

0 is a k-od. To find a function

f that makes (F k
0 , f) a Hubbard tree, let B0 be the branch point and arbitrarily label the

arcs emanating from B0 as a0, a1, . . . , ak−1. Pick a point in the interior of a0 to be c0 and

let q be the endpoint of a0 \ {B0}. For 0 < j ≤ k− 1 let f map aj linearly over aj+1 mod k

fixing B0. Let f map [B0, c0] linearly over a1 and map [c0, q] linearly over [c1, c0]. Then

(F k
0 , f) is a Hubbard tree with kneading sequence τ = ∗1k−10. Such a Hubbard tree can

be seen in Figure 2.3.

To define a function f for which (F k
1 , f) is a Hubbard tree, we follow a process similar

to the one used in the case of F k
0 . LetB0 be the central branch point, and arbitrarily label the

trees emanating from B0 as T0, T1, . . . , Tk−1. For j > 0, let f map Tj homeomorphically

over Tj+1 mod k. Let z be the branch point in T0. Pick some point in (B0, z) to be the

critical point, c0. Pick some endpoint in T1 to be c1 = f(c0) and pick some endpoint, e,

in Tk−1 to map to c0 Lastly, let f map [B0, c0] linearly over [B0, c1] and let f map the tree

emanating from c0 which contains z homeorphically of the tree T1 ∪ [B0, c0]. Then (F k
1 , f)

is a Hubbard tree with kneading sequence τ = ∗(1k−10)k−1. An example of F 3
1 can be

found in Figure 2.2a.
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For an explanation of how to build F k
0 and F k

1 from the respective kneading sequences,

∗1k−10 and ∗(1k−10)k−1, see A.0.3.

We have now seen two examples of trees that are not Hubbardizable, and while the

author longs for the discovery of a necessary and sufficient condition for Hubbardizability,

he contents himself with what follows: a full classification of all Hubbardizable trees with

fewer than four branch points.

3.2 A Full Classification of all Hubbardizable Trees with Fewer than Four Branch Points

Before we fully classify all such trees, we make note of a convenient theorem.

Theorem 3.2.1: Let T be a tree whose branch points are all of the same degree and such

that there is some arc [a, b] in T which contains every branch point. Then T is Hubbardiz-

able

Proof. As seen in the proof of Theorem 2.2.13, to construct a Hubbard tree with exactly n

branch points, each of degree d, one can use the kneading sequence

τ = ∗(10n−1)d−1.

Each of these branch points has the itinerary 0j10n−1−j for some 0 ≤ j ≤ n−1. To see

that these are co-linear, first observe that if 1 ≤ w < j, then V (τ, 0j10n−1−j, 0w10n−1−w) =

0w10n−1−w. So, if p is the branch point with itinerary 0j10n−1−j and q is the branch point

with itinerary 0w10n−1−w then q ∈ (c0, p). Thus, if r is the branch point with itinerary

0n−11 then all branch points in S0 are contained in (c0, r].
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Finally, since there is only one branch point in S1, call it b, all branch points are con-

tained in [b, r].

Zero Branch Points

Theorem 3.2.2: Let T be a non-degenerate tree with zero branch points. Then T is

Hubbardizable.

Proof. The only non-degenerate tree with 0 branch points is the arc. It can be made, as

a Hubbard tree, with the kneading sequence τ = ∗10. This is the Hubbard tree of the

polynomial f(z) = z2 − 2 as shown in [Dev03, Example 5.11].

Moreover, it can be made a Hubbard tree with a different kneading sequence: τ = ∗10.

To do this, label the end points of the arc a, b and define some point in (a, b) to be the critical

point c0. Define a function f such that f(c0) = a, f(a) = b, and f(b) = c0. Moreover,

define it so f maps [a, c0] linearly over [b, a] and f maps [c0, b] linearly over [a, b].

In this way, the arc is a single tree, which can be paired with multiple functions each of

which yields a dynamically distinct generalized Hubbard tree.

One Branch Point

Theorem 3.2.3: Let T be a tree with only one branch point. Then T is Hubbardizable

Proof. The only Hubbard trees with one branch points are n-ods. As we have previously

seen in Lemma 3.1.3, these are Hubbardizable.
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Two Branch Points

Theorem 3.2.4: Let T be a tree with exactly two branch points a, b. LetD = {deg(a), deg(b)}.

Then T is Hubbardizable if and only if |D| = 1 or |D| = 2 and min(D) = 3.

Proof. Let T be a tree with exactly two branch points a, b. Begin by supposing that (T, f)

is a Hubbard tree. We show that if |D| = 2 then min(D) = 3. This then proves the claim

that if (T, f) is a Hubbard tree with two branch points, then they are the same degree or the

smaller degree is 3. So suppose |D| = 2. Without loss of generality, let deg(a) > deg(b).

Since f is locally injective at all but one point, no point (except the critical point) can map

to a point of lower degree. Since a has higher degree than b, we must have f(a) = a. By

Lemma 2.2.9 there is only one fixed branch point in any Hubbard tree, so we have f(b) 6= b

and thus f(b) = a.

Since a is the fixed branch point in S1, the kneading sequence must begin ∗1n0 where

n = deg(a) − 1. Thus every endpoint in S1 is visited by the orbit of c0 before it ever gets

to S0. So if an endpoint in a free arc with b maps into S1, then it must be the last endpoint

visited by c0.

So if an endpoint in a free arc with b is not be the last endpoint visited by c0 then it must

map into S0. By way of contradiction, suppose there are two endpoints, p, q from S0 that

mapp into S0. Then [b, p] and [b, q] are two arcs in S0 that cover [a, c0], a contradiction.

So, there are at most two endpoints in a free arc with b, one that maps into S1 and one

that maps into S0 and thus deg(b) = 3.

To complete the proof we show that if |D| = 1 or |D| = 2 and min(D) = 3 that T is

Hubbardizable. As shown in Theorem 3.2.1, if |D| = 1 then there is a kneading sequence
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which gives rise to T . If |D| = 2 with min(D) = 3,max(D) = k then T can be realized

by the kneading sequence τ = ∗1k−1001. See A.0.4

Three Branch Points

Lemma 3.2.5: Suppose that (T, f) is a Hubbard tree with exactly three branch points,

a, b, c such that b ∈ (a, c) and c0 in (a, b). If b, c ∈ S0 then f(b) = a, f(c) = b. If b, c ∈ S1,

then c 6= 1 and if b = 1 then f(c) = a.

Proof. Assume hypotheses as stated. Since f is locally injective at the branch points,

f({a, b, c}) ⊆ {a, b, c}. If b, c ∈ S0, then b cannot map to c else f([c0, b]) = [c1, c] ⊃ [c0, b]

and thus there is a fixed point in (c0, b). But, by Theorem 2.2.10, if there is a fixed point in

S0, then it must be an endpoint. Thus, f(b) = a.

Since branch points in S0 cannot be fixed, f(c) 6= c. Furthermore, we cannot have

f(c) = a otherwise b and c share the same itinerary, a contradiction. Thus f(c) = b.

If b, c ∈ S1 then we cannot have c = 1 because otherwise, c1 would be in a free arc with

c. But then f([c, c0]) = [c, c1] would contain f(b), a contradiction. If b = 1 then f(c) = a

otherwise b and c would share an itinerary.

Lemma 3.2.6: Suppose that (T, f) is a Hubbard tree with exactly three branch points,

a, b, c such that b ∈ (a, c) and c0 in (a, b). If b 6= 1 and f(b) = 1, then deg(b) = 3.

Proof. If f(b) = 1 then 1 must be a branch point and b must not be in S1. Thus, there is

only one branch point in S1. Without loss of generality, assume that this branch point is a.

Since b ∈ (a, c) we must have c ∈ S0 as well and because c’s itinerary must be different

than that of b, f(c) 6= a. So f(c) ∈ S0.
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Then the kneading sequence must begin ∗1k−10 where k = deg(a). In this way, every

endpoint in S1 is visited by c0 before it ever maps into S0. So if an endpoint in S0 maps

into S1, it either maps to an endpoint already visited by c0 or a non-endpoint. Thus, if an

endpoint in S0 maps into S1, it must be the last endpoint visited by c0.

By way of contradiction, suppose there are at least two endpoints p and q in a free arc

with b. Because f |S0 is injective and c0, p, q, c are all in different trees emanating from

b, we must have that f(c0), f(p), f(q), f(c) are all in different trees emanating from f(b).

Since f(c) ∈ S0, we must have f(c0), f(p), f(q) all in S1. But then p and q are both the

last endpoint visited by c0, a contradiction. Thus, there is at most one endpoint in a free arc

with b, so deg(b) = 3.

Lemma 3.2.7: Suppose that (T, f) is a Hubbard tree with exactly three branch points,

a, b, c such that b ∈ (a, c), c0 ∈ (b, c), and b = 1. Then f(a) = c, deg(a) = 3 and

deg(c) ∈ {3, 4}.

Proof. Observe that a ∈ S1 so f(a) 6= a and f(a) 6= b otherwise a and b would have the

same itinerary. So f(a) = c.

Since f(a) ∈ S0, a must be in Tk where k = deg(b). Recall that Tk is the only tree in

S1 emanating from b whose image can meet S0. By Lemma 3.0.7, Tk−1 is the only tree in

S1 emanating form b that can map into Tk. By assumption, Tk−1 is an arc. Every endpoint

in Tk is in a free arc with a, so there is at most one endpoint in a free arc with a whose

preimage is in S1.

Since f is injective on S0, then endpoints in a free arc with c must map into different

trees emanating from f(c) = b. So at most one such endpoint can map to an endpoint in a
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free arc with a. Thus, there is at most one endpoint in a free arc with a whose preimage is

in S0. So there are at most two endpoints in a free arc with a, so deg(a) = 3.

These are the only endpoints in S1 that can map into S0. So there are at most two

endpoints in a free arc with c whose preimage is in S1. Again, since f is locally injective

at c, each endpoint in a free arc with c must map into different trees emanating from b, so

there can be only one such endpoint which maps into T0, there is at most one such endpoint

that maps to an endpoint in S0. Thus, there are at most three endpoints in a free arc with c

so deg(c) ≤ 4.

Theorem 3.2.8: Suppose that T is a tree with exactly three branch points, a, b, c such

that c0 in (a, b). Let D = {deg(a), deg(b), deg(c)}. Then T is Hubbardizable if and only

if one of the following conditions holds:

1. |D| = 1,

2. |D| = 2 and min(D) = 3 or,

3. D = {3, 4, k} for some k > 4 and deg(b) = k.

Proof. Let T be a tree with three branch points a, b, c with b ∈ (a, c). Suppose that there is

a function f such that (T, f) is a Hubbard tree. We have multiple cases in which not all the

degrees are the same:

• deg(a) = deg(c) > deg(b),

• deg(a) = deg(b) > deg(c) [or by symmetry deg(c) = deg(b) > deg(a)],

• deg(a) > max{deg(b), deg(c)} [or by symmetry deg(c) > max{deg(a), deg(b)}]

and,
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• deg(b) > max{deg(a), deg(c)},

We will go through these one-by-one and find out what restrictions the Hubbardizability

of T puts on the degrees of the branch points in each case.

1. If deg(a) = deg(c) > deg(b), then we have two possibilities. Either one of a or c

is fixed and both points map to the fixed point — without loss of generality f(a) =

a = f(c)— or a and c map to each other — f(a) = c and f(c) = a.

If a is fixed, then since f(a) = f(c) we have c0 ∈ (a, c) and so f([a, c]) = [a, c1]

and so b maps injectively into [a, c1], but b is a branch point, and there are no branch

points in [a, c1], a contradiction.

Thus, f(a) = c, f(c) = a. Then c0 is either in (a, b) or (b, c), but by symmetry, we

can assumes c0 ∈ (b, c).

Then f(b) 6= c or else a and bwould have the same itinerary, contradicting the unique

itinerary property of Hubbard trees. So, either f(b) = b or f(b) = a. Suppose b is

fixed. Every endpoint in a free arc with a must map into different trees emanating

from c and, since [a, b] maps over [c, b], these endpoints cannot map into the tree em-

anating from c containing b. Similarly, since f([c0, c]) = [c1, a] 3 b every endpoint in

a free arc with cmust map into different trees emanating from awhich do not contain

b. But then all of the end points in a free arc with a would have the same itinerary,

again violating the unique itinerary property of Hubbard trees.

So f(b) must equal a. Then, since f([a, b]) = [a, c] ⊃ [a, b], the fixed point in S1

must be in (a, b). Since 1 ∈ (c0, c1), we have c1 is an endpoint in a free arc with a.
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Again, since f([c0, a]) = [c1, c],we have that every endpoint in a free arc with amust

map into different trees emanating from c which do not contain b.

Let e be and endpoint in a free arc with b. Since f is locally injective at b, and the

points 1, c0, e are all on opposite sides b, we have f(1), f(c0), and f(e) must all be

on opposite sides of f(b). Since b and 1 are in the same tree emanating from f(b), we

have that no endpoint in a free arc with b can map to an endpoint in a free arc with b.

Thus, any endpoint in a free arc with b must have a preimage in S0.

But, since f([c0, c]) = [c1, a] we have every endpoint on opposite sides of c must

map to the opposite sides of a (and not the side containing c1). So there can be only

one endpoint in a free arc with c that can map to an endpoint in a free arc with b. So,

of all the endpoints in a free arc with b, at most one can have a preimage in S0.

Thus, there can be at most one endpoint in a free arc with b.Thus deg(b) = 3. So if

T is Hubbardizable and deg(a) = deg(c) > b, then deg(b) = 3, so |D| = 2 with

min(D) = 3.

2. If deg(b) = deg(a) > deg(c) then we must have f({a, b}) ⊆ {a, b}. Thus c0 ∈ (a, b)

else a and bwould share the same itinerary. We now work through a few possibilities.

(a) f(a) = a. By Lemma 3.2.5, we have f(b) = a and f(c) = b. By Lemma

3.2.6 we have deg(b) = 3 and thus deg(a) = 3 but by assumption, this means

deg(c) < 3, a contradiction.

(b) f(b) = b. We must have b ∈ S1 and so a ∈ S0, c ∈ S1. By Lemma 3.2.5,

we must have f(c) = a. This is exactly the same as the hypotheses in Lemma

46



3.2.7 but with the labels of a and c reversed. So we find deg(c) = 3 and

deg(a) ∈ {3, 4}. However, to be consistent with our assumption deg(b) =

deg(a) > deg(c) we have deg(a) = 4, deg(b) = 4, deg(c) = 3.

(c) f(a) = b, f(b) = a. In this case the fixed branch point is actually degree two

and lies in (a, b). Since c cannot map to a without having the same itinerary as

b we must have f(c) = b. In order to get a picture of this Hubbard tree, we now

try to find out which of a, b belongs to S1. There exists a unique point, p whose

itinerary begins 1∗. Since there is only one point in S1 that maps to c0, every

point in [c0, p) must map to a point in S1. If there were a branch point in [c0, p]

then one of a, b must be in [c0, p], but since they map to each other, this branch

point would map into S0, so [c0, p] is a free arc. Every point in S1 \ [p, c0] must

map into S0. So, if b ∈ S1 (and by extension c ∈ S1, then f(c) ∈ S0. But

f(c) = b ∈ S1, a contradiction. Thus b ∈ S0 and a ∈ S1. So c1 is in a free arc

with a.

Since each endpoint in a free arc with amust map into different trees emanating

from b, there can be at most one such endpoint that maps to an endpoint in a

free arc with c. Every endpoint in a free arch with b must map into different

trees emanating from a, but since [b, c] maps onto [a, b], there are no endpoints

in a free arc with b that map to endpoints in a free arc with c/ Lastly, since each

endpoint in a free arc with cmust themselves map into different trees emanating

from b. So there is at most one endpoint in a free arc with c whose preimage is

in S0. Thus deg(c) = 3.
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So if deg(a) = deg(b) > deg(c) then |D| = 2 and min(D) = 3.

3. If deg(a) > max{deg(b), deg(c)}, then a = 1 and so c1 is an endpoint in a free arc

with a. Since the branch points must have different itineraries and {f(a), f(b), f(c)} ⊆

{a, b, c}, the branch points cannot all be on the same side of c0. So c0 ∈ (a, b)

or c0 ∈ (b, c). By way of contradiction, suppose c0 ∈ (b, c). Then b ∈ (a, c0)

so f(b) ∈ (f(a), f(c0)) = (a, c1). But [a, c1] is a free arc, a contradiction. So

c0 ∈ (a, b).

Now we figure out where b and c map under f . Since both branch points are in

S0, they cannot be fixed. So f(c) = b or f(c) = a. Suppose f(c) = a. Then,

since b ∈ (c0, c), f(b) ∈ (f(c0), f(c)) = (c1, a). But, again, [a, c1] is a free arc, a

contradiction. So f(c) = b. Thus f(b) must be a since, if f(b) = c then both branch

points would have itinerary 0.

Suppose deg(b) ≥ 4. Then there are at least two end points p, q which are in a free

arc with b. Since f(b) = a we must have that f(p) and f(q) map into different Ti’s.

One of p or q has to get visited by c0 first. Without loss of generality, c0 visits p first.

f(p) must be in some Ti, i > 0. That is to say, f(p) ∈ [e, a] for some endpoint e in a

free arc with a. If f(p) is some non-endpoint, then since the only non-endpoint that

can map to an endpoint is c0, we have that q /∈ Orb(p) ⊆ Orb(c0), a contradiction.

If, on the other hand, f(p) = e, then since e has already been visited by c0 we have

that c0 is pre-periodic and only visits endpoints. But then Orb(c0) cannot contain q

since f(p) = e and so q /∈ Orb(e), a contradiction. Thus deg(b) = 3.
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Thus, since f(c) = b and f is locally injective at c, deg(c) ≤ deg(b) and so deg(c) =

3. Thus, if T is Hubbardizable and deg(a) > max{deg(b), deg(c)} then deg(b) =

deg(c) = 3, so |D| = 2 and min(D) = 3.

4. If deg(b) > max{deg(a), deg(c)}, then we have b = 1. c0 must either be in (a, b) or

in (b, c) otherwise all the branch points would be in S1 and would each have itinerary

1.

Without loss of generality c0 ∈ [b, c]. Then by Lemma 3.2.7 we have deg(a) =

3, deg(c) ≤ 4. So either |D| = 2 and min(D) = 3 or |D| = {3, 4, k} for some k > 4

and deg(b) = k.

So, after all this case-checking we have arrived at the following: if T is a Hubbardizable

tree with three branch points, a, b, c and D = {deg(a), deg(b), deg(c)} then either

1. |D| = 1,

2. |D| = 2 and min(D) = 3 or,

3. D = {3, 4, k} for some k > 4.

Now, let T be a tree with three branch points, a, b, c with b ∈ (a, c) such that either

1. |D| = 1,

2. |D| = 2 and min(D) = 3 or,

3. D = {3, 4, k} for some k > 4 and deg(b) = k.

We show T is Hubbardizable. We do so by providing a kneading sequence which gives rise

to T and as before, we will go case-by-case and subcase-by-subcase.
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1. If |D| = 1 then as seen in Theorem 3.2.1, T is Hubbardizable.

2. If |D| = 2 and min(D) = 3 we have a few cases:

(a) If deg(a) = deg(c) > deg(b) then T can be made with the kneading sequence

τ = ∗(10)n1101 (see A.0.5).

(b) If deg(a) = deg(b) > deg(c) [or by symmetry deg(c) = deg(b) > deg(a)],

then T can be made with kneading sequence τ = ∗(10)k−2100010 (see A.0.6).

(c) deg(a) > max{deg(b), deg(c)} [or by symmetry deg(c) > max{deg(a), deg(b)}],

then T can be made with the kneading sequence τ = ∗1k−10001 (see A.0.7).

(d) deg(b) > max{deg(a), deg(c)}, then T can be made with the kneading se-

quence τ = ∗1k−101011 (see A.0.8).

3. If |D| = {3, 4, k} and deg(b) = k, then T can be made with the kneading sequence

τ = ∗1k−1001011 (see A.0.8).

Thus, if |D| = 1, |D| = 2 and min(D) = 3, or |D| = {3, 4, k} and deg(b) = k, then T is

Hubbardizable.
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CHAPTER FOUR

Branch Points and Endpoints of Hubbard Tree Inverse Limits

Our goal is to eventually construct an infinite family of homeomorphic abstract den-

dritic Julia sets which have, at their cores, homeomorphic generalized Hubbard trees, but

such that the inverse limit of each dendritic Julia set is not homeomorphic to any other. To

show that these aforementioned inverse limits are not homeomorphic requires careful ex-

amination of branch points and endpoints. With that in mind, we now turn our attention to

branch points and endpoints of inverse limits of Hubbard trees. For this chapter, let (H, f)

be a Hubbard tree.

Definition 4.0.1: Define I0 = {p ∈ H : p is a branch point or in the critical orbit}, and

for n > 0, define In = f−1(In−1).

Definition 4.0.2: For x̄ ∈ Ĥ , define

ϕ(x̄) = min{D| deg(−→x −n) = D for infinitely many n ∈ ω}.

Observe that since the set {D| there exists x ∈ H with deg(x) = D} is a subset of the

set of degrees of branch points in H and is thus finite, ϕ(x̄) is well defined.

Lemma 4.0.3: If x̄ is a point in Ĥ such that −→x −n is a branch point for all n ∈ ω, then

deg(−→x −n) = ϕ(x̄) for all n ∈ ω. Furthermore, −→x −n is periodic for all n ∈ ω.
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Proof. Since each branch point in H is (pre)periodic, and there are finitely many such

points, then there is some w ∈ ω such that, for all branch points, b ∈ H, σw(b) is periodic.

With this in mind, if −→x −n is a pre-periodic branch point, then −→x −(n+w) must not be a

branch point. So if −→x −n is a branch point for all n ∈ ω, then −→x −n must be periodic for all

n ∈ ω.

Moreover, since σ is locally injective at all branch points (since it is locally injective at

all non-critical points), the degree of a periodic branch point must be the same as the degree

of all points in its orbit. Thus, if −→x −n is a branch point for all n ∈ ω then deg(−→x −n) =

deg(−→x −m) for all n,m ∈ ω. This degree, by definition, is ϕ(x̄).

Lemma 4.0.4: Let [a, b] ⊂ H . Then f−1([a, b]) has at most two components.

Proof. Suppose that f−1([a, b]) has three or more components. Then there is an i ∈ {0, 1}

such that Si ∩ f−1([a, b]) has at least two components. Call these two components W,Y .

Then, since f |Si
is an embedding by Lemma 2.2.1, f(W ∪ Y ) is a disconnected subset of

[a, b]. So there is some z ∈ (a, b) such that z separates f(W ) and f(Y ) and f−1(z) ∩ Si =

∅.

Let w be a point in f(W ) and let w′ ∈ W such that f(w′) = w. Define y and y′

similarly. Then by the intermediate value theorem, there is some z′ ∈ (w′, y′) such that

f(z′) = z. But since w′, y′ ∈ Si we must have z′ ∈ Si, contradicting the fact that f−1(z) ∩

Si = ∅. Thus f−1([a, b]) has at most two components, and at most one component in each

of S1, S0.
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Lemma 4.0.5: Let [a, b] ⊂ H be an arc such that no point of (a, b) is in I0. If a 6= c1

and b 6= c1, then f−1([a, b]) is either homeomorphic to [a, b] under f or is the union of two

disjoint sets each of which is homeomorphic to [a, b] under f , or made of two disjoint sets

— one of which is homeomorphic to [a, b] under f while the other is a singleton.

If c1 ∈ {a, b}, then f−1([a, b])\{c0} is made of two disjoint sets, U, V such thatU∪{c0}

and V ∪ {c0} are both homeomorphic to [a, b] under f .

Proof. To start, suppose c1 /∈ [a, b]. If f−1([a, b]) has only one component then we are

done, so suppose there are two nonempty components U, V .

Suppose V is not a singleton and f(V ) 6= [a, b]. The set V must be closed, since V is

the preimage of a closed set under the continuous function f |V . So f(V ) ⊂ [a, b] is closed,

and is thus an arc. Then, since f(V ) 6= [a, b], at least one of the endpoints must not have a

preimage in V . We have two cases. Either:

1. neither end point has a preimage in V or,

2. without loss of generality, b does not have a preimage in V , but a does.

As we will see, both of these lead to contradictions. In case 1, let z ∈ V . Then

f(z) ∈ [a, b]. Then, since [c0, z] ⊆ Si for some i ∈ {0, 1}, we have f |[c0,z] is an embedding,

so f([c0, z]) is an arc. Moreover, f([c0, z]) ∩ [a, b] = [c1, f(z)] ∩ [a, b] 6= ∅. Then either

a ∈ [c1, z]∩ [a, b], b ∈ [c1, z]∩ [a, b] or [c1, z]∩ [a, b] = {z}. In the first two cases we arrive

at a contradiction because one of a or b has a preimage in V , and in the latter case we find

f(z) is a branch point, but (a, b) misses I0.

If we are in case 2, then a ∈ f(V ) and b /∈ f(V ). Since V is an arc, f(V ) must also

be an arc. So, let p be such that f(V ) = [a, p]. Let p′ ∈ V be the point that maps to p.
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Since V misses I0 we have p′ is neither a branch point, nor an end point of H . But, since

f |V is an embedding, and p is an endpoint of f(V ), we must have p′ is an endpoint of V .

So we can find an arc [d, p′] such that [d, p′] ∩ V = {p′}. By definition of V we must have

f([d, p′]) ∩ [a, b] = {p}, but this implies p is a branch point. Thus, either p is in (a, b) and

is a branch point or p = a. But both cases lead to a contradiction. Thus, if V is not a

singleton, then f(V ) = [a, b].

At least one of U, V must not be a singleton, so either both U, V are homeomorphic to

[a, b] under f or one of them is homeomorphic to [a, b] under f and the other is a singleton.

Now, suppose a = c1. Then f−1([a, b]) is an arc containing c0. In S1 we have

f([1, c0]) = [1, c1] ⊇ [a, b]. So b has a preimage in S1. Moreover, bmust have a preimage in

S0 since (a, b) misses I0. If b had no preimage in S0, then f(S0) ⊂ (a, b). But S0 contains

points on the critical orbit, so then (a, b) would also contains points in the critical orbit.

Then f−1([a, b]) \ {c0} is the union of two sets U, V such that U ∪ {c0} and V ∪ {c0} are

both homeomorphic to [a, b] under f .

Theorem 4.0.6: For each x̄ ∈ Ĥ , deg(x̄) = ϕ(x̄).

Proof. Fix x̄ ∈ Ĥ and let d = ϕ(x̄). We first show that deg(x̄) ≥ d by building subcontin-

uua A1, . . . , Ad ⊂ Ĥ with {x̄} ( Ai and Ai ∩ Aj = {x̄} for all 1 ≤ i < j ≤ d.

Fix n ∈ ω such that −→x −n is point of degree d. So there exists d many subcontinuua

of H , call them K1
−n, . . . , K

d
−n, such that each contains {−→x −n} as a proper subset and,

Ki
−n∩K

j
−n = {−→x −n} for all 1 ≤ i < j ≤ d. What’s more, without loss of generality, each

Ki
−n can be chosen so that each Ki

−n is an arc and Ki
−n \ {−→x −n} misses I0.
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Now, for m < n define Ki
−m := fn−m(Ki

−n). For m > n define Ki
−m to be the

component of f−(m−n)(Ki
−n) which contains −→x −m. This component is homeomorphic to

Ki
−n by Lemma 4.0.5. Define Ai = lim←−{K

i
−n, f}. By construction, 〈Ai〉i≤d is a set of d

nondegenerate subcontinuua of Ĥ whose pairwise intersection is x̄. Thus deg(x̄) ≥ d.

All that is left to show is that x̄ is point of degree exactly d. With this in mind, suppose

x̄ is degree at least d+ 1 and let Ai, i ≤ d+ 1 be a set of proper subcontinuua of Ĥ each of

which properly contain x̄ and Ai ∩ Aj = {x̄} for all 1 ≤ i < j ≤ d+ 1.

Let (nk)k∈ω be a sequence of indices such that deg(−→x −nk
) = d for all k ∈ ω and

π−nk
(Ai) 6= H for all 1 ≤ i ≤ d + 1, k ∈ ω. Note that since each Ai is a proper

subcontinuum of Ĥ, for each i ≤ d + 1 there must be some ij ∈ ω such that for all

m > ij, πm(Ai) 6= H , else Ai would be Ĥ . Moreover, since Ai is not a singleton, π−m(Ai)

is not a singleton for all m ∈ ω. To see why, notice that if π−m(Ai) were a singleton and

π−(m+1)(A
i) were not, then since each point in H has at most two preimages, π−(m+1)(A

i)

would have at most two points. But π−(m+1)(A
i) is a continuum and thus, must be a sin-

gleton. So, if π−m(Ai) is a singleton for any m, then it is a singleton for every m. But Ai

is not a singleton, so π−m(Ai) is not a singleton for any m.

Then, for all k, since deg(−→x −nk
) = d, there must be a pair Aik , Ajk from our set of

continuua in Ĥ such that (π−nk
(Aik) ∩ π−nk

(Ajk)) \ {−→x −nk
} 6= ∅. But, since there are

infinitely many indices and only finitely many pairs of continuua, there must be a pair of

continuua Ai, Aj such that (π−nk
(Ai) ∩ π−nk

(Aj)) \ {−→x −nk
} 6= ∅ for infinitely many k.

But, if (π−nk
(Ai) ∩ π−nk

(Aj)) \ {−→x −nk
} 6= ∅ for some k, then (π−nr(A

i) ∩ π−nr(A
j)) \

{−→x −nr} 6= ∅ for all r < k.
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Thus, for all r ∈ ω, (π−nr(A
i) ∩ π−nr(A

j)) \ {−→x −nr} 6= ∅. But this would mean that

Ai ∩ Aj \ {x̄} 6= ∅, a contradiction. Thus, deg(x̄) = ϕ(x̄).

Corollary 4.0.7: x is an endpoint of Ĥ if and only if −→x −n is an endpoint of H for

infinitely many n ∈ ω.

Corollary 4.0.8: The number of branch points in Ĥ is exactly the number of periodic

branch points in H , and the degree of a branch point in Ĥ is exactly the degree of all of its

projections.

Proof. Let b̄ ∈ Ĥ be a branch point. Then deg(b̄) ≥ 3. As such, by Lemma 4.0.3 and

Theorem 4.0.6 this must mean that
−→
b −n is a periodic branch point inH with degH(

−→
b −n) =

degĤ(b̄) for all n ∈ ω.

Each branch point in Ĥ can be uniquely identified by its zeroth projection. To see why,

suppose b̄, x̄ are two branch points in Ĥ with
−→
b 0 = −→x 0. Then for all n ∈ ω,

−→
b −n and

−→x −n are both periodic points in the orbit of
−→
b 0 which map to

−→
b 0 in exactly n iterates,

and thus must be the same point. So, for every branch point b̄ ∈ Ĥ, there exists a unique

periodic branch point β ∈ H such that b̄0 = β.

Moreover, by the construction of inverse limits, for every periodic branch point β in

H , there must be some b̄ ∈ Ĥ whose projections are all the periodic preimages of β. In

particular, for each β ∈ H, there is some b̄ ∈ Ĥ such that b̄0 = β.

Thus, the number of branch points in Ĥ is exactly the number of periodic branch points

in H and the degree of a branch point in Ĥ is is the same as the degree of all of its projec-

tions.
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CHAPTER FIVE

Constructing Infinite Families with Pairwise Non-Homeomorphic Inverse Limits

Recall that as abstract dendritic Julia set is a triple, (D,H, f) where f is the associated

function and H is the associated Hubbard tree. In this chapter our goal is to, given a

dendritic Julia set, (D,H, f), construct two infinite families. Each element in the first

family will have the form (Di, Hi, fi) and the family will have the property Di
∼= D for all

i, but Hi
∼= Hj if and only if i = j and lim←−{Di, fi} ∼= lim←−{Dj, fj} if and only if i = j. As

a bonus, each member (Di, Hi, fi) of this constructed family is an actual dendritic Julia set

and Hubbard tree of some complex quadratic polynomial.

Each element in the second family will, again, have the form (Di, Hi, fi), but, perhaps

more surprisingly, both Di
∼= D and Hi

∼= H for all i, but lim←−{Di, fi} ∼= lim←−{Dj, fj} if

and only if i = j.

To this end we need four things. The first is a rephrasing of [Bal12, Theorem 4.2]:

Theorem 5.0.1: If (D1, H1, f1) and (D2, H2, f2) are two dendritic Julia sets such that

lim←−{D1, f1} ∼= lim←−{D2, f2}, then lim←−{H1, f1} ∼= lim←−{H2, f2}.

The second and third things we need are lemmas that helps prove the fourth.

Lemma 5.0.2: In an dendritic Julia set D, f is locally two-to-one at c0.

Proof. Since D is self-similar under f we have f(S1 ∪ {c0}) = f(S2 ∪ {c0}) = D. So

every point in D \{c1} has exactly two preimages, one in S0 and one in S1. So any point in
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a neighborhood of c1 has two preimages in a neighborhood of c0, so f is locally two-to-one

at c0.

Lemma 5.0.3: If (H, f) has prime kneading sequence, then for any point p ∈ H the set

of of points that eventually map to p is arc-dense in D.

Proof. As shown in in [BKS11], D =
⋃
n∈ω f

−n(H). So the set of points in D that even-

tually map into H is dense in D. Moreover, f−1(H) is the union of the preimage of H in

S0 together with the preimage of H in S1. Both of these are connected and contain c0 so

f−1(H) is connected.

So, since
⋃
n∈ω f

−n(H) is a connected dense subset of D, we have that
⋃
n∈ω f

−n(H)

contains every point in D except possibly some endpoint. So any arc in D that does not

contain an endpoint of D must map into H in finitely many iterations. Since the kneading

sequence if prime, the system (H, f) is locally eventually onto so any arc in H eventually

covers H . The result follows.

The fourth thing we need allows us to determine the structure of the dendrite from the

Hubbard tree:

Theorem 5.0.4: Let D be an abstract dendritic Julia set with associated function f ,

Hubbard Tree, H , and critical point c0. Let ∆ = {d : there is a cyclic branch point b ∈ H

with degH(b) = d}. Then D will have an arc dense set of branch points of degree d for

each d ∈ ∆. Moreover, if c0 is periodic then D will have an arc dense set of branch points

of degree infinity. If c0 is pre-periodic, let j = max{degH(f i(c0))}i∈N. Then D will have
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an arc dense set of branch points of degree 2j. D will contain no branch points other than

those that are previously mentioned.

Proof. Let us first consider Orb(c0). Let ci be the endpoint of H last visited by c0. If

c0 is periodic, then let n be minimal such that fn(ci) = c0. Then fn is a homeomor-

phism on a sufficiently small neighborhood of ci in D. Thus, since D is self-similar under

f, degD(ci) = degD(c0). However, by Lemma 5.0.2, f is locally two-to-one at c0. So we

have degD(c0) = 2 degD(c1) = 2 degD(ci) = 2 degD(c0) and so degD(c0) =∞.

If c0 is pre-periodic, let j = max{degH(f i(c0))}i∈N and let m be maximal so that cm 6=

ci for all i < m but cm+1 = ci for some i < m + 1, i.e. let cm be the point in Orb(c0) last

visited by c0. Because f is locally injective for all x ∈ H \ {c0}, degH(x) ≤ degH(f(x))

for all x ∈ H \ {c0}. Then the degree of cm in H must be maximal among Orb(c0) so

cm is a point degree j. Since f is a local homeomorphism at all points except c0, we have

degD(ci) = j for all i > 0. But since f is locally 2-1 at c0 and f is locally 1-1 on D−{c0}

we must have that c0 is a branch point in D of degree 2j.

Since the set of precritical points is arc dense in D [Bal07, Proposition 1.17] we have

that there is an arc dense set of degree infinity points (if c0 is periodic) or degree 2j points

(if c0 is pre-periodic).

Let us now consider the branch points of H . Fix a branch point b ∈ H let d =

max{degH(f j(b)) : j ∈ ω}. (Note: every branch point is either periodic or pre-periodic,

so this maximum is well defined). Let p be a periodic branch point in Orb(b). Then

degH(p) = d Since f is self similar on D, we have degD(b) = degD(p). We want to show

that degD(b) = degH(p). Since H ⊆ D we must have degH(p) ≤ degD(p). Suppose
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degD(p) > degH(p). Let a ∈ D \H be such that [p, a] is an arc emanating from p. Then

[p, a] ∩H = p.

Since the set of precritical points is dense in D, there is a minimal n such that fn([a, p])

contains c0. As such, there is a minimal m ∈ N such that fm([a, p)) ∩ H 6= ∅. But, on

a sufficiently small neighborhood of p, fm is a injective. So, if fm−1((p, a]) maps into

H under f , then there must be an arc emanating from fm−1(p) in H that maps out of

H under f . But H is closed under f , a contradiction. So, degD(p) = degH(p). Thus

degD(b) = max{degH(f j(b)) : j ∈ ω}.

By Lemma 5.0.3 we must have that for all x ∈ D that eventually map to b (except for

those that are pre-critical, mapping to c0 before eventually mapping to b), degD(x) = d.

The self-similarity of D ensures that this set is arc-dense. So D contains an arc dense set

of branch points of degree d for each d ∈ ∆.

Suppose D had branch points of some other degree not in ∆∪ {degD(c0)}. Then since

D is self similar, we would know that these branch points are arc dense in D and so are

also arc dense in H , though their degree in H would have to be two, because the degrees of

all the branch points in H have already been taken into consideration during construction

of ∆. Similarly, these branch points in D cannot not be precritical, since we have already

covered the degrees of the precritical points. The arcs in D \ H emanating from these

branch points in H could never map into H (since f is 1-1 everywhere except c0 and the

points are not precritical), and so the itinerary of every point on these arcs would be the

same as the itinerary of the branch point, contradicting the arc-density of precritical points

in D.

60



Corollary 5.0.5: In any dendritic Julia set D, the set {d : ∃b ∈ D with degD(b) = d}

is finite.

Proof. Suppose the set is infinite. Then by Theorem 5.0.4, the set ∆ = {d : there is a

cyclic branch point b ∈ H with degH(b) = d} must be infinite. But there are only finitely

many branch points in H .

So now, given a Hubbard tree (H, f) we can determine the structure of the dendrite.

We now seek to construct Hubbard trees whose dendrites will be homeomorphic to some

given dendrite. This task breaks into two cases: if the given dendrite has degree infinity

points, then the turning point in our Hubbard tree must be periodic, and otherwise the

turning point must be pre-periodic. This gives us two cases, periodic kneading sequences,

and pre-periodic kneading sequences. We are now ready to construct the first family.

5.1 Different Hubbard Tree, Same Dendrite, Different Inverse Limit

In order to achieve our goal of constructing an infinite family of pairwise homeomor-

phic abstract dendritic Julia sets with pairwise non-homeomorphic Hubbard trees, we rely

heavily on internal addresses introduced in [BS08] which is defined as follows:

Definition 5.1.1: For a kneading sequence τ define

ρτ : N→ N ∪ {∞}, ρτ (n) = inf{k > n : τk 6= τk−n}.
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If the kneading sequence τ is made clear from context, we typically write ρ instead of

ρτ . For k ≥ 1 we call Orbρ(k) = k → ρ(k)→ ρ2(k)→ . . . the ρ-orbit of k. The internal

address of a kneading sequence τ is the ρ-orbit of 1.

If there exists j for which ρj(1) = ∞ then we say that the internal address is finite

1 → ρ(1) → · · · → ρj−1(1). As a result Orbρ is a finite or infinite sequence that never

contains∞.

Notice that if τ is a periodic kneading sequence with prime period k then Orbρ(τ) is

finite.

Along with the definition of an internal address comes a notion of an internal address

and its associated kneading sequence being admissible.

Definition 5.1.2: An internal address % is admissible if, for each m ∈ N at least one of

the following is false:

1. % contains m,

2. there exists some k < m such that k divides m and ρ(k) > m,

3. ρ(m) =∞ or if r ∈ {1, . . . ,m} is congruent to ρ(m) mod m, then m /∈ Orbρ(r).

If an internal address is admissable, we also say that the associated kneading sequence is

admissable.

The reason we bring this up is that we aim to, given a set, ∆, of degrees of branch

points, construct an admissible internal address whose associated abstract dendritic Julia

set has periodic branch points of degree d for each d ∈ ∆.
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Algorithm 5.1.3: Let (d1, d2, ...dn) be a list of (not necessarily unique) natural numbers

such that di ≥ 3 for all i ∈ {1, ..., n}. We define a function

IA : {finite lists of finite numbers greater than two} → {finite internal addresses}

by IA(d1, d2, · · · dn) = k0 → k1 → k2 → ... → kn where kj is defined by the sequence

k0 = 1, kj = kj−1(dj − 1) + 1.

Example 5.1.4: Suppose our list of numbers is (5, 4, 3). Then IA(5, 4, 3) = 1→ 5→

16→ 33. We can then convert this, if we so desired, to a kneading sequence as in Algorithm

2.3 of [BKS11]. To do so we start with the string “1”, and we repeat this string until we

reach character number k1 = 5. Here we flip the character to its opposite (i.e. if regular

repetition would make the 5th character a 1, we make the 5th character a 0 and vice-versa).

So our new string is “11110”. We now copy and paste this string until we reach the k2 =

16th character, at which point we flip the 16th character to its opposite. So our string is now

“1111011110111100”. We now repeat this string until we reach the k3 = 33rd) character,

but since 33 is the largest number in the internal address, and must correspond to the period

of the critical point we write a ∗ for the 33rd character. We make the whole sequence repeat,

and we have our kneading sequence, τ = ∗11110111101111001111011110111100.

Lemma 5.1.5: In a kneading sequence made from any internal address in the range of

IA every block of 1’s is of length k1 − 1.

Proof. Let τ be the kneading sequence associated with an internal address k1 → · · · → kn

in the range of IA. By definition, kj ∼= 1 mod kj−1 so we are guaranteed to iterate
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through the sequence τ1τ2, · · · τkj−1
a whole number of times before flipping character kj .

This means that each block of 1’s is an exact copy of the very first block of 1’s which is of

length k1 − 1.

Lemma 5.1.6: Any tree whose internal address is in the range of IAwill have kn−n+1

endpoints where n is the index of the last element in the internal address.

Proof. Let τ be the kneading sequence associated with the given internal address. By

construction of τ, the last block of 0s before repetition has length n and is longer than any

other block of 0s. Let w be the index of the first 0 in this block. Thus, by Theorem 2.2.12,

σw(τ) is the itinerary of an endpoint of H and σw−1(τ) is not the itinerary of an endpoint

of H .

The kneading sequence has prime period kn, and each shift of the critical point is an

endpoint except for those shifts whose itineraries begin 0n−m∗ for some 1 ≤ m < n, i.e.

f j(c0) is an endpoint if and only if 0 < j ≤ kn − n + 1, so there are exactly kn − n + 1

many endpoints.

Lemma 5.1.7: In any tree whose internal address is in the range of IA, for any endpoint,

p′, in S0 with itinerary p that maps into S1 we have V (σ(τ), τ, σ(p)) 6= 1. That is to say,

f(p′) ∈ T1 (the tree emanating from 1 containing c1).

Proof. Any endpoint in S0 that maps into S1 must map to an endpoint by the same reason-

ing as in the proof of Lemma 5.1.6. But every block of 0’s is followed by a ∗ or k1 − 1

many 1s. So if we map to an endpoint in S1, the itinerary of that endpoint must begin with

exactly k1 many 1s.
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So, σ(p) begins 1k1−10 . . . . Thus,

V (σ(τ), τ, σ(p)) = 1k1−10_V (σk1+1(τ), σk1(τ), σk1+1(p)) 6= 1.

Thus, [c1, f(p′)] ∩ [c1, c0] ∩ [c0, f(p′)] is not the fixed branch point, so f(p′) is either in

T1 or T ∗0 ? But, since σ(p) begins 1k1−10 . . . , we have that f(p′), f 2(p′), . . . , fk1−1(p′) are

all in S1, but fk1(p′) is in S0. By Lemma 3.0.7 T ∗0 maps injectively into T1 which maps

injectively into T2 and, continuing in this manner, Tk1 maps injectively into T0. So, any

point in T ∗0 requires at least k1 many iterations of f to map into S0. Since p′ maps into S0

in fewer iterates, p′ must be in T1.

Lemma 5.1.8: Any internal address in the range of IA is admissible.

Proof. Let τ be the kneading sequence associated with an internal address k1 → · · · → kn

in the range of IA. It has been shown (6.5, 6.6, [Sch17]) that the internal address associated

with τ is admissible if no shift σk(τ) exceeds τ (without ∗) with respect to lexicographic

ordering.

To see that σ0(τ) is indeed maximal, lexicographical speaking, we begin by recalling

that every string of 1s in τ is exactly k1− 1 characters long by Lemma 5.1.5. So the largest

lexicographic shift of τ we must start with k1 − 1 many 1s. So the first 0 is at position k1

and there is a 0 at every whole number multiple of k1.

Similarly, in τ each block of two 0s are such that the last 0 in the block is a whole

number multiple of k2 apart from one another. That is, there is a 0 at every whole number

multiple of k2. So, in order for a shift of τ to be the largest lexicographic shift possible
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it must have the first occurrence of a second 0 to be at position k2. Similarly there are

0s at every multiple of k3, and these 0s come at the end of a block of length 3, so the

maximal shift will be such that the first occurrence of a third 0 is at position k3. Continuing

in this way, there is a 0 at every multiple of kj and these 0s come at the end of a block

of length j, so the furthest such a 0 can be from the start of the string is at position kj .

There is only one shift that can accomplish all of these, and that is the zeroth shift. Thus

σ0(τ) = max{σi(τ)} with respect to lexicographical ordering, so τ and its internal address

are admissible.

Now that we know that the kneading sequence is admissible, we introduce a nifty fact,

proven in the the same paper that originally defined internal addresses:

Theorem 5.1.9: A Hubbard tree can be realized by a quadratic polynomial if and only if

the associated kneading sequence does not fail the admissibility condition for any m ∈ N.

Theorem 5.1.10: Let D be a dendritic Julia set with associated Hubbard tree (H, f)

such that D has a branch point of infinite degree (i.e. c0 is periodic under f ). Let ∆ =

{d1, d2, ...dn} be the set of finite degrees of branch points inD. Then IA(d1, d2, ...dn) is the

internal address of a Hubbard tree (H ′, f ′) whose associated dendrite D′ is homeomorphic

to D.

Proof. Lemma 5.1.8 shows that the internal address is admissible.
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In [BS08, Proposition 4.19], it is shown that if for any m ≥ 1, we let r ∈ {1, 2, ...,m}

be congruent to ρ(m) modulo m, and define

q(m) =


ρ(m)−r
m

+ 1 ifm ∈ Orbρ(r)

ρ(m)−r
m

+ 2 ifm /∈ Orbρ(r)

then, for any entry m in the internal address with q(m) ≥ 3, there is a branch point of exact

period m whose degree is q(m) (unless m is the period of the critical point). Moreover, if

z is a branch point of exact period m, then m is in the internal address.

In this way, the internal address contains a substantial portion of the dynamical infor-

mation about the periodic branch points of the tree.

The internal address constructed by this algorithm creates a Hubbard tree (H ′, f ′) that

contains periodic branch points of the appropriate degrees since, by construction q(kj−1) =

dj .

Hence, H ′ is such that, for each dj ∈ ∆, there is a periodic branch point, p ∈ H whose

degree is dj .

Let D′ be the dendritic Julia set associated with (H ′, f ′). By Theorem 5.0.4, D′ will

have an arc-dense set of branch points of degree dj for each dj ∈ ∆ and, since the critical

point of H ′ is periodic under f ′, an arc dense set of degree infinity branch points.

In [CD94, Theorem 6.2], it is shown that if two abstract dendritic Julia sets, J, L are

such that {n ∈ N : there exists an arc dense set of branch points in J with degree n} =

{n ∈ N : there exists an arc dense set of branch points in L with degree n}, then J and
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L are homeomorphic. Thus, since they share the same set of degrees of arc dense branch

points, D′ ∼= D.

Corollary 5.1.11: Every abstract dendritic Julia set with an arc dense set of degree

infinity branch points is homeomorphic to the Julia set of some quadratic polynomial.

Proof. Let D be an abstract dendritic Julia set with an arc dense set of degree infinity

branch points. Note that dendritic Julia sets have a finite set of degrees its branch points

can take, so we can apply Theorem 5.1.10 to the finite list of finite degree branch points

in D to make an admissible internal address of a Hubbard tree whose associated dendrite

is homeomorphic to D. Since the internal address is admissible, the Hubbard tree can be

realize by a quadratic polynomial by Theorem 5.1.9.

Theorem 5.1.12: Let (D,H, f) be an abstract dendritic Julia set with Hubbard tree H

and function f with a periodic critical point. Then there is an infinite family 〈(Di, Hi, fi)〉i∈ω

all of which have a critical point that is periodic under fi, andHi
∼= Hj if, and only if, i = j

and Di
∼= D for all i.

Moreover, lim←−{Di, fi} ∼= lim←−{Dj, fj} if and only if i = j.

Proof. If the set of finite degrees of arc-dense branch points in D is {d1, d2, . . . , dn},

then we can get homeomorphic dendrites by using Algorithm 5.1.3 on (d1, d2, · · · , dn)

or (d1, d1, d2, · · · , dn), or (d1, d1, d1, d2, · · · , dn), etc. But, by construction, each of these

Hubbard trees will have sets of periodic branch points of degree d1 with distinct cardi-

nalities and since these are the only branch points of degree d1 in the Hubbard tree, the

underlying trees will be non-homeomorphic.
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Furthermore, for the family of Hubbard trees (Hi, fi) letBi be the set of periodic branch

points in (Hi, fi). Then we have |Bi| = |Bj| if and only if i = j. But by Theorem 4.0.6

this must mean lim←−{Hi, fi} ∼= lim←−{Hj, fj} if and only if i = j, and so, by Theorem 5.0.1

we have lim←−{Di, fi} ∼= lim←−{Dj, fj} if and only if i = j.

5.2 Same Hubbard tree, Same Dendritic Julia set, Different Inverse Limits

In this section we demonstrate that for each dendritic Julia set D, there is a countable

collection of distinct kneading sequences whose associated dendrites are homeomorphic to

D but which have mutually non-homeomorphic inverse limits. In order to do so, we first

prove that each Hubbard tree is compatible with a countable family of dynamically distinct

unimodal maps. In particular, the postcritical periods of this family are not bounded, which

will be crucial to our main result.

We first we recall Lemma 2.2.5 which says that if τ is acceptable, then there is a Hub-

bard tree with kneading sequence τ which has the unique itinerary property.

Lemma 5.2.1: Let (H, f) be a Hubbard Tree with a prime kneading sequence. Then

there exist infinitely many unimodal maps g : H → H sharing the same critical point as f

such that (H, g) is a Hubbard tree with the unique itinerary property.

Proof. Let (H, f) be a Hubbard Tree with prime kneading sequence, τ . Since prime knead-

ing sequences are acceptable [Bal07, Theorem 3.10] (H, f) is equivalent to a Hubbard tree

with the unique itinerary property, so we may assume that it has the unique itinerary prop-

erty. Let c0 be the critical point of (H, f) and let ci be the last endpoint visited by its orbit.

Let b be the point in I0 nearest ci. Since f(b) and f(ci) have different itineraries, we can
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choose a point q ∈ (f(b), f(ci)) which is not on the critical orbit but which is precritical.

Moreover, since Hubbard trees with prime kneading sequences are locally eventually onto,

we can choose a precritical q that maps near the fixed branch point before it maps to c0. In

particular, we can choose a q whose precritical itinerary contains arbitrarily many 1’s. Note

that for any n ∈ N there is a neighborhood near 1 such that all points in the neighborhood

have an itinerary that starts with at least n many 1’s.

If the orbit of q meets [b, ci), choose j ∈ N minimal such that f j(q) is the point in

Orb(q) ∩ [b, ci) closest to ci and let w = f j(q). Otherwise let w = b. Since f((b, ci))

contains q, there is a point, s ∈ (b, ci) that maps to q. We have two cases. If s ∈ (w, ci)

then let r = w. Otherwise, if w ∈ (s, ci), then we find a point t ∈ (w, ci) such that t

eventually maps to q. Such a t must exist by LEO. Let r = t. Then [f(r), q] is a non-

degenerate arc in H .

Define fq : H → H as follows. First, fix a linear map l : [r, ci] → [f(r), q] with

l(r) = f(r) and l(ci) = q. Then we define

fq(x) =


f(x) : x ∈ H \ (r, ci]

l(x) : x ∈ [r, ci]

We now show (H, fq) is a Hubbard Tree by verifying conditions (1)-(6) in Definition

1.2.17.

1. (continuous and surjective) Notice that for 0 ≤ j ≤ i, fq(cj) = f(cj), and thus

{c0, c1, . . . ci} ∈ fq(H). Since this is the collection of endpoints of H , it follows that
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fq(H) = H , i.e. fq is surjective. What’s more, the function fq is continuous and

well-defined as it is piecewise continuous and f(r) = l(r).

2. (every point has at most two preimages) Fix p ∈ H . Observe that f−1q (p) = (f−1(p)\

[r, ci]) ∪ l−1(p). Notice that f−1(p) \ [r, ci] has at most two elements and l−1(p) at

most one. Indeed, if f−1(p) \ [r, ci] has two elements, then p /∈ [f(r), f(ci)] (else p

has three preimages under f ), and thus l−1(p) is empty. Thus f−1q (p) consists of at

most two elements.

3. (locally 1-1 at all points except c0) Observe that c0 /∈ (r, ci] and thus fq(c0) = f(c0)

is an endpoint of H . Since c0 is not an endpoint, it follows that fq is not locally

one-to-one at c0.

Now, consider p ∈ H \ {c0}.

If p /∈ [r, ci] then, since [r, ci] is closed in H and does not contain p, it follows that

there is a neighborhood of p on which fq = f . Thus fq is locally one-to-one at p if

and only if f is. Since p 6= c0, fq is indeed locally one-to-one at p.

If p ∈ (r, ci] then, since (r, ci] contains no branch points of H by construction, it

follows that there is a neighborhood of p on which fq is equal to l, and thus fq is

locally one-to-one at p.

Finally, if p = r then, we can choose a neighborhood U of r that does not include

any other branch points, endpoints, or c0. Suppose x, y ∈ U with x 6= y, and fq(x) =

fq(y). Then at least one of x, y is in [r, ci] because otherwise, f(x) = fq(x) =

fq(y) = f(y) but f is one-to-one onU . They cannot both be in [r, ci] since fq|[r,ci] = l
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is linear, and thus one-to-one. Without loss of generality, x ∈ [r, ci] and y /∈ [r, ci].

But then fq(y) = f(y) and since x ∈ [r, ci], fq(x) ∈ [f(r), q] and thus f(y) ∈

[f(r), q] ⊆ f([r, ci]). Thus f is not one-to-one on [y, ci], and thus c0 ∈ (y, ci). Since

c0 /∈ (r, ci], we see that c0 ∈ (y, r) ⊆ (y, x) ⊆ U , a contradiction.

4. (all endpoints are in Orb(c0)) fk(c0) = fkq (c0) for all 0 ≤ k ≤ i and after i iterates,

c0 has visited every endpoint.

5. (c0 is periodic or pre-periodic, but not fixed) Notice that fq(c0) = f(c0), and thus c0

is not fixed. Since, for k > i, fkq (c0) = fk−i−1q (q) and fq is equal to f on the orbit

of q, it follows that c0 is either periodic (if q is precritical) or pre-periodic (if q is

(pre-)periodic).

6. (weak unique itinerary property) Let x, y be distinct points, each of which is a branch

point or a point on the critical orbit under fq. If they are both branch points, then

fk(x) = fkq (x) and fk(y) = fkq (y) for all k ∈ N and so there exists an n ∈ N with

c0 ∈ fnq ([x, y]).

If at least one of x, y is not a branch point, (say x), then x is in the critical orbit, and

so there is some n ∈ ω so that fn([x, y]) contains c0.

Thus, (H, fq) is a Hubbard Tree and since q’s itinerary under f (and thus under fq) is

different than the itinerary of f(ci) under f , (H, fq) is a Hubbard tree, homeomorphic to

(H, f) with the same critical point but with a different kneading sequence.

Since Hubbard trees with prime kneading sequences are locally eventually onto [Bal07,

Theorems 4.10, 4.13], we can choose our point q so that the pre-critical itinerary of q con-
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tains an arbitrarily long block of 1’s. In particular, q can be chosen so that the longest block

of 1’s in pre-critical itinerary of q is longer than the longest block of 1’s and ∗ appearing in

τ. So, for example, if τ = ∗110111111, then the longest block of 1’s and ∗ is 9 characters

long. Then, since the new kneading sequence under fq is periodic, in any shift of the new

kneading sequences, this longer block of 1’s must overlap a zero. So the new kneading

sequence is acceptable.

Since any tree with an acceptable kneading sequence is equivalent to a tree with the

same kneading sequence and the unique itinerary property. Thus, there exists a Hubbard

Tree (H, g), homeomorphic to (H, f), with the same kneading sequence and same critical

point as (H, fq) that has the unique itinerary property.

The choice of q is arbitrary so there exist infinitely many such kneading sequences

giving rise to infinitely many such trees.

Figure 5.1 provides a concrete example of Lemma 5.2.1 in action. It starts with a Hub-

bard tree whose kneading sequence is ∗110110 and alters the function f by mapping c6 to a

precritical point q. This new Hubbard tree (H, fq) has kneading sequence ∗11011011111.

Knowing that we can get an infinite family of kneading sequences that each give rise to

a homeomorphic tree with the same critical point leads to a natural question: what can we

say about the dendrites?

Corollary 5.2.2: Let (H, f) be a Hubbard tree with kneading sequence ν. Let τ be a

different kneading sequence for H as constructed in Lemma 5.2.1, giving rise to (H, g).

Then the associated dendrites Dν and Dτ are homeomorphic.
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c0 = c7
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c2

c3c4

c5 c6

(a) A Hubbard Tree with kneading
sequence ∗110110

c0 = c12

c1

c2

c3c4

c5 c6

c7 = q

c8
c9

c10

c11

(b) A Hubbard Tree with kneading
sequence ∗11011011111

Figure 5.1. Using 5.2.1 to construct a Hubbard tree with different kneading sequence

Proof. Under both τ and ν we have that c0 is periodic or pre-periodic with the same even-

tual orbit period. Moreover, the orbit of each branch point is unaffected by the change from

ν to τ since the process of altering the function in Lemma 5.2.1 only alters the orbits of

points whose orbits intersect the arc (r, ci] which does not contain any branch points. So by

Theorem 5.0.4 we have that the dendrites Dτ and Dν will both contain the same sets of arc

dense branch point degrees and will thus be homeomorphic by [CD94, Theorem 6.2].

Theorem 5.2.3: Let D be a dendritic Julia set with acceptable, periodic kneading se-

quence, τ . Then there are countably many other acceptable kneading sequences 〈τi〉i∈ω

with associated dendrites, 〈Di〉i∈ω, such that each Di is homeomorphic to D and the asso-

ciated Hubbard trees, 〈Hi〉i∈ω, are also homeomorphic with the same critical point, but the

inverse limit spaces, lim←−{Di, σi} are mutually non-homeomorphic.
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Proof. Assume hypotheses as stated. Then D contains a periodic Hubbard tree, Hτ . The-

orem 5.2.1 shows that there are countably many periodic kneading sequences 〈τi〉i∈ω that

give rise to the same tree, and thus, by Corollary 5.2.2, to the same dendrite.

Moreover, we can make it so that the period of τi is less than the period of τi+1 for

all i. Recall that Corollary 4.0.7 says that a point x ∈ Ĥτ is an endpoint if and only if it

projects to an endpoint infinitely often. So then |end(Ĥτi)| < |end(Ĥτi+1
)| for all i. and

thus lim←−{H, fi} 6
∼= lim←−{H, fj} for all i 6= j. Since the Hubbard tree inverse limit is a

topological invariant of the dendrite inverse limit, the same dendrite can have countably

many non-homeomorphic inverse limits.
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CHAPTER SIX

Further Work

6.1 Future Directions For Chapter Three

Much of Chapter Three is concerned with fully describing all Hubbardizable trees with

fewer than four branch points. While methods similar to those found in Chapter Three can

be used to fully describe all Hubbardizable trees with four, five, six branch points, etc. to

do so would require a staggering amount of case-checking.

It would be remarkable to see a relatively simple necessary and sufficient condition for

Hubbardizablity, although the author can provide no useful direction.

6.2 Future Directions For Chapter Five

In Chapter Five we learned a process to take a given Hubbard tree (H, f), slightly alter

the function to make a new function g such that (H, g) is also a Hubbard tree. Along these

lines, we present a conjecture that seems true based on empirical evidence, but we have

been unable to prove.

Much like the “altering of f” done in Chapter Five, this conjecture (if true) provides a

step by step method to start with a Hubbard tree (H, f) and create infinitely many Hubbard

trees (H, fi) such that lim←−{H, fi}
∼= lim←−{H, fj} if and only if i = j. The only stipulation,

is that under the original function f , the critical point must be periodic. The full conjecture

is as follows:
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Conjecture 6.2.1: Let (H, f) be a Hubbard tree such that the critical point is pre-

periodic under f . Based on Definition 5.1.1, the internal address of (H, f) is an infinite

list of increasing integers

〈Ik〉k∈ω = 1, ρ(1), ρ2(1), ρ3(1), . . .

There exists an n ∈ ω such that for all m ≥ n there exists a Hubbard tree (Hm, fm)

such that Hm
∼= H and the internal address of (Hm, fm) is 〈Ik〉mk=0 (that is, we truncate the

internal address of (H, f) after the firstm entries). Moreover, lim←−{Hm, fm} ∼= lim←−{Hr, fr}

if and only if r = m and lim←−{Hm, fm} 6∼= lim←−{H, f} for all m.

Along these lines, we would love to prove a pre-periodic counter part to Theorem 5.2.3.

It might look something like the following:

Conjecture 6.2.2: Let (D,H, τ) be a dendritic Julia set with pre-periodic kneading

sequence. Then there are countably many other dendritic Julia sets 〈(Di, Hi, τi)〉i∈ω such

that for all i ∈ ω we have τi is pre-periodic, Hi
∼= H , Di

∼= D and the inverse limit spaces,

lim←−{Di, σi} are mutually non-homeomorphic.

The difficult part of the proof is to show that the inverse limits of the Hubbard trees (and

thereby the inverse limits of the dendrites) are non-homeomorphic. In Theorem 5.2.3 we

could distinguish inverse limits by the number of endpoints, this technique will not work

to distinguish inverse limits of Hubbard trees with pre-periodic kneading sequences since

many of these inverse limits will have no endpoints at all. We believe that any method
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of distinguishing these inverse limits will rely on folding points; an idea that was first

introduced by Raines in [Rai04] and is defined as follows:

Definition 6.2.3: We say x ∈ X is a folding point if for all open covers U of X , there

exists an open cover C ≺ U and a pair of sets C0, C1 ∈ C with x ∈ C1 and there exists an

open cover V ≺ C such that for all open coversD ≺ V there exists a chainD1, . . . , Dm ∈ D

and a number 1 < j < m with

• Dp ∩Dq 6= ∅ if and only if |p− q| ≤ 1,

•
⋃m
i=1Di ⊆ C0 ∪ C1,

• D1 ∪Dm ⊆ C0 \ C1 and Dj ⊆ C1 \ C0.

We believe that folding points will be key because we also believe the following.

Conjecture 6.2.4: A point x̄ ∈ Ĥ is a folding point if and only if −→x −n ∈ Orb(c0) for

infinitely many n ∈ ω.

We have made many attempts to prove this conjecture, and while this should be true

(morally speaking) it has proven difficult to fully demonstrate outright. But any young,

enterprising topologist should be able to make some progress on the claim. This claim, to-

gether with methods similar to those found in the proof of Lemma 5.2.1 should be sufficient

to prove Conjecture 6.2.2.
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APPENDIX A

Kneading Sequence Arguments

This appendix contains many arguments about creating a tree from a given kneading

sequence. If you would like to play with kneading sequences yourself and discover which

sequences give rise to which trees, click this link.

This links to a web page in which you can enter a periodic kneading sequence and

generate the tree. The way this is done is by implementing the voting sequence on all

possible triples of distinct shifts of the kneading sequence. This generates a list of all the

itineraries of branch points of T . It then runs the voting sequence on all possible triples

of distinct points from the critical orbit and branch points to find out which points are in a

free arc with each other. If two points p, q are in a free arc then V (p, q, x) ∈ {p, q} for all

x that are either branch points or in the critical orbit. Once it is known which points are in

free arcs with one another, it builds the appropriate tree. The source code can be found by

clicking here. But we walk through some psuedo code below. While the itineraries of every

point is infinitely long, every branch point or point in the critical orbit is (pre-)periodic so

we can compute the itineraries in finite time.

Psuedo-code

1. Fix n = |Orb(τ)|

2. Make a list, “orbTau” of the n shifts of τ

3. Make a list, “BranchPoints”, which is a copy of orbTau
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4. for i in range[0, n-2):

for j in range[i+1, n-1):

for k in range[j+1, n):

compute V (orbTau[i]. orbTau[j], orbTau[k])

If V (orbTau[i]. orbTau[j], orbTau[k]) not in BranchPoints, add it to BranchPoints

5. Make a list called “freeArcs”

6. for i in range[0, len(BranchPoints)-2):

for j in range[i+1, len(BranchPoints)-1):

compute V (BranchPoints[i], BranchPoints[j], BranchPoints[k]) for all k

If V (BranchPoints[i], BranchPoints[j], BranchPoints[k]) = BranchPoints[i] or Branch-

Points[j] for all k, then BranchPoints[i], BranchPoints[j] are in a free arc so add the

tuple (BranchPoints[i], BranchPoints[j]) to freeArcs

7. Use the list of edges in freeArcs to construct the tree

What follows is proofs of various claims about certain trees being generated from vari-

ous kneading sequences throughout the work.

Claim A.0.1: (From Theorem 2.2.13) To construct a Hubbard Tree with n colinear

branch points of degree m in S0, a fixed branch point of degree x in S1, x many branch

points of degree m in S1, and no other branch points, one can use the following kneading

sequence:

τ = ∗(1x0n)m−1.
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Proof. For every branch point b ∈ S0, there exists at least two endpoints e1, e2 in S0 such

that {b} = [c0, e1] ∩ [c0, e2] ∩ [e1, e2]. As such, to verify claims about branch points in S0

we need only concern ourselves with voting sequences of the form V (τ, e1, e2) where e1, e2

are endpoint in S0.

Let τ = ∗(1x0n)m−1 for some n, x,m. By Theorem 2.2.12, we have that the sequence

0nτ is the itinerary of an endpoint and the sequence 0n−1τ is the itinerary of some non-

endpoint in the critical orbit. So, we have (n)(m− 2) + 1 many endpoints in S0.

Let p(k, i) denote the itinerary of the point in the critical orbit whose itinerary starts

with the ith 0 in the kth block of 0s. So, for example, if τ = ∗1100011000 then p(1, 1) =

00011000 ∗ 11 and p(2, 3) = 0 ∗ 110001100.

Fix 1 ≤ j ≤ i ≤ n and let p(k, j), p(w, i) be the itineraries of two distinct endpoints

in S0. By inspection, V (τ, p(k, j), p(w, i)) = 0n−i+11x0i−1. In the case where j = i =

1, V (τ, p(k, j), p(w, i)) = 0n1x.

By the unique itinerary property of branch points, this gives the itinerary of n dis-

tinct branch points in S0. To show these all must have degree m, it suffices to show that

deg(0n1x) = m since the branch points are periodic. There are m − 1 many endpoints in

S0 whose itineraries also begin with 0n. Let e be such an endpoint (then ι(e) = p(w, 1) for

some w, and let q be another end point in T . We have two cases:

1. q ∈ S1. By inspection, V (ι(e), ι(q), 0n1x) = 0n1x and so the branch point with

itinerary 0n1x is in [e, q].

2. q ∈ S0. Then ι(q) = p(k, i) for some i and 1 ≤ k ≤ n. By inspection, V (p(w, 1), p(k, j), 0n1x) =

0n1x so the branch point with itinerary 0n1x is in [q, e]
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Thus, for any endpoint whose itinerary starts with n copies of 0, and any end point

q ∈ orb(τ) we have 0n1x ∈ [e, q]. So there are no branch points between 0n1x and e. Thus

there are m arcs emanating from 0n1x (to the m− 1 end points and to τ ). So the degree of

the branch point with itinerary 0n1x is m, and thus the degree all branch points of the form

0n−i+11x0i−1 = m. But these are all the branch points in S0.

Claim A.0.2: (From Theorem 2.2.13) Moreover, to construct a Hubbard Tree with ex-

actly n branch points, each of degree m one can let x = 1. In this case we get the following

kneading sequence:

τ = ∗(10n−1)m−1.

Proof. Let T be a Hubbard tree with kneading sequence τ . Since the kneading sequence

begins ∗10 . . . , the fixed point in S1 must have degree 2 by Lemma 2.2.9. Moreover, by

Theorem 2.2.12, the last block of 0s in τ corresponds to an endpoint of T . I.e. the point

in the orbit of τ with itinerary 0n−1τ is an endpoint. Thus, every preceding shift of τ is an

endpoint.

Let p′, q′ be distinct endpoints in S1 with itineraries p, q respectively. Then p, q both

begin 10n−1 . . . . By inspection, V (p, q, τ) = 10n−1. Since this is the only itinerary that one

can get as a result of applying the voting sequence to two endpoints in S1 and c0, we must

have that S1 has only one branch point. Since there are m − 1 many endpoints in S1, this

branch point must have degree m (since it is in a free arc with the m− 1 endpoints and c0).
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Now, let us consider branch points in S0. Let p′, q′ be distinct endpoints in S0 with

itineraries p, q respectively. Then p begins 0jp1 . . . or 0jp ∗ . . . and q begins 0jq1 . . . or

0jq ∗ . . . . We cannot have both p and q begin 0jp ∗ . . . and 0jq ∗ . . . since we require p′

and q′ to be endpoints. (Note that any point in the orbit of τ whose itinerary begins 0k∗ for

k < n− 1 is not an endpoint).

Let j = min{jp, jq}. Then, by inspection V (p, q, τ) = 0j10n−1−j. As such, every

branch point in S0 has itinerary 0j10n−1−j for some 1 ≤ j ≤ n − 1. Each of these branch

points must be in the orbit of the branch point from S1 (since the itineraries are shifts of the

itinerary of the branch point in S1). Since the branch point in S1 is periodic of degree m,

we have that every branch point in S0 is periodic of degree m.

Thus, T has exactly n branch points, each of degree m.

Claim A.0.3: (From Lemma 3.1.3) F k
0 can be made by τ = ∗1k−10 and F k

1 can be made

by τ = ∗(1k−10)k−1.

Proof. We begin by letting T be a Hubbard tree with kneading sequence τ = ∗1k−10. We

show that this kneading sequence yields a k−od. By Theorem 2.2.12, the point in the

critical orbit with itinerary 0τ is an endpoint, and as such, there is only one endpoint in

S0, and thus no endpoints in S0. Moreover, since the preimage of an endpoint is either an

endpoint or the critical point, this means that every point in the critical orbit (except the

critical point itself) is an endpoint. So, the Hubbard tree with kneading sequence τ must

have exactly k endpoint.

By Lemma 2.2.9 we know that there is a branch point in S1 whose degree is k. But

since there are only k endpoints, every endpoint must be in a free arc with this point. So
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there is only one branch point and it is of degree k. Thus, any Hubbard tree with kneading

sequence τ must be a k-od.

Now, let T be a Hubbard tree with kneading sequence τ = ∗(1k−10)k−1. Again, by

Theorem 2.2.12 we have that the point in the critical orbit with itinerary 0τ is an endpoint.

So we find that every point in the critical orbit (except c0 itself) is an endpoint. So there are

exactly k(k − 1) endpoints in T . Note that this is the same number of endpoints in F k
1 .

By Theorem 2.2.9, there is a fixed branch point in S1 whose degree is k. By inspection,

if p, q are itineraries of distinct endpoints in S0, then V (p, q, τ) = 01k−1. As such, there

is exactly one branch point in S0 and it’s itinerary is 01k−1. This branch point is degree k

(since there are k − 1 endpoints in S0 and this branch point is in a free arc with each of

them, and in a free arc with c0).

Now, let p, q be itineraries of distinct endpoints in S1. Notice, then, that p and q must

both start with a block of 1s. These blocks can either be the same length, or different

lengths. If they are the same length, say length j, then V (p, q, τ) = 1j01k−1−j. Since each

of these branch points is in the periodic orbit of the branch point with itinerary 01k−1, we

have that each of these branch points is degree k. If the starting blocks of 1s are differing

lengths, then V (p, q, τ) = 1.

Lastly, to truly verify that T ∼= F k
1 we show that the branch point 1 is the “central

branch point”. With this in mind, let p, q be itineraries of distinct branch points in the orbit

of 01k−1. Then V (p, q, 1) = 1. Thus, if p′, q′ are the branch points with itineraries p, q and

b is the branch point with itinerary 1, then b ∈ [p′, q′]. In this way, b is the central branch

point of T and thus T ∼= F k
1 .
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Claim A.0.4: (From Theorem 3.2.4) If |D| = 2 and min(D) = 3,max(D) = k, then

T can be realized by the kneading sequence τ = ∗1k−1001.

Proof. Since τ being ∗1k−10 the fixed branch point has degree k. By Theorem 2.2.12 the

point 001τ is an endpoint. We can determine if the point 01τ is an endpoint by running

V (τ, 001τ, 01τ) = 01. Since 01τ /∈ [τ, 001τ ] we have that 01τ must be and endpoint. Thus

there are only two endpoints in S0 and so the branch point between them, 01 mus have

degree 3.

To verify that there are no other branch points notice that if p, q are two points in the

critical orbit whose itineraries start with 1 then V (τ, p, q) = 1. Thus there is only one

branch point in S1. So the tree has only two branch points, one of degree k and one of

degree 3.

Claim A.0.5: (From Theorem 3.2.8, Case 2a) This tree can be made with τ = ∗(10)n1101.

Proof. To prove the claim we need to show that there are only three branch points. two in

S1 and one in S0, one of the branch points in S1 has degree three, and the other two branch

points have degree n+ 1.

The fixed point in S1 has degree two. Let p be a shift of τ proceeding 1101τ . Then

V (τ, p, 1101τ) = 110. So 1101τ is the itinerary of an endpoint in a free arc with the branch

point whose itinerary is 110. Thus any shift of τ proceeding 1101τ is the itinerary of an

endpoint.

But, V (101τ, 101101τ, τ) = 101τ so 101τ is not the itinerary of an endpoint. Thus,

there are exactly 2n+ 1 many endpoints in the tree, n in S0 and n+ 1 in S1. If p, q are the

itineraries of two distinct endpoints in S0, then V (p, q, τ) = 01. There are n endpoints in
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S0 and so the branch point in S2 must have degree n+1. Since this branch point is periodic,

any branch point in its orbit must also have degree n + 1, so if a is the branch point with

itinerary 10, then deg(a) = n+ 1.

Lastly, to see that b, the branch point with itinerary 110, has degree three, one can run

the voting sequence and verify that b is in a free arc with c0, a, the endpoint whose itinerary

is 1101τ and no other points. Thus deg(b) = 3.

Claim A.0.6: (From Theorem 3.2.8, Case 2b) If deg(a) = deg(b) > deg(c) [or by

symmetry deg(c) = deg(b) > deg(a)], then T can be made with kneading sequence τ =

∗(10)k−10010.

Proof. The fixed branch point has degree two. The longest block of 0s in τ occurs at

00010τ . By Theorem 2.2.12 we have that this point must be an endpoint. Thus every

proceeding shift of τ (except τ itself) is also an endpoint. V (100010τ, 10τ, τ) = 10τ . Thus

10τ ∈ (100010τ, τ) and so 10τ is not an endpoint. Thus, there are k− 1 many endpoints in

S1. Let p, q be two such endpoints, then V (p, q, τ) = 10. Therefore, 10 is the only branch

point in S1 and it has degree k. Since it is periodic, there must be a branch point 01 in S0

with degree k.

We now turn our attention to finding all the branch points in S0. By computing V (0010τ, s, τ)

for any s, a proceeding shift of τ which starts with 0, we find 0010τ /∈ (τ, s), so 0010τ

is an endpoint. But, V (010τ, 0100010τ, τ) = 010τ so 010τ is not an endpoint. Thus, the

number of endpoints in S0 is k.

V (00010τ, 0010τ, τ) = 001 so 001 is a branch point in S0. 10, 01, and 001 are the only

branch points in T . Moreover, if p is some shift of τ other than 00010τ or 0010τ , then
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V (00010τ, 001, p) = 001and V (0010τ, , τ, p) = 001. Thus, 001 is in a free arc with the

endpoints 00010τ and 0010τ . Similarly, 001 is in a free arc with 01. These are the only

endpoints or branch points with which 001 is ain a free arc, so deg(001) = 3.

Claim A.0.7: From Theorem 3.2.8, Case 2c(From Theorem 3.2.8, Case 2c) Such a tree

can be made by ∗1k−10001.

Proof. In any tree with this kneading sequence. there is a fixed branch point in S1 with

degree k by Lemma 2.2.9. Let p, q be two distinct shifts of τ which start with 1. Then

V (p, q, τ) = 1 and so there is only one branch point in S1.

Moreover, running the voting sequence on τ along with any two shifts thereof which

begin with 0 yield the following:

V (0001τ, 001τ, τ) = 001, V (001τ, 01τ, τ) = 01, V (0001τ, 01τ, τ) = 01.

From this we gather that no shift of τ starting with 0 corresponds to an endpoint and

that the branch point with itinerary 01 separates the endpoint with itinerary 01τ from the

other two endpoints in S2. Similarly, the branch point with itinerary 001 separates the end

points with itineraries 000τ and 00τ . Lastly, V (001, 01, τ) = 01. From here it follows that

both branch points in S0 have degree three.

Claim A.0.8: (From Theorem 3.2.8, Item 2d and Item 3) A kneading sequence of the

form ∗1k−1001011 yields deg(a) = 3, deg(b) = k, deg(c) = 4. And ∗1k−101011 yields

deg(a) = 3, deg(b) = k, deg(c) = 3
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Proof. We start by investigating τ = ∗1k−1001011. By Lemma 2.2.9 there is a fixed branch

point in S1 of degree k . All that remains is to verify that there is a branch point in S1 of

degree 3 and a branch point in S0 of degree 4. We can run the voting sequence on τ along

with any two shifts thereof which begin with 0. Doing so yields the following:

V (001011τ, 01011τ, τ) = 01, V (01011τ, 011τ, τ) = 01, V (001011τ, 011τ, τ) = 01.

From this we gather every shift of τ starting with 0 corresponds to an endpoint and there is

only one branch point in S2. This branch point must be degree 4 as desired.

Since 011τ is the itinerary of an endpoint, any proceeding shift of τ must also corre-

spond to an endpoint. Notice, however, that V (11001011τ, 11τ, τ) = 11τ so the shift of τ

which begins 11τ does not correspond to an endpoint. Thus there are k many endpoints in

S1. Finally, V (1011τ, 1001011τ, τ) = 101. For every other possible choice of two shifts

of τ , p, q, V (p, q, τ) 6= 101. Thus the branch point with itinerary 1011 is degree three, thus

proving the claim.

We now consider τ = ∗1k−101011. The exact same analysis as in the previous yields

a fixed branch point in S1 of degree k, a branch point in S1 with itinerary 101 of degree

three, and a branch point in S0 with itinerary 01 of degree three.
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