
ABSTRACT

Brane Cosmology in String/M-Theory and Cosmological Parameters Estimation

Qiang Wu, Ph.D.

Chairperson: Anzhong Wang, Ph.D.

In this dissertation, I mainly focus on two subjects: (I) highly effective and

efficient parameter estimation algorithms and their applications to cosmology; and

(II) the late cosmic acceleration of the universe in string/M theory. In Part I,

after developing two highly successful numerical codes, I apply them to study the

holographical dark energy model and ΛCMD model with curvature. By fitting these

models with the most recent observations, I find various tight constraints on the

parameters involved in the models. In part II, I develop the general formulas to

describe orbifold branes in both string and M theories, and then systematical study

the two most important issues: (1) the radion stability and radion mass; and (2)

the localization of gravity, the effective 4D Newtonian potential. I find that the

radion is stable and its mass is in the order of GeV, which is well above the current

observational constraints. The gravity is localized on the TeV brane, and the spectra

of the gravitational Kluza-Klein towers are discrete and have a mass gap of TeV.

The contributions of high order Yukawa corrections to the Newtonian potential are

negligible. Using the large extra dimensions, I also show that the cosmological

constant can be lowered to its current observational value. Applying the formulas to

cosmology, I study several models in the two theories, and find that a late transient

acceleration of the universe is a generic feature of our setups.



Brane Cosmology in String/M-Theory and Cosmological Parameters Estimation

by

Qiang Wu, M.Phys.

A Dissertation

Approved by the Department of Physics

Gregory A. Benesh, Ph.D., Chairperson

Submitted to the Graduate Faculty of
Baylor University in Partial Fulfillment of the

Requirements for the Degree
of

Doctor of Philosophy

Approved by the Dissertation Committee

Anzhong Wang, Ph.D., Chairperson

Gerald B. Cleaver, Ph.D.

Truell W. Hyde, Ph.D.

Dwight P. Russell, Ph.D.

Qin Sheng, Ph.D.

Accepted by the Graduate School
August 2009

J. Larry Lyon, Ph.D., Dean

Page bearing signatures is kept on file in the Graduate School.



Copyright c© 2009 by Qiang Wu

All rights reserved



TABLE OF CONTENTS

LIST OF FIGURES vi

LIST OF TABLES xi

ACKNOWLEDGMENTS xii

DEDICATION xiii

1 Introduction to Standard Cosmological Model 1

1.1 Three Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Cosmological Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Weyl’s Postulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Theory of Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Three Pillars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Expanding Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Big Bang Nucleosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.4 Cosmic Microwave Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Dark Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Cosmological Constant Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Parameterizations of Cosmological Models . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Cosmological Parameters Estimation 14

2.1 Function Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Maximum Likelihood and Least Squares . . . . . . . . . . . . . . . . . . . . 15

iii



2.1.2 Optimization Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Monte-Carlo Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Bayesian Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Cosmological Parameter Estimation on Holographic Dark Energy
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Interacting HDE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Observational Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Monte Carlo Markov Chain Approach in Dark Energy Model . . . . . . . . 35

2.4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Analytical Marginalization on H0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
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2.6 Evolution of Ḣ/H2 with the scale factor a. Note that, as ωD is
becoming more and more negative and crosses the phantom divide line
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CHAPTER ONE

Introduction to Standard Cosmological Model

In this chapter, I will introduce the basic concepts of standard cosmological

model that will be used later. I will discuss three assumptions and three pillars in

building the standard cosmological model and give a brief review about dark energy

in cosmology. In this chapter, my discussions are essentially based on several books

[1, 2, 3]

1.1 Three Principles

The modern Cosmology is based on three assumptions, namely Cosmological

principle, Weyl’s postulate and Einstein’s general relativity.

1.1.1 Cosmological Principle

Cosmological principle is, in essence, a generalization of the Copernican princi-

ple that the Earth does not occupy a privileged location in the Universe [1]. We state

the principle as: on large spatial scales, the Universe is homogeneous and isotropic.

This kind of space-time can be described by the well-known Friedmann-Lemâıtre-

Robertson-Walker (FRW) metric, defined by

ds2 = dt2 − a2(t)

(
dr2

1−Kr2
+ r2(dθ2 + sin2 θdϕ2)

)
(1.1)

where we have used spherical coordinates: r, θ and ϕ are the comoving coordinates;

t is the proper time; a(t) is a function of time, known as the ”scale factor”, and the

constant K is the intrinsic curvature of the three-dimensional space. It parameterize

the global geometry of the universe, which thus can be closed (k > 0), flat (k = 0)

or open (k < 0).
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1.1.2 Weyl’s Postulate

A second assumption of the standard cosmological model is Weyl’s postulate:

the particles of the substratum lie in space-time on a congruence of timelike geodesics

diverging from a point in finite or infinite past[1]. The postulate means that the

substratum can be represented by a perfect fluid with energy-momentum tensor

T ν
µ = (ρ + p)uµu

ν − pδν
µ (1.2)

where, the energy density ρ and pressure p depend only on time, and related by the

equation of state,

p = p(ρ). (1.3)

In addition, the fluid is assumed to be at rest in the comoving frame in which

the spacelike coordinates of each particle are constant along its geodesic. Thus in

the synchronous gauge, uµ = (1, 0, 0, 0, 0) and T ν
µ becomes diagonal,

T 0
0 = ρ(t), T j

i = −p(t)δj
i . (1.4)

1.1.3 Theory of Gravity

In the classical theory of general relativity, the gravitational interaction can

be described by the four-dimensional action

S = − 1

16πG

∫
d4x

√−gR +
∫

d4x
√−gLm. (1.5)

Here, R is the Ricci scalar, the contraction of the Ricci tensor; G is Newton’s con-

stant; and Lm is the Lagrangian density of the matter fields, acting as gravitational

sources. The variation of the action Eq.(1.5) with respect to the metric gµν yields,

Gµν ≡ Rµν − 1

2
gµνR = 8πGTµν (1.6)

where Gµν is the Einstein tensor, and Tµν is the energy-momentum tensor of all the

sources, gravitationally coupled to the metric.
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For the FRW metric (1.1), the non-zero independent components of the Ein-

stein tensor are given by

G00 =
3(ȧ2 + K)

a2
(1.7)

G11 = −2aä + ȧ2 + K

1−Kr2
. (1.8)

Thus, the Einstein’s field equation lead to two independent equations

H2 +
K

a2
=

8πG

3
ρ (1.9)

ä

a
= −4πG

3
(ρ + 3p) (1.10)

Equation (1.9) is Friedmann’s equation and the solution is called Friedmann models

(or FRW models). Where H = ȧ/a (the dot denotes the derivative with respect to

the cosmic time) is the Hubble parameter, or Hubble factor.

Combining these two equations to eliminate ä, we get

ρ̇ + 3H(ρ + p) = 0. (1.11)

This equation can also be directly obtained from conservation equations

T µν
;ν = 0, (1.12)

which is the result that the field equations (1.6) satisfy the contracted Bianchi iden-

tities

(Gµν − Λgµν);ν = 0. (1.13)

Now we have three unknown functions a(t), ρ(t), p(t), but only two inde-

pendent equations. In order to solve this system, it is necessary to use the third

equation, the equation of state (EOS) (Eq. (1.3)). In general, the energy density ρ

counts all species: matter, radiation and other source, such as dark energy which we

will discuss later. Since for each component, there is a different equation of state,

3



the time evolution is different. For example, for matter and radiation the pressure

pm and pγ are given by,

pm = 0 (1.14)

pγ = ργ/3 (1.15)

where the pressureless matter component ρm represents the large-scale contribution

of the macroscopic gravitational sources (galaxies, cluster, interstellar gas, ...), while

the radiation component ργ represents the contribution of all massless relativistic

particles (photons, gravitons, neutrinos,...). Without energy transfer between the

different fluid components, the Eq. (1.11) gives,

ρm ∼ a−3 (1.16)

ργ ∼ a−4 (1.17)

More generally, if we specialize the equation of state (1.3) by

p = wρ, (1.18)

integrating equation (1.11), we get

ρ = ρ(a0)(
a0

a
)3 exp

(
−3

∫ da′

a′
w(a′)

)
(1.19)

which determines the evolution of the energy density of each species in terms of the

functions w(a). We summarized the equation of state of universe components in

table 1.1.

1.2 Three Pillars

When Albert Einstein proposed his theory of gravitation , Cosmological Con-

siderations of the General Theory of Relativity in 1917, he still believed that the

universe was static and unchanging. In 1929, Edwin Hubble demonstrated that all

galaxies and distant astronomical objects were moving away from us, and he also

noticed the trend that the velocity increases with distance [9].
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Table 1.1: Equation of state and universe species.

components w i ρi

matter 0 ρm ∼a−3

radiation 1/3 ργ ∼a−4

curvature -1/3 ρk ∼a−2

cosmological constant -1/3 ρc ∼constant

Figure 1.1: The original Hubble diagram [9]. Radial velocities are plotted against
distances

Hubble’s observation tells us that the universe has been expanding from a pri-

mordial hot and dense initial condition at some finite time in the past, and continues

to expand to this day. There is a familiar name for this picture: Big Bang and the

theory has been supported by the three observational pillars:

• Hubble diagram, which shows the expansion of the universe;

• Light element abundances, which are in accord with Big Bang nucleosyn-

thesis (BBN);

• The cosmic microwave background (CMB).

1.2.1 Expanding Universe

As shown in Figure 1.1, the Hubble diagram is still the most direct evidence

we have that the universe is expanding. The parameters that appear in Hubbles

law: velocities and distances, are not directly measured. In reality we try to find
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Figure 1.2: MLCS SNe Ia Hubble diagram [5]. The upper panel shows the Hub-
ble diagram for the low-redshift and high-redshift SNe Ia samples with distances
measured from the MLCS method. Bottom panel plots the residuals.

a standard candle, a class of objects which have the same intrinsic brightness. Any

difference between the apparent brightness of two such objects then is a result of

their different distances from us. Further more, the recent observations of Type Ia

supernova give an ever stronger evidence that the universe is currently accelerating

(Fig.1.2). In Fig.1.2, the light curve distances of the SNe Ia was inferred from redshift

which can be defined by the observed and emitted wavelength of the light:

z + 1 =
λobs

λemit

=
1

a
(1.20)

where, a is the scale factor in FRW metric Eq. (1.1).

1.2.2 Distances

In cosmology, there are several distances that are usually used in the literature.

In this section, I shall first provide the definitions for each of them, and then give a

brief comment.

The comoving distance of the light is the distance light could have traveled

since t = 0. In a time dt, light travels a comving distance dx = dt/a (set c=1), so
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the total comoving distance light could have traveled is

η ≡
∫ t

0

dt′

a(t′)
. (1.21)

Since the η is the distance traveled from the beginning of time by light, we can

consider η as the comoving horizon and sometimes it is called conformal time as a

time variable in cosmology.

Another important covmoving distance between a distant emitter and us can

be expressed by

χ(a) =
∫ t0

t(a)

dt′

a(t′)
=

∫ 1

a

da′

a′2H(a′)
=

∫ z

0

dz′

H(z′)
. (1.22)

Here we change the integration over time to one over the scale factor a or redshift

(z = 1/a − 1). The comoving distance χ is useful in determining the distances in

astronomy measurement.

Another way of inferring distances in astronomy is to measure the flux from

an object of known luminosity. In static Euclidean space a object of luminosity L

at distance d appears at apparent brightness, or observed energy flux

F =
L

4πd2
, (1.23)

Generalize to an expanding universe, the flux we observe is

F =
La2

4πχ2(a)
. (1.24)

To keep the Eq. (1.23) in an expanding universe , we define the luminosity distance

as

dL ≡ χ

a
. (1.25)

It is a standard convention in astronomy to express L and F in logarithmic

measures of absolute and apparent magnitudes. The apparent magnitude m of an

object with received energy flux F is defined to be

m = −2.5 log10 F + constant. (1.26)
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The absolute magnitude, M , of an object is related to its intrinsic luminosity, L, by

the relation,

M = −2.5 log10 L + constant. (1.27)

Thus we find that the difference between the two magnitudes of an object at distance

dL is

µ(z) = m−M = 5 log10(
dL

Mpc
) + 25. (1.28)

The distance is measured in units of megaparsecs (1 megaparses = 1Mpc = 3.0856×
1024cm), so that at dL = 10pc this equation says m−M = 0, which is the definition

of the absolute magnitude M . The magnitude difference m−M is called the distance

modulus.

1.2.3 Big Bang Nucleosynthesis

Big Bang nucleosynthesis (BBN) is the production of the light elements, 2H

(deuterium), 3He (helium-3), 4He (helium-4) and 7Li (Lithium) during the first few

minutes of the universe which we have a detailed understanding of physical processes.

The BBN occurs at temperatures about 1 MeV since the nucleic binding energies

are typically in the MeV range. The standard theory predicts the abundances of

several light nuclei (H,D,3He 4He and 7Li) as a function of a single cosmological

parameter, the baryon to photon ratio, η = nb/nγ [6]. The combined proton plus

neutron density is called the baryon density, since both protons and neutrons have

baryon number one and these are the only baryons around that. Thus, BBN gives us

a way of measuring the baryon density in the universe [2]. With the evolution of the

baryon density ∼ a−3, we can turn the measurements of light element abundances

into measures of the baryon density today. The 5-years WMAP observations [12]

gives that the parameterized baryon density is Ωb = 0.0462± 0.0015.
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1.2.4 Cosmic Microwave Background

The cosmic microwave background (CMB) is the electromagnetic radiation at

wavelengths in the range of millimeters to centimeters. The CMB is isotropy and

the spectrum is very close to a thermal Planck form at a temperature near 3K.

The CMB was discovered by Penzias and Wilson [14] in 1965. Its spectrum is well

characterized by a 2.73K black body spectrum over more than three decades in

frequency. Although many different processes might produce the general form of

a black body spectrum, no model other than the Big Bang has yet explained the

fluctuations. As a result, most cosmologists consider the Big Bang model of the

universe to be the best explanation for the CMB.

The most important conclusion we obtained from the CMB over last 25 years

surveying was that the early universe was very smooth. Penzias and Wilson reported

that the CMB was isotropic and unpolarized at the 10% level. Current observations

show that the CMB has an dipole anisotropy at 10 − 3 level, indicating that the

early universe was not completely smooth. The temperature anisotropies were de-

tected. It is customary to express CMB anisotropies using two-point function of the

temperature distribution on the sky in a spherical harmonic expansion,

∆T

T
(θ, φ) =

∑

lm

almYlm(θ, φ). (1.29)

Figure. 1.3 show a measurement of temperature (TT) power spectrum from

WMAP5. There is a theoretical curve fitting from ΛCDM model in this figure which

appears to agree well with the data. Indeed, understanding the development of the

large-scale structure in the universe has become a major goal of most cosmologists

today.

1.3 Dark Energy

One of the major challenges in cosmology today is to explain the observational

result that our universe has currently been expanding with an increasing expansion
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Figure 1.3: The WMAP 5-year temperature (TT) power spectrum. The red curve is
the best-fit theory spectrum from the CDM/WMAP chain based on WMAP alone
(Dunkley et al. 2008) [8]. The uncertainties include both cosmic variance and
instrumental noise.

velocity (acceleration). Einstein tried to find a static solution of the field equation,

so he was forced to modify the field equations by introducing an extra term, the

cosmological term Λgµν , where Λ is a constant called the cosmological constant, so

that the equations become

Gµν − Λgµν = 8πGTµν (1.30)

This is Einstein’s field equation with cosmological constant.

Under the standard cosmology, there is significant observational evidence of

the detection of Einstein’s cosmological constant, Λ, or a dynamic component of

the material, called Dark Energy which tends to increase the rate of expansion of

the universe [4]. In 1998, observations of Type Ia supernovae by the High-Redshift

Supernova Search Team followed in 1999 by the Supernova Cosmology Project [7]

suggested that the expansion of the universe is accelerating. Since then, several inde-

pendent sources confirmed this conclusion. Measurements of the cosmic microwave

background (CMB), gravitational lensing, and the large scale structure of the cos-

mos as well as improved measurements of supernovae have been all consistent with

the dark energy model [8].
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The simplest way to explain the accelerating expansion is to use the cosmo-

logical constant, which is often referred to as the ΛCDM model with dark energy

density ρΛ = Λ/8πG, and negative pressure pΛ, given by

pΛ = −ρΛ (1.31)

The cosmological constant is not only theory describing dark energy which

drives an accelerated phase in present universe. There are many dynamical models

of dark energy. For example, we can introduce some new components with negative

pressure, thus the equation of state (1.3) is,

pDE = wρDE, w < −1

3
(1.32)

where w is a negative constant. Then the deceleration parameter derived from Eq.

(1.10) can be written as,

q = − ä

aH2
=

4πG

3H2
[ρm + ρDE(1 + 3w)]. (1.33)

We can choose the value of w to have a negative deceleration parameter, or an

accelerating expansion. I will give a detail discussion about this kind of model in

chapter 2.

1.4 Cosmological Constant Problem

In fact, the cosmological constant is well consistent with all observations car-

ried out so far [90]. However, a serious problem occurs when we consider the source

of this term, the so-called cosmological constant problem.

From the point of view of particle physics, vacuum has contributions to the

cosmological constant [13]. Within the framework of Newtonian gravity, the vacuum

energy does not cause serious problem since the gravitational interactions do not

depend on the absolute value of the potential energy. The situation changes in

general relativity, because the gravitational force couples to all forms of energy
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including vacuum. The connection is Einstein’s field equations. Further more, the

vacuum state had to have a Lorentz-invariant form which is satisfied by the equation

of state pvac = −ρvac, since the vacuum energy-momentum tensor

Tµν = −ρvacgµν (1.34)

is manifestly Lorentz-invariant [10].

The cosmological constant problem comes from the inconsistency of the vac-

uum energy value between cosmological observation and quantum field theory pre-

diction. In a simple view, the energy of vacuum state is given by E =
∑

k 1/2h̄ω(k),

or in integral form

ρvac ∼
∫ kmax

0

√
k2 + m2k2dk. (1.35)

We have several estimations of this value based on different particle physics

[11]. In the electroweak model, the value is

kEW ∼ 200GeV, ρEW
vac ∼ (200GeV )4 ∼ 3× 1047erg/cm3. (1.36)

In the QCD scale, we have

kQCD ∼ 0.3GeV, ρQCD
vac ∼ (0.3GeV )4 ∼ 1.6× 1036erg/cm3. (1.37)

In the Planck scale, we have

kPL ∼ 1018GeV, ρPL
vac ∼ (1018GeV )4 ∼ 2× 10110erg/cm3. (1.38)

However, the cosmological observations show

ρobs
Λ ≤ (10−12GeV )4 ∼ 2× 10−10erg/cm3, (1.39)

which is much smaller then any of the values listed above. The ratio of ρvac to ρΛ

is 47 even 120 orders of magnitude between the theoretical and observational values

of the cosmological constant.

The cosmological constant problem still remains unresolved. We will carry out

further discussion in following chapters about this problem.

12



Table 1.2: Parameters values from 5-years WMAP observations for ΛCDM model.

Parameters Symbol Values
Hubble constant H0 70.5± 1.3 km s−1 Mpc−1

Baryon density Ωb 0.0462± 0.0015
Cold dark matter density Ωc 0.233± 0.013
Matter density Ωm 0.279± 0.013
Dark energy ΩΛ 0.726± 0.0015
Radiation density Ωγ (5.0± 0.2)× 10−5

Neutrino density Ων < 0.013(95%CL)

1.5 Parameterizations of Cosmological Models

To solve the cosmological model numerically, we prefer to use the parameters

with dimensionless quantities, which can be defined by

E =
H

H0

, Ωm =
ρm

ρcr

, Ωk = − K

a2H2
0

, Ωγ =
ργ

ρcr

, ΩΛ =
ρΛ

ρcr

, (1.40)

where H0 is the present value of the Hubble parameter, named Hubble constant, and

ρcr = 3H2
0/8πG is called critical density. Ωm, Ωk, Ωγ, and ΩΛ are the parameterized

density of matter, curvature, radiation and dark energy. With these parameters, Eq.

(1.9) can be rewritten as

E2 = Ωm + Ωγ + Ωk + ΩΛ, (1.41)

This is Friedmann’s equation, and the newest cosmological observations give the

present values of each parameter in table 1.2 [12].
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CHAPTER TWO

Cosmological Parameters Estimation

The analysis of cosmological observational data to estimate the cosmological

parameters is a complicated, computationally difficult problem. The supernova,

CMB, and large scale structure of the universe provide tight constraints on these

cosmological parameters. In this chapter, I shall give an overview of parameters

estimation and discuss the applications of Markov Chain Monte Carlo sampling

techniques and function optimization methods.

In numerical analysis of the cosmological models we are interested in using

the given observational data to determine the values of the parameters involved in

the models. In statistics, this is a statistical inference problem. There are two main

approaches to statistical inference, which we call frequentist and Bayesian [15].

• In frequentist statistics, probability is interpreted as the frequency of the

outcome of a repeatable experiment, but one does not define a probability

for a hypothesis or for a parameter. We will discuss the parameter estimation

in this framework in section 2.1.

• In Bayesian statistics, the interpartation of the probability is more general

and includes degree of belief. One can speak of a probability density func-

tion for a parameter. Bayesian statistics allow one to use the subjective

information, such as the prior probability of the parameters in the model.

We will discuss the Monte-Carlo Markov Chain method based on Bayes’

theorem in section 2.2.
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2.1 Function Optimization

To check a theoretical model using various observations, the problem we are

facing is the optimization, searching a set parameters to minimize χ2 function or

maximize the Likelihood function. Here I introduce the point estimation method in

which an estimator of the parameters θ are denoted by θ̂, where θ = (θ1, ..., θn) is

the set of n parameters.

2.1.1 Maximum Likelihood and Least Squares

The maximum likelihood method finds the estimator θ̂ that maximizes the

likelihood function,

L(θ) =
N∏

i=1

f(xi; θ), (2.1)

where xi are a set of N independent measured quantities from a probability density

function (p.d.f) f(xi; θ). The likelihood function L(θ) is the joint p.d.f for the data,

evaluated with the data obtained in the experiment. Here L(θ) is the function of

parameters θ, but it is not a p.d.f for the parameters that is not defined in the

frequentist statistics framework.

The maximum likelihood method coincides with the least squares method when

a set of N independent quantities yi are measured at known points xi with a Gaussian

distribution,

L(θ) ∼ exp

[
−1

2

N∑

i=1

(yi − ȳ(xi; θ))
2

σ2
i

]
, (2.2)

where ȳ(xi, θ) are the predicted values of yi and σ2
i is the known variance. Then the

χ2 function can be defined by,

χ2(θ) = −2 ln L(θ) + constant =
N∑

i=1

(yi − ȳ(xi; θ))
2

σ2
i

(2.3)

The set of parameters θ which maximize L is the same as those which minimize

χ2. For the more general case, if yi are not Gaussian distributed as long as they

are dependent with a covariance matrix Vij = cov[yi, yj], then the least squares
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estimators are determined by the minimum of

χ2(θ) = (y − ȳ(θ))TV−1(y − ȳ(θ)), (2.4)

where y = (y1, ..., yN) is the vector of measurements, ȳ is the predicted values.

As the minimum value of the χ2 represents the level of agreement between the

measurements and the fitted function, it can be used to assess the goodness of the

fit. The errors of estimators or bias can be obtained from covariant matrix or its

inverse called Hessian matrix defined by

(V̂ −1)ij = −∂2 ln L

∂θi∂θj

∣∣∣
θ̂

=
1

2

∂2χ2

∂θi∂θj

∣∣∣
θ̂
, (2.5)

where, θ̂ is the best estimator. The diagonal elements of the error (covariant) matrix

are the squares of the individual parameter errors, including the effects of correlations

with the other parameters. For joint parameter estimate, the error estimate is,

σ2
i =

√
∆χ2Vii. (2.6)

For a function y(θ), the error is

σ2
y =

∑

ij

∂y

∂θi

∂y

∂θj

Vij. (2.7)

2.1.2 Optimization Method

In general, the function for which we try to minimize are referred to as f(x),

where x are the unknown variables. We can start to seek the minimum of f from

an initial value x0. Then the searching direction and step length have to be chosen

to walk to the next step. This can be represented in the iterative picture

xk+1 = xk + λkdk, k = 0,1, ..., (2.8)

where, di is the direction and |λidi| is the step size. The different optimization

methods presented differ in the choice of di and λi. In the following sections, I will

give a review of several optimization methods.
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Table 2.1: Algorithm for steepest descent method

1. Set starting point: xk, and f(xk),

2. Calculate the gradient: gk = ∇f(xk), set dk = −gk ,

3. Determine the step length λk,

4. Calculate the new point: xk+1 = xk + λkdk.

2.1.2.1 Steepest decent method The method of steepest descent is the simplest

of the gradient methods. We can choose the new direction in the direction opposite

to the gradient of f(x) since in this direction the function slides down fastest. Then

the iterative equation becomes

xk+1 = xk − λkg(xk), (2.9)

where g(xk) = ∇f(x) is the gradient at point xk. The next step is to choose the

step size λk to minimize the function f at point xk+1, which referred to as a line

search scheme. This is a repeating process until the convergence is satisfied. The

algorithm of this method is given in table 2.1 [16].

The steepest descent method is simple, fast in each iteration and very stable.

If the minimum points exist, the method is guaranteed to find them in an infinite

number of iterations, but there is shortcoming. The algorithm can take many iter-

ations to converge towards a local minimum, if the curvature in different directions

is very different. Note that the searching direction (negative gradient) at a point is

orthogonal to the direction of the next point, so that it has to consequently search

in the same direction as earlier steps.

2.1.2.2 Newton method The steepest descent method is based on the gra-

dient or the first derivative of the function. The Newton method converges much

faster towards a local maximum or minimum than gradient descent, since the second
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Table 2.2: Algorithm for Newton method

1. Set starting point: xk, and f(xk),

2. Calculate the gradient: gk = ∇f(xk),

3. Calculate the Hessian: Hk = ∇2f(xk), set dk = −H−1
k · gk,

4. Calculate the new point: xk+1 = xk + dk.

derivative is used here. The idea comes from the Taylor expansion of function f(x)

f(x + ∆x) ≈ f(x) + f ′(x)∆x +
1

2
f ′′(x)∆x2, (2.10)

where f ′(x) and f ′′(x) are the first and second derivatives. When f ′′(x) > 0, the

right side of Eq. (2.10) is the quadratic function of ∆x, and it has the minimum at

∂

∆x
[f(x) + f ′(x)∆x +

1

2
f ′′(x)∆x2] = f ′(x) + f ′′(x)∆x = 0. (2.11)

Thus, the sequence xn defined by

xk+1 = xk − f ′(xk)

f ′′(xk)
, k ≥ 0 (2.12)

will converge towards the minimum point.

This scheme can be generalized to multiple dimensions by replacing the deriva-

tive with gradient g(x) = ∇f(x), and the second derivative with the inverse of the

Hessian matrix, H(x) = ∇2f(x). Then the iterative formula is

xk+1 = xk −H−1
k · gk, k = 0, 1, .... (2.13)

The algorithm for the Newton method is given in table 2.2.

2.1.2.3 Conjugate gradients method In Newton’s method, finding the inverse

of the Hessian will be very time-consuming if the function f(x) has a large number of

variables. The conjugate gradients method is introduced to improve the convergence

speed without calculating the second derivative.
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We say that two non-zero vectors di and dj are conjugate if they are orthogonal

with respect to any symmetric positive definite matrix A,

dT
i ·A · dj = 0 (2.14)

The idea is to let each search direction di be dependent on all other directions

search to locate the minimum of f(x) through equation 2.14. We call this the

Conjugate Directions method. The Conjugate Gradients method is a special case

of the conjugate Direction method, where the conjugate vectors generated by the

gradients of the function f(x), so that the iteration is

dk+1 = −gk+1 + βkdk, k = 0, 1, ..., (2.15)

where we have several choices for the coefficient βk. For example [17], the so-called

Fletcher-Reeves formula gives,

βk =
‖gk+1 − gk‖2

‖gk‖2 (2.16)

or Polyak-Polak-Ribiere,

βk =
g′k+1 · (gk+1 − gk)

g′k · gk

. (2.17)

The algorithm is shown in table 2.3.

2.1.2.4 Variable metric method In order to avoid the Hessian matrix H in

Newton method, one can select a matrix G with “quasi-Newton” requirement,

lim
k→∞

Gk = H−1
k . (2.18)

or

Gk+1∆gk = ∆xk, (2.19)

with ∆gk = gk+1 − gk, and ∆xk = xk+1 − xk. Then, the iterative formula is

xk+1 = xk − λkGk · gk, k = 0, 1, .... (2.20)
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Table 2.3: Algorithm for conjugate gradients method

1. Set start point: xk, and f(xk),

2. Calculate the gradient: gk = ∇f(xk) set dk = −gk ,

3. Determine the step length λk: minf(xk + λkdk),

4. Calculate the new point: xk+1 = xk + λkdk, gk+1 = ∇f(xk+1),

5. Determine the new direction of search: dk+1 = −gk+1 + βkdk ,

βk =
g′k+1·(gk+1−gk)

g′
k
·gk

(PPR); βk = ‖gk+1‖2
‖gk‖2 (FR).

There are many methods to update Gk to satisfy quasi-Newton condition Eq.

(2.19), for example the Davidon-Fletcher-Powell (DFP) scheme. In DFP algorithm,

at a point xk, the approximated inverse Hessian at the subsequent point is given by

[17]

Gk+1 = Gk +
∆xk∆x′k
∆xk∆g′k

− Gk∆gk∆g′kGk

∆g′kGk∆gk

, (2.21)

where the prime denotes the transpose. This is the DFP algorithm in variable metric

method listed in table 2.4. Other algorithms were introduced to improve the DFP

formula, for example, SR1 formula and the widespread BFGS method, that was

suggested independently by Broyden, Fletcher, Goldfarb, and Shanno, in 1970. I

will not discuss them here in details.

The variable metric method has become very popular for optimization: it

converges fast, it is stable, and spends relatively modest computing time at each

iteration [16]. The CERN package MINUIT [18] is an application of the variable

metric method.

2.2 Monte-Carlo Method

In this section, I will give an introduction of another way for estimation

method, Markov Chain Monte Carlo (MCMC) techniques based on the Bayesian
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Table 2.4: Algorithm for variable metric method

1. Set starting point: xk, and f(xk), Gk = I

2. Calculate the gradient: gk = ∇f(xk) set dk = −gk ,

3. Determine the step length λk: minf(xk + λkdk),

4. Calculate the new point: xk+1 = xk + λkdk, gk+1 = ∇f(xk+1),

5. Calculate the update to the inverse Hessian:

Gk+1 = Gk +
∆xk∆x′k
∆xk∆g′

k
− Gk∆gk∆g′kGk

∆g′
k
Gk∆gk

(DFP),

,
6. Determine the direction of search: dk+1 = −Gk+1gk+1.

statistics theory.

Since the likelihood function can be described by the probability of the param-

eters, which allows us to estimate unknown parameters based on known outcomes,

the Monte-Carlo method is an appropriate tool to simulate a system and carries out

some statistical inferences.

2.2.1 Probability

Let’s start from several basic concepts. The probability P (A) can be defined

by the events that occur in countable sample spaces (discrete probability).

The probability of an even B occurring when it is known that some event A

has occurred is called a conditional probability, denoted by P (B|A) (read P of B

given A). It can be defined by

P (B|A) =
P (A ∩B)

P (A)
. (2.22)

Multiplying the formula of definition Eq. (2.22) by P (A), we obtain the multiplica-

tive rule: If two events A and B both occur, then

P (A ∩B) = P (A)P (B|A). (2.23)
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Since A ∩B and B ∩ A are the same, one obtains Bayes’s theorem,

P (B|A) =
P (A|B)P (B)

P (A)
(2.24)

If the events B1, B2, ... , Bk constitute a partition of the sample space such that

P (Bi) 6= 0 for i = 1, 2, ..., k, then for any event A, the total probability is given by,

P (A) =
∑

i

P (Bi ∩ A) =
∑

i

P (Bi)P (A|Bi). (2.25)

This can be combined with Bayes’s theorem to give

P (B|A) =
P (A|B)P (B)∑
i P (Bi)P (A|Bi)

. (2.26)

In the probability distribution theory, for two random variables, X and Y , we

define the joint probability distribution

f(x, y) = P (X = x, Y = y), (2.27)

that is, the values f(x, y) give the probability that outcomes x and y occur at the

same time.

The marginal distribution of X and Y alone are defined by

g(x) =
∑
y

f(x, y), h(y) =
∑
x

f(x, y). (2.28)

The conditional distribution of the random variable Y given that X = x is

f(y|x) =
f(x, y)

g(x)
, g(x) > 0. (2.29)

Similarly the conditional distribution of the random variable X given that Y = y is

f(x|y) =
f(x, y)

h(y)
, h(y) > 0. (2.30)

Then, the Bayes’s rule can be written as

f(y|x) =
f(x|y)h(y)

g(x)
. (2.31)

22



2.2.2 Bayesian Statistics

Because the observed data are the only experimental results to the practitioner,

statistical inference is based on the actual observed data from a given experiment.

Furthermore, in Bayesian concepts, since the parameter is treated as random, a

probability distribution can be specified, by using the subjective probability for the

parameter. Such a distribution is called a prior distribution and it usually reflects

the experimenter’s prior belief about the parameter. In Bayesian perspective, once

an experiment is conducted and data are observed, all knowledge about a parameter

is contained in the actual observed data as well as in the prior information.

In Bayesian data analysis the model consists of a joint probability distribution

(PDF) over all unobserved (parameters) and observed (data) quantities, denoted by

θ = (θ1, ..., θd) and x = x1, ..., xn. Using the definition of conditional probability

distribution, the joint PDF, f(x, θ) can be decomposed into the product of the PDF

of parameter, π(θ), referred to as the prior PDF of θ, and the conditional PDF of the

observables given the unovservables, f(x|θ), referred to as the sampling distribution

or likelihood, i.e. [19]

f(x, θ) = π(θ)f(x|θ). (2.32)

From Eq. (2.31), the distribution of θ, given data x, which is called the

posterior distribution, is given by

π(θ|x) =
f(x|θ)π(θ)

g(x)
, (2.33)

where

g(x) =
∫

f(x|θ)π(θ)dθ, (2.34)

is the marginal PDF of x which can be regarded as a normalizing constant as it is

independent of θ.

Once the posterior distribution is derived, we can easily use it to make inference

on the parameters. For example, the mean of a single parameter θi can be obtained
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by

E[θi|x] =
∫

θiπ(θi|x)dθi, (2.35)

where

π(θi|x) =
∫

...
∫

π(θ|x)dθi...dθi−1dθi+1...dθd, (2.36)

is called marginalization distribution function of the parameter θi.

In addition, we can calculate a 100(1 − α)% Bayesian interval in a < θi < b

for θi ∫ a

−∞
π(θi|x)dθi =

∫ ∞

b
π(θi|x)dθi =

α

2
. (2.37)

2.2.3 Markov Chain Monte Carlo

Since the multiple dimensional integration is involved in the calculations, a

direct sampling method is very time consuming. The complexity of the grid-based

method exponentially increases with increasing number of parameters. The Markov

Chain Monte Carlo (MCMC) method can markedly improve the calculational speed

since in MCMC the sample chain is constructed with correlation whose equilibrium

distribution is just the joint posterior.

Many algorithms can be implemented to generate the MCMC samples. Here,

we introduce one of them, Metropolis-Hastings algorithm (MH) which generates

multidimensional points θ distributed according to a target PDF that is proportional

to a given function p(θ). To generate points that follow p(θ), one first need a

proposal density distribution q(θn, θn+1) to propose a new point θn+1 given the chain

is currently at θn. The proposed new point is then accepted with probability

α(θn, θn+1) = min

[
1,

p(θn+1)q(θn+1, θn)

p(θn)q(θn, θn+1)

]
. (2.38)

Then, the MH algorithm can be shown in table 2.5.

If one takes the proposal density to be symmetric in θ and θn, then the test

ratio becomes

α = min[1, p(θ)/p(θn)]. (2.39)
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Table 2.5: Algorithm for Metropolis-Hastings in MCMC

1. Start with an arbitrary value θn,

2. Generate a value θ using the proposal density q(θ, θn),

3. Form the Hastings test ratio, α = min{1, p(θ)q(θ,θn)
p(θn)q(θn,θ)

},

4. Generate a value u uniformly distributed in [0, 1],

5. If u < α set θn = θ (acceptance)

If u > α set θn = θn (rejection),
,

6. Repeat.

That is, if the proposed θ is at a value of probability higher than θn, the step will

be taken.

The code package COSMOMC developed by Antony Lewis [67] implanted the

MCMC method including Metropolis-Hastings algorithm.

2.3 Cosmological Parameter Estimation on Holographic Dark Energy Model

The current idea of a negative-pressure dominated universe seems to be in-

evitable in light of the impressive convergence of the recent observational results

(see, e.g., [21, 22, 23, 24, 25]). This has in turn led cosmologists to hypothesize

on the possible existence of an exotic dark component that not only could explain

these experimental data but also could reconcile them with the inflationary flatness

prediction (ΩTotal = 1). This extra component, or rather, its gravitational effects is

thought of as the first observational piece of evidence for new physics beyond the

domain of the standard model of particle physics and constitutes a link between cos-

mological observations and a fundamental theory of nature (for some dark energy

models, see [26]. For recent reviews, see also [27]). On the other hand, based on the

effective local quantum field theories, the authors of Ref. [28] proposed a relationship
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between the ultraviolet (UV) and the infrared (IR) cutoffs due to the limit set by

the formation of a black hole (BH). The UV-IR relationship in turn gives an upper

bound on the zero point energy density ρΛ ≤ M2
p L−2, which means that the maxi-

mum entropy is of the order of S
3/4
BH . This zero point energy density has the same

order of magnitude as the dark energy density [29], and is widely referred to as the

holographic dark energy (HDE) [30] (see also [31]). However, the HDE model based

on the Hubble scale as the IR cutoff seems not to lead to an accelerating universe

[29]. A solution to this matter was subsequently given in Ref. [30] that discussed the

possibilities of the particle and the event horizons as the IR cutoff, and found that

only the event horizon identified as the IR cutoff gave a viable HDE model [30]. The

HDE model based on the event horizon as the IR cutoff was found to be consistent

with the observational data [32].

A subsequent development concerning the idea of a holographic dark energy is

the possibility of considering interaction between this latter component and the dark

matter in the context of a holographic dark energy model with the event horizon as

the IR cutoff. As an interesting result, it was shown that the interacting HDE model

realized the phantom crossing behavior [33], which is also obtained in the context

of non-minimally coupled scalar fields (see, e.g, [34] and references therein). Other

recent discussions on interacting HDE models can be found in [35, 36, 37].

In this section, we [20] test the viability of the interacting HDE model discussed

in Ref. [33] by using the new 182 gold supernovae Ia (SNe Ia) data [22], the 192

ESSENCE SNe Ia data [23], the baryon acoustic oscillation (BAO) measurement

from the Sloan Digital Sky Survey (SDSS) [24], and the shift parameter determined

from the three-year Wilkinson Microwave Anisotropy Probe (WMAP3) data [25].

26



2.3.1 Interacting HDE Model

We consider a spatially flat Friedmann-Robertson-Walker universe with dark

matter, HDE and radiation. Due to the interaction between the two dark compo-

nents, the balance equations between them can be written as

ρ̇m + 3Hρm = Γ , (2.40)

ρ̇D + 3H(1 + ωD)ρD = −Γ (2.41)

where the HDE density is

ρD = 3c2M2
p L−2 . (2.42)

In the above equations, L is the IR cutoff, Mp = 1/
√

8πG is the reduced Planck mass,

ωD is the equation of state of the HDE, Γ = 9b2M2
p H3 is a particular interacting

term with the coupling constant b2, and the subscript 0 means the current value of

the variable. The HDE, dark matter and radiation density parameters are defined,

respectively, as ΩD = ρD/(3H2M2
p ), Ωm = ρm/(3H2M2

p ), and Ωγ = ργ/(3H
2M2

p ).

Note that, if we choose the Hubble scale as the IR cutoff, i.e., L = 1/H, then

we find that Ωm/ΩD = (1 − c2)/c2, which means that the HDE always follows the

dark matter. Even though the HDE equation of state wD can be less than −1/3

with the help of the interaction [36], this model cannot explain the transition from

deceleration to acceleration.

As suggested by Li [30], one can choose the future event horizon or particle

horizon as the IR cutoff. For the future event horizon,

L(t) = a(t)
∫ ∞

t

dt′

a(t′)
= a

∫ ∞

a

da′

H ′a′2
, (2.43)

whereas for the particle horizon,

L(t) = a(t)
∫ t

0

dt′

a(t′)
= a

∫ a

0

da′

H ′a′2
. (2.44)
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Substituting Eqs. (2.43) and (2.44) into Eq. (2.42) and taking the derivative with

respect to x = ln a, we obtain

ρ′D ≡
dρD

dx
= −6M2

p H2ΩD ±
6M2

p

c
H2Ω

3/2
D , (2.45)

where the upper (lower) sign is for the event (particle) horizon. Since ρ̇D ≡ dρD/dt =

ρ′DH, Eq. (2.41) can be written as

ρ′D + 3(1 + ωD)ρD = −9M2
p b2H2. (2.46)

Combining Eqs. (2.45) and (2.46), we obtain the equation of state of this interacting

holographic dark energy, i.e.,

ωD = −1

3
∓ 2

3

√
ΩD

c
− b2

ΩD

. (2.47)

When the interaction is absent, b2 = 0, it is clear from the above expression that we

cannot choose the particle horizon as the IR cutoff. In [37], it was argued that the

effective equation of state of the HDE in the interacting case should be

ωeff
D = ωD +

b2

ΩD

= −1

3
∓ 2

3

√
ΩD

c
. (2.48)

Based on this effective equation of state, it was concluded that there was no phantom

crossover even for an interacting HDE model. In fact, by combining the Friedmann

equation with Eqs. (2.40) and (2.41), we obtain the acceleration equation

Ḣ = −4πG(ρ + p). (2.49)

For a flat universe, the physical consequence of the phantom dark energy is a super-

acceleration when the dark energy dominates. Note that it is ωD, not ωeff
D , that

appears in the acceleration equation (2.49). Therefore, the effective equation of

state seems not to show the true physical meaning of the equation of state of the

HDE, and ωD should be used instead.
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Substituting Eq. (2.47) into Eq. (2.46) and applying the definition of ΩD, we

have

H ′

H
= − Ω′

D

2ΩD

− 1±
√

ΩD

c
. (2.50)

On the other hand, substituting Ḣ = H ′H and pD = ωDρD into Eq. (2.49), we

obtain

H ′

H
=

1

2
ΩD ± Ω

3/2
D

c
+

3

2
b2 − 3

2
− 1

2
Ωγ. (2.51)

Now, combining Eqs. (2.50) and (2.51), we find the differential equation for ΩD, i.e.,

Ω′
D

ΩD

= 1− ΩD ± 2
√

ΩD

c
(1− ΩD)− 3b2 + Ωγ , (2.52)

a result that is consistent with Eq. (5) of Ref. [38] when the radiation term Ωγ is

neglected.

If we choose the particle horizon as the IR cutoff, the current acceleration

requires that ωD0 < −1/3− (Ωm0 + 2Ωγ0)/3ΩD0. From Eq. (2.47), we also obtain a

lower bound on b2,

b2 >
Ωm0

3
+

2

3

Ω
3/2
D0

c
+

2

3
Ωγ0. (2.53)

The past deceleration and the transition from deceleration to acceleration requires

that Ω′
D0 ≥ 0, so Eq. (2.52) gives the upper bound on b2,

b2 ≤ Ωm0

3

(
1− 2

√
ΩD0

c

)
+

1

3
Ωγ0. (2.54)

By comparing Eqs. (2.53) and (2.54), we see that the upper bound is lower than

the lower bound, so that the inequalities are not satisfied. The model based on the

particle horizon as the IR cutoff is not, therefore, a viable dark energy model. In what

follows, we consider only the HDE based on the event horizon. As discussed in [38],

the interaction Γ cannot be too strong and the parameters b2 and c are not totally

free; they need to satisfy some constraints. Following [38], we take 0 ≤ b2 ≤ 0.2 and
√

ΩD < c < 1.255.
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2.3.2 Observational Constraints

There are three parameters Ωm0, c and b2 in the interacting HDE model since

ΩD0 = 1−Ωm0−Ωγ0 and Ωγ0 ∼ 10−5. In order to place limits on them and test the

viability of the model, we apply both the 182 gold SNe Ia [22] and the 192 ESSENCE

SNe Ia data [23] to fit these parameters by minimizing

χ2 =
∑

i

[µobs(zi)− µ(zi)]
2

σ2
i

, (2.55)

where the extinction-corrected distance modulus µ(z) = 5 log10(dL(z)/Mpc)+25, σi

is the total uncertainty in the µobs observations, and the luminosity distance is given

by

dL = (1 + z)
∫ z

0

dz′

H(z′)

= [
c(1 + z)2

H(z)
√

ΩD(z)
− (1 + z)

c√
ΩD0H0

], (2.56)

where z = a0/a−1. In all the subsequent analyses, we have marginalized the Hubble

parameter H0.

In addition to the SNe Ia data, we also use the BAO measurement from the

SDSS data [24, 25]

A =

√
Ωm0

E(0.35)1/3

[
1

0.35

∫ 0.35

0

dz

E(z)

]2/3

(2.57)

= 0.469
(

0.95

0.98

)−0.35

± 0.017, (2.58)

and the CMB shift parameter measured from WMAP3 data [40, 25]

R =
√

Ωm0

∫ zls

0

dz

E(z)
= 1.70± 0.03, (2.59)

where the dimensionless function E(z) = H(z)/H0 and zls = 1089 ± 1. In order to

obtain the distance, we need to find out the evolution of ΩD(z) and H(z), so we need

to solve Eqs. (2.51) and (2.52) numerically. Since the derivatives in Eqs. (2.51) and
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Table 2.6: The best-fit results for the HDE parameters

Model Results Gold Gold+A+R ESSENCE ESSENCE+A+R
χ2 158.27 158.66 195.34 196.16

With Ωm0 0.32+0.29
−0.13 0.29± 0.04 0.27+0.23

−0.15 0.27+0.04
−0.03

Interaction b2 0+0.2
−0.0 0+0.01

−0.00 0.02+0.09
−0.02 0.002+0.01

−0.002

c 0.82+0.48
−0.18 0.88+0.40

−0.07 0.85+0.45
−0.18 0.85+0.18

−0.02

χ2 158.27 158.66 195.75 196.29
b2 = 0 Ωm0 0.31+0.07

−0.1 0.29± 0.03 0.27+0.03
−0.14 0.27+0.03

−0.02

c 0.82+0.48
−0.04 0.88+0.24

−0.06 0.85+0.45
−0.02 0.85+0.1

−0.02

ΛCDM χ2 158.49 161.87 195.34 196.12
Ωm0 0.34± 0.04 0.29± 0.02 0.27± 0.03 0.27± 0.02

(2.52) are with respect to x = ln a, we need to rewrite them with respect to z. We

find

dH

dz
= − H

1 + z


1

2
ΩD +

Ω
3/2
D

c
+

3

2
b2 − 3

2
− 1

2
Ωγ


 , (2.60)

and

dΩD

dz
= − ΩD

1 + z

[
(1− ΩD)(1 +

2
√

ΩD

c
)− 3b2 + Ωγ

]
. (2.61)

By solving numerically the above equations, we then obtain the evolutions of ΩD

and H as a function of the redshift.

In Figs. 2.1 to 2.4 we show the results of our statistical analyses. Figure 2.1

shows the c−b2 plane for the joinf analysis involving the 192 ESSENCE SNe Ia data

[23] and the other cosmological observables discussed above. For this analysis the

best fit values are Ωm0 = 0.27+0.04
−0.03, c = 0.85+0.18

−0.02, and b2 = 0.002+0.01
−0.002 (at 68.3% c.l.)

with χ2
min = 196.16. If we fix c = 1, we find Ωm0 = 0.26+0.04

−0.03 and b2 = 0.005+0.008
−0.005

(at 68.3% c.l.) with χ2 = 198.96. The plane Ωm0 − c is shown in Fig. 2.2. Figures

2.3 and 2.4 show the same parametric space c− b2 when the 192 ESSENCE data is

replaced by the new 182 gold sample [22]. In this case, we find Ωm0 = 0.29 ± 0.04,

b2 = 0+0.01
−0 , c = 0.88+0.40

−0.07 (at 68.3% c.l.) with χ2 = 158.66. We note that from both

combinations the value of b2 is very close to 0, which suggests a very weak coupling
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Figure 2.1: The results of our joint analysis involving the ESSENCE (192 SNe Ia)
plus BAO plus CMB shift parameter. Confidence contours (1σ, 2σ and 3σ) in the
b2 − c parametric space. As discussed in the text (see also Table 2.6), at 68.3% c.l.
we find c = 0.85+0.18

−0.02, and b2 = 0.002+0.01
−0.002.

or a noninteracting HDE. Such a result is also in agreement with the limits found

in Ref. [33]. By fixing b2 = 0, we also fit the HDE model without interaction to the

observational data discussed above. These results are summarized in Table 2.6. For

the sake of comparison, we also list the best-fit results for a flat ΛCDM model.

Finally, by fixing the value of the matter density parameter at Ωm0 = 0.27

we show, in Fig. 2.5, the evolutions of ΩD and ωD with the scale factor a. The

behavior of Ḣ/H is also shown in Fig. 2.6. The curves displayed in these figures

are complementary in the sense that from them, we see that while ωD crosses the

cosmological constant barrier to the phantom region, Ḣ increases from negative to

positive values. The distinctive future super-acceleration, which is an evidence of a

phantom behavior, is apparent from Fig. 2.6.
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Figure 2.2: The same as in the figure 2.1 for the c− Ωm0 parametric plane.
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Figure 2.3: The results of our joint analysis involving the ESSENCE (192 SNe Ia)
plus BAO plus CMB shift parameter. Confidence contours (1σ, 2σ and 3σ) in the
b2− c parametric space. As discussed in the text (see also Table I), at 68.3% c.l. we
find c = 0.85+0.18

−0.02, and b2 = 0.002+0.01
−0.002.
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Figure 2.4: When the ESSENCE (192 SNe Ia) data are replaced by the new 182 Gold
sample. The contours in the c− Ωm0 plane also correspond to 1σ, 2σ and 3σ.
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Figure 2.5: a) Evolution of ΩD and ωD with the scale factor a. To plot these curves
we have fixed the best-fit value of Ωm0 = 0.27. The solid, dashed and dotted lines
stand, respectively, for the pairs (b2 = 0.01, c = 0.85), (b2 = 0.002, c = 0.85), and
(b2 = 0.002, c = 1).
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Figure 2.6: Evolution of Ḣ/H2 with the scale factor a. Note that, as ωD is becoming
more and more negative and crosses the phantom divide line (fig. 2.5), the function
Ḣ increases from negative to positive values. As in the previous figure, the value of
the matter density parameter has been fixed at Ωm0 = 0.27 and the solid, dashed
and dotted lines correspond to the above combinations of the parameters b2 and c.

2.4 Monte Carlo Markov Chain Approach in Dark Energy Model

The supernova (SN) Ia observations indicate the accelerated expansion of the

Universe [72, 71]. The direct and model independent evidence of the acceleration

of the Universe was shown by using the energy conditions in Gong & Wang [59]

and Gong et al. [60]. The driving force of the late time acceleration of the Uni-

verse, dubbed “dark energy (DE)”, imposes a big challenge to theoretical physics.

Although the cosmological constant is the simplest candidate of DE and consis-

tent with current observations, other possibilities are also explored due to many

orders of magnitude discrepancy between the theoretical estimation and astronom-

ical observations for the cosmological constant. For a review of DE models, see for

example, Sahni & Starobinsky [74], Padmanabhan [69], Peebles & Ratra [70], Sahni

[75], Copeland et al. [47].

There are model independent studies on the nature of dark energy by using

the observational data. In particular, one usually parameterizes DE density or the
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equation of state parameter w(z) of DE [41, 42, 43, 44, 45, 46, 48, 49, 53, 54, 55,

56, 57, 58, 61, 62, 63, 64, 65, 66, 68, 76, 77, 80, 81, 82, 83, 84]. Due to the degenera-

cies among the parameters in the model, complementary cosmological observations

are needed to break the degeneracies. The Wilkinson Microwave Anisotropic Probe

(WMAP) measurement on the Cosmic Microwave Background (CMB) anisotropy,

together with the SN Ia observations provide complementary data. In this paper,

we use the three-year WMAP (WMAP3) data [25], the SN Ia data [73, 23] and

the Baryon Acoustic Oscillation (BAO) measurement from the Sloan Digital Sky

Survey [50] to study the property of DE and the cosmic curvature. Two DE models

w(z) = w0+waz/(1+z) [45, 68] and w(z) = w0+waz/(1+z)2 [64] are considered. In

Elgarøy & Multamäki [51], the authors showed that combining the shift parameters

R and the angular scale la of the sound horizon at recombination appears to be a

good approximation of the full WMAP3 data. Wang and Mukherjee gave model

independent constraints on R and la by using the WMAP3 data, they also provided

the covariance matrix of the parameters R, la and Ωbh
2 [79]. So we use the shift

parameter R, the angular scale la of the sound horizon at recombination and their

covariance matrix given in Wang & Mukherjee [79] instead to avoid using several

inflationary model parameters and calculating the power spectrum. When the co-

variance matrix is used, we have six parameters. We use the Monte-Carlo Markov

Chain (MCMC) method to explore the parameter space. Our MCMC code is based

on the publicly available package COSMOMC [67].

2.4.1 Method

For the SN Ia data, we calculate

χ2 =
∑

i

[µobs(zi)− µ(zi)]
2

σ2
i

, (2.62)

36



where the extinction-corrected distance modulus µ(z) = 5 log10[dL(z)/Mpc] + 25, σi

is the total uncertainty in the SN Ia data, and the luminosity distance is

dL(z) =
1 + z

H0

√
|Ωk|

sinn

[√
|Ωk|

∫ z

0

dz′

E(z′)

]
, (2.63)

where

sinn(
√
|Ωk|x)

√
|Ωk|

=





sin(
√
|Ωk|x)/

√
|Ωk|, Ωk < 0;

x, Ωk = 0;

sinh(
√
|Ωk|x)/

√
|Ωk|, Ωk > 0,

(2.64)

the nuisance parameter H0 is marginalized over with flat prior (the analytical marginal-

ization method is discussed in section 2.5), and the dimensionless Hubble parameter

is

E(z) = H(z)/H0 = Ωm(1 + z)3 + Ωr(1 + z)4 + Ωk(1 + z)2 + ΩDE, (2.65)

where Ω = 8πGρ/(3H2
0 ), ρr = σbT

4
cmb, σb is the Stefan-Boltzmann constant, the

CMB temperature Tcmb = 2.726K, and ΩDE is the DE density. For the DE model

[45, 68]

w(z) = w0 +
waz

1 + z
, (2.66)

the dimensionless DE density is

ΩDE(z) = (1− Ωm − Ωk − Ωr)(1 + z)3(1+w0+wa) exp[−3waz/(1 + z)]. (2.67)

For the DE model [64]

w(z) = w0 +
waz

(1 + z)2
, (2.68)

the dimensionless DE density is

ΩDE(z) = (1− Ωm − Ωk − Ωr)(1 + z)3(1+w0) exp
[
3waz

2/2(1 + z)2
]
. (2.69)

For the SDSS data, we add the BAO parameter [50, 25]

A =

√
Ωm

0.35

[
0.35

E(0.35)

1

|Ωk|sinn2

(√
|Ωk|

∫ 0.35

0

dz

E(z)

)]1/3

= 0.469(0.95/0.98)−0.35±0.017,

(2.70)
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Figure 2.7: The marginalized probabilities of Ωk. The solid lines denote the results
using the shift parameter R, the angular scale la, and the full covariance matrix.
The dashed lines denote the results using the shift parameter only. The black lines
are for the dark energy model w0 + waz/(1 + z)2 and the red lines are for the model
w0 + waz/(1 + z).

and for WMAP3 data, we first add the shift parameter [79]

R =

√
Ωm√
|Ωk|

sinn

(√
|Ωk|

∫ zls

0

dz

E(z)

)
= 1.71± 0.03, (2.71)

to χ2, where zls = 1089± 1.

When we fit the DE models (2.66) and (2.68) to the observational data, we

have four parameters Ωm, Ωk, w0 and wa. The MCMC method is used to explore

the parameter space. The marginalized probability of Ωk is shown in Fig. 2.7.

It is obvious that the cosmic curvature cannot be constrained for the DE model

(2.66). As discussed in Elgarøy & Multamäki [51] and Wang & Mukherjee [79], the

combination of the shift parameter and the angular scale of the sound horizon at

recombination gives much better constraints on cosmological parameters. So we add
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Figure 2.8: The marginalized probabilities of Ωk. The solid lines denote the results
with H0 = 65. The dashed lines denote the results with H0 = 72. The black lines
are for the dark energy model w0 + waz/(1 + z)2 and the red lines are for the model
w0 + waz/(1 + z).
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the angular scale of the sound horizon at recombination [79]

la =
πR/

√
Ωm∫∞

zls
dzcs/E(z)

= 302.5± 1.2, (2.72)

where the sound speed cs = 1/
√

3(1 + R̄ba), R̄b = 315000Ωbh
2(Tcmb/2.7K)−4, a is

the scale factor, and Ωbh
2 = 0.02173± 0.00082 [79]. Now we have one more fitting

parameter Ωbh
2. Follow Wang and Mukherjee, we also use the covariance matrix

for (R, la, Ωbh
2) derived in Wang & Mukherjee [79]. The marginalized probability

of Ωk is shown in Fig. 2.7. We see that the cosmic curvature is constrained better

with the addition of the angular scale la of the sound horizon at recombination.

Since Ωr depends on H0, the results may depend on the value of H0. The

marginalized probabilities of Ωk for H0 = 65 km/s/Mpc and H0 = 72 km/s/Mpc are

shown in Fig. 2.8. We see that the results indeed depend on H0. During the matter

dominated era, the radiation term in (2.65) is negligible, so the distance modulus

µ(z) and the shift parameter R do not depend on H0 much, but the angular scale

of the sound horizon at recombination la depends on Ωr. As discussed in [51], the

combination of R and la approximates the WMAP3 data and the WMAP3 data

depends on H0. So, as expected, la also depends on H0. From now on we also take

H0 as a fitting parameter, and impose a prior of H0 = 72 ± 8 km/s/Mpc [52]. In

summary, we have six fitting parameters for the DE models (2.66) and (2.68).

2.4.2 Results

In this section, we present our results. We first use the 182 gold SN Ia data

[73], then we use the ESSENCE data [73, 23]. For the SN Ia data, we consider

both the SN Ia flux averaging with marginalization over H0 [76, 77, 80] and the

analytical marginalization without the flux averaging. The results with the analyti-

cal marginalization are shown in solid lines and the results with flux averaging are

shown in dashed lines. We also put the ΛCDM model with the symbol + in the

contour plot.
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2.4.2.1 Gold SN Ia data Fig. 2.9 shows the marginalized probabilities for Ωm,

Ωk, w0 and wa for the DE model w0 +waz/(1+z). Fig. 2.10 shows the marginalized

Ωm-Ωk and w0-wa contours. The w0-wa contour with the flux averaging is consistent

with the result in Wang & Mukherjee [79]. From Figs. 2.9 and 2.10, we see that

the difference in the results between the analytical marginalization and the flux

averaging is small. The ΛCDM model is consistent with the observation at the 1σ

level. The value of wa is better constrained with the analytical marginalization.

Fig. 2.11 shows the marginalized probabilities for Ωm, Ωk, w0 and wa for the

DE model w0 + waz/(1 + z)2. Fig. 2.12 shows the marginalized Ωm-Ωk and w0-wa

contours. From Figs. 2.11 and 2.12, we see that the parameters are a little better

constrained with the flux averaging. For the analytical marginalization, the ΛCDM

model is consistent with the observation at the 2σ level. For the flux averaging, the

ΛCDM model is consistent with the observation at the 1σ level.

2.4.2.2 ESSENCE data Fig. 2.13 shows the marginalized probabilities for

Ωm, Ωk, w0 and wa for the DE model w0 + waz/(1 + z). Fig. 2.14 shows the

marginalized Ωm-Ωk and w0-wa contours. From Figs. 2.13 and 2.14, we see that

the difference in the results between the analytical marginalization and the flux

averaging is small. The ΛCDM model is consistent with the observation at the 1σ

level.

Fig. 2.15 shows the marginalized probabilities for Ωm, Ωk, w0 and wa for the

DE model w0 + waz/(1 + z)2. Fig. 2.16 shows the marginalized Ωm-Ωk and w0-wa

contours. From Figs. 2.15 and 2.16, we see that the parameters are a little better

constrained with the analytical marginalization. The ΛCDM model is consistent

with the observation at the 1σ level.

We summarize the results in Tables 2.7 and 2.8. We do not see much im-

provement on the constraints on the DE parameters and the cosmic curvature by
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using the flux averaging method. For the DE model w0 +waz/(1+ z), the gold data

gives better constraints than the ESSENCE data on the DE parameters w0 and wa,

but both data give good constraints on the cosmic curvature. For the DE model

w0 + waz/(1 + z)2, the ESSENCE data gives much better constraint on the cosmic

curvature than the gold data, although the constraints on the DE parameters w0

and wa are almost the same for both data. For the 182 gold data, the DE model

w0 + waz/(1 + z) gives much better constraints on the cosmic curvature Ωk. For

the ESSENCE data, the two DE models give almost the same constraint on Ωm and

Ωk. For the DE model w0 + waz/(1 + z), the mean value of w0 determined from the

observation tends to be w0 ≥ −1, while the mean value of w0 is less than −1 for the

DE model w0 + waz/(1 + z)2.

In conclusion, we first confirm previous results that the shift parameter R

alone does not give good constraint on Ωk, we must combine R and la to constrain

Ωk. By using R, la and their covariance matrix, we get almost the same results as

those obtained by using the original WMAP3 data. Without calculating the power

spectrum, the fitting process is much faster and efficient. The cosmic curvature is

found to be |Ωk| ≤ 0.03.

2.5 Analytical Marginalization on H0

By assuming a flat prior P (H0) = 1 for H0, the marginalization over H0 means

L = e−χ2
m/2 =

∫
e−χ2/2P (H0)dH0 =

∫
e−χ2/2dH0. (2.73)

Let x = 5 log10 H0 and

αi = µobs(zi)− 25− 5 log10[(1 + zi)sinn(
√
|Ωk|

∫ zi

0
dz′/E(z′))/

√
|Ωk|], (2.74)

and substitute Eq. (2.55) into the above Eq. (2.73), we get

L =
ln 10

5

∫
dx exp

[
−1

2

∑

i

(αi + x)2

σ2
i

+
ln 10

5
x

]
(2.75)
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Table 2.7: The marginalized results with 1σ errors for the model w0 + waz/(1 + z)

Gold Data Essence Data
Analytical Flux Analytical Flux

Ωm 0.29+0.03
−0.02 0.29± 0.02 0.28+0.03

−0.02 0.28± 0.02
Ωk 0.007+0.023

−0.019 0.002± 0.018 −0.007± 0.016 −0.004+0.015
−0.016

w0 −0.99+0.18
−0.16 −0.95± 0.22 −0.94± 0.25 −1.0+0.24

−0.26

wa 0.34± 0.77 −0.05+1.04
−1.09 −0.70+1.54

−1.52 −0.26+1.29
−1.31

Table 2.8: The marginalized results with 1σ errors for the model w0 + waz/(1 + z)2

Gold Data Essence Data
Analytical Flux Analytical Flux

Ωm 0.27+0.03
−0.02 0.27+0.03

−0.02 0.28+0.02
−0.03 0.29± 0.02

Ωk 0.05± 0.04 0.02+0.03
−0.02 −0.002+0.015

−0.016 −0.013± 0.011
w0 −1.8+0.6

−0.5 −1.6+0.6
−0.5 −1.1± 0.4 −1.1+0.4

−0.5

wa 6.4± 3.6 4.5± 3.6 0.5± 3.1 0.6± 3.3

=
ln 10

5

∫
dx exp


−1

2

(∑

i

1

σ2
i

) (
x +

∑
i αi/σ

2
i − ln 10/5∑
i 1/σ

2
i

)2

(2.76)

−1

2

∑

i

α2
i

σ2
i

+
1

2

(
∑

i αi/σ
2
i − ln 10/5)2

∑
i 1/σ

2
i

]
(2.77)

=
ln 10

5

(
2π∑

i 1/σ
2
i

)1/2

exp

[
−1

2

∑

i

α2
i

σ2
i

+
1

2

(
∑

i αi/σ
2
i − ln 10/5)2

∑
i 1/σ

2
i

]
. (2.78)

So the minimum χ2 is

χ2
m =

∑

i

α2
i

σ2
i

− (
∑

i αi/σ
2
i − ln 10/5)2

∑
i 1/σ

2
i

− 2 ln

(
ln 10

5

√
2π∑

i 1/σ
2
i

)
. (2.79)

In analysis of 2.3.2, and we marginalized the Hubble parameter H0 with flat

prior. In analysis of 2.4.1, we marginalized the H0 for distance modulus and shift

parameter which do not depends on H0 much, however take H0 as a fitting parameter

for angular scale of the sound horizon at recombination la which depend on H0.
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Figure 2.9: The marginalized probabilities for the DE model w0+waz/(1+z) by using
the gold SN Ia data. The solid lines denote the results with analytical marginaliza-
tion and the dashed lines denote the results with flux averaging.
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Figure 2.10: The marginalized 1σ and 2σ Ωm-Ωk and w0-wa contours for the DE
model w0 + waz/(1 + z) by using the gold SN Ia data. The upper panels denote the
results with analytical marginalization and the lower panels denote the results with
flux averaging.
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Figure 2.11: The marginalized probabilities for the DE model w0 + waz/(1 + z)2

by using the gold SN Ia data. The solid lines denote the results with analytical
marginalization and the dashed lines denote the results with flux averaging.
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Figure 2.12: The marginalized 1σ and 2σ Ωm-Ωk and w0-wa contours for the DE
model w0 +waz/(1+ z)2 by using the gold SN Ia data. The upper panels denote the
results with analytical marginalization and the lower panels denote the results with
flux averaging.
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Figure 2.13: The marginalized probability distributions for the dark energy model
w0 + waz/(1 + z) by using the ESSENCE data. The solid lines denote the results
without flux average and the dashed lines denote the results with flux average.
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Figure 2.14: The marginalized Ωm-Ωk and w0-wa contours for the dark energy model
w0 +waz/(1+ z) by using the ESSENCE data. The upper panels denote the results
without flux average and the lower panels denote the results with flux average.
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Figure 2.15: The marginalized probability distributions for the dark energy model
w0 + waz/(1 + z)2 by using the ESSENCE data. The solid lines denote the results
without flux average and the dashed lines denote the results with flux average.
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Figure 2.16: The marginalized Ωm-Ωk and w0-wa contours for the dark energy model
w0 +waz/(1+z)2 by using the ESSENCE data. The upper panels denote the results
without flux average and the lower panels denote the results with flux average.
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CHAPTER THREE

Brane Cosmology in the Hořava-Witten Heterotic M-Theory on S1/Z2

Since the cosmological constant problem is intimately related to quantum grav-

ity, its solution is expected to come from quantum gravity, too. At the present,

string/M-Theory is our best bet for a consistent quantum theory of gravity, so it is

reasonable to ask what string/M-Theory has to say about the cosmological constant.

In the string landscape [96], it is expected there are many different vacua with differ-

ent local cosmological constants [97]. Using the anthropic principle, one may select

the low energy vacuum in which we can exist. However, many theorists still hope to

explain the problem without invoking the existence of ourselves. In addition, to have

a late time accelerating universe from string/M-Theory, Townsend and Wohlfarth

[98] invoked a time-dependent compactification of pure gravity in higher dimensions

with hyperbolic internal space to circumvent Gibbons’ non-go theorem [99]. Their

exact solution exhibits a short period of acceleration. The solution is the zero-flux

limit of spacelike branes [100]. If non-zero flux or forms are turned on, a transient

acceleration exists for both compact internal hyperbolic and flat spaces [101]. Other

accelerating solutions by compactifying more complicated time-dependent internal

spaces can be found in [102].

In this chapter, I will give a very brief introduce to sting/M-theory and then

provide a systematical study of brane worlds in the framework of both the Hořava-

Witten (HW) heterotic M-Theory and string theory on S1/Z2 [104, 110]. We first

address two important issues, which are fundamental in order for the model to be

viable: (i) the radion stability and its mass; and (ii) the localization of gravity, the 4D

effective Newtonian potential and its corrections from the high order gravitational

KK modes. Then, we apply the model to cosmology, and write down explicitly the
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general gravitational and matter field equations both in the bulk and on the two

branes.

In particular, this chapter is organized as follows: In Sec. 3.1 I shall give a

brief introduction to string and M-theory. In Sec. 3.2, we consider the HW heterotic

M-Theory on S1/Z2 along the line set up by Lukas et al. in [110]. To consider its

cosmological applications, we add a potential term and matter fields on each of the

two branes. In Sec. 3.3, we consider the radion stability and radion mass, using

the Goldberger-Wise mechanism [109]. In Sec. 3.4, we study the localization of

gravity and calculate the 4-dimensional effective Newtonian potential. The spectrum

of gravitational Kaluza-Klein (KK) modes is worked out explicitly, and found to

be discrete and can have a mass gap of TeV. In Sec. 3.5, applying the model to

cosmology, we separate the gravitational and matter field equations into two group,

one holds outside of the two branes, and one holds on each of the two branes. In

particular, we find the most general generalized Friedmann-like equations on each

of the two orbifold branes. The chapter is ended with Sec. 3.6, in which we apply

the formulas developed in previous sections to a particular case.

It should be noted that brane worlds have been studied intensively in the past

decade [114]. However, to our best knowledge, such studies in the HW setup have

not been carried out in details [111].

It is also interesting to note that in 4-dimensional spacetimes there exists

Weinberg’s no-go theorem for the adjustment of the cosmological constant [144].

However, in higher dimensional spacetimes, the 4-dimensional vacuum energy on

the brane does not necessarily give rise to an effective 4-dimensional cosmological

constant. Instead, it may only curve the bulk, while leaving the brane still flat

[112], whereby Weinberg’s no-go theorem is evaded. It was exactly in this vein, the

cosmological constant problem was studied in the framework of brane worlds in 5-

dimensional spacetimes [113] and 6-dimensional supergravity [115]. However, it was
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soon found that in the 5-dimensional case hidden fine-tunings are required [116]. In

the 6-dimensional case such fine-tunings may not be needed, but it is still not clear

whether loop corrections can be as small as expected [117, 118].

3.1 Introduction to String/M-Theory

The standard model of particle physics was designed within a framework

known as quantum field theory (QFT), which gives us the tools to build theories

consistent both with quantum mechanics and the special theory of relativity. This

theory includes three of the four known interactions in the nature: electromagnetic

interactions, strong and weak interactions. Furthermore a combined electorweak

theory was achieved, and promising ideas put forward to try to include the strong

interactions. But unfortunately, the standard model does not include the effects

of the fourth interaction, gravity, which has been described by Einstein’s general

relativity successfully.

The bosonic string theory, which the myriad of particle types is represented

by a single fundamental building block, a ‘string’, is the first candidate for the

theory of everything. This theory described all the known natural forces including

gravitational interactions and matter (bosons) in a mathematically complete system.

By introducing supersymmetry to bosonic string theory, we can obtain a new theory

that describes both the forces and the matter which make up the universe. This is

the superstring theory. Prior to 1995 there were five known consistent superstring

theories, which were give the names Type I string theory, Type IIA string theory,

Type IIB string theory, heterotic SO(32) theory (the HO theory), and heterotic E8×
E8 theory (the HE theory). In 1995 an underlying 11-dimensional theory called M-

theory appear [86]. This theory encompasses all five, anomaly free, 10-dimensional

superstring theories, so that in this sense, no particular string theory is necessarily

more fundamental than any of the others.
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Hořava and Witten identified the strongly coupled E8×E8 heterotic string as

the 11-dimensional limit of M-theory compactified on an S1/Z2 orbifold with a set

of E8 gauge fields at each 10-dimensional orbifold fixed plane. The orbifold S1/Z2

may be viewed as a segment of the real line that is bounded by two fixed points on

the circle. The Z2 reverses the orientation of the circle, y → −y, where y is the 11th

dimension coordinate [87]. Motivated by Hořava Witten theory, Lukas et al. derived

an effective 5-dimensional theory by a direct compactification of the HW theory on

a Calabi-Yau space [110].

3.2 General Formula Devolvement

Let us consider the 11-dimensional spacetime of the Horava-Witten heterotic

M-Theory, described by the metric [110],

ds2
11 = V −2/3gabdxadxb − V 1/3Ωijdzidzj, (3.1)

where ds2
CY,6 ≡ Ωijdzidzj denotes the Calabi-Yau 3-fold, and V is the Calabi-Yau

volume modulus that measures the deformation of the Calabi-Yau space, and de-

pends only on xa, where a = 0, 1, ..., 4.

3.2.1 5-Dimensional Effective Actions

By integrating the corresponding 11-dimensional action over Calabi-Yau 3-

fold, the 5-dimensional effective action of the Horava-Witten theory is given by [110]

S5 = − 1

2κ2
5

∫

M5

√
g

(
R[g]− 1

2
(∇φ)2 + 6α2e−2φ

)

−
2∑

I=1

εI
6α

κ2
5

∫

M
(I)
4

√
−g(I)e−φ, (3.2)

where I = 1, 2, ε1 = −ε2 = 1, ∇ denotes the covariant derivative with respect to

gab, and

φ ≡ ln(V ), κ2
5 ≡

κ2
11

vCY,6

, (3.3)
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with vCY,6 being the volume of the Calabi-Yau space,

vCY,6 ≡
∫

X

√
Ω. (3.4)

The constant α is related to the internal four-form that has to be included in the

dimensional reduction [110]. This four-form results from the source terms in the

11-dimensional Bianchi identity, which are usually non-zero. g(I) ’s are the reduced

metrics on the two boundaries M
(I)
4 .

It should be noted that in general the dimensional reduction of the graviton and

the four-form flux generates a large number of fields [110]. However, it is consistent to

set all the fields zero except for the 5-dimensional graviton and the volume modulus.

This setup implies that all components of the four-form now point in the Calabi-Yau

directions [111]. In addition, it can be shown that the above action is indeed the

bosonic sector of a minimal N = 1 gauged supergravity theory in 5-dimensional

spacetimes coupled to chiral boundary theories [119].

To study cosmology in the above setup, we add matter fields on each of the

two branes [88, 103],

S
(I)
4, m =

∫

M
(I)
4

√
−g(I)

[
L(I)

4,m (φ, χ)

−
(
g

(I)
k + V

(I)
4 (φ)

)]
, (3.5)

where χ collectively denotes the SM fields localized on the branes, V
(I)
4 (φ) and g

(I)
k

are, respectively, the potential of the scalar field and the tension of the I-th brane.

As to be shown below, g
(I)
k is directly related to the four-dimensional Newtonian

constant G4 [120]. Clearly, these actions in general make the two branes no longer

supersymmetric, although the bulk still is.

It should be noted that in general one also needs to include the Gibbons-

Hawking boundary term [121] in the action (3.5) [122]. However, here we work

with the so-called upstars picture of the S1/Z2 orbifold [123], where all total deriva-
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tives integrate to zero, while the boundary conditions are obtained by imposing the

Lanczos equations [156], as was done earlier by Israel [124].

Variation of the action,

Stotal
5 = S5 +

2∑

I=1

S
(I)
4, m, (3.6)

with respect to gab yields the field equations,

G
(5)
ab = κ2

5T
(5, φ)
ab + κ2

5

2∑

I=1

T (I)
µν e(µ)

a e
(ν)
b

√√√√
∣∣∣∣∣
g(I)

g

∣∣∣∣∣ δ (ΦI) , (3.7)

where T
(5, φ)
ab and T (I)

µν ’s are the energy-momentum tensors of the bulk and branes,

respectively, and are given by

κ2
5T

(5, φ)
ab ≡ 1

2
(∇aφ) (∇bφ)

−1

4
gab

[
(∇φ)2 − 12α2e−2φ

]
, (3.8)

T (I)
µν ≡

(
τ

(I)
φ + g

(I)
k

)
g(I)

µν + τ (I)
µν , (3.9)

τ (I)
µν ≡ 2

δL(I)
4, m

δg(I) µν
− g(I)

µν L(I)
4, m, (3.10)

τ
(I)
φ ≡ 6εIακ−2

5 e−φ + V
(I)
4 (φ), (3.11)

e
(I)a
(µ) ≡ ∂xa

∂ξµ
(I)

, (3.12)

g(I)
µν ≡ e

(I) a
(µ) e

(I) b
(ν) gab

∣∣∣
M

(I)
4

, (3.13)

where ξµ
(I) (µ = 0, 1, 2, 3) are the intrinsic coordinates on the orbifold branes. δ (ΦI)

denotes the Dirac delta function, normalized in the sense of [125]. The two orbifold

branes are located on the hypersurfaces,

ΦI (xa) = 0, (I = 1, 2), (3.14)

from which we find that the normal vector to the I-th brane is given by

n(I)
a =

1

N (I)

∂ΦI(x)

∂xa
, (3.15)
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where

N (I) ≡
√
|ΦI,cΦ

,c
I |. (3.16)

It is interesting to note that the contribution of the modulus field to the branes acts

as a varying cosmological constant, as can be seen clearly from Eqs. (3.9) and (3.11).

Variation of the total action (3.6) with respect to φ, on the other hand, yields

the generalized Klein-Gordon equation,

2φ = 12α2e−2φ +
2∑

I=1

(12αεIe
−φ − 2κ2

5

∂V
(I)
4

∂φ
− σ

(I)
φ )

√√√√
∣∣∣∣∣
g(I)

g

∣∣∣∣∣ δ (ΦI) , (3.17)

where 2 ≡ gab∇a∇b, and

σ
(I)
φ ≡ −2κ2

5

δL(I)
4, m

δφ
. (3.18)

Note the difference signs of σ
(I)
φ defined here and the one used in [103].

To solve Eqs. (3.7) and (3.17), it is found convenient to separate them into

two groups: one is defined outside the two orbifold branes, and the other is defined

on the two branes.

3.2.2 Field Equations Outside the Two Branes

To obtain the equations outside the two orbifold branes is straightforward, and

they are simply the 5-dimensional Einstein field equations (3.7), and the matter field

equation Eq. (3.17) without the delta function parts,

G
(5)
ab =

1

2
(∇aφ) (∇bφ) (3.19)

−1

4
gab

[
(∇φ)2 − 12α2e−2φ

]
,

2φ = 12α2e−2φ. (3.20)

Therefore, in the rest of this section, we shall concentrate ourselves on the derivation

of the field equations on the branes.
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3.2.3 Field Equations on the Two Orbifold Branes

To obtain the field equations on the two orbifold branes, one can follow two

different approaches: (1) First express the delta function parts in the left-hand sides

of Eqs. (3.7) and (3.17) in terms of the discontinuities of the first derivatives of the

metric coefficients and matter fields, and then equal the corresponding delta function

parts in the right-hand sides of these equations, as shown systematically in [126]. (2)

The second approach is to use the Gauss-Codacci and Lanczos equations to write

down the 4-dimensional gravitational field equations on the branes [127, 128]. It

should be noted that these two approaches are equivalent and complementary one

to the other. In this paper, we follow the second approach to obtain the gravitational

field equations, and the first approach to obtain the matter field equations on the

two branes.

3.2.3.1 Gravitational field equations on the two branes For a timelike brane,

the 4-dimensional Einstein tensor G(4)
µν can be written as [127, 128, 108],

G(4)
µν = G(5)

µν + E(5)
µν + F (4)

µν , (3.21)

with

G(5)
µν ≡ 2

3

{
G

(5)
ab ea

(µ)e
b
(ν) (3.22)

−
[
Gabn

anb +
1

4
G(5)

]
gµν

}
,

E(5)
µν ≡ C

(5)
abcdn

aeb
(µ)n

ced
(ν),

F (4)
µν ≡ KµλK

λ
ν −KKµν

−1

2
gµν

(
KαβKαβ −K2

)
,

where G(5) ≡ gabG
(5)
ab , and C

(5)
abcd the Weyl tensor. The extrinsic curvature Kµν is

defined as

Kµν ≡ ea
(µ)e

b
(ν)∇anb. (3.23)
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A crucial step of this approach is the Lanczos equations [156],

[
K(I)

µν

]− − g(I)
µν

[
K(I)

]−
= −κ2

5T (I)
µν , (3.24)

where

[
K(I)

µν

]− ≡ limΦI→0+K(I) +
µν − limΦI→0−K(I) −

µν ,

[
K(I)

]− ≡ g(I) µν
[
K(I)

µν

]−
. (3.25)

On the other hand, from the Codacci equation, one finds [128, 108]

G
(5)
ab n(I)ae

(I)b
(µ) =

(
K(I) µ

ν − δµ
ν K(I)

)
;µ

, (3.26)

where a semicolon “;” denotes the covariant derivative with respect to the reduced

metric g(I)
µν . The combination of Eqs. (3.24) and (3.26) yields the conservation law,

[
G

(5)
ab n(I)ae

(I)b
(µ)

]−
= −κ2

5T (I)λ
µ;λ. (3.27)

Since n(I)ae
(I) b
(µ) gab = 0, from Eqs. (3.7), (3.8), and (3.27), we find

T (I)λ
µ;λ = − 1

2κ2
5

[φ,nφ,µ]− , (3.28)

where φ,n ≡ naφ,a and φ,µ ≡ ea
(µ)φ,a.

Assuming that the branes have Z2 symmetry, we have

K(I) +
µν = −K(I) −

µν . (3.29)

Then, we can express the intrinsic curvatures K(I)
µν appearing in the expression of

F (4)
µν in terms of the effective energy-momentum tensor T (I)

µν through the Lanczos

equations (3.24). Hence, G(4)
µν given by Eq. (3.21) can be cast in the form [106],

G(4)
µν = G(5)

µν + E(5)
µν + E (4)

µν + κ4
5πµν

+κ2
4τµν + Λ4gµν , (3.30)
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where

πµν ≡ 1

4

{
τµλτ

λ
ν −

1

3
ττµν − 1

2
gµν

(
ταβταβ − 1

3
τ 2

)}
,

E (4)
µν ≡ κ4

5

6
τφ

[
τµν +

(
gk +

1

2
τφ

)
gµν

]
, (3.31)

and

κ2
4 =

1

6
gkκ

4
5, Λ4 =

1

12
g2

kκ
4
5. (3.32)

For a perfect fluid,

τµν = (ρ + p) uµuν − pgµν , (3.33)

where uµ is the four-velocity of the fluid on the brane, we find that

πµν =
1

6
ρ

[
(ρ + p) uµuν −

(
p +

1

2
ρ
)

gµν

]
. (3.34)

Note that in writing Eqs. (3.30)-(3.34), without causing any confusion, we had

dropped the super indices (I).

It should also be noted that the definitions of κ4 and Λ4 in Eq. (3.32) are

unique, because in Eqs. (3.30) their corresponding terms are the only ones that

linearly proportional to the matter field τµν and the spacetime geometry gµν . In

addition, they are exactly the ones widely used in brane-worlds [114].

3.2.3.2 Matter field equations on the two branes On the other hand, the I-th

brane, localized on the surface ΦI(x) = 0, divides the spacetime into two regions,

one with ΦI(x) > 0 and the other with ΦI(x) < 0 [Cf. Fig. 3.1]. Since the field

equations are the second-order differential equations, the matter fields have to be at

least continuous across this surface, although in general their first-order derivatives

are not. Introducing the Heaviside function, defined as

H (x) =





1, x > 0,

0, x < 0,
(3.35)

61



for any given C0 function F (x), in the neighborhood of ΦI(x) = 0 we can always

write it in the form,

F (x) = F+(x)H (ΦI) + F−(x) [1−H (ΦI)] , (3.36)

where F+ (F−) is defined in the region ΦI > 0 (ΦI < 0), and

F+(x)
∣∣∣
ΦI=0+

= F−(x)
∣∣∣
ΦI=0−

. (3.37)

Then, we find that

F,a(x) = F+
,a (x)H (ΦI) + F−

,a (x) [1−H (ΦI)] ,

F,ab(x) = F+
,ab(x)H (ΦI) + F−

,ab(x) [1−H (ΦI)]

+ [F,a]
− ∂ΦI(x)

∂xb
δ (ΦI) , (3.38)

where [F,a]
− is defined as that in Eq. (3.25). Projecting F,a onto na and ea

(µ)

directions, we find

F,a = F,µe
(µ)
a − F,nna, (3.39)

where

F,n ≡ naF,a, F,µ ≡ ea
(µ)F,a. (3.40)

Then, it can be shown that

[F,n]− = [F,a]
− na 6= 0,

[F,µ]− = [F,a]
− ea

(µ) = 0. (3.41)

Inserting Eqs. (3.39)-(3.41) into Eq. (3.38), we find

F,ab(x) = F+
,ab(x)H (ΦI) + F−

,ab(x) [1−H (ΦI)]

− [F,n]− n(I)
a n

(I)
b N (I) δ (ΦI) . (3.42)

Due to the Z2 symmetry, we can further write
[
F (I)

,n

]−
as

[
F (I)

,n

]−
= −2εIF

(I)
,n , (3.43)
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−
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a
n

Figure 3.1: The surface ΦI(x) = 0 divides the spacetimes into two regions, ΦI(x) > 0
and ΦI(x) < 0. The normal vector defined by Eq.(3.15) points from M− to M+,
where M+ ≡ {x : ΦI(x) > 0} and M− ≡ {x : ΦI(x) < 0}.

where

F (1)
,n ≡ lim

Φ1→0−
(naF,a)

F (2)
,n ≡ lim

Φ2→0+
(naF,a). (3.44)

Substituting Eq. (3.42) into Eq. (3.17), we find that the matter field equation on

the branes reads,

φ(I)
,n =

εI

2N (I)


2κ2

5

∂V
(I)
4

∂φ
− 12αεIe

−φ + σ
(I)
φ




√√√√
∣∣∣∣∣
g(I)

g

∣∣∣∣∣, (3.45)

where φ(I)
,n is defined as that given by Eq. (3.44). Similarly, Eq. (3.28) can be

written as

T (I)λ
µ;λ =

εI

κ2
5

φ(I)
,n φ(I)

,µ . (3.46)

Eqs. (3.19), (3.20), (3.30), (3.45), and (3.46) consist of the complete set of both

the gravitational and the matter field equations in the framework of the Horava-

Witten heterotic M-Theory on S1/Z2.
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Figure 3.2: The function |y| appearing in Eq. (3.48).

3.3 Radion stability and radion mass

In the studies of orbifold branes, an important issue is the radion stability

[114]. In this section, we shall address this problem.

3.3.1 Static Solution with 4D Poincaré Symmetry

To begin with, let us first consider the 5-dimensional static metric with a

4-dimensional Poincaré symmetry [110],

ds2
5 = e2σ(y)

(
ηµνdxµdxν − dy2

)
, (3.47)

where

σ(y) =
1

5
ln

( |y|+ y0

L

)
, (3.48)

φ(y) =
6

5
ln

( |y|+ y0

L

)
+ φ0, (3.49)

φ0 = ln (5Lα)

where |y| is defined as that given in Fig.3.2, L and y0 are positive constants.

Then, it can be shown that the above solution satisfies the gravitational and

matter field equations outside the branes, Eqs. (3.19) and (3.20). On the two branes,

assuming that the spacetime is vacuum, i.e., τ (I)
µν = 0 = σ

(I)
φ , Eqs. (3.30) and (3.45)

require

V
(I)
4 (φI) + g

(I)
k = 0, (3.50)

64



∂V
(I)
4 (φI)

∂φ
= 0, (3.51)

while Eq. (3.46) is satisfied identically, where φI ≡ φ|y=yI
.

To study the 4-dimensional effective gravitational coupling, as well as the

radion stability, it is found convenient to introduce the proper distance Y , defined

by

Y =
(

5L

6

) {(
y + y0

L

)6/5

−
(

y0

L

)6/5
}

. (3.52)

Then, in terms of Y , the static solution (3.47) can be written as

ds2
5 = e−2A(Y )ηµνdxµdxν − dY 2, (3.53)

with

A(Y ) = −1

6
ln

{(
6

5L

)
(|Y |+ Y0)

}
, (3.54)

φ(Y ) = ln
{(

6

5L

)
(|Y |+ Y0)

}
+ φ0, (3.55)

where |Y | is defined also as that of Fig. 3.2, with

Y0 ≡
(

5L

6

) (
y0

L

)6/5

,

Yc ≡
(

5L

6

) {(
yc + y0

L

)6/5

−
(

y0

L

)6/5
}

, (3.56)

and Y2 = 0, Y1 = Yc.

3.3.2 Radion Stability

Following [109], let us consider a massive scalar field Φ with the actions,

Sb =
∫

d4x
∫ Yc

0
dY
√−g5

(
(∇Φ)2 −M2Φ2

)
,

SI = −αI

∫

M
(I)
4

d4x
√
−g

(I)
4

(
Φ2 − v2

I

)2
, (3.57)

where αI and vI are real constants. Then, it can be shown that, in the background of

Eq. (3.53), the massive scalar field Φ satisfies the following Klein-Gordon equation

Φ′′ − 4A′Φ′ −M2Φ =
2∑

I=1

2αIΦ
(
Φ2 − v2

I

)
δ(Y − YI), (3.58)
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where a prime denotes the ordinary derivative with respect to the indicated ar-

gument, which in the present case is Y . Integrating the above equation in the

neighborhood of the I-th brane, we find that

dΦ(Y )

dY

∣∣∣∣∣
YI+ε

YI−ε

= 2αIΦI

(
Φ2

I − v2
I

)
, (3.59)

where ΦI ≡ Φ(YI). Setting

z ≡ M(Y + Y0), Φ =
(

z

M

)1/6

u(z), (3.60)

we find that, outside of the branes, Eq. (3.58) reduces,

d2u

dz2
+

1

z

du

dz
−

(
1 +

ν2

z2

)
u = 0, (3.61)

where ν ≡ 1/6. Eq. (3.61) is the standard modified Bessel equation [129], which has

the general solution

u(z) = aIν(z) + bKν(z), (3.62)

where Iν(z) and Kν(z) denote the modified Bessel functions, and a and b are the

integration constants, which are uniquely determined by the boundary conditions

(3.59). Since

lim
Y→Y +

c

dΦ(Y )

dY
= − lim

Y→Y −c

dΦ(Y )

dY
≡ −Φ′ (Yc) ,

lim
Y→0−

dΦ(Y )

dY
= − lim

Y→0+

dΦ(Y )

dY
≡ −Φ′(0), (3.63)

we find that the conditions (3.59) can be written in the forms,

Φ′(Yc) = −α1Φ1

(
Φ2

1 − v2
1

)
, (3.64)

Φ′(0) = α2Φ2

(
Φ2

2 − v2
2

)
. (3.65)

Inserting the above solution back to the actions (3.57), and then integrating

them with respect to Y , we obtain the effective potential for the radion Yc,

VΦ (Yc) ≡ −
∫ Yc−ε

0+ε
dY
√−g5

(
(∇Φ)2 −M2Φ2

)
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+
2∑

I=1

αI

∫ YI+ε

YI−ε
dY

√
−g

(I)
4

(
Φ2 − v2

I

)2

×δ (Y − YI)

= e−4A(Y )Φ(Y )Φ′(Y )
∣∣∣
Yc

0

+
2∑

I=1

αI

(
Φ2

I − v2
I

)2
e−4A(YI). (3.66)

In the limit that αI ’s are very large [109], Eqs. (3.64) and (3.65) show that there

are solutions only when Φ(0) ' v2 and Φ(Yc) ' v1, that is,

v1 ' (Yc + Y0)
1
6 [aIν(zc) + bKν(zc)], (3.67)

v2 ' Y
1
6

0 [aIν(z0) + bν(z0)], (3.68)

where z0 ≡ MY0 and zc ≡ M(Yc + Y0). Eqs. (3.67) and (3.68) have the solutions,

a =
1

∆

(
K(0)

ν v̄1 − k(c)
ν v̄2

)
,

b =
1

∆

(
I(c)
ν v̄2 − I(0)

ν v̄1

)
, (3.69)

where K(I)
ν ≡ Kν(zI), I(I)

ν ≡ Iν(zI), and

∆ ≡ I(c)
ν K(0)

ν − I(0)
ν K(c)

ν ,

v̄1 = v1

(
M

zc

)1/6

,

v̄2 = v2

(
M

z0

)1/6

. (3.70)

Inserting the above expressions into Eq. (3.66), we find that

VΦ (Yc) '
(

6

5

)2/3

(I (zc)− I (z0)) , (3.71)

where

I (z) ≡ a2 (ν + z) I2
ν (z) + 2abνIν(z)Kν(z)

+b2K2
ν (z). (3.72)
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3.3.2.1 MY0 À 1 When Y0 À M−1, we have z0, zc À 1. Then, we find that

[129],

Iν(z) ' ez

√
2πz

,

Kν(z) '
√

π

2z
e−z, (3.73)

for z À 1. Substituting them into Eq. (3.66), we find that

VΦ (Yc) ' M
(

6Y0

5L

)2/3 ((
v2

1 + v2
2

)
coth (zc − z0)

− 2v1v2

sinh (zc − z0)

)
. (3.74)

Thus, we find that

VΦ (Yc) ' V
(0)
Φ ×





(v1−v2)2z
2/3
0

sinh(zc−z0)
→∞, zc → z0,

v2
1z

2/3
c →∞, zc →∞,

(3.75)

where V
(0)
Φ ≡ M1/3 (6/(5L))2/3. Figs. 3.3 and 3.4 show the potential for (z0, v1, v2) =

(10, 1.0, 0.1) and (z0, v1, v2) = (30, 200, 100), respectively, from which we can see

clearly that it has a minimal. Therefore, the radion is indeed stable in our current

setup.

3.3.2.2 MY0 ¿ 1 When MY0 ¿ 1 and MYc ¿ 1, we find that [129]

Iν(z) ' zν

2νΓ(ν + 1)
,

Kν(z) ' 2ν−1Γ(ν)

zν
. (3.76)

Substituting them into Eq. (3.66), we obtain

VΦ (Yc) ' 1

3
M1/3

(
6

5L

)2/3 (v1 − v2)
2

z2ν
c − z2ν

0

. (3.77)

Clearly, in this limit the potential has no minima, and the corresponding radion is

not stable. Therefore, there exists a minimal mass for the scalar field Φ, say, Mc,

only when M > Mc the corresponding radion is stable.
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Figure 3.3: The potential defined by Eq. (3.74) in the limit of large vI and y0. In
this particular plot, we choose (z0, v1, v2)= (10, 1.0, 0.1).
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Figure 3.4: The potential defined by Eq. (3.74) in the limit of large vI and y0. In
this particular plot, we choose (z0, v1, v2)= (30, 200, 100).

It should be noted that, in the Randall-Sundrum setup [130], Yc is required to

be Yc ' 38 in order to solve the hierarchy problem. However, in the current setup

the hierarchy problem may be solved by using the ADD mechanism [105], so such

a requirement is not needed here. As a result, the physical brane is not necessarily

placed at Y = Yc. Thus, in our current setup, we can take any of the two branes as

the physical one, in which the standard matter fields are assumed to be present.
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3.3.3 Radion Mass

To calculate the radion mass, we need first to find the exact relation between

the radion field ϕ and Yc. To this end, let us consider the linear perturbations given

by [131, 132],

ds2
5 = e−2[A(Y )−F (x)]ηµνdxµdxν

−[1 + 2F (x)]2dY 2. (3.78)

Then, we find

δR5 =
2e2(A+F )

1 + 2F

[
(1− 6F )(∇F )2

+(1 + 6F )2F ] . (3.79)

Thus, we obtain

δS =
1

κ2
5

∫
dY dx4√g5δR5

=
2

κ2
5

∫ Yc

0
e−2AdY

×
∫

dx4e−2F (∇F )2(6F − 3). (3.80)

Following [131], by defining ϕ =
√

12fe−F
√

1− 2F , we obtain

δS = −1

2

∫
dx4(∇ϕ)2, (3.81)

where

f =
1

k2
5

∫ Yc

0
e−2AdY. (3.82)

Substituting Eq. (3.54) into Eq. (3.82), and in the limit F (x) → 0, we can write ϕ

as

ϕ(Yc) = 3
√

2
(

6

5

)1/6

M
3/2
5 L1/2

×
{(

Yc + Y0

L

)4/3

−
(

Y0

L

)4/3
}1/2

, (3.83)
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where M3
5 = κ−2

5 , as can be seen from Eqs. (3.32). When z0 = MY0 À 1, the

potential V (Yc) given by Eq. (3.74) has a minimum at

MYc = zc − z0 = ln
(

v1

v2

)
, (3.84)

where, without loss of generality, we has set v1 > v2.

Combining Eq. (3.74) with Eq. (3.83), we obtain the mass of ϕ, which in the

large MY0 limit is given by

mϕ =

√
∂2V

2∂ϕ2
≈ M−1/2v2

1

v2

(
Y0

L

)1/6

×
√√√√√√

ln (v1/v2)((
v1

v2

)2 − 1
)3 . (3.85)

Clearly, by properly choosing the free parameters, one can have mϕ ' TeV .

3.4 Localization of Gravity and 4D Effective Newtonian Potential

To study the localization of gravity and the four-dimensional effective grav-

itational potential, in this section let us consider small fluctuations hab of the 5-

dimensional static metric with a 4-dimensional Poincaré symmetry, given by Eq.

(3.47) in its conformally flat form.

3.4.1 Tensor Perturbations and the KK Towers

Since such tensor perturbations are not coupled with scalar ones [133], without

loss of generality, we can set the perturbations of the scalar field φ to zero, i.e.,

δφ = 0. We shall choose the gauge [134],

hay = 0, hλ
λ = 0 = ∂λhµλ. (3.86)

Then, it can be shown that [135]

δG
(5)
ab = −1

2
25hab − 3

2
{(∂cσ) (∂chab)

−2 [25σ + (∂cσ) (∂cσ)] hab} ,
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κ2
5δT

(5)
ab =

1

4

(
φ′2 + 2e2σV5

)
hab,

δT (4)
µν =

(
τ

(I)
(φ,ψ) + 2ρ

(I)
Λ

)
e2σ(yI)hµν(x, yI), (3.87)

where 25 ≡ ηab∂a∂b and (∂cσ) (∂chab) ≡ ηcd (∂cσ) (∂dhab), with ηab being the five-

dimensional Minkowski metric. Substituting the above expressions into the Einstein

field Eq. (3.7), we find that in the present case there is only one independent

equation, given by

25hµν + 3 (∂cσ) (∂chµν) = 0, (3.88)

which can be further cast in the form,

25h̃µν +
3

2

(
σ′′ +

3

2
σ′

)
h̃µν = 0, (3.89)

where hµν ≡ e−3σ/2h̃µν . Setting

h̃µν(x, y) = ĥµν(x)ψn(y),

25 = −
(
24 +∇2

y

)
= −

(
ηµν∂µ∂ν + ∂2

y

)
,

24ĥµν(x) = m2
nĥµν(x), (3.90)

we find that Eq. (3.88) takes the form of the schrödinger equation,

(
−∇2

y + V
)
ψn = m2

nψn, (3.91)

where

V ≡ 3

2

(
σ′′ +

3

2
σ′2

)

= − 21

100 (|y|+ y0)
2 +

3δ (y)

5y0

−3δ (y − yc)

5 (yc + y0)
. (3.92)

From the above expression we can see clearly that the potential has a delta-function

well at y = yc, which is responsible for the localization of the graviton on this brane.

72



V(y)

yyc
0

Figure 3.5: The potential defined by Eq. (3.92).

In contrast, the potential has a delta-function barrier at y = 0, which makes the

gravity delocalized on the y = 0 brane. Fig. 3.5 shows the potential schematically.

Introducing the operators,

Q ≡ ∇y − 3

2
σ′, Q† ≡ −∇y − 3

2
σ′, (3.93)

Eq. (3.91) can be written in the form of a supersymmetric quantum mechanics

problem,

Q† ·Qψn = m2
nψn. (3.94)

It should be noted that Eq. (3.94) itself does not guarantee that the operator Q† ·Q is

Hermitian, because now it is defined only on a finite interval, y ∈ [0, yc]. To ensure

its Hermiticity, in addition to writing the differential equation in the Shrödinger

form, one also needs to show that it has Hermitian boundary conditions, which can

be formulated as [136]

ψ′n(0)ψm(0) − ψn(0)ψ′m(0) = ψ′n (yc) ψm (yc)

−ψn (yc) ψ′m (yc) , (3.95)

for any two solutions of Eq. (3.94). To show that in the present case this condition

is indeed satisfied, let us consider the boundary conditions at y = 0 and y = yc. In-

tegration of Eq. (3.91) in the neighbourhood of y = 0 and y = yc yields, respectively,
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the conditions,

lim
y→y−c

ψ′(y) =
3

10 (yc + y0)
lim

y→y−c
ψ(y), (3.96)

lim
y→0+

ψ′(y) =
3

10y0

lim
y→0+

ψ(y). (3.97)

Note that in writing the above equations we had used the Z2 symmetry of the wave

function ψn. Clearly, any solution of Eq. (3.91) that satisfies the above boundary

conditions also satisfies Eq. (3.95). That is, the operator Q† · Q defined by Eq.

(3.93) is indeed a positive definite Hermitian operator. Then, by the usual therems

we can see that all eigenvalues m2
n are non-negative, and their corresponding wave

functions ψn(y) are orthogonal to each other and form a complete basis. Therefore,

the background is gravitationally stable in our current setup.

3.4.1.1 Zero Mode The four-dimensional gravity is given by the existence of

the normalizable zero mode, for which the corresponding wavefunction is given by

ψ0(y) = N0

( |y|+ y0

L

)3/10

, (3.98)

where N0 is the normalization factor, defined as

N0 ≡ 2

{
5

2
L

[(
yc + y0

L

)8/5

−
(

y0

L

)8/5
]}−1/2

. (3.99)

Eq. (3.98) shows clearly that the wavefunction is increasing as y increases from 0 to

yc. Therefore, the gravity is indeed localized near the y = yc brane.

3.4.1.2 Non-Zero Modes In order to have localized four-dimensional gravity,

we require that the corrections to the Newtonian law from the non-zero modes, the

KK modes, of Eq. (3.91), be very small, so that they will not lead to contradic-

tion with observations. To solve Eq. (3.91) outside of the two branes, it is found

convenient to introduce the quantities,

ψ(y) ≡ x1/2 u(x), x ≡ m (y + y0) . (3.100)
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Then, in terms of x and u(x), Eq.(3.91) takes the form,

x2d2u

dx2
+ x

du

dx
+

(
x2 − ν2

)
u = 0, (3.101)

but now with ν = 1/5. Eq. (3.101) is the standard Bessel equation [129], which

have two independent solutions Jν(x) and Yν(x). Therefore, the general solution of

Eq.(3.91) are given by

ψ = x1/2 (cJν(x) + dYν(x)) , (3.102)

where c and d are the integration constants, which will be determined from the

boundary conditions given by Eqs. (3.96) and (3.97). Setting

∆11 ≡ 2Jν (xc)− 5xcJν+1 (xc) ,

∆12 ≡ 2Yν (xc)− 5xcYν+1 (xc) ,

∆21 ≡ 2Jν (x0)− 5x0Jν+1 (x0) ,

∆22 ≡ 2Yν (x0)− 5x0Yν+1 (x0) , (3.103)

we find that Eqs. (3.96) and (3.97) can be cast in the form,




∆11 ∆12

∆21 ∆22







c

d


 = 0. (3.104)

It has non-trivial solutions only when

∆ ≡ det (∆ij) = 0. (3.105)

Fig. 3.6 shows the solutions of ∆ = 0 for x0 = my0 = 0.01, 1.0, 1000, respectively.

From this figure, two remarkable features are: (1) The spectrum of the KK towers

is discrete. (2) The KK modes weakly depend on the specific values of x0.

Table 3.1 shows the first three modes mn (n = 1, 2, 3) for x0 = 0.01, 1.0, 1000,

from which we can see that to find mn it is sufficient to consider only the case where

x0 À 1.
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Figure 3.6: The function of ∆ defined by Eq. (3.105) for x0 = my0 = 0.01, 1.0, 1000,
respectively. Note that the horizontal axis is myc.

Table 3.1: The first three modes mn (n = 1, 2, 3) for x0 = 0.01, 1.0, 1000.

x0 m1yc m2yc m3yc

0.01 3.55 6.72 9.87
1.0 3.25 6.41 9.56

1000 3.14 6.28 9.42

When x0 À 1 we find that xc = x0 + myc À 1, and that [129]

Jν(x) ' −Yν+1(x) '
√

2

πx
cos

(
x− 7

20
π

)
,

Yν(x) ' Jν+1(x) '
√

2

πx
sin

(
x− 7

20
π

)
. (3.106)

Inserting the above expressions into Eqs. (3.103) and (3.105), we obtain

∆ = −
√

4

π2x0xc

{10 (xc − x0) cos (xc − x0)

+ (4 + 25x0xc) sin (xc − x0)} , (3.107)

whose roots are given by

tan (xc − x0) = −10 (xc − x0)

4 + 25x0xc

. (3.108)

From this equation, we can see that mn satisfies the bounds

nπ

yc

< mn <
(n + 1)π

yc

, (n = 1, 2, 3, ...). (3.109)

76



Combining the above expression with Table 3.1, we find that mn is well approximated

by

mn ' nπ

(
lpl

yc

)
Mpl, (3.110)

For x0 À 1. In particular, we have

m1 ' 3.14×
(

10−19 m

yc

)
TeV

'





1 TeV, yc ' 10−19 m,

10−2 eV, yc ' 10−5 m,

10−4 eV, yc ' 10−3 m.

(3.111)

For each mn that satisfies Eq. (3.105), the wavefunction ψn(x) is given by

ψn(x) = Nnx
1/2 {∆12 (mn, yc) Jν(x)

−∆11 (mn, yc) Yν(x)} , (3.112)

where Nn ≡ Nn (mn, yc) is the normalization factor, so that

∫ yc

0
|ψn(x)|2 dy = 1. (3.113)

3.4.2 4D Newtonian Potential and Yukawa Corrections

To calculate the four-dimensional effective Newtonian potential and its correc-

tions, let us consider two point-like sources of masses M1 and M2, located on the

brane at y = yc. Then, the discrete eigenfunction ψn(x) of mass mn has an Yukawa

correction to the four-dimensional gravitational potential between the two particles

[137, 135]

U(r) = G4
M1M2

r
+

M1M2

M3
5 r

∞∑

n=1

e−mnr |ψn(xc)|2, (3.114)

where ψn(xc) is given by Eq. (3.112). When x0 = mny0 À 1, from Eq. (3.106) we

find that

Nn '
√

π2

50xcyc

,

ψn(xc) '
√

2

yc

. (3.115)
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Then, it can be seen that all terms except for the first one in Eq. (3.114) are expo-

nentially suppressed, and have negligible contributions to the 4D effective potential

U(r).

3.5 Cosmological Model

In this section, we shall apply the formulas developed in Section 3.2 to cos-

mology.

3.5.1 General Metric and Gauge Choices

The general metric for cosmology takes the form [106, 126],

ds2
5 = gabdxadxb = gMNdxMdxN − e2ω(xM)dΣ2

k, (3.116)

where M, N = 0, 1, and

dΣ2
k =

dr2

1− kr2
+ r2

(
dθ2 + sin2 θdϕ2

)
, (3.117)

where the constant k represents the curvature of the 3-space, and can be positive,

negative or zero. Without loss of generality, we shall choose coordinates such that

k = 0,±1. The metric (3.116) is invariant under the coordinate transformations,

x′N = fN
(
xM

)
. (3.118)

Using these two degrees of freedom, one can choose different gauges.

3.5.1.1 The canonical gauge In particular, in [126] the gauge was chosen such

that

g01 = 0, yI = 0, yc, (3.119)

where yI denote the locations of the two orbifold branes, with yc being a constant.

Then, the general metric can be cast in the form,

ds2
5 = N2(t, |y|)dt2 −B2(t, |y|)dy2 −B2(t, |y|)dΣ2

k, (3.120)
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where |y| is defined as that given in [126] [cf. Fig. 3.2]. By using distribution

theory, the field equations on the two branes were obtained explicitly in terms of

the discontinuities of the metric coefficients A, B and N . For the details, we refer

readers to [126]. The gauge Eq. (3.119) will be referred to as the canonical gauge.

3.5.1.2 The conformal gauge One can also choose the gauge

g00 = g11, g01 = 0, (3.121)

so that the general five-dimensional metric takes the form,

ds2
5 = e2σ(t,y)

(
dt2 − dy2

)
− e2ω(t,y)dΣ2

k. (3.122)

But with this gauge, the hypersurfaces of the two branes are not fixed, and usually

given by y = yI(t). We shall refer the gauge Eq. (3.121) to as the conformal gauge. It

should be noted that in this conformal gauge, metric (3.122) still has the remaining

gauge freedom,

t = f (ξ+) + g (ξ−) , y = f (ξ+)− g (ξ−) (3.123)

where ξ± ≡ t′ ± y′, and f (ξ+) and g (ξ−) are arbitrary functions of their indicated

arguments.

It should be noted that in [138] comoving branes were considered, and it was

claimed that the gauge freedom of Eq. (3.123) can always bring the two branes at

rest (comoving). However, from Eq. (A5) of [138] it can be seen that this is not

true (at least) at the moment of the collision, ỹ2(t) = 0, for which Eq. (A5) reduces

to f(t) = f(t) + 2, which is not satisfied for any finite function f(t). In addition,

using Eq. (3.123), one can always bring one brane at rest, as shown in [139] (See

also [138]). In this paper, we shall leave this possibility open, and choose to work

with the conformal gauge, in which the branes are located on the surfaces y = yI(t).
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3.5.2 Field Equations Outside the Two Branes

It can be shown that outside the two branes the field equations (3.19) for the

metric (3.122) have four independent components, which can be cast in the form,

ω,tt + ω,t (ω,t − 2σ,t) + ω,yy + ω,y (ω,y − 2σ,y)

= −1

6

(
φ,t

2 + φ,y
2
)
, (3.124)

2σ,tt + ω,tt − 3ω,t
2 −

(
2σ,yy + ω,yy − 3ω,y

2
)

−4ke2(σ−ω)

= −1

2

(
φ,t

2 − φ,y
2
)
, (3.125)

ω,ty + ω,tω,y − (σ,tω,y + σ,yω,t)

= −1

6
φ,tφ,y, (3.126)

ω,tt + 3ω,t
2 −

(
ω,yy + 3ω,y

2
)

+ 2ke2(σ−ω)

= 2α2e2(σ−φ). (3.127)

On the other hand, the Klein-Gordon equation (3.20) takes the form,

φ,tt + 3φ,tω,t − (φ,yy + 3φ,yω,y) = 12α2e2(σ−φ). (3.128)

3.5.3 Field Equations on the Two Branes

Eqs. (3.124) - (3.128) are the field equations that are valid in between the two

orbifold branes,

y2(t) < y < y1(t). (3.129)

The proper distance between the two branes is given by

D(t) =
∫ y1

y2

eσ(t,y)dy. (3.130)

On each of the two branes, the metric reduces to

ds2
5

∣∣∣
M

(I)
4

= g(I)
µν dξµ

(I)dξν
(I) = dτ 2

I − a2 (τI) dΣ2
k, (3.131)
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where ξµ
(I) ≡ {τI , r, θ, ϕ}, and τI denotes the proper time of the I-th brane, defined

by

dτI = eσ[tI(τI),yI(τI)]

√√√√1−
(

ẏI

ṫI

)2

dtI ,

a (τI) ≡ eω[tI(τI),yI(τI)], (3.132)

with ẏI ≡ dyI/dτI , etc. For the sake of simplicity and without of causing any con-

fusion, from now on we shall drop all the indices “I”, unless some specific attention

is needed. Then, the normal vector na and the tangential vectors ea
(µ) are given,

respectively, by

na = e2σ
(
−ẏδt

a + ṫδy
a

)
,

na = −
(
ẏδa

t + ṫδa
y

)
,

ea
(τ) = ṫδa

t + ẏδa
y , ea

(r) = δa
r ,

ea
(θ) = δa

θ , ea
(ϕ) = δa

ϕ. (3.133)

Thus, we find that

G(5)
µν = G(5)

τ δτ
µδ

τ
ν − G(5)

θ δm
µ δn

ν gmn,

E(5)
µν = E(5)

(
3δτ

µδ
τ
ν − δm

µ δn
ν gmn

)
, (3.134)

where m, n = r, θ, ϕ, and

G(5)
τ ≡ 1

3
e−2σ

(
φ,t

2 − φ,y
2
)
− 1

24

(
5 (∇φ)2 − 6V5

)
,

G(5)
θ ≡ 1

24

(
8φ,n

2 + 5 (∇φ)2 − 6V5

)
,

E(5) ≡ 1

6
e−2σ ((σ,tt − ω,tt)− (σ,yy − ω,yy)

+ke2(σ−ω)
)
, (3.135)

with

V5 ≡ 6α2e−2φ. (3.136)
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Then, it can be shown that the four-dimensional field equations on each of the two

branes take the form,

H2 +
k

a2
=

8πG

3
(ρ + τφ) +

1

3
Λ +

1

3
G(5)

τ + E(5)

+
2πG

3ρΛ

(ρ + τφ)
2 , (3.137)

ä

a
= −4πG

3
(ρ + 3p− 2τφ) +

1

3
Λ

−E(5) − 1

6

(
G(5)

τ + 3G(5)
θ

)
− 2πG

3ρΛ

[ρ (2ρ + 3p)

+ (ρ + 3p− τφ) τφ] , (3.138)

where H ≡ ȧ/a, , Λ ≡ Λ4 and G ≡ G4.

On the other hand, from Eqs. (3.45) and (3.46) we find that

φ(I)
,n = εI


κ2

5

∂V
(I)
4

∂φ
− 6αεIe

−φ +
1

2
σ

(I)
φ


 , (3.139)

(
ρ̇(I) + τ̇

(I)
φ

)
+ 3H(I)

(
ρ(I) + p(I)

)
= Π(I), (3.140)

where H(I) ≡ [da (τI) /dτI ] /a (τI), and

Π(I) ≡ εI

κ2
5

φ(I)
,τ φ(I)

,n . (3.141)

From Eqs. (3.11) and (3.133), we also find that

τ̇
(I)
φ =

φ(I)
,τ

κ2
5



κ2

5

∂V
(I)
4

∂φ
− 6αεIe

−φ



 . (3.142)

Then, Eqs. (3.139) and (3.140) can be written as

τ̇
(I)
φ = Π(I) −Q(I), (3.143)

ρ̇(I) + 3H(I)
(
ρ(I) + p(I)

)
= Q(I), (3.144)

where

Q(I) ≡ 1

2κ2
5

φ(I)
,τ σ

(I)
φ . (3.145)
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When there is only gravitational interaction between the scalar field and the perfect

fluid, we have σ
(I)
φ = 0 [cf. Es.(3.18)], and then the above equations reduce to

τ̇
(I)
φ = Π(I),

(
Q(I) = 0

)
, (3.146)

ρ̇(I) + 3H(I)
(
ρ(I) + p(I)

)
= 0,

(
Q(I) = 0

)
. (3.147)

3.6 A Particular Case

In Sec. 3.3, we considered only the case where both the bulk and the branes

are static. In this section, we shall generalize it in two different ways: (a) moving

branes in static bulk, and (b) fixed branes in time-dependent bulk. In the following,

we shall consider them separately.

3.6.1 Dynamic Branes in Static Bulk

Let us consider two orbifold branes moving along the hypersurfaces given by

yI = yI (τI) , (3.148)

while the bulk are still described by the five-dimensional metric (3.47) with

σ(y) =
1

5
ln

(
y + y0

L

)
,

φ(y) =
6

5
ln

(
y + y0

L

)
+ φ0. (3.149)

Then, from Eq. (3.135) we find that

E(5) = 0, G(5)
τ = − 3

25L2a12
,

G(5)
θ =

3

25L2a12
+ 12H2, (3.150)

where H ≡ ȧ/a. Inserting Eqs. (3.150) into Eqs. (3.137) and (3.138), we find

H2 =
8πG

3
(ρ + τφ + ρΛ)

+
2πG

3ρΛ

(ρ + τφ)
2 − 1

25L2a12
, (3.151)

ä

a
= −4πG

3
(13ρ + 3p + 10τφ + 10ρΛ)
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−2πG

3ρΛ

[8ρ + (13ρ + 5τφ) τφ + 3p (ρ + τφ)]

+
1

5L2a12
. (3.152)

On the other hand, from Eq. (3.141) we find that

Π = −6H (ρ + τφ + 2ρΛ) . (3.153)

Note that in writing the above expression, we had used Eq. (3.151). Thus, Eqs.

(3.143) and (3.144) can be cast in the form,

(ρ̇ + τ̇φ) + 3H (ρ + p) = −6H (2ρΛ + ρ + τφ) , (3.154)

(ρ̇− τ̇φ) + 3H (ρ + p) = 2Q + 6H (2ρΛ + ρ + τφ) . (3.155)

It should be noted that Eq. (3.154) can be obtained directly from Eqs. (3.151)

and (3.152), as it is expected. Therefore, among the four equations, (3.151)-(3.151)

and (3.154)-(3.154), only three of them are independent, while on each of the two

branes, there are five unknown functions, a, ρ, p, Q and V4 (or equivalent, τφ).

Thus, to have unique solutions, we need to impose two additional conditions. One

of them will be the equation of state. To study current acceleration of the universe,

we choose it to be the dust fluid, i.e.,

p = 0. (3.156)

The other condition could be obtained by specifying the potnetials V
(I)
4 (φ) on each

of the two branes, or by specifying the interaction terms Q(I). In the following, we

shall consider both possibilities separately.

Case: Q(I) 6= 0

Let us first introduce the quantities,

Ωm =
ρm

ρcr

, Ωφ =
τφ

ρcr

, ΩΛ =
ρΛ

ρcr

,

Ωa = − 1

25H2
0L

2a12
=

Ω(0)
a

a12
, (3.157)
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where ρcr ≡ 3H2
0/8πG. Then, Eqs. (3.151) and (3.154) can be written as

E2 = ΩΛ + Ωm + Ωφ + Ωa +
(Ωm + Ωφ)

2

4ΩΛ

, (3.158)

Ω∗
t = −3E (Ωm + 2Ωt + 4ΩΛ) , (3.159)

where E ≡ H/H0, Ω∗
t ≡ dΩt/d(Hτ) and

Ωt = Ωm + Ωφ, (3.160)

with the constraint,

1 = ΩΛ + Ω
(0)
t + Ω(0)

a +
Ω

(0)
t

4ΩΛ

, (3.161)

where Ω
(0)
N ’s denote their current values. On the other hand, in term of Ω

(0)
N ’s, we

find

a∗∗

a
= −5E2 − 3

2
Ωm − 3ΩmΩt

4ΩΛ

, (3.162)

Q̃ ≡ 2Q

H0ρcr

= Ω∗
m − Ω∗

φ

−3E (Ωm + 2Ωφ + 4ΩΛ) . (3.163)

If we choose the potential V4(φ) on each of the two branes as that given in Eq.

(3.57), we find that

τ
(I)
φ = αI

(
φ2 − v2

I

)2
+ 6εIακ−2

5 e−φ. (3.164)

It can be shown that the influence of the last term is negligible. So, in the following

we first ignore this term, and later come back to it. Without the second term, we

find that

Ωτ = εI
τφ

ρcr

= Ω(0,I)
τ

(
36 ln2 a− v2

I

)2
. (3.165)

Then, our fitting parameters can be chosen as

{
ΩΛ, Ω(0)

m , Ω(0)
a , vI

}
. (3.166)

To fit the above model with observational data, we use the reduced Union compila-

tion of 307 SNe supernova data [141] and BAO measurement from the SDSS data
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Figure 3.7: The marginalized contour of Ωm−Ωa for the case where the second term
in the right-hand side of Eq. (3.164) is zero.

[142, 143]. By using our numerical code, based on the publicly available MINUIT

program of CERN, we find that, for vI = 10, the best fitting is Ω(0)
m = 0.22+0.03

−0.03,

ΩΛ = 0.003+0.001
−0.001, and Ω(0)

a = −3.01×10−11+0.0025
−0.0025 with χ2 = 383.1. Figs.3.7-3.8 show

the marginalized contours of the Ω′s.

With the above best fitting values of the Ω′s and vI as initial conditions, the

future evolution of the universe is shown in Figs. 3.9.

When the second term in Eq. (3.164) is not ignored, the best fitting is given

by Ω(0)
m = 0.21+0.01

−0.01, Ω(0)
a = 0.06+0.03

−0.03, ΩΛ = 0.003+0.005
−0.001, Ω′

φ = −0.006+0.006
−0.003, and

Ω0
p = −0.3218, where Ωτ = Ωφ + Ωp, Ωφ = Ω0

φ/a
6, and Ωp = Ω0

p (36 ln a2 − v2
I )

2
/v4

I .

With these best fitting values of the Ω′s as the initial conditions, the future evolution

of the universe is shown in Fig.3.10, which are indistinguishable from these given by

Fig. 3.9.

Case: Q(I) = 0

When Q = 0, for p = 0 Eqs. (3.154) and (3.155) yield,

Ω∗
t = −3E (Ωm + 2Ωt + 4ΩΛ) , (3.167)

Ωm =
Ω(0)

m

a3
, (3.168)
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a∗∗/a ≡ (d2a/d(H0τ)2)/a for the case where the second term in the right-hand side
of Eq. (3.164) is not zero.

while Eqs. (3.151) and (3.152) still take the same forms as these given by Eqs.

(3.158) and (3.162) for the case Q 6= 0, i.e.,

E2 = ΩΛ + Ωt + Ωa +
Ω2

t

4ΩΛ

, (3.169)

a∗∗

a
= −5E2 − 3

2
Ωm − 3ΩmΩt

4ΩΛ

. (3.170)

In this case, our fitting parameters can be chosen as

{
ΩΛ, Ω(0)

m , Ω(0)
a

}
. (3.171)

Because the model can’t fit the observations well for this case, I will not show

the numerical values here in detail.

3.6.2 Fixed Branes in Time-dependent Bulk

Another way to generalize our static brane solution studied in Section IV is

first to make the following coordinate transformations of the type of Eq. (3.123)

[126],

t

L
= f (t̄ + ȳ) + g (t̄− ȳ) ,
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y + y0

L
= f (t̄ + ȳ)− g (t̄− ȳ) , (3.172)

where f and g are arbitrary functions of their indicated arguments. Without loss of

generality, we shall assume that

f ′g′ > 0, (3.173)

where a prime denotes the ordinary derivatives with respect to their indicated argu-

ments. Then, in terms of t̄ and ȳ the five-dimensional metric (3.47) takes the form

of Eq. (3.122) with k = 0 and

σ(t, y) =
1

5
ln (F −G) +

1

2
ln

(
4L2F ′G′) ,

ω(t, y) =
1

5
ln (F −G) ,

φ(t, y) =
6

5
ln (F −G) + ln (5αL) , (3.174)

where F ≡ f(t + |y|) and G ≡ g(t− |y|), with |y| being defined as that in Fig. 3.2.

Note that in writing the above expressions we had first drapped the bars from t̄ and

ȳ, and then replaced y by |y|. Then, the normal vectors to the branes are given by

n(I)
a = eσ(t,yI)δy

a, (3.175)

where y1 = yc > 0 and y2 = 0. For the sake of convenience, we introduce the

auxiliary function b(t, y) via the relation,

b(t, y) ≡ (F + G)5 , (3.176)

so that b (τI) = b (t (τI) , yI). Then, we find that

F ′ (t (τI) , yI) =
5

2

(
dτI

dt

) (
b4ḃ + a4ȧ

)
,

G′ (t (τI) , yI) =
5

2

(
dτI

dt

) (
b4ḃ− a4ȧ

)
, (3.177)

where ȧ ≡ da/dτI , etc. Then, combining the above expressions with Eq. (3.132) we

find that

ḃ2

a8
− ȧ2

b8
=

1

25L2a10b8
. (3.178)
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Hence, Eq. (3.135) yields

E(5) = 0, G(5)
θ = − 3

25L2a12
,

G(5)
τ = 12

(
a

b

)10

H2
b −

9

25L2a12
, (3.179)

where Hb ≡ ḃ/b. Since G(5)
µν [cf. Eq. (3.22)] represents the projection of the 5D

energy-mumentum tensor onto the brane through the field equations, the above

expressions show clearly that such terms affect the evolution of the branes only in

the early universe.

Inserting the above expresions into Eqs. (3.137)-(3.138) and Eqs. (3.143) and

(3.144), we obtain the exact expressions as these given by Eqs. (3.151)-(3.152) and

Eqs. (3.154)-(3.155). This remarkable feature is due to the very fact that in both

cases we consider the dynamics of the most general branes in the same 5-dimensional

background. Therefore, we can study brane cosmology either with the dynamical

branes or with the fixed ones. The only difference is that in the case of fixed branes,

an auxiliary function b(τ) nis introduced, which satisfies Eq. (3.178). Inserting Eq.

(3.151) into Eq. (3.178) we obtain,

H2
b =

8πG

3

(
a

b

)10
[
(ρ + ρΛ + τφ) +

1

4ρΛ

(ρ + τφ)
2

]
. (3.180)
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CHAPTER FOUR

Brany Cosmology in String Theory on S1/Z2

The theory of brany cosmology in Hořava-Witten heterotic M-theory on S1/Z2

can be applied in the framework of string theory. In this section I will give a systemic

investigation of brany cosmology of string theory on S1/Z2 [107]

4.1 The Model

For the toroidal compactification of the Neveu-Schwarz/Neveu-Schwarz (NS-

NS) sector in (5+5) dimensions, M̂10 = M5 × T5, where T5 is a 5-dimensional torus,

the action takes the form [153, 154],

Ŝ10 = − 1

2κ2
10

∫
d10x

√
|ĝ10|e−Φ̂

{
R̂10[ĝ]

+ĝAB
(
∇̂AΦ̂

) (
∇̂BΦ̂

)
− 1

12
Ĥ2

}
, (4.1)

where ∇̂A denotes the covariant derivative with respect to ĝAB with A,B = 0, 1, ..., 9,

and Φ̂ is the dilaton field. The NS three-form field ĤABC is defined as

ĤABC = 3∂[AB̂BC], (4.2)

where the square brackets imply total antisymmetrization over all indices. The

10-dimensional spacetimes to be considered are described by the metric,

dŝ2
10 = ĝABdxAdxB

= g̃ab (xc) dxadxb + hij (xc) dzidzj, (4.3)

where g̃ab is the metric on M5, parametrized by the coordinates xa with a, b, c =

0, 1, ..., 4, and hij is the metric on the compact space T5 with periodic coordinates

zi, where i, j = 5, 6, ..., 9.
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By assuming that all the matter fields are functions of xa only, it can be shown

that the effective 5−dimensional action is given by,

S5 = − 1

2κ2
5

∫
d5x

√
|g̃5|e−φ̃

{
R̃5[g̃] +

(
∇̃aφ̃

) (
∇̃aφ̃

)

+
1

4

(
∇̃ah

ij
) (
∇̃ahij

)
− 1

12
H̃abcH̃

abc

−1

4
hikhjl

(
∇̃aBij

) (
∇̃aBkl

)}
, (4.4)

where

φ̃ = Φ̂− 1

2
ln |h| , (4.5)

κ2
5 ≡ κ2

10

V0

, (4.6)

with the 5−dimensional internal volume given by

V (xa) ≡
∫

d5z
√
|h| = |h|1/2V0. (4.7)

Note that in writing the action (4.4) we had assumed that the flux is block diagonal,

(
B̂CD

)
=




B̃ab 0

0 Bij


 . (4.8)

The action (4.4) is usually referred to as written in the string frame. To go to the

Einstein frame, we make the following conformal transformations,

gab = Ω2g̃ab,

Ω2 = exp
(
−2

3
φ̃

)
,

φ =

√
2

3
φ̃. (4.9)

Then, the action (4.4) takes the form

S
(E)
5 = − 1

2κ2
5

∫
d5x

√
|g5|

{
R5[g]− 1

2
(∇φ)2

+
1

4

(
∇ah

ij
)

(∇ahij)

− 1

12
e−
√

8
3
φHabcH

abc

−1

4
hikhjl (∇aBij) (∇aBkl)

}
, (4.10)
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where ∇a denotes the covariant derivative with respect to gab. It should be noted

that, since the definition of the three-form ĤABC given by (4.2) is independent of

the metric, it is conformally invariant. In particular, we have Habc = H̃abc and

Bab = B̃ab. However, we do have

Habc = gadgbegcfHdef = Ω−6H̃abc,

HabcH
abc = Ω−6H̃abcH̃

abc. (4.11)

Considering the addition of a potential term [154], in the string frame we have

Ŝm
10 = −

∫
d10x

√
|ĝ10|V s

10. (4.12)

Then, after the dimensional reduction we find

S5,m = −V0

∫
d5x

√
|g̃5| |h|1/2V s

10, (4.13)

where

g̃5 = exp




√
50

3
φ


 g5. (4.14)

Changed to the Einstein frame, the action (4.13) finally takes the form,

S
(E)
5,m = − 1

2κ2
5

∫
d5x

√
|g5|V5, (4.15)

where

V5 ≡ 2κ2
5V0V

s
10 exp

(
5√
6

φ

)
|h|1/2. (4.16)

If we further assume that

hij = − exp




√
2

5
ψ


 δij,

hij = − exp


−

√
2

5
ψ


 δij, (4.17)

we find that

S
(E)
5 + S

(E)
5,m = − 1

2κ2
5

∫
d5x

√
|g5| {R5[g]
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−1

2

(
(∇φ)2 + (∇ψ)2 − 2V5

)

−1

4
e−
√

8
5

ψδikδjl (∇aBij) (∇aBkl)

− 1

12
e−
√

8
3

φHabcH
abc

}
, (4.18)

where the effective 5−dimensional potential (4.14) now becomes

V5 ≡ V 0
(5) exp


 5√

6
φ +

√
5

2
ψ


 , (4.19)

where V 0
(5) ≡ 2κ2

5V0V
s
10.

To study orbifold branes, we consider the brane actions,

S
(I)
4,m = −

∫

M
(I)
4

√∣∣∣g(I)
4

∣∣∣
(
εIV

(I)
4 (φ, ψ) + g(I)

s

)
d4ξ(I)

+
∫

M
(I)
4

d4ξ(I)

√∣∣∣g(I)
4

∣∣∣

×L(I)
4,m (φ, ψ, B, χ) , (4.20)

where I = 1, 2, V
(I)
4 (φ, ψ) denotes the potential of the scalar fields φ and ψ, and ξµ

(I)’s

are the intrinsic coordinates of the I-th brane with µ, ν = 0, 1, 2, 3, and ε1 = −ε2 = 1.

χ denotes collectively the matter fields, and g(I)
s is a constant, which is related to

the four-dimensional Newtonian constant via the relation given by Eq.(4.39) below.

The variation of the total action,

Stotal = S
(E)
5 + S

(E)
5,m +

2∑

I=1

S
(I)
4,m, (4.21)

with respect to the metric gab yields the field equations,

G
(5)
ab = κ2

5T
(5)
ab + κ2

5

2∑

I=1

T (I)
µν e(I, µ)

a e
(I, ν)
b

×
√√√√√

∣∣∣∣∣∣
g

(I)
4

g5

∣∣∣∣∣∣
δ (ΦI) , (4.22)

where δ(x) denotes the Dirac delta function normalized in the sense of [125], and

the two branes are localized on the surfaces,

ΦI (xa) = 0. (4.23)
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The energy-momentum tensors T
(5)
ab and T (I)

µν are given by

κ2
5T

(5)
ab ≡ 1

2
[(∇aφ) (∇bφ) + (∇aψ) (∇bψ)

+
1

2
e−
√

8
5

ψ
(
∇aB

ij
)

(∇bBij)

+
1

2
e
√

8
3

φHacdH
cd

b

]

−1

4
gab

[
(∇φ)2 + (∇ψ)2 − 2V5

1

2
e−
√

8
5

ψ
(
∇cB

ij
)

(∇cBij)

+
1

6
e
√

8
3

φHcdeH
cde

]
,

T (I)
µν ≡ τ (I)

µν +
(
g(I)

s + τ
(I)
(φ,ψ)

)
g(I)

µν ,

τ (I)
µν ≡ 2

δL(I)
4,m

δg(I) µν
− g(I)

µν L(I)
4,m, (4.24)

where Bij ≡ δikδjlBkl,

τ
(I)
(φ,ψ) ≡ εIV

(I)
4 (φ, ψ),

e
(I) a
(µ) ≡ ∂xa

∂ξµ
(I)

,

e(I, µ)
a ≡ gabg

(I) µνe
(I) b
(ν) , (4.25)

and g(I)
µν is the reduced metric on the I-th brane, defined as

g(I)
µν ≡ gabe

(I)a
(µ) e

(I)b
(ν)

∣∣∣
M

(I)
4

. (4.26)

Variation of the total action Eq.(4.21) with respect to φ, ψ and B, respectively,

yields the following equations of the matter fields,

2φ = −∂V5

∂φ
− 1

12

√
8

3
e−
√

8
3

φHabcH
abc

−2κ2
5

2∑

I=1


εI

∂V
(I)
4

∂φ
+ σ

(I)
φ




×
√√√√√

∣∣∣∣∣∣
g

(I)
4

g5

∣∣∣∣∣∣
δ (ΦI) , (4.27)
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2ψ = −∂V5

∂ψ
−

√
1

10
e−
√

8
5

ψ
(
∇aB

ij
)

(∇aBij)

−2κ2
5

2∑

I=1


εI

∂V
(I)
4

∂ψ
+ σ

(I)
ψ




×
√√√√√

∣∣∣∣∣∣
g

(I)
4

g5

∣∣∣∣∣∣
δ (ΦI) , (4.28)

2Bij =

√
8

5
(∇aψ) (∇aBij)

−
2∑

I=1

Ψ
(I)
ij

√√√√√
∣∣∣∣∣∣
g

(I)
4

g5

∣∣∣∣∣∣
δ (ΦI), (4.29)

∇cHcab =

√
8

3
Hcab∇cφ

−
2∑

I=1

Φ
(I)
ab

√√√√√
∣∣∣∣∣∣
g

(I)
4

g5

∣∣∣∣∣∣
δ (ΦI), (4.30)

where 2 ≡ gab∇a∇b, and

σ
(I)
φ ≡ −δL(I)

4,m

δφ
,

σ
(I)
ψ ≡ −δL(I)

4,m

δψ
,

Ψ
(I)
ij ≡ −4κ2

5e
√

8
5

ψ δL(I)
4,m

δBij
,

Φ
(I)
ab ≡ −4κ2

5e
√

8
3

φ δL(I)
4,m

δBab
. (4.31)

Like we did in section 3.2.3, the 4-dimensional Einstein tensor can be represent

as,

G(4)
µν = G(5)

µν + E(5)
µν + F (4)

µν , (4.32)

where

G(5)
µν ≡ 2

3

{
G

(5)
ab ea

(µ)e
b
(ν)

−
[
Gabn

anb +
1

4
G(5)

]
gµν

}
,

E(5)
µν ≡ C

(5)
abcdn

aeb
(µ)n

ced
(ν),
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F (4)
µν ≡ KµλK

λ
ν −KKµν

−1

2
gµν

(
KαβKαβ −K2

)
, (4.33)

where na denotes the normal vector to the brane, G(5) ≡ gabG
(5)
ab , and C

(5)
abcd the Weyl

tensor. The extrinsic curvature Kµν is defined as

Kµν ≡ ea
(µ)e

b
(ν)∇anb. (4.34)

A crucial step of this approach is the Lanczos equations [156],

[
K(I)

µν

]− − g(I)
µν

[
K(I)

]−
= −κ2

5T (I)
µν , (4.35)

where

[
K(I)

µν

]− ≡ limΦI→0+K(I) +
µν − limΦI→0−K(I) −

µν ,

[
K(I)

]− ≡ g(I) µν
[
K(I)

µν

]−
. (4.36)

Assuming that the branes have Z2 symmetry, we can express the intrinsic

curvatures K(I)
µν in terms of the effective energy-momentum tensor T (I)

µν through the

Lanczos equations (4.35). Then, we find that G(4)
µν given by Eq.(4.32) can be cast in

the form,

G(4)
µν = G(5)

µν + E(5)
µν + E (4)

µν

+κ2
4τµν + Λgµν + κ4

5πµν , (4.37)

where

πµν ≡ 1

4

{
τµλτ

λ
ν −

1

3
ττµν

−1

2
gµν

(
ταβταβ − 1

3
τ 2

)}
,

E (4)
µν ≡ κ4

5

6
τ(φ,ψ)

[
τµν +

(
gs +

1

2
τ(φ,ψ)

)
gµν

]
,

(4.38)
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and

κ2
4 =

1

6
gsκ

4
5,

Λ =
1

12
g2

sκ
4
5. (4.39)

For a perfect fluid,

τµν = (ρ + p) uµuν − pgµν , (4.40)

where uµ is the four-velocity of the fluid, we find that

πµν =
ρ

6

[
(ρ + p) uµuν −

(
p +

1

2
ρ
)

gµν

]
. (4.41)

Note that in writing Eqs.(4.37)-(4.41), without causing any confusion, we had dropped

the super indices (I).

In the rest of this part, we shall turn off the flux, i.e., B̂CD = 0, which is

consistent with the field equations, provided that Ψ
(I)
ij = 0 and Φ

(I)
ab = 0.

4.2 The General Metric of the Five-Dimensional Spacetimes

Since we shall apply such spacetimes to cosmology, let us first consider the

embedding of a 3-dimensional spatial space that is homogeneous, isotropic, and

independent of time. It is not difficult to show that such a space must have a

constant curvature and its metric takes the form [157],

dΣ2
k =

dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)
, (4.42)

where the constant k represents the curvature of the 3-space, and can be positive,

negative or zero. Without loss of generality, we shall choose coordinates such that

k = 0,±1. Then, one can see that the most general metric for the five-dimensional

spacetime must take the form,

ds2
5 = gabdxadxb = gMNdxMdxN − e2ω(xN)dΣ2

k, (4.43)
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where M,N = 0, 1. Clearly, the metric (4.43) is invariant under the coordinate

transformations,

x′N = fN
(
xM

)
. (4.44)

Using these two degrees of freedom, without loss of generality, we can always set

g00 = g11, g01 = 0, (4.45)

so that the five-dimensional metric finally takes the form,

ds2
5 = e2σ(t,y)

(
dt2 − dy2

)
− e2ω(t,y)dΣ2

k. (4.46)

It should be noted that metric (4.46) is still subjected to the gauge freedom,

t = f(t′ + y′) + g(t′ − y′), y = f(t′ + y′)− g(t′ − y′), (4.47)

where f(t′ + y′) and g(t′ − y′) are arbitrary functions of their indicated arguments.

It is also interesting to note that in [155] a different gauge was used. Instead

of setting g00 = g11 it was chosen that the two branes are comoving with the coor-

dinates, so that they are located on two fixed hypersurfaces y = 0, yc. For details,

see [155].

4.3 The Field Equations Outside the Two Orbifold Branes

The non-vanishing components of the Ricci tensor outside of the two branes

are given by

R
(5)
tt = σ,yy + 3σ,yω,y − [σ,tt + 3ω,tt + 3ω,t (ω,t − σ,t)] ,

R
(5)
ty = −3 [ω,ty + ω,tω,y − (σ,tω,y + σ,yω,t)] ,

R(5)
yy = σ,tt + 3σ,tω,t − [σ,yy + 3ω,yy + 3ω,y (ω,y − σ,y)] ,

R(5)
mn = −e−2σgmn

{
ω,tt + 3ω,t

2 −
(
ω,yy + 3ω,y

2
)

+2ke2(σ−ω)
}

, (4.48)

99



where now m, n = r, θ, ϕ, σ,t ≡ ∂σ/∂t and so on. Then, it can be shown that

outside of the two branes the field equations have four independent components,

which can be cast into the form,

ω,tt + ω,t (ω,t − 2σ,t) + ω,yy + ω,y (ω,y − 2σ,y)

= −1

6

[(
φ,t

2 + φ,y
2
)

+
(
ψ,t

2 + ψ,y
2
)]

, (4.49)

2σ,tt + ω,tt − 3ω,t
2 −

(
2σ,yy + ω,yy − 3ω,y

2
)
− 4ke2(σ−ω)

= −1

2

[(
φ,t

2 − φ,y
2
)

+
(
ψ,t

2 − ψ,y
2
)]

, (4.50)

ω,ty + ω,tω,y − (σ,tω,y + σ,yω,t)

= −1

6
(φ,tφ,y + ψ,tψ,y) , (4.51)

ω,tt + 3ω,t
2 −

(
ω,yy + 3ω,y

2
)

+ 2ke2(σ−ω)

=
1

3
e2σV5, (4.52)

where V5 is given by Eq.(4.19). On the other hand, the Klein-Gordon equations

(4.27) and (4.28) outside the two branes take the form,

φ,tt + 3φ,tω,t − (φ,yy + 3φ,yω,y)

= − 5√
6

V5e
2σ, (4.53)

ψ,tt + 3ψ,tω,t − (ψ,yy + 3ψ,yω,y)

= −
√

5

2
V5e

2σ. (4.54)

4.4 The Field Equations on the Two Orbifold Branes

Eqs.(4.48) - (4.54) are the field equations that are valid in between the two

orbifold branes, y2(t2) < y < y1(t1), where y = yI(tI) denote the locations of the

two branes. The proper distance between the two branes is given by,

D ≡
∫ y1

y2

√
−gyydy. (4.55)

On each of the two branes, the metric reduces to

ds2
5

∣∣∣
M

(I)
4

= g(I)
µν dξµ

(I)dξν
(I) = dτ 2

I − a2 (τI) dΣ2
k, (4.56)
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where ξµ
(I) ≡ {τI , r, θ, ϕ}, and τI denotes the proper time of the I-th brane, defined

by

dτI = eσ

√√√√1−
(

ẏI

ṫI

)2

dtI ,

a (τI) ≡ exp {ω [tI(τI), yI(τI)]} , (4.57)

with ẏI ≡ dyI/dτI , etc. For the sake of simplicity and without causing any confusion,

from now on we shall drop all the indices “I”, unless some specific attention is needed.

Then, the normal vector na and the tangential vectors ea
(µ) are given, respectively,

by

na = εe2σ
(
−ẏδt

a + ṫδy
a

)
,

na = −ε
(
ẏδa

t + ṫδa
y

)
,

ea
(τ) = ṫδa

t + ẏδa
y , ea

(r) = δa
r ,

ea
(θ) = δa

θ , ea
(ϕ) = δa

ϕ, (4.58)

where ε = ±1. When ε = +1, the normal vector na points toward the increasing

direction of y, and when ε = −1, it points toward the decreasing direction of y.

Then, the four-dimensional field equations on each of the two branes take the form,

H2 +
k

a2
=

8πG

3

(
ρ + τ(φ,ψ)

)
+

1

3
Λ +

1

3
G(5)

τ + E(5)

+
2πG

3ρΛ

(
ρ + τ(φ,ψ)

)2
, (4.59)

ä

a
= −4πG

3

(
ρ + 3p− 2τ(φ,ψ)

)
+

1

3
Λ

−E(5) − 1

6

(
G(5)

τ + 3G(5)
θ

)
− 2πG

3ρΛ

[ρ (2ρ + 3p)

+
(
ρ + 3p− τ(φ,ψ)

)
τ(φ,ψ)

]
, (4.60)

where H ≡ ȧ/a, ρΛ ≡ Λ4/(8πG4), and

G(5)
τ ≡ 1

3
e−2σ

[(
φ,t

2 + ψ,t
2
)
−

(
φ,y

2 + ψ,y
2
)]

− 1

24

{
5

[
(∇φ)2 + (∇ψ)2

]
− 6V5

}
,
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G(5)
θ ≡ 1

24

{
8

(
φ,n

2 + ψ,n
2
)
− 6V5

+5
[
(∇φ)2 + (∇ψ)2

]}
,

E(5) ≡ 1

6
e−2σ [(σ,tt − ω,tt)− (σ,yy − ω,yy)

+ke2(σ−ω)
]
, (4.61)

with φ,n ≡ na∇aφ. If the typical size of the extra dimensions is R, then it can be

shown that

ρΛ =
Λ4

8πG4

= 3

(
R

lpl

)10 (
M10

Mpl

)16

Mpl
4, (4.62)

where Mpl and lpl denote the Planck mass and length, respectively. If M10 is in the

order of TeV [158], we find that, in order to have ρΛ be in the order of its current

observations value ρΛ ' 10−47 GeV 4, the typical size of the extra dimensions should

be R ' 10−22 m, which is well below the current experimental limit of the extra

dimensions [159].

4.5 A Particular Case

In this section, we consider a specific solution of the five-dimensional bulk and

the corresponding Friedmann equations on the orbifold branes.

4.5.1 Exact Solutions in the Bulk

It can be shown that the following solution satisfies the field equations in the

bulk,

σ(t) =
1

9
ln(t) +

1

2
ln

(
7

6

)
,

ω(t) =
10

9
ln(t),

φ(t) = − 5

18

√
6 ln(t) + φ0,

ψ(t) = −
√

10

6
ln(t) + ψ0, (4.63)
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Q

Figure 4.1: The Penrose diagram for the metric given by Eq.(4.65) in the text, where
the spacetime is singular at t = 0. The curves OPA and OQA describes the history
of the two orbifold branes located on the surfaces y = yI(τI) with I = 1, 2. The bulk
is the region between these two lines.

for k = −1, where

φ0 =

√
6

5



ln


 2

3V 0
(5)


−

√
5

2
ψ0



 , (4.64)

with ψ0 being an arbitrary constant. Then, the corresponding 5-dimensional metric

takes the form,

ds2
5 =

(
7

6

)
t2/9

(
dt2 − dy2

)
− t20/9dΣ2

−1. (4.65)

Clearly, the spacetime is singular at t = 0 where all the four spatial dimensions

collapse into a point singularity, a big bang like. This can be seen more clearly from

the expression,

ψ,aψ
,a =

3

5
φ,aφ

,a =
5

21
t−20/9. (4.66)

The corresponding Penrose diagram is given by Fig. 4.1.

Lifting the solution to the 10-dimensional superstring spacetime, we find that

in the string frame the metric (4.3) takes the form,

dŝ2
10 = ĝABdxAdxB

= e
√

2
3

φ0

{(
7

6

)
t−1/3

(
dt2 − dy2

)
− t5/3dΣ2

−1

}

−e
√

2
5

ψ0t−1/3δijdzidzj. (4.67)
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The corresponding dilaton field is given by

Φ̂ = −5

3
ln(t) + Φ̂0, (4.68)

where Φ̂0 ≡
√

3/2 φ0 +
√

5/2 ψ0, from which we find

Φ̂,AΦ̂,A =
50

21
e−
√

2
3

φ0t−5/3. (4.69)

Clearly, it is also singular at t = 0, but with a weaker strength in comparing to that

of the five-dimensional spacetime given by Eq.(4.19). A critical difference is that

in the string frame the proper distance along the y-direction becomes decreasing as

t increases, in contrast to that in the Einstein frame, as can be seen clearly from

Eqs.(4.65) and (4.67).

4.5.2 Generalized Friedmann Equations on The Branes

On the other hand, from Eq.(4.61) we find that

E(5) = − 1

42a2
, G(5)

τ =
31

126a2
,

G(5)
θ =

20

81a9/5
ẏ2 − 13

378a2
, (4.70)

where now a(τ) = t10/9(τ), and ẏ is given by

ẏ = εya
9/10

[(
9

10

)2

H2 − 6

7a2

]1/2

, (4.71)

with εy = ±1. Inserting Eqs.(4.70) and (4.71) into Eqs.(4.59) and (4.60), we find

that

H2 =
8πG

3

(
ρ + τ(φ,ψ) + ρΛ

)
+

200

189a2

+
2πG

3ρΛ

(
ρ + τ(φ,ψ)

)2
, (4.72)

ä

a
=

4πG

5

(
3ρΛ + 3τ(φ,ψ) − 2ρ− 5p

)

−2πG

3ρΛ

[
1

10

(
ρ + τ(φ,ψ)

)2
+ ρ (2ρ + 3p)

+
(
ρ + 3p− τ(φ,ψ)

)
τ(φ,ψ)

]
. (4.73)

104



It is remarkable to note that these two equations do not depend on both ε defined in

Eq.(4.58) and εy defined in Eq.(4.71). Combining Eqs.(4.72) and (4.73), we obtain

(
ρ̇ + τ̇(φ,ψ)

)
+ 3H (ρ + p) = − H

20∆


4

(
ρ + ρΛ + τ(φ,ψ)

)
+

(
ρ + τ(φ,ψ)

)2

ρΛ


 ,(4.74)

where

∆ ≡ 1 +
1

2ρΛ

(
ρ + τ(φ,ψ)

)
. (4.75)

Eq.(4.74) shows clearly the interaction among the matter fields confined on the

branes and the bulk. This can also be seen from Eq.(4.70).

4.5.3 Current Acceleration of the Universe

To study current acceleration of the universe, we first set

p = 0, (4.76)

and then introduce the quantities,

Ωm =
ρm

ρcr

, Ωτ =
τ(φ,ψ)

ρcr

, ΩΛ =
ρΛ

ρcr

,

Ωk =
200

189H2
0a

2
=

Ω
(0)
k

a2
, (4.77)

where ρcr ≡ 3H2
0/8πG. It should be noted the slight difference between Ωk defined

here and the one normally used, Ωk = −k/(H2
0a

2). Then, Eqs.(4.72), (4.74) and

(4.71) can be written as

E2 = ΩΛ + Ωt + Ωk +
Ωt

2

4ΩΛ

, (4.78)

Ω∗
t = −E

∆

{
1

5
(ΩΛ + 16Ωt − 15Ωτ )

+
Ωt

20ΩΛ

(31Ωt − 30Ωτ )
}

, (4.79)

y∗ = εy

(
9

10

) 
Ω

(0)
k

Ωk




9/20

×
√√√√ΩΛ + Ωt +

Ωt
2

4ΩΛ

, (4.80)
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where E ≡ H/H0, y∗ ≡ dy/d(H0τ), and

Ωt = Ωm + Ωτ , (4.81)

with the constraint,

1 = Ω
(0)
k + ΩΛ + Ω

(0)
t +

Ω
(0)
t

2

4ΩΛ

, (4.82)

where Ω
(0)
N ’s denote their current values. On the other hand, in terms of Ω’s, we find

a∗∗

a
=

3

10
(3ΩΛ − 2Ωt + 5Ωτ )

+
3Ωt

40ΩΛ

(7Ωt − 10Ωτ ) . (4.83)

To study Eqs.(4.78)-(4.80) and (4.83) further, we need to specify Ωτ . In the following,

we shall consider two different cases.

4.5.3.1 V
(I)
4 = V 0

(4) exp
{

n
2

(
5√
6

φ +
√

5
2

ψ
)}

If we choose the potential V
(I)
4 (φ, ψ)

on each of the two branes as [cf. Eq.(4.19)],

V
(I)
4 = V 0

(4) exp





n

2


 5√

6
φ +

√
5

2
ψ






 , (4.84)

where V 0
(4) and n are arbitrary constants, we find that

Ωτ = εI

V 0
(4)

ρcr


 2

3V 0
(5)




n/2
1

an
≡ Ω(0)

τ

an
. (4.85)

Then, our fitting parameters in this case can be chosen as

{
ΩΛ, Ω(0)

m , Ω
(0)
k

}
, (4.86)

for any given n.

Fitting the above model to the 182 gold supernova Ia data [147] and the BAO

parameter from SDSS [148], by using our numerical code [149], based on the publicly

available MINUIT program of CERN, we find that, for n = 1, the best fitting is

Ωm = 0.24± 0.03
0.03, ΩΛ = 0.76± 0.37

0.27, and Ωk = 0.00± 0.05
0.00 with χ2 = 172.4. Figs. 2-4
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Figure 4.2: The marginalized contour of Ωm−ΩΛ for the potential given by Eq.(4.84)
with n = 1.
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Figure 4.3: The marginalized contour of Ωm−Ωk for the potential given by Eq.(4.84)
with n = 1.

show the marginalized contours of the Ω’s, from which we can see that the effect of

the interaction between the bulk and the brane is negligible, and the later evolution

of the universe follows more or less the same pattern as that of the ΛCDM model in

the Einstein theory of gravity.

For n = 3.5, we find that the best fitting is Ωm = 0.27± 0.03
0.03, ΩΛ = 0.58± 0.11

0.12,

and Ωk = 0.00± 0.06
0.00 with χ2 = 164.2. Figs. 4.2-4.7 show the marginalized contours

of the Ω’s.

The above shows clearly that the case with n = 3.5 is observationally more
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Figure 4.4: The marginalized contour of Ωk−ΩΛ for the potential given by Eq.(4.84)
with n = 1.
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Figure 4.5: The marginalized contour of Ωm−ΩΛ for the potential given by Eq.(4.84)
with n = 3.5.
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Figure 4.6: The marginalized contour of Ωm−Ωk for the potential given by Eq.(4.84)
with n = 3.5.
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Figure 4.7: The marginalized contour of Ωk−ΩΛ for the potential given by Eq.(4.84)
with n = 3.5.
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Figure 4.8: The evolution of the matter components, Ωi’s, for the potential given by
Eq.(4.84) with n = 3.5.

favorable than that of n = 1. We have also fitted the data with various values of n,

and found that the best fitting value of n is about n = 3.5.

With the above best fitting values of the Ω’s and n as initial conditions, the

future evolution of the universe is shown in Figs. 8 and 9, from which we can see that

all of them, except for ΩΛ, decreases rapidly, and ΩΛ soon dominates the evolution

of the universe, whereby a de Sitter universe is resulted.

From the metrics of Eqs.(4.65) and (4.67), on the other hand, one may naively

conclude that the radion in the present case is not stable, as the proper distance

given by Eq.(4.55) seems either to increases to infinity (in the Einstein frame, given

by Eq.(4.65)) or to decreases to zero (in the string frame, given by Eq.(4.67)), as

t → ∞. A closer investigation shows that the problem is not as simple as it looks

like. In particular, since yI = yI(τI), Eq.(4.55) makes sense only when the relation

τ1 = τ1(τ2) is known. In the present case, we transform such a dependence to the

expansion factor a, and plot it out in Fig. 4.10, together with yI(a), from which

we can see clearly that the distance between the two branes remains almost con-

stant. This indicates that the radion might be stable. Certainly, before a definitive

conclusion is reached, more detailed investigations are needed.
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tential given by Eq.(4.84) with n = 3.5.
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Figure 4.11: The marginalized probabilities and contours for the potential given by
Eq.(4.84) with n = 3.5.

We also fit the above model with n = 3.5 by using our Monte-Carlo Markov

Chain (MCMC) code [150], based on the publicly available package COSMOMC

[160], and find that the best fitting is Ωm = 0.27 ± 0.04
0.03, ΩΛ = 0.61 ± 0.09

0.10, and

Ω̃k = −0.0026± 0.2339
0.2396 with χ2 = 164.10, where

Ωk ≡ Ω̃2
k. (4.87)

The corresponding marginalized probabilities and contours are given in Fig.

4.11. Clearly, these best fitting values are consistent with those obtained above by

using our MINUIT code [149].

4.5.3.2 V
(I)
4 = λ

(I)
4 (ψ2 − vI

2)
2

To stabilize the radion, Goldberger and Wise

proposed to choose the potential V
(I)
4 as [109],

V
(I)
4 (φ, ψ) = λ

(I)
4

(
ψ2 − vI

2
)2

, (4.88)

where λ
(I)
4 and vI

2 (I = 1, 2) are constants. Then, we find that

Ω(I)
τ = Ω(0,I)

τ




(
3√
40

ln(a)

)2

− vI
2




2

, (4.89)

where Ω(0,I)
τ ≡ εIλ

(I)
4 /ρcr. Note that in writing the above expressions, without loss
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Table 4.1: The best fitting values of Ωi for a given vI of the potential given by
Eq.(4.88).

vI χ2 Ωm Ω̃k ΩΛ ΩΛ + Ωτ

0.1 171.28 0.25±0.03
0.04 −0.0009±0.21

0.22 0.72±0.05
0.05 0.73

0.3 168.10 0.29±0.05
0.05 −0.0006±0.41

0.41 1.06±0.15
0.17 0.47

0.5 157.50 0.29±0.04
0.04 −0.008±0.46

0.44 1.28±0.31
0.28 0.70

1.0 156.69 0.29±0.03
0.04 −0.002±0.52

0.52 1.64±0.71
0.48 0.64

3.0 156.38 0.28±0.03
0.04 −0.008±0.53

0.56 1.93±1.01
0.73 0.57

10.0 166.35 0.28±0.05
0.03 −0.002±0.62

0.62 1.97±2.17
0.74 0.56

of any generality, we had set ψ0 = 0. Then, the fitting parameters can be taken as,

{
ΩΛ, Ω(0)

m , Ω
(0)
k , vI

}
. (4.90)

Fitting the above model to the 182 gold supernova Ia data [147] and the BAO

parameter from SDSS [148], we first study the dependence of χ2 on vI . Table 4.1

shows such a dependence and the best fitting values of Ωi’s for each given vI .

From the table we can see that χ2 decreases until vI ' 3.0 and then starts

to increase, as vI is continuously increasing. However, ΩΛ and its uncertainty also

increase as vI is increasing, while Ωm and Ωk remain almost the same. Since Ωτ

acts as a varying cosmological constant, Table 4.1 shows that the total effective

cosmological constant Ωeff.
Λ ≡ ΩΛ + Ωτ is between 0.47 and 0.73.

Fig. 4.12 shows the marginalized probabilities and contours for the potential

given by Eq.(4.88) with vI = 0.5, and Fig. 4.13 shows the future evolution of

the corresponding acceleration of the universe. From there we can see that the

acceleration increases to a maximal value and then starts to decrease. As the time is

continuously increasing, it will pass the zero point and then becomes negative. Thus,

in the present model, the domination of the cosmological constant is only temporary.

Due to the presence of the potential term, represented by Ωτ , the universe will be in

its decelerating expansion phase again in the future, whereby all problems connected

with a far future de Sitter universe are resolved [146]. The effects of Ωτ can be seen
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Figure 4.12: The marginalized probabilities and contours for the potential given by
Eq.(4.88) with vI = 0.5.

clearly from Fig. 4.14, from which we can see that both Ωm and Ωk decrease rapidly,

and soon Ωτ dominates the evolution of the universe.

These are the common features for any given value of vI . Figs. 4.15, 4.16,

and 4.17 show, respectively, the marginalized probabilities and contours, the future

evolution of a∗∗/a and of Ωi for vI = 0.1.

In addition, we also find that the proper distance between the two orbifold

branes defined by Eq.(4.55) is not sensitive to the choice of vI , and remains almost

constant during the future evolution of the universe, as shown in Fig. 4.18. This

also indicates that the radion might be stable in the present case, too.
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Figure 4.14: The future evolution of Ωi for the potential given by Eq.(4.88) with
vI = 0.5.
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Figure 4.16: The acceleration a∗∗/a for the potential given by Eq.(4.88) with
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Figure 4.17: The future evolution of Ωi for the potential given by Eq.(4.88) with
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CHAPTER FIVE

Conclusions and Future Work

5.1 Conclusions

In this dissertation, I discussed two subjects:

• Highly effective and efficient parameter estimation algorithms and their ap-

plications to cosmology.

• The late cosmic acceleration of the universe in string/M theory on S1/Z2.

In Part I, I first developed two highly effective and efficient numerical codes,

and then apply them to study the holographical dark energy model and the ΛCMD

model with curvature. By fitting these models with the most recent observational

data sets, I find various tight constraints on the cosmological parameters involved

in the models.

In part II, I study the late cosmic acceleration of the universe in the framework

of brane worlds with orbifold symmetry in both the Hořava-Witten heterotic M

theory and the string theory on S1/Z2. In each of the two theories, I first develop

the general formulas to describe orbifold branes, and then systematically study the

two most important issues in brane worlds: (1) the radion stability and radion mass;

and (2) the localization of gravity, the effective 4-dimensional Newtonian potential

and its Yukawa corrections due to the high order Kaluza-Klein (KK) modes. I find

that the radion is stable in both theories and its mass is in the order of GeV, which

is well above the current observation constraint. The gravity is always localized on

the visible (TeV) brane, and the spectra of the gravitational KK towers are discrete

and have a mass gap of TeV. The contributions of high order Yukawa corrections

to the Newtonian constant are negligible. Using the large extra dimensions in our
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setups, I also show that the cosmological constant can be lowered to its current

observational value. Applying the formulas to cosmology, I study several models in

both M theory and string theory on S1/Z2, and find that a late transient acceleration

of the universe is a generic feature of our setups. This desirable feature is the result

of the interaction of the bulk and the brane.

5.2 Future Work

In our work, we did consider the backreaction of the Goldberger-Wise field Φ

in the radion stability. In the Randall-Sandrum model [130], it was shown that such

effects do not change the main conclusions of the stability of radion [140]. It would

be very interesting to show that it is also the case here. It is also very important to

study constraints from other physical considerations, such as the solar system tests,

the formation of large-scale structure, and the early universe.
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