
ABSTRACT

Normal Approximation for Bayesian Models with Non-sampling Bias

Jiang Yuan, Ph.D.

Chairpersons: James D. Stamey, Ph.D.

Bayesian sample size determination can be computationally intensive for mod-

els where Markov chain Monte Carlo (MCMC) methods are commonly used for in-

ference. It is also common in a large database where the unmeasured confounding

presents. We present a normal theory approximation as an alternative to the time

consuming MCMC simulations in sample size determination for a binary regression

with unmeasured confounding. Cheng et al. (2009) develop a Bayesian approach to

average power calculations in binary regression models. They then apply the model

to the common medical scenario where a patient’s disease status is not known. In

this dissertation, we generate simulations based on their Bayesian model with both

binary and normal outcomes. We also use normal theory approximation to speed

up such sample size determination and compare power and computational time for

both.



Unmeasured confounding arises when factors unrelated to the particular study

have a hidden effect on observed health outcomes. The potential causal effect esti-

mates would be biased without proper adjustment. In this dissertation, we combine

a small sample of validation data to our sample to help address this problem. Sim-

ulation studies indicate that both of our methods: Bayesian MCMC method and

the normal approximation method have provided good estimates of regression co-

efficients, variability, and power. The comparison also suggests that the Bayesian

model may take advantage of prior information when available, and that it performs

similarly to the normal approximation when relatively non-informative priors are

used with large sample sizes.

We further explore the performance of the methods by changing the distri-

bution of a continuous response to a skewed distribution. In this dissertation, we

consider the gamma distribution due to its popularity and application in health

care costs, where different health insurance, treatment modalities or patient char-

acteristics change the cost. (see Manning et al., 2002, 2005; Morteza Khodabina,

2010)

The analysis of cost-effectiveness arises frequently in practice nowadays, and

health care policy makers expect evidence supporting the cost-effectiveness of new

health care interventions in pharmaceuticals. Hence we apply Bayesian MCMC

method in the cost-effectiveness analysis and try to determine whether a normal

approximation is feasible to be an time-saving alternative. This becomes the last

topic of this dissertation.
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CHAPTER ONE

Introduction

It is common to encounter the problem of unmeasured confounding in the

large database, especially large health care utilization databases. McCandless et al.

(2007a), Corrao et al. (2012) and many others have addressed this issue. Bayesian

approaches to accounting for unmeasured confounding have recently drawn increas-

ing interest due to their flexibility with regards to bringing in information on the un-

measured confounder-treatment and unmeasured confounder-response relationship.

But Bayesian analysis can be computationally intensive for certain models where

MCMC methods are commonly used for inference. So we present in this disserta-

tion a normal theory approximation as an alternative way to the time consuming

MCMC simulations. Under most circumstances, these two methods will yield at

similar results.

1.1 MCMC vs. Normal Approximation with Unmeasured Cconfounding

When dealing with large databases, one must be particularly aware of the effect

of unmeasured confounding on statistical models. Confounding arises when factors

unrelated to the particular study have a hidden effect on observed health outcomes.

The potential causal effect estimates will be biased without proper adjustment and

there is a lot of work studying unmeasured confounding in the epidemiology or other

field of healthcare related areas.

There are a few methods to correct for unmeasured confounding. We can

depend on external validation data, which is the information on unmeasured con-

founder from previous studies. But it generally does not contain information about

disease and confounder relationship. We can use internal validation data, but we
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will need to undertake a large amount of extra effort to ascertain the unmeasured

confounder for a randomly selected subset of the main study data.(see Steyerberg

et al., 2003, for detailed validation)There is also sensitivity analysis that assumes

values of the “bias” parameters are plugged in to determine any potential effect of

the unmeasured confounding. Last but not least, we can use informative priors and

assign probability distributions to previously assumed fixed values.

Bayesian method provides an operational way to combine validation data and

expert opinion in order to estimate parameters, allowing the researcher to control

confounding through the inclusion of additional information from independent data

sets. In this dissertation, we have used a small sample of validation data to make

available more information about unmeasured confounding, and we have focused on

a single binary unmeasured confounder because this is the most commonly assumed

situation (see Gustafson and McCandless, 2010) and it is the “worst case scenario”

of matched pairs. We first study a regression model with binary and normal response

outcome and a logit link between the unmeasured confounding and covariate.

It is a standard Bayesian practice to use Markov chain Monte Carlo (MCMC)

methods. The increase in generality of these methods comes at the price of requiring

an assessment of convergence of the Markov chain to its stationary distribution, and

this takes a long time. So we seek an alternative way under the same model.

When the number of data points is fairly large, the likelihood will be quite

peaked, and small changes in the priors will have little effect on the posterior dis-

tributions. So in this situation, the posterior distribution can be approximated by

a normal distribution.

Suppose X1, · · · , Xn
iid∼ fi(xi|Θ), so we have the likelihood function f(x|Θ) =∏n

i=1 fi(xi|Θ). π(Θ) is the prior and f(x|Θ) is twice differentiable near Θ̂π, the

posterior mode of Θ. Then under appropriate regularity conditions, the posterior

distribution p(Θ|x) can be approximated by a normal distribution having mean

2



equal to the posterior mode and covariance matrix equal to minus the inverse Hes-

sian of the log posterior evaluated at the mode. The matrix is also known as the

“generalized” observed Fisher information matrix for Θ.

If the prior is considered flat, then the posterior mode Θ̂π can be replaced by

the MLE Θ̂, and the covariance matrix by the observed Fisher information matrix.

Alternatively, we might replace the posterior mode by the posterior mean, and re-

place the variance estimate based on observed Fisher information with the posterior

covariance matrix, or even the expected Fisher information matrix I(Θ̂).

Just as the Central Limit Theorem enables a broad range of frequentist infer-

ence, this enables a broad range of Bayesian inference by showing that the posterior

distribution of a continuous parameter Θ is also asymptotically normal. And for

this reason, this property is sometimes referred to as Bayesian Central Limit Theo-

rem.(see Carlin and Louis, 2008)

A prospective study may be used to examine the associations between a binary

disease state and various exposures. And a complication when investigating potential

risk factors is misclassification of discrete exposure variables, which can occur due to

forgetfulness or false reporting. Analyses that ignore this problem may give biased

estimates and standard errors that are falsely small. We present a simple example

of this kind to illustrate the application of the MCMC and normal approximation

approaches.

1.2 MCMC vs. Normal Approximation under Gamma Distributed Data

To further explore the case with a continuous outcome, we study an outcome

with a gamma distribution of Bayesian MCMC method and normal approximation

analysis.

Health care expenditure data are usually right skewed with variability increas-

ing as the mean costs increases. Many past studies of health care costs and their
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responses to health insurance, treatment modalities or patient characteristics indi-

cate that estimates of mean responses may be quite sensitive to how estimators treat

the skewness in the outcome and other statistical problems that are common in such

data. It has been suggested that those cost data frequently have a log-normal or

gamma distribution, so in this dissertation, we consider the gamma response.

We let X and U denote dichotomous random variables taking values 1 or 0 to

indicate the whether or not to use a certain medical technology and the unmeasured

confounder, respectively. We use the factorization P (Y, U |X) = P (Y |X,U)P (U |X)

and model the confounding effect of U using a logistic regression model logP (Y |X,U) =

β0 +β1X+λU and the underlined relationship between the unmeasured confounder

and the covariate is logitP (U = 1|x) = γ0 + γ1X. Here, the variables X and U are

assumed to not interact in their effect on Y . And out of n observations, we have n1

validation sample points, same as before.

The outcome variable Y is denoted to be health care expenditure, which has a

gamma distribution due to the skewness. We keep diffused normal distributions for

the independent priors on βs, γs and λ so all the parameters have non-informative

priors. We are interested in β1 as it is the coefficient for x, which represents the

impact of the covariate on the health care expenditure.

From the results of the MCMC method and the normal approximation ap-

proach, we can see that the difference in the estimators β̂1s and the standard error

are somehow significant. Hence, the normal theory approximation does not perform

as well on skewed data and we should not apply it when dealing with strongly skewed

datasets.

1.3 Cost-effectiveness

There is a growing expectation from health care policy makers that evidence

supporting the cost-effectiveness of new health care interventions, particularly phar-
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maceuticals, be provided along with the customary data on efficacy and safety. One

approach of cost-effectiveness analysis(CEA) combines health care utilization data

collected on individual patients with the appropriate price weights yield a measure

of cost for each patient. Measuring effectiveness and cost at the patient level per-

mits the use of more conventional methods of statistical inference to quantify the

uncertainty due to the sampling and the measurement error.

Numerous articles have been published in the area of the statistical analysis

of cost-effectiveness data. Initially, efforts were concentrated on providing confi-

dence intervals for incremental cost-effectiveness ratios(ICER), but more recently,

the concept of incremental net benefit(INB) has been proposed as an alternative.

In a CEA, whether an ICER or an INB approach is taken, five parameters

need to be estimated. Two of the parameters are the differences between treatment

arms of mean effectiveness and costs, denoted by ∆e and ∆c, respectively. The other

three parameters are the variances and covariance of those estimators. And INB has

been often used to explore the policy interpretation of CEA. The incremental net

benefit is a function of λ, and is defined as λ∆e−∆c. It is called the incremental net

benefit because it is the difference between incremental value (λ∆e) and incremental

cost (∆c). Treatment is cost-effective if, and only if, INB > 0 (see Willan and

Briggs, 2006).

There has been considerable interest in the joint modelling of cost and effec-

tiveness, some of the applications in clinical trials are O’Hagan et al. (2001) where

they assume both cost and effectiveness are normally distributed; Negrin et al. (2010)

where they also assume both cost and effectiveness are normally distributed, and

performed a Bayesian model averaging.

In this dissertation, we follow Grieve et al. (2010) and Thompson and Nixon

(2005) to assume gamma distribution for costs and normal distribution for effec-

tiveness since the cost data are often skewed. We mainly focus on both Bayesian
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estimation procedures and the normal theory approximation, and also compare their

powers. All the models of the Bayesian analysis are straightforward to fit in the freely

available package R2WinBUGS.

1.4 Outline of Dissertation

The concepts and methods mentioned here will be discussed in more detail

in the next chapters. The remainder of the dissertation is organized as follows.

Both Bayesian MCMC method and normal approximation method for estimating

covariates with the existence of unmeasured confounding for binary and continu-

ous(normal) distributed data are given in Chapter 2. In Chapter 3, we expand the

model of normal responses to gamma responses, and assess the performance of both

methods through simulation. A further cost-effectiveness analysis presenting incre-

mental net benefit are given via both Bayesian and normal approximation methods

in Chapter 4, and the dissertation is concluded with some final remarks in Chapter 5.
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CHAPTER TWO

A Comparison of Power in a Normal Theory Approximation to a Bayesian MCMC
Procedure

Bayesian sample size determination can be computationally intensive for mod-

els where Markov chain Monte Carlo (MCMC) methods are commonly used for in-

ference. In this chapter, we present a normal theory approximation as an alternative

way to the time consuming MCMC simulation methods in sample size determination.

Cheng et al. (2009) developed a Bayesian approach to average power calculations in

binary regression models. They applied it to a common medical scenario, investigat-

ing the impact of misclassification. We investigate a normal theory approximation

method to a variety of different models, but in this chapter, we focus on the normal

theory approximation to speed up sample size determination when an unmeasured

confounder exists. We compare the estimation and resulting powers to the ones

in the previously mentioned MCMC method. We will do this for both binary and

continuous outcomes. The method is applicable to other complicated scenarios as

well, such as misclassification and covariate measurement error models.

2.1 Introduction

It is well known that the determination of posterior distributions comes down

to the evaluation of complex integrals, and the posterior summaries often involve

computing moments or quantiles, which leads to more integration. Some early solu-

tions involved using asymptotic methods to obtain analytic approximations to the

posterior density. One simple way is to use a normal approximation to the posterior.

It is essentially a Bayesian version of the Central Limit Theorem.(Carlin and Louis,

2008) When the approximate methods are intractable, we resort to numerical inte-
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gration. This application is limited to models of low dimensions due to the so-called

“curse of dimensionality”.

The standard Bayesian MCMC methods are often time consuming. In order

to be more efficient while maintaining the power and other features, in this chapter,

we apply the normal approximation method from Carlin and Louis (2008) to several

different models and try to determine the scenarios where the normal approximation

is feasible. Here, we focus on the models with unmeasured confounding and consider

other models with non-sampling bias as well.

2.1.1 Unmeasured Confounding

A confounding variable in a statistical model is a prognostic variable that

correlates with other variables. One definition of confounder in clinical trial or epi-

demiology is that the factor must meet the following criteria: First, it must be a risk

factor, which is a cause of a disease, or a surrogate measure of a cause in unexposed

people. Secondly, it should be correlated, either positively or negatively, with the

exposure in the study population. If the study population is classified into exposed

and unexposed groups, then this factor must have different distributions (prevalence)

in the two groups. Finally, the factor can not be affected by the exposure.

As stated by Vandenbroucke (2002):

Confounding is the problem of confusing or mixing of exposure effects with
other “extraneous” effects: If at the time of its occurrence, an exposure was
associated with pre-existing risk for the outcome, its association would reflect
at least in part the effect of this baseline association, not the effect of the
exposure itself.(P.217)

In this scenario, the portion of the association reflecting this baseline associa-

tion is confounding and the factors responsible for this confounding (those producing

the differences in baseline risk) are confounders.

Dealing with confounders is relatively easy if we know what they are. But

confounding from unmeasured variables is a common situation in many observational
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studies, and without proper adjustments, the estimates of the effects will be biased.

Currently the best defence against unknown confounders is randomization. We

can also use Bayesian methods when unmeasured confounders exist because the

analyses may involve synthesis of multiple sources of empirical evidence in the form

of Meta-analysis. But the models are usually presented along with a family of

prior information of a possible unknown unmeasured confounder. In cases where

the model for unmeasured confounding is not identifiable, then the standard large

sample theory for Bayesian analysis is not applicable. Consequently, the impact of

different choices of prior distributions is unknown.(see McCandless et al., 2007b). We

focus on the case where validation data does allow for estimation of all parameters.

2.1.2 Diagnostic Testing

In statistics, it is fundamental to model the relationship between explanatory

and response variables. To diagnose a patient, the diagnosis, y, is modelled using

explanatory variables X = x1, x2, · · · , xk as y = f(x1, x2, · · · , xk). Linear regres-

sion is often used to find the relationship between a predictor variable and a single

response variable. However, the response variable is often not a numerical value.

Instead, it can simply be a designation of one of two possible outcomes (a binary

response) e.g. alive or dead, cured or not.

Data involving binary responses abound in just about every discipline from the

natural sciences, to medicine, to education, etc. There are many examples of binary

response data. For instance, using hatching environment(temperature, humidity)

during the period when the eggs are incubated to predict the sex of turtles; using

various demographic and credit history variables to predict if an individual will be a

good or bad credit risk; using tests for trend to learn the toxicity of different doses.

All of these involve the idea of prediction of a probability, chance, proportion or

percentage. What we are trying to predict is bounded below by 0 and above by
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1 (or 100%). The prediction technique we use in the analyses of binary response

problems is logistic regression, with model

E(yi|xi) = πi =
eβ0+β1x1

1 + eβ0+β1x1
.

When dealing with a binary response variable, the expected response is more

appropriately modelled by curved relationships with the predictor variables. One

such curve is given by the logistic model above. The logistic function is bounded

between zero and one, which will eliminate the possibility of getting nonsensical

predictions of probabilities. Also, there is a linear model hidden inside the function

that can be revealed with a proper inverse transformation. Other options including

the probit and the complementary log-log models can also be used.

It is common in many disciplines for binary responses to be measured with

error. Several examples include mammography, a fallible screening test to detect

breast cancer, the Pap smear, a screening test for cervical cancer, cognitive tests

for dementia, and Prostate-Specific Antigen Screening for prostate cancer. Ideally,

screening tests should have perfect sensitivity so that no opportunities for early

intervention are missed. But in reality, no screening tests are perfect. Imperfect

sensitivity of a screening test can lead to inappropriate security when false-negative

results are obtained. Conversely, imperfect specificity will lead to negative conse-

quences of labeling and unnecessary follow-up tests in healthy patients.

McInturff et al. (2004) evaluated the effects of a smoking cessation program

among pregnant women controlling for variables such as age and smoking history.

It is well known that smoking during pregnancy has adverse health implications.

Moreover, since smoking cessation was self-reported, there was potential for women

in the study to falsely report their smoking status. In another study, Roy et al. es-

timated the proportion of cancer deaths in Japan controlling for radiation exposure,

the binary response had the potential to be measured with error in the form of both

false positive and false negative misclassification. Accounting for misclassification
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in the response of a binomial regression adds another layer of complexity to both

data analysis and experimental design, in particular to sample size determination.

Cheng et al. (2009) addressed this issue in sample size estimation for binomial and

multinomial regression problems using the Bayesian paradigm.

2.1.3 Validation Data and Normal Theory Approximation

In this chapter, in order to correct for bias, we incorporate validation data.

Data on a potential “unmeasured confounder” can be obtained for a randomly se-

lected small subset of the original sample, and Bayesian modelling can utilize this

additional information to perform analyses in order to quantitatively assess the po-

tential impact of unmeasured confounding. We develop a Bayesian regression model

to use the internal validation data as informative prior distributions for all param-

eters, retaining information on the correlations between the confounder and other

covariates.

There are two different types of validation data. If the validation data is a

random sample from the current “main study”, the data is referred to as internal

validation, it provides information on all parameters of interest but is usually ex-

pensive. If the subsample is from a previous study or database, it is referred to as

external validation, which generally provides information on the unmeasured con-

founder/exposure relationships, but it requires the assumption of transportability.

It is a standard Bayesian practice to use Markov chain Monte Carlo(MCMC)

methods, which operate by sequentially sampling parameter values from a Markov

chain whose stationary distribution is exactly the joint posterior distribution of

interest as desired. The increase in generality of these methods comes at the price

of requiring an assessment of convergence of the Markov chain to its stationary

distribution, and this takes time. Hence, we seek an alternative approach for cases

when shorter computing time is required.
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When we have a fairly large sample, the likelihood will be quite peaked. Small

changes in the priors will only result little effect on the posterior distributions.

So in this situation, the posterior distribution can be approximated by a normal

distribution having mean equal to the posterior mode and covariance matrix equal

to minus the inverse Hessian of the log posterior evaluated at the mode. If the prior

is flat, the posterior mode can be replaced by the MLE, and the covariance matrix

by the observed Fisher information matrix. Just as the Central Limit Theorem

enables a broad range of frequentist inference, this enables a broad range of Bayesian

inference by showing that the posterior distribution of a continuous parameter θ is

also asymptotically normal.(see Carlin and Louis, 2008, for more details)

2.2 Power Comparison Scheme

2.2.1 The Bayesian Regression Model with Unmeasured Confounding

A Bayesian sensitivity analysis for unmeasured confounding is considered in

this section. Here, we assume we have an observational study. Our exposure and

response are binary, we also assume a measured confounder and a single binary

unmeasured confounder. The association between them can be formulated using a

logistic regression model.

Now we denote the outcome variable to be Y . We denote the covariates X,

Z and U , respectively. Specifically, Y is a binary response where Y = 1 denotes

diseased and Y = 0 is non-diseased. X is the covariate of interest, generally exposure,

Z is a vector of other measured covariates, and U is an unmeasured confounder.

Now we can write a logistic regression model for the probability of disease

logit P (Y = 1|X,U,Z) = β0 + β1X + β2Z + λU (2.1)

Since the unmeasured confounder U is binary, we also have a logistic model for U :

logit P (U = 1|X,Z) = γ0 + γ1X. (2.2)
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Figure 2.1: Sampling assumption setting: we have a sample of size n sample of
(x, y, z) and a sub sample of n1 of (x, y, z, u).

with all the priors information listed below:

β0, β1, β2 ∼ N(µβ, σ
2
β)

γ0, γ1 ∼ N(µγ, σ
2
γ)

λ ∼ N(µλ, σ
2
λ).

Here, we assume diffuse priors, specifically, µβ = µγ = µλ = 0, σ2
β = σ2

γ = σ2
λ =

100. Alternatively, if prior information on these parameters is available, it can be

incorporated into the analysis.

In this model, the variables X and U are assumed to not interact. Finally,

among the sample size of n observations, we assume there is a subset of n1 observa-

tions that we have additional knowledge of u, the value of the otherwise unmeasured

confounder. This type of validation data is referred to as internal. The methodology

we develop here can be modified to handle external validation data as well.

Our primary interest is to estimate β1 as it is the coefficient for x, which

represents the impact of the covariate on the probability of getting the disease. The

parameter λ represents the impact of the unmeasured confounder on the probability

of getting the disease. Since u is unmeasured in general, λ is often referred to as a

bias parameter.
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The full likelihood function is

L(β0, β1, β2, λ, γ0, γ1|x, y, z, x1, y1, z1, u1)

=

n−n1∏
i=1

[f(yi|xi, u = 1, zi)f(u = 1|xi)+f(yi|xi, u = 0, zi)f(u = 0|xi)]
n1∏
j=1

[f(y1j|x1j, u1j, z1j)

=

n−n1∏
i=1

[
exp{yi(β0 + β1xi + β2zi + λ)}

1 + exp{yi(β0 + β1xi + β2zi + λ)}
exp{γ0 + γ1xi}

1 + exp{γ0 + γ1xi}

+
exp{yi(β0 + β1xi + β2zi)}

1 + exp{yi(β0 + β1xi + β2zi)}
1

1 + exp{γ0 + γ1xi}

]
×

n1∏
j=1

[
exp{y1j(β0 + β1x1j + β2z1j + λu1j)}

1 + exp{y1j(β0 + β1x1j + β2z1j + λu1j)}
exp{u1j(γ0 + γ1x1j)}
1 + exp{γ0 + γ1x1j}

]
.

(2.3)

The joint posterior is the product of the likelihood and the prior. We use

Markov Chain Monte Carlo method for inference. We use the WinBUGS software and

the R(and package R2WinBUGS) to perform the simulations.

2.2.2 The Normal Approximation Approach

As mentioned previously, in order to perform a normal approximation, we need

the posterior modes along with the Fisher information matrix. Thus we must first

derive the log likelihood function of all parameters involved: β0, β1, λ, γ0, γ1. Since

we have n1 validation data points, the log likelihood function consists of two parts.

The first part is logLN , the log likelihood function of the data where we did not

observe the confounding u. The second part is logLN1 , the log likelihood function

of the validation data where we observed the “unmeasured” confounder. To make

things easier to track, we denote the validation sample as (x1, y1, z1, u1).

After taking the log of Equation(2.3) and some further simplification, we have

the following results:

logLN =
∑
{y(β0 + β1x+ β2z)− log [1 + exp(γ0 + γ1x)]

+ log [1 + exp(γ0 + γ1x+ λy) + exp(γ0 + β0 + (β1 + γ1)x+ β2z + λy)
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+ exp(β0 + β1x+ β2z + λ)]− log [1 + exp(β0 + β1x+ β2z + λ)]

− log[1 + exp(β0 + β1x+ β2z)]}

logLN1 =
∑
{y1(β0 + β1x1 + β2z1 + λu1)

− log [1 + exp(β0 + β1x1 + β2z1 + λu1)]

+ u1(γ0 + γ1x1)− log[1 + exp(γ0 + γ1x1)]} .

The total log likelihood function is the two parts above combined,

logL = logLN + logLN1 .

In order to find the posterior modes, we next differentiate the log-likelihood

with respect to the parameter vector and set the resulting gradient vector to zero.

Then we solve the system of equations to find extreme. We can also take the second

derivative to the function to make sure that we have a maximum rather than a

minimum.

First, we denote

Θ =


β

γ

λ

 , where β =


β0

β1

β2

 , and γ =

 γ0

γ1

 .

Also denote

Pi =


1

xi

zi

 ,Qj =


1

x1j

z1j

 .

So we have P ′iβ = β0 + xiβ1 + ziβ2, Q
′
jβ = β0 + x1jβ1 + z1jβ2.

We provide the derivations required for the β parameters here and those for γ

and λ are provided in the appendix. We now take the first derivative of logL with

respect to β
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∂ logL

∂β
=
∂ logLN
∂β

+
∂ logLN1

∂β
(2.4)

∂ logL

∂β
=

n∑
i=1

 yiPi(
eyi(P

′
i
β)

1+eyi(P
′
i
β)

+ eyi(λ+P
′
i
β)+γ0+xiγ1

1+eyi(λ+P
′
i
β)

)
×

[
− e2yi(P

′
iβ)(

1 + eyi(P
′
iβ)
)2 +

eyi(P
′
iβ)

1 + eyi(P
′
iβ)

−e
2yi(λ+P ′iβ)+γ0+xiγ1(
1 + eyi(λ+P ′iβ)

)2 +
eyi(λ+P ′iβ)+γ0+xiγ1

1 + eyi(λ+P ′iβ)

]}

+

n1∑
j=1

{
(y1jQj) e

−y1j(Q′jβ)−u1j(λy1j+γ0+x1jγ1)

×(1 + ey1j(λu1j+Q
′
jβ))(1 + eγ0+x1jγ1)

×

−ey1j(Q′jβ)+y1j(λu1j+Q′jβ)+u1j(λy1j+γ0+x1jγ1)(
1 + ey1j(λu1j+Q

′
jβ)
)2

(1 + eγ0+x1jγ1)

+
ey1j(Q

′
jβ)+u1j(λy1j+γ0+x1jγ1)(

1 + ey1j(λu1j+Q
′
jβ)
)

(1 + eγ0+x1jγ1)


For this specific individual regression parameters we have

∂ logL

∂β0

=
n∑
i=1

 yi(
eyi(P

′
i
β)

1+eyi(P
′
i
β)

+ eyi(λ+P
′
i
β)+γ0+xiγ1

1+eyi(λ+P
′
i
β)

)
×

[
− e2yi(P

′
iβ)(

1 + eyi(P
′
iβ)
)2 +

eyi(P
′
iβ)

1 + eyi(P
′
iβ)

−e
2yi(λ+P ′iβ)+γ0+xiγ1(
1 + eyi(λ+P ′iβ)

)2 +
eyi(λ+P ′iβ)+γ0+xiγ1

1 + eyi(λ+P ′iβ)

]}

+

n1∑
j=1

{
y1je

−y1j(Q′jβ)−u1j(λy1j+γ0+x1jγ1)

×(1 + ey1j(λu1j+Q
′
jβ))(1 + eγ0+x1jγ1)

×

−ey1j(Q′jβ)+y1j(λu1j+Q′jβ)+u1j(λy1j+γ0+x1jγ1)(
1 + ey1j(λu1j+Q

′
jβ)
)2

(1 + eγ0+x1jγ1)
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+
ey1j(Q

′
jβ)+u1j(λy1j+γ0+x1jγ1)(

1 + ey1j(λu1j+Q
′
jβ)
)

(1 + eγ0+x1jγ1)


∂ logL

∂β1

=
n∑
i=1

 xiyi(
eyi(P

′
i
β)

1+eyi(P
′
i
β)

+ eyi(λ+P
′
i
β)+γ0+xiγ1

1+eyi(λ+P
′
i
β)

)
×

[
− e2yi(P

′
iβ)(

1 + eyi(P
′
iβ)
)2 +

eyi(P
′
iβ)

1 + eyi(P
′
iβ)

−e
2yi(λ+P ′iβ)+γ0+xiγ1(
1 + eyi(λ+P ′iβ)

)2 +
eyi(λ+P ′iβ)+γ0+xiγ1

1 + eyi(λ+P ′iβ)

]}

+

n1∑
j=1

{
x1jy1je

−y1j(Q′jβ)−u1j(λy1j+γ0+x1jγ1)

×(1 + ey1j(λu1j+Q
′
jβ))(1 + eγ0+x1jγ1)

×

−ey1j(Q′jβ)+y1j(λu1j+Q′jβ)+u1j(λy1j+γ0+x1jγ1)(
1 + ey1j(λu1j+Q

′
jβ)
)2

(1 + eγ0+x1jγ1)

+
ey1j(Q

′
jβ)+u1j(λy1j+γ0+x1jγ1)(

1 + ey1j(λu1j+Q
′
jβ)
)

(1 + eγ0+x1jγ1)


and

∂ logL

∂β2

=
n∑
i=1

 yizi(
eyi(P

′
i
β)

1+eyi(P
′
i
β)

+ eyi(λ+P
′
i
β)+γ0+xiγ1

1+eyi(λ+P
′
i
β)

)
×

[
− e2yi(P

′
iβ)(

1 + eyi(P
′
iβ)
)2 +

eyi(P
′
iβ)

1 + eyi(P
′
iβ)

−e
2yi(λ+P ′iβ)+γ0+xiγ1(
1 + eyi(λ+P ′iβ)

)2 +
eyi(λ+P ′iβ)+γ0+xiγ1

1 + eyi(λ+P ′iβ)

]}

+

n1∑
j=1

{
y1jz1je

−y1j(Q′jβ)−u1j(λy1j+γ0+x1jγ1)

×(1 + ey1j(λu1j+Q
′
jβ))(1 + eγ0+x1jγ1)

×

−ey1j(Q′jβ)+y1j(λu1j+Q′jβ)+u1j(λy1j+γ0+x1jγ1)(
1 + ey1j(λu1j+Q

′
jβ)
)2

(1 + eγ0+x1jγ1)
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+
ey1j(Q

′
jβ)+u1j(λy1j+γ0+x1jγ1)(

1 + ey1j(λu1j+Q
′
jβ)
)

(1 + eγ0+x1jγ1)

 .

The next step is to set the above fractional polynomials to zero and solve for

the corresponding βs in order to find the MLE. Since they are not of closed form,

it is impossible to do the calculation manually. We will use numerical methods to

search for the maximum. Specifically, we use the R function optim with default

setting BFGS method.

For the purpose of finding var(β), we need to calculate the inverse of the

Information matrix, and use the fact that

var(Θ) = [I(Θ)]−1

where Θ is the parameter vector that Θ = (β0, β1, β2, γ0, γ1, λ), and I(Θ) is the

Fisher’s information matrix.

The Information matrix is the negative of the expected value of the Hessian

matrix:

I(Θ) = −E[H(Θ)].

We now find the Hessian Matrix. The Hessian is the matrix of second deriva-

tives of the likelihood with respect to the parameter:

H(Θ) =
∂2 logL

∂Θ∂Θ′

Thus, the variance-covariance matrix of maximum likelihood estimator of Θ

is:

Var(Θ) = [I(Θ)]−1

= (−E[H(Θ)])−1

= (−E[
∂2 logL

∂Θ∂Θ′
])−1

One large sample property of this estimator is that Θ ∼ N [Θ̂, I(Θ̂)−1] asymp-

totically. The standard errors of the estimators are the square roots of the diag-
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onal terms in the variance-covariance matrix. Because we are interested in β =

(β0, β1, β2), specifically β1, we also have the property β ∼ N [β̂, I(β̂)−1] asymptoti-

cally. Now we are going to calculate the second derivatives in order to obtain the

β-block in the variance-covariance matrix



Var(β) · · · · · · · · ·

Cov(β, λ) Var(λ) · · · · · ·

· · · · · · Var(γ0) · · ·

· · · · · · · · · Var(γ1)


,

where Var(β) =


Var(β0) · · · · · ·

Cov(β0, β1) Var(β1) · · ·

· · · · · · Var(β2)

 .
Similar as before,

∂2 logL

∂β2
=
∂2 logLN
∂β2

+
∂2 logLN1

∂β2
(2.5)

∂2 logL

∂β2
=

n∑
i=1

(
y2
iP

2
i

)−
− e2yi(P ′iβ)(

1 + eyi(P
′
iβ)
)

2
+

eyi(P
′
iβ)

1 + eyi(P
′
iβ)

−e
2yi(λ+P ′iβ)+γ0+xiγ1(
1 + eyi(λ+P ′iβ)

)2 +
eyi(λ+P ′iβ)+γ0+xiγ1

1 + eyi(λ+P ′iβ)


2

×

(
eyi(P

′
iβ)

1 + eyi(P
′
iβ)

+
eyi(λ+P ′iβ)+γ0+xiγ1

1 + eyi(λ+P ′iβ)

)−2

+

 2e3yi(P ′iβ)(
1 + eyi(P

′
iβ)
)

3
− 3e2yi(P ′iβ)(

1 + eyi(P
′
iβ)
)2 +

eyi(P
′
iβ)

1 + eyi(P
′
iβ)

+
2e3yi(λ+P ′iβ)+γ0+xiγ1(

1 + eyi(λ+P ′iβ)
)3 −

3e2yi(λ+P ′iβ)+γ0+xiγ1(
1 + eyi(λ+P ′iβ)

)2

+
eyi(λ+P ′iβ)+γ0+xiγ1

1 + eyi(λ+P ′iβ)

)
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×

(
eyi(P

′
iβ)

1 + eyi(P
′
iβ)

+
eyi(λ+P ′iβ)+γ0+xiγ1

1 + eyi(λ+P ′iβ)

)−1


+

n1∑
j=1

(
y2

1jQ
2
j

) [
e−y1j(Q

′
jβ)+y1j(λu1j+Q′jβ)−u1j(λy1j+γ0+x1jγ1)

(
1 + eγ0+x1jγ1

)
×

−ey1j(Q′jβ)+y1j(λu1j+Q′jβ)+u1j(λy1j+γ0+x1jγ1)(
1 + ey1j(λu1j+Q

′
jβ)
)

2 (1 + eγ0+x1jγ1)

+
ey1j(Q

′
jβ)+u1j(λy1j+γ0+x1jγ1)(

1 + ey1j(λu1j+Q
′
jβ)
)

(1 + eγ0+x1jγ1)


− e−y1j(Q′jβ)−u1j(λy1j+γ0+x1jγ1)

(
1 + ey1j(λu1j+Q

′
jβ)
) (

1 + eγ0+x1jγ1
)

×

−ey1j(Q′jβ)+y1j(λu1j+Q′jβ)+u1j(λy1j+γ0+x1jγ1)(
1 + ey1j(λu1j+Q

′
jβ)
)

2 (1 + eγ0+x1jγ1)

+
ey1j(Q

′
jβ)+u1j(λy1j+γ0+x1jγ1)(

1 + ey1j(λu1j+Q
′
jβ)
)

(1 + eγ0+x1jγ1)


+ e−y1j(Q

′
jβ)−u1j(λy1j+γ0+x1jγ1)

(
1 + ey1j(λu1j+Q

′
jβ)
) (

1 + eγ0+x1jγ1
)

×

2ey1j(Q
′
jβ)+2y1j(λu1j+Q′jβ)+u1j(λy1j+γ0+x1jγ1)(

1 + ey1j(λu1j+Q
′
jβ)
)

3 (1 + eγ0+x1jγ1)

− 3ey1j(Q
′
jβ)+y1j(λu1j+Q′jβ)+u1j(λy1j+γ0+x1jγ1)(

1 + ey1j(λu1j+Q
′
jβ)
)

2 (1 + eγ0+x1jγ1)

+
ey1j(Q

′
jβ)+u1j(λy1j+γ0+x1jγ1)(

1 + ey1j(λu1j+Q
′
jβ)
)

(1 + eγ0+x1jγ1)


Specifically, the second derivative of the log likelihood function with respect to the

variable of interest β1 is

∂2 logL

∂β2
1

=
∂2 logLN
∂β2

1

+
∂2 logLN1

∂β2
1

∂2 logLN
∂β2

1

=
n∑
i=1

−

− e2yi(P ′iβ)xiyi(
1 + eyi(P

′
iβ)
)

2
+
eyi(P

′
iβ)xiyi

1 + eyi(P
′
iβ)
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−e
2yi(λ+P ′iβ)+γ0+xiγ1xiyi(

1 + eyi(λ+P ′iβ)
)2 +

eyi(λ+P ′iβ)+γ0+xiγ1xiyi

1 + eyi(λ+P ′iβ)


2

×

(
eyi(P

′
iβ)

1 + eyi(P
′
iβ)

+
eyi(λ+P ′iβ)+γ0+xiγ1

1 + eyi(λ+P ′iβ)

)−2

+

 2e3yi(P ′iβ)x2
i y

2
i(

1 + eyi(P
′
iβ)
)

3
− 3e2yi(P ′iβ)x2

i y
2
i(

1 + eyi(P
′
iβ)
)

2
+
eyi(P

′
iβ)x2

i y
2
i

1 + eyi(P
′
iβ)

+
2e3yi(λ+P ′iβ)+γ0+xiγ1x2

i y
2
i(

1 + eyi(λ+P ′iβ)
)3 − 3e2yi(λ+P ′iβ)+γ0+xiγ1x2

i y
2
i(

1 + eyi(λ+P ′iβ)
)2

+
eyi(λ+P ′iβ)+γ0+xiγ1x2

i y
2
i

1 + eyi(λ+P ′iβ)

)

×

(
eyi(P

′
iβ)

1 + eyi(P
′
iβ)

+
eyi(λ+P ′iβ)+γ0+xiγ1

1 + eyi(λ+P ′iβ)

)−1

+

n1∑
j=1

x2
1jy

2
1j

[
e−y1j(Q

′
jβ)+y1j(λu1j+Q′jβ)−u1j(λy1j+γ0+x1jγ1)

(
1 + eγ0+x1jγ1

)
×

−ey1j(Q′jβ)+y1j(λu1j+Q′jβ)+u1j(λy1j+γ0+x1jγ1)(
1 + ey1j(λu1j+Q

′
jβ)
)

2 (1 + eγ0+x1jγ1)

+
ey1j(Q

′
jβ)+u1j(λy1j+γ0+x1jγ1)(

1 + ey1j(λu1j+Q
′
jβ)
)

(1 + eγ0+x1jγ1)


− e−y1j(Q′jβ)−u1j(λy1j+γ0+x1jγ1)

(
1 + ey1j(λu1j+Q

′
jβ)
) (

1 + eγ0+x1jγ1
)

×

−ey1j(Q′jβ)+y1j(λu1j+Q′jβ)+u1j(λy1j+γ0+x1jγ1)(
1 + ey1j(λu1j+Q

′
jβ)
)

2 (1 + eγ0+x1jγ1)

+
ey1j(Q

′
jβ)+u1j(λy1j+γ0+x1jγ1)(

1 + ey1j(λu1j+Q
′
jβ)
)

(1 + eγ0+x1jγ1)


+ e−y1j(Q

′
jβ)−u1j(λy1j+γ0+x1jγ1)

(
1 + ey1j(λu1j+Q

′
jβ)
) (

1 + eγ0+x1jγ1
)

×

2ey1j(Q
′
jβ)+2y1j(λu1j+Q′jβ)+u1j(λy1j+γ0+x1jγ1)(

1 + ey1j(λu1j+Q
′
jβ)
)

3 (1 + eγ0+x1jγ1)
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− 3ey1j(Q
′
jβ)+y1j(λu1j+Q′jβ)+u1j(λy1j+γ0+x1jγ1)(

1 + ey1j(λu1j+Q
′
jβ)
)

2 (1 + eγ0+x1jγ1)

+
ey1j(Q

′
jβ)+u1j(λy1j+γ0+x1jγ1)(

1 + ey1j(λu1j+Q
′
jβ)
)

(1 + eγ0+x1jγ1)

 .
Refer to the Appendix for the second derivatives involving λ and the γs, and

all the second derivatives on the off diagonal of Var(Θ).

In order to find the approximate variance, take the negative of the Hessian

matrix, yielding the observed Information matrix, and calculate the inverse of the

Information matrix to obtain the variance-covariance matrix for the MLE of Θ. The

standard error for the MLE estimator of β1 lies in the β-block of the matrix. It is

the square root of the second entry on the diagonal.

Again, we use the R function optim to compute the maximum likelihood es-

timator of the log likelihood function. The methods offered in the optim package

are “BFGS”, “CG”, “Nelder-Mead”, and “SANN”. Among these, the “BFGS” method,

developed by Broyden, Fletcher, Goldfarb and Shanno, is a quasi-Newton method

which uses function values and gradients to build a picture of the surface to be

optimized. The “CG” method is a conjugate gradient method, and the “SANN”

method uses the Metropolis function for the acceptance probability. We use the

default setting method “BFGS” in our simulations for this chapter. In the following

chapters, we used a different minimization method developed by Byrd et al. (1995)

in the R function. See the relative R code in the appendix.

Sample size determination can be based on a number of criteria such as interval

width, posterior variability and power of a hypothesis test. Here, we focus on power,

thus we compute posterior probabilities for testing the null hypothesis of H0 : β1 = 0

and the alternative hypothesis of H1 : β1 > 0 with significance level α = 0.05. For

the normal approximation, we standardize the parameter estimator by calculating

z0 = β̂1/sdβ1 ,
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then obtain the corresponding percentile of z0, and compare the percentile to 1−α.

Ultimately, the power is computed by finding the proportion of times that z0 exceeds

1 − α out of m iterations, namely the probability of making a correct decision of

rejecting the null hypothesis.

2.3 Simulation

2.3.1 WinBUGS Simulation Algorithm

Our simulation algorithm is as follows:

(1) First, we generate n1 values of the covariates x1 and z1 from binomial distri-

butions with px = 0.6 and pz = 0.4, respectively. Then using fixed value of

γ0 and γ1, we generate n1 values of u1 from a binomial distribution according

to Equation (2.2). We calculate the outcome y1 from a binomial distribution

according to Equation (2.1) using fixed β0, β1, β2 and λ.

(2) We generate the n − n1 values of x, z and u for the main study without

validation, calculate the outcome y using the same parameters as in (1).

Namely, x and z are binomial(0.6) and binomial(0.4), we use same fixed

γ0, γ1 and Equation (2.2) to obtain u, and we use the same fixed β0, β1, β2, λ

and Equation (2.1) to obtain y. Notice here, we do not observe u.

(3) Then, we fit the Bayesian model (2.2) and (2.1) to the data generated

above. We use diffuse priors with mean at zero and precision at 0.1 for

β0, β1, β2, γ0, γ1 and λ.

(4) Finally, we approximate the posterior distribution of β1 using WinBUGS

while keeping track of the posterior probability value in each iteration, that

is P (β1 > 0|data). For the same data we also approximate this probability

using the normal approximation.
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(5) We then repeat the whole process for m interactions. We tally the number of

times that the posterior probability value exceeds 1−α out of m iterations.

This approximates the Bayesian power achieved using MCMC method for

sample size n.

2.3.2 Simulation Conditions

We consider a single dichotomous covariate x1 generated from a binomial dis-

tribution with probability of success p = 0.6. We assume that risk increases with

increasing x1, which is reflected by sampling β0 from uniform (-1.5, -1) distribution.

We fix β1 at 0.5. The other parameters are generated as follows: β2 is from Unif(.2,

.4), γ0 is from Unif(-.3, -.2), γ1 is from Unif(1, 1.2), and λ is from Unif(-1, -.5).

We then generate z and z1 from a binomial distribution with probability of

success p = 0.4, and generate u and u1 from a binomial distribution under Equation

(2.2). y and y1 are from Equation (2.1).

The Bayesian MCMC simulations use 1000 data sets(that is repeat 1000 times)

with discrete posterior approximation based on a Monte Carlo sample of 20000 poste-

rior iterates after a 5000 initial burn-in with thinning equals to 2. The computational

time varies and depends on different machines. The sample size also played an im-

portant role in the length of the simulations. Approximately, the MCMC method

generally takes a few days to finish while the normal theory approximation only

needs a few hours to run on the same regular PC.

2.3.3 Result for Bayesian MCMC Approach with Unmeasured Confounding

Table 2.1 below provides the result of using the Bayesian MCMC approach

when unmeasured confounding is present. We have arranged different total sample

sizes from 500 to 1200, with an increase of 100 for each simulation. We have set the

validation sample size to be fixed at n1 = 300 and the true β1 value is set at 0.5.
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For different total sample sizes, we record the mean values of β1, the standard

deviations of β1 and the powers for each simulation. From the result, we can see that

the point estimators in all sample size cases are quite close to the truth. The result

also produces evidence showing an obvious trend that when we increase the sample

size, the standard deviation of the estimate decreases and the power increases. If we

have a large enough sample, namely 1200 data points, we can achieve a power over

0.9.

Table 2.1: MCMC result when n1 = 300,m = 1000

n Estimates(Truth = 0.5) Standard Deviation Power
500 0.5089131 0.2521596 0.654
600 0.5025989 0.2331040 0.705
700 0.5156427 0.2183066 0.797
800 0.5114063 0.2092231 0.821
900 0.5124188 0.1999642 0.855
1000 0.5054345 0.1910872 0.856
1100 0.5083408 0.1850259 0.894
1200 0.5158404 0.1799486 0.911

2.3.4 Result for Normal Approximation Approach with Unmeasured Confounding

We next provide the results when using normal approximation approach with

unmeasured confounding presented. We use the same sample sizes ranging from

500 to 1200 as the above MCMC case, with exactly the same data generated with

fixed n1 = 300 and β1 = 0.5. Hence, we can directly compare the results of the two

methods. The point estimators in this approach are close to the truth in all sample

sizes, and we again see a trend that when we increase the sample size, the power

increases as well and the standard deviation of the estimate decreases.
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The powers and standard deviations for both the MCMC and normal approx-

imation simulations are quite similar indicating that for future work in sample size

determination or other simulation based procedures.

Table 2.2: Normal Approximation when n1 = 300, m = 1000

n Estimates(Truth = 0.5) Standard Deviation Power
500 0.5077775 0.2499366 0.656
600 0.5009355 0.2309771 0.711
700 0.5110463 0.2162722 0.790
800 0.5089363 0.2072116 0.817
900 0.5095178 0.1980417 0.851
1000 0.5032719 0.1892859 0.859
1100 0.5047532 0.1832769 0.896
1200 0.5133611 0.1782327 0.914

We put the powers obtained from the two methods together, and the graph

in Figure 2.2 gives a visual representation of the similarity in the results of both

methods.

2.4 Continuous Response

2.4.1 MCMC Method for Continuous Response

We next overview how these methods could be applied to a model with a

continuous outcome that has a binary unmeasured confounder.

A similar model to the binary regression already considered can be used for a

continuous outcome Y . We assume the continuous response follows a normal distri-

bution. Thus, yj is distributed normally with mean µj, and standard deviation σ2
j .

All the other parameters remain unchanged: X is still the covariate of interest (gen-

erally exposure), Z is the vector of covariates, and U is the unmeasured confounder,
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Figure 2.2: The power curves of Bayesian MCMC Method and Normal Approxima-
tion of binary responses

all of which stay binary. The mean function is modeled as

Y = β0 + β1X + β2Z + λU (2.6)

logit P (U = 1|X,Z) = γ0 + γ1X (2.7)

where

Yj ∼ N(µj, σ
2
j )

and all the priors’ information listed below:

β0, β1, β2 ∼ N(µβ, σ
2
β)

γ0, γ1 ∼ N(µγ, σ
2
γ)

λ ∼ N(µλ, σ
2
λ)

σj ∼ Unif(lo, up).

We have µβ = µγ = µλ = 0, σ2
β = σ2

γ = σ2
λ = 100, lo = 0.01, up = 500. Again,

though we give diffuse priors to all the parameters in our simulations, expert opinion

and/or prior data can be incorporated.
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2.4.2 Normal Approximation

The derivation for the normal theory approximation to the continuous response

is similar to the one with a binary outcome that we derived above. The likelihoods

for the main study and the validation data are

LN(β0, β1, β2, γ0, γ1, λ, σ|x, y, z) =
n∏
i=1

[f(yi|xi, u = 1, zi)f(u = 1|xi)

+ f(yi|xi, u = 0, zi)f(u = 0|xi)]

=
n∏
i=1

exp
{
−[yi−(β0+β1xi+β2zi+λ)]2

2σ2

}
√

2πσ2

× exp{γ0 + γ1xi}
1 + exp{γ0 + γ1xi}

+
exp

{
−[yi−(β0+β1xi+β2zi)]

2

2σ2

}
√

2πσ2

× 1

1 + exp{γ0 + γ1xi}

]

LN1(β0, β1, β2, γ0, γ1, λ, σ|x1, y1, z1, u1) =

n1∏
j=1

exp
{
−[y1j−(β0+β1x1j+β2z1j+λu1j)]

2

2σ2

}
√

2πσ2

× exp{u1j(γ0 + γ1x1j)}
1 + exp{γ0 + γ1x1j}

]

Taking the log of these functions yields logLN and logLN1 . The total log

likelihood can be obtained by combining the two parts together.

logL = logLN + logLN1 .

We will do the same calculation as previous sections to obtain the MLEs. First

we differentiate the likelihood function with respect to the parameter vector and set

the resulting gradient vector to zero. We then solve the system of equations to find

the extreme.
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We denote β,Pi and Qj the same as before:

β =


β0

β1

β2

 , Pi =


1

xi

zi

 , Qj =


1

x1j

z1j

 .

The maximum likelihood estimator vector Θ is

Θ =



β

γ

λ

σ2


.

By Equation (2.4), we take the first derivative of logLN and logLN1 with

respect to β, and add them together to get the first derivative of the log likelihood

function with respect to β.

∂ logL

∂β
=

n∑
i=1

{(
Pi
σ2

)
×
[
e−

(yi−P
′
iβ)2

2σ2 (yi − P ′iβ) + e−
(−λ+yi−P

′
iβ)2

2σ2
+γ0+xiγ1 (−λ+ yi − P ′iβ)

]
×
(
e−

(yi−P
′
iβ)2

2σ2 + e−
(−λ+yi−P

′
iβ)2

2σ2
+γ0+xiγ1

)−1
}

+

n1∑
j=1

Qj

−λu1j + y1j −Q′jβ
σ2

We then take the first derivative of logL with respect to σ2, and get log

likelihood function with respect to σ2.

∂ logL

∂σ2
= − n

2σ2
+

1

2σ4

n∑
i=1

[
e−

(yi−P
′
iβ)2

2σ2 (yi − P ′iβ)
2

+e−
(−λ+yi−P

′
iβ)2

2σ2
+γ0+xiγ1 (−λ+ yi − P ′iβ)

2

]
×
(
e−

(yi−P
′
iβ)2

2σ2 + e−
(−λ+yi−P

′
iβ)2

2σ2
+γ0+xiγ1

)−1
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− n1

2σ2
+

1

2σ4

n1∑
j=1

(
−λu1j + y1j −Q′jβ

)2

Because we are interested in β1, the first derivative with respect to β1 is

∂ logL

∂β1

=
n∑
i=1

{( xi
σ2

)
×
[
e−

(yi−P
′
iβ)2

2σ2 (yi − P ′iβ) + e−
(−λ+yi−P

′
iβ)2

2σ2
+γ0+xiγ1 (−λ+ yi − P ′iβ)

]
×
(
e−

(yi−P
′
iβ)2

2σ2 + e−
(−λ+yi−P

′
iβ)2

2σ2
+γ0+xiγ1

)−1
}

+

n1∑
j=1

x1j

−λu1j + y1j −Q′jβ
σ2

To find the MLE, we set the system of the first derivatives to zero and solve

for Θ.

Again, we need the second derivatives in order to find the variance-covariance

matrix. By Equation (2.5), we can calculate separate parts ∂2 logLN
∂Θ2 and

∂2 logLN1

∂Θ2

first and then add them together.

∂2 logL

∂β2
=

n∑
i=1

(P 2
i )

{
− 1

σ2

−

e
− (yi−P

′
iβ)2

2σ2 (yi − P ′iβ) + e−
(−λ+yi−P

′
iβ)2

2σ2
+γ0+xiγ1 (−λ+ yi − P ′iβ)

σ2

(
e−

(yi−P ′iβ)2

2σ2 + e−
(−λ+yi−P ′iβ)2

2σ2
+γ0+xiγ1

)


2

+
e−

(yi−P
′
iβ)2

2σ2 (yi − P ′iβ)2 + e−
(−λ+yi−P

′
iβ)2

2σ2
+γ0+xiγ1 (−λ+ yi − P ′iβ)2

σ4

(
e−

(yi−P ′iβ)2

2σ2 + e−
(−λ+yi−P ′iβ)2

2σ2
+γ0+xiγ1

)


−
n1∑
j=1

Qj

σ2

Specifically for β1, we have

∂2 logL

∂β2
1

=
∂2 logLN
∂β2

1

+
∂2 logLN1

∂β2
1
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=
n∑
i=1

(x2
i )

{
− 1

σ2

−

e
− (yi−P

′
iβ)2

2σ2 (yi − P ′iβ) + e−
(−λ+yi−P

′
iβ)2

2σ2
+γ0+xiγ1 (−λ+ yi − P ′iβ)

σ2

(
e−

(yi−P ′iβ)2

2σ2 + e−
(−λ+yi−P ′iβ)2

2σ2
+γ0+xiγ1

)


2

+
e−

(yi−P
′
iβ)2

2σ2 (yi − P ′iβ)2 + e−
(−λ+yi−P

′
iβ)2

2σ2
+γ0+xiγ1 (−λ+ yi − P ′iβ)2

σ4

(
e−

(yi−P ′iβ)2

2σ2 + e−
(−λ+yi−P ′iβ)2

2σ2
+γ0+xiγ1

)


−
n1∑
j=1

x2
1j

σ2
.

Now we find ∂2 logL
∂(σ2)2

.

∂2 logLN
∂(σ2)2

=
n∑
i=1

{
3

4σ4

+

− 1

2σ2
+
e−

(yi−P
′
iβ)2

2σ2 (yi − P ′iβ)2 + e−
(−λ+yi−P

′
iβ)2

2σ2
+γ0+xiγ1 (−λ+ yi − P ′iβ)2

2σ4

(
e−

(yi−P ′iβ)2

2σ2 + e−
(−λ+yi−P ′iβ)2

2σ2
+γ0+xiγ1

)


2

− 3

2σ6

e−
(yi−P

′
iβ)2

2σ2 (yi − P ′iβ)2 + e−
(−λ+yi−P

′
iβ)2

2σ2
+γ0+xiγ1 (−λ+ yi − P ′iβ)2(

e−
(yi−P ′iβ)2

2σ2 + e−
(−λ+yi−P ′iβ)2

2σ2
+γ0+xiγ1

)

+
1

4σ8

e−
(yi−P

′
iβ)2

2σ2 (yi − P ′iβ)4 + e−
(−λ+yi−P

′
iβ)2

2σ2
+γ0+xiγ1 (−λ+ yi − P ′iβ)4(

e−
(yi−P ′iβ)2

2σ2 + e−
(−λ+yi−P ′iβ)2

2σ2
+γ0+xiγ1

)


+

n1∑
j=1

− 1

4σ4

(
1−

(−λu1j + y1j −Q′jβ)2

σ2

)2

+
3

4σ4
−

3(−λu1j + y1j −Q′jβ)2

2σ6
+

(−λu1j + y1j −Q′jβ)4

4σ8

All the other off-diagonal values can be found in the appendix.
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As in the logistic regression case, the variance is obtained by taking the nega-

tive of the inverse of the Hessian matrix.

2.4.3 Simulation Algorithm

The simulation steps we use are similar to the binary outcome scenario, with

some minor changes.

(1) First, we generate the covariates for the measured confounder: x1, z1 from

Binomial distributions px = 0.6 and pz = 0.4 respectively. Then using fixed

values of γ0 and γ1, we generate the covariates for measured confounder u1

from a binomial distribution according to Equation (2.7). Now we generate

the outcome y1 from a normal distribution with mean β0 +β1X+β2Z+λu1

using fixed β0, β1, β2, λ and standard deviation at fixed σ by Equation (2.6).

(2) Secondly, we generate the n − n1 covariates x, z and u for the main study

without validation. We calculate the outcome y using the same parameters

to the last step, Namely, x and z are binomial(0.6) and binomial(0.4). Using

same fixed γ0, γ1 and Equation (2.7), we obtain u, and using the same fixed

β0, β1, β2, λ together with u and σ, we obtain y under Equation (2.6). Notice

we do not actually observe u.

(3) Then, we fit the Bayesian model (2.6) and (2.7) to the generated data above.

We use the diffuse normal priors with mean at zero and precision at 0.1 on

β0, β1, β2, γ0, γ1 and λ, and use a uniform(0.01, 500) prior on σ which is also

flat.

(4) Finally, we approximate the posterior distribution of β1 using WinBUGS

while keeping track of P (β1 > 0|data), the posterior probability values of β1

greater than zero in each iteration. We also compute the normal approxi-

mation for this same data set.
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(5) We then repeat the whole process for m iterations. We tally the number

of times that posterior probability value exceeds 1− α out of m iterations.

This approximates the Bayesian power achieved with the MCMC method

for sample size n. Similarly, the power can be computed for the normal

approximation.

For the simulation, we generated 1000 data sets with discrete posterior ap-

proximations based on a Monte Carlo sample of 20000 posterior iterates after a 5000

initial burn-in with thinning equals to 2.

2.4.4 Continuous Response Example

In this section, we will see both methods’ application in a single data set of a

continuous response.

We let Y to be a continuous distributed variable which is generated from a

normal distribution. The covariate of interest X and the unmeasured confounder U

are both binary variables. We have a logistic regression model for Y and U :

Y = β0 + β1X + λU, logit P (U = 1|X) = γ0 + γ1X

We generate β0 from a uniform distribution between 100 and 150, fix the

parameter of interest β1 at 30, and we generate λ from a uniform distribution between

-30 and -20. Also, the standard deviation σ of y is randomly generated from a

uniform distribution between 150 and 175. The linear coefficients from Equation

(2.7) are generated from uniform distributions (-0.3, -0.2) and (1.1, 1.3) respectively.

We assume to have a total of 500 samples within which 300 are validation

samples, where we observe the unmeasured confounder u. In the MCMC method,

we assume the priors of β0, β1 and λ to be a diffuse normal centered at zero with

precision 0.0000001. The priors for γ0 and γ1 are diffuse normal centered at zero

with precision 0.1, and the prior for σ is a flat uniform(0.01, 500).
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For the normal approximation method, we find the MLE and the standard

error from the likelihood function

L(β0, β1, γ0, γ1, λ, σ|x, y) =
n∏
i=1

[f(yi|xi, u = 1)f(u = 1|xi) + f(yi|xi, u = 0)f(u = 0|xi)]

×
n1∏
j=1

f(y1j|x1j, u1j)

=
n∏
i=1

exp
{
−[yi−(β0+β1xi+λ)]2

2σ2

}
√

2πσ2

× exp{γ0 + γ1xi}
1 + exp{γ0 + γ1xi}

+
exp

{
−[yi−(β0+β1xi)]

2

2σ2

}
√

2πσ2[1 + exp(γ0 + γ1xi)]


×

n1∏
j=1

exp
{
−[y1j−(β0+β1x1j+λu1j)]

2

2σ2

}
√

2πσ2

× exp{u1j(γ0 + γ1x1j)}
1 + exp{γ0 + γ1x1j}

]
The results we get are listed below in Table 2.3.

Table 2.3: Result of a continuous response data

Method Estimator of β1 Standard Error Posterior Prob
MCMC 30.94636 14.76807 0.98080

Norm.Approx 30.217106 14.380454 0.982191

We can see that both of the methods perform well in estimating the true value

and getting a high posterior probability. Their estimators are both very close to

30, the standard errors in both methods are close to each other at around 14, and

their posterior probabilities are also close to each other at around 0.98. Hence the

results present evidence justifying that the normal theory approximation can also

be applied as an alternative method with respect to the Bayesian MCMC approach.
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2.4.5 Misclassification Example

Cheng et al. (2009) introduced a Bayesian MCMC approach for regression

models with misclassified outcomes. Suppose we have one imperfect test with the

simplest model where each subject is tested by one diagnostic instrument that has

unknown sensitivity and specificity. Let D = 1 denote diseased, and 0 denote

healthy, πj denotes the prevalence for the jth subject, Xj is covariate vector, then

we have

πj = Pr(D = 1|Xj).

πj depends on Xj through a logit link function,

π =
eβ0+β1x1+···+βixi+···+βnxn

1 + eβ0+β1x1+···+βixi+···+βnxn

where β1 is the regression parameter of primary interest with corresponding covariate

x1 and βis for i 6= 1 are the other regression parameters including an intercept term

(β0).

Let y = 1 represent a positive test result and 0 denote a negative test result

for subject j. There is a single test sensitivity

S = Pr(y = 1|D = 1),

which is the probability of testing a diseased patient correctly. And a single speci-

ficity

C = Pr(y = 0|D = 0),

which is the probability of testing a healthy patient correctly.

The probability of observing a positive test result, pj = Pr(yj = 1|Xj) can be

found as

pj = Pr(yj = 1|Xj) = πjS + (1− πj)(1− C).

The data are then modelled as independent with a Bernoulli(pj) distribution.

Here we consider a single example with n = 800.
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We generate the true value S from beta(80,20) distribution with mean 0.8,

and C from beta(92,8) distribution with mean 0.92. We assume β0 is from a normal

distribution with mean -1 and standard deviation 0.2 and fix β1 at 0.8.

We then generate one data set and compare the MCMC and normal approx-

imation methods. We fit the data using the Bayesian model described above with

prior distributions of β0, β1 to be both normal centered at zero, of a precision 0.1.

And we obtain the MLE and the standard error of the MLE, considering them as

the center and the standard deviation of the normal theory approximation. The

likelihood we use in order to find the MLE and the standard error is:

L(β0, β1, s, c|x,y) =
∏

[πs+(1−π)(1−c)]yi [π(1−s)+(1−π)c](1−yi)s0.8(1−s)0.2c0.92(1−c)0.08

where

π =
exp(β0 + β1x)

1 + exp(β0 + β1x)
.

The β̂1 we obtain from the MCMC method is 0.7172, with a standard error

at 0.2205. And the β̂1 we obtain from the normal approximation method is 0.7183,

with a standard error at 0.2229.

We also estimated the posterior probability of β1 > 0 given the data in the

MCMC method, and correspondingly, we compute a z-score using β̂1/σ̂ in order

to obtain the probability of observing an equivalent or more extreme case. The

posterior probability of the MCMC method is 1 and the probability of the normal

theory approximation is 0.9994.

From this example we see the normal approximation is very close to the results

using MCMC, but further simulation should be run to verify the exact sample sizes

where the normal approximation is highly accurate.

2.5 Conclusions and Discussion

When unmeasured confounding exists, to have validation data on hand is a

helpful way to compensate because it can provide more information about unmea-

36



sured confounding. In this chapter, Bayesian regression models are developed to

utilize the internal validation data as informative prior distributions for all parame-

ters, first to a binary response and later to a continuous(normal) response. They have

retained information on the correlation between the confounder and other covari-

ates. The Bayesian MCMC approach adjusting for unmeasured confounders works

well when there are only few covariates. The use of Bayesian modelling provides

consistent results, suggesting that the lack of data on the unmeasured confounder

does not have a strong impact on the original analysis, due to the relatively weak

correlation between the confounder and the outcome variable.

We have also provided a normal theory approximation approach allowing much

faster power studies for a Bayesian regression model with unmeasured confounding

for both binary and normal outcomes. The results we have are generally similar

to the more time consuming Bayesian MCMC approach, which is exactly what we

expected. Based upon this information, it is reasonable to conclude that normal

approximation is a feasible alternative to the MCMC method in this case.

We do want to mention here that in order to achieve similar power, we need

to be careful in choosing appropriate priors for the Bayesian MCMC approach. The

priors have to be diffuse and non-informative, and the precision of any parameter

should be no larger than 0.1 for the normal response and should be much smaller

for other continuously distributed responses.

Sometimes, internal validation may not be available, and the parametric model

to adjustment may work well only when there are few covariates and the variables

are dichotomous. For multiple unmeasured confounders, model based adjustment

is more difficult. Both continuous and categorical variables may be correlated. So

under those circumstances, more simulations will be needed to demonstrate perfor-

mance of external validation and informative prior approach. Bayesian modelling

with informative priors may be useful tools in such situations for unmeasured con-
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founding sensitivity analyses. However, the need for further research remains in

order to understand the operating characteristics of those methods in a variety of

situations.
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CHAPTER THREE

Bayesian analysis and normal theory approximation under Gamma Distributed
Data

3.1 Introduction

The use of retrospective observational studies as tools for medical decision

making has been growing in recent years. The use of such data is sometimes chal-

lenged due to the potential for unmeasured confounding. Even when no or limited

additional data on the unmeasured confounders isavailable, Bayesian modeling with

informative priors can still be utilized to assess the sensitivity to the unmeasured

confounding.

In the last chapter, we discussed Bayesian MCMC and normal approximation

analyses for binomial and normal outcomes when unmeasured confounding exists.

To further explore the case with a continuous outcome, in this chapter we study

an outcome with a gamma distribution, which is often seen in cost data. Cost

data is well known to often be skewed. Several classes of models can be used to

address the problems caused by skewness in data commonly encountered in health

care applications. Manning et al. (2005) has presented a method using the three

parameter generalized Gamma (GGM) distribution, which includes several of the

standard alternatives as special cases, for instance OLS with a normal error, OLS

for the log-normal, the standard Gamma and exponential with a log link.

Our work focuses on situations in which internal validation data are available.

Additional data on the “unmeasured confounder” are obtained for a small subset of

the original sample. The advantage of the Bayesian approach for this type of problem

is the ability to combine validation data with informative priors in a straightforward

operational way to perform estimation.(see Faries et al., 2013)

39



Bayesian methods provide a flexible approach to studying unmeasured con-

founding. It can utilize all sources of information while simultaneously modeling

all uncertainty. In this work, we are interested in what advantages a normal the-

ory approximation brings when the data are skewed. In this chapter, we present

a Bayesian MCMC method with the skewed cost outcome and compare the results

with another approach using the normal theory approximation, and see whether the

normal approximation approach is reasonable.

3.1.1 Gamma Distributed Data

Health care expenditure data are usually right skewed with variability increas-

ing as the mean cost increases. Many past studies of health care costs and their

responses to health insurance, treatment modalities or patient characteristics indi-

cate that estimation of mean responses may be quite sensitive to how estimators

account for the skewness in the outcome and other statistical problems that are

common in such data. It has been suggested that cost data can be modeled with

the log normal or gamma distributions. The generalized gamma distribution has

one scale parameter and two shape parameters. This form is also referred to as the

family of generalized gamma distributions because the standard gamma, Weibull,

exponential and the log normal are all special cases of this distribution. Hence, it

provides a convenient form to identify the data generating mechanism of the depen-

dent variable and in turn helps to select the best distribution. (see Manning et al.,

2002)

The probability density of the generalized gamma distribution (GG(α, τ, λ))

is given by Morteza Khodabina (2010),

f(y|α, τ, λ) =
τ

λΓ(α)
(
y

λ
)ατ−1e−( y

λ
)τ , y ≥ 0, τ, α, λ > 0,

where Γ(.) is the gamma function, α and τ are shape parameters, and λ is the

scale parameter. E(y|x) is often the primary quantity of interest in many health
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economics applications. For example, predicted costs by treatment, predicted health

care utilization by patient characteristics, etc.

The GG family is flexible in that it includes several special cases: exponential(α

= τ = 1), standard gamma for(τ = 1), and Weibull for(α = 1). The log normal

distribution is also obtained as a limiting distribution when α goes to infinity. In

this chapter, we will focus on the standard gamma model. Like the log normal, the

gamma distribution has a variance function that is proportional to the square of the

mean function, a property that characterizes many health care data sets.

The probability density function (PDF) of the standard gamma distribution

is:

f(y|α, µ) =
1

Γ(α)
(
α

µ
)αyα−1 exp(−αy

µ
), y ≥ 0, α, µ > 0

In this parameterization, α is the shape parameter and µ = E[Y ] is the mean. If

0 < α < 1, then the density has a pole at the origin and decreases monotonically

as y increases. If α = 1, then this is an exponential distribution. If α > 1, then

the density is zero at the origin, with a maximum at µ − µ/α. There are some

other common parameterizations of the gamma distribution. We can define it in

terms of shape and scale, where scale = µ/α. We can also define it in terms of

shape and rate, where rate = α/µ. The MLE of µ is the sample mean, but to get

the MLE of α requires an iterative approximation. Since the gamma distribution

is a generalized linear model, α and µ can be estimated using standard statistical

packages by setting the systematic component of the model to be an intercept term

alone. The MLEs of the intercept and the dispersion parameters are the MLEs of µ

and 1/α, respectively.
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3.2 Bayesian Regression and Normal Approximation Model with Unmeasured
Confounding

3.2.1 Model Description

Let X be a binary random variable where values 1 and 0 indicate whether

or not a certain medical technology is used, and let U be a binary variable that

is an unmeasured confounder. Following McCandless et al. (2007b), we use the

factorization P (Y, U |X) = P (Y |X,U)P (U |X) and model the confounding effect of

U using the regression models:

logP (Y |X,U) = β0 + β1X + λU (3.1)

logitP (U = 1|x) = γ0 + γ1X (3.2)

Here, the effects of the variables X and U on Y are assumed to not interact.

Out of n observations, we assume that we have n1 validation sample points, as in

Chapter 2.

The outcome variable Y is assumed to have a gamma distribution

Y ∼ Gamma(α, s), where s = α/eβ0+β1X+λU

and all the priors’ information is listed below:

β0, β1 ∼ N(µβ, σ
2
β)

γ0, γ1 ∼ N(µγ, σ
2
γ)

λ ∼ N(µλ, σ
2
λ)

α ∼ Unif(lo, up)

We have µβ = µγ = µλ = 0, σ2
β = 10000, σ2

γ = σ2
λ = 100, lo = 0.001, up = 50.

We use diffuse normal distributions as the independent priors on the βs, γs and λ,

and a uniform distribution as the prior on the α in our simulations, although we

give diffuse priors to all the parameters in our simulations, expert opinion and/or

prior data can be incorporated as well. We are still primarily interested in β1 as it
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is the coefficient for x, which represents the impact of the treatment on the health

care expenditure.

To perform a normal theory approximation to this gamma regression with

unmeasured confounding estimation problem, we first acquire the full likelihood

function:

LN(β0, β1, γ0, γ1, λ|x, y) =
n∏
i=1

[f(yi|xi, u = 1)f(u = 1|xi)

+ f(yi|xi, u = 0)f(u = 0|xi)]

=
n∏
i=1

[
yα−1
i e

−yiα
exp(β0+β1xi+λ)

( exp(β0+β1xi+λ)
α

)αΓ(α)

× exp{γ0 + γ1xi}
1 + exp{γ0 + γ1xi}

+
yα−1
i e

−yiα
exp(β0+β1xi)

( exp(β0+β1xi)
α

)αΓ(α)

× 1

1 + exp{γ0 + γ1xi}

]

LN1(β0, β1, γ0, γ1, λ|x1, y1, u1) =

n1∏
j=1

f(y1j|x1j, u1j)

=

n1∏
j=1

 yα−1
1j e

−y1jα
exp(β0+β1x1j+λu1j)

(
exp(β0+β1x1j+λu1j)

α
)αΓ(α)

×exp{u1j(γ0 + γ1x1j)}
1 + exp{γ0 + γ1x1j}

]

Here logL is the total log likelihood by combining the log of the two parts

together,

logL = logLN + logLN1 .
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The first and second derivative used to perform the maximation and the esti-

mation of the variances are provided in the appendix.

3.2.2 Simulation Algorithm and Conditions

We now discuss the simulation procedure used to investigate the normal ap-

proximation.

First, we generate the covariate x1 from a binomial distribution with px = 0.6.

Then using fixed value of γ0 and γ1, we generate the covariates for the confounder

u1 from a binomial distribution according to Equation (3.2). Next we generate the

outcome y1 from a gamma distribution with log mean β0 + β1X + λu1 using fixed

β0, β1, λ and shape parameter α by Equation (3.1).

Next, we generate the n− n1 values for the main study without validation in

a similar way. Namely, x is generated from binomial(0.6), and we use same fixed

γ0, γ1 and Equation (3.2) to obtain u, and the same fixed β0, β1, λ together with u

and α to obtain y from Equation (3.1). Notice we do not actually observe u for the

main study data.

Then, we fit the Bayesian models (3.1) and (3.2) to the generated data above.

We use diffuse normal priors, with mean of zero and precision of 0.01 for β0 and β1

and a precision of 0.1 for γ0, γ1 and λ. We use a uniform(0.001, 50) prior on α.

Finally, we approximate the posterior distribution of β1 using WinBUGS while

keeping track of the posterior probability values of P (β1 > 0|data) for each iteration.

For the normal approximation, the test statistic z = β̂1

SE(β̂1)
is used to determine

inference on the relationship.

We then repeat this process for m iterations, and tally the number of times

that the posterior probability value exceeds 1 − α out of m iterations. This value

approximates the Bayesian power achieved for a sample size n.
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Table 3.1: MCMC vs. Normal Approximation with Gamma distribution under
unmeasured confounding

n Norm’s β1 Norm’s SD MCMC’s β1 MCMC’s SD
500 0.7960963 0.1607586 0.7941613 0.14975661
600 0.7893362 0.1489264 0.7995130 0.1370918
700 0.8017156 0.1404461 0.7902297 0.1265650
800 0.7933256 0.1332436 0.7932495 0.1185082
900 0.8011129 0.1271441 0.8092028 0.1116286
1000 0.7964141 0.1223493 0.8011267 0.1057505

We generated m = 500 data sets with discrete posterior approximations based

on a MC sample of 5000 iterates after a 1000 burn-in and thinning of 2.

3.2.3 Results

We now describe the results of one simulation experiment. Under Equation

(3.1) and (3.2), our outcome Y takes on a gamma distribution. We fix β1 at 0.8.

The other parameters are fixed as follows: β0 = −0.5, α = 0.4, γ0 = −0.2, γ1 = 1

and λ = −0.6. We also fixed n1, the validation sample size, to 200, and let the total

sample size to go from 500 to 1000. For m = 500 different data sets, the powers of

both methods all turn out to be very close to 1.

As we can see from the results, both Bayesian MCMC and the normal the-

ory approximation methods are doing quite well in estimating the coefficient of x1.

Both of the methods have estimated the true value (0.8) within a bias of only 0.01.

The MCMC method has smaller standard errors as compared to the normal theory

approximation for all sample sizes.

Since the differences in the standard errors is quite large, we investigated

whether the increasing the total sample sizes would reduce the difference. For the

true β1 still fixed at 0.8, and total sample sizes being from 1500 to 2000, the standard

errors from the normal approximation method are from 0.094 to 0.084, and the

standard errors from the Bayesian MCMC method are from 0.087 to 0.075. The
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differences in the standard errors between the two methods are still the same when

we increase the sample size. We also test some other true values of β1, and the

standard errors of the two methods do not fluctuate much at all. All of the results

above indicate that the differences in the standard errors are large enough for us to

conclude that there is a significant difference between the two methods, hence we

do not recommend using the normal theory approximation as an alternative quicker

way to the Bayesian MCMC approach in this case. We believe that the reason why

we cannot use normal approximation is due to the apparent skewness of the sample

data.

3.3 Conclusions and Discussion

In this chapter, we have considered the common issue of modeling skewed cost

data in observational health care studies. This type of data often suffers from the

problem of unmeasured confounding. Here, we have assumed internal validation

data are available where the confounder was not completely unmeasured. Like in

(see Faries et al., 2013), additional data on this potential unmeasured confounder

are obtained for a small subset of the original sample.

After running simulations assuming a gamma response with one binary covari-

ate and one binary unmeasured confounder using both MCMC and normal approxi-

mations to obtain estimators, we obtained some interesting results. Not surprisingly,

the averages of the posterior means for both methods were nearly unbiased. The

posterior variability however is significantly smaller for the MCMC approach than

the normal approximation. This is a surprising result given that generally the nor-

mal approximation would be expected to underestimate the uncertainty for smaller

samples sizes.

Cost data usually have very skewed distributions and can be difficult to model.

According to (see Thompson and Nixon, 2005), conclusions from cost-effectiveness
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analyses are sensitive to choice of distribution and, in particular, to how the upper

tail of the cost distribution beyond the observed data is modeled. How well a

distribution fits the data is an insufficient guide to model choice. In the future,

we would like to investigate whether the choice of distribution can make a difference

to the power of the method of choosing, and to explore the importance in selecting

the correct model to fit the response data.
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CHAPTER FOUR

Bayesian Cost-Effectiveness Analyses and their Normal Theory Approximation

The field of health economics is growing rapidly, and there is an increasing

interest from health providers of many countries in assessing the evidence of eco-

nomic value along with clinical efficacy for new drugs and treatments. Suppose

we need to compare two therapies aimed at the same medical condition and try

to determine which one of these can be judged as “better”. Physicians frequently

need to base their daily treatment decisions on this type of comparative effectiveness

research. But instead of referring only to “effectiveness research”, which is in the

clinical realm, we also consider “comparative cost-effectiveness analysis”, which also

accounts for differential cost between treatments. This cost-effectiveness analysis

seeks to establish which of several alternative strategies capable of achieving a given

therapeutic goal is the best. The literature has revealed a lot of variation in the

methodology and the reporting of these analyses. Improving the quality of these

studies is very important to these decision makers.

4.1 Introduction

Cost-effectiveness analyses of clinical trial data are based on assumptions about

the distributions of costs and effectiveness.

An important problem is the comparison of two treatments using data from a

clinical trial. Both cost and effectiveness are measured on each patient in each of the

two treatment groups. Recent research about this problem has been brought up by

several authors. For instance, Willan and O’Brien (1996) presented a procedure for

the statistical analysis of cost-effectiveness data, with specific application to those

studies for which effectiveness is measured as a binary outcome, using Fieller’s The-
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orem to calculate confidence intervals for the incremental cost-effectiveness ratio.

Normality of the underlying cost and effectiveness data was a common assumption

among many researchers even though the cost data are typically non-normally dis-

tributed, with a high skewness. (see Willan and O’Brien, 1996; Laska et al., 1997;

Zethraeus and Johannesson, 1998; Stinnett and Mulahy, 1998.; Heitjan et al., 1999;

Briggs and Fenn, 1998; O’Hagan et al., 2000)

However, the volume of literature already dealing with the normal case testified

to how common this assumption was made. Most previous work adopts essentially

a frequentist approach, although the Bayesian approach has been applied. Briggs

(1999) provides an outline, without technical details or references to any particu-

lar data, of how the Bayesian approach would work, while O’Hagan et al. (2000)

presented a simplified Bayesian analysis with non-informative prior information in

a Bayesian cost-effectiveness analysis from clinical trial data, and O’Hagan et al.

(2001) is the first to present explicit analysis making use of substantial prior infor-

mation, as well as demonstrating the value of such information in a practical case

study.

A move toward economic evaluation studies being conducted alongside clinical

trials requires that individual patient data be available. We also face an issue of an-

alyzing uncertainty due to sampling variability in that case. In the health economics

literature, the incremental net benefit (INB) or incremental cost-effectiveness ratio

(ICER) have been the main focus of interest and various methods for computing

confidence intervals around the INB and the ICER have been proposed and dis-

cussed extensively.
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4.2 Cost and Effectiveness Distribution

4.2.1 Distributional Assumptions

The cost of medical resources is often recorded for each patient in clinical

studies in order to inform decision making. Although cost data are generally skewed

to the right, our interest is still in making inferences about the population mean cost.

The Central Limit Theorem ensures the sample mean is a consistent estimator. We

choose an alternative estimator only when there are sufficient data to permit detailed

modeling, otherwise the sample mean remains the best estimator.

Here we assume our cost data are distributed as a gamma distribution. Then

the maximum likelihood estimator of the population mean is the sample mean.

Notice here all parametric assumptions are just approximations, and incorrect as-

sumptions may lead to misleading conclusions. Hence we will gain efficiency if an

appropriate distribution such as the gamma is chosen to fit the data.

Thompson and Nixon (2005) used data from a low back pain trial to analyze

the cost-effectiveness. Patients were recruited from Washington State, USA. In

this study, 190 patients were randomized to an investigation by rapid magnetic

resonance imaging (rMRI), and the other 190 to a standard X-ray investigation. The

issue being addressed by the trial was whether rMRI would allow better diagnosis

and treatment, or simply lead to unnecessary treatment without improvement in

symptoms.

We set up our model following the results of Thompson and Nixon (2005).

We want to know if a normal approximation for cost-effectiveness data is reasonable

when the costs are skewed. Hence, to represent the usual skewness in cost data,

we use a gamma distribution for costs, and a normal distribution for effectiveness.

Specifically, we assume:

Ei ∼ Normal(µEi , σE)
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Ci ∼ Gamma(µC , ρC)

µEi = µE + β(Ci − µC)

where Ei represents effectiveness and Ci represents costs. The gamma distribution

for the costs above is parametrized by its mean and shape. The parameter β accounts

for the correlation between costs and effectiveness.

4.2.2 Incremental Net Benefit

After looking at the estimation of β using both a normal approximation and

Bayesian MCMC methods, we are able to determine whether using the normal ap-

proximation is reasonable. Generally we are interested in is the Incremental Net

Benefit(INB).

We denote by Cij a random variable that is the total cost for individual j =

1, · · · , ni who is given treatment i, where i is either treatment(t) or standard(s). The

number of individuals given treatment i is denoted as ni. We assume that the costs

for those individuals given treatment i are from the distribution with mean µci and

variance σ2
ci, and the costs from the two groups are independent. Eij denotes the

random variable for health outcome for individual j given treatment i, and it has

mean µei and variance σ2
ei. The population mean differences in costs and in effects

are denoted by ∆C = µct − µcs and ∆E = µet − µes respectively.

We use the incremental net benefit (INB) of the treatment comparing to the

standard to summarize the results. Let λ represents the decision makers’ willingness

to pay for one unit gain in health outcome. Methods for estimating willingness to

pay are discussed in O’Brien (1998); O’Brien and Gafni (1996). The INB is defined

to be

INB(λ) = λ∆E −∆C (4.1)

= λ(µet − µes)− (µct − µcs) (4.2)
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This quantity is the net benefit expressed in dollars, of giving a patient the

treatment rather than the standard, with positive difference favoring the treatment

and a negative difference favoring the standard.

Note that

INB(λ) = λ(µet − µes)− (µct − µcs)

= (λµet − µct)− (λµes − µcs)

= NBt −NBs

The value of λ is generally unknown, so it is common to plot the estimated value of

INB(λ) for various values of λ. Also note that INB(0) = −∆C illustrates that the

cost minimization is a special case of incremental net benefit.

A treatment is considered cost-effective if, and only if, the INB is greater than

zero, namely INB(λ) = λ∆E −∆C > 0. See for example Figure 4.1.

The treatment is cost-effective when λ∆E > ∆C , which is equivalent to

λ >
∆C

∆E

≡ R(∆E > 0) or λ <
∆C

∆E

≡ R(∆E < 0),

R is referred to as the incremental cost-effectiveness ratio (ICER), and can be seen

as additional cost to realize an extra unit of effectiveness from using the treatment

rather than the standard.

Observing that INB(R) = 0 which demonstrates the connection between the

ICER and the INB. Therefore, in a cost-effectiveness analysis, one need only to

estimate INB(λ) and its confidence limits, and to graph them as a function of λ.

These curves cross the vertical axis at minus the cost difference and the horizontal

axis at the ICER, defining the respective estimates and the corresponding confidence

intervals.
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Figure 4.1: the Cost-Effective Plane

4.2.3 Estimation

The expected value and variance of INB(λ) are given by

E[ ˆINB(λ)] = λE(∆̂E)− E(∆̂C)

= λE(µ̂et − µ̂es)− E(µ̂ct − µ̂cs)

= λ(µet − µes)− (µct − µcs)

V ar[ ˆINB(λ)] = λ2V ar(∆̂E) + V ar(∆̂C)− 2λCov[∆̂E, ∆̂C ]

= λ2σ2
∆E

+ σ2
∆C
− 2λσ∆EC ,
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where

σ2
∆C

=
σ2
ct

nt
+
σ2
cs

ns

σ2
∆E

=
σ2
et

nt
+
σ2
es

ns

Here σ2
∆C

and σ2
∆E

are the variances of the estimated population mean cost differ-

ences and effectiveness differences respectively. The quantities σ2
ci and σ2

ei, i = t, s

are the variances of the distributions from which the cost and effectiveness data are

sampled.

4.2.4 Advantages of INB over ICER

There are many advantages to using INB over the ICER. The main advantage

we will gain is that the INB analysis provides cost minimization while the ICER

analysis is a special case of it. Also, the INB considers the value that is given to a

unit of effectiveness as well as the cost: the INB is the difference between value and

the cost, whereas ICER is the cost of an extra unit of effectiveness.(see Willan and

Lin, 2001)

Negative ICERs are difficult to interpret and are not properly ordered. For

example, in some special cases, the upper limit of the ICER can be less than the

lower limit. This appears misleading and may causes investigators to mistakenly

reverse the limits and reach incorrect conclusions. Also, two totally opposite results

could even have the same ICER. The situation will be more clear when using the

INB.

The lower limit of INB is always negative, implying that no value ascribed to

a unit of effectiveness would lead to rejection of the null hypothesis that INB = 0

in favor of INB > 0. This means that no matter how much one values say, a year

of life, there is no evidence that the treatment is cost-effective compared to the

standard.
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Although the fact that ICER’s limits include the positive vertical axis amounts

to the same conclusion, it is less obvious to realize.

The confidence intervals for the ICER sometimes include undefined values.

For the INB analysis, this situation is characterized by neither INB limit crossing

the horizontal axis. Thus with zero being in the confidence interval, no matter how

much or how little one values a unit of effectiveness, there is no evidence that either

the standard or the treatment is more favored than the other.

There are other advantages as well. INB has the ability to generalize to more

than one measures of effectiveness, for instance, in a trial of antithrombotic medica-

tion, one might be interested in deaths, strokes and blood clots at the same time.

4.2.5 Bayesian Approach

In this section, we discuss the Bayesian approach to estimation of cost-effectiveness,

implemented using Markov chain Monte Carlo (MCMC) in the software R calling

the package R2WinBUGS. The Bayes approach gives a natural interpretation of cost-

effectiveness providing the posterior probability of the parameter of interest not

being zero, given the data.

Specifically, we assume cost and effectiveness are both continuous where ef-

fectiveness has a normal distribution and the cost has a gamma distribution. We

denote the effectiveness variable to be Y and the cost variable to be X. Then Y

is a normal response with mean µY and the standard deviation σY . X is a gamma

distributed variable with mean µX , and shape parameter α. We assume a linear

function between the mean of effectiveness and the residual of the cost. Also, note

that we have i = 2 groups, the treatment group and the standard group, respectively.

This can be summarized as:

Yi ∼ Normal(µYi , σY i) (4.3)

Xi ∼ Gamma(αi, µXi) (4.4)
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µYi = β0i + β1(Xi − µXi) (4.5)

where in the gamma distribution, the shape parameter is α, and the rate parame-

ter satisfies rate = α/µX . We denote baseline effectiveness µY to be β0. Because

the Bayesian MCMC method requires prior distributions for all the parameters in

the model, we give diffuse priors, which are intended to be approximately noninfor-

mative, to those parameters so that our inferences essentially only depend on the

data. We use wide uniform(0.01,500) priors for µX and α in the gamma distribution

and the same prior for σY in the normal distribution because those parameters are

bounded to be positive. Since β0i is the baseline effectiveness, and β1 is our coef-

ficient of interest in the analysis, and they could be either positive or negative, we

use diffuse normal distributions center at 0 with precision 0.00001 as the prior for

these parameters.

Posterior distributions of quantities of interest for estimation and the infer-

ences about cost-effectiveness were derived from m = 10000 MCMC iterations, 1000

initial burn-in iterations were discarded to ensure convergence. These posterior dis-

tributions are summarized by means, standard deviations and powers.

Our primary interest is the incremental net benefit, INB(λ) = λ∆Y − ∆X,

and specifically, the P (INB(λ) > 0|data).

4.2.6 Normal Theory Approximation

We now present the details of a normal theory approximation. The likelihood

functions of the parameters are:

LN1(β0, β1, β2, α1, σY1|x1, y1) =
∏

[f(y1|x1)f(x1)]

=
n∏
i=1

exp
{
−{y1i−[β01+β1(x1i−µX1)]}2

2σ2
Y 1

}
√

2πσ2
Y 1

xα1−1
1i e

−x1iα1
µX1

(µX1

α1
)α1Γ(α1)



LN2(β0, β1, β2, α2, σY2|x2, y2) =
∏

[f(y2|x2)f(x2)]
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=
n∏
i=1

exp
{
−{y2i−[β02+β1(x2i−µX2)]}2

2σ2
Y 2

}
√

2πσ2
Y 2

xα2−1
2i e

−x2iα2
µX2

(µX2

α2
)α2Γ(α2)



We take a log transformation of the likelihood functions to get logLN1 and

logLN2, and the total log likelihood function will be the sum of these,

logL = logLN1 + logLN2.

Like before, the first and second derivatives used to find the MLEs and the

Hessian matrix are provided in the appendix.

4.3 Simulation Algorithm

4.3.1 WinBUGS Simulation and Conditions

We now describe the simulation algorithm. First, we generate the variable xi

from a gamma distribution with mean µXi and shape parameter αi for some fixed

value of µXis and αis where i is the standard or the treatment using Equation (4.4).

Secondly, we generate the variable yi from a normal distribution with mean

β0i + β1(xi − µXi) and standard deviation σY i using the X value obtained from the

gamma distribution and fixed value of β0is where i = 1, 2 by Equation (4.3). Hence,

the true INB value of this set of data is INB = λ(β01 − β02)− (µX1 − µX2), with a

fixed value at λ.

Then, we use WinBUGS to fit the Bayesian model (4.5) to the generated data

above using Markov chain Monte Carlo method. Here we also calculate a function

of INB: λ(y1 − y2)− (x1 − x2), with the same value of λ.

Finally, we approximate the posterior distribution of β0i, β1, αi, µXi, σY i and

INB for i = 1, 2 using MCMC method in WinBUGS while keeping track of the power

by recording the posterior probability values in each iteration.
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Table 4.1: Results of NA and MCMC methods for n = 100, MCMCpower = 0.19,
NApower = 0.18

MCMC’s Est MCMC’s SD NA’s Est NA’s SD
α1(2) 2.088 0.274 2.068 0.272
α2(4) 4.156 0.562 4.116 0.561
β1(1.5) 1.477 0.087 1.477 0.085
µX1(8) 8.094 0.573 8.017 0.352
µX2(4) 4.027 0.201 4.007 0.560
σY 1(5) 5.085 0.369 4.972 0.199
σY 2(5) 5.064 0.367 4.116 0.352
β01(4) 4.171 0.992 4.059 0.968
β02(2) 2.051 0.590 2.023 0.578
INB(2) 2.292 3.016 2.098 2.944

We repeat the whole process for m = 100 iterations, and tally the number of

times that posterior probability value exceeds 0.95 out of m iterations. This value

approximates the Bayesian power achieved for sample size n.

We do the simulation for a Monte Carlo sample of 5000 posterior iterates after

a 1000 initial burn-in with a thinning equals to 2. All simulations have converged to

the supporting distribution by this point, and mixed well. The fitting was achieved

by WinBUGS through package R2WinBUGS in R to perform Bayesian estimation. The

necessary WinBUGS code is given in the appendix.

4.4 Results

For the simulation, we set β01 = 4, β02 = 2, and β1 is fixed at 1.5. The other

parameters are fixed as follows: α1 = 2, α2 = 4, µX1 = 8, µX2 = 4, σY 1 = σY 2 = 5

and λ = 3. We let the total sample size n range from 100 to 700.

The results are displayed in Tables 4.1-4.7. The parameters of interest are

provided in the first column, with the true values in bold located between the paren-

theses.
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Table 4.2: Results of NA and MCMC methods for n = 200, MCMCpower = 0.26,
NApower = 0.23

MCMC’s Est MCMC’s SD NA’s Est NA’s SD
α1(2) 2.037 0.189 2.028 0.189
α2(4) 4.087 0.392 4.068 0.400
β1(1.5) 1.501 0.060 1.502 0.060
µX1(8) 8.081 0.404 8.041 0.250
µX2(4) 4.022 0.142 4.012 0.391
σY 1(5) 5.049 0.256 4.993 0.141
σY 2(5) 5.036 0.255 4.068 0.250
β01(4) 4.123 0.704 4.062 0.698
β02(2) 2.048 0.416 2.035 0.412
INB(2) 2.166 2.132 2.052 2.113

Table 4.3: Results of NA and MCMC methods for n = 300, MCMCpower = 0.36,
NApower = 0.35

MCMC’s Est MCMC’s SD NA’s Est NA’s SD
α1(2) 2.053 0.156 2.046 0.155
α2(4) 4.035 0.316 4.022 0.325
β1(1.5) 1.498 0.049 1.498 0.048
µX1(8) 8.067 0.327 8.041 0.203
µX2(4) 4.007 0.116 4.000 0.316
σY 1(5) 5.014 0.207 4.978 0.115
σY 2(5) 5.016 0.207 4.022 0.204
β01(4) 4.125 0.571 4.085 0.566
β02(2) 2.046 0.338 2.036 0.336
INB(2) 2.177 1.731 2.107 1.718

The first two columns are the results from the MCMC method. We have the

estimator and standard deviation of the parameters. The corresponding power in

each case is listed in the table title. The last two columns are results from the normal

theory approximation. To illustrate our findings better, we also plot those results

of both methods by each parameters, and put them side by side to simplifies the

comparison.

59



Table 4.4: Results of NA and MCMC methods for n = 400, MCMCpower = 0.46,
NApower = 0.44

MCMC’s Est MCMC’s SD NA’s Est NA’s SD
α1(2) 2.030 0.133 2.025 0.133
α2(4) 4.023 0.273 4.014 0.283
β1(1.5) 1.503 0.042 1.503 0.041
µX1(8) 8.069 0.285 8.049 0.175
µX2(4) 4.015 0.101 4.010 0.273
σY 1(5) 4.978 0.177 4.951 0.100
σY 2(5) 5.011 0.179 4.014 0.176
β01(4) 4.130 0.495 4.099 0.493
β02(2) 2.037 0.293 2.031 0.292
INB(2) 2.226 1.499 2.168 1.493

Table 4.5: Results of NA and MCMC methods for n = 500, MCMCpower = 0.44,
NApower = 0.42

MCMC’s Est MCMC’s SD NA’s Est NA’s SD
α1(2) 2.010 0.118 2.006 0.118
α2(4) 4.024 0.244 4.015 0.253
β1(1.5) 1.502 0.038 1.502 0.037
µX1(8) 8.028 0.254 8.011 0.158
µX2(4) 4.001 0.089 3.997 0.244
σY 1(5) 5.026 0.160 5.004 0.089
σY 2(5) 4.975 0.158 4.015 0.157
β01(4) 4.044 0.443 4.019 0.441
β02(2) 2.041 0.260 2.035 0.259
INB(2) 1.984 1.340 1.938 1.334

Considering the posterior means in columns two and four, we see both methods

exhibit very little bias. The posterior standard deviations in columns three and five

agree quite nicely for all the parameters.

Now if we focus on the standard deviation of each parameter of interest, and

just look at one parameter separately across different sample sizes, we find that

the standard deviations of all parameters tends to decrease when the sample size

increases. And also the results from the normal theory approximations are generally

similar to the results from the Bayesian MCMC method.
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Table 4.6: Results of NA and MCMC methods for n = 600, MCMCpower = 0.52,
NApower = 0.52

MCMC’s Est MCMC’s SD NA’s Est NA’s SD
α1(2) 2.009 0.108 2.006 0.108
α2(4) 4.004 0.222 3.997 0.231
β1(1.5) 1.503 0.034 1.503 0.034
µX1(8) 8.021 0.232 8.008 0.144
µX2(4) 3.998 0.082 3.994 0.222
σY 1(5) 5.013 0.145 4.995 0.082
σY 2(5) 5.000 0.145 3.997 0.144
β01(4) 4.037 0.404 4.019 0.403
β02(2) 2.009 0.238 2.004 0.238
INB(2) 2.061 1.222 2.030 1.220

Table 4.7: Results of NA and MCMC methods for n = 700,MCMCpower = 0.52,
NApower = 0.52

MCMC’s Est MCMC’s SD NA’s Est NA’s SD
α1(2) 1.993 0.099 1.991 0.099
α2(4) 4.036 0.207 4.030 0.214
β1(1.5) 1.499 0.032 1.499 0.031
µX1(8) 7.995 0.215 7.983 0.134
µX2(4) 3.997 0.075 3.994 0.207
σY 1(5) 5.012 0.135 4.996 0.075
σY 2(5) 4.993 0.134 4.030 0.133
β01(4) 3.987 0.374 3.970 0.372
β02(2) 1.983 0.221 1.979 0.219
INB(2) 2.015 1.131 1.985 1.127

Finally, we look at the powers of each method. Not only do the powers we

obtain from the different methods yield the same value, but also both of them show

a regular pattern of increasing when the sample size increases. The rate of increase

tends to slow down when the sample size went over 600.

In order to have a more intuitive understanding of the simulation results and

easier comparison of the normal approximation to the Bayesian MCMC method, we

choose to plot two of the parameters of interest out of the ten parameters we have

recorded. Here is the box plot of INB and β1 respectively from sample size 100 to 700.
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The circles in the middle of each vertical lines are the means of the estimation for

normal approximation(on the left) and the Bayesian MCMC method(on the right),

and the whiskers show the upper and lower 15 percentile. The horizontal lines across

all the sample sizes are the true values of INB and β1.

Based upon information from the graphs, it is reasonable to say that as the

sample sizes increases, the estimations are getting closer to the true values, and the

standard deviations of those estimations are decreasing. However, we can also see

from the graphs that the standard errors for estimating INBs are relatively large.

When the sample size is not large enough(n = 100 and 200), the estimation could

even be negative, which will definitely mislead our conclusion.

4.5 Conclusions and Discussion

In this chapter, we have applied the Bayesian MCMC and the normal theory

approximation method onto a cost-effective analysis. We have provided a Bayesian

regression model and derived a normal theory approximation power study for known

cost and efficacy data. The conclusion is similar to what we have in Chapter 2 and

3, which also agrees to what we expected.

We explored the application in cost-effective data where it is usually presented

in gamma distribution. The results of both methods are fairly close. It showed that

fitting with normal approximation when the data is log normal or gamma distributed

can speed up the power study and we think it will also benefit the sample size

determination and the sensitivity analysis.

We do want to mention that in order to get better and closer power, we need to

think much of the prior selection stage in the Bayesian approach. The priors needs

to be really diffuse and non-informative, and the precision of a parameter should be

no larger than 0.0001.
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Figure 4.2: Plot of INB and β1 from Normal Approximation and MCMC methods
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In the future, we may introduce some unmeasured confounders into the cost-

effectiveness analysis, because failing to account for the uncontrolled confounding

can result in a biased estimation in cost-effectiveness studies, and is sometimes over-

looked. We are very interested to see how Bayesian MCMC method performs com-

pared to the normal theory approximation when an unmeasured confounder exists

in cost benefit and cost-effectiveness analyses of the health field.
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CHAPTER FIVE

Final Comments

In this dissertation, we mainly focused on comparisons of the Bayesian MCMC

approach with the normal theory approximation approach under various circum-

stances in parameter estimation. We explored different scenarios under discrete and

continuous responses with and without an unmeasured confounder. We also derived

the corresponding normal approximations and determined whether it is feasible to

use the normal approximation in different scenarios. We learned about the advan-

tages and disadvantages of both methods during the process.

In Chapter two, we presented a logistic model with binary responses and co-

variates when unmeasured confounding exists. We showed that a small sample of

validation data can be helpful in providing more information about the unmeasured

confounding. Through simulations, we confirmed that both of our methods did a

good job of estimating true parameter values. While the Bayesian MCMC method

achieves smaller variation, the normal theory approximation leads to much faster

power studies.

In Chapter three, we expanded the model with an associated normal response

to a model with a gamma distributed response. We constructed only one binary

covariate and one unmeasured confounder in the model, and then fit a Bayesian

regression and a normal theory approximation on the gamma response. We discov-

ered that the results of the Bayesian MCMC method are generally the same as the

results of the more time efficient normal theory approximation. However, due to

the significantly larger standard errors from the normal approximation, we do not

recommend applying normal theory approximation in this scenario. Also, the likeli-

hood function that is required in the normal theory approximation method cannot
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always be easily derived, so the Bayesian MCMC method has some advantages over

the normal approximation due to the incorporation of some prior information.

In Chapter four, we focused on the incremental net benefit in a cost-effectiveness

analysis using both methods to estimate the true parameters. We provided a

Bayesian regression model and derived normal theory approximation power stud-

ies for known gamma cost and normal efficacy. The results of both methods are

fairly close. It showed that fitting with normal approximation when the data is

log-normal or gamma distributed can speed up the power study. It can also benefit

the sample size determination as well as the sensitivity analyses. In the future, we

are also interested in looking at unmeasured confounders in the cost-effectiveness

analysis with both Bayesian and normal theory approximation approaches.
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APPENDIX A

Chapter Two Calculation Details

This appendix contains the details results from Section 2.2.2 and 2.4.2.

A.1 The Second Derivatives in Section 2.2.2
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A.2 The Second Derivatives in Section 2.4.2

∂2 logLN1

∂β0∂β1

= −
n1∑
j=1

x1j

σ2

∂2 logLN1

∂β0∂β2

= −
n1∑
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σ2

∂2 logLN1
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2σ2
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√
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+
e−

(−λu1j+y1j−N ′jβ)2

2σ2
+u1j(γ0+x1jγ1)

(
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)
2

2 (1 + eγ0+x1jγ1)
√

2πσ5


+e
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2σ2
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71



×
(
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)√
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√
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×
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∂2 logLN1

∂β1∂σ2
=

n1∑
j=1

x1j

{
e

(−λu1j+y1j−N ′jβ)2

2σ2
−u1j(γ0+x1jγ1)

(
1 + eγ0+x1jγ1

) −√2π

σ

×
(
−λu1j + y1j −N ′jβ

)
×

−e−(−λu1j+y1j−N ′jβ)2

2σ2
+u1j(γ0+x1jγ1)

2 (1 + eγ0+x1jγ1)
√

2πσ3

+
e−

(−λu1j+y1j−N ′jβ)2

2σ2
+u1j(γ0+x1jγ1)

(
−λu1j + y1j −N ′jβ

)
2
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√
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√
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APPENDIX B

Chapter Two code

This appendix contains the R program and WinBUGS model used for the
simulation presented in Chapter Two.

B.1 Normal Approximation of Binary Response

norm.approx.ber<-function(m,n, n1, a1,b1, a2, b2, a3, b3, a4, b4,

a5, b5, a6, b6, s)

{

# sets the seed so simulation is repeatable

set.seed(s)

# Set up vectors to store results from the simulation runs

mean.b1<-rep(NA, m)

sd.b1<-rep(NA, m)

power <-rep(NA, m)

# compute sample size for subjects with unmeasured confounder

n.main<-n-n1

for(i in 1:m)

{

# design prior parameter generation, one of these sets should

# be commented out and recall the parameters are either means

# and standard deviations or bounds for the uniform distributions

B0<-runif(1,a1,b1)

B1<-runif(1,a2,b2)

B2<-runif(1,a3,b3)

G0<-runif(1,a4,b4)

G1<-runif(1,a5,b5)

L<-runif(1,a6,b6)

# Generating the data for the main study portion. Top is

#"reduced model" and bottom is "expanded model"

# Select the model of interest and comment the other one out.

# z is an observed confounder

# x is the treatment variable
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# u is the unobserved confounder, function of only x

# y is the outcome variable

# only z, x, and y are used in the data analysis

z <- rbinom(n.main,1,0.4)

x <- rbinom(n.main,1,0.6)

u <- rbinom(n.main, 1, 1/(1 + exp(-(cbind(1,x)

%*%c(G0, G1)))))

y <- rbinom(n.main, 1, 1/(1 + exp(-(cbind(1,x,u,z)

%*%c(B0, B1, L, B2)))))

# Generating the data for the validation data portion

# z1 is an observed confounder

# x1 is the treatment variable

# u1 is the unobserved confounder, function of only x

# y1 is the outcome variable

# all four data vectors are used in the analysis

z1 <- rbinom(n1,1,0.4)

x1 <- rbinom(n1,1,0.6)

u1 <- rbinom(n1, 1, 1/(1 + exp(-(cbind(1,x1) %*%

c(G0, G1)))))

y1 <- rbinom(n1, 1, 1/(1 + exp(-(cbind(1,x1,u1,z1)

%*% c(B0, B1, L, B2)))))

##########################################

v.data<-cbind(x1,z1,y1,u1)

data<-cbind(x,z,y)

loglike <- function (beta) {

beta0 <- beta[1]

beta1 <- beta[2]

beta2 <- beta[3]

lambda <- beta[4]

gamma0<-beta[5]

gamma1<-beta[6]

logN <-sum(

y*(beta0 + beta1*x + beta2*z) - log(1 + exp(gamma0 +

gamma1*x)) + log(1 + exp(gamma0 + gamma1*x + lambda*y) +

exp(gamma0 + beta0 + (beta1 + gamma1)*x + beta2*z + lambda*y)

+ exp(beta0 + beta1*x + beta2*z+ lambda))-

log(1 + exp(beta0 + beta1*x + beta2*z + lambda)) -

log(1 + exp(beta0 + beta1*x + beta2*z))
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)

logN1 <- sum(y1*(beta0 + beta1*x1 + beta2*z1 + lambda*u1)

- log(1 + exp(beta0 + beta1*x1 + beta2*z1 + lambda*u1))+

u1*(gamma0 + gamma1*x1) - log(1 + exp(gamma0 + gamma1*x1)))

return(-logN-logN1)

}

result<-optim(c(-1,1,1,-1, 0, 1),loglike,method="BFGS",hessian=T)

beta1.hat<-result$par[2]

as.var.inv<-result$hessian

as.var<-solve(as.var.inv)

post.prob<-pnorm(beta1.hat/as.var[2, 2]^.5)

##############################################################

mean.b1[i]<-beta1.hat

sd.b1[i]<-as.var[2, 2]^.5

power[i]<-ifelse(post.prob>.95, 1, 0)

}

ave_mean<-mean(mean.b1) ## calcualate average mean

ave_sd<-mean(sd.b1) ##

ave_power<-mean(power)

return(c(ave_mean,ave_sd,ave_power))

}

B.2 Bayesian MCMC of Binary Response

Model

{

for(i in 1 : n.main) {

y[i] ~ dbern(p[i])

U[i]~dbern(q[i])

logit(p[i]) <- beta0 + beta1 * x[i] +beta2*z[i] + lambda*U[i]

logit(q[i]) <- gamma0+gamma1 * x[i]

}

for(j in 1 : n1) {

y1[j] ~ dbern(p1[j])
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u1[j]~dbern(q1[j])

logit(p1[j]) <- beta0 + beta1 * x1[j]+beta2*z1[j]+lambda*u1[j]

logit(q1[j]) <- gamma0+gamma1 * x1[j]

}

beta0 ~ dnorm(0.0,.1)

beta1 ~ dnorm(0.0,.1)

beta2 ~ dnorm(0.0,.1)

p.value<-step(beta1)

gamma0~dnorm(0.0, .1)

gamma1~dnorm(0.0, .1)

lambda~dnorm(0.0, .1)

}

bayes.ber<-function(m,n, n1, a1,b1, a2, b2, a3, b3, a4, b4,

a5, b5, a6, b6, s)

{

# sets the seed so simulation is repeatable

set.seed(s)

# Set up vectors to store results from the simulation runs

mean.b1<-rep(NA, m)

sd.b1<-rep(NA, m)

# compute sample size for subjects with unmeasured confounder

n.main<-n-n1

for(i in 1:m)

{

B0<-runif(1,a1,b1)

B1<-runif(1,a2,b2)

B2<-runif(1,a3,b3)

G0<-runif(1,a4,b4)

G1<-runif(1,a5,b5)

L<-runif(1,a6,b6)

z <- rbinom(n.main,1,0.4)

x <- rbinom(n.main,1,0.6)

u <- rbinom(n.main, 1, 1/(1 + exp(-(cbind(1,x) %*%

c(G0, G1)))))

y <- rbinom(n.main, 1, 1/(1 + exp(-(cbind(1,x,u,z)

%*% c(B0, B1, L, B2)))))
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z1 <- rbinom(n1,1,0.4)

x1 <- rbinom(n1,1,0.6)

u1 <- rbinom(n1, 1, 1/(1 + exp(-(cbind(1,x1) %*%

c(G0, G1)))))

y1 <- rbinom(n1, 1, 1/(1 + exp(-(cbind(1,x1,u1,z1)

%*% c(B0, B1, L, B2)))))

# This next portion of the code gets the data ready to be sent

# to WinBUGS for this study we assume beta1 is the parameter

# of primary interest. If other parameters are also of interest,

# they can be added here as well, but vectors collecting the

# output also need to be added.

# For reduced model

parameters<-list("beta0", "beta1", "beta2", "gamma0",

"gamma1", "lambda", "p.value")

# this is the data for WinBUGS

data<-list("n.main", "n1", "z", "x", "y", "z1", "x1",

"y1", "u1")

# This vector is for initial values. Initial values are

# important for this model since the unmeasured confounding

# yields a lack of identifiability that is remedied by

# the validation data, but if the validation data sample

# size is small poor mixing can result if "bad" initial

# values are used. We recommend the means of the

# design priors

inits<-list(beta0=-2, beta1=.5, beta2=.2, lambda = -.5,

gamma0=-.2, gamma1=1.1)

inits<-list(inits)

# this line calls WinBUGS, note that n.iter is TOTAL

# iterations (including burnin)

# "model int" should be used for interaction model and

# "model red" should be used for reduced

ss.sim<-bugs(data,inits,parameters,"model red.txt",

n.chains=1, n.burnin=5000,n.iter=20000, n.thin=2, debug=TRUE)

mean.b1[i]<-ss.sim$summary[2, 1]
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sd.b1[i] <- ss.sim$summary[2, 2]

}

ave_mean<-mean(mean.b1) ## calcualate average mean

ave_sd <-mean(sd.b1) ## calcualate average sd

return(c(ave_mean, ave_sd))

}

B.3 Misclassification Example

#### The function "ss" calculates average Bayesian power when

#### one imperfect diagnostic test is used and one covariate is

#### included in the binomial regression model.

## x: covariate

## y: response

## beta0: intercept coefficient

## beta1: slope coefficient

## s: sensitivity

## c: specificity

## m: number of population

## n: sample size

## as,bs: prior parameters of s

## ac,bc: prior parameters of c

## a0,b0: prior parameters of beta0

## s : the random number generator seed

library(R2WinBUGS)

ss<-function(m,n,as,bs,ac,bc,a0,b0,s)

{

# sets the seed so simulation is repeatable

set.seed(s)

mean.b1 <- rep(NA, m)

sd.b1 <- rep(NA, m)

power<-rep(NA,m)

for(i in 1:m)

{

x<-rbinom(n,1, .5) ## simulate the predictor

B0<-rnorm(1,a0,b0)

B1<-0.3
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pi<-exp(B0+B1*x)/(1+exp(B0+B1*x))

s<-rbeta(1,as,bs)

c<-rbeta(1,ac,bc)

p<-pi*s+(1-pi)*(1-c)

y<-rbinom(n,1,p) ## simulate the binomial response

data<-list("n","x","y") ## save data

parameters<-list("beta1","p.value")

# This vector is for initial values.

inits<-list(beta0=-0.8,beta1=0.5,se=0.5,sp=0.5)

inits<-list(inits)

# this line calls WinBUGS, note that n.iter is TOTAL iterations.

ss.sim<-bugs(data,inits,parameters,"model1.txt", n.chains=1,

n.burnin=1000,n.iter=5000, bugs.directory = "D:/Software/WinBUGS14/", debug=F)

mean.b1[i]<-ss.sim$summary[1, 1]

sd.b1[i] <- ss.sim$summary[1, 2]

power[i]<-ss.sim$summary[2, 1]

}

ave_mean <- mean(mean.b1) ## calcualate average mean

ave_sd <- mean(sd.b1) ## calcualate average sd

ave_p <- mean(power) ## calcualate average Bayesian power

return(c(ave_mean, ave_sd,ave_p))

}

ss(1,800,80,20,92,8,-1,0.2,26)

###########################

## model1.txt ##

###########################

model

{

for(i in 1:n)

{

y[i]~dbern(p[i])

p[i]<-pi[i]*se+(1-pi[i])*(1-sp)

logit(pi[i])<-beta0+beta1*x[i]
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}

beta0~dnorm(0,0.1)

beta1~dnorm(0,0.1)

p.value<-step(beta1)

se~dbeta(80,20)

sp~dbeta(92,8)

}

###########################################################

norm.approx<-function(m,n,as,bs,ac,bc,a0,b0,s)

{

set.seed(s)

mean.b1 <- rep(NA,m)

sd.b1 <- rep(NA,m)

power <- rep(NA,m)

for(i in 1:m)

{

x<-rbinom(n,1, .5) ## simulate the predictor

B0<-rnorm(1,a0,b0)

B1<-0.3

Pi<-exp(B0+B1*x)/(1+exp(B0+B1*x))

S<-rbeta(1,as,bs)

C<-rbeta(1,ac,bc)

p<-Pi*S+(1-Pi)*(1-C)

y<-rbinom(n,1,p) ## simulate the binomial response

loglike <- function(beta) {

beta0 <- beta[1]

beta1 <- beta[2]

s <- beta[3]

c <- beta[4]

ppi<-exp(beta0+beta1*x)/(1+exp(beta0+beta1*x))

l <- rep(NA,3)

l[1] <-prod((ppi*s + (1-ppi)*(1-c))^y)

l[2] <-prod((ppi*(1 - s) + (1-ppi)*c)^(1-y))
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l[3] <-s^as*(1 - s)^bs*c^ac*(1 - c)^bc

llk <- sum(log(l))

if (is.na(llk))

llk <- -1e+6

if (llk == -Inf)

llk <- -1e+6

return(-llk) }

result<-optim(c(-0.8,0.5,0.5,0.5),loglike,method="L-BFGS-B",

lower = c(-2,-100,0,0),upper = c(0,100,1,1),hessian=T)

beta1.hat<-result$par[2]

as.var.inv<-result$hessian

as.var<-solve(as.var.inv)

power[i] <-pnorm(beta1.hat/as.var[2, 2]^.5)

}

ave_mean<-mean(mean.b1) ## calcualate average mean

ave_sd<-mean(sd.b1) ##

ave_power <- mean(power)

return(c(ave_mean,ave_sd,ave_power))

}

norm.approx(1,800,80,20,92,8,-1,0.2,26)

B.4 Continuous Outcome Example

######Normal Approximation########

norm.approx.ber<-function(m,n, n1, a1,b1, a2, b2, a3, b3, a4,

b4, a5, b5, a6, b6, a7, b7,s)

{

# sets the seed so simulation is repeatable

set.seed(s)

# Set up vectors to store results from the simulation runs

mean.b1<-rep(NA, m)

sd.b1<-rep(NA, m)

power<-rep(NA,m)

# compute sample size for subjects with unmeasured confounder
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n.main<-n-n1

for(i in 1:m)

{

B0<-runif(1,a1,b1)

B1<-runif(1,a2,b2)

G0<-runif(1,a4,b4)

G1<-runif(1,a5,b5)

L<-runif(1,a6,b6)

sigma.y<-runif(1, a7, b7)

x <- rbinom(n.main,1,0.6)

u <- rbinom(n.main, 1, 1/(1 + exp(-(cbind(1,x) %*% c(G0, G1)))))

y <- rnorm(n.main, cbind(1,x,u,z) %*% c(B0, B1, L, B2), sigma.y)

x1 <- rbinom(n1,1,0.6)

u1 <- rbinom(n1, 1, 1/(1 + exp(-(cbind(1,x1) %*% c(G0, G1)))))

y1 <- rnorm(n1, cbind(1,x1,u1,z1) %*% c(B0, B1, L, B2), sigma.y)

##########################################

v.data<-cbind(x1,y1,u1)

data<-cbind(x,y)

loglike <- function (beta) {

beta0 <- beta[1]

beta1 <- beta[2]

lambda <- beta[3]

gamma0<-beta[4]

gamma1<-beta[5]

sigma<-beta[6]

mu1<-beta0+beta1*x+lambda

mu0<-beta0+beta1*x

logN <-sum(log(dnorm(y, mu1, sigma)*1/(1+exp(-gamma0-gamma1*x))+

dnorm(y, mu0, sigma)*1/(1+exp(gamma0+gamma1*x))))

mu11<-beta0+beta1*x1+lambda*u1

logN1 <- sum(log(dnorm(y1, mu11, sigma))+

u1*log(1/(1+exp(-gamma0-gamma1*x1)))+

(1-u1)*log(1-1/(1+exp(-gamma0-gamma1*x1))))
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return(-logN-logN1)

}

result<-optim(c(100, 30, -50, -.2, 1, 100),loglike,

method="BFGS",hessian=T)

beta1.hat<-result$par[2]

as.var.inv<-result$hessian

as.var<-solve(as.var.inv)

mean.b1[i]<-beta1.hat

sd.b1[i]<-as.var[2, 2]^.5

post.prob<-pnorm(beta1.hat/as.var[2, 2]^.5)

power[i]<- post.prob

}

ave_mean<-mean(mean.b1) ## calcualate average mean

ave_sd<-mean(sd.b1) ## calcualate average standard error

ave_p<-mean(power) ## calcualate average Bayesian power

return(c(ave_mean,ave_sd,ave_p))

}

norm.approx.cts(1, 500, 300, 100, 150, 30, 30, 20, 30, -.3,

-.2, 1.1, 1.3, -30, -20, 150, 175, 265)

##########MCMC Method####################

library(R2WinBUGS)

ss.counfound.1<-function(m,n, n1, a1,b1, a2, b2, a3, b3, a4,

b4, a5, b5, a6, b6, a7, b7, s)

{

set.seed(s)

mean.b1<-rep(NA, m)

sd.b1<-rep(NA, m)

n.main<-n-n1

for(i in 1:m)

{

B0<-runif(1,a1,b1)

B1<-runif(1,a2,b2)

G0<-runif(1,a4,b4)

G1<-runif(1,a5,b5)

L<-runif(1,a6,b6)

sigma.y<-runif(1, a7, b7)
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x <- rbinom(n.main,1,0.6)

u <- rbinom(n.main, 1, 1/(1 + exp(-(cbind(1,x) %*% c(G0, G1)))))

y <- rnorm(n.main, cbind(1,x,u) %*% c(B0, B1, L), sigma.y)

x1 <- rbinom(n1,1,0.6)

u1 <- rbinom(n1, 1, 1/(1 + exp(-(cbind(1,x1) %*% c(G0, G1)))))

y1 <- rnorm(n1, cbind(1,x1,u1) %*% c(B0, B1, L), sigma.y)

parameters<-list("beta0", "beta1","gamma0","gamma1","lambda",

"sig","p.value")

data<-list("n.main", "n1", "x", "y", "x1", "y1", "u1")

inits<-list(beta0=B0, beta1=B1, lambda = L, gamma0=G0,

gamma1=G1,sig=sigma.y,u=rep(1,n.main),u1=rep(1,n1))

inits<-list(inits)

ss.sim<-bugs(data,inits=inits,parameters,"contin.txt",

bugs.directory="C:/Users/jiang_yuan/Desktop/winbugs14/WinBUGS14/",

n.chains=1,n.burnin=5000,n.iter=10000, n.thin=2,debug=F)

mean.b1[i]<-ss.sim$summary[2, 1]

sd.b1[i]<-ss.sim$summary[2, 2]

post.prob<-ss.sim$summary[7, 1]

power[i]<-post.prob

}

ave_p<-mean(power) ## calcualate average Bayesian power

ave_mean<-mean(mean.b1) ## calcualate average mean

ave_sd <- mean(sd.b1)

return(c(ave_p, ave_mean,ave_sd))

}

ss.counfound.1(1, 500, 300, 100, 150, 30, 30, 20, 30, -.3, -.2,

1.1, 1.3, -30, -20, 150, 175, 265)

###########################

## contin.txt ##

###########################

Model

{

for(i in 1 : n.main) {

y[i] ~ dnorm(mu[i], tau)

u[i] ~ dbern(q[i])

mu[i] <- beta0 + beta1 * x[i] + lambda * u[i]

logit(q[i]) <- gamma0+gamma1 * x[i]
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}

for(j in 1 : n1) {

y1[j] ~ dnorm(mu1[j], tau)

u1[j] ~ dbern(q1[j])

mu1[j] <- beta0 + beta1 * x1[j]+ lambda *u1[j]

logit(q1[j]) <- gamma0+gamma1 * x1[j]

}

beta0 ~ dnorm(0.0,.0000001)

beta1 ~ dnorm(0.0,.0000001)

gamma0~dnorm(0.0, .1)

gamma1~dnorm(0.0, .1)

lambda~dnorm(0.0, .0000001)

tau<-1/(sig*sig)

sig~dunif(0.01, 500)

p.value<-step(beta1)

}
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APPENDIX C

Chapter Three Code

This appendix contains the R program and WinBUGS model used for the
simulation presented in Chapter Three.

C.1 Normal Approximation of Gamma Response

norm.approx.gam<-function(m,n, n1, a1,b1, a2, b2, a3, b3, a4, b4,

a5, b5, a6, b6, s)

{

# sets the seed so simulation is repeatable

set.seed(s)

# Set up vectors to store results from the simulation runs

mean.b1<-rep(NA, m)

sd.b1<-rep(NA, m)

power <-rep(NA, m)

# compute sample size for subjects with unmeasured confounder

n.main<-n-n1

for(i in 1:m)

{

B0<-runif(1,a1,b1)

B1<-runif(1,a2,b2)

Alpha<-runif(1,a3,b3)

G0<-runif(1,a4,b4)

G1<-runif(1,a5,b5)

L<-runif(1,a6,b6)

# Generating the data for the main study portion.

# Top is "reduced model" and bottom is "expanded model"

# Select the model of interest and comment the other one out.

# x is the treatment variable

# u is the unobserved confounder, function of only x

# y is the outcome variable
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# only x, and y are used in the data analysis

x <- rbinom(n.main,1,0.6)

u <- rbinom(n.main, 1, 1/(1 + exp(-(cbind(1,x) %*%

c(G0, G1)))))

y <- rgamma(n.main, Alpha, Alpha * exp(-(cbind(1,x,u)

%*% c(B0, B1, L))))

# Generating the data for the validation data portion

x1 <- rbinom(n1,1,0.6)

u1 <- rbinom(n1, 1, 1/(1 + exp(-(cbind(1,x1) %*%

c(G0, G1)))))

y1 <- rgamma(n1, Alpha, Alpha * exp(-(cbind(1,x1,u1)

%*% c(B0, B1, L))))

##########################################

v.data<-cbind(x1,y1,u1)

data<-cbind(x,y)

loglike <- function (beta) {

beta0 <- beta[1]

beta1 <- beta[2]

alpha <- beta[3]

lambda <- beta[4]

gamma0<-beta[5]

gamma1<-beta[6]

mu1<-exp(beta0+beta1*x+lambda)

mu0<-exp(beta0+beta1*x)

logN <-sum(log(dgamma(y, alpha, alpha/mu1)*1/(1+exp(-gamma0-

gamma1*x))+dgamma(y, alpha, alpha/mu0)*1/(1+exp(gamma0+gamma1*x))))

mu11<-exp(beta0+beta1*x1+lambda*u1)

logN1 <- sum(log(dgamma(y1, alpha,alpha/mu11))+

u1*log(1/(1+exp(-gamma0-gamma1*x1)))+(1-u1)*log(1-1/(1+

exp(-gamma0-gamma1*x1))))

return(-logN-logN1)

}
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result<-optim(c(-0.5,0.5,4,-.5, 1, -0.6),loglike,

method="BFGS",hessian=T)

beta1.hat<-result$par[2]

as.var.inv<-result$hessian

as.var<-solve(as.var.inv)

post.prob<-pnorm(beta1.hat/as.var[2, 2]^.5)

##############################################################

mean.b1[i]<-beta1.hat

sd.b1[i]<-as.var[2, 2]^.5

power[i]<-ifelse(post.prob>.95, 1, 0)

}

ave_mean<-mean(mean.b1) ## calcualate average mean

ave_sd<-mean(sd.b1) ##

ave_power <- mean(power)

return(c(ave_mean,ave_sd,ave_power))

}

C.2 Bayesian MCMC Model of Gamma Response

model

{

# validation study data

for (i in 1:n1) {

y1[i] ~ dgamma(alpha,tau1[i])

tau1[i] <- alpha/mu1[i]

u1[i] ~ dbern(q1[i])

log(mu1[i]) <- beta0 + beta1 * x1[i] + lambda * u1[i]

logit(q1[i]) <- gamma0 + gamma1 * x1[i]

}

# Main study data

for (j in 1:n.main) {

y[j] ~ dgamma(alpha,tau[j])

tau[j] <- alpha/mu[j]
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u[j] ~ dbern(q[j])

log(mu[j]) <- beta0 + beta1 * x[j] + lambda * u[j]

logit(q[j]) <- gamma0 + gamma1 * x[j]

}

beta0 ~ dnorm(0.0,0.01)

beta1 ~ dnorm(0.0,0.01)

p.value<-step(beta1)

gamma0~dnorm(0.0, .1)

gamma1~dnorm(0.0, .1)

lambda~dnorm(0.0, .1)

alpha ~ dunif(.001, 50)

}
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APPENDIX D

Chapter Four Code

D.1 Normal Approximation of the Cost-effectiveness

library(stats4)

norm.approx<-function(m,n,s)

{

# sets the seed so simulation is repeatable

set.seed(s)

# Set up vectors to store results from the simulation runs

mean.ym1<-rep(NA, m)

sd.ym1<-rep(NA, m)

mean.ym2<-rep(NA, m)

sd.ym2<-rep(NA, m)

mean.b1<-rep(NA, m)

sd.b1<-rep(NA, m)

mean.alpha1<-rep(NA, m)

sd.alpha1<-rep(NA, m)

mean.alpha2<-rep(NA, m)

sd.alpha2<-rep(NA, m)

mean.mux1<-rep(NA, m)

sd.mux1<-rep(NA, m)

mean.mux2<-rep(NA, m)

sd.mux2<-rep(NA, m)

mean.sig1<-rep(NA, m)

sd.sig1<-rep(NA, m)

mean.sig2<-rep(NA, m)

sd.sig2<-rep(NA, m)

mean.inb<-rep(NA, m)

sd.inb<-rep(NA, m)

covy1x1<-rep(NA, m)

covy1x2<-rep(NA, m)

covy2x1<-rep(NA, m)

covy2x2<-rep(NA, m)

p.inb <- rep(NA, m)

for(i in 1:m)
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{

YM1 <- 4

YM2 <- 2

B1<- 1.5

Alpha1 <- 2

Alpha2 <- 4

#Alpha<-runif(1,a2,b2)

#Mux <- runif(1,a3,b3)

Mux1 <- 8

Mux2 <- 4

Sigma.y1<-5

Sigma.y2<-5

INB <- function(lambda, E, C){

lambda * E - C

}

lambda = 3

x1 <- rgamma(n, Alpha1, Alpha1 / Mux1)

y1 <- rnorm(n,cbind(1,x1-Mux1) %*% c(YM1, B1), Sigma.y1)

x2 <- rgamma(n, Alpha2, Alpha2 / Mux2)

y2 <- rnorm(n,cbind(1,x2-Mux2) %*% c(YM2, B1), Sigma.y2)

Tinb <- INB(3, YM1 - YM2, Mux1 - Mux2)

##########################################

loglike <- function (ym1,ym2,beta1,alpha1,alpha2,mux1,

mux2,sig1,sig2) {

logN1 <- sum(log(dgamma(x1,alpha1,alpha1/mux1))+log(dnorm(

y1,ym1+beta1*(x1-mux1),sig1)))

logN2 <- sum(log(dgamma(x2,alpha2,alpha2/mux2))+log(dnorm(

y2,ym2+beta1*(x2-mux2),sig2)))

return(-logN1-logN2)

}

est<-mle(minuslogl=loglike,method = "L-BFGS-B", lower =

rep(0.000001, 9),list(ym1 = 4,ym2=1,beta1 = 1,alpha1= 1,

alpha2 = 1, mux1= 1,sig1 = 1, mux2= 1,sig2 = 1))

mean.ym1[i]<-est@coef[1]
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sd.ym1[i] <- est@vcov[1,1]^.5

mean.ym2[i]<-est@coef[2]

sd.ym2[i] <- est@vcov[2, 2]^.5

mean.b1[i]<-est@coef[3]

sd.b1[i] <- est@vcov[3,3]^.5

mean.alpha1[i]<-est@coef[4]

sd.alpha1[i] <-est@vcov[4,4]^.5

mean.alpha2[i]<-est@coef[5]

sd.alpha2[i] <-est@vcov[5,5]^.5

mean.mux1[i]<-est@coef[6]

sd.mux1[i] <-est@vcov[6,6]^.5

mean.mux2[i]<-est@coef[7]

sd.mux2[i] <-est@vcov[7,7]^.5

mean.sig1[i]<-est@coef[8]

sd.sig1[i] <-est@vcov[8,8]^.5

mean.sig2[i]<-est@coef[5]

sd.sig2[i] <-est@vcov[9,9]^.5

covy1x1[i] <-est@vcov[1,6]^.5

covy2x2[i] <-est@vcov[2,7]^.5

covy1x2[i] <-est@vcov[1,7]^.5

covy2x1[i] <-est@vcov[2,6]^.5

}

mean.inb <- lambda *(mean.ym1 - mean.ym2) - (mean.mux1 -

mean.mux2)

sd.inb <-sqrt(lambda^2*sd.ym1^2 + lambda^2*sd.ym2^2 +

sd.mux1^2 + sd.mux2^2 - 2*lambda*covy1x1 - 2*lambda*covy2x2

+ 2*lambda*covy1x2 + 2*lambda*covy2x1)

p.inb<-ifelse(pnorm(mean.inb/sd.inb)>.95, 1, 0)

means <- rbind(mean.ym1,mean.ym2,mean.b1,mean.alpha1,mean.alpha2,

mean.mux1,mean.mux2,mean.sig1,mean.sig2,mean.inb)

sds <- rbind(sd.ym1,sd.ym2,sd.b1,sd.alpha1,sd.mux1,sd.sig1,

sd.alpha2,sd.mux2,sd.sig2,sd.inb)
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ave_mean<-rowMeans(means) ## calcualate average mean

ave_sd <-rowMeans(sds)

ave_p_inb <- mean(p.inb)

return(cbind(ave_mean,ave_sd,rep(Tinb,10),rep(ave_p_inb,10)))

}

D.2 Bayesian MCMC Model of the Cost-effectiveness

Model

{

for(i in 1 : n) {

x1[i] ~ dgamma(alpha1,taux1)

y1[i] ~ dnorm(mu1[i], tau1)

mu1[i] <- ym1 + beta1 * (x1[i] - mux1)

x2[i] ~ dgamma(alpha2,taux2)

y2[i] ~ dnorm(mu2[i], tau2)

mu2[i] <- ym2 + beta1 * (x2[i] - mux2)

}

ym1 ~ dnorm(0, .00001)

ym2 ~ dnorm(0, .00001)

beta1 ~ dnorm(0, .00001)

taux1 <- alpha1/mux1

taux2 <- alpha2/mux2

alpha1 ~ dunif(0.01, 500)

mux1 ~ dunif(0.01, 500)

alpha2 ~ dunif(0.01, 500)
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mux2 ~ dunif(0.01, 500)

tau1<-1/(sig1*sig1)

sig1~dunif(0.01, 500)

tau2<-1/(sig2*sig2)

sig2~dunif(0.01, 500)

inb <- lambda * (ym1 - ym2) - (mux1 - mux2)

p.value<-step(inb)

}
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