
ABSTRACT

Robust and Efficient Methods for Proton Computed Tomography

Paniz Karbasi, Ph.D.

Mentor: Keith Evan Schubert, Ph.D.

Proton computed tomography (pCT) is a recent promising imaging modality

with the goal of generating accurate 3D maps of relative stopping power (RSP) with

respect to water. Since the early developments of this imaging technique in 1970’s,

there have been significant improvements regarding the reconstruction of accurate

RSP which makes pCT a reliable alternative to X-ray CT for planning proton ther-

apy treatments. There are several conditions in pCT that can negatively affect the

accuracy of pCT images. The goal of this dissertation is developing efficient image re-

construction methods generating accurate RSP values under both normal and critical

conditions.
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CHAPTER ONE

Introduction

Proton computed tomography (pCT) is a recent promising imaging modality

with the goal of generating accurate 3D maps of relative stopping power (RSP) with

respect to water. From the early developments of this imaging technique in [1–4], to

the more recent development of a preclinical pCT scanner in [5, 6], there have been

many improvements regarding the reconstruction of accurate RSPs. These not only

predict more reliable treatment plans, but also can be used as a validation technique

prior to the treatment plan as a reliable alternative to the X-ray CT due to directly

generating accurate RSP maps, exposure of tissues to smaller doses of radiation, and

less uncertainty in Bragg peak location [7, 8].

One of the major concerns in therapies which use protons or other heavy

charged particles, e.g., carbon ions is the range of uncertainty which is related to the

changes in the tissue RSP. Even a change of a few percent in tissue RSP can result in

a range of error above the desired limit of 1-2 mm, which forces the planner of proton

therapy to increase margins around the target. This causes the unwanted exposure

of normal tissues to high doses. Therefore, reconstruction of accurate RSP maps is

one of the key goals in implementation of a pCT system. The method is based on

tracking the individual protons to estimate the most likely path (MLP) [9, 10], and

measuring the energy loss of each proton, and converting it to water-equivalent path-

length (WEPL) [11]. Thus, one can form a linear system of equations Ax = b where

A is the intersection lengths of tracked protons through individual object voxels, x is

the RSP maps of those voxels and b is the WEPL measurements. Solving the prob-

lem for finding the 3D maps of RSP is based on the parallel versions of an algebraic

reconstruction technique (ART) [12] using projections onto convex sets. The main
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advantage of parallel image reconstruction methods [13,14] is simultaneous execution

over one or more graphics processing units (GPU) leveraging tens of hundreds of

CUDA threads concurrently running on CUDA cores.

There are several factors that can negatively affect the results of image recon-

struction causing slow convergence and/or RSP values with high discrepancy from

the predicted true RSPs. These factors include: poor estimate of the initial iterate

used by the iterative solver; errors in protons path estimation either errors associated

with MLP calculation or the intersection length of a proton and the voxels along its

path; and lack of enough proton’s during a scan due to hardware issues or aiming

to perform low-dose scan with a small number of protons. A standard solution to

uncertain systems is to use a regularized solution,

x(Ψ) = (ATA+ ΨI)−1AT b, (1.1)

in which a diagonal matrix is added to the ATA term to make the inversion more

accurate by perturbing the singular values of the matrix A. In pCT, we deal with

a very large and sparse system of equations which is solved iteratively. The goal of

this dissertation is developing real-time GPU based sparse compatible robust iterative

solvers addressing the uncertainties in pCT and generating accurate 3D maps of RSP

measurements.

1.1 Reconstruction Steps

Reconstructing accurate RSP measurements within clinically recommended

time frames (i.e. under 5 minutes) is an important factor that needs to be met in

developing a pCT system. During this development, there are several steps that need

to be performed which can lead to performance and image quality improvements in

pCT. These steps can be summarized as following [15]:

(1) Removing outliers

(2) Hull detection
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(3) Data cuts

(4) Generating initial iterate

(5) Finding the endpoints of MLP

(6) Performing the iterative image reconstruction

Before describing the reconstructing steps in greater detail, we overview the

pCT data acquisition. A prototype pCT scanner was developed at Loma Linda

University consisting of a silicon-based particle tracking system and a five-stage scin-

tillating energy detector [16, 17]. Design of the pCT data acquisition is described

in [18], which is capable of measuring one to two million proton tracks per second.

Each proton track includes information of the locations where a proton hits silicon-

based tracking planes and the WEPL measurements of each protons are recorded.

A software platform was developed to characterize the performance of the proposed

pCT scanner at Loma Linda University [19], which is also illustrated in Figure 1.1.

Figure 1.1: Schematic drawing of pCT scanner developed at Loma Linda University

After data acquisition, proton tracks are stored in binary file format which

are stored on the solid-state drive (SSD) of the computing node. During the data
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read process from SSD, a reconstruction volume is defined based on prior knowledge

of the object to be reconstructed, which lets us identify and remove protons missing

from the reconstruction. Next, hull detection [20,21] is performed to identify protons

that missed the object, leading to identification of regions of space which do not

contain any portion of the object being scanned. Hull-detection is an important step

in pCT which is used in steps (4) and (5) of the pCT work-flow. A statistical analysis

is performed during the hull detection to identify and remove protons with irregular

relative angle or WEPL measurement due to nuclear scattering or multiple proton pile

up events. The remaining protons are used to construct the sinogram representation

of the data, which is then used as input to filtered back projection (FBP) as outlined

in [20].

The initial iterate is generated based on a hybrid method using the convex hull

and FBP image, where voxels in the FBP image that do not belong to the convex hull

are removed from the initial iterate. Next, we proceed with collecting the endpoints

of protons that enter and exit the image hull, which will be used in MLP calculation,

and finally the iterative image reconstruction is performed on the remaining protons.

In order to improve the image quality while performing the iterative solvers, one can

implement the superiorization method (SM) [22] which reduces the value of a target

function while seeking constraints-compatibility and has been shown to reduce noise

and generate higher quality of pCT images when combined with DROP [23,24].

Implementing the reconstruction steps on CUDA enabled GPU can signifi-

cantly improve the reconstruction runtime from several hours on a single CPU to

a few minutes on a single GPU. Reconstruction steps (1) - (5) are computationally

faster compared with step (6) which involves the MLP calculation. One of the exist-

ing solutions to developing a real-time pCT software is through distributing protons

among tens of GPUs in a large cluster as described in [25–27] and solving the sys-

tem using the existing parallel iterative solvers such as diagonally-relaxed orthogonal
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projections [28] (DROP), but there are more efficient ways to solve the pCT prob-

lem while addressing the uncertainties in the system which will be discussed in this

dissertation.

1.2 Contributions

Four ways are discussed in this dissertation to improve the reconstructed RSP

accuracy under frequently occurring uncertain conditions in pCT. Three of these

methods are incorporating robustness into DROP algorithm while the last proposed

method is a new formula designed for accurate estimation of sparse systems such as

the one we deal with in pCT.

There are also two efficient GPU-based algorithms proposed in this dissertation

discussing different ways to distribute protons and the image to be reconstructed

among GPUs on a single computer node with two or four GPUs.

1.3 Outline

Chapter 2 reviews the existing parallel iterative image reconstruction tech-

niques used in pCT. Chapter 3 discusses three methods for improving the image

reconstruction under critical conditions with modifying the existing iterative solver

DROP. Chapter 4 introduces a novel fully-simultaneous iterative image reconstruc-

tion method and compares with the existing parallel iterative solvers, and chapter 5

discusses GPU-based algorithms for implementing the parallel iterative image recon-

struction techniques.
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CHAPTER TWO

Current General and Robust Formulations

Parallel image reconstruction methods are widely used in pCT due to their na-

ture, which is compatible with single instruction multiple thread (SIMT) frameworks

where projections onto convex sets (pocs) run concurrently for groups of protons. Sev-

eral studies have addressed theoretical convergence and performance of these meth-

ods [14, 29, 30]. Parallel image reconstruction algorithms can be divided into three

main groups of fully-simultaneous [31,32], block-iterative (such as DROP [28] and BI-

CAV [33]) and string-averaging techniques (such as CARP [34]) based on the different

methods for performing parallel pocs. A classification of projection algorithms into

block-iterative and string-averaging techniques is described in [35]. The parallel pocs

can happen all at once as in fully-simultaneous methods, or be divided into several

groups, which are run concurrently within a group, but sequentially between groups

as in the block-iterative methods.

2.1 Current Parallel Iterative Image Reconstruction Methods

There are three major fully-simultaneous image reconstruction techniques:

SART [32], Cimmino [31], and CAV [36]. Although, SART was found to have a

slow convergence rate compared to Cimmino, it performed well on noisy data [32,37].

CAV was shown to converge faster than the other fully-simultaneous methods. Con-

vergence analysis of these methods is studied in [38] and it was shown that the

fully-simultaneous methods can be written in framework of the general Landweber

scheme [39–41]

x(k + 1) = x(k) + wV −1ATW−1(b− Ax(k)), (2.1)
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where w is the relaxation parameter, and W and V are two diagonal matrices of

sizes m×m and n×n respectively. Different combinations of V and W give different

iterative reconstruction algorithms. For example, choosing V = I and W = m‖Ai‖ in

equation 2.1 is equivalent to Cimmino’s algorithm, while to obtain the CAV algorithm

based on the same equation, we need to pick W with diagonal elements
∑n

j=1 sja
2
i,j

where sj is the number of nonzero elements in the jth column of matrix A.

In [42], several of block-iterative and string-averaging techniques were com-

pared and it was shown that string-averaging techniques such as CARP [34] achieved

superior image quality in comparison to block-iterative methods, while block-iterative

algorithms converged faster. OS-SART [43] achieved the fastest convergence rate

among other block-iterative techniques.

When it comes to choosing an iterative reconstruction algorithm for pCT,

DROP has found its place in many recent studies [28, 44–48], mainly because it has

been shown to generate accurate 3D maps of RSP [15], is easily parallelized and

it converges quickly. Another benefit of DROP compared to CARP is that it has

less noise overall, due to generating lower standard deviations. This arises from the

fact that total variation superiorization (TVS) happens in DROP for each block of

projections, while in CARP, TVS is applied just once to the solution at the start of

each iteration [27].

The DROP algorithm is described in the following section. First, Ax = b is

divided into a fixed number of blocks, where each block contains portions of the linear

system of equations. Next, having the current iterate or x(k), one performs the pro-

jections within the first block simultaneously, which the average of those projections

is calculated and used as the point to perform the simultaneous projections onto the

the linear system of equations in the second block. This way of projections continues

until the last block is reached, which gives the next iterate or x(k + 1).
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DROP Algorithm

Initialization: x(0) ∈ Rn is arbitrary.

Iterative Step: Given x(k),

x(k + 1) = x(k) + λkSk
∑
i∈It(k)

bi − 〈Ai, x(k)〉
‖Ai‖2

ai, (2.2)

where I = I1 ∪ I2 ∪ I3 · · · ∪ IM is a set containing M blocks, t(k) = 1, 2, . . .M , and

Sk is a n× n diagonal matrix where each diagonal term is 1
sj

where sj is the number

of times voxel j is intersected by path i ∈ It(k). Figure 2.1 illustrates a high-level

presentation of projection onto convex sets based on DROP.

Figure 2.1: Schematic drawing of projection onto convex sets based on DROP.
H1, H2, . . . H6 represent the hyper-planes, which the intersection of is the solution of
the system. After splitting the data into two sets {H1, H2, H3} and {H4, H5, H6} and
starting from x(k), the first set of projections occurs simultaneously onto {H1, H2, H3}
and the average of those will be used as the point to perform the next simultaneous
projections onto {H4, H5, H6}.

Because of the proven accuracy and performance of DROP in in pCT research,

it is selected as the base iterative reconstruction algorithm for comparison purposes

in the following chapters. Table 2.1 describes the frequently used terms in definition

of algorithms such as DROP and other proposed iterative reconstruction methods in

chapters three and four.
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Table 2.1: Definition of frequently used mathematical terms.

Term Definition Chapter
A m× n matrix containing protons path information 2, 3, 4
b m× l vector containing the WEPL information of protons 2, 3, 4
x n× 1 vector to be reconstructed containing the RSP values 2, 3, 4
Hi Set of hyper-planes or {x|ATi x = bi}, i = 1, 2, . . . ,m 2, 4
Ai ith row of matrix A 2, 3, 4
ai,j An element form ith row and jth column of A matrix 2, 3, 4
x(k) x vector at kth iteration of the iterative solver 2, 3, 4
x(k)j jth element of vector x(k) 3

λk Relaxation parameter used by the iterative solver at kth iteration 2, 3, 4
It(k) A block of the original system of linear equations Ax = b 2, 3
S S = diag(s−1

j ) of size n× n 2, 3
sj # of times voxel j is intersected by path i ∈ It(k) 2, 3
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CHAPTER THREE

Incorporating Robustness in DROP

There are certain situations in computerized tomography that might negatively

affect the result of image reconstruction, such as poor selection of image reconstruction

parameters (e.g. inaccurate initial iterate), lack of enough data during a scan, and

overlapped projections. Lack of data during a scan could happen due to unpredictable

reasons such as a hardware issue or purposely undersampled noisy data, allowing for

low-dose imaging. In [49], a study on image reconstruction from a small number of

projections was performed and it was shown that an algorithm based on total variation

minimization can give useful results even with a small number of projections, although

it is not guaranteed. In [37], a SART-type image reconstruction algorithm regularized

by sparsity was proposed and shown to effectively improve the quality of reconstructed

images and reduce the number of necessary projections. In [50] a multi-source SART-

type image reconstruction algorithm based on the single-source SART-type method

in [37] was developed to reconstruct images from overlapped projections with the goal

of improving the performance of image reconstruction.

In pCT, image reconstruction based on iterative solvers can lead to inaccu-

rate results ranging from artifacts on the image boundary to high RSP discrepancy.

The underlying causes for inaccurate 3D RSP maps are mainly due to poor MLP

estimations while forming the path matrix, or an imperfect initial iterate. In this

chapter we discuss two main image reconstruction issues, propose hybrid methods for

improving the results, and discuss the experiments on a Geant4 [51] simulated scan

of the CTP404 (Sensitome) phantom which contained about 120 million proton his-

tories with 4◦ increments in projection angle. The output of the image reconstruction
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contains 20 slices of 200 × 200 where each voxel dimension is 1.0 × 1.0 × 2.5 mm3.

Figure 3.1 shows the position of different materials inserted in CTP404 phantom.

Figure 3.1: CTP404 phantom; composition and geometry of the materials.

3.1 Uncertainties in MLP

Inaccurate RSP maps with high discrepancy happen due to different reasons

originating from the proton path estimations using the MLP technique and calculating

the intersection length of a proton with a voxel.

In MLP, the assumption is that protons essentially traverse water due to the

fact that a large portion of organs in the body are mostly water. Based on this as-

sumption, the coefficients of the MLP are calculated and remain unchanged all the

way through the proton’s path estimation. Although this assumption is basically

true, there are some cases in which protons traverse materials like bone, which differ

significantly from the assumption made during the MLP calculation and generate in-

accurate measurements of the path that a proton takes while traversing the object. In

addition to the uncertainties related to MLP calculation, there are also uncertainties

associated with the intersection length of a proton and a voxel which is not exact and
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is calculated based on the mean chord length technique and is fixed for all the voxels

along a proton’s path.

Another source of high RSP discrepancy, which mostly happens on the image

boundary is caused by short proton paths (i.e. less than 30 voxels), which can only

happen near the object border. Due to these short MLP paths, which also contain

significant RSP discrepancy, voxels on or near the image boundary are subject to

excessive updates causing visible artifacts on the boundary of the object.

3.2 Robust DROP

DROP generates accurate RSP values when x(k)j u 1, but when x(k)j � 1

or x(k)j � 1, DROP tends to make the value of x(k)j closer to one. In other words,

RSP values much greater than one converge slower, while RSP values much smaller

than one converge faster and exceed the predicted RSPs after the first few iterations

of the iterative solver. This is due to the fact that in the FBP image, (which is used

as the initial iterate) the RSP value of a material like PMP, (which it’s RSP is much

less than one), is closer to the predicted RSP of PMP, thus it converges faster. On

the other hand, the RSP value of a material such as Teflon, (which is much greater

than one) converges slower because the initial value of Teflon’s RSP is very far from

the predicted RSP ff Teflon. The % discrepancies of the RSP values generated by

FBP are shown in Table 3.1.

Table 3.1: % Discrepancy of RSP values of simulated CTP404 generated by FBP.
The RSP of PMP is close to the predicted RSP value of PMP, but Teflon’s RSP at

the initial iterate is very far from the predicted RSP of Teflon.

Material % Discrepancy
PMP -1.91
LDPE -3.46

Polystyrene -3.70
Acrylic -4.05
Delrin -4.96
Teflon -5.07
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In order to prevent DROP forcing voxel values to be close to one, we perform

the update of x(k)j based on the value of (1−x(k)j)η, such that ‖EAi
‖ ≤ η, where EAi

is the error in the ith row of the A matrix. Therefore, we have taken the uncertainty

related to the matrix A into account. Based on these facts, we have derived a modified

version of DROP that is outlined in Robust DROP1.

Robust DROP

Initialization: x(0) ∈ Rn is arbitrary.

Iterative Step: Given x(k),

x(k + 1) = x(k) + λkSk
∑
i∈It(k)

∑
j

bi − 〈Ai, x(k)〉
‖Ai‖2 ± βi,j

ai (3.1)

βi,j = (1− x(k)j)η (3.2)

3.2.1 Experiments and Results of Robust DROP vs. DROP

In order to asses the outcome of Robust DROP and compare it with DROP,

three experiments are performed as follows: In the first experiment, we have used the

matrix A resulting from the MLP calculations, in the second experiment, we have

added some Gaussian noise with zero mean and η2 variance to each nonzero element

of A to produce

Aerror = AMLP + η ∗N(0, 1). (3.3)

Finally, in the third experiment, we have randomly removed 120000 of the histories

from the data set and compared Robust DROP with DROP. This experiment sim-

ulates the situation that during a scan, the rate at which protons have been shot

towards the object is higher than the processing rate of recording the histories, thus

some of the protons are missed during the scan. This could lead to an uncertain path

matrix, and therefore inaccurate RSPs during the reconstruction.

1Some results in this chapter were published in [52]
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Choosing the proper values for η depends on estimating the error in the ith

row of the matrix A, which is based on the voxel size, mean chord length and number

of voxels along the path. Based on the simulated CTP404 Sensitome characteristics,

the value for η can rang from 0.05 to 20.5.

Figures 3.2a and 3.2b illustrate the results of reconstructing images with

DROP and Robust DROP, respectively. Table 3.2 includes the reconstructed RSP val-

ues by DROP and Robust algorithms. Based on the results in Figures 3.2a and 3.2b,

the reconstructed pCT images generated by DROP and Robust DROP do not look

different visibly. Moreover, the reconstructed RSP values of different material inserts

in simulated CTP404 phantom that are reported in Table 3.2, show the outcomes of

these two algorithms are very close to each other.

Figures 3.3 and 3.4 illustrate the results of the reconstructed images using

DROP and Robust DROP when the matrix A contains additive Gaussian noise with

η = 1.0 and η = 2.0, respectively. Tables 3.3, and 3.4 show the reconstructed RSP

values of simulated CTP404 using DROP and Robust DROP where the matrix A

contains additive Gaussian noise with η = 1.0 and η = 2.0, respectively.

Based on the results in Figures 3.3 and 3.4, when using DROP with the noisy

path matrix, we have some voxels with RSP values much less than or greater than

one on the boundary of the object. Clusters of voxels that have been marked in

Figures 3.3a and 3.4a are between 1 and 5 in size, and the error in RSP of these

clusters is about 98%. These artifacts on the boundary of the object should be

prevented because of the fact that incorrect RSP values along the boundary of the

object affect the accuracy of proton therapy. Based on the images in Figures 3.3

and 3.4, and the reconstructed RSP values in Tables 3.3 and 3.4, the benefit of the

robust technique mentioned in Robust DROP algorithm is clearly visible, illustrating

removal of artifacts from the boundary of the object and generating much more

accurate RSP values than DROP itself.
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(a) DROP (b) Robust DROP

Figure 3.2: Reconstructed image from (a) DROP, and (b) Robust DROP after six
iterations, using the path matrix calculated based on the MLP. The pCT image
generated by Robust DROP looks similar to the pCT image generated by DROP.

Table 3.2: Reconstructed RSP values of pCT images in Figure 3.2 with no errors in
matrix A. The RSP values reconstructed by DROP and Robust DROP are very

similar when there is no error in matrix A.

Material DROP Robust DROP Predicted RSP

Air (bottom) 0.064 0.064 0.0013

Air (top) 0.076 0.075 0.0013

PMP 0.89 0.89 0.877

LDPE 1.01 1.01 0.997

Polystyrene 1.05 1.04 1.038

Acrylic 1.18 1.18 1.155

Delrin 1.37 1.37 1.356

Teflon 1.80 1.80 1.828
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(a) DROP (b) Robust DROP

Figure 3.3: Reconstructed image of (a) DROP, and (b) Robust DROP after 12 itera-
tions, using the path matrix calculated based on the MLP and adding Gaussian noise
(η = 1.0) to the elements of the path matrix.

Table 3.3: RSP values of reconstructed images in Figure 3.3. RSP values of all
materials except Teflon generated by Robust DROP are much closer to the

predicted RSP values, which indicates that Robust DROP generated more accurate
results when there is additive Gaussian noise in the path matrix.

Material DROP Robust DROP Predicted RSP

Air (bottom) 0.117 0.071 0.0013

Air (top) 0.119 0.074 0.0013

PMP 0.919 0.872 0.877

LDPE 1.038 0.99 0.997

Polystyrene 1.076 1.027 1.038

Acrylic 1.211 1.161 1.155

Delrin 1.39 1.34 1.356

Teflon 1.797 1.748 1.828
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(a) DROP (b) Robust DROP

Figure 3.4: Reconstructed image of (a) DROP, and (b) Robust DROP after 12 itera-
tions, using the path matrix calculated based on the MLP and adding Gaussian noise
(η = 2.0) to the elements of the path matrix.

Table 3.4: RSP values of reconstructed images in Figure 3.4. The RSP values of all
materials generated by Robust DROP are closer to the predicted RSP values, which
indicates that Robust DROP generated more accurate results when there is additive

Gaussian noise in the path matrix.

Material DROP Robust DROP Predicted RSP

Air (bottom) 0.25 0.21 0.0013

Air (top) 0.24 0.2 0.0013

PMP 1.04 1.01 0.877

LDPE 1.17 1.12 0.997

Polystyrene 1.21 1.16 1.038

Acrylic 1.34 1.3 1.155

Delrin 1.52 1.4 1.356

Teflon 1.92 1.9 1.828
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Figures 3.5(a) and 3.5(b) illustrate the results of the reconstructed images by

DROP and Robust DROP, respectively, where we have randomly removed 120000 of

the histories from the data set. Based on the result, in this case Robust DROP does

not necessarily remove all of the artifacts on the boundary of the object, which could

be due to the sudden decrease of the image voxels that get updated. When protons

are removed, there are less linear equations to solve, therefore less updates to the

final solution (or x), which leads to the increase of noise in the image voxels or RSP

values.

Table 3.5 shows the reconstructed RSP values by DROP and Robust DROP

where we have randomly removed 120000 of the histories from the data set. Based

on the RSP values shown in Table 3.5, Robust DROP generates more accurate RSP

values in some of the materials and is never worse than DROP in generating the RSP

values for the rest of the materials.

(a) DROP (b) Robust DROP

Figure 3.5: Reconstructed image of (a) DROP, and (b) Robust DROP after six itera-
tions, while 120000 histories were removed randomly from the data set. Both images
look similar with artifacts on the image boundaries, which occur due to the proton
removals.
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Table 3.5: RSP values of reconstructed images in Figure 3.5. Robust DROP
generates more accurate RSP values in some of the materials and is never worse

than DROP in generating the RSP values for the rest of the materials.

Material DROP Robust DROP Predicted RSP

Air (bottom) 0.044 0.044 0.0013

Air (top) 0.057 0.056 0.0013

PMP 0.91 0.897 0.877

LDPE 1.004 1.001 0.997

Polystyrene 1.051 1.051 1.038

Acrylic 1.179 1.178 1.155

Delrin 1.354 1.354 1.356

Teflon 1.781 1.781 1.828

3.3 Noise Removal by Perturbing the Diagonals of the Path Matrix

When a system becomes ill-conditioned or the uncertainty is large, a robust

solver is needed. In the robust estimation, one could estimate the system Ax = b in

the following manner:

x = (ATA+ µI)
−1
AT b. (3.4)

The problem with using the above method for solving the pCT problem is that

all of the rows (or columns) of the A matrix cannot be stored in memory simultane-

ously because of its size. Therefore, we can not compute ATA in equation 3.4 and

can not perturb the diagonal. Since there is not a fast and easy way to compute ATA

in equation 3.4, we tend to estimate the Apx = b with DROP while Ap = A+ µI.

Figure 3.6 illustrates the vertical line segment crossing the middle of the sim-

ulated CTP404 Sensitome. Based on the results, the light grey line corresponding to

the perturbed Ap with µ = 0.01 is significantly improved on the image boundary com-

pared to the dark grey line, which uses the original path matrix without perturbing
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the diagonals. The reason that the perturbed path matrix generates more accurate

RSP values on the image boundary is due to the fact that perturbing the diagonals

of the path matrix not only modifies the eigenvalues and therefore singular values of

the path matrix, but it also is equivalent to increasing the number of voxels along a

proton’s path within a block of DROP which causes a smaller number of the diagonal

elements of matrix S resulting in smaller updates of voxels. In other words, increas-

ing the number of voxels along a proton’s path causes sj to be increased, which is

equivalent to a smaller S = diag(s−1
j ). In fact, with perturbing the matrix A, we are

able to make the relaxation parameter much smaller, thus the artifacts are removed.

Figure 3.6: Vertical line segment on the middle of the image. Based on the results of
this plot, RSP values reconstructed by DROP after perturbing the diagonal elements
of path matrix is much closer to the predicted RSP values at the two ends of the plot.
Using DROP without perturbing the diagonals of the path matrix causes significant
spikes on the two ends of the plot which represent the clusters of voxels with high
RSP values.
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3.4 DROP with Additive Updates

As mentioned earlier in Chapter three, and based on our previous experiments

on the simulated CTP404 Sensitome, RSP values much greater than one converge

slower while the RSP values closer to one or much less than one (e.g. PMP) converge

faster, which mainly happens due to the inaccurate RSP values generated by FBP.

When the initial image of the simulated CTP404 Sensitome is generated based

on the FBP method, materials with RSP close to one such as PMP, LDPE, and

Polystyrene, have much smaller discrepancies compared to other materials, which

makes them converge faster. Based on this observation, (which is shown in Table 3.1)

we can reformulate the original form of DROP as described in the following and

include an additive term to address the convergence rate of different materials based

on their current residue from one.

DROP with additive updates as mentioned below has the general form of

DROP algorithm with the extra term ψ(k), which is calculated based on the difference

of the voxels from one multiplied by a user-determined constant.

DROP with Additive Updates

Initialization: x(0) ∈ Rn is arbitrary.

Iterative Step: Given x(k),

x(k + 1) = x(k) + λkS(k)
∑
i∈It(k)

bi − 〈Ai, x(k)〉
‖Ai‖2

Ai + ψ(k) (3.5)

ψ(k) = |(1− x(k)η| (3.6)

Table 3.6 compares the % discrepancy of reconstructed RSP values of different

material inserts in the simulated CTP404 using eight iterations of DROP and DROP

with additive updates. Based on the results in this table, the % discrepancy of RSP

values of all materials is within a range of 1% of the predicted RSP values when
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reconstructing with DROP with additive updates. Thus, incorporating the additive

update into DROP accelerates convergence of materials such as Delrin and Teflon.

Table 3.6: Reconstructed RSP valued generated by DROP and DROP with additive
updates. Based on the results, DROP with additive updates generated more

accurate RSP values for all materials compared to DROP.

Material
Predicted

RSP
RSP of DROP

(Mean [% Discrep.])
RSP of DROP w/ additive updates

(Mean [% Discrep.])
PMP 0.877 0.89 [1.48] 0.886 [0.93]
LDPE 0.997 1.01 [1.30] 0.998 [0.12]
Poly. 1.038 1.05 [1.16] 1.04 [0.15]

Acrylic 1.155 1.18 [2.54] 1.161 [0.54]
Delrin 1.356 1.37 [1.03] 1.346 [-0.74]
Teflon 1.828 1.80 [-1.53] 1.817 [-0.62]

The reason for late convergence of some materials like Delrin and Teflon is

related to the image used as the initial iterate, or x(0), which is discussed in more

detail in the next chapter. A novel iterative fully-simultaneous image reconstruction

method is presented with the focus of accelerating convergence of materials with

significant discrepancy from the predicted RSP values.
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CHAPTER FOUR

Sparse Robust Estimation

Over the years, a large number of methods have been developed for robust

solution of mainly dense linear equations [53–56]. These methods address uncertain-

ties, such as perturbation in the system and measurements [56], while generating a

reliable solution. It has been noted that the following general matrix equation

x = (ATΦA+ Ψ)−1ATΦb, (4.1)

can be used to solve any of them for the correct choice of Φ and Ψ. For instance,

Total Least Squares is obtained by selecting Φ = I and Ψ = −σn+1I, with σn+1 the

smallest singular value of the matrix [A b]. Weighted Least Squares results from the

selection of Φ = W−1, i.e. the inverse of the weighting matrix, and Ψ = 0. Ridge

Regression is obtained by selecting Φ = I and Ψ = λI, with λ the ridge parameter.

Tikhonov regression is obtained by selecting Φ = I and Ψ = µ2LTL, with µ the

regularization parameter and L the regularization matrix.

The robust solution in the form of equation 4.1 is based on calculating ATA,

followed by scaling and perturbing the diagonal terms of ATA and inverting the

resultant matrix. These series of calculations are computationally heavy for moderate

to large size dense systems. In pCT, we deal with systems of equations which are

exceedingly large and sparse, solved by iterative reconstruction methods. In order

to have a sparse robust solution which can be formulated as an iterative method, we

start by forming the augmented system −Ψ AT

A Φ−1


 x

r

 =

 0

b

 . (4.2)
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The augmented system in equation 4.2 can be solved in two ways. The first

way solves the second line for x then the top line for r. Alternatively, the second

line of equation 4.2 can be solved for r and the top row solved for x. This yields the

following equations

r = Φ(b− Ax), (4.3)

x = Ψ−1AT r, (4.4)

that reduces to

x = Ψ−1ATΦ(b− Ax). (4.5)

Note that equation 4.5 is essentially of the same form as a standard iterative

algorithm, with Ψ in place of λ, and Φ in the place of the per-iteration weighting.

This gives a formal way for selecting values that are robust, by selecting the iterative

algorithm parameters according to a robust technique. It can also be shown in next

section that equation 4.5 is the same as equation 4.1, which puts certain bounds on

diagonal matrices Φ and Ψ such that they must be positive definite.

Based on Equation 4.5, we can design an iterative solver considering a system

of linear algebraic equations Ax = b, where A is an m × n real matrix. A solution

point will lie in the intersection of the hyperplanes described by

Hi : = {x|ATi x = bi}, i = 1 · · ·m. (4.6)

Given a current approximation x(k), we can write the fully simultaneous adap-

tive iterative solver (FSAIS) as

x(k + 1) = x(k) + Ψ−1ATΦ(b− Ax(k)). (4.7)
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4.1 Proof of the Compatibility of Equation 4.5 with the General Robust Equation

Consider the following augmented matrix

M =

−Ψ AT

A Φ−1

 . (4.8)

One of the nice features of matrix M is it symmetric form which enables us to ap-

ply the Cholesky factorization with the assumption that M is a Hermitian positive-

definite matrix [57]. Proving the symmetric property of matrix M is a trivial task

as one can easily apply the transpose operand on each block of M and the resulting

matrix is the same as M . With these assumptions, the Cholesky factorization of M

has the following form −Ψ AT

A Φ−1

 =

L1 0

L2 L3


LT1 LT2

0 LT3

 , (4.9)

where L1 and L3 are two lower triangular matrices and L2 is a square matrix. The

Cholesky factorization of the matrix M produces two sparse triangular matrices L

and LT .

Having the Cholesky factorization of matrix M , we can re-formulate the robust

equation as L1 0

L2 L3


LT1 LT2

0 LT3


x
r

 =

0

b

 . (4.10)

In order to be able to solve this equation, we need to determine the equivalence

of the L1, L2, and L3 matrices. By multiplying the two triangular matrices obtained

from the Cholesky factorization, and comparing it with the original matrix M , we

end up with the following equations [58],

L1L
T
1 = −Ψ, (4.11)

L1 = j
√

Ψ, (4.12)
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L2L
T
1 = A, (4.13)

L2(j
√

Ψ) = A, (4.14)

L2 = A(j
√

Ψ)−1, (4.15)

L2L
T
2 + L3L

T
3 = Φ−1, (4.16)

L3L
T
3 = Φ−1 − L2L

T
2 , (4.17)

L3L
T
3 = Φ−1 − A(j

√
Ψ)−2AT , (4.18)

L3L
T
3 = Φ−1 + AΨ−1AT , (4.19)

where,

√
Ψ =


√
ψ1

. . . √
ψj


.

Having the Cholesky factorization of the matrix M , we can solve MX = B by

first solving LY = B for Y , and then solving LTX = Y for X. For solving the first

equation LY = B in the following form L1 0

L2 L3


 y1

y2

 =

 0

b

 , (4.20)

we need to solve the following equations

L1y1 = 0, (4.21)

L2y1 + L3y2 = b, (4.22)

which can be reduced to a single linear equation L3y2 = b since y1 = 0. Next, we

need to solve equation LTX = Y which can be written in the following form
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 LT1 LT2

0 LT3


 x

r

 =

 0

y2

 . (4.23)

By performing the matrix multiplications on LTX = Y , the following equa-

tions are achieved

LT1 x+ LT2 r = 0, (4.24)

LT3 r = y2. (4.25)

For solving the linear systems in the above equations, first we solve equa-

tion 4.25 to obtain r, and then we can re-write equation 4.24 as LT1 x = y3 where

y3 = −LT2 r, and solve for x.

In summary, we need to solve the following sets of equations to achieve a

robust solution for x:

L3y2 − b = 0, (4.26)

LT1 x+ LT2 r = 0, (4.27)

LT3 r − y2 = 0. (4.28)

By substituting y2 from equation 4.28 into equation 4.26, we have the following

equations

L3L
T
3 r − b = 0, (4.29)

(AΨ−1AT + Φ−1)r = b, (4.30)

r = (AΨ−1AT + Φ−1)−1b. (4.31)

If we substitute r from equation 4.31 into x = Ψ−1AT from equation 4.4, we

end up with the following equation

x = Ψ−1AT (AΨ−1AT + Φ−1)−1b. (4.32)
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Consider the following matrix identities assuming C is an invertible matrix [59,

60],

(A+BCD)−1BC = A−1(I +BCDA−1)−1BC, (4.33)

= A−1B(I + CDA−1B)−1C, (4.34)

= A−1B(C−1 +DA−1B)−1. (4.35)

Based on the above matrix identities, we can re-write equation 4.32 in the

following form

x = Ψ−1AT (AΨ−1AT + Φ−1)−1b, (4.36)

= (ATΦA+ Ψ)−1ATΦb, (4.37)

which has the form of the general robust formula in equation 4.1.

4.2 Convergence Analysis of FSAIS

In this section it will be proved that FSAIS in equation 4.7 generates sequences

x(k) which always converge, regardless of the initial iterate x(0) and the consistency or

inconsistency of the underlying system Ax = b. The proof is based on an convergence

analysis of SART [61]. Here we form a primal optimization problem and use the

gradient descent method of the dual problem to derive the convergence of FSAIS.

Consider the following convex constrained optimization problem
minimizex

1
2
‖x− x(0)‖2

Ψ

subject to Φ
1
2Ax = Φ

1
2 b,

(4.38)

where x(0) is an arbitrary initial guess. We form the Lagrangian function of the

primal problem by multiplying the Lagrangian coefficients or α corresponding to the

equality constraints and add the result to the minimization problem. This gives the
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Lagrangian function L(x, α) as following

L(x, α) =
1

2
‖x− x(0)‖2

Ψ + αTΦ
1
2 (Ax− b). (4.39)

Next, we form the dual problem by first minimizing L(x, α) with respect to x

and then substitute the result into equation 4.39,

∇xL(x, α) = Ψ(x− x(0)) + ATΦ
1
2α. (4.40)

Setting ∇xL(x, α) to zero, the optimal solution is

x = x(0)−Ψ−1ATΦ
1
2α. (4.41)

Substituting the above optimal solution into L(x, α), we have

F (α) =
1

2
‖Ψ−1ATΦ

1
2α‖2

Ψ + αTΦ
1
2 (A(x(0)−Ψ−1ATΦ

1
2α)− b), (4.42)

=
1

2
‖Ψ−1ATΦ

1
2α‖2

Ψ + αTΦ
1
2 (Ax(0)− AΨ−1ATΦ

1
2α− b), (4.43)

=
1

2
‖Ψ−1ATΦ

1
2α‖2

Ψ − αTΦ
1
2 (AΨ−1ATΦ

1
2α + b− Ax(0)), (4.44)

=
1

2
‖Ψ−1ATΦ

1
2α‖2

Ψ − αTΦ
1
2 (AΨ−1ATΦ

1
2α)

− αTΦ
1
2 (b− Ax(0)), (4.45)

=
1

2
‖Ψ−1ATΦ

1
2α‖2

Ψ − ‖Ψ−1ATΦ
1
2α‖2

Ψ − αTΦ
1
2 (b− Ax(0)), (4.46)

= −1

2
‖Ψ−1ATΦ

1
2α‖2

Ψ − αTΦ
1
2 (b− Ax(0)). (4.47)

Thus, we can form the dual problem as an unnconstrained problem which is

minimizeαF (α) =
1

2
‖Ψ−1ATΦ

1
2α‖2

Ψ + αTΦ
1
2 (b− Ax(0)). (4.48)

For solving the dual problem in equation 4.48 we use the gradient descent

method. First, we derive the gradient of F (α) in equation 4.49 and then we state the

gradient descent method with unit step as shown in equation 4.50,

∇F (α) = Φ
1
2 (b− Ax(0)) + Φ

1
2AΨ−1ATΦ

1
2α, (4.49)

α(k + 1)− α(k) = −∇F (α(k)), (4.50)
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= −Φ
1
2 (b− Ax(0))− Φ

1
2AΨ−1ATΦ

1
2α(k). (4.51)

If we multiply both sides of equation 4.50 by −Ψ−1ATΦ
1
2 , we get a result which

is in the form of the original robust solver stated in equation 4.7. The following set

of equations prove this statement.

−Ψ−1ATΦ
1
2α(k + 1) + Ψ−1ATΦ

1
2α(k) (4.52)

= Ψ−1ATΦ(b− Ax(0)) + Ψ−1ATΦAΨ−1ATΦ
1
2α(k). (4.53)

In order to simplify equation 4.53, consider equation 4.41 which lets us define

x(k)−x(0) = −Ψ−1ATΦ
1
2α(k). Also, based on equation 4.7 we can define x(k+ 1)−

x(0) = Ψ−1ATΦ(b−Ax(0)). Thus, equation 4.53 can be re-written in the form of the

following equations

(x(k + 1)− x(0))− (x(k)− x(0)) (4.54)

= Ψ−1ATΦ(b− Ax(0))−Ψ−1ATΦA(x(k)− x(0)), (4.55)

= Ψ−1ATΦb−Ψ−1ATΦAx(0)−Ψ−1ATΦAx(k) + Ψ−1ATΦAx(0), (4.56)

= Ψ−1ATΦ(b− Ax(k)). (4.57)

The above equations show that the iterative solver shown in equation 4.7 is

equivalent to the gradient descent method with unit step for the dual problem. Next,

we derive the convergence of FSAIS based on the equation 4.50.

For any two vectors αi and αj ∈ RM , we have

‖∇F (αi)−∇F (αj)‖ = ‖Φ
1
2AΨ−1ATΦ

1
2 (αi − αj)‖, (4.58)

≤ ‖Φ
1
2AΨ−1ATΦ

1
2‖‖αi − αj‖, (4.59)

≤ ‖αi − αj‖. (4.60)
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Based on a definition of DROP algorithm and the assumptions that matrix

A is sparse1( where ai,j is close to one2), Φ is a m × m diagonal matrix such that

φi = 1
‖Ai‖2 < 1, and Ψ−1 is a n× n diagonal matrix where ψ−1

j = λks
−1
j << 1 (where

sj is the number of times voxel j is intersected by path i ∈ m), thus,

‖Φ
1
2AΨ−1ATΦ

1
2‖ ≤ ‖Φ

1
2A‖‖Ψ−1‖‖ATΦ

1
2‖, (4.61)

= ‖Ψ−1‖‖Φ
1
2A‖‖ATΦ

1
2‖, (4.62)

' ‖Ψ−1‖, (4.63)

≤ 1. (4.64)

The inequality 4.60 states that ∇F (α) is Lipschitz continuous (with L = 1)

which tells us that F is upper bounded by a quadratic, therefore

F (αk+1) ≤ F (αk) + 〈αk+1 − αk,∇F (αk)〉+
1

2
‖αk+1 − αk‖2, (4.65)

= F (αk)−
1

2
‖αk+1 − αk‖2, (4.66)

= F (αk)−
1

2
‖∇F (α)‖2. (4.67)

F (αk) will decrease until αk remains unchanged. Moreover, since αk − αk−1 =

−Φ
1
2 (b − Ax(0)) − Φ

1
2AΨ−1ATΦ

1
2αk−1, and thus −Φ

1
2 (b − Ax(0)) = αk − αk−1 +

Φ
1
2AΨ−1ATΦ

1
2αk−1, we can re-write equation 4.50 in the following form

αk+1 − αk = αk − αk−1 + Φ
1
2AΨ−1ATΦ

1
2αk−1 − Φ

1
2AΨ−1ATΦ

1
2αk, (4.68)

= (I − Φ
1
2AΨ−1ATΦ

1
2 )(αk − αk−1). (4.69)

Similarly, we can derive a bound on ‖αk−α?‖ where α? is the optimal solution.

For this, we apply the quadratic bound stated in inequality 4.65, while substituting

1The number of non-zero elements of a row in matrix A are typically about 50 - 200.

2ai,j assuming a voxel size of 1 in all dimensions.
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αk+1 = α? to obtain the following inequalities:

F (αk) ≤ F (α?) + 〈αk − α?,∇F (αk)〉+
1

2
‖αk − α?‖2, (4.70)

≤ F (α?)− ‖αk − α?‖‖∇F (αk)‖+
1

2
‖αk − α?‖2, (4.71)

≤ F (α?)− ‖αk − α?‖ − ‖∇F (αk)‖+
1

2
‖αk − α?‖2. (4.72)

Based on the gradient descent assumption F (α?) ≤ F (αk), the inequality 4.73 is true,

−‖αk − α?‖ − ‖∇F (αk)‖+
1

2
‖αk − α?‖2 ≤ 0, (4.73)

which leads to the following result showing the convergence of ‖αk − α?‖:

‖αk − α?‖ ≤ 2‖∇F (αk)‖. (4.74)

Moreover, we can prove the convergence of ‖αk+1 − αk‖ and therefore the

exponential decay of ‖x(k + 1)− x(k)‖Ψ and ‖x(k)− x(?)‖Ψ, since

‖x(k + 1)− x(k)‖Ψ = ‖Ψ−
1
2ATΦ

1
2 (αk+1 − αk)‖, (4.75)

= ‖ATΦ
1
2 (αk+1 − αk)‖Ψ−1 , (4.76)

≤ ‖Φ
1
2 (αk+1 − αk)‖Φ, (4.77)

= ‖αk+1 − αk‖. (4.78)

Thus, we can conclude that the gradient descent is convergent. The proof

used here is the same proof used for the convergence of SART in [61] which states

that gradient descent is convergent while the step size is less than 2
w

or w < 2 in

equation 2.1 and V = Ψ and W = Φ−1 are positive definite diagonal matrices. The

FSAIS algorithm is outlined in equation 4.79.

FSAIS Algorithm

Initialization: x(0) ∈ Rn is arbitrary, Iterative Step: Given x(k),

x(k + 1)j = x(k)j + ψ−1
j

m∑
i=1

[(bi − 〈Ai, x(k)〉)φi]ai,j. (4.79)
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4.3 Experiments and Results

For analyzing the convergence rate of FSAIS compared with the existing it-

erative solver DROP, we have performed three different experiments on two experi-

mental datasets, namely CTP404 Sensitome and pediatric head phantom (PedHead).

Table 4.1 shows the reconstruction parameters used for generating the pCT images

of datasets used in the experiments of this chapter.

Table 4.1: Specifications of datasets used in this chapter.

Data Type # Protons Voxel dim. (xyz mm3) # slices
CTP404 Experimental 251× 107 1.0× 1.0× 2.5 20
PedHead Experimental 251× 107 1.0× 1.0× 1.0 90

In the first experiment, FSAIS showed superior convergence rate compared to

DROP for all the different material inserts in experimental CTP404 and PedHead.

Results of this comparison are discussed in detail in the following sections.

For assessing the convergence behavior of FSAIS under uncertain conditions,

we have performed two experiments where protons within specific angle intervals are

removed. The reason for removing protons within angle intervals relates to different

situations causing uncertainties in computerized tomography and/or pCT. The main

reason that causes missing a sector of projection angles is that the available proton

energy is too small to penetrate the object in certain directions. For example, the

pelvis is shaped like a rounded box and has the hips on the side. To penetrate from

the side, one would need more than 230 MeV (range of 30 cm in water) in most

patients, and this is not generally available (though, PROTOM company now has a

330 MeV accelerator [62]). Thus, this leads to a sector of missing projection angles

from either side.

The other possible situation is related to the data loss within specific angle

intervals during a scan which is mainly related to hardware issues. The other situation

related to missing protons within angle intervals is low dose computerized tomography
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which is discussed in several research papers and shown to reduce mortality from lung

cancer. The following experiments are performed in order to analyze FSAIS with

limited data from specific angle intervals,

(1) Removing protons within angle intervals during the image reconstruction

(2) Removing protons within angle intervals during data read and before gener-

ating the initial iterate

Each of the above items creates an uncertain condition which can affect the

results of image reconstruction in different ways. If we remove protons during data

read, the FBP image which is used as the initial iterate will be affected, while if

protons are removed during the image reconstruction, the assumption is that the

initial iterate is safely generated in the past, but the image reconstruction with the

iterative solver needs to be repeated with limited data from angle intervals due to

data loss or low dose computerized tomography. Using an existing initial iterate for

multiple reconstruction is a valid assumption due to the fact that there can be cases

in which several scans on the same target or data is needed, thus, one can use an

existing initial iterate from previous scans of the same data and perform multiple

image reconstructions with the iterative solver.

4.4 Convergence Analysis of FSAIS and DROP on CTP404 Data

Image reconstructions in this chapter were executed on a single node of a

compute cluster with input data read from a local solid state drive (SSD) and the

majority of computations were performed in parallel on a single NVIDIA K40 GPU.

The total computation time from reading of input data from SSD through the writing

of reconstructed images to SSD was about 3.7 minutes for DROP and 3 minutes for

FSAIS.

The image analysis program ImageJ2 1.51r [63] was used to perform quan-

titative analyses of reconstructed image quality of the slice number 10 of phantom.

The ovular selection and measurement tool from ImageJ was used to select a 7 mm
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diameter circular region of interest within the boundary of each cylindrical insert

and calculate the mean and standard deviation in reconstructed RSP, with identical

region selection and analyses performed for all images reconstructed with FSAIS and

DROP.

Figure 4.1 along with Table 4.2 illustrate the convergence rate of DROP using

the FBP image as the initial iterate and after 6 iterations while the optimal block

size and relaxation parameter are 1280000 and 0.00015 respectively. Moreover, the

TVS method is used during the first and second iterations of DROP and prior to

performing the projections onto each block of convex sets. The criteria for choosing

the optimal reconstruction parameters is based on reconstructing high quality images

within the shortest amount of time with maximum number of materials with RSP

discrepancy within 1% of the predicted RSPs. The reconstructed pCT image of results

in Table 4.2 is shown in Figure 4.2.

Based on the results of DROP in Figure 4.1 and Table 4.2, materials such

as PMP, LDPE and Polystyrene converge much faster that materials like Teflon and

Delrin which have not converged after 6 iterations. The reason which causes delayed

convergence of some materials like Teflon compared to accelerated convergence of

other materials like PMP is due to the fact that the RSP of Teflon has a significant

discrepancy from the predicted RSP in the initial iterate generated by FBP. Table 4.3

shows the discrepancy of the CTPT404 materials from the predicted RSP values at

the initial iterate, which is generated by FBP. Based on the results in Table 4.3,

RSP values of PMP, LDPE are much closer to their predicted RSPs than Teflon and

Delrin’s difference with respect to their predicted RSP values.
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Figure 4.1: Convergence analysis of reconstructed RSP values for the materials of
experimental CTP404 phantom generated by DROP with block size 1280000 and
λ = 0.00015 while using TVS during the first and second iterations. % Discrep-
ancy of PMP, LDPE and Polystyrene is less than 1% after the first iteration, while
other materials do not converge even after 6 iterations of DROP. Details of the mean
reconstructed RSP values are given in Table 4.2.
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Figure 4.2: Experimental CTP404 pCT reconstruction by DROP using TVS during
first and second iterations.

Table 4.2: Reconstructed RSP values for the materials of experimental CTP404
generated by DROP with block size 1280000 and λ = 0.00015 after six iterations.
An important observation related to Teflon and Delrin is that DROP generated

inaccurate RSP values, even worse than RSPs at the initial iterate (see Table 4.3).

Material Reconstructed RSP StdDev % Discrepancy

PMP 0.894 0.008 1.25

LDPE 0.98 0.017 -0.01

Polystyrene 1.018 0.001 -0.61

Acrylic 1.106 0.006 -4.69

Delrin 1.254 0.001 -7.56

Teflon 1.637 0.016 -8.54
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Table 4.3: RSP statistics of materials at the initial iterate of CTP404.

Material Predicted Mean StdDev Min. Max. % Discrepancy
PMP 0.883 0.8626 0.0332 0.8053 0.952 -2.31
LDPE 0.980 0.9527 0.0409 0.8655 1.0612 -2.79

Polystyrene 1.024 0.9915 0.0229 0.9405 1.0627 -3.17
Acrylic 1.160 1.1048 0.0304 1.0492 1.1763 -4.75
Delrin 1.359 1.2755 0.0214 1.2342 1.3127 -5.94
Teflon 1.79 1.6647 0.0318 1.5794 1.7207 -7.0

Knowing the RSP values of materials at the initial iterate suggests a way

to pick the elements of Ψ−1 used in FSAIS such that RSP of materials like Teflon

converge faster than materials like PMP. Based on this observation, there is a method

for picking the elements of Ψ−1 which requires selecting elements of Ψ−1 for specific

RSP intervals. In other words, knowing that PMP is converging faster than Teflon

or Delrin, one can put some bounds on voxels about to be updated such that all

voxels x(k)j belonging to certain ranges are updated while ψ−1(j)s for those voxels

are selected based on a prior knowledge about the initial iterate. Thus, selecting

smaller values of ψ−1(j) for voxels close to PMP’s RSP while picking greater values

of ψ−1(j) for voxels close to Teflon’s RSP will help improving the convergence of all

materials. Table 4.4 shows the optimal values of Ψ−1 for CTP404 dataset.

Table 4.4: Elements of Ψ−1 for experimental CTP404.

RSP range ψ−1(j)
0.87 - 0.91 |1− x(k)j| × 0.00000001
0.99 - 1.03 |1− x(k)j| × 0.000085
1.05 - 1.35 |1− x(k)j| × 0.00015
1.13 - 1.16 |1− x(k)j| × 0.000085
1.35 - 1.8 |1− x(k)j| × 0.000085

Selecting RSP ranges that do not overlap is not necessarily a good way to form

Ψ−1 because it causes pCT images do not look smooth. The RSP ranges that are

shown in the first column of Table 4.4 were selected by first choosing the intervals

based on Teflon and Delrin’s RSP values in order to make sure those are receiving
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enough updates. Then, the intervals were further created to include other materials.

Moreover, if a voxel is updated within a specific range and it also belongs to a different

region, it will get updated again. The starting point of a range is selected based on

values close to the mean RSP values at the initial iterate or after the first iteration of

algorithms. Since we use TVS during the first and second iterations of the iterative

solvers, some materials are affected by that and their RPS values even get smaller

than they were at the initial iterate. Thus, one needs to select RSP ranges and values

of ψ−1(j) based on their need as the FSAIS can adapt to different conditions. As

shown in Table 4.4, we use |1− xj| multiplied by a constant. This is due to the fact

that materials with RSP closer to 1.0 converge faster than materials with RSP far

from 1.0 (like Teflon). This suggests we can use the difference of material RSPs to

adjust the values of ψ−1(j) such than those with RSP values closer to 1.0 get smaller

updates.

Figure 4.3 shows the reconstructed RSP values of the experimental CTP404

from the first to the last iteration of FSAIS where TVS was used during the first and

second iterations. Unlike the results generated by DROP (shown earlier in Figure 4.1),

Teflon, Delrin, and Acrylic get very close to the predicted RSP values in the last

iteration. The reconstructed pCT image at the last iteration of FSAIS is shown in

Figure 4.4. Table 4.5 shows the mean RSP and % discrepancy for material inserts in

the experimental CTP404 at the last iteration of FSAIS where TVS was used during

the first and second iterations. Based on the results in Table 4.5 (compared to DROP

results in Table 4.2), FSAIS improves the RSP values of Teflon, Delrin, and Acrylic

significantly and reduces the discrepancy in the results for those materials to less

than 1%. PMP is the only material that has a discrepancy greater than 1%. This is

due to the effect of TVS, which is performed during the first and second iterations of

DROP and FSAIS which causes the discrepancy of PMP to grow very fast after only

one iteration of the iterative solvers. Therefore, we can not lower the discrepancy of
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PMP even with a small update of voxels close to the RSP value of PMP (i.e. voxels

within a range of 0.87 - 0.91).

Figure 4.3: Convergence analysis of reconstructed RSP values for the materials of
experimental CTP404 phantom generated by FSAIS using TVS during the first and
second iterations. Details of the mean reconstructed RSP values are given in Table 4.5.
Based on the results, materials such as Teflon, Delrin and Acrylic, which did not
converge in the case of DROP (Figure 4.1), converge or get very close to the predicted
RSPs after six iterations of FSAIS algorithm.
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Figure 4.4: Experimental CTP404 pCT reconstruction by FSAIS using TVS during
the first iteration and second iterations.

Table 4.5: Reconstructed RSP values for the materials of experimental CTP404
generated by FSAIS while using TVS during the first and second iterations. The
RSP values of all materials except PMP are within a range of 1% of the predicted
RSPs, which indicates FSAIS generated more accurate RSPs compared to DROP.

Material Reconstructed RSP StdDev % Discrepancy
PMP 0.894 0.0072 1.24
LDPE 0.982 0.0117 0.21

Polystyrene 1.018 0.0018 -0.61
Acrylic 1.15 0.0082 -0.83
Delrin 1.366 0.0062 0.7
Teflon 1.782 0.0205 -0.43

Figure 4.5 shows the reconstructed RSP values of the experimental CTP404

from the first to the last iteration of FSAIS where TVS was used only during the

first iteration. Based on the results in Figure 4.5, removing the TVS during the
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second iteration improves the RSP of PMP, but has a negative effect on the RSP of

Polystyrene.

Figure 4.5: Convergence analysis of reconstructed RSP values of the experimental
CTP404 phantom generated by FSAIS using TVS during the first iteration. Details
of the mean reconstructed RSP values are given in Table 4.6. Based on the results,
although removing the TVS during the first iteration causes the RSP value of PMP
be more accurate, but it also causes a high discrepancy for the RSP of Polystyrene.

The reconstructed pCT image at the last iteration of FSAIS (where TVS was

used only during the first iteration) is shown in Figure 4.6. Table 4.6 shows the mean
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RSP and % discrepancy for material inserts in the experimental CTP404 at the last

iteration of FSAIS (where TVS was used only during the first iteration). Results

in Table 4.6 show a good reconstructed RSP value for PMP, but the pCT image of

these RSP values in Figure 4.6 is not as smooth as the one in Figure 4.4, which was

generated with TVS during the first and second iterations of FSAIS.

Figure 4.6: Experimental CTP404 pCT reconstruction by FSAIS using TVS during
the first iteration. The image looks less smooth than the image shown in Figure 4.4.

Table 4.6: Reconstructed RSPs for the materials of experimental CTP404 generated
by FSAIS while using TVS during the first iteration. The RSPs of all materials
expect Polystyrene and Delrin are within a range of 1% of the predicted RSPs.

Material Reconstructed RSP StdDev % Discrepancy
PMP 0.881 0.0106 -0.19
LDPE 0.973 0.017 -0.74

Polystyrene 1.003 0.0045 -2.05
Acrylic 1.151 0.0089 -0.78
Delrin 1.37 0.0043 1.03
Teflon 1.794 0.0234 0.20

43



4.4.1 Removing Protons from Angle Intervals During Reconstruction of CTP404

Based on the results shown in Figure 4.7, removing protons from 0.0 to 60.0

degrees does not cause a significant change in RSP values of materials reconstructed

by FSAIS and DROP in general. The % discrepancies of RSP values of Delrin,

Ploystyrene and LDPE reconstructed by FSAIS remain within the 1.0% range even

after removing protons from 0.0 to 60.0 degree. Teflon and Acrylic’s RSPs are still

better than −2.0% after removing protons from 0.0 to 60.0. The reason that FSAIS

does a better job in keeping the discrepancy of Polystrene, LDPE, and PMP within

1.0% range could be due to the actual position of these materials in the CTP404

phantom which are less affected by removing protons within 0.0 to 60.0 degree. On

the other hand, materials like Teflon, Delrin and Acrylic are on right side of the

CTP404 phantom and can be affected more from proton removals.

Figures 4.8, 4.9, 4.10, 4.11, 4.12, 4.13 illustrate the convergence rate of the

RSP of different materials reconstructed by DROP where protons were removed from

different angle intervals during the image reconstruction. Figure 4.14 shows the pCT

images reconstructed by DROP where protons were removed during the image re-

construction. In addition, Figures 4.15, 4.16, 4.17, 4.18, 4.19, 4.20 illustrate the

convergence rate of RSP of different materials reconstructed by FSAIS. Convergence

rate plots while removing protons during reconstruction have a similar pattern as

the convergence plots under normal conditions which are illustrated in Figures 4.1

and 4.4. Figure 4.21 shows the pCT image of CTP404 reconstructed by FSAIS where

protons were removed from different angle intervals during reconstruction. Removing

protons within angle intervals during image reconstruction does not cause a blur in

the reconstructed images shown in Figures 4.14 and 4.21.
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Figure 4.7: % Discrepancy of material inserts in CTP404 while removing protons
during the image reconstruction. Each angle d on the horizontal axis represents the
upper bound of the angle interval from which protons were removed (lower bound
is zero). Dashed lines indicate the desired range of % discrepancy which is between
-1 and 1. The RSP discrepancies for all materials except Teflon and Acrylic remain
within the 1% range of the predicted RSP values even after protons were removed
within a range of 0.0◦−60.0◦. An important observation related to Teflon and Delrin
is that DROP generated very inaccurate RSP values, even worse than RSP values at
the initial iterate generated by FBP, while FSAIS is generating much more accurate
results for these materials.
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Figure 4.8: DROP convergence analysis after removing protons within a range of
0.0◦−10.0◦ during reconstruction of experimental CTP404. The RSP values of Teflon,
Delrin and Acrylic are very far from the predicted RSP values even after six iterations.
See Table 4.7 for the % discrepancy of materials at the 6th iteration.

Table 4.7: DROP generated RSP values after removing protons within 0.0◦ − 10.0◦

range during reconstruction of experimental CTP404.

Material Mean ± SD % Discrepancy
PMP 0.894 ± 0.0069 1.25
LDPE 0.9798 ± 0.0157 -0.02

Polystyrene 1.0177 ± 0.0016 -0.62
Acrylic 1.1056 ± 0.0046 -4.69
Delrin 1.2534 ± 0.0008 -7.57
Teflon 1.6369 ± 0.0155 -8.55
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Figure 4.9: DROP convergence analysis after removing protons within 0.0◦ − 20.0◦

range during reconstruction of experimental CTP404. The RSP values of Teflon,
Delrin and Acrylic are very far from the predicted RSP values even after six iterations.
See Table 4.8 for the % discrepancy of materials at the 6th iteration.

Table 4.8: DROP generated RSP values after removing protons within a range of
0.0◦ − 20.0◦ during reconstruction of experimental CTP404.

Material Mean ± StdDev % Discrepancy
PMP 0.894 ± 0.0069 1.24
LDPE 0.9798 ± 0.0157 -0.02

Polystyrene 1.0176 ± 0.0016 -0.63
Acrylic 1.1054 ± 0.0046 -4.70
Delrin 1.2531 ± 0.0008 -7.59
Teflon 1.6366 ± 0.0154 -8.57
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Figure 4.10: DROP convergence analysis after removing protons within a range of
0.0◦−30.0◦ during reconstruction of experimental CTP404. The RSP values of Teflon,
Delrin and Acrylic are very far from the predicted RSP values even after six iterations.
See Table 4.9 for the % discrepancy of materials at the 6th iteration.

Table 4.9: DROP generated RSP values after removing protons within a range of
0.0◦ − 30.0◦ during reconstruction of experimental CTP404.

Material Mean ± StdDev % Discrepancy
PMP 0.894 ± 0.0069 1.25
LDPE 0.9798 ± 0.0157 -0.02

Polystyrene 1.0175 ± 0.0015 -0.63
Acrylic 1.1054 ± 0.0046 -4.71
Delrin 1.253 ± 0.0008 -7.60
Teflon 1.6364 ± 0.0154 -8.58
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Figure 4.11: DROP convergence analysis after removing protons within a range of
0.0◦−40.0◦ during reconstruction of experimental CTP404. The RSP values of Teflon,
Delrin and Acrylic are very far from the predicted RSP values even after six iterations.
See Table 4.10 for the % discrepancy of materials at the 6th iteration.

Table 4.10: DROP generated RSP values after removing protons within a range of
0.0◦ − 40.0◦ during reconstruction of experimental CTP404.

Material Mean ± StdDev % Discrepancy
PMP 0.8939 ± 0.0068 1.24
LDPE 0.9797 ± 0.0156 -0.03

Polystyrene 1.0174 ± 0.0015 -0.65
Acrylic 1.1052 ± 0.0046 -4.72
Delrin 1.2528 ± 0.0008 -7.61
Teflon 1.6361 ± 0.0154 -8.60
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Figure 4.12: DROP convergence analysis after removing protons within a range of
0.0◦−50.0◦ during reconstruction of experimental CTP404. The RSP values of Teflon,
Delrin and Acrylic are very far from the predicted RSP values even after six iterations.
See Table 4.11 for the % discrepancy of materials at the 6th iteration.

Table 4.11: DROP generated RSP values after removing protons within a range of
0.0◦ − 50.0◦ during reconstruction of experimental CTP404.

Material Mean ± StdDev % Discrepancy
PMP 0.8939 ± 0.0068 1.23
LDPE 0.9797 ± 0.0156 -0.03

Polystyrene 1.0173 ± 0.0015 -0.66
Acrylic 1.1051 ± 0.0046 -4.74
Delrin 1.2526 ± 0.0008 -7.63
Teflon 1.6358 ± 0.0154 -8.62
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Figure 4.13: DROP convergence analysis after removing protons within a range of
0.0◦−60.0◦ during reconstruction of experimental CTP404. The RSP values of Teflon,
Delrin and Acrylic are very far from the predicted RSP values even after six iterations.
See Table 4.12 for the % discrepancy of materials at the 6th iteration.

Table 4.12: DROP generated RSP values after removing protons within a range of
0.0◦ − 60.0◦ during reconstruction of experimental CTP404.

Material Mean ± StdDev % Discrepancy
PMP 0.8938 ± 0.0068 1.22
LDPE 0.9797 ± 0.0156 -0.03

Polystyrene 1.0172 ± 0.0015 -0.66
Acrylic 1.1049 ± 0.0046 -4.75
Delrin 1.2523 ± 0.0007 -7.64
Teflon 1.6355 ± 0.0153 -8.63
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(a) 0.0◦ − 10.0◦ (b) 0.0◦ − 20.0◦

(c) 0.0◦ − 30.0◦ (d) 0.0◦ − 40.0◦

(e) 0.0◦ − 50.0◦ (f) 0.0◦ − 60.0◦

Figure 4.14: Experimental CTP404 pCT reconstruction by DROP while removing
protons during image reconstruction. Each angle interval 0.0◦ − d◦ represents the
angle interval that is removed during the image reconstruction.
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Figure 4.15: FSAIS convergence analysis after removing protons within a range of
0.0◦ − 10.0◦ during reconstruction of experimental CTP404. The RSP values of all
materials are very good and close to the predicted RSP values after six iterations.
See Table 4.13 for the % discrepancy of materials at the 6th iteration.

Table 4.13: FSAIS generated RSP values after removing protons within a range of
0.0◦ − 10.0◦ during reconstruction of experimental CTP404.

Material Mean ± StdDev % Discrepancy
PMP 0.8939 ± 0.0072 1.23
LDPE 0.9818 ± 0.0118 0.19

Polystyrene 1.0177 ± 0.0018 -0.61
Acrylic 1.1475 ± 0.0084 -1.08
Delrin 1.3544 ± 0.0018 -0.12
Teflon 1.7764 ± 0.0191 -0.76
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Figure 4.16: FSAIS convergence analysis after removing protons within a range of
0.0◦ − 20.0◦ during reconstruction of experimental CTP404. The RSP values of all
materials are very good and close to the predicted RSP values after six iterations.
See Table 4.14 for the % discrepancy of materials at the 6th iteration.

Table 4.14: FSAIS generated RSP values after removing protons within a range of
0.0◦ − 20.0◦ during reconstruction of experimental CTP404.

Material Mean ± StdDev % Discrepancy
PMP 0.8938 ± 0.0072 1.22
LDPE 0.9817 ± 0.0119 0.18

Polystyrene 1.0176 ± 0.0018 -0.62
Acrylic 1.1463 ± 0.0082 -1.18
Delrin 1.3522 ± 0.0018 -0.28
Teflon 1.7727 ± 0.019 -0.97
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Figure 4.17: FSAIS convergence analysis after removing protons within a range of
0.0◦ − 30.0◦ during reconstruction of experimental CTP404. The RSP values of all
materials are very good and close to the predicted RSP values after six iterations.
See Table 4.15 for the % discrepancy of materials at the 6th iteration.

Table 4.15: FSAIS generated RSP values after removing protons within a range of
0.0◦ − 30.0◦ during reconstruction of experimental CTP404.

Material Mean ± StdDev % Discrepancy
PMP 0.8937 ± 0.0072 1.21
LDPE 0.9816 ± 0.0119 0.17

Polystyrene 1.0175 ± 0.0018 -0.63
Acrylic 1.145 ± 0.0081 -1.30
Delrin 1.3499 ± 0.0018 -0.45
Teflon 1.7687 ± 0.0187 -1.19
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Figure 4.18: FSAIS convergence analysis values after removing protons within a range
of 0.0◦ − 40.0◦ during reconstruction of experimental CTP404. The RSP values of
all materials are very good and close to the predicted RSP values after six iterations.
See Table 4.16 for the % discrepancy of materials at the 6th iteration.

Table 4.16: FSAIS generated RSP values after removing protons within a range of
0.0◦ − 40.0◦ during reconstruction of experimental CTP404.

Material Mean ± StdDev % Discrepancy
PMP 0.8937 ± 0.0071 1.21
LDPE 0.9816 ± 0.012 0.16

Polystyrene 1.0175 ± 0.0018 -0.64
Acrylic 1.1434 ± 0.0081 -1.43
Delrin 1.3477 ± 0.0018 -0.62
Teflon 1.7646 ± 0.0185 -1.42
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Figure 4.19: FSAIS convergence analysis after removing protons within a range of
0.0◦ − 50.0◦ during reconstruction of experimental CTP404. The RSP values of all
materials except Teflon and Acrylic are very close to the predicted RSP values after
six iterations. See Table 4.17 for the % discrepancy of materials at the 6th iteration.

Table 4.17: FSAIS generated RSP values after removing protons within a range of
0.0◦ − 50.0◦ during reconstruction of experimental CTP404.

Material Mean ± StdDev % Discrepancy
PMP 0.8936 ± 0.0071 1.20
LDPE 0.9815 ± 0.012 0.15

Polystyrene 1.0174 ± 0.0018 -0.65
Acrylic 1.1419 ± 0.008 -1.56
Delrin 1.345 ± 0.0017 -0.81
Teflon 1.7605 ± 0.0184 -1.65
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Figure 4.20: FSAIS convergence analysis after removing protons within a range of
0.0◦ − 60.0◦ during reconstruction of experimental CTP404. The RSP values of all
materials except Teflon and Acrylic are very close to the predicted RSP values after
six iterations. See Table 4.18 for the % discrepancy of materials at the 6th iteration.

Table 4.18: FSAIS generated RSP values after removing protons within a range of
0.0◦ − 60.0◦ during reconstruction of experimental CTP404.

Material Mean ± StdDev % Discrepancy
PMP 0.8935 ± 0.0071 1.19
LDPE 0.9814 ± 0.0121 0.14

Polystyrene 1.0173 ± 0.0018 -0.65
Acrylic 1.1403 ± 0.0078 -1.70
Delrin 1.3424 ± 0.0018 -1.00
Teflon 1.7559 ± 0.0182 -1.91
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(a) 0.0◦ − 10.0◦ (b) 0.0◦ − 20.0◦

(c) 0.0◦ − 30.0◦ (d) 0.0◦ − 40.0◦

(e) 0.0◦ − 50.0◦ (f) 0.0◦ − 60.0◦

Figure 4.21: Experimental CTP404 pCT reconstruction by FSAIS while removing
protons during image reconstruction. Each angle interval 0.0◦ − d◦ represents the
angle interval that is removed during the image reconstruction.
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Figures 4.22, 4.23 and 4.24 illustrate the results of removing protons from

different angle intervals with fixed length of 6◦ during the image reconstruction. Based

on the results in these figures, the RSPs of Teflon, Delrin, and Acrylic reconstructed

by DROP are even worse than the RSPs of these materials at the initial iterate.

Figure 4.22: % Discrepancy of Teflon and Delrin after 6 iterations of FSAIS and
DROP. Each point on the horizontal axis represents the angle interval that protons
where removed from during performing the iterative solver. Dashed lines indicate the
desired range of % discrepancy which is between -1 and 1. An important observation
related to Teflon and Delrin is that DROP generated very inaccurate RSP values,
even worse than RSP values at the initial iterate.
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Figure 4.23: % Discrepancy of Acrylic and Polystyrene after 6 iterations of FSAIS and
DROP. Each point on the horizontal axis represents the angle interval that protons
where removed from during performing the iterative solver. Dashed lines indicate the
desired range of % discrepancy which is between -1 and 1. An important observation
related to Acrylic is that DROP generated very inaccurate RSP values, even worse
than RSP values at the initial iterate.
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Figure 4.24: % Discrepancy of LDPE and PMP after 6 iterations of FSAIS and
DROP. Each point on the horizontal axis represents the angle interval that protons
where removed from during performing the iterative solver. Dashed lines indicate the
desired range of % discrepancy which is between -1 and 1. Both algorithm did not
generate good RSP values for LDPE and PMP.
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4.4.2 Removing Angle Intervals During Data Read

Figure 4.25 shows the filtered sinogram of experimental CTP404 where protons

were removed during the data read. In general, when protons are removed during

data read, the FBP image is affected severely with significant noise appearing in

the images. The reason that FBP images are affected by noise, arises from the fact

that when protons are removed from specific angle intervals during data read, the

binning process, which occurs prior to constructing the sinogram, is impacted by

missing protons. The protons that are missed from specific angle intervals cause

some bins are empty, which later appear in the form of lines with all zero elements

in the sinogram image as shown in Figure 4.25. Figure 4.26 illustrates the result of

removing protons from specific angle intervals during data read and its effect on the

% discrepancy of RSP values of different materials.

Figure 4.25: Filtered sinogram while protons were removed within a range of 0.0◦ −
30.0◦. The values of pixels in the vertical lines are zero indicate the empty bins that
are generated during the binning process.

Based on the results in Figure 4.26, reconstructed RSP values of all materials

except Polystyrene were less affected by the imperfect FBP images when using FSAIS.

On the other hand, RSP values generated by DROP were significantly affected by

imperfect FBP images. Since the reconstructed images by FSAIS and DROP used

the corrupted FBP images, and therefore the final pCT images included significant

noise, a median filter of radius 3 was applied to the FBP images to attenuate the

effect of noise on the initial iterate. The pCT images correspond to the experiments

in Figure 4.26, are shown in Figures 4.27 and 4.28 for DROP and FSAIS, respectively.
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Figure 4.29 illustrates the result of removing protons from specific angle in-

tervals during data read and its effect on the % discrepancy of RSPs in the different

materials while a median filter of radius 3 was operated on the FBP image. Using

the median filter caused improvements in the discrepancy of some materials using

DROP. For example, for the case of Acrylic and LDPE, DROP generated more RSP

values with a % discrepancy within a range of 1% where the median filter was used.

On the other hand, FSAIS’s results did not significantly improve using the median

filter. Figures 4.30 and 4.31 show the pCT images of the experimental CPT404 re-

constructed by DROP and FSAIS where protons were removed during data read and

a median filter of radius 3 was operated on the FBP image.

Figures 4.32, 4.33 and 4.34 illustrate the results of removing protons from

several angle intervals with fixed widths 6◦. Based on the results in these figures,

there are severe fluctuations in the RSPs before starting both algorithms, which is

due to the fact that removing protons during data read causes significant noise in the

FBP images which remains throughout the performance of the iterative solver. The

general behavior of both DROP and FSAIS is similar, but FSAIS causes slightly more

variations in the RSP variations because of its aggressive nature due to existence of

the accelerator term |1− x(k)| compared with DROP, which performs an average of

the projections within the same block of linear equations.
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Figure 4.26: % Discrepancy in the RSP for material inserts in CTP404 while removing
protons during data read. Each angle d on the horizontal axis represents the upper
bound of the angle interval from which protons were removed (lower bound is zero).
Teflon, Acrylic, LDPE and PMP show superior RSP accuracy for different angle
intervals compared with DROP’s reconstructed RSP values. Dashed lines indicate the
desired range of % discrepancy which is between -1 and 1. An important observation
related to Teflon, Delrin, Acrylic, LDPE, and PMP is that DROP generated very
inaccurate RSP values, even worse than RSP values at the initial iterate.
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(a) 0.0◦ − 5.0◦ (b) 0.0◦ − 10.0◦

(c) 0.0◦ − 15.0◦ (d) 0.0◦ − 20.0◦

(e) 0.0◦ − 25.0◦ (f) 0.0◦ − 30.0◦

Figure 4.27: Experimental CTP404 pCT reconstruction by DROP while removing
protons during data read. Each angle interval 0.0◦ − d◦ represents the angle interval
that is removed during the data read.
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(a) 0.0◦ − 5.0◦ (b) 0.0◦ − 10.0◦

(c) 0.0◦ − 15.0◦ (d) 0.0◦ − 20.0◦

(e) 0.0◦ − 25.0◦ (f) 0.0◦ − 30.0◦

Figure 4.28: Experimental CTP404 pCT reconstruction by FSAIS while removing
protons during data read. Each angle interval 0.0◦ − d◦ represents the angle interval
that is removed during the data read.
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Figure 4.29: % Discrepancy of material inserts in CTP404 while removing protons
during data read and using a median filter of radius 3 for FBP. Each angle d on
the horizontal axis represents the upper bound of the angle interval from which pro-
tons were removed (lower bound is zero). Dashed lines indicate the desired range
of % discrepancy which is between -1 and 1. An important observation related to
Teflon, Delrin, Acrylic, LDPE, and PMP is that DROP generated very inaccurate
RSP values, even worse than RSP values at the initial iterate.
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(a) 0.0◦ − 5.0◦ (b) 0.0◦ − 10.0◦

(c) 0.0◦ − 15.0◦ (d) 0.0◦ − 20.0◦

(e) 0.0◦ − 25.0◦ (f) 0.0◦ − 30.0◦

Figure 4.30: Experimental CTP404 pCT reconstruction by DROP while removing
protons during data read and using a median filter of radius 3 for FBP. Each angle
interval 0.0◦ − d◦ represents the angle interval that is removed during the data read.
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(a) 0.0◦ − 5.0◦ (b) 0.0◦ − 10.0◦

(c) 0.0◦ − 15.0◦ (d) 0.0◦ − 20.0◦

(e) 0.0◦ − 25.0◦ (f) 0.0◦ − 30.0◦

Figure 4.31: Experimental CTP404 pCT reconstruction by FSAIS while removing
protons during data read and using a median filter of radius 3 for FBP. Each angle
interval 0.0◦ − d◦ represents the angle interval that is removed during the data read.

70



Figure 4.32: % Discrepancy in the RSP for Teflon and Delrin after six iterations
of FSAIS and DROP. Each point on the horizontal axis represents the angle interval
from which protons were removed during data read. Dashed lines indicate the desired
range of % discrepancy which is between -1 and 1. An important observation related
to Teflon and Delrin is that DROP generated very inaccurate RSP values, even worse
than RSP values at the initial iterate.
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Figure 4.33: % Discrepancy in the RSP for Acrylic and Polystyrene after six iterations
of FSAIS and DROP. Each point on the horizontal axis represents the angle interval
from which protons were removed during data read. Dashed lines indicate the desired
range of % discrepancy which is between -1 and 1. Based on the results, FSAIS does
a better job of generating good RSPs for Acrylic, but for the case of Polystyrene,
results of both algorithms are very similar.
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Figure 4.34: % Discrepancy in the RSP for LDPE and PMP after six iterations of
FSAIS and DROP. Each point on the horizontal axis represents the angle interval form
which protons were removed during data read. Dashed lines indicate the desired range
of % discrepancy which is between -1 and 1. Based on the results, both algorithm
generated bad RSP values for LDPE and PMP with very similar values.
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4.5 Convergence Analysis of FSAIS and DROP on Pediatric Head Phantom

Figures 4.35 (a)-(f), show the slices of the pediatric head phantom recon-

structed with DROP and FSAIS after six iterations. The block size and relaxation

parameters used in DROP were 1280000 and 0.0015 respectively. Moreover, the TVS

method is used during all six iterations of these two iterative solvers. Total recon-

struction runtime of pediatric head phantom on a single K40 GPU was 9.6 and 9.1

minutes for DROP and FSAIS respectively. The image analysis program ImageJ2

was used to perform quantitative analyses of reconstructed image quality of the slice

numbers 19, and 39 out of the total 90 slices overall. Tooth RSP value was selected

from slice 19, while soft tissue, brain tissue, and Trabecular bone were selected from

slice 39. The ovular and polygon selection and measurement tools from ImageJ were

used to select ROI and calculate the mean and standard deviation in reconstructed

RSP, with identical region selection and analyses performed for all images recon-

structed with FSAIS and DROP. The spinal disk in the pCT images of the pediatric

head phantom is visibly indistinguishable and therefore not included in the analysis.

There was another challenge related to selecting the ROI for tooth materials; Dentin,

and Enamel. Since tooth Dentin and Enamel were also visibly indistinguishable, a

single ROI region correspond to tooth was selected and for analysis purpose, it was

assumed that the ROI could either be composed of Dentin or Enamel. Table 4.19

shows the distribution of RSP values of different materials inside the pediatric head

phantom, and Table 4.20 illustrates the elements of Ψ−1 used by FSAIS.

Table 4.19: RSP statistics of materials at the initial iterate of the experimental
pediatric head phantom.

Material Predicted Mean StdDev Min. Max. % Discrepancy
Soft tissue 1.037 0.979 0.0642 0.6648 1.1588 -5.59

Brain tissue 1.047 0.9778 0.055 0.8264 1.124 -6.61
Trabecular bone 1.108 1.0229 0.0582 0.886 1.1673 -7.68

Dentin 1.513 1.3841 0.0851 1.1748 1.5625 -8.52
Enamel 1.788 1.3841 0.0851 1.1748 1.5625 -22.59
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Table 4.20: Elements of Ψ−1 for the pediatric head phantom.

RSP range ψ−1(j)
0.87 - 0.91 |1− x(k)j| × 0.0025
0.96 - 1.037 |1− x(k)j| × 0.0025
1.038 - 1.35 |1− x(k)j| × 0.00075
1.13 - 1.16 |1− x(k)j| × 0.00075
1.35 - 1.8 |1− x(k)j| × 0.00075

Reconstructed RSP values of different materials of this dataset are shown in

Table 4.21. Based on the results in Table 4.21, both methods generate RSP values

within a range of 1% of the predicted RSP for all materials except tooth, which has

a very low RSP value generated by DROP. The circular regions in Figures 4.35a

and 4.35c are associated with tooth composed of dentin and enamel. Tooth Dentin

and Enamel are not easily distinguishable by eye but the predicted RSP values are

1.513 and 1.788 for Dentin and Enamel respectively [19]. The reconstructed RSP of

tooth generated by FSAIS reported in Table 4.21 is much closer to the predicted RSP

values of dentin and enamel while the RSP value of tooth reconstructed by DROP is

too low. This result is similar to the results of the CTP404 in the previous section, in

which the reconstructed RSP values of Teflon and Delrin generated by DROP were

too low while FSAIS generated RSP values of Teflon and Delrin within a range of 1%

of the predicted RSP values of these two materials. An important observation from

results in Table 4.21 is that the reconstructed RSP value of brain tissue generated

by FSAIS is 0.14%, while the value generated by DROP is 0.97%. This observation

shows the superior behavior of FSAIS in generating accurate results for a critical and

sensitive part of the head, which needs the most accurate RSP value to avoid the

range uncertainty.
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(a) slice 19 (b) slice 39 (c) slice 69

(d) slice 19 (e) slice 39 (f) slice 69

Figure 4.35: Representative pCT images of experimental pediatric head reconstructed
by DROP (a)-(c) and FSAIS (d)-(f). pCT images generated by FSAIS have sharper
bone areas compared with the ones generated by DROP.

Table 4.21: RSP values of experimental pediatric head phantom reconstructed by
DROP and FSAIS. Both algorithms generated accurate RSP values (close to the

predicted RSPs) for soft tissue, brain tissue and Trabecular bone, but FSAIS
generated more accurate RSP value for Enamel.

Material
Pred.
RSP

DROP RSP
(Mean ± SD)

% Discrep.
FSAIS RSP

(Mean ± SD)
% Discrep.

Soft tis. 1.037 1.0423 ± 0.0222 0.51 1.0432 ± 0.0234 0.6
Brain tis. 1.047 1.0572 ± 0.0015 0.97 1.0485 ± 0.0025 0.14

Trab. bone 1.108 1.1077 ± 0.0033 -0.03 1.1169 ± 0.0117 0.8
Dentin 1.513 1.3857 ± 0.0372 -8.41 1.7359 ± 0.0692 14.17
Enamel 1.788 1.3857 ± 0.0372 -22.5 1.7359 ± 0.0692 -2.91
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Figure 4.36 illustrates the result of removing protons from angle intervals 0−d

where d is the upper bound of each angle interval. In this experiment, protons were

removed during the image reconstruction. The optimal reconstruction parameters for

FSAIS were the same as reported in Table 4.20. The relaxation parameter and block

sized used for DROP were 0.0015 and 1280000, respectively.

Figure 4.36: % Discrepancy in the RSP reconstructed for materials in pediatric head
phantom after six iterations of FSAIS and DROP. Each number d on the horizontal
axis represents the angle interval 0.0◦ − d◦ that is removed during the image recon-
struction. Dashed lines indicate the desired range of % discrepancy which is between
-1 and 1. Both algorithms generated accurate RSP values even where protons within
a range of 0.0◦ − 60.0◦ were removed.
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Based on the results in Figure 4.36, removing protons during the image recon-

struction caused the % discrepancy in the RSP reconstructed for materials to move

towards negative values. In the case of soft tissue, the % discrepancy changed more

rapidly while using FSAIS compared with DROP. In the case of Trabecular bone,

the rate of changes of % discrepancy is similar for both FSAIS and DROP, although

there are more oscillations seen in FSAIS.

An important observation in Figure 4.36 is that the % discrepancy in the RSP

value for brain tissue reconstructed by FSAIS is still very close to zero even after

removing protons from 0.0◦ − 25.0◦. When protons were removed from 0.0◦ − 30.0◦,

there was a sudden increase in the RSP discrepancy of the brain tissue generated by

FSAIS, which was not expected since there were more protons that were removed

(compared with the 0.0◦ − 25.0◦ case), therefore it was expected that the accuracy

of RSP values decrease for all materials. The FSAIS algorithm has the accelerator

term |1 − x(k)|, which caused the sudden change of the RSP value of brain tissue.

In order to verify the effect of the accelerator term in the sudden change of the RSP

value of brain tissue, we removed the accelerator term and repeated the experiment

for the same angle interval 0.0◦−30.0◦. Based on the result of this experiment, the %

discrepancy for materials in Figure 4.36 decreased to −2.54, −2.13, and −3.24 for soft

tissue, brain tissue, and Trabecular bone, respectively. This indicates that removing

the accelerator term caused the RSP discrepancy of materials decreased as expected,

thus the accelerator term can cause unexpected sudden changes in the RSP values.

Figure 4.37 illustrates the results of removing protons from different angle

intervals with fixed width of 6◦ during the data read. Based on the results and

as expected, removing protons during data read causes line artifacts on the FBP

images which leads to fluctuations in the RSPs during the image reconstruction by

the iterative solver. Based on the results in Figure 4.37, DROP performs better than

FSAIS on keeping the % discrepancy of materials closer to zero, except for the brain

78



tissue for which FSAIS generates significantly better results through different angle

intervals. The reason FSAIS generates better results for brain tissue is related to the

fact that the brain tissue is in general less affected by noise appearing in the FBP

images due to its geometrical location in the pediatric head phantom.

Figure 4.37: % Discrepancy of soft and brain tissues in pediatric head phantom after
six iterations of FSAIS and DROP. Each point on the horizontal axis represents the
angle interval from which protons were removed during data read. Dashed lines indi-
cate the desired range of % discrepancy which is between -1 and 1. Both algorithms
generated accurate RSP values for most of the angle intervals.
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Figure 4.38 illustrates the results of removing protons from different angle in-

tervals with fixed width of 6◦ during the image reconstruction. Based on these results,

removing protons during the image reconstruction does not cause significant fluctua-

tions in the RSPs. Results in Figure 4.38 show the % discrepancy generated by both

algorithms FSAIS and DROP is consistent with the results reported in Table 4.21,

which were related to image reconstruction under normal conditions (i.e. no protons

were removed), because only a small number of protons were removed.

Figure 4.38: % Discrepancy of materials in the pediatric head phantom after six iter-
ations of FSAIS and DROP. Dashed lines indicate the desired range of % discrepancy.
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Figure 4.39 shows the reconstructed pCT images by DROP and FSAIS while

protons within a range of 0.0◦ − 5.0◦ were removed during data read. As expected,

the FBP image used as the initial iterate was affected by proton removals during data

read. RSP accuracy of different materials is still good while protons were removed

within a range of 0.0◦ − 5.0◦ based on the results in Table 4.22.

Figure 4.40 shows the reconstructed pCT images by DROP and FSAIS while

protons within a range of 0.0◦ − 5.0◦ were removed during data read and a median

filter of radius 3 was applied to the final pCT image (i.e. image generated at the 6th

iteration of the iterative solver). The reason that a median filter was applied to the

final pCT image rather than the FBP image is related to the fact that the median

filter on the FBP image did not improve the pCT images reconstructed by FSAIS

because of the reason that FSAIS tends to generates images with sharper edges and

did not work well when this behavior was combined with the median filter. Based

on the results in Figure 4.40, median filter caused an improvement on pCT images

generated by DROP because of the fact that DROP’s pCT images were smoother,

while FSAIS generated pCT images with sharper edges, therefore less affected by

the median filter. The reconstructed RSP values of different materials within the

pediatric head phantom corresponding to the pCT images in Figure 4.40 are shown

in Table 4.23.

Figure 4.41 shows the reconstructed pCT images by DROP and FSAIS while

protons within a range of 0.0◦−10.0◦ were removed during data read. The FBP image

used as the initial iterate was significantly affected by proton removals during data

read. RSP accuracy of different materials is still good while protons were removed

within a range of 0.0◦ − 10.0◦ based on the results in Table 4.24. Figure 4.42 shows

the reconstructed pCT images by DROP and FSAIS while protons within a range of

0.0◦−10.0◦ were removed during data read and a median filter of radius 3 was applied

to the pCT image at the 6th iteration. (see Table 4.25 for the RSPs of Figure 4.42).
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(a) slice 19 (b) slice 39 (c) slice 69

(d) slice 19 (e) slice 39 (f) slice 69

Figure 4.39: pCT images of the pediatric head reconstructed by DROP (a)-(c) and
FSAIS (d)-(f) with protons removed within a range of 0.0◦ − 5.0◦ during data read.

Table 4.22: Reconstructed RSP values of pediatric head phantom by DROP and
FSAIS with protons were removed within a range of 0.0◦ − 5.0◦ during data read.
Both algorithms generated accurate RSP values (close to the predicted RSPs) for
soft tissue, brain tissue and Trabecular bone, but FSAIS generated more accurate

RSP value for Enamel.

Material
Pred.
RSP

DROP RSP
(Mean ± SD)

% Discrep.
FSAIS RSP

(Mean ± SD)
% Discrep.

Soft ti. 1.037 1.0433 ± 0.0225 0.61 1.0412 ± 0.0229 0.41
Brain ti. 1.047 1.0572 ± 0.0012 0.97 1.0463 ± 0.0015 -0.07

Trab. bone 1.108 1.1069 ± 0.0028 -0.1 1.1198 ± 0.0132 1.06
Dentin 1.513 1.3869 ± 0.0368 -8.33 1.741 ± 0.0658 15.06
Enamel 1.788 1.3869 ± 0.0368 -22.43 1.741 ± 0.0658 -2.62
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(a) slice 19 (b) slice 39 (c) slice 69

(d) slice 19 (e) slice 39 (f) slice 69

Figure 4.40: Representative experimental head phantom pCT images reconstructed
by DROP (a)-(c) and FSAIS (d)-(f) with histories removed within a range of 0.0◦−5.0◦

prior to generating the initial iterate. A median filter of radius 3 was used at the 6th

iteration of DROP and FSAIS.

Table 4.23: RSP values reconstructed from experimental pediatric head phantom by
DROP and FSAIS with protons removed within a range of 0.0◦ − 5.0◦ during data

read. A median filter of radius 3 was used at the 6th iteration of DROP and FSAIS.
Using a median filter on FSAIS’s result generated more accurate RSP values for soft

tissue, brain tissue, Trabecular bone, and Enamel compared to DROP.

Material
Pred.
RSP

DROP RSP
(Mean ± SD)

% Discrep.
FSAIS RSP

(Mean ± SD)
% Discrep.

Soft ti. 1.037 1.0324 ± 0.0247 -0.44 1.0411 ± 0.0224 0.4
Brain ti. 1.047 1.0385 ± 0.0044 -0.81 1.0463 ± 0.0015 -0.07

Trab. bone 1.108 1.0908 ± 0.0065 -1.55 1.1200 ± 0.0131 1.08
Dentin 1.513 1.3881 ± 0.0423 -8.25 1.7410 ± 0.0658 15.06
Enamel 1.788 1.3881 ± 0.0423 -22.36 1.7410 ± 0.0658 -2.63
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(a) slice 19 (b) slice 39 (c) slice 69

(d) slice 19 (e) slice 39 (f) slice 69

Figure 4.41: Representative experimental head phantom pCT images reconstructed
by DROP (a)-(c) and FSAIS (d)-(f) with histories removed within a range of 0.0◦ −
10.0◦ during data read.

Table 4.24: RSP values reconstructed from experimental pediatric head phantom by
DROP and FSAIS with protons removed within a range of 0.0◦ − 10.0◦ during data

read. Based on the results FSAIS generated more accurate RSP values for brain
tissue, while DROP generated a more accurate RSP value for soft tissue and

Trabecular bone.

Material
Pred.
RSP

DROP RSP
(Mean ± SD)

% Discrep.
FSAIS RSP

(Mean ± SD)
% Discrep.

Soft ti. 1.037 1.022 ± 0.0711 -1.45 1.0552 ± 0.1499 1.76
Brain ti. 1.047 1.0589 ± 0.003 1.14 1.0509 ± 0.0039 0.37

Trab. bone 1.108 1.1121 ± 0.0029 0.37 1.1241 ± 0.0145 1.45
Dentin 1.513 1.4058 ± 0.0869 -7.09 1.7015 ± 0.1786 12.46
Enamel 1.788 1.4058 ± 0.0869 -21.37 1.7015 ± 0.1786 -4.83
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(a) slice 19 (b) slice 39 (c) slice 69

(d) slice 19 (e) slice 39 (f) slice 69

Figure 4.42: Representative experimental head phantom pCT images reconstructed
by DROP (a)-(c) and FSAIS (d)-(f) with histories removed within a range of 0.0◦ −
10.0◦ prior to generating the initial iterate. A median filter of radius 3 is used at the
6th iteration of DROP and FSAIS.

Table 4.25: RSP values reconstructed from experimental pediatric head phantom by
DROP and FSAIS with protons removed within a range of 0.0◦ − 10.0◦ range during

data read. A median filter of radius 3 is used at the 6th iteration of DROP and
FSAIS. Using a median filter on FSAIS’s result generated more accurate RSP values

for soft tissue, brain tissue, and Enamel compared to DROP.

Material
Pred.
RSP

DROP RSP
(Mean ± SD)

% Discrep.
FSAIS RSP

(Mean ± SD)
% Discrep.

Soft ti. 1.037 1.0233 ± 0.0359 -1.32 1.0390 ± 0.0285 0.19
Brain ti. 1.047 1.0590 ± 0.0032 1.15 1.0512 ± 0.0039 0.4

Trab. bone 1.108 1.1123 ± 0.0030 0.39 1.1256 ± 0.0149 1.59
Dentin 1.513 1.3978 ± 0.052 -7.61 1.7459 ± 0.0907 15.39
Enamel 1.788 1.3978 ± 0.052 -21.82 1.7459 ± 0.0907 -2.35
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The final experiment in this chapter is where the protons were removed every

4.0◦ during the image reconstruction. The results of this experiment are shown in

Figure 4.43 and Table 4.26. Removing protons every 4.0◦ causes one fourth of protons

be removed during the image reconstruction. In the case of pediatric head phantom,

there are about 100 million protons that pass the statistical cuts and will be used by

the iterative solver.

When protons were removed every 4.0◦, there were about 25 million protons

used by the iterative solver which is significantly less data and expected to reduce the

sharpness and RSP accuracy of different materials within the pediatric head phantom,

but based on the results in Figure 4.43, FSAIS still generated pCT images with sharp

edges especially for the case of slice 69 which the sharp edges are much better than

the same slice generated by DROP.

The % discrepancy for RSP values of materials inside the pediatric head phan-

tom in Table 4.26 shows that both algorithms FSAIS and DROP generated good RSP

values for Trabecular bone, while in the case of brain tissue, FSAIS significantly out-

performs DROP. The RSP value of the soft tissue generated by DROP is much better

compared to FSAIS, but FSAIS still generates a very accurate RSP value for soft

tissue.
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(a) slice 19 (b) slice 39 (c) slice 69

(d) slice 19 (e) slice 39 (f) slice 69

Figure 4.43: Representative experimental head phantom pCT images reconstructed
by DROP (a)-(c) and FSAIS (d)-(f) with protons removed every 4.0◦ during the image
reconstruction. Removing about one fourth of protons reduces the sharpness of edged
in images generated by DROP, but FSAIS still generates images with sharp edges.

Table 4.26: RSP values reconstructed from experimental pediatric head phantom by
DROP and FSAIS with protons removed every 4.0◦ during the image

reconstruction. Based on the results, both algorithms generated accurate RSP
values for soft tissue, brain tissue, and Trabecular bone, while FSAIS generated a

much better RSP value for Enamel.

Material
Pred.
RSP

DROP RSP
(Mean ± SD)

% Discrep.
FSAIS RSP

(Mean ± SD)
% Discrep.

Soft ti. 1.037 1.0396 ± 0.0224 0.25 1.0271 ± 0.0222 -0.95
Brain ti. 1.047 1.0549 ± 0.0014 0.75 1.0486 ± 0.0017 0.15

Trab. bone 1.108 1.1045 ± 0.0029 -0.32 1.1119 ± 0.0039 0.35
Dentin 1.513 1.3812 ± 0.0392 -8.71 1.6725 ± 0.086 10.54
Enamel 1.788 1.3812 ± 0.0392 -22.75 1.6725 ± 0.086 -6.54
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CHAPTER FIVE

GPU-based Image Reconstruction

The pCT problem fits well within the Single Instruction Multiple Threads

(SIMT) parallel programming paradigm of Graphics Processing Units (GPUs) since

we treat each proton as an individual thread that can be processed in parallel. Al-

though there is a great need for small pCT runs as a validation technique in clinics,

when it comes to imaging an adult torso, because of the greatly increased problem

size, the reconstruction time grows in proportion to the increased size of the recon-

structed object’s volume [27].

In recent years, several research papers have developed GPU-based image re-

construction techniques for pCT. In [25], based on a comparison of the reconstruction

time on a single machine vs. a GPU cluster, it has been demonstrated that the re-

construction time can be reduced from 7 hours to 53 seconds for a dataset of size 131

million protons. In [26], a hybrid approach that uses both Message Passing Interface

(MPI) and GPUs were implemented for performing the image reconstruction and it

was demonstrated that image reconstruction in pCT can be accelerated through this

approach. Using this approach on the same cluster the reconstruction runtime has

been improved and reduced to 43 seconds for a similar size dataset. In a recent study

in [27], it was shown (using the same approach as the first evaluation of the pCT

software in [26],) that the execution time for generating accurate RSP values for a

dataset of size 131 million protons is almost 30 seconds running on 60 processors (60

CPU cores and 60 GPUs).

The majority of pCT runtime from data read to writing the generated 3D

maps of RSP values to SSD is spent during the parallel iterative solver mainly due

to MLP computations. Because of memory limitations, the matrix A containing the
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MLP calculations can not be fully stored in GPU memory even considering the sparse

nature of this matrix. For the small simulated CTP404 phantom, it requires about 6

GB of memory using the sparse compressed storage formats. The memory of modern

GPU devices, such as K40 or P100, is 12 to 16 GB. Considering the limited memory

of the GPU devices and the size of matrix A for an experimental dataset which is

at least 5 to 10 times greater than the simulated data, calculating the matrix A

before performing the iterative solver requires lots of data transfers between the CPU

and GPU memory which can act as barriers for parallel tasks. One good solution

is performing the MLP calculations during the the iterative solver. In other words,

when a block of protons are loaded into the GPU memory to be processed by the

iterative solver, the MLP of those protons is calculated right before updating x(k)

of that block by the iterative solver. The benefit of this method for performing the

MLP is that bigger blocks of protons can be loaded into the GPU memory, thus, more

calculations are performed in parallel.

In this chapter, we discuss two distributed GPU-based image reconstruction

algorithms with and without data transfers among the GPU devices and discuss their

performance on the CTP404 and pediatric head phantoms. Details of simulated

CTP404 and experimental datasets were described in chapters 3 and 4.

5.1 Distributed GPU-based Image Reconstruction without Data Transfer

In order to benefit from the Nvidia Tesla GPU devices, we have developed a

fast and easy to implement reconstruction algorithm that can run on systems with at

least two GPU devices with the advantage of eliminating the need of data transfers

among the GPU devices. The algorithm we have designed relies on the following two

facts1:

(1) only a small fraction of protons intersect multiple slices along the vertical axis

1Some results in this section were published in [64]
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(2) within a slice, only a small portion of protons pass through and are used in

reconstruction of that specific slice

Based on the first observation, which is reported with details in Table 5.1, we

know that a proton’s path does not have a significant deviation along the z axis or

vertical slices of the reconstruction volume. This enables us to consider an algorithm

without having a significant concern about the GPU-to-GPU data transfers which

could potentially add some considerable timing constraints.

The second observation allows us to split the protons among the available GPU

devices such that each GPU reconstructs a portion of the 3D image. Each GPU only

needs some fraction of the protons, and this lowers the amount of required memory

and processing time per GPU leading to a faster reconstruction time overall.

Table 5.1: Percentage of protons passing through image slices along the z axis for
the simulated and experimental CTP404 phantom with the 2.5 mm slice thickness.

# of slices Simulated CTP404 Experimental CTP404

1 32 42

2 43 36

3 19 15

4 4 3

≥ 5 2 4

The general structure of the proposed multi-GPU based reconstruction tech-

nique without data transfers can be seen in Algorithm 1. The first step is the division

of the reconstruction volume into several overlapping regions based on the number of

available GPU devices, while each region is assigned to a unique key. The overlap is

set at twice the number of slices for a 96% coverage (see Table 5.1). In the second

step, each proton is associated with the image region entered into and exited from. In

the third step, based on the number of protons that pass through each image region,

the required memory for each proton is allocated on each GPU. Lastly (fourth step),
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we perform the iterative solver on each GPU. Finally, in the overlap of two regions,

where there are two reconstructions of each slice, we select the reconstruction that is

either closest to the non-overlapped slices of its region or a slice from the overlapped

regions based on distribution of protons. For example, in reconstructions presented

in this section performing on CTP404, there are two regions, one containing slices

0−12 and the other containing slices 7−19. The overlap corresponds to slices 7−12,

and the final image will be made of slices 0−9 from the first region and 10−19 of the

second. Therefore there are cases in which one image region contains more protons

due to uneven data distribution. In such a case, slices in the overlapped regions can

be more accurate.

Algorithm 1 multi-GPU based reconstruction algorithm without data transfers

procedure Multi-GPU Based Reconstruction
1: Setup image regions
2: Identify protons passing regions
3: Allocate memory for protons per GPU
4: Iteratively solve per GPU
5: Select slice

When using the proposed reconstruction algorithm described in Algorithm 1,

there are different numbers of protons passing through each image region which are

reported in Table 5.2. Based on the results in Table 5.2, protons are evenly distributed

between the two image regions for the simulated data, while the top image region of

the experimental data encompasses 1.6 times the number of protons that pass through

the bottom image region.

Table 5.2: Number of protons (millions) in each image region used by GPU devices
to perform the iterative solver.

Data Original Size Slices 0-12 Slices 7-19

Simulated CTP404 21 14 14

Experimental CTP404 73 67 41

91



Execution times reported in the next sections heavily depend on the number

of protons traversing the image regions and the distribution of data.

In order to test the performance of Algorithm 1, we used two different block

sizes of 1280000 and 320000 for the experimental and simulated CTP404 phantom,

respectively. The block size is the number of protons to be processed in parallel

based on DROP or FSAIS. When it comes to the performance of the iterative solver,

in general, larger block sizes decrease the runtime of a single iteration but do not

necessarily generate accurate RSP values. Table 5.3a shows runtime of one iteration

of DROP with additive updates on a single GPU and double GPU systems for the

simulated CTP404.

Table 5.3: Performance comparison of pCT image reconstruction on the simulated
CTP404.

(a) Runtime (sec.) of 1 iteration of DROP
with additive updates.

System 1 GPU 2 GPUs
K40 13.3 7.6
P100 2.3 1.5

(b) Total reconstruction runtime (sec.) of
pCT image reconstruction.

System 1 GPU 2 GPUs
K40 154.1 96.3
P100 44.9 40.2

Execution times reported in Table 5.3a heavily depend on the number of pro-

tons traversing the image regions and the distribution of data. Based on the results in

Table 5.3a, the runtime of the iterative solver on P100 is about 1.53 times faster after

distributing data and is similar to the expected speedup of 21
14

or 1.5. On the other

hand, the speedup of Algorithm 1 on K40 system is about 1.75, which is greater than

expected. The reason comes from the difference between the memory sizes of K40 and

P100 GPU devices. In fact, the smaller memory of the K40 system in comparison to

P100 leads to efficient usage of the cache on K40 leading to a faster runtime of a sin-

gle iteration. The total pCT reconstruction runtime of simulated CTP404 including

data read and data cleaning tasks, along with TVS iterations used at the beginning

of each iteration of DROP was reported in Table 5.3b. Reconstructed RSP values of
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the simulated CTP404 are reported in Table 5.4, which show accurate reconstruction

results using Algorithm 1.

Table 5.4: Reconstructed RSP values of central slice of the simulated CTP404 using
one and two GPUs. For the case of two GPUs, the slice belonged to the top half of

the image.

Material 1 GPU (% discrepancy) 2 GPUs (% discrepancy)

PMP 0.886 (0.33) 0.887 (0.45)

LDPE 0.986 (0.61) 0.988 (0.82)

Polystyrene 1.032 (0.78) 1.033 (0.87)

Acrylic 1.163 (0.25) 1.162 (0.17)

Delrin 1.349 (-0.73) 1.347 (-0.88)

Teflon 1.7895 (-0.03) 1.786 (-0.22)

Table 5.5 shows the performance of pCT image reconstruction on the exper-

imental CP404 phantom using FSAIS as the iterative solver. Based on the timing

results in Table 5.5a, using two K40 GPU devices not only does not cause performance

improvement, but it is slightly slower than running on one GPU. In general, based

on the distribution results in Table 5.2, after splitting data among GPUs, about 91%

of protons belong to the top half of the image running on one of the two available

GPUs. Thus, the expected speedup is around 1.08. In reality and in an actual imple-

mentation of Algorithm 1, after one iteration of the iterative solver, two GPU devices

need to be synced before starting the next iteration which causes some overhead per

iteration. Moreover, at the end of each iteration, there are two consecutive GPU to

CPU transfers followed by two consecutive data writes to SSD instead of one transfer

and data write using single GPU. Due to these facts, reconstruction runtime using

Algorithm 1 and based on uneven distribution of protons does not outperform the

runtime of pCT reconstruction on one GPU.

The total pCT reconstruction runtime of experimental CTP404 including data

read and data cleaning tasks, along with TVS performing during the first and second
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iterations of FSAIS is reported in Table 5.5b. Also, the total runtime on two GPU

devices includes the runtime of distributing the data among GPU devices which was

about 20 seconds. RSP values of the reconstructed experimental CTP404 are reported

in Table 5.6 for the case of one and two GPU devices. Running the same experiments

on P100 GPU devices show no difference between the total computation time, but

the runtime of one iteration of FSAIS is slightly faster on one GPU due to uneven

distribution of protons as discussed earlier.

Table 5.5: Performance analysis of pCT image reconstruction on the experimental
CTP404 using FSAIS as the iterative solver. Total reconstruction runtime included

six iterations of FSAIS.

(a) Runtime (sec.) of 1 iteration of FSAIS.

System 1 GPU 2 GPUs
K40 8.7 9.5
P100 1.7 2.1

(b) Total reconstruction runtime (min.).

System 1 GPU 2 GPUs
K40 3.0 3.4
P100 1.6 1.6

Table 5.6: Reconstructed RSP values of slice number 10 from the top half of the
experimental CTP404 pCT image using two GPU devices. See Table 5.5b for total

reconstruction runtime of the RSP values. The reconstructed RSP values of all
materials except PMP are within a range of 1% of the predicted RSPs.

Material 1 GPU (% discrepancy) 2 GPU (% discrepancy)

PMP 1.24 1.42

LDPE 0.21 0.24

Polystyrene -0.61 -0.55

Acrylic -0.83 -0.9

Delrin 0.70 0.24

Teflon -0.43 0.05

Table 5.7a shows the pCT reconstruction time of experimental pediatric head

phantom using FSAIS and running on K40 and P100 GPU devices. The slice thickness

of reconstructed image of pediatric head is 1 mm and 96% of protons pass through

no more than six vertical slices. This observation is similar to the distribution of
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protons along vertical slices of CTP404 in Table 5.2. The number of protons processed

in parallel by FSAIS were 1280000. There are about 100 million protons prior to

performing the iterative solver, which after splitting the image regions into half and

adding the six extra slices to each image region, results in 56 and 63 million protons

associated with the top and bottom image regions, respectively. The total pCT

computation time for the experimental pediatric head phantom in Table 5.7b includes

data read and data cleaning tasks, along with performance of TVS during every

iteration of FSAIS. The runtime for distributing the data among the two GPU devices

was about 25 seconds. Results in Table 5.7a show speedups by factors of 2.3 and 2

from running pCT reconstruction on K40 and P100 GPU devices, respectively. Both

of these speedups are greater than the expected speedup 100
63

, due to memory efficiency.

The speedup of the Algorithm 1 on the K40 system is greater than the speedup on

P100, which as discussed earlier in this section is due to the smaller memory of the

K40 system in comparison to P100, resulting in the efficient usage of the cache on

K40 allowing for a faster runtime of a single iteration. Reconstructed RSP values of

Algorithm 1 are reported in Table 5.8.

Table 5.7: Performance analysis of pCT image reconstruction of the experimental
pediatric head phantom using Algorithm 1 and FSAIS as the iterative solver. Total

reconstruction runtime included six iterations of FSAIS.

(a) Runtime (sec.) of 1 iteration of FSAIS.

System 1 GPU 2 GPUs
K40 60.6 26.5
P100 16.8 8.2

(b) Total reconstruction runtime (min.).

System 1 GPU 2 GPUs
K40 9.1 6.1
P100 3.5 3.1

Results in Table 5.8 show good accuracy of reconstructed RSP values for all

materials. Spinal disk’s RSP is slightly lower than−1%, which can be due to removing

the protons that traverse more than six vertical slices based on step 2 of Algorithm 1.
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Table 5.8: Reconstructed RSP values of the experimental pediatric head phantom
by FSAIS using two GPU devices. See Table 5.7b for total reconstruction runtime
of the RSP values. The reconstructed RSP values of soft tissue, brain tissue and

Trabecular bone are within a range of 1% of the predicted RSPs.

Material Mean RSP % Discrepancy

Soft tissue 1.0428 0.56

Brain tissue 1.0512 0.4

Trabecular bone 1.1053 -0.24

Dentin 1.6874 11.52

Enamel 1.6874 -5.63

5.2 Distributed GPU-based Image Reconstruction with Data Transfers

As discussed in the previous section, designing a parallel distributed image

reconstruction model for pCT requires consideration of how the reconstruction volume

and protons are split among the available GPU devices. The main problem of dividing

the reconstruction volume among several GPU devices is that after we split the data

and assign each section to a GPU, voxels in the slices close to the split section don’t

get enough updates which causes low estimates for the RSP values and can delay the

convergence of the iterative solver. The reason for this comes from the fact that in

order to accurately estimate the proton paths based on the MLP, we need to use the

coordinates of entry and exit points of protons with respect to the object. Therefore,

we collect only the protons that both enter and exit the image hull. Thus, if a slice is

close enough to the split section of the image, it may include proton paths that enter

and exit a slice belonging to one GPU, and traversing a slice or slices that belong to

another GPU. With this assumption, slices that include a part of the MLP without

the entry and exit points, will not get any updates. It is trivial to mention that all

the other slices with reasonable distance from the split section get enough updates

because the entry and exit points of protons and the voxels along the MLP all belong

to the slices on the same GPU.
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The proposed parallel GPU-based iterative reconstruction algorithm in this

section is based on proton path deviations along the vertical slices of the reconstruc-

tion volume based on the observations in Table 5.1. Knowing that the proton path

deviations are insignificant along the vertical slices, we have proposed a distributed

image reconstruction method with data transfers which is outlined in Algorithm 2.

Before starting the image updates based on Algorithm 2, data is distributed

among two GPU devices in the following way (steps 1−8 of Algorithm 2, Figure 5.1):

• img0: slices2,3 0 to NUM SLICES
2

− slices 2 xfer − 1→ GPUA

• img1: slices NUM SLICES
2

− slices 2 xfer to NUM SLICES
2

− 1→ GPUA

• img2: slices NUM SLICES
2

to NUM SLICES
2

+ slices 2 xfer − 1→ GPUB

• img3: NUM SLICES
2

+ slices 2 xfer to NUM SLICES − 1→ GPUB

After distributing the problem among the two GPU devices on a compute

node, one identifies the protons which enter and exit each image section and allocate

the memory for them on the associated GPU devices (steps 10− 18 of Algorithm 2).

At this point, one performs the image updates using the iterative image reconstruction

techniques such as DROP or FSAIS. After performing the iterative solver, the image

regions close to the split section of the original image are transferred from one GPU to

another (steps 20− 30 of Algorithm 2), and this process is repeated based on a user-

determined integer NUM CY CLES representing the number of cycles this process

needs to be performed. A high level description of Algorithm 2 is also illustrated in

Figure 5.1.

2Assuming slice indexing starts from 0

3slices 2 xfer is the number of vertical slices that needs to be transfers between the GPUs,
based on a knowledge of proton path deviations along the vertical axis.
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Algorithm 2 Pseudocode definition of the distributed GPU based reconstruction
algorithm with data transfers

procedure Distributed Image Reconstruction with Data Transfers
1: set img0 = x0[0 : r × c× ( s

2
− slices 2 xfer − 1)]

2: set img1 = x0[r × c× ( s
2
− slices 2 xfer) : r × c× ( s

2
− 1)]

3: set img2 = x0[r × c× s
2

: r × c× ( s
2

+ slices 2 xfer − 1)]
4: set img3 = x0[r × c× ( s

2
+ slices 2 xfer) : r × c× (s− 1)]

5: set hull0 = hull[0 : r × c× ( s
2
− slices 2 xfer − 1)]

6: set hull1 = hull[r × c× ( s
2
− slices 2 xfer) : r × c× ( s

2
− 1)]

7: set hull2 = hull[r × c× s
2

: r × c× ( s
2

+ slices 2 xfer − 1)]
8: set hull3 = hull[r × c× ( s

2
+ slices 2 xfer) : r × c(×s− 1)]

9: h← 0
10: while h < NUM PROTONS
11: if ENT AND EXT HULL(h, hull0, hull1)
12: ALLOCATE DEVICE MEMORY(gpuA, h)
13: elseIf ENT AND EXT HULL(h, hull2, hull3)
14: ALLOCATE DEVICE MEMORY(gpuB, h)
15: else
16: FREE HOST MEMORY(h)
17: h← h+ 1
18: endWhile
19: i← 0
20: while i < NUM CY CLES
21: PERFORM ITERATIVE SOLVER(img0, img1, gpuA)
22: PERFORM ITERATIVE SOLVER(img2, img3, gpuB)
23: copy img2 from gpuB to gpuA
24: PERFORM ITERATIVE SOLVER(img0, img1, img2, gpuA)
25: PERFORM ITERATIVE SOLVER(img3, gpuB)
26: copy img1, img2 from gpuA to gpuB
27: PERFORM ITERATIVE SOLVER(img1, img2, img3, gpuB)
28: PERFORM ITERATIVE SOLVER(img1, gpuA)
29: i← i+ 1
30: endWhile

5.2.1 Implementation of Algorithm 2

Instead of updating the images from top to bottom, there is an alternative

way to implement Algorithm 2, which is updating the image with the same blocks

of protons three times and then moving to the next block of protons. For instance,

if we divide the proton data into 10 blocks such that each block updates specific

portions of the image as illustrated in Figure 5.2, one performs the updates from left
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Figure 5.1: Schematic drawing of one cycle of Algorithm 2.

to right which is equivalent to three updates on block #1 before staring the updates

of the second block, which is in contrast to updating images with consecutive blocks.

Traversing the blocks based on the left to right approach leads to a performance

improvement of the reconstruction time of data. This implementation performs pro-

jections onto blocks and updates the image after each such projection. Thus a block-

iterative method such as DROP with additive updates is more compatible with this

implementation compared with fully simultaneous methods which require updating

the image after performing projections onto all rows of matrix A. The computation

time of Algorithm 2 on pediatric head phantom is reported in Table 5.9.

Table 5.9: Runtime of the pediatric head image reconstruction using Algorithm 2
with two K40 GPUs. DROP w/ additive updates was used as the iterative method.

Task Runtime (sec.)
1 cycle of Algorithm 2 67.5

Total reconstruction runtime 204.5
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Figure 5.2: Illustration of left-to-right vs. top-to-bottom implementation of Algo-
rithm 2. Instead of updating the images from top to bottom, there is an alternative
way to implement Algorithm 2, which is updating the image with the same blocks of
protons three times and then moving to the next block of protons. For instance, if
we divide the proton data into 10 blocks such that each block updates specific por-
tions of the image, one performs the updates from left to right which is equivalent to
three updates on block #1 before staring the updates of the second block, which is
in contrast to updating images with consecutive blocks.

Based on the results shown in Table 5.9, the total runtime of pediatric head

image reconstruction is about 3.41 minutes after one cycle of Algorithm 2 and the

results in Table 5.10 show accurate reconstruction of RSP values of the pediatric head

phantom after one cycle of Algorithm 2.

Data transfers between two GPU devices is implemented using CUDA’s cud-

aMemcpyPeerAsync method which uses the unified virtual addressing (UVA). UVA

enables one address space for all CPU and GPU memories which copies the bytes be-

tween two GPU devices along the interconnect (PCIe) path with no staging through

CPU memory. The P100 GPU devices used in timing analysis reported earlier in
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Table 5.10: Reconstructed RSP values of the experimental pediatric head by DROP
with additive updates on two K40 GPU devices. Reconstructed RSP values of all

materials except the Enamel are within a range of 1% of the predicted RSPs.

Material Mean RSP % Discrepancy

Soft tissue 1.0329 -0.4

Brain tissue 1.0437 -0.32

Trabecular bone 1.1189 0.98

Dentin 1.5161 0.20

Enamel 1.5161 -15.20

this chapter did not support the peer-to-peer memory transfers, thus Algorithm 2

was only implemented on two K40 GPUs which supported the peer-to-peer memory

transfers.

The experimental pediatric head phantom is composed of two scans,the first

of which corresponds to the infimum or the lower part of the head, and the second

scan corresponds to the supremum or upper part of the head. All the experiments

related to the pediatric head phantom in chapter four and five were related to the

lower part of the pediatric head phantom. The total number of protons included in

the two scans of the experimental pediatric head phantom is about 502 million. A

reconstructed pCT image from the upper part of the experimental pediatric head

phantom is represented in Figure 5.3.

In order to have an assessment of the total reconstruction runtime on the entire

head dataset composed of 502 million protons, different tasks of pCT were assigned to

a different number of GPU devices as illustrated in Figure 5.4. Data read in Figure 5.4

includes some of the preprocessing tasks such as removing outliers, binning and hull

detection. Pre-recon step in Figure 5.4, which runs on two K40 GPU devices, includes

tasks such as statistical analysis and cuts, generating the FBP image, and obtaining

the endpoints of protons used in MLP calculations. The reconstruction step runs on

four K40 GPU devices such that the lower part of data from the first scan runs on a
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Figure 5.3: pCT reconstruction of the upper part of the experimental pediatric head.

Figure 5.4: Schematic drawing of splitting pCT tasks on a node with four K40 GPU
devices for reconstructing the entire experimental pediatric head dataset.

pair of GPU devices and the upper part of data from the second scan runs on another

pair of GPU devices. Since each of the scans are isolated from each other and run on

two GPU devices, either Algorithm 1 or 2 can be used in practice. Table 5.11 shows

the runtime of different pCT tasks on the entire experimental pediatric head dataset

using Algorithm 2 with total runtime of about 7.5 minutes.

Table 5.11: pCT reconstruction runtime of the entire experimental pediatric head.

Task Runtime (sec.)
Data read and Preprocessing 194.5

Pre-reconstruction 175.7
Reconstruction 75.4
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CHAPTER SIX

Conclusion

Proton computed tomography (pCT) is a promising imaging modality and a

potential reliable alternative to other imaging techniques such as X-CT used in cancer

treatment planning. There are two key goals in developing a reliable pCT system for

a clinical setup: (1) accurate reconstruction of 3D maps of relative stopping power

(RSP), and (2) implementing computationally fast image reconstruction methods.

There are some conditions in pCT that can have negative effects on the RSP

values of reconstructed images. One such condition can be missing protons during

a scan due to thickness of the body (e.g. pelvis) or hardware issues, or purposely

removing protons for low-dose image reconstruction with the goal of potentially less

damage to normal body tissues. Another issue which frequently occurs in pCT is

the delayed convergence of materials with RSP values much greater than one, which

is mainly due to the inaccurate RSP generated by FBP image which is used as the

initial iterate in pCT.

In this dissertation, three variations of one of the existing widely used iterative

solvers in pCT were studied under uncertain conditions and shown to have superior

accuracy of the generated RSP values for certain cases such as having inaccurate

initial iterate, and existence of noise in proton path estimations.

Moreover, a novel sparse compatible robust iterative solver algorithm was de-

signed and proven to converge both in theory and experiment while generating RSP

values of different materials within a range of 1% their corresponding predicted RSP

values.

Generating accurate RSP values under normal and critical conditions is one

of the key goals in pCT, but being able to reconstruct RSP values within clinically
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recommended time frames is another key goal in pCT which needs to be met. In order

to leverage the modern GPU devices on a single computing node, two methods for

distributing the pCT tasks among multi-GPU systems were discussed in chapter five

of this dissertation. The performance of these GPU based reconstruction methods

using two or four GPUs showed good results close to the large GPU clusters consisting

of hundred GPU devices.

Ion CT methods [65] such as pCT, carbon ion CT, and helium ion CT [66] as

emerging imaging modalities all need to generate accurate RSP values using real-time

image reconstruction algorithms. All the image reconstruction techniques discussed

in this dissertation are not only limited to pCT, but can be used in other ion CT

modalites for generating reliable results within the shortest amount of time.
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APPENDIX A

Details of pCT Reconstruction Timing

Computation time of different pCT image reconstruction tasks on K40 and

P100 systems are reported in Tables A.1 and A.2. Data read is an iterative process

where one data chunk at a time is read from SSD and processed such that protons

that do not traverse the reconstruction volume are removed. During data read, hull

detection is executed and the binning process is performed to group protons based

on their relative angle and WEPL information. The information from the binning

process is later used in one of the preprocessing steps to remove the protons that do

not belong to a specific range of the standard deviation. Also, during preprocessing,

protons that pass the statistical cuts are used to generate the FBP image. The final

step before the image reconstruction is identifying and removing protons that do not

enter or exit the hull, and those which meet this condition will later be used by the

iterative solver.

Table A.1: Runtime of pCT image reconstruction tasks prior to performing the
iterative solver on the experimental CTP404 phantom.

Task K40 time (sec.) P100 time (sec.)
Data read and preprocessing 80 53
Obtaining the endpoints for MLP 40 10

Table A.2: Runtime of pCT image reconstruction tasks prior to performing the
iterative solver on the experimental pediatric head phantom.

Task K40 time (sec.) P100 time (sec.)
Data read and preprocessing 125 93
Obtaining the endpoints for MLP 60 19
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