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Observational Constraints, Exact Plane Wave Solutions, and Exact Spherical
Solutions in Einstein-Aether Theory
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Mentor: Anzhong Wang, Ph.D.

There are theoretical reasons to suspect that Lorentz-invariance, a cornerstone

of modern physics, may be violated at very high energy levels. To study the effects

of Lorentz-invariance in the classical regime, we consider Einstein-aether theory, a

modified theory of gravity in which the metric is coupled to a unit timelike vector

field called the "aether." This vector field picks out a preferred frame of reference,

and generates a "matter-like" stress-energy tensor Tæµν . The theory is associated with

solutions for black holes and gravitational waves that differ from those of Einsteinian

General Relativity. We investigate both the observational constraints on the parame-

ters of the theory as well as the consequences of the theory for plane wave radiation,

and the gravitational collapse of the aether itself. We find that the four coupling

constants of the theory (ci, i=1,2,3,4) are tightly constrained by astronomical obser-

vations, and while multiple plane wave solutions exist most of them are ruled out by

observation, leaving several viable candidates, a few of which are the same as General

Relativity. For vacuum spherically-symmetric solutions, for the first time we find a

simple, closed-form solution for static aether which does not violate the constraints.
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CHAPTER ONE

Introduction

1.1 Galilean Invariance and the Principle of Relativity

The principle of relativity says that the laws of physics (i.e. the equations of a

theory) do not change form from one reference frame to another, for some suitably-

defined set of reference frames. In Newtonian mechanics, embodied by the equation

F = m
dv

dt
, (1.1)

(where we assume constant mass) the suitable reference frames are inertial frames

(frames in which Newton’s first law holds) moving with respect to each other at con-

stant velocity, and are related to each other via Galilean coordinate transformations.

For an inertial frame K with coordinates (t,x), a Galilean transformation to another

frame K̄ with coordinates (t̄, x̄), moving at velocity w with respect to K is given by

t̄ = t, (1.2)

x̄ = x−wt.

Under such a coordinate transformation, Eq.(1.1) becomes:

F̄ = m
dv̄

dt̄
, (1.3)

where

v̄ =
dx̄

dt̄
, (1.4)

And F is an invariant (under the Galilean transformation). Since the laws of physics

are the same (i.e. Eqs.(1.1) and (1.3) have the same form), Newtonian physics obey

Galilean invariance. Newton assumed the existence of an absolute time and space,

but he did not define what this absolute frame was or seem to consider it of great
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importance in itself as it could not be experimentally distinguished from other inertial

frames anyway [1].

But not all of nature obeys Galilean invariance. Consider classical electrody-

namics. Maxwell’s equations expressed in an arbitrary inertial reference frame K with

coordinate system (t,x) have the form:

∇ · E =
ρ

ε0
, (1.5)

∇ ·B = 0,

∇× E = −∂B

∂t
,

∇×B = µ0

(
J + ε0

∂E

∂t

)
.

However, under a Galilean transformation of the form of Eq.(1.2), Maxwell’s equations

become [2]

∇̄ · Ē =
ρ̄

ε0
−w · (∇̄ × B̄), (1.6)

∇̄ · B̄ = 0,

∇̄ × Ē = −∂B̄

∂t̄
,

∇̄ × B̄ = µ0J̄ +
1

c2

∂Ē

∂t̄
− µ0ρ̄w −

1

c2
(w · ∇̄)Ē− w

c2
×
[(

∂

∂t̄
−w · ∇̄

)
B̄

]
.

Note that the magnetic Gauss’s law and Faraday’s law are invariant under the Galilean

transformation, but that Ampere’s law and the electric Gauss’s law are not in general

invariant under a Galilean transformation, as new terms are introduced which are

proportional to w (or components thereof)–the velocity with which this new frame is

moving with respect to the old (initially arbitrary) frame. This makes the old frame

(of Eqs.(1.5)) a preferred frame (under Galilean transformations), in which the

physics, as well as the form of physical laws, is notably simpler.
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1.2 Lorentz Invariance

Lorentz and Einstein realized that Maxwell’s laws obeyed a different symmetry,

Lorentzian symmetry. Under a Lorentz transformation (neglecting rotations) from K

to K̄ of the form

t̄ = γ
(
t− w · x

c2

)
, (1.7)

x̄ = x + (γ − 1)(x · ŵ)ŵ − γwt, (1.8)

where

γ =
1√

1− w2

c2

, (1.9)

Maxwell’s equations become

∇̄ · Ē =
ρ̄

ε0
, (1.10)

∇̄ · B̄ = 0, (1.11)

∇̄ × Ē = −∂B̄

∂t̄
, (1.12)

∇̄ × B̄ = µ0J̄ +
1

c2

∂Ē

∂t̄
. (1.13)

Which is the same as Eqs.(1.5), so the form of the physical laws is invariant un-

der a Lorentz transformation of the form of Eq.(1.7). Maxwell’s equations are also

rotationally-invariant, so the laws of classical electrodynamics is invariant under the

full Lorentz transformations.

Like Galilean invariance, under Lorentz invariance (LI) there is no laboratory

test one could perform in an inertial frame to determine whether one is at "absolute

rest" or not, so there is no preferred frame. As we will see later, Einstein-aether theory

explicitly defines a notion of absolute rest with respect to a preferred frame.

1.3 Why Study Lorentz Invariance Violation?

The Standard Model (SM) of particle physics is also built on LI, being a mar-

riage of SR and quantum mechanics (QM). The SM is considered the most accurate
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theory in the history of science. Predictions in quantum electrodynamics (QED) are

accurate up to a number of decimal places limited only by the number of perturba-

tive terms, and deviations from LI in the matter sector (as modelled by minimum SM

extensions–mSME) are very tightly constrained [17]. GR and its associated symme-

tries (LI, WEP, SEP) have been tested to the limits of current technology and found

accurate (assuming galactic rotation curves, gravitational lensing phenomena such

as the Bullet Cluster, and the acceleration of the expansion of the Universe can be

adequately modelled by Dark Matter–DM–via extra mass and Dark Energy–DE–via

a cosmological constant) [9]. So why study LI violation?

In the early 1970s, Thorne and Will wrote a series of papers [3, 4, 5] about a

systematic way to test GR–which at the time was only just beginning to be subjected

to rigorous Solar System tests–beyond the initial tests suggested by Einstein; of grav-

itational redshift, precession of the perihelion of Mercury, and gravitational lensing.

They wrote that

One might think that we should merely continue to measure these
and other non-Newtonian, general-relativistic effects to higher and
higher accuracy; and only if a discrepancy between experiment and
theory is found should we begin to consider other theories.
This would be a reasonable approach if we had enormous confidence
in general relativity; but we do not–at least, some of us don’t. So we
would prefer to design the experiments to be as unbiased as possible;
we would like to see them force us, with very few a priori assumptions
about the nature of gravity, toward general relativity or some other
theory. And, of course, this can happen only if we first open our minds
to a wide variety of theoretical possibilites.

At the time that was written the lack of confidence in GR from some quar-

ters was due to lack of rigourous experimental testing to truly distinguish GR from

alternative theories of gravity (which also made similar predictions of gravitational

redshift, perihelion precession, and gravitational lensing). But today physicists have

great confidence in GR. However, we know that it can’t be the final theory of gravity

because we know that it is incomplete. Classical GR solutions like the Schwarzschild
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metric are geodesically incomplete and cannot predict what happens at singularities.

It also allows for the possibility of closed timelike loops, violating causality. Likewise

we know that the SM is incomplete (it cannot account for DM or DE). Also, the two

theories do not agree with each other, and nearly every attempt to create a quantum

theory of gravity requires the breaking of LI. The Lorentz transformations are contin-

uous symmetries, whereas in quantum physics space and time are discretized. String

theory, loop quantum gravity, Hořava-Lifshitz gravity, etc. all indicate a breaking of

LI. While the two theories, GR and the SM are very accurate in every domain ex-

plored thus far, we know that there must be a more general, more accurate theory

that encompasses them both. So in the attempt to solve the outstanding problems of

modern fundamental physics–DE, DM, QG–we must consider many possibilities, as

Will and Thorne wrote. This includes considering whether there really is a preferred

frame in the Universe.

1.4 Metric Theories of Gravity and the PPN Formalism

The theory of general relativity (GR), which incorporates gravity and spacetime

curvature, maintains local LI as well as general covariance. On a smooth spacetime,

on any given point a coordinate system exists in which the metric is Minkowskian

at that point, and in free-falling frames a lab-centered coordinate system can be

found in which the metric is Minkowskian along its trajectory, and the laws of SR

are recovered for non-gravitational physics. In local LI, the physics shouldn’t depend

on the relative velocity of the laboratory frame with respect to any other frame. We

could thus consider GR at the linearized level to compare it to other theories, but it

is more helpful to examine GR at the Post-Newtonian level.

Developed throughout the 20th century by different authors in various param-

eterizations, the modern parameterization was formulated by Will and Nordtvedt

[6, 7]. The idea is to perform something like a Taylor expansion of the metric of a
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given matter source (such as a point mass or perfect fluid) about the Minkowski met-

ric in orders of ε ∼ v2/c2 ∼ U ∼ p/ρ ∼ Π where v is the coordinate velocity of the

matter, ρ is the mass density, p is the pressure, and Π is the internal energy density

(neglecting gravitational self-energy), all measured in a frame co-moving with the

matter. There are many variants on the formalism and many ways of parameterizing

the different PPN metrics, but all metric theories of gravity can be discussed in terms

of the PPN Parameters such as γ, β, ξ, αn, and ζn.

The PPN Parameters have physical interpretations [6, 8, 9], in that γ can be

thought of as a measure of how much spacetime curvature is induced by a unit mass,

β tells us how much nonlinearity there is in the law of superposition for gravity, ξ

is the preferred location parameter (deviations from translation invariance), αn are

the preferred frame parameters (deviations from LI), and ζn tell us about violations

of conservation of momentum. For GR, γ = β = 1 and all other parameters are

zero, while it varies for other theories. As we will see, in Einstein-aether theory all

parameters are the same as in GR, except for the preferred frame parameters α1 and

α2.

For example (using the parameterization of [6], in which ξ = 0), if we construct

the PPN metric for a perfect fluid in a reference frame K with coordinates (t,x) we

have:

g00 = 1− 2U + 2βU2 − (2γ + 2 + α3 + ζ1)Φ1 + ζ1A (1.14)

− 2[(3γ + 1− 2β + ζ2)Φ2 + (1 + ζ3)Φ3 + 3(γ + ζ4)Φ4],

g0j =
1

2
(4γ + 3 + α1 − α2 + ζ1)Vj +

1

2
(1 + α2 − ζ1)Wj,

gij = −(1 + 2γU)δij.

Where U is the Newtonian potential; A, Vj, Wj, and Φn (n=1,2,3,4) are other poten-

tials generated by the matter, mass density, pressure, and internal energy.
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It is not important to understand every detail of these tensor components, what

is important is to see what happens after a Lorentz transformation (really a post-

Galilean transformation, which is like a Taylor expansion of a Lorentz transformation)

is performed on Eq.(1.14). Specifically, this will be a Lorentz boost from the frame

K to a frame K̄ moving at velocity w with respect to it [6]:

t̄ = t(1 +
1

2
w2 +

3

8
w4)− x ·w(1 +

1

2
w2) +O(ε2.5)× t, (1.15)

x̄ = x− (1 +
1

2
)wt+

1

2
(x ·w)w +O(ε2)× x.

After performing a transformation of the form of Eq.(1.15) on the perfect fluid PPN

metric of Eq.(1.14) we find:

g00 = 1− 2U + 2βU2 − (2γ + 2 + α3 + ζ1)Φ1 + ζ1A (1.16)

− 2[(3γ + 1− 2β + ζ2)Φ2 + (1 + ζ3)Φ3 + 3(γ + ζ4)Φ4]

+ (α1 − α2 − α3)w2U + α3w
iwjUij − (2α3 − α1)wiVi,

g0j =
1

2
(4γ + 3 + α1 − α2 + ζ1)Vj +

1

2
(1 + α2 − ζ1)Wj

+
1

2
(α1 − 2α2)wjU + α2w

iUij,

gij = −(1 + 2γU)δij.

Upon comparison with the original, un-transformed PPN metric we see that

new terms have been introduced, all of which are proportional to w (or components

thereof). This indicates that the (arbitrarily chosen, asymptotically Minkowskian)

reference frame of Eq.(1.14) is a preferred frame of a general metric theory of gravity.

The only way for all such terms to vanish, and thus to make a metric theory of gravity

free of preferred frames and be Lorentz invariant, is for α1 = α2 = α3 = 0. However,

if any of the αn is non-zero, then the results of gravitational physics experiments will

depend on the velocity of the reference frame with respect to the "absolute" preferred

reference frame of the Universe, which breaks boost invariance.
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There is a straightforward (though long and tedious) procedure for obtaining

the PPN Parameters of a given theory in terms of the other parameters unique to that

theory (such as coupling coefficients in the Lagrangian). The actual values of the PPN

Parameters can be measured experimentally in a (metric) theory-independent way via

Solar System observations and thus any theory that requires PPN Parameter values

greater than that allowed by observation is ruled out, and this has happened to other

theories in the past [6]. In practice, as will be seen in Chapter 2 of this dissertation,

constraints on the PPN Parameters often serve as constraints on the parameters of

the theory (other than PPN) in question rather than unambiguously invalidating

it. Current constraints on the preferred frame parameters are that |α1| < 10−4 and

|α2| < 10−7 in the weak (Solar System) field.

1.5 Preferred-Frame Effects

It can be shown [7, 8] that in a metric theory of gravity the results of Cavendish-

type experiments would depend not on Newton’s constant, but on an effective New-

ton’s constant that would vary depending on the velocity of one’s reference frame

with respect to the Universe. For example, in a theory where γ = β = 1, α1 and α2

are arbitrary, and all other parameters vanish (as in Einstein-aether theory) we have

[7, 8]:

Geff = G

[
1− 1

2c2

(
(α1 − α2)w2 + α2[w · n̄]2

)]
, (1.17)

Where we neglect external potentials as well as the aether-induced stress-energy ten-

sor. G is the G that appears in the Lagrangian of the theory, n̄ is a unit vector from

the central mass (for example the Earth) to a test mass (for example a gravimeter),

and as before w is the velocity of the central mass with respect to the preferred frame.

As the laboratory frame on the surface of the Earth rotates, Geff varies period-

ically, this anisotropy in Geff leads to periodic variations in the measurement of local

gravitational acceleration g, analogous to tides caused by the Moon and the Sun but
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distinct from it. More periodic variation is caused by the Earth’s motion around the

sun.

It was also be shown by Nordtvedt et al [12] that a non-zero value of the

preferred frame parameter α1 induces a term in the Lagrangian of an N-body system

given by:

Lα1 = −α1

4

∑
A6=B

GMAMB

c2rAB
(wA ·wB), (1.18)

where MA are the masses of the bodies, rAB is the position coordinate vector in

the Solar System center-of-mass frame, and wA is the velocity of the A’th body

with respect to the preferred frame. This leads to a perturbation of the three-body

equations of motion between the Earth, Moon, and Sun, causing oscillations in the

Earth-Moon distance that would be absent if there were no preferred frame. Lunar

laser ranging to measure this oscillation gives the constraint:

|α1| ∼ O(10−4). (1.19)

In a prior paper by Nordtvedt [13] it was shown that if there is a non-zero value of the

preferred frame parameter α1, then any oblate, spinning astronomical body moving

at velocity w with respect to the preferred frame experiences a torque τ given by:

τ = 2α2Trot(ω̂ ·w)ω̂ ×w/c2, (1.20)

Where Trot is the rotational kinetic energy and ω̄ is a unit vector point along the

rotational axis. This induces a precession of the body’s spin axis about w at the rate:

Ω = 2α2

(
Trot
Jrot

)
ŵ · ω̂

(w
c

)2

. (1.21)

Where Jrot is the rotational angular momentum of the body. This effects the angle

between the Sun’s spin axis and the angular momentum axis of the Solar System

as a whole, which can be measured (see [13] for the messy details) and places the

constraint on α2 given by:

|α2| ∼ O(10−7). (1.22)
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These are weak field preferred frame effects. In strong fields, for theories with

a preferred frame it can be difficult to see how the predictions of those theories differ

with respect to GR in general, and calculations must be done on a case-by-case basis,

such as with exact solutions to the field equations, higher-order PN expansions, or

numerical relativity.

1.6 Einstein-aether Theory

The Einstein field equations (EFE) of GR are given by:

Gab + Λgab =
8πG

c4
Tmatterab , (1.23)

Where the left hand side of the equation is the "geometry side" (Einstein tensor) and

the right hand side is the "matter side" (stress-energy tensor). All tensor components

are at most second-order in derivatives. The Λ term is the cosmological constant term,

and while it was measured to be non-zero at the end of the 1990s it is generally set

to zero for non-cosmological problems because it is so small (except where otherwise

noted, we will set Λ = 0 in this dissertation). The EFEs can be derived in a variety

of ways, but from a theoretical physics standpoint perhaps the most germane is the

Euler-Lagrange approach, whereby the EFEs are generated by varying the Einstein-

Hilbert action:

S = Smatter +

∫
dx4
√
−gLGR, (1.24)

LGR =
c4

16πG
R,

(1.25)

where R is the Ricci scalar and sources the Einstein tensor Gab while the matter action

sources the stress-energy tensor Tab and depends on the problem under consideration.

In vacuum we neglect it. In principle there is no reason to exclude other scalars

constructed from the Riemann tensor from the Lagrangian, but the Einstein-Hilbert

action is the only one that generates the original EFEs. Metric theories of gravity
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will, in general, include other scalar terms in their Lagrangians and that is how new

theories are developed. Einstein-aether theory was constructed from the ground up to

be the simplest (but also general) Lorentz-violating theory with a dynamical preferred

frame, with second-order derivatives [17, 21, 22]. 1

In addition to the dynamical field of the metric, it introduces a dynamical

timelike vector field ua which has unit length everywhere. This vector field is dubbed

"the aether" since it permeates all of spacetime (though it has nothing to do with

the luminiferous aether of 19th-century physics). The aether sources a congruence of

curves which "picks out" a preferred time direction at every point on the spacetime,

and thus a preferred frame. An arbitrary observer (that is not co-moving with the

aether) has velocity w with respect to this preferred frame, leading to the preferred

frame effects of Section 1.4.

Such a vector-tensor theory can be constructed by creating scalar terms for the

Lagrangian, via contractions with the Riemann and Ricci tensors. For example Will

and Nordtvedt constructed a vector-tensor theory by simply including every possible

scalar term second-order in derivatives in the Lagrangrian [6]:

LLV = Lmatter + k1R + k2uau
aR + k3uaubR

ab + k4∇bua∇bua (1.26)

+ k5u∇bua∇aub + k6∇au
a∇bub,

Where the kn would be constant coefficients that would be constrained by the obser-

vational values of the PPN Parameters. The k3 term can be expressed as a difference

of the k5 and k6 terms up to a total derivative (see Eq.(1.40)), so it is not an indepen-

dent term and can be dropped without losing generality [22]. Using this fact, as well

as a suitable redefinition of the coefficients, the Einstein-aether Lagrangian is given

1 In most theories with a preferred frame, the rest frame of the Cosmic Microwave Background
(CMB) is taken to be the preferred frame, and in fact the Earth’s velocity with respect to the CMB
is measured to be ∼ 369 km/s [10]. While this assumption holds for Einstein-aether theory as well
it is not, in principle, a necessary one.
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(in the diag(−1, 1, 1, 1) metric) as

Læ =
c4

16πG

[
−Kab

mn∇au
m∇bu

n + λ(gabu
aub + 1)

]
(1.27)

Where λ is a Lagrange multiplier that enforces the timelike nature of ua (the whole

λ term can be thought of as a "potential" of the "field" uaua [17]), and the tensor

Kab
mn is given by

Kab
mn = c1g

abgmn + c2δ
a
mδ

b
n + c3δ

a
nδ

b
m − c4u

aubgmn, (1.28)

Where four coupling constants ci’s are all dimensionless, and G is related to the

Newtonian constant GN via the relation2 [24],

GN =
G

1− 1
2
c14

. (1.29)

Combinations of the constants such as c1 +c3 show up regularly in the field equations,

and so appear as c1 + c3 = c13, c1 + c4 = c14, etc. This makes the total action:

S = Smatter +

∫
dx4
√
−g(LGR + Læ) (1.30)

Then, the variation of the above action with respect to gab yields

Gab =
8πG

c4
Tmatterab + Tæab . (1.31)

So the aether vector field itself induces something like a stress-energy tensor given by

Tæab ≡ − 1√
−g

δ(
√
−g(Læ))

δgab

= ∇c

[
J c(aub) + J(ab)u

c − u(bJ
c

a)

]
+c1

[
(∇auc) (∇bu

c)− (∇cua) (∇cub)
]

+c4aaab + λuaub −
1

2
gabJ

d
c∇du

c, (1.32)

where Jab and aa are defined by

Jab = Kac
bd∇cu

d, aa = ub∇bu
a. (1.33)

2 Eq.(1.29) was derived at the linearized level in a frame comoving with the aether.
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In addition, the variation of the action with respect to ua yields the aether field

equations,

Æa =
1√
−g

δ (
√
−gLæ)

δua

= ∇bJ
b
a + c4ab∇au

b + λua = 0, (1.34)

while its variation with respect to λ gives,

uaua = −1. (1.35)

From Eqs.(1.34) and (1.35) we find that

λ = ub∇aJ
ab + c4a

2. (1.36)

In vacuum, the EFE in GR reduce to:

Gab = 0. (1.37)

However, it is important to note that the aether stress-energy tensor given by Eq.(1.32)

does not vanish in vacuum, as the aether itself induces spacetime curvature much the

same as matter-energy would. The non-zero right-hand side of Eq.(1.31) plus the

aether dynamics of Eq.(1.34) often results in over-determined field equations, making

it difficult to find exact solutions.

1.7 Implications for Quantum Gravity

If the aether vector field ua is restricted to be hypersurface-orthogonal, then

Einstein-aether theory becomes the khronometric theory of gravity. The khronomet-

ric theory differs from Einstein-aether theory in that as the aether is hypersurface-

orthogonal it has zero twist, thus the c4 term in the Lagrangian drops. This results in

there being no spin-1 wave mode. Also, in the khronometric theory, wave modes can

travel at infinite speeds whereas in pure Einstein-aether theory, wave modes travel at

finite speeds.
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Einstein-aether and the khronometric theories are the low-energy limit of a

quantum gravity theory called Hor̀ava-Lifshitz gravity [19, 45], which has extra terms

in the Lagrangian that are irrelevant at low energies. Hor̀ava-Lifshitz gravity is a

power-counting renormalizable theory, and in general any solution of the khronometric

theory is a solution of it.

1.8 Organization of Dissertation

In Chapter Two (which is based on [14]) we discuss the most current obser-

vational constraints on the coefficients of Einstein-aether theory, stemming from the

detection of a NS-NS collision detected by LIGO, Virgo, and other astronomical obser-

vatories in both gravitational and electromagnetic spectra, which greatly constrained

the (possible) difference in the speed of gravity to the speed of light to one part in

1015. The work in this chapter was previously published as a first-author article by the

author of this dissertation (Oost) and co-authored by Professor Shinji Mukohyama

at Kyoto University’s Yukawa Institute and Professor Anzhong Wang. The work was

a roughly even split.

In Chapter Three (which is based on [15]) we present exact plane wave solu-

tions in Einstein-aether theory, each solution depending on a particular choice of ci

parameters. Some of the solutions are equivalent to that of GR in which the form

of the wave is arbitrary, but most of the solutions take a particular form, and some

of the solutions are ruled out by observations as outlined in Chapter Two. The work

in this chapter was previously published as a first-author article by the author of

this dissertation, and co-authored by Madhurima Bhattacharjee (a graduate student

at Baylor University), and Wang. Approximately 70% of the work was done by the

author of this dissertation, with all of the equations and derivations being checked by

Bhattacharjee and the initial formulation of the problem and introductory work by

Wang.
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In Chapter Four we present several exact spherically symmetric solutions, in-

cluding a closed-form parameterization of a known static solution that had hitherto

been expressed in a set of intractable inverse functions. This chapter is written by

the author of this dissertation, with minor edits and the initial formulation of the

problem by Wang, and with helpful discussions from Mukohyama.

In Chapter Five we discuss the future of Einstein-aether theory in light of the

new constraints, and plans for more exact solutions in spherical symmetry.

1.9 Conventions

Throughout this dissertation we use the following conventions. Except where

noted, we use Roman indices (a, b, c, ...) or Greek indices (µ, ν, ...) for 0 to 3, whereas

Roman indices (i, j, k, ...) run from 1 to 3.

The Minkowski metric ηab and signature is given by:

ηab = diag(−1, 1, 1, 1) (1.38)

The symmetric metric connection Γabc is defined by:

Γabc =
1

2
gad
(
∂gbd
∂xc

+
∂gdc
∂xb
− ∂gbc

xd

)
(1.39)

The Riemann curvature tensor Ra
bcd is defined by:

[∇c,∇d]V
a = (∂cΓ

a
bd − ∂dΓabc + ΓaceΓ

e
bd + ΓadeΓ

e
bc)V

b (1.40)

= Ra
bcdV

b

The Ricci tensor is defined by:

Rab = Rc
acd (1.41)

The Einstein tensor Gab is given by:

Gab = Rab −
1

2
gabR (1.42)

15



CHAPTER TWO

Constraints on Einstein-aether Theory After GW170817

This chapter published as [14]: J. Oost, S. Mukohyama, A. Wang, "Constraints
on Einstein-aether theory after GW170817," Phys. Rev. D 97, 124023 (2018)

In this chapter, we carry out a systematic analysis of the theoretical and obser-

vational constraints on the dimensionless coupling constants ci (i = 1, 2, 3, 4) of the

Einstein-aether theory, taking into account the events GW170817 and GRB 170817A.

The combination of these events restricts the deviation of the speed cT of the spin-2

graviton to the range, −3× 10−15 < cT − 1 < 7× 10−16, which for the Einstein-aether

theory implies |c13| ≤ 10−15 with cij ≡ ci + cj. The rest of the constraints are divided

into two groups: those on the (c1, c14)-plane and those on the (c2, c14)-plane, except

the strong-field constraints. The latter depend on the sensitivities σæ of neutron stars,

which are not known at present in the new ranges of the parameters found in this

chapter.

2.1 Introduction

The invariance under the Lorentz symmetry group is a cornerstone of modern

physics and strongly supported by experiments and observations [16]. Nevertheless,

there are various reasons to construct gravitational theories with broken Lorentz

invariance (LI) [17]. For example, if space and/or time at the Planck scale are/is

discrete, as currently understood [18], Lorentz symmetry is absent at short distance/-

time scales and must be an emergent low energy symmetry. A concrete example of

gravitational theories with broken LI is the Hořava theory of quantum gravity [19],

in which the LI is broken via the anisotropic scaling between time and space in the

ultraviolet (UV), t→ b−zt, xi → b−1xi, (i = 1, 2, ..., d), where z denotes the dynami-

cal critical exponent, and d the spatial dimensions. Power-counting renormalizability
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requires z ≥ d at short distances, while LI demands z = 1. For more details about

Hořava gravity, see, for example, the recent review [20].

Another theory that breaks LI is the Einstein-aether theory [21], in which LI

is broken by the existence of a preferred frame defined by a time-like unit vector

field, the so-called aether field. The Einstein-aether theory is a low energy effective

theory and passes all theoretical and observational constraints by properly choosing

the coupling constants of the theory [21, 22], including the stability of the Minkowski

spacetime [23], the abundance of the light elements formed in the early universe [24],

gravi-Čerenkov effects [25], the Solar System observations [26], binary pulsars [28, 29],

and more recently gravitational waves [30].

Among the 10 parameterized post-Newtonian (PPN) parameters [9], in the

Einstein-aether theory the only two parameters that deviate from general relativity

are α1 and α2, which measure the preferred frame effects. In terms of the four di-

mensionless coupling constants ci’s of the Einstein-aether theory, they are given by

[26],

α1 = − 8(c2
3 + c1c4)

2c1 − c2
1 + c2

3

,

α2 =
1

2
α1 −

(c1 + 2c3 − c4)(2c1 + 3c2 + c3 + c4)

c123(2− c14)
, (2.1)

where cij ≡ ci + cj and cijk = ci + cj + ck. In the weak-field regime, using lunar laser

ranging and solar alignment with the ecliptic, Solar System observations constrain

these parameters to very small values [9],

|α1| ≤ 10−4, |α2| ≤ 10−7. (2.2)

Considering the smallness of αA (A = 1, 2), it may be convenient to Taylor

expand Eq.(2.1) with respect to αA to obtain

c2 = −c13(2c1 − c3)

3c1

+O(αA) , c4 = −c
2
3

c1

+O(αA) . (2.3)
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If terms of order O(αA) and higher are small enough to be neglected then the four-

dimensional parameter space spanned by ci’s reduces to two-dimensional one. Until re-

cently, the strongest constraints on the Einstein-aether theory were (2.2) and thus this

treatment was a good approximation. Then, using the order-of-magnitude arguments

about the orbital decay of binary pulsars, Foster estimated that |c1± c3| . O (10−2),

by further assuming that ci � 1 [28]. More detailed analysis of binary pulsars showed

that c13 . O (10−2), |c1 − c3| . O (10−3) (See Fig. 1 in [29]).

However, the combination of the gravitational wave event GW170817 [31], ob-

served by the LIGO/Virgo collaboration, and the one of the gamma-ray burst GRB

170817A [32], provides much more severe constraint on c13. In fact, these events imply

that the speed of the spin-2 mode cT must satisfy the bound, −3× 10−15 < cT − 1 <

7× 10−16. In the Einstein-aether theory, the speed of the spin-2 graviton is given by

c2
T = 1/(1− c13) [23], so the GW170817 and GRB 170817A events imply

|c13| < 10−15. (2.4)

This is much smaller than the limits of Eq.(2.2). As a result, if we still adopt the

Taylor expansion with respect to αA then Eq.(2.3), for example, can no longer be

approximated only up to the zeroth-order of αA. Instead, it must be expanded at

least up to the fourth-order of α1, the second-order of α2 (plus their mixed terms),

and the first-order of c13, in order to obtain a consistent treatment. Otherwise, the

resulting errors would become much larger than |c13|, due to the omissions of the

terms higher in αA, and the results obtained in this way would not be trustable.

In this chapter, we shall therefore Taylor expand all constraints other than

(2.4) with respect to c13, keep only terms zeroth order in c13 by setting c13 ' 0 in

those expressions, and let c1, c2 and c14 be restricted by those other constraints. (In

particular, we shall not set αA ' 0 since this would cause large errors.) As a result,

the phase space of ci’s becomes essentially three-dimensional. Moreover, it is to our

surprise that the three-dimensional phase space actually becomes degenerate, in the
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sense that the constraints can be divided into two groups, one has constraints only

on the (c1, c14)-plane, and the other has constraints only on the (c2, c14)-plane. Note

that in [33] the case c13 = α2 = 0 was considered, so the parameter space was again

reduced to two-dimensional. Then, the constraints were restricted to the (α1, c−)-

plane, where c− ≡ c1 − c3. It was found that in this case no bounds can be imposed

on c−.

The rest of the chapter is organized as follows: In Sec. 2.2 we first list all

the relevant constraints, theoretical and observational, then consider them one by

one, and finally obtain a region in the phase space, in which all theoretical and

observational constraints are satisfied by the Einstein-aether theory, except for the

strong-field constraints given by Eq.(2.12). These strong-field constraints depend on

the sensitivities σæ of neutron stars in the Einstein-aether theory, which depends

on ci’s (and the equation of state of nuclear matter) [29] and are not known for the

new ranges of the parameters found in this chapter. Thus, we shall not use these

strong-field constraints to obtain further constraints on ci’s, leaving further studies

to a future work. Derivations of the linearized Einstein-aether theory are relegated to

Appendix A.

2.2 Constraints on Einstein-aether theory after GW170817

It is easy to show that the Minkowski spacetime is a solution of the Einstein-

aether theory, in which the aether is aligned along the time direction, ūµ = δ0
µ. It

is then straightforward to analyze linear perturbations around the Minkowski back-

ground and investigate properties of spin-0, -1 and -2 excitations (see the last section

of this chapter and/or ref. [34] for details). In particular, the coefficients of the time

1 In the so-called decoupling limit ci → 0, qV = c14 vanishes but the limit must be taken from
the positive side of qS,V,T and c2S,V,T . Similarly, if we would like to take the infinite speed limit, e.g.
cS →∞, it should also be taken from the positive side.

19



kinetic term of each excitation qS,V,T must be positive 1:

qS,V,T > 0 , (2.5)

where

qS =
(1− c13) (2 + c13 + 3c2)

c123

,

qV = c14 ,

qT = 1− c13 . (2.6)

In addition to the ghost-free condition for each part of the linear perturbations, we

must also require the theory be free of gradient instability, that is, the squared speeds

must be non-negative,

c2
S,V,T ≥ 0 , (2.7)

where

c2
S =

c123(2− c14)

c14(1− c13)(2 + c13 + 3c2)
,

c2
V =

2c1 − c13(2c1 − c13)

2c14(1− c13)
,

c2
T =

1

1− c13

. (2.8)

Moreover, c2
S,V,T −1 must be greater than −10−15 or so, in order to avoid the existence

of the vacuum gravi-Čerenkov radiation by matter such as cosmic rays [25]. We thus

impose

c2
S,V,T & 1 , (2.9)

which is stronger than (2.7).

More recently, as mentioned above, the combination of the gravitational wave

event GW170817 [31], observed by the LIGO/Virgo collaboration, and the event of

the gamma-ray burst GRB 170817A [32] provides a remarkably stringent constraint

on the speed of the spin-2 mode, −3× 10−15 < cT − 1 < 7× 10−16, which implies the

constraint (2.4).
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On the other hand, applying the theory to cosmology, it was found that the

gravitational constant appearing in the effective Friedman equation is given by [24],

Gcos =
Gæ

1 + 1
2
(c13 + 3c2)

. (2.10)

Since Gcos is not the same as GN in (1.29), the expansion rate of the universe differs

from what would have been expected in GR. In particular, decreasing the Hubble

expansion rate during the big bang nucleosynthesis will result in weak interactions

freezing-out later, and leads to a lower freeze-out temperature. This will yield a de-

crease in the production of the primordial 4He, and subsequently a lower 4He-to-

hydrogen mass ratio [24]. As a result the primordial helium abundance is modified,

and to be consistent with current observations [35], the ratio must satisfy the con-

straint, ∣∣∣∣Gcos
GN

− 1

∣∣∣∣ . 1

8
. (2.11)

One could obtain other cosmological constraints on Gcos/GN if we make assumptions

on the dark sector of the universe [36]. While they are interesting and important, we

shall not consider those additional constraints since they are model-dependent.

Moreover, for any choice of ci’s, all PPN parameters [9] of the æ-theory agree

with those of GR [37, 26], except the preferred frame parameters which are given by

Eq.(2.1) [26, 27, 38]. In the weak-field regime, using lunar laser ranging and solar

alignment with the ecliptic, Solar System observations constrain these parameters to

very small values (2.2) [9]. In the strong-field regime, using data from the isolated

millisecond pulsars PSR B1937 + 21 [39] and PSR J17441134 [40], the following

constraints were obtained [41],

|α̂1| ≤ 10−5, |α̂2| ≤ 10−9, (2.12)
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at 95% confidence, where (α̂1, α̂2) denotes the strong-field generalization of (α1, α2)

[42]. In the Einstein-æther theory, they are given by [29],

α̂1 = α1 +
c−(8 + α1)σæ

2c1

,

α̂2 = α2 +
α̂1 − α1

2
− (c14 − 2)(α1 − 2α2)σæ

2(c14 − 2c13)
, (2.13)

where σæ denotes the sensitivity.

To consider the above constraints, one may first express two of the four param-

eter cn’s, say, c2 and c4, in terms of αA’s through Eqs.(2.1), and then expand c2 and c4

in terms of αA, as given by Eq.(2.3). Thus, to the zeroth-order of αA’s, c2 and c4 are

given by the first term in each of Eq.(2.3) [26, 21, 22]. In fact, this is what have been

doing so far in the analysis of the observational constraints of the Einstein-aether

theory [22, 34, 29, 30].

However, with the new constraint (2.4), if we still adopt the Taylor expansion

with respect to αA, then, to have a self-consistent expansion, one must expand c2 and

c4 at least up to the fourth-order of α1, the second-order of α2 (plus their mixed terms,

such as α2
1α2) [cf. Eq.(2.2)], and the first-order of c13. Clearly, this will lead to very

complicated analyses. In the following, instead, we simply Taylor expand constraints

other than (2.4) with respect to c13, keep only terms zeroth order in c13, and let all

the other parameters constrained by those approximated constraints. Then, keeping

only the leading terms in the c13-expansion is equivalent to setting

c13 = 0 . (2.14)

As a result, the errors are of the order of O (10−15), as far as Eq.(2.4) is concerned.

Thus, the resulting errors due to this omission is insignificant, in comparison to the

bounds of the rest of the observational constraints. Hence, while the constraint qT > 0

is automatically satisfied, qS > 0 yields

2 + 3c2

c2

> 0 . (2.15)
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On the other hand, from Eqs.(2.8) and (2.1) we find that

c2
V =

c1

c14

, α1 = −4c14 , (2.16)

so the constraints (2.2), qV > 0 and c2
V & 1 lead to

0 < c14 ≤ 2.5× 10−5, c14 . c1 . (2.17)

It is remarkable that these two constraints are all confined to the (c1, c14)-plane,

while the rest are all confined to the (c2, c14)-plane, as to be shown below. As we shall

see, this considerably simplifies the analysis of the whole set of the constraints listed

above.

In particular, the constraint (2.11) is reduced to

−1

8
.
c14 + 3c2

2 + 3c2

.
1

8
, (2.18)

which is rewritten as

−2(1 + 4c14)

27
. c2 .

2(1− 4c14)

21
. (2.19)

Considering the fact that |c14| is as small as (2.17), we then find that

− 2

27
. c2 .

2

21
, (2.20)

which, together with the constraint (2.15), yields,

0 < c2 . 0.095. (2.21)

On the other hand, from c2
S & 1 we also find that

c2(2− c14)

c14(2 + 3c2)
& 1 . (2.22)

Considering the constraints (2.17) and (2.21), we find that Eq.(2.22) is equivalent to

0 < c14 . c2 , (2.23)
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which, together with the constraint (2.21), yields

0 < c14 . c2 . 0.095 . (2.24)

By setting c13 = 0 in Eq.(2.1), we also find

α2 '
c14 (c14 + 2c2c14 − c2)

c2 (2− c14)
, (2.25)

and the second constraint in (2.2) yields

−10−7 ≤ c14 (c14 + 2c2c14 − c2)

c2 (2− c14)
≤ 10−7. (2.26)

In Figs. 2.1-2.3, we show this constraint, combined with (2.24), for various scales of

c14 in the (c2, c14)-plane. The constraints in the (c2, c14)-plane have simple expressions

for values of c14 smaller than 2 × 10−7 or sufficiently larger than 2 × 10−7 (say, for

c14 larger than 2 × 10−6): the constraints are satisfied in either of the following two

regions,

(i) 0 < c14 ≤ 2× 10−7 ,

c14 . c2 . 0.095 ,

(ii) 2× 10−6 . c14 . 2.5× 10−5 ,

0 . c2 − c14 . 2× 10−7 . (2.27)

For the constraints in the intermediate regime of c14 (2× 10−7 < c14 . 2× 10−6), see

the top and the middle plots in Figs. 2.1-2.3.

The constraints (2.12) with (2.13) in principle constrain the parameters ci’s.

However, the sensitivities σæ of a neutron star, which depend on ci’s and the equa-

tion of state of nuclear matter [29], are not known so far within the new ranges of the

parameters given above. Therefore, instead of using (2.12) to constrain the param-

eters ci’s, we simply rewrite them in term of ci’s and the sensitivities σæ for future
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Figure 2.1: In this figure, we plot the constraint |α2| ≤ 10−7 given by Eq.(2.26), together
with Eq.(2.24), in the (c2, c14)-plane.

25



Figure 2.2. A version of Fig.2.1 with a different scale
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Figure 2.3: A version of Fig.2.1 with a different scale. In this plot, the region |α2| ≤ 10−8

marked with red color and dashed line boundary is also shown.
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references. Setting c13 = 0 in Eq.(2.13), we find that

α̂1 = α1

[
1 + σæ

(
1 +

8

α1

)]
,

α̂2 = α2

[
1 + σæ

(
1 +

8

α1

)]
. (2.28)

Since |α1| ≤ 10−4, the constraints (2.12) are reduced to

|α1 + 8σæ| ≤ 10−5 ,

∣∣∣∣α2

α1

∣∣∣∣× |α1 + 8σæ| ≤ 10−9 . (2.29)

As already mentioned above, we leave the analysis of these two constraints that

involves the computation of the sensitivities σæ to a future work.
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CHAPTER THREE

Exact Plane Wave Solutions in Einstein-aether Theory

This chapter published as [15]: J. Oost, M. Bhattacharjee, A. Wang, "Plane-
fronted gravitational waves with parallel rays in Einstein-aether theory",

Gen. Relativ. Grav. 50 (2018) 124

In this chapter, we systematically study spacetimes of gravitational plane waves

in Einstein-aether theory. Due to the presence of the timelike aether vector field, now

the problem in general becomes overdetermined. In particular, for the linearly polar-

ized plane waves, there are five independent vacuum Einstein-aether field equations

for three unknown functions. Therefore, solutions exist only for particular choices of

the four free parameters ci’s of the theory. We find that there exist eight cases, in two

of which any form of gravitational plane waves can exist, similar to that in general

relativity, while in the other six cases, gravitational plane waves exist only in particu-

lar forms. Beyond these eight cases, solutions either do not exist or are trivial (simply

representing a Minkowski spacetime with a constant or dynamical aether field.).

3.1 Introduction

The introduction of the aether vector field allows for some novel effects, e.g.,

matter fields can travel faster than the speed of light [77], and new gravitational wave

polarizations can spread at different speeds [23]. It should be noted that the faster-

than-light propagation does not violate causality [20]. In particular, gravitational

theories with broken LI still allow the existence of black holes [78]. However, instead

of Killing horizons, now the boundaries of black holes are hypersurfaces termed uni-

versal horizons, which can trap excitations traveling at arbitrarily high velocities (For

more details, see, for example, [20] for a recent review.). This universal horizon may
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radiate thermally at a fixed temperature and strengthen a possible thermodynamic

interpretation though there is no universal light cone [63].

Another interesting issue is whether or not spacetimes of gravitational plane

waves are compatible with the presence of the timelike aether field. This becomes

more interesting after the recent observations of several gravitational waves (GWs)

emitted from remote binary systems of either black holes [79, 80, 81, 82] or neutron

stars [31]. The sources of these GWs are far from us, and when they arrive to us, they

can be well approximated by gravitational plane waves. However, this issue is not

trivial, specially for the Einstein-aether theory, in which a globally time-like aether

field exists, while such plane waves, by definition, move along congruences defined by

a null vector.

In this chapter, we shall focus ourselves on this issue. In particular, we shall

show that the system of the differential equations for gravitational plane waves in the

Einstein-aether theory is in general overdetermined, that is, we have more indepen-

dent differential equations than the number of independent functions that describe

the spacetime and aether, sharply in contrast to that encountered in Einstein’s Gen-

eral Relativity (GR), in which the problem is usually underdetermined, that is, we

have less independent differential equations than the number of independent func-

tions that describe the spacetime [76, 83, 84]. In particular, for the linearly polarized

gravitational plane waves, there are five independent vacuum field equations for three

unknown functions in the Einstein-aether theory, while there is only one independent

vacuum field equation for two unknown functions in GR.

The rest of the chapter is organized as follows: In Sec. 3.2, we give a summary

on the gravitational plane waves with two independent polarization directions, and

define the polarization angle with respect to a parallelly transported basis along the

path of the propagating gravitational plane wave. Such a description is valid for any

metric theory, including GR and Einstein-aether theory. In Sec. 3.3, we systematically
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study the linearly polarized gravitational plane waves in Einstein-aether theory, and

find that such gravitational plane wave solutions exist only for particular choices

of the free parameter ci’s of the theory. We identify all these particular cases, and

find that there are in total eight cases. Cases beyond these either do not allow such

solutions to exist or are trivial, in the sense that their spacetime is Minkowski (though

sometimes with a dynamical aether field). The full details of all tensor components

and field equations not stated in Chapter Three are relegated to Appendix B.

3.2 Polarizations and Interaction of Gravitational Plane Waves

The spacetimes for gravitational plane waves can be cast in various forms,

depending on the choice of the coordinates and gauge-fixing [76, 83, 84]. In this

chapter, we shall adopt the form originally due to Baldwin, Jeffery, Rosen (BJR)

[87, 88], which can be cast as [85, 76]

ds2 = −2e−Mdudv + e−U
[
eV coshWdy2 − 2 sinhWdydz

+e−V coshWdz2
]
, (3.1)

where M,U, V and W are functions of u only, which in general represents a grav-

itational plane wave propagating along the null hypersurfaces u = constant. The

corresponding spacetimes belong to Petrov Type N [76, 83, 84] 1. Choosing a null

tetrad defined as,

lµ ≡ Bδµv , nµ ≡ Aδµu , mµ = ζ2δµ2 + ζ3δµ3 ,

m̄µ = ζ2δµ2 + ζ3δµ3 , (3.2)

where A and B must be chosen so that M ≡ ln(AB), and

ζ2 ≡ e(U−V )/2

√
2

(
cosh

W

2
+ i sinh

W

2

)
,

ζ3 ≡ e(U+V )/2

√
2

(
sinh

W

2
+ i cosh

W

2

)
, (3.3)

1 By rescaling the null coordinate u→ u′ =
∫
e−M(u)du, without loss of the generality, one can

always set M = 0.
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we find that the Weyl tensor has only one independent component, represented by

Ψ4, and is given by [76],

Cµναβ = 4
[
Ψ4l

[µmν]l[αmβ] + Ψ̄4l
[µm̄ν]l[αm̄β]

]
,

Ψ4 = −1

2
A2

{
coshWVuu + coshW

(
Mu − Uu

)
Vu

+2 sinhWVuWu + i
[
Wuu +

(
Mu − Uu

)
Wu

− sinhW coshWV 2
u

]}
, (3.4)

where [A,B] ≡ (AB − BA)/2, and Vu ≡ ∂V/∂u, etc. To see the physical meaning

of Ψ4, following [85, 76], let us first introduce the orthogonal spacelike unit vectors,

Eµ
(a) (a = 2, 3), in the (y, z)-plane via the relations,

Eµ
(2) ≡

mµ + m̄µ

√
2

, Eµ
(3) ≡

mµ − m̄µ

i
√

2
, (3.5)

we find that the Weyl tensor can be written in the form,

Cµναβ =
1

2

[
eµναβ+

(
Ψ4 + Ψ̄4

)
+ ieµναβ×

(
Ψ4 − Ψ̄4

) ]
,

(3.6)

where

eµναβ+ ≡ 4
(
l[µE

ν]
(2)l

[αE
β]
(2) − l

[µE
ν]
(3)l

[αE
β]
(3)

)
,

eµναβ× ≡ 4
(
l[µE

ν]
(2)l

[αE
β]
(3) + l[µE

ν]
(3)l

[αE
β]
(2)

)
. (3.7)

Making a rotation in the
(
E(2), E(3)

)
-plane,

E2 = E ′(2) cosϕ+ E ′(3) sinϕ,

E3 = −E ′(2) sinϕ+ E ′(3) cosϕ, (3.8)

we find that

e+ = e′+ cos 2ϕ+ e′× sin 2ϕ,

e× = −e′+ sin 2ϕ+ e′× cos 2ϕ. (3.9)
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In particular, if we choose ϕ such that

ϕ =
1

2
tan−1

(
Im (Ψ4)

Re (Ψ4)

)
, (3.10)

we obtain

Cµναβ =
1

2
|Ψ4| e′+

µναβ
. (3.11)

Thus, the amplitude of the Weyl tensor is proportional to the absolute value of Ψ4,

and the angle defined by Eq.(3.10) is the polarization angle of the gravitational plane

wave in the plane spanned by
(
E(2), E(3)

)
, which is orthogonal to the propagation

direction lµ of the gravitational plane wave. It is interesting to note that the unit

vectors Eµ
(2) and E

µ
(3) are parallelly transported along lν ,

lνDνE
µ
(2) = 0 = lνDνE

µ
(3). (3.12)

Therefore, the angle defined by Eq.(3.10) is invariant with respect to the parallelly

transported basis
(
E(2), E(3)

)
along the propagation direction lµ of the gravitational

plane wave 2. This is an important property belonging only to single gravitational

plane waves.

When W = 0, from Eq.(3.5) we find that

Im (Ψ4) = 0, (W = 0), (3.13)

and ϕ = 0. Then, the polarization is along the Eµ
(2)-direction, which is usually re-

ferred to as the “+" polarization, characterized by the non-vanishing of the function

V . The other polarization of the gravitational plane wave, often referred to as the

“×" polarization, is represented by the non-vanishing of the function W , for which

generically we have Im (Ψ4) 6= 0 (W 6= 0) (cf. Fig. 1 given in [85]).

2 Polarizations of GWs in weak-field approximations were also studied in [30] in the framework
of Einstein-aether theory.
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When M,U, V and W are functions of v only, the gravitational plane wave is

now propagating along the null hypersurfaces v = constant. In this case, by rescaling

the null coordinate v → v′ =
∫
e−M(v)dv, one can always set M(v) = 0.

When gravitational plane waves moving in both of the two null directions are

present, the metric coefficients M,U, V and W are in general functions of u and v.

An interesting case is the collision of two gravitational plane waves moving along

the opposition directions, which generically produces spacetime singularities due to

their mutual focuses [89]. Another remarkable feature is that one of the gravitational

plane waves can serve as a medium for the other, due to their non-linear interaction,

so the polarizations of the gravitational plane wave can be changed. The change of

polarizations due to the nonlinear interaction is exactly a gravitational analogue of

the Faraday rotation, but with the other gravitational plane wave as the magnetic

field and medium [85, 76, 76].

3.3 Linearly Polarized gravitational plane waves

In this section, we shall consider gravitational plane waves moving along the

hypersurfaces u =constant only with one direction of polarizations, which are usually

called linearly polarized gravitational plane waves. Without loss of the generality,

we shall consider only gravitational plane waves with the “+" polarization. Then, by

rescaling the u coordinate, without loss of the generality, we can always set M = 0,

so the metric takes the form,

ds2 = −2dudv + e−U(u)
(
eV (u)dy2 + e−V (u)dz2

)
. (3.14)

We also assume that the aether moves only in the (u, v)-plane, so its four-velocity uµ

takes the general form,

uµ =
1√
2

(e−h, eh, 0, 0). (3.15)

Since the spacetime is only of u dependence, it is easy to see that h = h(u). Then,

the non-vanishing components of the Einstein and aether tensors Gµν and Tæµν and
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the aether vector Æµ are given, respectively, by Eqs.(B.1) and (B.2). In the vacuum

case, we have Tmµν = 0, Tµ = 0, and the Einstein-aether equations (1.31) reduce to

Gµν = Tæµν , (3.16)

which yields five equations, given by Eqs.(B.4)-(B.7). The aether equations Æµ = 0

yield the same equation as given by Eq.(B.5). It is interesting to note that in Einstein’s

theory the field equations Gµν = 0 yields only a single equation [85, 76],

2Uuu − U2
u = V 2

u , (3.17)

for the two unknown functions U(u) and V (u). In this sense, the problem is under-

determined in Einstein’s theory. Thus, for any given gravitational wave V (u), we can

always integrate the above equation to find U(u).

It is remarkable to note that there are five independent field equations for the

three unknowns, U, V and h. Therefore, in contrast to the situation of GR, in which

there is only one independent field equation, given by Eq.(3.17), for two unknown

functions U and V , here in the framework of the Einstein-aether theory, we are facing

an overdetermined problem, instead of underdetermined, and clearly only for partic-

ular cases the above equations allow solutions for U, V and h.

From the constraint of Eq.(2.4) we can see that the current observations of

GW170817 and GRB 170817A practically requires c13 ' 0. In addition, for the spin-

2 gravitons to move precisely with the speed of light, we also need to set c13 = 0.

However, in order for our results to be as much applicable as possible, in the rest of

this section we shall not impose this condition, and consider all the possible solutions

with both c13 = 0 and c13 6= 0, separately.
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3.3.1 Solutions with c13 = 0

When c13 = 0, Eqs.(B.4)-(B.7) reduce to,

2Uuu −
(
U2
u + V 2

u

)
+ 2c14

(
huu − huUu − h2

u

)
= 0, (3.18)

c2

(
Uuu − 2huUu − U2

u

)
+
(
c2 − c14

)(
huu − huUu − 2h2

u

)
= 0, (3.19)

c2Uuu +
(
c2 − c14

)(
huu − huUu − h2

u

)
= 0, (3.20)

c2

(
2Uuu − U2

u − 4huUu

)
2c2huu −

(
3c2 + c14

)
h2
u = 0. (3.21)

Then, from Eqs.(3.19) and (3.20) we find

c2

(
U2
u + 2Uuhu

)
+
(
c2 − c14

)
h2
u = 0, (3.22)

c2

(
Uuu + U2

u

)
+
(
c2 + c14

)
Uuhu +

(
c2 − c14

)
huu = 0. (3.23)

To study the above equations further, we need to distinguish the cases c2 6= c14

and c2 = c14, separately.

3.3.1.1 When c2 6= c14. In this case, from Eqs.(3.22) and (3.23) we find that

h2
u =

c2

c14 − c2

(
U2
u + 2Uuhu

)
, (3.24)

huu =
1

c14 − c2

{
c2

(
Uuu + U2

u

)
+
(
c2 + c14

)
Uuhu

}
.

(3.25)

Inserting the above expressions into Eq.(3.21), we find

c2c14

(
Uuu − U2

u − 2Uuhu

)
= 0, (3.26)

from which we can see that there are three different cases that need to be considered

separately,

i) c2c14 6= 0, ii) c2 = 0, c14 6= 0, iii) c2 6= 0, c14 = 0. (3.27)

Case i) c2c14 6= 0: In this case we have

Uuu = U2
u + 2Uuhu, (3.28)
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which has the solution

Uu = α0e
U+2h, (3.29)

where α0 is an integration constant. Then Eq.(3.19) reduces to

huu − 2h2
u − huUu = 0, (3.30)

which has the solution

hu = α1e
2h+U , (3.31)

where α1 is an integration constant. Notice that hu ∝ Uu. In fact we may write

h = αU + h0, (3.32)

where α and h0 are constants. By substituting Eqs.(3.28) and (3.32) into Eq.(3.20)

or (3.21) we find that

α = −
√
c2√

c2 ±
√
c14

. (3.33)

By substituting Eqs (3.28) and (3.32) into Eq.(3.18) we find

V = βU + V0, (3.34)

where V0 is another integration constant, and

β ≡ ±
√

1 + 4α + 2c14α2. (3.35)

Now combining Eqs.(3.32) and (3.29) we find

Uu = α̂0e
(2α+1)U , (3.36)

where α̂0 ≡ α0e
2h0 . Thus, we obtain

U(u) = − 1

2α + 1
ln [−α0(2α + 1)(u− u0)] , (3.37)

where u0 is a constant of integration. Once U(u) is given the functions h(u) and V (u)

can be read off from Eqs.(3.32) and (3.34), respectively, that is,

V (u) = − β

2α + 1
ln [−α0(2α + 1)(u− u0)] + V0, (3.38)

h(u) = − α

2α + 1
ln [−α0(2α + 1)(u− u0)] + h0,
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where β is given by Eq.(3.35) in terms of α and c14.

Case ii) c2 = 0, c14 6= 0: In this case from Eqs.(3.19) and (3.20) we find that

hu = 0, that is

h(u) = h0, (3.39)

where h0 is a constant. Then, Eqs.(3.19) - (3.20) are satisfied identically, while Eq.(3.18)

reduce to

2Uuu − U2
u = V 2

u , (3.40)

which is the same as in GR, that is, in the present case the functions U and V are

not uniquely determined. For any given U(u), one can integrate the above equation

to obtain V (u).

Case iii) c2 6= 0, c14 = 0: In this case from Eqs.(3.19) and (3.20) we find that

Uu + hu = 0, which has the solution,

U = −h+ U0, (3.41)

where U0 is a constant. Inserting the above expression into Eq.(3.19) we find that

hu = 0, that is,

h = h0. (3.42)

Then, from Eq.(3.18) we obtain

V = V0, (3.43)

where V0 is a constant. By rescaling y and z coordinates, without loss of the generality,

we can always set V0 = U0 = 0, so the solution represents the Minkowski spacetime.

That is, in the current case only the trivial Minkowski solution is allowed.

3.3.1.2 When c2 = c14. In this case, from Eq.(3.20) we find that

c2Uuu = 0. (3.44)

Therefore, depending on the values of c2, we have two different cases.
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Case i) c2 = c14 6= 0: In this case, we must have Uuu = 0, which has the general

solution,

U(u) = α0u+ U0, (3.45)

where α0 and U0 are two integration constants. On the other hand, from Eq.(3.19)

we find that

h(u) = −α0

2
u+ h0, (3.46)

while Eq.(3.21) is satisfied identically. Then, from Eq.(3.18) we find that

V (u) = ±
√

(c2 − 2)α2
0

2
u+ V0, (3.47)

where V0 is another integration constant.

Case ii) c2 = c14 = 0: In this case, Eqs.(3.19) - (3.21) are satisfied identically

for any given h(u), while Eq.(3.18) reduces to

2Uuu − U2
u = V 2

u , (3.48)

which is the same as in GR, that is, in the present case the functions U , V and

h(u) are not uniquely determined. For any given U(u) and h(u), one can integrate

Eq.(3.48) to obtain V (u).

3.3.2 Solutions with c13 6= 0

When c13 6= 0, from Eqs.(B.6) and (B.7) we find that

Vuu − UuVu − 2huVu = 0, (3.49)

which has the solution,

Vu = α0e
U+2h, (3.50)
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where α0 is an integration constant. Inserting the above expression into Eqs.(B.4)-

(B.7), we obtain the following four independent equations for U and h,

V 2
u = 2Uuu − U2

u + 2c14

(
huu − huUu − h2

u

)
= V 2

u , (3.51)

0 = c2

(
Uuu − 2huUu − U2

u

)
+
(
c2 + c13 − c14

)(
huu − huUu − 2h2

u

)
, (3.52)

0 = 2
(
c2 + c13 − c14

)(
huu − huUu − h2

u

)
+ 2c2Uuu + c13U

2
u + c13V

2
u , (3.53)

0 =
(
c13 + 2c2

)(
2Uuu − U2

u − 4huUu

)
+ 4c2huu

− 2
(
3c2 − c13 + c14

)
h2
u + c13V

2
u , (3.54)

Combining Eqs.(3.51) and (3.53) we find

c123Uuu = (c13c14 + c2 + c13 − c14)(h2
u + huUu − huu), (3.55)

and by using Eqs.(3.51) and (3.54) we obtain

c123U
2
u = (c13c14 + 2c13 − 2c14)(h2

u + huUu − huu)

+ (c13 − c14 − c2)h2
u − 2c123huUu. (3.56)

To study the above equations further, we need to consider separately the cases c123 = 0

and c123 6= 0.

3.3.2.1 When c123 = 0. In this case, from Eqs.(3.51) and (3.53) we find

c14(c13 − 1)(huu − h2
u − huUu) = 0. (3.57)

The possibility of c13 = 1 is ruled out by observation [14], as mentioned above, leaving

the possibilities

c14 = 0, (3.58)

or

huu − huUu − h2
u = 0. (3.59)
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Case A.1 c14 = 0: In the case of Eq.(3.58) we find that Eqs.(3.52) and (3.54)

reduce to

Uuu = 2huUu + U2
u , (3.60)

and

huu = 2h2
u + huUu, (3.61)

respectively, where we have used the fact that Eq.(3.51) reduces to 2Uuu = U2
u + V 2

u .

Then, both hu and Uu are proportional to e2h+U , and hence by Eq.(3.50) we find

h = αV + h0 U = βV + U0, (3.62)

where h0 and U0 are two integration constants, and the constants α and β can be

determined by substituting Eq.(3.62) and Eq.(3.60) into Eq.(3.51) or Eq.(3.53), which

yields

α =
1− β2

4β
. (3.63)

Inserting the above expressions into Eq.(3.50), we find that

V = − 2β

1 + β2
ln [α̂0 (u0 − u)] , (3.64)

where α̂0 ≡ α0 (2α + β) eU0+2h0 and u0 is an integration constant. Therefore, in this

case the solutions are given by Eqs.(3.62)-(3.64).

Case A. 2 c14 6= 0: In this case we find that

hu = α1e
h+U , (3.65)

and by Eq.(3.54) that

h2
u

(
c14

c13

− 2

)
= 0. (3.66)

If hu = 0 (α1 = 0) then by Eq.(3.52) we have

Uu = α2e
U , (3.67)
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and using this result with Eq.(3.51) we have

U = ±V + U0. (3.68)

Inserting the above expressions into Eq.(3.50), we find that

V = ∓ ln [∓α̂0(u− u0)] , (3.69)

where α̂0 ≡ α0e
2h0+U0 and where the choice of upper or lower sign must hold for both

Eqs(3.68) and Eq.(3.69). Thus, in this case, the general solutions are given by

(U, V, h) = (±V + U0, V, h0) , (3.70)

where V is given by Eq.(3.69), and U0 and h0 are two integration constants.

However, if hu 6= 0 then Eq.(3.52) reduces to

Uuu − 2h2
u − U2

u − 2huUu = 0, (3.71)

and we add the LHS of Eq.(3.59) (which is zero) twice to the LHS of Eq.(3.71) to get

Uuu + 2huu − 4h2
u − 4huUu − U2

u = 0, (3.72)

which simplifies to

2huu + Uuu = (2hu + Uu)
2. (3.73)

If we define a function f(u) such that

f(u) = 2h(u) + U(u), (3.74)

then Eq.(3.73) can be written as

fuu = f 2
u , (3.75)

which has the solution

f = − ln (−α3(u− u0)) , (3.76)
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where α3 and u0 are integration constants. If we multiply both sides of Eq.(3.65) by

eh we have

hue
h = α1e

2h+U , (3.77)

and making use of Eq.(3.76) we find

hue
h = −α1

α3

1

u− u0

, (3.78)

whereupon integration we find

h = ln

(
−α1

α3

ln (u− u0) + h0

)
. (3.79)

So, for the functions U and V we have

U = − ln(−α3(u− u0))− 2h, (3.80)

V = −α0

α3

ln(u− u0) + V0. (3.81)

By substituting these results into Eq.(3.51) we find that α3 = ±α0.

3.3.2.2 When c123 6= 0. In this case we can substitute Eqs.(3.55) and (3.56)

into Eq.(3.52) and by defining

Q ≡ c123 − c14 +
c2

c123

(c13 − c14 − c2), (3.82)

we have

Q(huu − 2h2
u − huUu) = 0. (3.83)

And so we must consider the cases where Q 6= 0 and Q = 0.

Case B.1 Q 6= 0: Then, we have

hu = α1e
2h+U ∝ Vu. (3.84)

Using this result with Eqs.(3.55) and (3.56) we find also that

Uu = α2e
2h+U ∝ Vu, (3.85)
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and thus we can set

h = αV + h0, U = βV + U0, (3.86)

for some constants α, β, h0 and U0. Substituting Eqs.(3.86) and (3.76) into Eqs.(3.51)

and (3.53), we find that α and β must satisfy the relations,

β2 + 4αβ + 2c14α
2 − 1 = 0, (3.87)

2(c14 − c13 − c2)α2 − 4c2αβ

− (c13 + 2c2)β2 − c13 = 0, (3.88)

which uniquely determine α and β, but the expressions for them are too long to be

presented here. Inserting the above expressions into Eq.(3.50), we find that

V = − 1

2α + β
ln
[
β̂0(u0 − u)

]
, (3.89)

where β̂0 ≡ α0(2α + β)eU0+2h0 . Therefore, in the present case, once α and β are

determined by Eqs.(3.87) and (3.88), the functions V (u), U(u) and the aether field

h(u) are given, respectively, by Eqs.(3.86) and (3.89).

Case B.2 Q = 0: It will be helpful to try to solve for c14 as a function of the

other ci’s, and to introduce a new parameter δ such that:

δ = 2c2 + c13. (3.90)

Then we find from Eq.(3.82) that

c14δ = c13(c2 + δ), (3.91)

If we consider δ = 0, then we have c2 = 0 since c13 6= 0. But by Eq.(3.90) this means

we must have c13 = 0, which violates our assumption, and so we must have

δ 6= 0, (3.92)

and thus

c14 = c13

(
1 +

c2

δ

)
, (3.93)
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is a general solution for the Q = 0 case. However, we can still have c2 = 0 in general.

If that is the case then we have c13 = c14 and we find from Eq.(3.53) that

V 2
u = −U2

u , (3.94)

and so to have real functions we must have U and V constant in u. Then by considering

Eqs.(3.55) and (3.56) with a vanishing Uu we have

huu − h2
u = 0, (3.95)

which has the solution

h = − ln(α(u− u0)) + h0, (c2 = 0), (3.96)

where α and h0 are the integration constants. So, in the case of c2 = 0 we have a

static Minkowskian spacetime with a dynamical aether.

If c2 6= 0, then we find from Eqs.(3.55) and (3.56) that

Uuu − U2
u =

2c2

δ
(h2

u + huUu − huu) +
2c2

δ
h2
u + 2huUu, (3.97)

and

2Uuu − U2
u = +

2c2

δ
h2
u + 2huUu +D(h2

u + huUu − huu), (3.98)

where

D ≡ 2c2c
2
13

c123δ
+

1

δ
(c2

13 + 2c2). (3.99)

These expressions can be substituted into Eqs.(3.51) and (3.54) to find

V 2
u =

(
c13

(c2 + δ)

c123

− 2c2

δ

)
+

2c2

δ
h2
u + 2huUu, (3.100)

and

V 2
u =

(
c13

(c2 + δ)

c123

− 2c2

c13

)
+

2c2

δ
h2
u + 2huUu. (3.101)

Equating these two gives us

c2(huu − h2
u − huUu) = 0. (3.102)
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Since now we have c2 6= 0, then we must have

hu = αeh+U . (3.103)

In this case, Eq.(3.53) reduces to

V 2
u = −2c2

c13

Uuu − U2
u , (3.104)

and by Eq.(3.51) we also have

V 2
u = 2Uuu − U2

u , (3.105)

by the result of which we must have

Uuu = 0, (3.106)

since c123 6= 0 in this case. As Uu must be a constant, then by Eq.(3.105) we find that

Vu must be also a constant, and to keep the constants real we must have Uu and Vu

vanish, as before. Considering this result, Eq.(3.52) reduces to

h2
u = 0. (3.107)

Therefore, when c2 6= 0, the spacetime must be Minkowski and the aether field is

simply given by h(u) = h0, this is, the solution in the present case is

(U, V, h) = (U0, V0, h0) , (c2 6= 0), (3.108)

where U0, V0 and h0 are all constants.

46



CHAPTER FOUR

Exact Solutions with Static Aether in Spherical Symmetry

In this chapter, we consider three different forms of metrics for spherically

symmetric spacetimes in Einstein-aether theory, the conformally flat, Schwarzschild

and Painlevè-Gullstrand coordinates, and present both time-dependent and time-

independent exact solutions. In particular, in the conformally flat coordinates we find

a static solution in closed form, which satisfies all the observational constraints of the

theory and reduces to the Schwarzschild vacuum solution in the decoupling limits.

4.1 Spherical Symmetry

Static spherically symmetric spacetimes in æ-theory have been studied by var-

ious authors. In particular, static spherically-symmetric solutions were found in [55],

while numerical black hole solutions were found in [56, 57], which were shown that

they are indeed the end states of the gravitational collapse of a massless scalar field

[58]. Recently, it was found that white holes can also be formed from gravitational

collapse [59]. It has also been shown by various authors that while the speeds of the

spin-0, 1 and 2 modes can be arbitrarily high, the theory would still possess black

holes but now with boundaries of particles with arbitrarily large velocities, dubbed

universal horizons [78], and numeric simulations showed that such black holes can

also be the end states of a collapsing scalar field [61]. With the establishment of the

existence of universal horizons, a natural question is, do universal horizons have a

thermal interpretation, similar to Killing horizons in GR? Similar to the Killing hori-

1 In such studies, two exact solutions were found in [62], one with c14 = 0 and the other with
c123 = 0, where ci...j ≡ ci + ... + cj , and ci’s are the four dimensionless coupling constants of æ-
theory. These solutions were further generalized to couple with an electromagnetic field, respectively,
in four-, three- and high dimensions [64, 65, 66]. Unfortunately, these solutions do not satisfy the
current constraints of the theory given in Chapter Two or [14].
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zons, it was argued that universal horizons should possess such properties, and showed

explicitly that the first law of black hole mechanics indeed exists for static and neutral

universal horizons [62, 63] 1, but it is still an open question how to generalize such

a first law to charged and/or rotating universal horizons [67, 68, 69, 70, 71, 72, 73].

Lately, exact plane wave solutions to the full (non-linearized) theory were found in

[15], while time-dependent exact spherically-symmetric cosmological solutions were

found in [60].

In this chapter we study spherically symmetric vacuum solutions of Einstein-

aether theory, both time-dependent and time-independent, and in three different sets

of coordinates, conformally flat, Schwarzschild and Painlevè-Gullstrand. In all of these

coordinates, we assume that the aether is comoving. Specifically, the chapter is orga-

nized as follows.

In Sec. 4.2. we derive several spherical solutions in conformally-flat coordinates

including a static solution in closed form and two variants of a time-dependent FLRW

vacuum cosmological solution with an accelerating expansion, one with constant pos-

itive curvature and the other with constant negative curvature. In Sec. 4.3. we present

a static solution in Painlevè-Gullstrand coordinates, and in Sec. 4.4 we re-derive the

solution found in [55] as well as some time-dependent solutions in Schwarzschild-type

coordinates. While the field equations in each coordinate system are presented in full,

the individual Einstein and stress-energy components are relegated to Appendix B.

In [55] it was argued that there is a unique static solution. There, a static aether

solution was found parametrically in terms of an inverse function of the form,

A = A(Y ) (4.1)

r = r(Y ) (4.2)

Where the metric components were in terms of A(r), but the lack of a closed form

expression made analysis complicated. In addition to other solutions we present a
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static aether solution in closed form in isotropic coordinates. It is an open question

whether a coordinate transformation can be found that makes our solution equivalent

to that of [55].

The most general form for a spherically-symmetric metric can be written as,

ds2 = gAB(t, r)dxAdxB +R(t, r)2dΩ2, (4.3)

where A,B = t, r, and dΩ2 ≡ dθ2 + sin2 θdφ2. This metric clearly is invariant under

the coordinate transformations,

t = f(t̄, r̄), r = g(t̄, r̄), (4.4)

or inversely,

t̄ = F (t, r), r̄ = G(t, r), (4.5)

where f, g, F and G are arbitrary functions of their indicated arguments. By prop-

erly choosing these functions, we are able to fix two of the four arbitrary functions

gtt, gtr, grr and R(t, r).

4.2 Conformally-flat Metric

In this case, we shall use the gauge freedom (4.4) to set,

grr = R(t, r), gtr = 0, (4.6)

so that the metric (4.3) takes the form,

ds2 = −e2µ(r,t)dt2 + e2ν(t,r)dσ2, (4.7)

Where dσ2 is the spatial part of the metric, defined as,

dσ2 ≡ dr2 + r2
(
dθ2 + sin θ2dφ2

)
. (4.8)

We assume that the aether is comoving in this system of coordinates, that is,

ua = eµδta. (4.9)
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4.2.1 Field Equations

To write down the field equations, we find convenient first to introduce the

constant α and the function Σ as,

α2 ≡ 3

(
1 +

3c2 + c13

2

)
, (4.10)

Σ(t) ≡ 3ν̇2 + 2ν̈ − 2µ̇ν̇. (4.11)

In this chapter we use the convention that a prime as in µ′ denotes a partial derivative

with respect to the radial coordinate r, and that a dot as in µ̇ denotes a partial

derivative with respect to the time coordinate t.

Then, the non-vanishing equation for the aether dynamics is,

0 = (3c2 + c13 + c14)µ′ν̇ + c14µ̇
′ − βν̇ ′, (4.12)

Where β ≡ 3c2 +c13. The non-vanishing Einstein-aether vacuum equations Gab = Tæab

are the tt, tr, rr, θθ components, given, respectively, by,

e2ν
[
α2ν̇2

]
= e2µ

[
c14

(
µ′2

2
+ µ′ν ′ + µ′′ + 2

µ′

r

)

+ ν ′2 + 2ν ′′ + 4
ν ′

r

]
, (4.13)

c14(µ̇′ + µ′ν̇) = 2(µ′ν̇ − ν̇ ′), (4.14)

α2

3
e2νΣ(t) = e2µ

[
ν ′2 + 2µ′ν ′ +

2

r
(µ′ + ν ′)

+ c14
µ′2

2

]
, (4.15)

α2

3
e2νΣ(t) = e2µ

[
µ′2 + µ′′ + ν ′′ +

µ′ + ν ′

r

− c14
µ′2

2

]
. (4.16)
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4.2.2 Time-Independent Solutions

With no time-dependence, the five equations are reduced to three, (tt, rr, and

θθ/φφ), given by the right-hand sides of Eqs.(4.13)-(4.16). We add the tt and θθ

equations to find,

0 = f ′′ + f ′2 +
3

r
f ′, (4.17)

where

f ′ = µ′ + ν ′. (4.18)

We would begin solving Eq.(4.17 by dividing by f ′, but first we must consider the

case in which f ′ = 0, or µ′ = −ν ′.

4.2.2.1 When µ′ = −ν ′. In this case, the tt and rr/θθ/φφ field equations

simplify to:

0 = (c14 − 2)

(
2µ′′ + 4

µ′

r
− µ′2

)
(4.19)

0 = (c14 − 2)µ′2 (4.20)

In the case where c14 = 2 then all of the field equations are satisfied identically

for any f and hence any µ, and the metric may be written as:

ds2 = −h(r)dt2 +
1

h(r)
dσ2 (4.21)

For any function h(r).

However, if c14 6= 2 then we see from Eq.(4.20) that µ′ = 0, and thus both µ

and ν are constants, which makes this spacetime equivalent to the Minkowski metric

by a re-scaling of t and r.

4.2.2.2 When µ′ 6= −ν ′. To solve Eq.(4.17) we divide both side of the equation

by f ′ and integrate, leading to,

ln (L0f
′) = −f − 3 ln

(
r

r0

)
, (4.22)
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where L0 and r0 are the integration constants with dimensions of length. The above

equation can be rewritten as,

efdf =
1

L0

(r0

r

)3

dr, (4.23)

which can be solved for f by integration, and is given by,

f = µ+ ν = ln

(
f0

(
K0 ±

r2
0

r2

))
, (4.24)

where K0 and f0 ≡ r0/2L0 are dimensionless constants. This is our general solution

for f(r) and we will use it to find µ and ν. We subtract the rr equation from the tt

equation, and solve for the expression 2ν ′′ + 2ν ′/r, leading to,

2ν ′′ + 2
ν ′

r
= (2− c14)µ′ν ′ + (2− 2c14)

µ′

r
− c14µ

′′. (4.25)

Now, solving the θθ equation, we find,

2ν ′′ + 2
ν ′

r
= −2µ′2 − 2µ′′ − 2

µ′

r
+ c14µ

′2. (4.26)

The combination of Eqs.(4.25) and (4.26) yields,

0 = (c14 − 2)

[
µ′2 + µ′′ + 2

µ′

r
+ µ′ν ′

]
. (4.27)

We now consider the two cases, c14 = 2 and t c14 6= 2, separately.

In the c14 = 2 case, the (tt, rr, θθ/φφ) equations reduce to,

0 = f ′2 + 2f ′′ + 4
f ′

r
, (4.28)

0 = f ′ +
2

r
, (4.29)

0 = f ′′ +
f ′

r
(4.30)

which has the solution given by Eq.(4.24) where we must have K0 = 0 in order to

satisfy the field equations. However, these equations are only in terms of f = µ + ν,

so there is still one degree of freedom in our choice of µ or ν. If we choose the

52



parameterization:

µ = µ(r), (4.31)

ν = log
(r0

r

)2

− µ(r), (4.32)

then we can write the metric as

ds2 = −e2µdt2 +
(r0

r

)4 1

e2µ
dσ2. (4.33)

However, this is the same as the solution given by Eq.(4.21) if we perform the

change of coordinates 1/r → R:

ds2 = −e2µ(R)dt2 +
1

e2µ(R)
dσ2. (4.34)

In the c14 6= 2 case, from Eq.(4.27) we find that

0 = µ′2 + µ′′ + 2
µ′

r
+ µ′ν ′, (4.35)

which has the solution,

f ≡ µ+ ν = ln

(
f0r0q

µ′r2

)
, (4.36)

where f0 and r0 are the arbitrary constants from Eq.(4.24) and q is an arbitrary

dimensionless constant. Note that we already have a solution for f in Eq.(4.24),

where f is a function of r only. In Eq.(4.36) we have an expression for f as a function

of both r and µ′. We set these two expressions equal to each other and solve for µ′,

µ′ =
r0q

K0r2 − r2
0

. (4.37)

In the special case where K0 = 0 we find that µ is linear in r, and we can find ν by

using Eq.(4.24), giving the metric

ds2 = −erdt2 +
e−r

r4
dσ2, (4.38)

where we have re-scaled t and r to suppress arbitrary constants. However, this solution

does not solve the field equations unless c14 = 2, so this is just a special case of the

metric given by Eq.(4.33).
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For general K0, we integrate Eq.(4.37) to find

µ =
q

2
ln

∣∣∣∣r − r0

r + r0

∣∣∣∣, (4.39)

where we have absorbed a factor of
√
K0 into the arbitrary constants q and r0. We

can now solve for ν by using Eqs.(4.24) and (4.39), and find,

ν = ln

[
f0

∣∣∣1− r0

r

∣∣∣1−q/2 ∣∣∣1 +
r0

r

∣∣∣1+q/2
]

(4.40)

These solutions for µ and ν solve the field equations exactly provided that q is given

by,

q2 =
8

2− c14

. (4.41)

The choice of positive or negative square root is arbitrary as both choices lead to the

same spacetime upon taking the c14 → 0 limit to fix r0. So the spacetime is given by,

ds2 = −
∣∣∣∣1− r0

r

1 + r0
r

∣∣∣∣q dt2 +
∣∣∣1− r0

r

∣∣∣2−q ∣∣∣1 +
r0

r

∣∣∣2+q

dσ2, (4.42)

Where we have suppressed the arbitrary constant f0 by re-scaling t and r. We can

identify the values of q and r0 by considering the c14 → 0 limit. In isotropic coordi-

nates, the Schwarzschild metric is given by,

ds2 = −
(

1− m
2r

1 + m
2r

)2

dt2 +
(

1 +
m

2r

)4

dσ2. (4.43)

In the c14 → 0 limit, q → 2, so the spacetime given by Eq.(4.42) does indeed reduce

to the isotropic Schwarzschild solution given by Eq.(4.43) provided r0 = m
2
and we

only consider r > m
2
, which is the only region in which the isotropic coordinates are

valid for the GR Schwarzschild solution. Then, the metric (4.42) takes the form,

ds2 = −
∣∣∣∣1− m

2r

1 + m
2r

∣∣∣∣q dt2 +
∣∣∣1− m

2r

∣∣∣2−q ∣∣∣1 +
m

2r

∣∣∣2+q

dσ2, (4.44)

where q is given by Eq.(4.41).
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4.2.3 Metric Singularities and Schwarzschild Form

The spacetime given by Eq.(4.44) has singularities at r = m
2
and at r = 0. Both

are curvature singularities as can by seen by considering the Ricci scalar, however this

is easier to see in a a coordinate system similar to the Schwarzschild form. Consider

the coordinate transformation:

r̄ = r
(

1 +
m

2r

)2

, (4.45)

upon which the metric becomes

ds2 = −
(

1− 2m

r̄

)q/2
dt2 +

(
1− 2m

r̄

)−q/2
dr̄2 +

(
1− 2m

r̄

)1−q/2

r̄2dΩ2. (4.46)

Under this coordinate transformation the absolute value brackets are nullified and

the coordinate t is spacelike for r̄ < 2m. Then the Ricci scalar is given by:

R =
m2(4− q2)

2r̄4

(
1− 2m

r̄

) q
2
−2

, (4.47)

and the Kretschmann scalar is given by

K =
m2

4r̄4

(
1− 2m

r̄

)q−4

(Ar̄2 +Br̄ + C), (4.48)

where

A = 48q2, (4.49)

B = −32mq(q2 + 3q + 2), (4.50)

C = m2(2 + q)2(7q2 + 4q + 12). (4.51)

Obviously both the Ricci and Kretschmann scalars have curvature singularities at the

origin, and upon carefully taking the limit when r̄ approaches 2m we see that there

are curvature singularities at r̄ = 2m as well. When c14 is set to zero then we have:

R = 0, (4.52)

K =
48m2

r̄6
, (4.53)
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which are the correct values for the Schwarzschild solution’s Ricci and Kretschmann

scalars (expressed in Schwarzschild coordinates). As can be seen from Eq.(4.46) the

area of a sphere centered on the origin is given by:

A = 4πr̄2

(
1− 2m

r̄

)1−q/2

. (4.54)

When c14 = 0 then r̄ becomes the areal radial coordinate and a sphere with coordinate

radius r̄ = 2m has the area 4πr̄2 as expected. However the area of a sphere at r̄ = 2m is

infinite for any non-zero value of c14. This shows that while the spacetime of Eqs.(4.44,

4.46) do approach the Schwarzschild solution as c14 approaches zero, the approach is

not completely continuous. This areal radius reaches a minimum at:

r̄min = 2m

(
2 + q

4

)
(4.55)

Which is outside the curvature singularity located at r̄ = 2m.

It is important that this r̄min is outside the curvature singularity, because there

is a horizon at r̄min, and thus the singularity is hidden behind a horizon. To see this,

we look at the expansion of null geodesics (we follow [74]). Let the metric of Eq.(4.46)

be written as

ds2 = −uaub + sasb + Γab (4.56)

Where ua is given by Eq.(4.9), sa = eνδra and Γab is the 2-sphere metric. Then let the

outgoing null geodesics have the tangent vector ka given by:

ka =
1√
2

(ua + sa). (4.57)

Then the expansion of null geodesics is given by

Θ = Γab∇akb =
(m(2 + q)− 2r̄)

∣∣1− 2m
r̄

∣∣q/4
r̄
√

2|2m− r̄|
(4.58)

Which equals zero at r̄min.

The structure of the spacetime is wormhole-like outside r̄ = 2m, and with a

throat at r̄min (see Fig.(4.1). This means the throat is on a horizon, contrary to
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Figure 4.1: Plot of the area of sphere centered on the origin vs. areal radius. The wormhole-
like geometry is evident outside r̄ = 2m, with a throat a the minimum radius r̄min. The
solutions in blue are for various values of 0 < c14 < 2 and they approach the Schwarzschild
solution (in red) as c14 approaches zero.

what Eling and Jacobson wrote in the paper in which they derived this solution in

a different coordinate system [55]. In that paper they considered the Killing horizon

at r̄ = 2m and while they implied that the expansion of null geodesics would be zero

at r̄min, they explicitly said that r̄min was not on a horizon, so here we have clarified

the horizon structure of the spacetime. Unlike in the Schwarzschild solution of GR,

the Killing horizon and the event horizon do not coincide.
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4.2.4 Time-Dependent Solutions

If we consider solutions such that eµ and eν are separable in t and r, then we

seek solutions of the form,

µ(r, t) = µ0(r) + µ1(t), (4.59)

ν(r, t) = ν0(r) + ν1(t), (4.60)

so that all mixed-partial derivatives of µ and ν are zero. However, redefining the time

coordinate t by t′,

t′ ≡
∫
e2µ1(t)dt, (4.61)

we can see that, without loss of generality, we can set µ1 = 0, and look for solutions

of the form,

µ(r, t) = µ0(r), (4.62)

ν(r, t) = ν0(r) + ν1(t). (4.63)

If ν̇ = 0 then the equations of motion reduce to the static case, so we assume that

ν̇ 6= 0. In this case, when seeking solutions of the form of Eqs.(4.62)-(4.63) the tr and

aether equations reduce to,

c14µ
′ν̇ = 2µ′ν̇, (4.64)

c14µ
′ν̇ = −βµ′ν̇. (4.65)

Thus, there are three possibilities,

(i) c14 = 2 = −β; (ii) µ′ = 0; (iii) ν̇ = 0, (4.66)

where (iii) is just the static case. So, in the following we shall not consider it.

4.2.4.1 When c14 = 2 , β = −2 . This case just reduces to the static case con-

sidered in Section III.B, as by the definition of α2 given in Eq.(4.10), α = 0 now. Then,

the left-hand sides of the field equations, containing all of the time-dependence, van-

ish identically, and the solution for all c14 = 2 cases for the isotropic metric is given

by Eq.(4.7).
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4.2.4.2 When µ′ = 0. In this case the three relevant equations are the ones of

tt, rr, and θθ components,

α2ν̇1
2e2ν1 = e2µ0−2ν0

(
ν ′20 + 2ν ′′0 + 4

ν ′0
r

)
, (4.67)

α2e2ν1

(
ν̇1

2 +
2

3
ν̈1

)
= e2µ0−2ν0

(
ν ′20 + 2

ν ′0
r

)
, (4.68)

α2e2ν1

(
ν̇1

2 +
2

3
ν̈1

)
= e2µ0−2ν0

(
ν ′′0 +

ν ′0
r

)
. (4.69)

Note that for each equation, the left-hand side is t-dependent and the right-hand side

is r-dependent, thus both sides must be equal to the same constant. Setting

K2
0 = e2ν1

[
α2ν̇1

2
]
, (4.70)

K2
1 = e2ν1

[
α2

(
ν̇1

2 +
2

3
ν̈1

)]
, (4.71)

where K0 is associated with the tt equation and K1 is associated with the rr and θθ

equation, from Eqs.(4.68) and (4.69) we have

ν ′′0 = ν ′20 +
ν ′0
r
, (4.72)

and thus it can be shown that K2
0 = K2

1/3. Eq.(4.72) has the general solution,

ν0(r) = ln

(
r1

r2 − r2
0

)
, (4.73)

where r1 and r0 are integration constants. Next we solve for ν1(t) using Eq.(4.70),

e2ν1α2ν̇1
2 = K2

0 , (4.74)

which as the solution,

ν1(t) = ln

[
K0

α
(t− t0)

]
, (4.75)

where t0 is an integration constant, and t K0 6= 0. It is straightforward to show

that the solutions given by Eqs.(4.73)-(4.75) solve the field equations (4.67)-(4.69)

provided that,
K2

0r
2
1

α
= 12r2

0e
2µ0 . (4.76)
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Thus we do not have the freedom to set either K0 or r0 to zero. Then, the complete

solution for µ(t, r) and ν(t, r) can be expressed as,

µ(t, r) = µ0, (4.77)

ν(t, r) = ln

[√
12

α

r0(t− t0)

r2 − r2
0

]
+ µ0. (4.78)

If we reset the zero point of the time coordinate, and then rescale the time-coordinate

by a factor of e−µ0 , we can express the line element as

ds2 = −dt2 +
12r2

0t
2

α(r2 − r2
0)2

(
dr2 + r2d2Ω

)
. (4.79)

It can be shown that the spacetime described by the above metric is conformally

flat, that is, the Weyl tensor vanishes identically, and the spacetime is singular at

t = 0, as can be seen from the Ricci and Kretschmann scalars, now given by,

R = −3β

t2
, K =

1

t4

(
4

3
α2 − 8α + 12

)
, (4.80)

where β = 3c2 + c13, as defined previously.

To study this solution further, let us consider the energy conditions. We define

a timelike vector field ta in the (t, r)-plane,

ta = Aδat +Bδar , A2 = v2 +B2e2ν , (4.81)

from which we find that tata = −v2, where v is an arbitrary non-vanishing real

function of xa. A stress-energy tensor that obeys the weak energy condition ensures

that all observers following timelike trajectories will see only positive energy density,

that is,

Tæab t
atb ≥ 0. (4.82)

However, for the spacetime of Eq.(4.79) we have,

Tæab t
atb = −3β

[
6B2r2

0

α(r2 − r2
0)2

+
v2

2t2

]
, (4.83)
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which is always non-positive. Thus, the aether field in the current case always violates

the weak energy condition.

A stress-energy tensor that obeys the strong energy condition ensures that grav-

ity will always be attractive, not repulsive. It is given by the inequality,

Tæab t
atb − 1

2
Ttata ≥ 0. (4.84)

Again, in the current cae, the above condition is violated, as now we have,

Tæab t
atb − 1

2
Ttata = − 18B2βr2

0

α(r2 − r2
0)2

< 0. (4.85)

In addition, the above spacetime actually belongs to the Friedmann universe.

To show this, we change to a new radial coordinate R (unrelated to the Ricci scalar)

defined by,

dR2 =
dr2

(r2 − r2
0)2

. (4.86)

This can be integrated with partial fraction decomposition, yielding,

R =
1

2r0

ln

(
|1− r/r0|
|1 + r/r0|

)
. (4.87)

This evaluates to different inverse hyperbolic functions depending on whether r is

larger or smaller than r0. While this function cannot be evaluated at r = r0 we will

see that the final expression for the factor r2/(r2 − r2
0)2 in front of the angular part

of the metric is the same for both cases. For R we have,

R =


− 1
r0

tanh−1 (r/r0), r < r0,

− 1
r0

coth−1 (r/r0), r > r0.

(4.88)

While for r we have,

r =


−r0 tanh (r0R), r < r0,

−r0 coth (r0R), r > r0.

(4.89)
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And it is straightforward to show that,

r2

(r2 − r2
0)2

=


sinh2 (2r0R)/4r2

0, r < r0,

sinh2 (2r0R)/4r2
0, r > r0.

(4.90)

Hence the metric may now be written as,

ds2 = a(η)2

(
−dη2 + dR2 +

sinh2 (2r0R)

4r2
0

dΩ2

)
, (4.91)

where

a(η) = γr0 exp (γr0(η − η0)), (4.92)

and

dη2 =
α

12r2
0

dt2

t2
. (4.93)

To relate R to the areal radius Ψ, we consider hab, the induced metric on the

2-sphere hypersurface of constant η and R, such that,

hab =
sinh2 (2r0R)

4r2
0

(δθaδ
θ
b + sin θ2δφaδ

φ
b ). (4.94)

Then the surface area of a sphere at Ψ is given by,

4πΨ2 =

∫ 2π

0

∫ π

0

√
hdθdφ

=
sinh2 (2r0R)

4r2
0

∫ 2π

0

∫ π

0

sin θdθdφ

= 4π
sinh2 (2r0R)

4r2
0

. (4.95)

Thus the areal radius is given by,

Ψ =
sinh (2r0R)

2r0

, (4.96)

Leading to the transformation,

dR2 =
dΨ2

1 + 4r2
0Ψ2

. (4.97)
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If we now rewrite Ψ as r (unrelated to the starting coordinate r) for convenience,

then we can write the metric as,

ds2 = a(η)2

(
−dη2 +

dr2

1 + 4r2
0r

2
+ r2dΩ2

)
. (4.98)

Remember that r0 was an integration constant, and from Eqs.(4.75-4.76) we see that

we cannot set r0 to zero. If we set r2
0 = 1/4 then the metric of Eq.(4.98) would be

the traditional form for an FLRW metric of constant negative curvature (k = −1).

A spacetime very similar to this one was found in [60]. If we set r2
0 = −1/4 then

we have an FLRW metric of constant positive curvature, but that would induce a

complex conformal factor a(η). Remember that a(η) is given by Eq.(4.92), and the

full expression for γ is given by,

γ = 2

(
6

2 + 3c2 + c13

) 1
4

. (4.99)

4.3 Painlevè-Gullstrand Coordinates

In this section, using the gauge freedom (4.4), we choose the gauge

grr = 1, R(t, r) = r, (4.100)

so the metric takes the Painlevè-Gullstrand (PG) form,

ds2 = −e2µ(r)dt2 + 2eν(r)drdt+ dσ2. (4.101)

Recall dσ2 = dr2+r2dΩ2. For this metric we only consider time-independent solutions,

and assume that the aether is comoving,

ua = e−µδat . (4.102)

So, the aether is aligned with the timelike Killing vector of the metric, which is itself

hypersurface-orthorgonal.
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4.3.1 Field Equations

To simplify the field equations, we first define the quantity ∆,

∆ ≡ e2µ + e2ν . (4.103)

Then, it can be shown that the aether dynamical equations are identically zero for

any µ and ν, and the remaining field equations are the ones given by the components,

(tt, rr, θθ),

0 = e4µ−2ν
[
c14(2r2µ′′ + 4rµ′ + r2µ′2)

]
+ e2µ

[
c14(2r2µ′′ + 4rµ′ + r2µ′2 + 2r2µ′(µ′ − ν ′))

+4r(µ′ − ν ′)]− 2∆, (4.104)

0 = e2µ
[
c14(4rµ′ + 2r2µ′′ − r2µ′2)− 8rµ′

]
e2ν
[
c14(4rµ′ + 2r2µ′′ + 2r2µ′(µ′ − ν ′))− 4rν ′

]
− e4µ−2ν

[
4rµ′ + c14r

2µ′2
]

+ 2∆, (4.105)

0 = ∆
[
(c14 − 2)r2µ′2 − 2r2µ′′ − 2rµ′

]
+ e2ν

[
2rν ′(1 + rµ′)− 2rµ′ − 2r2µ′2

]
. (4.106)

As evident from Eqs.(B.33)-(B.42), the Einstein-aether equations require that

∆ 6= 0, (4.107)

although this is not evident from the field equations after simplification. So, as we

proceed we must reject outright any solution that violates Eq.(4.107).

4.3.2 Solutions

Our strategy is to first solve the tt equation for ν ′. The result is

ν ′ =
−2e4ν + c14(4rµ′ + r2µ′2 + 2r2µ′′)e4µ

2re2µ+2ν(2 + c14rµ′)

+
e2µ+2ν(c14(rµ′(4 + 3rµ′) + 2r2µ′′))

2re2µ+2ν(2 + c14rµ′)

+
e2µ+2ν(4rµ′ − 2)

2re2µ+2ν(2 + c14rµ′)
. (4.108)
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Note that in deriving the above expression, we assume that

rµ′ 6= − 2

c14

. (4.109)

When 2 + c14rµ
′ = 0, the solutions are different. So, let us pause here for a while, and

first consider the case 2 + c14rµ
′ = 0.

4.3.2.1 When 2 + c14rµ
′ = 0. In this case we can easily integrate to find,

µ =
2

c14

ln
(r0

r

)
. (4.110)

By substituting this into the tt/tr equations and solving for ν we find,

ν =
1

2
ln

[
2(1− c14)

c14

(r0

r

)4/c14
]

(4.111)

Unfortunately this does not solve the θθ/φφ equation for any choice of c14 or r0. If

instead we insert the µ from Eq.(4.110) into the θθ/φφ equation and solve for ν we

find:

ν =
1

2
ln

[
2

c14

R0 − 1
2
c14(r0r)

4/c14

r8/c14

]
(4.112)

where R0 is an integration constant. However this fails to solve the tt, tr, and rr

equations. So we cannot have 2 + c14rµ
′ = 0.

4.3.2.2 When 2 + c14rµ
′ 6= 0. This is the case in which Eq.(4.108) holds. We

substitute the value for ν ′ from this equation into the rr equation and solve for e2ν .

The result is,

e2ν = e2µ
(

2rµ′ +
c14

2
r2µ′2

)
. (4.113)

We can substitute this value for e2ν into Eq.(4.108), and then we have expressions for

both ν ′ and e2ν in terms of µ and its derivatives. The full expression for ν ′ is given

by,

ν ′ =
c14µ

′′(2 + rµ′(4 + c14rµ
′))

µ′(2 + c14rµ′)(4 + c14rµ′)

+
4(c14 − 1) + c14rµ

′(2 + rµ′)(4 + c14rµ
′)

r(2 + c14rµ′)(4 + c14rµ′)
. (4.114)
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If we put these expressions for ν ′ and eν into either the tt or rr equations, we find,

0 = (c14 − 2)
(
4µ′ + 4rµ′2 + c14r

2µ′3 + 2rµ′′
)

×
[
8 + 2(8 + c14)rµ′ + 8c14r

2µ′2 + c2
14r

3µ′3
]
. (4.115)

So we have three possibilities,

0 = c14 − 2, (4.116)

0 = 8 + 2(8 + c14)rµ′ + 8c14r
2µ′2 + c2

14r
3µ′3, (4.117)

0 = 4µ′ + 4rµ′2 + c14r
2µ′3 + 2rµ′′. (4.118)

We have already studied a case like Eq.(4.116). Not only was it unphysical but also it

violated the constraint of Eq.(4.108). Equation (4.117) is cubic in rµ′ so it is straight-

forward to find expressions for rµ′, and then separate variables and integrate. Equa-

tion (4.118) leads to the static aether solution found in [55]. Let us first consider

Eq.(4.117).

First we define f(r) such that,

f = rµ′. (4.119)

Then Eq.(4.117) may be written as,

0 = (f − β0)(f − β1)(f − β2), (4.120)

Where

β0 = − 4

c14

,

β1 = −2 +
√

4− 2c14

c14

,

β2 =
−2 +

√
4− 2c14

c14

. (4.121)

Generically, the solution to each case is of the form,

µ = ln

(
r

r0

)βi
, e2µ =

(
r

r0

)2βi

, (4.122)
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where βi is any of the ones given in Eq.(4.121). When we insert Eq.(4.122) into

Eq.(4.113) we find that,

e2ν =
1

2
βi(4 + c14βi)

(
r

r0

)2βi

. (4.123)

Since any solution in which e2ν = 0 is equivalent to the Minkowski metric, we ignore

the case of β0, as this would make e2ν = 0, as can be seen from Eq.(4.123). If we

insert the others βi into Eq.(4.123), then we have,

e2ν = −
(
r

r0

)2βi

. (4.124)

Unfortunately this violates the constraint of Eq.(4.109), so we must reject this, and

assume that Eq.(4.117) does not hold.

Coincidentally, if c14 = 2, then the metric components given by Eqs.(4.122,

4.123) satisfy the field equations identically for any choice of β, save for those that

violate the constraint of Eq.(4.108). So the metric given by:

ds2 = −
(
r

r0

)2β

dt2 + 2

√
β

2
(4 + c14β)

(
r

r0

)β
drdt+ dσ2, (4.125)

is a valid, though un-physical, solution.

This brings us to Eq.(4.118), which we rewrite it as,

0 = 4rµ′ + 4r2µ′2 + c14r
3µ′3 + 2r2µ′′. (4.126)

By Eq.(4.119) we can say that,

r2µ′′ = rf ′ − f, (4.127)

and thus we can rewrite Eq.(4.126) as

f ′ = −f
r

(
1 + 2f +

c14

2
f 2
)
. (4.128)
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But this is precisely the same equation as for the static case in the Schwarzschild

coordinates, given by Eq.(26) of [55]. Then, we can find the corresponding solutions

by proceeding exactly in the same way as done in [55]. In particular, the solution for

µ is given by,

µ(f) = ln

(f0
1− f/f−
1− f/f+

) f+f−
f+−f−

 , (4.129)

f± =
−1±

√
1− α

α
, (4.130)

r0

r
=

(
f

f − f−

)(
f − f−
f − f+

) 1
2(1+f+)

. (4.131)

This is not surprising given that the Schwarzschild metric in the Painlevè-Gullstrand

coordinates has the same tt component as the Schwarzschild metric in the Schwarzschild

coordinates. However, as can by seen by comparing Eq.(4.114) and Eq.(4.147) the gtr

component in the Painlevè-Gullstrand coordinates is different from the grr component

in the Schwarzschild coordinates.

4.4 The Schwarzschild Coordinates

The Schwarzschild coordinates correspond to the choice,

gtr = 0, R(t, r) = r, (4.132)

for which the metric takes the form,

ds2 = −e2µ(t,r)dt2 + e2ν(t,r)dr2 + r2d2Ω. (4.133)

Let the aether vector field take the form,

ua = eµδta. (4.134)

In the static case, the spacetime were already studied in [55]. So, in the following, we

shall pay particular attention for the non-static case.
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4.4.1 Field Equations

For simplicity, we define the quantities,

Q ≡ µ′2

2
− µ′ν ′ + µ′′, (4.135)

H ≡ ν̇2

2
− µ̇ν̇ + ν̈. (4.136)

The non-vanishing equation for the aether dynamics is,

0 = (2c13 − (c2 + c13 − c14)rµ′)ν̇ + r(c123ν̇ ′ − c14µ̇′). (4.137)

The non-vanishing Einstein-aether vacuum equations Gab = Tæab are the tt, tr, rr, θθ

components, given, respectively by,

0 = e2µ

[
c14Q+ 2c14

µ′

r
− 2ν ′

r
+

1

r2

]
− e2ν c123

2
ν̇2 − e2(µ+ν)

r2
, (4.138)

0 = c14(µ̇′ − µ′ν̇)− 2ν̇

r
, (4.139)

0 = e2ν [c123H] +
e2ν+2µ

r2

− e2µ

[
2µ′

r
+

1

r2
+
c14

2
µ′2
]
, (4.140)

0 = e2µ

[
µ′2

2
(c14 − 1) +

ν ′ − µ′

r
−Q

]
+ e2ν

[
ν̇2

2
(1− c13) + (c2 + 1)H

]
. (4.141)

4.4.2 Time-Independent Case

The static solution was already found in [55] but with a different (though equiv-

alent) parameterization of the metric. In the static case, all time-derivatives go to zero

and the (tt, rr, θθ) equations become,

e2ν

r2
= c14Q+ 2c14

µ′

r
− 2

ν ′

r
+

1

r2
, (4.142)

e2ν

r2
= c14

µ′2

2
+ 2

µ′

r
+

1

r2
, (4.143)

0 =
µ′2

2
(c14 − 1) + c14µ

′′ − c14µ
′ν ′. (4.144)
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We subtract the rr equation from the tt equation to find,

2
ν ′

r
= c14µ

′′ − c14µ
′ν ′ + 2

µ′

r
(c14 − 1), (4.145)

and rearrange the θθ equation to have,

2
ν ′

r
= 2µ′′ + µ′2(2− c14) + 2

µ′

r
− 2µ′ν ′. (4.146)

Setting them equal to each other we find,

ν ′ =
µ′′

µ′
+ µ′ +

2

r
, (4.147)

which is not explicitly dependent on the ci. We can rewrite the θθ equation as,

ν ′
(

1

r
+ µ′

)
=
β

2
µ′2 +

µ′

r
+ µ′′. (4.148)

Inserting our expression for ν ′ into this equation and after simplification, we find

r2µ′′ + 2rµ′ + 2r2µ′2 +
c14

2
r3µ′3 = 0, (4.149)

which is equivalent to equation (26) of [55], provided we make the substitutions,

c14 → c1, µ→ A

2
. (4.150)

We can solve this using an equivalent process as the authors of [55] did. We define

f = rµ′, then find that Eq.(4.149) becomes

df

dr
= −f

r

(
1 + 2f + αf 2

)
, (4.151)

but now with α ≡ c14/2. From the chain role, dµ
dr

= dµ
df

df
dr
, and the definition of f we

find
dµ

df
= − 1

1 + 2f + αf 2
. (4.152)

We use partial fraction decomposition to solve the above equation, and find

µ(f) = ln

(f0
1− f/f−
1− f/f+

) f+f−
f+−f−

 , (4.153)
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where f0 is an integration constant whose square is unity. The equivalent equation in

[55] is (34), and this solution matches it exactly, bearing in mind that,

f± =
−1±

√
1− α

α
. (4.154)

Then we can solve Eq.(4.151) and find,

r0

r
=

(
f

f − f−

)(
f − f−
f − f+

) 1
2(1+f+)

, (4.155)

which is equivalent to Eq.(35) iof [55].

Note that, when c14 = 2, instead of Eq.(4.153) now we have

µ(f) = ln

[(
f0
f + f+

f + f−

) 1
f−−f+

]
, (4.156)

where now f± are defined by

f± =
3

4
±
√

41

4
, (4.157)

and instead of Eq.(4.155) we have

r0

r
= f

2
f+f−

(
(f − f+)1/f+

(f − f−)1/f−

) 2
f+−f−

. (4.158)

4.4.3 Time-Dependent Cases

If we consider solutions such that eµ and eν are separable in t and r, then we

seek solutions of the form,

µ(r, t) = µ0(r) + µ1(t), (4.159)

ν(r, t) = ν0(r) + ν1(t). (4.160)

However, as shown previously, by redefining the time coordinate, we can always set

µ1 = 0, without loss of generality. So, in the following we only consider the case,

µ(r, t) = µ0(r), (4.161)

ν(r, t) = ν0(r) + ν1(t). (4.162)
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Now we have µ̇ = 0 and if ν̇ = 0 then the equations of motion reduce to the static

case, so we assume that ν̇ 6= 0. In proceeding we will not defer to the constraints on

the ci as outlined in [14] in order to have as complete a set of solutions as possible. In

this case, when seeking solutions of the form of Eqs.(4.161)-(4.162) the tr and aether

equations reduce to,

2

r
= −c14µ

′, (4.163)

2c13

r
= µ′(c14 − c123). (4.164)

We now consider separately the cases c13 = 0 and c13 6= 0.

4.4.3.1 When c13 = 0. By Eq.(4.163) we must have

c14 6= 0, µ′ 6= 0. (4.165)

Then, from Eq.(4.164) we have,

c2 = c14, (4.166)

for which Eq.(4.163) yields,

µ = ln

(
U0

rα

)
, α ≡ 2

c2

, (4.167)

where U0 is an arbitrary constant. Then, the tt, rr, θθ equations (4.138), (4.140) and

(4.141) become

U2
0

r2α+2
(α− 1) = e2ν

[
ν̇2

α
+

U2
0

r2α+2

]
, (4.168)

U2
0

r2α+2
(α− 1) = e2ν

[
− 2

α
ν̈ − ν̇2

α
− U2

0

r2α+2

]
, (4.169)

U2
0

r2α+2
(α− 1) (rν ′ + α) = e2ν

[
2

α
ν̈ +

ν̇2

α

+ ν̈ + ν̇2

]
. (4.170)

By combining the tt and rr equations we find

ν̇1(t)2 + ν̈1(t)

α
= − U2

0

r2α+2
, (4.171)
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where we have explicitly written the expressions for ν̇ in terms of ν1(t) to empha-

size the t-dependence. Since the left-hand side (LHS) is purely t-dependent, and the

right-hand side (RHS) is purely r-dependent, then both sides must be equal to some

constant. Since U0 6= 0, the only way to ensure that the RHS of Eq.(4.171) is constant

is to set,

α = −1, (4.172)

for which Eq.(4.171) reduces to

ν̇2 + ν̈ = U2
0 . (4.173)

By using Eq.(4.173) with either the tt or rr equation, we arrive at

2U2
0 = e2ν1

(
ν̇2

1 − U2
0

)
, (4.174)

which yields,

ν1(t) = ln
{√

2 sinh [U0 (t0 ± t)]
}
, (4.175)

where t0 is an arbitrary constant. On the other hand, from Eq.(4.170) we find

e2ν
(
ν̇2 − U2

0

)
= 2U2

0 (1− rν ′). (4.176)

Comparing this to Eq.(4.174), we find ν0(r) = const., so that

ν(t, r) = ln
{√

2 sinh [U0 (t0 ± t)] + V0

}
, (4.177)

where V0 is a constant. Eqs.(4.167) and (4.177) satisfy all of the field equations,

provided that V0 = 0, with no other constraints on the remaining arbitrary constants.

Thus for the case c13 6= 0, the solution is

µ(r) = ln (U0r),

ν(t, r) = ln
[√

2 sinh (U0(t0 ± t))
]
. (4.178)

73



However, using the gauge freedom for the choice of t, we can always set U0 = 1 and

t0 = 0, so the metric finally takes the form,

ds2 = −r2dt2 + 2 sinh2 (t) dr2 + r2d2Ω. (4.179)

In this case the Ricci scalar is given by

R =
4 sinh2 (t)− 3

sinh2 (t)r2
(4.180)

and thus it has curvature singularities at an initial time t = 0 and at the origin.

4.4.3.2 When c13 6= 0. In this case we combine the tt and rr equations, and

find

c123(ν̇1
2 + ν̈1) = − 2U2

0

r2α+2
. (4.181)

Substituting it into the tt equation, and then subtracting it from the θθ equation, we

find obtain,

2U2
0 rν

′
0(r)e−2ν0(r) = e2ν1(t)

[
2c13

1 + c13

U2
0

]
. (4.182)

The right-hand is always different form zero, so the above equation holds only when

ν1 = const. Then, the solution becomes static, and we have

rν ′0(r)e−2ν0(r) =
e2ν1

2U2
0

[
2c13

1 + c13

U2
0

]
≡ A0, (4.183)

where A0 is a non-zero constant. While this equation does yield a different static

solution for ν than was found previously, it does not solve all of the field equations.
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CHAPTER FIVE

Conclusions

5.1 Constraints on Æ-theory

In chapter 2, we have considered various constraints on the Einstein-aether

theory, as listed in Eqs.(2.4), (2.5)-(2.12), which represent the major constraints from

the self-consistency of the theory to various observations. The severest one is from

the recent gravitational wave event, GW170817 [31], observed by the LIGO/Virgo

collaboration, and the gamma-ray burst observation of GRB 170817A [32], given by

Eq.(2.4) due to the constraint on the deviation of the speed of the spin-2 graviton

from that of light.

In the previous studies, all analyses were done by expanding the two parameters

c2 and c4 in terms of α1 and α2 through the relations given by Eq.(2.3), and then

keeping only the leading terms, so finally one obtains [26, 22],

c2 = −c13(2c1 − c3)

3c1

, c4 = −c
2
3

c1

, (α1 = α2 = 0). (4.1)

Clearly, in this approach the errors due to the omission of the higher-order terms are

of the order of O(α1) ' 10−4, which is too large in comparing with the new constraint

(2.4) from the observations of gravitational waves [31, 32].

In that chapter, instead, for any given constraint, say, F (ci) = 0, we have

expanded it only in terms of ε ≡ c13,

F (c1, c2, c14, ε) = F (c1, c2, c14, 0)

+ F,ε(c1, c2, c14, 0)ε+ ... = 0, (4.2)

and leave all the other parameters free. Then, keeping only the leading term, we can

see that the resulting errors due to this omission is of the order of O (10−15), which is

insignificant in comparing with the rest of constraints. In doing so, the reduced phase
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space is in general three-dimensional. However, it is remarkable that the constraints

are then divided into two groups, one is confined on the (c1, c14)-plane, and the other

on the (c2, c14)-plane. In the former, the constraints are given by Eq.(2.17). We can

also transfer this constraint to the (c4, c14)-plane, which is simply equal to,

c4 . 0, 0 < c14 ≤ 0.25× 10−4. (4.3)

(See footnote 1 for a comment on the c14 → 0 limit.)

On the other hand, the cosmological constraint from the measurements of the

primordial helium-4 abundance restricts c2 to the range given by Eq.(2.21), while the

constraint c2
S & 1 further requires (see footnote 1 again),

0.095 & c2 & c14 > 0. (4.4)

However, the severest constraint on c2 comes from Eq.(2.26), from which we find

the constraints (2.27) for c14 ∈ [0, 2× 10−7] and c14 ∈ [2× 10−6, 2.5× 10−5], re-

spectively. In the intermediate regime, c14 ∈ (2× 10−7, 2× 10−6), the constraints are

illustrated in Figs. 2.2-2.3.

It should be noted that the constraints given above do not include the strong-

field regime constraints (2.12), because they depend on the sensitivities of neutron

stars in the theory, which are not known so far for the parameters given in the

above new ranges [29]. Therefore, instead using them to put further constraints on

the parameter ci’s, we have used them to find the upper bounds on the sensitivity

parameter σæ, given by Eq.(2.29), i.e.,

|α1 + 8σæ| ≤ 10−5 ,

∣∣∣∣α2

α1

∣∣∣∣× |α1 + 8σæ| ≤ 10−9 , (4.5)

although they are not free parameters, and normally depend on ci’s, as shown explic-

itly in [29]. Eq.(4.5) represents very severe constraints, and imposes tight bounds on

the radiation of neutron stars in the Einstein-aether theory, through the emissions

of the different species of the spin-0, spin-1 and spin-2 gravitons. Therefore, it would
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be very interesting to calculate σæ in the new ranges of the free parameters ci’s, and

then comparing such obtained values of σæ with the constraints (4.5).

Finally, we note that recently constraints of the khronometric theory [90] was

studied numerically in [43]. When the aether is hypersurface-orthogonal,

u[α∇βuλ] = 0, (4.6)

it can be shown that uµ can be always written in terms of a timelike scalar field φ,

the khronon, in the form [44],

uµ =
φ,µ√
−φ,αφ,α

, φ,αφ
,α < 0. (4.7)

Then, we find that,

ω2 ≡ aµaµ +
(
∇αuβ

)(
∇αuβ

)
−
(
∇αuβ

)(
∇βuα

)
, (4.8)

vanishes identically. As a result, one can add the following term to the general action

(1.27) [45, 46],

∆Sæ ≡ c0

∫
dx4
√
−g ω2, (4.9)

where c0 is an arbitrary dimensionless constant. Hence, among the four coupling

constants ci (i = 1, 3, 4) of the Einstein-aether theory, only the three combinations

(c14, c13, c2) have physical meaning in the khronometric theory [90]. This theory was

also referred to as the “T-theory” in [45] 1.

In view of the above considerations, it is clear that the spin-1 graviton appearing

in the Einstein-aether theory is absent in the khronometric theory (in addition, an

instantaneous mode appears in the khronometric theory [47, 20, 48], while this mode is

absent in the Einstein-aether theory [22, 23]). As a result, all the constraints from the

spin-1 mode should be dropped, in order to obtain the constraints on the khronometric

theory. In other words, the constraints obtained in that chapter projected onto the

1 It is interesting to note that the khronometric theory can be considered as the low energy
limit of the non-projectable version of the Hořava gravity [45, 90, 46, 20].
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three dimensional subspace (c14, c13, c2) are more stringent than the constraints found

in [43].

5.2 Plane Wave Solutions

In chapter 3, we have studied gravitational plane waves in Einstein-aether the-

ory, and found all vacuum solutions of the linearly polarized gravitational plane waves.

In general, such waves need to satisfy five independent Einstein-aether field equations,

given by Eqs.(B.4) -(B.7), for three unknown functions (U(u), V (u), h(u)). Therefore,

the problem in the Einstein-aether theory is overdetermined, and it is expected that

gravitational plane waves exist only for some particular choices of the coupling con-

stants ci. This is sharply in contrast to Einstein’s general relativity, in which the

problem is actually underdetermined, i.e. the vacuum Einstein field equations Gµν

only yield one independent equation,

2Uuu − U2
u = V 2

u , (4.10)

for the two unknown functions U and V . Thus, for any given V (u), one can integrate

Eq.(4.10) to find the metric coefficient U(u). This implies that Einstein’s theory allows

the existence of any form of gravitational plane waves. This is no longer true in

Einstein-aether theory, due to the presence of the time-like aether field. In particular,

in Einstein-aether theory in order to have arbitrary forms of gravitational plane waves

exist, the coupling constants ci must be chosen so that one of the following two

conditions must be satisfied,

(i) c13 = c2 = 0, c14 6= 0, h(u) = h0, or

(ii) c13 = c2 = c14 = 0, ∀ h(u). (4.11)

In the former case it can be seen that the aether must be a constant, while in the

latter the aether has no contributions to the spacetime, and Tæµν = 0 identically, as

can be seen from Eq.(B.1).
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c13 = 0 c2 = c14?

c2c14 = 0?

Eqs. 3.37-3.38
(gyy , gzz power law in u)

no

c2 = 0, c14 6= 0?

Eqs. 3.41-3.43
(Minkowski)

no

Eqs. 3.39-3.40
(GR equivalent)yes

yes

no

c2 = c14 = 0?

Eqs. 3.45-3.47
(gyy , gzz exponential in u)

no

Eqs. 3.48
(GR equivalent)yes

yes

Figure 5.1: A decision tree of all solutions for which c13 = 0, as virtually required by the
constraints of Chapter Two. The solution which obeys all constraints exactly is highlighted
in green.

c13 6= 0 c123 = 0?

Q = 0?
(see Eq. 3.82)

Eqs. 3.86,3.89
(gyy , gzz power law in u)

no

c2 = 0?
Eq. 3.108
(Minkowski)

no

Eq. 3.96
(Minkowski)

yes

yes

no

c14 = 0?

h′ = 0?

Eqs. 3.79-3.81
(gyy , gzz power law in u)

no

Eqs. 3.68-3.70
(gyy , gzz power law in u)

yesno

Eqs. 3.62-3.64
(gyy , gzz power law in u)

yes

yes

Figure 5.2. A decision tree of all solutions for which c13 6= 0, for completeness
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In general, the family of solutions for all cases in which c13 = 0 are given by Fig.

(5.1), and the family of solutions for all cases in which c13 6= 0 is given by Fig.(5.2).

Any solution which is disallowed by the strict observance of the constraints of Chapter

Two is highlighted in yellow, and the solution which strictly obeys all constraints is

highlighted in green.

Some of these cases are problematic even without considering the observational

constraints, as outlined in Jacobson’s review article [22]. Any case in which c123 = 0

results in α2 diverging (suggesting that the current PPN analysis is not valid here),

while any case in which c14 = 0 results in the speeds of the scalar and vector modes

diverging (suggesting that wave equations for these modes do not exist).

In the case of the solution given by Eqs.(3.45-3.47), the squared speed of the

spin-0 mode is given by c2
S = (2−c2)/(2+3c2). Thus, to have cS ≥ 1, we must require

c2 = c14 < 0, which is in conflict with the observational constraints of Chapter Two.

Therefore, this case is ruled out by observations.

The solution given by Eqs.(3.37-3.38) with α and β given by Eqs.(3.33,3.35)

stands as the only solution found that strictly obeys all constraints and has the

metric given by:

ds2 = −2dudv + (u)
1−β
1+2αdy2 + (u)

1+β
1+2αdz2, (4.12)

α = −
√
c2√

c2 ±
√
c14

,

β ≡ ±
√

1 + 4α + 2c14α2,

Where arbitrary constants have been absorbed by a translation of u by the appropriate

constant factor and a rescaling of y and z by the appropriate constant factors. Choice

of ± sign doesn’t matter for solving the equations, so this metric represents four

different, though related, solutions. If we require that the speeds of the scalar, vector

and tensor modes (at the linearized level) are all precisely equal to one, then we find
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that

c13 = c4 = 0, c2 =
c1

1− 2c1

, (cT = cV = cS = 1), (4.13)

which is also satisfied only by Eq.(4.12), and the corresponding solutions are still

quite different from those of GR, even all of these gravitational modes now move at

the same speed as that of the spin-2 graviton in GR.

It should be noted that the results obtained in that chapter are quite under-

standable, since the aether field is always unity and timelike, while the gravitational

plane waves move only along a null direction. Then, due to their mutual scattering,

it is expected that oppositely moving gravitational plane waves exist generically, and

the spacetimes must depend on both u and v. Therefore, if only a single gravitational

wave moving along a fix null direction is allowed to exist, it is clear that only for

particular choices of the coupling constants ci’s, can compatible solutions exist.

Thus, it would be very interesting to study the interactions of a plane gravita-

tional wave with the aether and other matter fields, as well as with a gravitational

plane wave moving in the opposite direction, by paying particular attention on Fara-

day rotations and the difference from those found in GR [85, 76, 76], due to the

presence of the timelike aether field, which violates LI.

5.3 Spherically-Symmetric Solutions

We have derived some exact, spherically-symmetric solutions with a static

aether (aligned with the timelike Killing vector of the metric) in several coordinate

systems, as depicted in Figs. 5.3-5.5.

Some of the solutions found were un-physical in that they required c2, c14, or

c13 to have values not allowed by the experimental constraints [14]. But given that

the physically-valid solutions sometimes had corresponding un-physical solutions with

similar structure, perhaps the structure of these un-physical solutions might induce

a search for physical solutions of a similar kind.
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Isotropic Time-dependent?

c14 = 2?

Eq. 4.44
(Reduces to Schwarzschild in c14 → 0 limit)

no

Eq. 4.21
(free eµ)

yes
no

c14 = 2?

Eq. 4.79 or 4.98
(Accelerating FLRW)

no

Reduces to static case
(Eq. 4.21)

yes

yes

Figure 5.3. Solutions found in the isotropic coordinates.

P.G. Time-dependent?

c14 = 2?

Eqs. 4.129=4.131
resembles EJ solution [55]

no

Eq. 4.125
(power law)

yes
no

Not considered
yes

Figure 5.4. Solutions found in the Painlevè-Gullstrand coordinates.
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Areal Radius Time-dependent?

c14 = 2?

Eqs. 4.153-4.155
(EJ solution [55])

no

Eqs. 4.156-4.158
(resembles EJ)

yes
no

c13 = 0?

No solution found

no

Eqs. 4.177-4.179
( c14 = c2 = −2)

yes

yes

Figure 5.5. Solutions found in the areal radius coordinates.

In isotropic coordinates we found exact time-dependent (Eq.(4.79)) and time-

independent (Eq.(4.44)) solutions that do not violate the constraints on the ci. A

coordinate transformation was found that brings the time-dependent solution to an

FLRW metric with negative constant curvature (Eq.(4.98)) similar to that found in

[60], or an FLRW metric with constant positive curvature (and a generally complex

scale factor). These are vacuum solutions without a cosmological constant and yet

with an accelerating expansion of the universe, valid for any physical values of c2 and

c13.

The static solution reduces to the Schwarzschild solution of GR as c14 → 0,

and is a solution with a static metric and an aether vector aligned with the metric’s

timelike Killing vector. According to [55] there is a unique solution of this kind, yet

we could not find a coordinate transformation that brings our solution to the one

presented in [55] or Appendix A.

This solution lends itself to more tractable analysis and comparison with the

Schwarzschild metric of GR.
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5.4 Future Work

Future Solar System tests of the preferred frame parameters α1,2 will allow

tighter constraints on the ci, and updated constraints on the spread of primordial

He-4 abundances will also help to further constrain the theory. A more complete

PPN analysis of Einstein-aether theory in which special cases such as c123 = 0 are

considered would help to generalize the observational constraint analysis. LIGO and

other gravitational wave observatories continue to search for signals with polarizations

other than the hx and h+ allowed by pure GR. Better knowledge of the experimental

constraints can guide the search for more viable spherically-symmetric and plane wave

solutions to the field equations. Further analysis of the existing plane wave solutions,

as well as the search for new solutions in alternative coordinate systems such as the

Brinkmann metric, and especially the collision of two plane waves in Einstein-aether

theory, will allow greater comparison with the plane waves of pure GR.

The closed-form solution for general ci values found in isotropic coordinates

could make a vacuum region solution for future star solutions in Einstein-aether the-

ory, for those star solutions where the aether is aligned with the timelike Killing

vector. Allowing a radial tilt to the aether will lead to greater freedom in finding new

spherically-symmetric and black hole solutions, as will considering a wider range of

coordinate systems. With more observationally-viable, closed-form solutions one can

perform perturbations to see the stability of black holes in Einstein-aether theory.

Further analytical solutions incorporating a cosmological constant or scalar field are

further opportunities to explore the theoretical and observational implications of the

aether field.
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APPENDIX A

Mathematica Scripts

A.1 Linear Perturbations around the Minkowski Background

It is easy to show that the Minkowski spacetime is a solution of the Einstein-

aether theory, in which the aether is aligned along the time direction, ūµ = δ0
µ. Let

us consider the linear perturbations,

gµν = ηµν + hµν , uµ = ūµ + wµ, (A.1)

where

h0i = ∂iB +Bi , wi = ∂iv + vi ,

hij = 2ψδij +

(
∂i∂j −

1

3
δij∆

)
E

+
1

2
(∂iEj + ∂jEi) + γij , (A.2)

with ∆ ≡ δij∂i∂j and the constraints

∂ivi = ∂iBi = ∂iEi = 0 ,

∂iγij = 0 , γii = 0 , (A.3)

where all the spatial indices are raised or lowered by δij or δij, for example ∂ivi ≡

δij∂jvi, and so on. Therefore, we have six scalars, h00, w0, B, v, ψ and E; three

transverse vectors, Bi, vi and Ei; and one transverse-traceless tensor, γij. Under the

following coordinate transformations,

t′ = t+ ξ0 , x′
i

= xi + ξi + ∂iξ , (A.4)
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where ∂iξi = 0, these quantities change as

h′00 = h00 − 2ξ̇0 , w′
0

= w0 + ξ̇0 ,

E ′ = E + 2ξ , ψ′ = ψ + ξ0 +
1

3
∆ξ , v′ = v + ξ̇ ,

B′ = B − ξ0 + ξ̇ , (A.5)

B′i = Bi + ξ̇i , E ′i = Ei + 2ξi ,

v′i = vi + ξ̇i , (A.6)

γ′ij = γij . (A.7)

For the scalar part, let us choose the gauge

E = B = 0 , (A.8)

which are equivalently to choose the arbitrary functions ξ0 and ξ as ξ = −E/2 and

ξ0 = B + ξ̇, so that the gauge freedom is completely fixed 1. Then, integrating out

the variables h00, w0 and v, we find that the quadratic action of the scalar part takes

the form,

S
(2,S)
æ =

1

8πGæ

∫
d4x

[
(1− c13) (2 + c13 + 3c2)

c123

ψ̇2

+
2− c14

c14

ψ∆ψ

]
. (A.9)

Thus, the ghost-free condition requires

qS ≡
(1− c13) (2 + c13 + 3c2)

c123

> 0 . (A.10)

Then, the variation of S(2,S)
æ with respect to ψ yields the field equation, ψ̈−c2

S∆ψ = 0,

where

c2
S ≡

c123(2− c14)

c14(1− c13)(2 + c13 + 3c2)
. (A.11)

1 In [34], the gauge v = B = 0 was adopted. However, as it can be seen from Eq.(A.5), in this
case ξ is fixed up to an arbitrary function ξ̂

(
xk
)
, that is, ξ = ξ̂

(
xk
)
−
∫
vdt, while ξ0 is completely

fixed by ξ0 = B + ξ̇.
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For the vector part, we choose the gauge ξi = −Ei/2, so that E ′i = 0. Then,

after integrating out Bi, we find that the quadratic action of the vector part takes

the form,

S
(2,V )
æ =

1

16πGæ

∫
d4x

[
c14v̇

iv̇i

+
2c1 − c13c−
2(1− c13)

vi∆vi

]
. (A.12)

Clearly, the ghost-free condition of the vector part now requires

qV ≡ c14 > 0 . (A.13)

Then, the variation of S(2,V )
æ with respect to vi yields the field equation, v̈i−c2

V ∆vi = 0,

where

c2
V ≡ 2c1 − c13c−

2c14(1− c13)
. (A.14)

Similarly, the quadratic action of the tensor part takes the form,

S
(2,T )
æ =

1

64πGæ

∫
d4x
[

(1− c13) γ̇ij γ̇ij + φij∆γij

]
.

(A.15)

Thus, the ghost-free condition of the tensor part requires

qT ≡ 1− c13 > 0 . (A.16)

Then, the variation of S(2,T )
æ with respect to γij yields the field equation, γ̈ij−c2

T∆γij =

0, where

c2
T =

1

1− c13

. (A.17)
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APPENDIX B

Einstein and Stress-Energy Tensor Components

B.1 Plane Wave Spacetime

For the plane wave spacetime of Eq.(3.14), the non-vanishing components of

the Einstein tensor Gµν and the aether stress-energy tensor Tæµν are given by,

G00 =
1

2

(
2Uuu − U2

u − V 2
u

)
,

Tæ00 = −1

8

[
2c2Uuu + c13

(
V 2
u + U2

u

)
+2
(
c13 + c2 + 3c14

)(
huu − huUu − h2

u

)]
,

Tæ01 =
e−2h

4

[
c2

(
Uuu − 2huUu − U2

u

)
+
(
c2 + c13 − c14

)(
huu − huUu − 2h2

u

)]
,

Tæ11 = −e
−4h

8

[
2c2Uuu + c13

(
U2
u + V 2

u

)
+2
(
c2 + c13 − c14

)(
huu − huUu − h2

u

)]
,

Tæ22 =
eV−U−2h

8

[
c13

(
2Vuu − V 2

u − 2UuVu − 4huVu

)
−
(
c13 + 2c2

)(
2Uuu − U2

u − 4huUu

)
−4c2huu + 2

(
3c2 − c13 + c14

)
h2
u

]
,

Tæ33 = −e
−(V+U+2h)

8

[
c13

(
2Vuu + V 2

u − 2UuVu − 4huVu

)
+
(
c13 + 2c2

)(
2Uuu − U2

u − 4huUu

)
+4c2huu − 2

(
3c2 − c13 + c14

)
h2
u

]
, (B.1)

and the aether dynamics tensor Æµ =
(
Æ0,Æ1, 0, 0

)
, where

Æ0 = −Æ1e
2h = − e−h

4
√

2

[
2c2Uuu + c13

(
U2
u + V 2

u

)
+2
(
c2 + c13 − c14

)(
huu − huUu − h2

u

)]
. (B.2)

89



In the vacuum case, we have Tmµν = 0, and the Einstein-aether equations (1.31)

reduce to

Gµν = Tæµν , (B.3)

which yield five independent equations,

2Uuu −
(
V 2
u + U2

u

)
+ 2c14

(
huu − huUu − h2

u

)
= 0,

c2

(
Uuu − 2huUu − U2

u

)
+
(
c2 + c13 − c14

)(
huu − huUu − 2h2

u

)
= 0, (B.4)

2c2Uuu + c13

(
U2
u + V 2

u

)
+ 2
(
c2 + c13 − c14

)(
huu − huUu − h2

u

)
= 0, (B.5)

c13

(
2Vuu − V 2

u − 2UuVu − 4huVu

)
−
(
c13 + 2c2

)(
2Uuu − U2

u − 4huUu

)
− 4c2huu + 2

(
3c2 − c13 + c14

)
h2
u = 0, (B.6)

c13

(
2Vuu + V 2

u − 2UuVu − 4huVu

)
+
(
c13 + 2c2

)(
2Uuu − U2

u − 4huUu

)
+ 4c2huu − 2

(
3c2 − c13 + c14

)
h2
u = 0 (B.7)

where in Eq.(B.4) we have used the fact that Tæ00 can be expressed in terms of Tæ11

which is equal to zero.

B.2 Conformally-flat Spherically-Symmetric Spacetime

To list the Einstein tensor components for the spacetime of Eqs.(4.7,4.8), we

first define Σ such that,

Σ = 3ν̇2 + 2ν̈ − 2µ̇ν̇ (B.8)
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Then the non-zero components of the Einstein tensor are,

G00 = 3ν̇2 − e2µ−2ν

[
ν ′2 + 2ν ′′ + 4

ν ′

r

]
, (B.9)

G01 = 2µ′ν̇ − 2ν̇ ′, (B.10)

G11 = ν ′2 + 2µ′ν ′ +
2

r
(µ′ + ν ′)− Σe−2µ+2ν (B.11)

G22 = r2
[
µ′2 + µ′′ + ν ′′ +

µ′ + ν ′

r
− Σe−2µ+2ν

]
, (B.12)

G33 = sin2θ (G22) (B.13)

For the aether stress-energy tensor components, we first define β such that

β = 3c2 + c13. (B.14)

Then the non-zero components of the aether stress-energy tensor are,

Tæ00 = e2µ−2ν
[
c14

(µ′2
2

+ µ′ν ′ + µ′′ + 2
µ′

r

)]
− 3

2
βν̇2, (B.15)

Tæ01 = c14 (µ̇′ + µ′ν̇) , (B.16)

Tæ11 =
β

2
Σe−2µ+2ν − c14

2
µ′2, (B.17)

Tæ22 = r2
[
Tæ11 + c14µ

′2
]

(B.18)

Tæ33 = sin2θ
(
Tæ22

)
(B.19)

B.3 Schwarzschild-type Spacetime

Given how often they repeat, I define the quantities,

Q =
µ′2

2
− µ′ν ′ + µ′′ (B.20)

H =
ν̇2

2
− µ̇ν̇ + ν̈ (B.21)

91



The non-zero components of the Einstein tensor are,

G00 =
1

r2
e2(µ−ν)

[
e2ν + 2rν ′ − 1

]
, (B.22)

G01 =
2ν̇

r
, (B.23)

G11 =
1

r2

[
1− e2ν + 2rµ′

]
, (B.24)

G22 = r2
[
e−2ν

(
Q+

(
µ′2

2
− ν ′ − µ′

r

))
− e−2µ

(
H +

ν̇2

2

)]
, (B.25)

G33 = sin2θ (G22) (B.26)

The non-zero components of the aether stress-energy tensor are,

Tæ00 = e2µ−2νc14

[
Q+

2µ′

r

]
− c123

2
ν̇2, (B.27)

Tæ01 = c14 (µ̇′ − µ′ν̇) , (B.28)

Tæ11 = e−2µ+2νc123H −
c14

2
µ′2, (B.29)

Tæ22 = r2
[
e−2µ

(
c2H −

c13

2
ν̇2
)

− e−2ν c14

2
µ′2
]
, (B.30)

Tæ33 = sin2θ
(
Tæ22

)
(B.31)

B.4 Painlevè-Gullstrand Coordinates

Recall from Eq.(4.103) that ∆ is defined by,

∆ = e2µ + e2ν (B.32)
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The non-zero components of the Einstein tensor are,

G00 =
1

∆2r2
[e4µ+2ν(1− 2r(µ′ + ν ′)

+ e2µ+4ν ], (B.33)

G01 =
1

∆2r2
[e2µ+3ν(−1 + 2r(µ′ − ν ′))

− e5ν ], (B.34)

G11 =
1

∆2r2
[e2µ+2ν(4rµ′ − 1) + 2e4µrµ′

+ e4ν(2rν ′ − 1)], (B.35)

G22 =
1

∆2r2
[e4µ(rµ′ + r2µ′2 + r2µ′′)

+ e2µ+2ν(r(1 + rµ′)(2µ′ − ν ′)

+ r2µ′′)], (B.36)

G33 = sin2θ(G22). (B.37)

The non-zero components of the aether stress-energy tensor are,

Tæ00 =
c14

2∆2r2
[e6µ(4µ′ + rµ′2 + 2rµ′′)

+ (e4µ+2ν)(4µ′ + 3rµ′2 − 2rµ′ν ′

+ 2rµ′′)], (B.38)

Tæ01 =
c14

2∆2r2
[e2µ+3ν(4µ′ + 3rµ′2 + 2rµ′′ − 2rµ′ν ′)

− (e4µ+ν)(4µ′ + rµ′2 + 2rµ′ν ′)], (B.39)

Tæ11 =
c14

2∆2r2
[e4ν(2µ′ + rµ′2 + rµ′′)

+ (e2µ+2ν)(4µ′ − rµ′2 + 2rµ′ν ′)

− 4e4µrµ′2)], (B.40)

Tæ22 =
c14e

2µr2µ′2

2∆
, (B.41)

Tæ33 = sin2θ(Tæ). (B.42)
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