
ABSTRACT


Uniqueness Implies Uniqueness and Existence for Nonlocal Boundary Value

Problems for Fourth Order Differential Equations


Ding Ma


Advisor: Johnny Henderson, Ph.D.


In this dissertation, we are concerned with uniqueness and existence of solutions 

of certain types of boundary value problems for fourth order differential equations. 

In particular, we deal with uniqueness implies uniqueness and uniqueness implies 

existence questions for solutions of the fourth order ordinary differential equation, 

y(4) = f(x, y, y�, y��, y���), 

satisfying nonlocal 5-point boundary conditions given by 

y(x1) = y1, y(x2) = y2, y(x3) = y3, y(x4) − y(x5) = y4, 

where a < x1 < x2 < x3 < x4 < x5 < b, and y1, y2, y3, y4 ∈ R. We also consider 

solutions of this fourth order differential equation satisfying nonlocal 4-point and 

3-point boundary conditions given by 

y(x1) = y1, y�(x1) = y2, y(x2) = y3, y(x3) − y(x4) = y4, 

y(x1) = y1, y�(x1) = y2, y��(x1) = y3, y(x2) − y(x3) = y4. 
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CHAPTER ONE


Introduction


In this dissertation, we are concerned with uniqueness and existence of solu­

tions of certain types of boundary value problems for fourth order ordinary differ­

ential equations. In particular, we deal with “uniqueness implies uniqueness” and 

“uniqueness implies existence” questions for solutions of the fourth order ordinary 

differential equation, 

y(4) = f(x, y, y�, y��, y���), (1.1) 

satisfying nonlocal 5-point boundary conditions given by 

y(x1) = y1, y(x2) = y2, y(x3) = y3, y(x4) − y(x5) = y4, (1.2) 

y(x1) − y(x2) = y1, y(x3) = y2, y(x4) = y3, y(x5) = y4, (1.3) 

where a < x1 < x2 < x3 < x4 < x5 < b, and y1, y2, y3, y4 ∈ R. We also consider 

solutions of (1.1) satisfying nonlocal 4-point boundary conditions given by 

y(x1) = y1, y�(x1) = y2, y(x2) = y3, y(x3) − y(x4) = y4, (1.4) 

y(x1) − y(x2) = y1, y(x3) = y2, y(x4) = y3, y�(x4) = y4, (1.5) 

y(x1) = y1, y(x2) = y2, y�(x2) = y3, y(x3) − y(x4) = y4, (1.6) 

y(x1) − y(x2) = y1, y(x3) = y2, y�(x3) = y3, y(x4) = y4, (1.7) 

where a < x1 < x2 < x3 < x4 < b, and y1, y2, y3, y4 ∈ R, as well as solutions of (1.1) 

satisfying nonlocal 3-point boundary conditions given by 

y(x1) = y1, y�(x1) = y2, y��(x1) = y3, y(x2) − y(x3) = y4, (1.8) 

y(x1) − y(x2) = y1, y(x3) = y2, y
�(x3) = y3, y��(x3) = y4, (1.9) 

where a < x1 < x2 < x3 < b, and y1, y2, y3, y4 ∈ R. 
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Questions of uniqueness implies existence, as well as uniqueness implies unique­

ness for solutions of boundary value problems for ordinary differential equations enjoy 

some history. 

Two of the oldest works devoted to these types of questions were by Lasota and 

Luczynski [41] and Lasota and Opial [42] in which they dealt with uniqueness implies 

existence, for solutions of the second order ordinary differential equation, 

y�� = f(x, y, y�) 

satisfying either the conjugate boundary conditions, 

y(x1) = y1, y(x2) = y2, 

or the right focal boundary conditions, 

y(x1) = y1, y�(x1) = y2, 

where x1 < x2, and y1, y2 ∈ R. 

Subsequent to those papers have been several works addressing uniqueness im­

plies uniqueness conditions including Jackson’s [34, 35] monumental works on solu­

tions of the nth order differential equation, 

y(n) = h(x, y, y�, . . . , y(n−1)) (1.10) 

satisfying k-point conjugate boundary conditions, 

y(i−1)(xj ) = yij , 1 ≤ i ≤ mj , 1 ≤ j ≤ k, (1.11) 

where 2 ≤ k ≤ n, m1 + + mk = n, x1 < < xk, and yij ∈ R, as well as the · · · · · · 

major paper by Henderson [18] for solutions of (1.10) satisfying k-point right focal 

boundary conditions, 

y(i−1)(xj ) = yij , sj−1 + 1 ≤ i ≤ sj, 1 ≤ j ≤ k, (1.12) 
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where 2 ≤ k ≤ n, m1 + +mk = n, sl = sl−1 +ml, 1 ≤ l ≤ k, s0 = 0, x1 < < xk,· · · · · · 

and yij ∈ R. Other uniqueness implies uniqueness results are found in the papers 

by Ehme and Hankerson [7], Goecke and Henderson [10], Henderson [20, 21, 22], 

Henderson and McGwier [28] and Henderson and Pruet [29] for classes of boundary 

value problems for (1.10) that might be termed as “between” the conjugate and the 

right focal problems. 

Uniqueness implies existence results have an equally rich history. Frequently, 

modified shooting methods are the main tool for establishing such results. Following 

the above mentioned papers by Lasota and Luczynski [41] and Lasota and Opial 

[42], Hartman [15] proved that, if solutions of all k-point conjugate boundary value 

problems, 2 ≤ k ≤ n, for (1.10) are unique, when they exist, then indeed there exist 

solutions of all k-point conjugate boundary value problems for (1.10). Later, Hartman 

[17] and Klaasen [38] independently proved, if solutions of n-point conjugate boundary 

value problems are unique, when they exist, then there exist unique solutions of all 

k-point conjugate boundary value problems, 2 ≤ k ≤ n. For (1.10) Henderson [19] 

proved an analogue of the Hartman-Klaasen result for right focal boundary value 

problems; in particular, if n-point right focal boundary value problems for (1.10) are 

unique, when they exist, then there exist solutions of all right focal boundary value 

problems for (1.10). Other uniqueness implies existence results have been obtained 

for boundary value problems for ordinary differential equations, for finite difference 

equations, and for dynamic equations on times scales. Many of these results appear 

in [1, 6, 14, 23, 26, 28, 31, 32, 36, 54]. 

Fourth order nonlinear boundary value problems arise naturally in the me­

chanics of materials, in describing the equilibrium state of an elastic beam under 

various boundary constraints such as either, when both ends are simply supported 

(so that, there are no bending moments at the ends), or perhaps when one end is 

simply supported and the other end is clamped by sliding clamps; see [48] or [62]. 
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In addition, the interaction of solitary waves on shallow water has been modelled 

by fourth order boundary value problems as described by Marchant [51]. The lit­

erature is vast on fourth order nonlinear boundary value problems, and results for 

such problems have “commonly” dealt with Green’s functions [2], [55], monotonic­

ity methods for constructing sequences approximating solutions [59], uniqueness of 

solutions [53], a priori bounds on solutions leading to solutions via Leray-Schauder 

[50], multiple positive solutions, (including double, triple, and even infinitely many) 

via Leggett-Williams, Guo-Krasnosel’skii and Avery-Henderson fixed point theorems 

[3, 5, 43, 44, 49], optimal length intervals on which there exist unique solutions [37], 

and solutions via upper and lower solutions in the presence of a Nagumo condition 

[9]. 

Finally, we mention a brief history of nonlocal boundary value problems. Roughly 

speaking, nonlocal boundary value problems include at least one boundary condition 

involving data from multiple points, such as 

m

y(η1) − αiy(ηi) = c, 
i=2 

where ηi, 1 ≤ i ≤ m, are points in an interval, or such as � η2 

y(x)dx = c, 
η1 

where again, η1 and η2 are points in some interval. An instance in which such a bound­

ary value problem arises, for which nonlocal discrete conditions are stated, would be 

found in a heat conduction problem taking place in a unit rod; the temperature along 

the rod, with prescribed temperatures at the ends related to the temperature at the 

middle point, is modelled by the boundary value problem, 

u�� + q(t)u = 0, 0 < t < 1, 

1 1 1 1 
u(0) − u( ) = λ1, u(1) − u( ) = λ2,

2 2 3 2
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where q(t) is the source density of heat, and λ1, λ2 describe the relations of tempera­

tures of the rod at the endpoints and the middle point. 

An early paper on nonlocal boundary value problems was written by Il’in and 

Moiseev [33] for a second order Sturm-Liouville operator. Prominent in the literature 

in nonlocal boundary value problems are papers by Gupta et al. [12, 13] dealing with 

m-point boundary value problems for second order equations when m > 2. Common 

methods used in those papers pair inequalities with a priori estimates on solutions. In 

a similar way, R. Ma [45, 46, 47] has contributed significantly to work on multi-point 

boundary value problems primarily for second order equations; much of Ma’s work 

has centered on cone theoretic applications to obtain positive and multiple positive 

solutions. Currently, several researchers are engaged in research on nonlocal boundary 

value problems that includes questions of nonlinear eigenvalue problems [11], problems 

on time scales [31, 32], uniqueness of solutions [57], multi-point problems at resonance 

for nth order equations [52], and many papers on positive solutions [39, 40, 61, 65]. 

And, there have been, in fact, a recent spate of papers on uniqueness implies existence 

for solutions of second order and third order nonlocal boundary value problems for 

both ordinary differential equations and for dynamic equations on time scales; see, 

for example [4, 24, 27, 30]. 

Throughout the dissertation, it is assumed that the nonlinear equation satisfies 

the conditions: 

(A) f : (a, b) × R4 → R is continuous. 

(B) Solutions of initial value problems for (1.1) are unique and exist on all of 

(a, b). 

In addition to (A) and (B), uniqueness assumptions on solutions of (1.1):(1.j) will be 

made. 
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The majority of questions in this dissertation involve (i) whether uniqueness 

of solutions of (1.1):(1.2) implies uniqueness of (1.1):(1.4), (1.1):(1.6), (1.1):(1.8); (ii) 

whether uniqueness of solutions of (1.1):(1.4), (1.1):(1.5), (1.1):(1.6) and (1.1):(1.7) 

imply uniqueness of solutions (1.1):(1.2) and (1.1):(1.3); and (iii) whether uniqueness 

of solutions of (1.1):(1.2) implies existence of (1.1):(1.2), (1.1):(1.4), (1.1):(1.6) and 

(1.1):(1.8). Of course, a principal reason for considering questions such as (i) or (ii) 

would be in resolving question (iii). 

Our main motivation for the results of this dissertation arises from the monu­

mental work by Peterson [56] in which he addressed all of the questions for two-point, 

three-point and four-point conjugate boundary value problems for the fourth order dif­

ferential equation (1.1). In particular, Peterson’s [56] “uniqueness implies uniqueness” 

and “uniqueness implies existence” questions focused on solutions of (1.1) satisfying 

either some two-point conjugate conditions, 

y(x1) = y1, y�(x1) = y2, y��(x1) = y3, y(x2) = y4, 

y(x1) = y1, y�(x1) = y2, y(x2) = y3, y�(x2) = y4, 

y(x1) = y1, y(x2) = y2, y�(x2) = y3, y��(x2) = y4 

a < x1 < x2 < b, or some three-point conjugate conditions, 

y(x1) = y1, y�(x1) = y2, y(x2) = y3, y(x3) = y4, 

y(x1) = y1, y(x2) = y2, y�(x2) = y3, y(x3) = y4, 

y(x1) = y1, y(x2) = y2, y(x3) = y3, y�(x3) = y4, 

a < x1 < x2 < b, or the four-point conjugate conditions, 

y(x1) = y1, y(x2) = y2, y(x3) = y3, y(x4) = y4, 

a < x1 < x2 < x3 < x4 < b, and in each case y1, y2, y3, y4 ∈ R. 

Given the hypotheses (A) and (B) and a uniqueness condition, and in a context 

of second order problems, Henderson [24] provided an affirmative answer to (iii). In 
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a like manner, the paper by Clark and Henderson [4] gave an affirmative answer to 

questions (i), (ii) and (iii) for third order nonlocal boundary value problems. 

Part I of this dissertation entails Chapter Two and Chapter Three. In Chapter 

Two we are primarily concerned with uniqueness of solutions of (1.1):(1.2) implying 

uniqueness of solutions of (1.1):(1.4) and (1.1):(1.6) and (1.1):(1.8). In Chapter Three, 

we are concerned with the converse questions, that is, uniqueness of solutions of 

(1.1):(1.4) and (1.1):(1.6) implying uniqueness of solutions of (1.1):(1.2). 

In Chapter Two, first we state the Brouwer Invariance of Domain Theorem [58] 

and the Kamke Convergence Theorem [16]. These are fundamental to our uniqueness 

results as well as our existence results. Then we develop a continuous dependence 

theorem with respect to certain boundary value conditions, which is motivated by 

a similar result on continuous dependence by Clark and Henderson [4]. Later using 

continuous dependence, we deal with uniqueness of solutions of (1.1):(1.2) implies 

uniqueness of solutions of (1.1):(1.4), (1.1):(1.6) and (1.1):(1.8). In Chapter Three, we 

develop that uniqueness of solutions of (1.1):(1.4) and (1.1):(1.6) implies uniqueness 

of solutions of (1.1):(1.2). 

In Part II, which entails Chapter Four, we are concerned with existence of so­

lutions of (1.1):(1.2), (1.1):(1.4), (1.1):(1.6) and (1.1):(1.8) if we know the uniqueness 

of solutions of the 5-point boundary value problem (1.1):(1.2). 

In Part III, we talk about local existence of boundary value problems. First we 

state an equivalence between the solutions of boundary value problems and solutions 

of integral equations. Also, we state the Contraction Mapping Theorem. Then in 

terms of upper bounds of the integral of the Green’s function and its derivatives 

for the fourth order boundary value problem, we apply the Contraction Mapping 

Theorem to obtain the local existence and uniqueness for solutions of 5-point nonlocal 

boundary value problems for fourth order equations, when function f is continuous 

and satisfies a Lipschitz condition. Then as a consequence of the earlier uniqueness 
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implies existence results, we also have local existence and uniqueness of solutions of 

3-point and 4-point nonlocal boundary value problems. 



CHAPTER TWO 

Uniqueness 

In this chapter we will consider solutions of the fourth order differential equa­

tion, 

y(4) = f(x, y, y�, y��, y���), (2.1) 

satisfying nonlocal 5-point boundary conditions given by 

y(x1) = y1, y(x2) = y2, y(x3) = y3, y(x4) − y(x5) = y4, (2.2) 

y(x1) − y(x2) = y1, y(x3) = y2, y(x4) = y3, y(x5) = y4, (2.3) 

where a < x1 < x2 < x3 < x4 < x5 < b, and y1, y2, y3, y4 ∈ R. We also consider 

solutions of (2.1) satisfying nonlocal 4-point boundary conditions given by 

y(x1) = y1, y�(x1) = y2, y(x2) = y3, y(x3) − y(x4) = y4, (2.4) 

y(x1) − y(x2) = y1, y(x3) = y2, y(x4) = y3, y�(x4) = y4, (2.5) 

or 

y(x1) = y1, y(x2) = y2, y�(x2) = y3, y(x3) − y(x4) = y4, (2.6) 

y(x1) − y(x2) = y1, y(x3) = y2, y�(x3) = y3, y(x4) = y4, (2.7) 

where a < x1 < x2 < x3 < x4 < b, and y1, y2, y3, y4 ∈ R, as well as solutions of (2.1) 

satisfying nonlocal 3-point boundary conditions given by 

y(x1) = y1, y�(x1) = y2, y��(x1) = y3, y(x2) − y(x3) = y4, (2.8) 

y(x1) − y(x2) = y1, y(x3) = y2, y�(x3) = y3, y��(x3) = y4, (2.9) 

where a < x1 < x2 < x3 < b, and y1, y2, y3, y4 ∈ R. 

In particular, this chapter is devoted to uniqueness implies uniqueness relation­

ships among solutions of (2.1) satisfying any of the boundary conditions, (2.2)-(2.9). 

9
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We will concentrate on uniqueness of solutions of nonlocal 5-point boundary value 

problems implying uniqueness of solutions of nonlocal 4-point and nonlocal 3-point 

boundary value problems. Questions of this type are not without motivation. As 

discussed in greater detail in the Introduction, numerous papers have been devoted 

to such uniqueness questions, such as the papers by Jackson [34], [35], for conjugate 

boundary value problems, the papers by Henderson [10], [20] and [24], for right focal 

boundary value problems, and the recent papers [4], [27], for nonlocal boundary value 

problems. Behind these uniqueness results is the role of continuous dependence of 

solutions on boundary conditions. This continuous dependence arises somewhat from 

applications of the Brouwer Invariance of Domain Theorem [58] in conjunction with 

continuous dependence of solutions on initial conditions. The continuous dependence 

on initial conditions is a consequence of the Kamke Convergence Theorem [16]. We 

will include in this chapter statements of both the Brouwer Theorem and the Kamke 

Theorem. 

The work by Peterson [56] dealing with 2-point, 3-point and 4-point conjugate 

boundary value problems for (2.1) is also a primary motivation for the results of 

this chapter. In particular, we model our results along the lines of Peterson’s work 

concerning solutions of (2.1) satisfying the 4-point conjugate boundary conditions, 

y(x1) = y1, y(x2) = y2, y(x3) = y3, y(x4) = y4, (2.10) 

where a < x1 < x2 < x3 < x4 < b, as well as the 3-point (respectively 2-1-1, 1-2-1, 

and 1-1-2) conjugate boundary conditions, 

y(x1) = y1, y�(x1) = y2, y(x2) = y3, y(x3) = y4, (2.11) 

y(x1) = y1, y(x2) = y2, y�(x2) = y3, y(x3) = y4, (2.12) 

y(x1) = y1, y(x2) = y2, y(x3) = y3, y�(x3) = y4, (2.13) 

where a < x1 < x2 < x3 < b, and finally the 2-point (respectively, 3-1, 2-2, and 1-3) 
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conjugate boundary conditions, 

y(x1) = y1, y�(x1) = y2, y��(x1) = y3, y(x2) = y4, (2.14) 

y(x1) = y1, y�(x1) = y2, y(x2) = y3, y�(x2) = y4, (2.15) 

y(x1) = y1, y(x2) = y2, y�(x2) = y3, y��(x2) = y4, (2.16) 

where a < x1 < x2 < b, and in each case y1, y2, y3, y4 ∈ R. 

In this chapter concerning (2.1), we will assume the following conditions. 

(A) f : (a, b) × R4 → R is continuous. 

(B) Solutions of initial value problems for (2.1) are unique and exist on all of 

(a, b). 

(C) Given a < x1 < x2 < x3 < x4 < x5 < b, if y(x) and z(x) are two solutions of 

(2.1) satisfying


y(x1) = z(x1), y(x2) = z(x2), y(x3) = z(x3), y(x4) − y(x5) = z(x4) − z(x5),


then y(x) = z(x), a < x < b.


(D) Given a < x1 < x2 < x3 < x4 < x5 < b, if y(x) and z(x) are two solutions of 

(2.1) satisfying


y(x1) − y(x2) = z(x1) − z(x2), y(x3) = z(x3), y(x4) = z(x4), y(x5) = z(x5),


then y(x) = z(x), a < x < b.


We now state The Brouwer Theorem on Invariance of Domain [58], and the 

Kamke Convergence Theorem [16].


Theorem 2.1. (Brouwer Invariance of Domain Theorem) If ϕ : G ⊆ Rn → Rn is


continuous and one to one, and if G is an open set, then ϕ(G) is an open set and ϕ


is homeomorphism.
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Theorem 2.2. (Kamke Convergence Theorem) Assume that in the equation 

y(n) = gk(x, y, y�, ..., y(n−1)), k = 0, 1, 2, ..., (n)k 

the functions gk(x, u1, u2, ..., un) are continuous on I × Rn, where I is an interval of 

the reals, assume that solutions of initial value problems are unique, and assume that 

lim gk(x, u1, u2, ..., un) = g0(x, u1, u2, ..., un) 
k→∞ 

uniformly on each compact subset of I × Rn . Assume that {(xk, y1k, ..., ynk)}∞ is a k=0 

sequence in I × Rn with 

lim (xk, y1k, y2k, ..., ynk) = (x0, y10, y20, ..., yn0). 
k→∞ 

For each k ≤ 1, let yk(x) be a solution of (n)k satisfying y(i−1)
(xk) = yik, 1 ≤ i ≤ n,k 

defined on its maximal interval Ik ⊂ I with xk ∈ Ik. Let y0(x) be the solution of (n)0 

satisfying y(i−1)
(x0) = yi0, 1 ≤ i ≤ n, on its maximal interval I0 ⊂ I. Then for any 0 

compact interval [c, d] ⊂ I0, it follows that [c, d] ⊂ Ik, for all sufficiently large k and 

limk→∞ y
(i−1)

(x) = y(i−1)
(x) uniformly on [c, d], for each 1 ≤ i ≤ n.k 0 

We now present our first continuous dependence result. 

Theorem 2.3. Assume (A), (B), (C), and let z(x) be an arbitrary solution of (2.1). 

Then, for any a < x1 < x2 < x3 < x4 < x5 < b and a < c < x1, and x5 < d < b, 

and given any � > 0, there exists δ(�, [c, d]) > 0, so that |xi − ti| < δ, 1 ≤ i ≤ 

5, |z(xi) − yi| < δ, i = 1, 2, 3, and |z(x4) − z(x5) − y4| < δ imply that (2.1) has a 

solution y(x) with 

y(ti) = yi, i = 1, 2, 3, 

y(t4) − y(t5) = y4, 

and |y(i−1)(x) − z(i−1)(x)| < � on [c, d], i = 1, 2, 3, 4. 
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Proof. Fix a point t0 ∈ (a, b). Define the open subset G ⊂ R9 by,


G = {(t1, t2, t3, t4, t5, c1, c2, c3, c4)|a < t1 < t2 < t3 < t4 < t5 < b and c1, c2, c3, c4 ∈ R}.


For


m = (t1, t2, t3, t4, t5, c1, c2, c3, c4) ∈ G, 

then define a mapping ϕ : G R9 by → 

ϕ(m) = (t1, t2, t3, t4, t5, y(t1), y(t2), y(t3), y(t4) − y(t5)) 

where y(x) is the solution of the (2.1) with 

y(i−1)(t0) = ci, i = 1, 2, 3, 4. 

It follows from Theorem 2.2 that solutions of initial value problems for (2.1) depend 

continuously on initial conditions. Consequently ϕ is a continuous function. 

We claim that ϕ is one to one. In that direction, assume that 

ϕ(s1, s2, s3, s4, s5, d1, d2, d3, d4) = ϕ(t1, t2, t3, t4, t5, c1, c2, c3, c4). 

Then 

si = ti, i = 1, 2, 3, 4, 5, 

y(si) = y(ti) = w(ti), i = 1, 2, 3, 

y(t4) − y(t5) = w(t4) − w(t5), 

where y(x) and w(x) are solutions of (2.1) with 

y(i−1)(t0) = di, i = 1, 2, 3, 4, 

w(i−1)(t0) = ci, i = 1, 2, 3, 4. 

By assumptions (B) and (C), we have y(x) = w(x) on (a, b), which implies di = 

ci, i = 1, 2, 3, 4. Therefore ϕ is one to one. So by the Brouwer Invariance of Domain 

Theorem, we have ϕ(G) is open and ϕ−1 is continuous on ϕ(G). 
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We shall show that the theorem is true through the use of continuity of ϕ−1 . 

So let a < x1 < x2 < x3 < x4 < x5 < b be chosen, and let a < c < x1, x5 < d < b, 

and � > 0 be given. By continuity respect to initial conditions, there exists an η > 0 

such that if |z(i−1)(t0) − ci| < η, i = 1, 2, 3, 4, then 

|y(i−1)(x) − z(i−1)(x)| < � on [c, d], i = 1, 2, 3, 4, 

where y(x) is the solution of (2.1) with y(i−1)(t0) = ci, i = 1, 2, 3, 4. 

Now since (x1, x2, x3, x4, x5, z(x1), z(x2), z(x3), z(x4) − z(x5)) ∈ ϕ(G) and ϕ(G) 

is open, there exists a δ > 0 such that, if 

|ti − xi| < δ, i = 1, 2, 3, 4, 5, 

|yi − z(xi)| < δ, i = 1, 2, 3, 4, 

|z(x4) − z(x5) − y4| < δ, 

then we have (t1, t2, t3, t4, t5, y1, y2, y3, y4) ∈ ϕ(G), and by the continuity of ϕ−1, we 

have ϕ−1(t1, t2, t3, t4, t5, y1, y2, y3, y4) belongs to the open cube of half-edge η centered 

at 

ϕ−1(x1, x2, x3, x4, x5, z(x1), z(x2), z(x3), z(x4) − z(x5)) 

= (x1, x2, x3, x4, x5, z(t0), z
�(t0), z

��(t0), z
���(t0)). 

Say that ϕ−1(t1, t2, t3, t4, t5, y1, y2, y3, y4) = (t1, t2, t3, t4, t5, d1, d2, d3, d4). So, from above 

there is a solution y(x) of (2.1) satisfying 

y(i−1)(t0) = di, i = 1, 2, 3, 4, and


|y(i−1)(x) − z(i−1)(x)| < � on [c, d], i = 1, 2, 3, 4.


Moreover 

(t1, t2, t3, t4, t5, y(t1), y(t2), y(t3), y(t4) − y(t5))	 = ϕ(t1, t2, t3, t4, t5, d1, d2, d3, d4) 

= (t1, t2, t3, t4, t5, y1, y2, y3, y4). 
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In particular,


y(ti) = yi, i = 1, 2, 3, 

y(t4) − y(t5) = y4, 

and |y(i−1)(x) − z(i−1)z(x)| < � on [c, d], i = 1, 2, 3, 4. 

The proof is complete. 

Motivation for the main results of this chapter is the following result by Peterson 

[56]. 

Theorem 2.4. Assume (A) and (B) are satisfied, and in addition that solutions of 

4-point conjugate boundary value problems (2.1):(2.10) are unique, when they exist. 

Then solutions of 3-point and 2-point conjugate boundary value problems for (2.1) are 

unique, when they exist. 

It follows that, if in addition to (A) and (B), condition (C) is also assumed then 

solutions of (2.1):(2.10) are unique. In fact, we prove this now. 

Theorem 2.5. Assume conditions (A), (B) and (C) are satisfied. Then solutions of 

conjugate boundary value problems for (2.1) are unique, when they exist. 

Proof. In view of Theorem 2.4, it suffices to prove that solutions of 4-point conjugate 

boundary value problems (2.1):(2.10) are unique. 

Assume for the sake of contradiction that there exist distinct solutions y(x) and 

z(x) of (2.1) and successive points a < x1 < x2 < x3 < x4 < b so that 

y(xi) = z(xi), i = 1, 2, 3, 4, 

and y(x) =� z(x), for all x ∈ (x1, x4) \ {x2, x3}. 

Assume without loss of generality that y(x) > z(x) on (x3, x4). Then, the 

function w(x) = y(x) − z(x) has a local positive maximum at some point c ∈ (x3, x4), 
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and w(x3) = w(x4) = 0. By continuity, there exist points x3 < τ1 < c < τ2 < x4 so 

that w(τ1) = w(τ2). In particular, we have 

y(x1) = z(x1), 

y(x2) = z(x2), 

y(x3) = z(x3), 

and 

y(τ1) − y(τ2) = z(τ1) − z(τ2). 

By (C), y(x) = z(x) on (a, b), which is a contradiction. 

The theorem is proved. 

We now proceed to show that the assumptions of Theorem 2.3 also yield unique­

ness of the 4-point and 3-point nonlocal boundary value problems for (2.1). 

Theorem 2.6. Assume (A), (B) and (C) are satisfied. Then solutions of (2.1):(2.4) 

are unique when they exist. 

Proof. Suppose (2.1):(2.4) has two solutions y(x) and z(x), and let us say, 

z(x1) = y(x1),


z�(x1) = y�(x1),


z(x2) = y(x2),


z(x3) − z(x4) = y(x3) − y(x4),


for some a < x1 < x2 < x3 < x4 < b. By uniqueness of conjugate boundary value 

problems (2.1):(2.14) and (2.1):(2.15), respectively, z��(x1) = y��(x1) and z�(x2) = 

y�(x2). 

Without loss of generality, we assume y(x) > z(x) on (a, x2)\{x1}. Then y(x) < 

z(x) on (x2, b). Fix a < τ < x1. By Theorem 2.3, for � > 0 sufficiently small, there 
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exist a δ > 0 and a solution zδ(x) of (2.1) satisfying 

zδ(τ) = z(τ), 

zδ(x1) = z(x1) + δ, 

zδ(x2) = z(x2) = y(x2), 

zδ(x3) − zδ(x4) = z(x3) − z(x4) 

= y(x3) − y(x4), 

and |zδ 
(i−1)

(x) − z(i−1)(x)| < �, i = 1, 2, 3, 4, on [τ, x4]. For � small, there exists 

τ < σ1 < x1 < σ2 < x2 so that 

zδ(σ1) = y(σ1), 

zδ(σ2) = y(σ2), 

zδ(x2) = = y(x2), 

zδ(x3) − zδ(x4) = y(x3) − y(x4). 

By assumption (C), zδ(x) = y(x) on (a, b). However, zδ(x1) = z(x1)+ δ = y(x1)+ δ > 

y(x1), which is a contradiction. 

So solutions of (2.1):(2.4) are unique. 

Having established uniqueness of (2.1):(2.4), we now exhibit that such solutions 

depend continuously on boundary conditions. 

Theorem 2.7. Assume (A), (B), (C), and let z(x) be an arbitrary solution of (2.1). 

Then, for any a < x1 < x2 < x3 < x4 < b and a < c < x1, and x4 < d < b, and given 

any � > 0, there exists δ(�, [c, d]) > 0, so that |xi −ti| < δ, 1 ≤ i ≤ 4, |z(i−1)(x1)−yi| < 

δ, i = 1, 2, |z(x2)−y3| < δ and |z(x3)−z(x4)−y4| < δ imply that (2.1) has a solution 
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y(x) with


y(i−1)(t1) = yi, i = 1, 2,


y(t2) = y3,


y(t3) − y(t4) = y4,


and |y(i−1)(x) − z(i−1)(x)| < � on [c, d], i = 1, 2, 3, 4.


Proof. Fix a point t0 ∈ (a, b). Define the open subset G ⊂ R8 by,


G = {(t1, t2, t3, t4, c1, c2, c3, c4)|a < t1 < t2 < t3 < t4 < b and c1, c2, c3, c4 ∈ R}. 

For m = (t1, t2, t3, t4, c1, c2, c3, c4) ∈ G, then define a mapping ϕ : G → R8 by 

ϕ(m) = (t1, t2, t3, t4, y(t1), y
�(t1), y(t2), y(t3) − y(t4)), 

where y(x) is the solution of the (2.1) with 

y(i−1)(t0) = ci, i = 1, 2, 3, 4. 

It follows from Theorem 2.2 that solutions of initial value problems for (2.1) depend 

continuously on initial conditions. Consequently ϕ is a continuous function. 

We claim that ϕ is one to one. Assume that 

ϕ(s1, s2, s3, s4, d1, d2, d3, d4) = ϕ(t1, t2, t3, t4, c1, c2, c3, c4). 

Then 

si = ti, i = 1, 2, 3, 4, 

y(si) = y(ti) = w(ti), i = 1, 2, 

y�(s1) = y�(t1) = w�(t1), 

y(t3) − y(t4) = w(t3) − w(t4), 
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where y(x) and w(x) are solutions of (2.1) with 

y(i−1)(t0) = di, i = 1, 2, 3, 4, 

w(i−1)(t0) = ci, i = 1, 2, 3, 4. 

By Theorem 2.6 we have y(x) = w(x) on (a, b), which implies di = ci, i = 1, 2, 3, 4. 

Therefore ϕ is one to one. So by the Brouwer Invariance of Domain Theorem, we 

have ϕ(G) is open and ϕ−1 is continuous on ϕ(G). 

We shall show that the theorem is true through the use of continuity of ϕ−1 . So 

let a < x1 < x2 < x3 < x4 < b be chosen, and let a < c < x1, x4 < d < b, and � > 0 

be given. By continuity respect to initial conditions, then there exists an η > 0 such 

that if |z(i−1)(t0) − ci| < η, i = 1, 2, 3, 4, then 

|y(i−1)(x) − z(i−1)(x)| < � on [c, d], i = 1, 2, 3, 4, 

where y(x) is the solution of (2.1) with y(i−1)(t0) = ci, i = 1, 2, 3, 4. 

Now since (x1, x2, x3, x4, z(x1), z
�(x1), z(x2), z(x3) − z(x4)) ∈ ϕ(G) and ϕ(G) is 

open, then there exists a δ > 0 such that, if 

|ti − xi| < δ, i = 1, 2, 3, 4,


|z(i−1)(xi) − yi| < δ, i = 1, 2,


|z(x2) − y3| < δ,


|z(x3) − z(x4) − y4| < δ,


then we have (t1, t2, t3, t4, y1, y2, y3, y4) ∈ ϕ(G), and by the continuity of ϕ−1, we have 

ϕ−1(t1, t2, t3, t4, y1, y2, y3, y4) belongs to the open cube of half-edge η centered at 

ϕ−1(x1, x2, x3, x4, z(x1), z
�(x1), z(x2), z(x3) − z(x4)) 

= (x1, x2, x3, x4, z(t0), z
�(t0), z

��(t0), z
���(t0)). 

Say that ϕ−1(t1, t2, t3, t4, y1, y2, y3, y4) = (t1, t2, t3, t4, d1, d2, d3, d4). So, from above 
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there is a solution y(x) of (2.1) satisfying 

y(i−1)(t0) = di, i = 1, 2, 3, 4, and


|y(i−1)(x) − z(i−1)(x)| < � on [c, d], i = 1, 2, 3, 4.


Moreover 

(t1, t2, t3, t4, y(t1), y
�(t1), y(t2), y(t3) − y(t4))	 = ϕ(t1, t2, t3, t4, d1, d2, d3, d4) 

= (t1, t2, t3, t4, y1, y2, y3, y4). 

In particular, 

y(t1) = y1,


y�(t1) = y2,


y(t2) = y3,


y(t3) − y(t4) = y4,


and |y(i−1)(x) − z(i−1)z(x)| < � on [c, d], i = 1, 2, 3, 4. 

The proof is complete. 

Theorem 2.8. Assume (A), (B) and (C) are satisfied. Then solutions of (2.1):(2.6) 

are unique when they exist. 

Proof. Suppose (2.1):(2.6) has two solutions y(x) and z(x), and let us say, 

z(x1) = y(x1),


z(x2) = y(x2),


z�(x2) = y�(x2),


z(x3) − z(x4) = y(x3) − y(x4),
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for some a < x1 < x2 < x3 < x4 < b. By uniqueness of conjugate boundary value 

problems (2.1):(2.15) and (2.1):(2.16), respectively, z�(x1) = y�(x1) and z��(x2) = 

y��(x2). 

Without loss of generality, we assume y(x) > z(x) on (x1, b)\{x2}. Then y(x) < 

z(x) on (a, x1). Fix x1 < τ < x2. By Theorem 2.3, for � > 0 sufficiently small, there 

exists a δ > 0 and a solution zδ(x) of (2.1) satisfying 

zδ(x1) = z(x1) = y(x1), 

zδ(τ) = z(τ), 

zδ(x2) = z(x2) + δ, 

zδ(x3) − zδ(x4) = z(x3) − z(x4) 

= y(x3) − y(x4), 

and |z(i−1)
(x) − z(i−1)(x)| < �, i = 1, 2, 3, 4, on [τ, x4]. For � small, there exists δ 

x1 < σ1 < x2 < σ2 < x4 so that 

zδ(x1) = y(x1),


zδ(σ1) = y(σ1),


zδ(σ2) = y(σ2),


zδ(x3) − zδ(x4) = y(x3) − y(x4).


By assumption (C), zδ(x) = y(x) on (a, b). However, zδ(x2) = z(x2)+ δ = y(x2)+ δ > 

y(x2), which is a contradiction. 

So solutions of (2.1):(2.6) are unique. 

Having established uniqueness of solutions of (2.1):(2.6), we now exhibit that 

such solutions depend continuously on boundary conditions. 

Theorem 2.9. Assume (A), (B), (C), and let z(x) be an arbitrary solution of (2.1). 

Then, for any a < x1 < x2 < x3 < x4 < b and a < c < x1, and x4 < d < b, and given 
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any � > 0, there exists δ(�, [c, d]) > 0, so that |xi − ti| < δ, 1 ≤ i ≤ 4, |z(xi) − yi| < 

δ, i = 1, 2, |z�(x2) − y3| < δ and |z(x3) − z(x4) − y4| < δ imply that (2.1) has a 

solution y(x) with 

y(ti) = yi, i = 1, 2,


y�(t2) = y3,


y(t3) − y(t4) = y4,


and |y(i−1)(x) − z(i−1)(x)| < � on [c, d], i = 1, 2, 3, 4. 

Proof. Fix a point t0 ∈ (a, b). Define the open subset G ⊂ R8 by, 

G = {(t1, t2, t3, t4, c1, c2, c3, c4)|a < t1 < t2 < t3 < t4 < b and c1, c2, c3, c4 ∈ R}. 

For m = (t1, t2, t3, t4, c1, c2, c3, c4) ∈ G, then define a mapping ϕ : G → R8 by 

ϕ(m) = (t1, t2, t3, t4, y(t1), y(t2), y
�(t2), y(t3) − y(t4)), 

where y(x) is the solution of the (2.1) with 

y(i−1)(t0) = ci, i = 1, 2, 3, 4. 

It follows from Theorem 2.2 that solutions of initial value problems for (2.1) depend 

continuously on initial conditions. Consequently ϕ is a continuous function. 

We claim that ϕ is one to one. Assume that 

ϕ(s1, s2, s3, s4, d1, d2, d3, d4) = ϕ(t1, t2, t3, t4, c1, c2, c3, c4). 

Then 

si = ti, i = 1, 2, 3, 4, 

y(si) = y(ti) = w(ti), i = 1, 2, 

y�(s2) = y�(t2) = w�(t2), 

y(t3) − y(t4) = w(t3) − w(t4), 
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where y(x) and w(x) are solutions of (2.1) with 

y(i−1)(t0) = di, i = 1, 2, 3, 4, 

w(i−1)(t0) = ci, i = 1, 2, 3, 4. 

By Theorem 2.8 we have y(x) = w(x) on (a, b), which implies di = ci, i = 1, 2, 3, 4. 

Therefore ϕ is one to one. So by the Brouwer Invariance of Domain Theorem, we 

have ϕ(G) is open and ϕ−1 is continuous on ϕ(G). 

We shall show that the theorem is true through the use of continuity of ϕ−1 . So 

let a < x1 < x2 < x3 < x4 < b be chosen, and let a < c < x1, x4 < d < b, and � > 0 

be given. By continuity respect to initial conditions, then there exists an η > 0 such 

that if |z(i−1)(t0) − ci| < η, i = 1, 2, 3, 4, then 

|y(i−1)(x) − z(i−1)(x)| < � on [c, d], i = 1, 2, 3, 4, 

where y(x) is the solution of (2.1) with y(i−1)(t0) = ci, i = 1, 2, 3, 4. 

Now since (x1, x2, x3, x4, z(x1), z(x2), z
�(x2), z(x3) − z(x4)) ∈ ϕ(G) and ϕ(G) is 

open, then there exists a δ > 0 such that, if 

|ti − xi| < δ, i = 1, 2, 3, 4,


|yi − z(xi)| < δ, i = 1, 2,


|z�(x2) − y3| < δ,


|z(x3) − z(x4) − y4| < δ,


then we have (t1, t2, t3, t4, y1, y2, y3, y4) ∈ ϕ(G), and by the continuity of ϕ−1, we have 

ϕ−1(t1, t2, t3, t4, y1, y2, y3, y4) belongs to the open cube of half-edge η centered at 

ϕ−1(x1, x2, x3, x4, z(x1), z(x2), z
�(x2), z(x3) − z(x4)) 

= (x1, x2, x3, x4, z(t0), z
�(t0), z

��(t0), z
���(t0)). 

Say that ϕ−1(t1, t2, t3, t4, y1, y2, y3, y4) = (t1, t2, t3, t4, d1, d2, d3, d4). So, from above 
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there is a solution y(x) of (2.1) satisfying 

y(i−1)(t0) = di, i = 1, 2, 3, 4, and 

|y(i−1)(x) − z(i−1)(x)| < � on [c, d], i = 1, 2, 3, 4. 

Moreover 

(t1, t2, t3, t4, y(t1), y(t2), y
�(t2), y(t3) − y(t4)) = ϕ(t1, t2, t3, t4, d1, d2, d3, d4) 

= (t1, t2, t3, t4, y1, y2, y3, y4). 

In particular, 

y(ti) = yi, i = 1, 2, 

y�(t2) = y3, 

y(t3) − y(t4) = y4, 

and |y(i−1)(x) − z(i−1)z(x)| < � on [c, d], i = 1, 2, 3, 4. 

The proof is complete. 

We now establish that under the uniqueness condition of (C), we also have 

uniqueness of solutions of 3-point nonlocal boundary value problems.


Theorem 2.10. Assume (A), (B) and (C) are satisfied. Then solutions of (2.1):(2.8)


are unique when they exist.


Proof. Suppose (2.1):(2.8) has two solutions y(x) and z(x) satisfying 

y(x1) = z(x1), y�(x1) = z�(x1), y��(x1) = z��(x1), y(x2) − y(x3) = z(x2) − z(x3), 

for some a < x1 < x2 < x3 < b. Now y���(x1) = z���(x1), and we may assume 

y���(x1) > z���(x1). 

By Theorem 2.7, solutions of (2.1):(2.4) depend continuously on their boundary 

conditions. Fix x1 < ρ < x2. For � > 0 small, there is a δ > 0 and a solution zδ(x) 
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satisfying


zδ(x1) = z(x1) = y(x1), 

zδ
� (x1) = z�(x1) + δ, 

zδ(ρ) = z(ρ), 

zδ(x2) − zδ(x3) = z(x2) − z(x3) 

= y(x2) − y(x3). 

and |y(i−1)(x) − z(i−1)(x)| < �, i = 1, 2, 3, 4, on [x1, x3]. For � sufficiently small, there 

exist points a < τ1 < x1 < τ2 < ρ, which are in a neighborhood of x1, such that y(x) 

and zδ(x) both satisfy, 

zδ(τ1) = y(τ1),


zδ(x1) = y(x1),


zδ(τ2) = y(τ2),


zδ(x2) − zδ(x3) = y(x2) − y(x3).


So we have zδ(x) = y(x) on (a, b) by hypothesis (C). But 

zδ
� (x1) = z�(x1) + δ = y�(x1) + δ > y�(x1). 

This is a contradiction. So (2.1):(2.8) has at most one solution. 

As in the previous cases, once uniqueness of solutions of (2.1):(2.8) has been 

established, we have a result for continuous dependence of solutions on boundary 

conditions. We omit the proof. 

Theorem 2.11. Assume (A), (B), (C), and let z(x) be an arbitrary solution of (2.1). 

Then, for any a < x1 < x2 < x3 < b and a < c < x1, and x3 < d < b, and given any 

� > 0, there exists δ(�, [c, d]) > 0, so that |xi − ti| < δ, 1 ≤ i ≤ 3, |z(i−1)(x1) − yi| < 
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δ, i = 1, 2, 3, and |z(x2) − z(x3) − y4| < δ imply that (2.1) has a solution y(x) with 

y(i−1)(t1) = yi, i = 1, 2, 3, 

y(t2) − y(t3) = y4, 

and |y(i−1)(x) − z(i−1)(x)| < � on [c, d], i = 1, 2, 3, 4. 

In terms of the uniqueness condition (D), there are dual uniqueness results 

which we now state. 

Theorem 2.12. Assume (A), (B) and (D) are satisfied. Then solutions of (2.1):(2.5) 

are unique when they exist. 

Theorem 2.13. Assume (A), (B) and (D) are satisfied. Then solutions of (2.1):(2.7) 

are unique when they exist. 

Theorem 2.14. Assume (A), (B) and (D) are satisfied. Then solutions of (2.1):(2.9) 

are unique when they exist. 

We conclude this chapter by noting that in the presence of assumption (C) and 

(D), solutions of (2.1) satisfying any of (2.2)–(2.9) depend continuously on boundary 

conditions. Verification follows along the lines of Theorem 2.3, Theorem 2.7 and 

Theorem 2.9. This is due to the uniqueness of these solutions. 



CHAPTER THREE


Uniqueness 2


This chapter is devoted to, in some sense, a question converse to Theorems 

2.6, 2.8 and 2.10. In particular, in those theorems, we proved that, under hypothesis 

(C) and (D), solutions of 4-point and 3-point nonlocal boundary value problems for 

(2.1) are unique, when they exist. Put more clearly, if solutions of (2.1):(2.2) and 

(2.1):(2.3) are unique, then solutions of (2.1) satisfying any of (2.4)-(2.9) are unique. 

In this chapter, our assumptions will be on uniqueness of solutions of 4-point 

and 3-point nonlocal boundary value problems to establish uniqueness of solutions of 

5-point nonlocal boundary value problems for the equation (2.1). Relative to equation 

(2.1), we again assume the conditions: 

(A) f : (a, b) × R4 → R is continuous. 

(B) Solutions of initial value problems for (2.1) are unique and exist on all of 

(a, b). 

Fundamental to our arguments is a Kamke type of convergence result for bound­

ary value problems due to Vidossich [60], as well as a precompactness condition on 

bounded sequences of solutions of (2.1) due to to Jackson and Schrader; see Agarwal 

[1]. 

Theorem 3.1. (Vidossich) For each n > 0, let gn : [c, d] × RN → R be continuous, let 

Ln : C([c, d] × RN , R) → RN be continuous, and let rn ∈ RN . Assume that 

(a) limn rn = r0; 

(b) limn gn = g0 and limn Ln = L0 uniformly on compact subsets of [c, d] × RN , 

respectively; 
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(c) Each initial value problem 

x� = gn(t, x), x(a) = u, 

has at most one local solution for u ∈ RN ; 

(d) The functional boundary value problem 

x� = g0(t, x), L0(x) = r, 

has at most one solution for each r ∈ RN . 

Let x0 be the solution to x� = g0(t, x), L0(x) = r0. Then for each � > 0, there 

exists n� such that the functional boundary value problem, 

x� = gn(t, x), Ln(x) = rn, 

has a solution xn , for n > n�, satisfying the condition 

�x0 − xn�∞ < �. 

Theorem 3.2. (Jackson-Schrader) Assume that with respect to (2.1), conditions (A) 

and (B) hold. In addition, assume that solutions of 4-point conjugate boundary value 

problems (2.1):(2.10) are unique. If {yk(x)} is sequence of solutions of (2.1) for which 

there exists an interval [c, d] ⊂ (a, b) and there exists an M > 0 such that |yk(x)| < M, 

for all x ∈ [c, d] and for all k ∈ N, then there exists a subsequence {ykj (x)} such that, 

for i = 0, 1, 2, 3, {yk
(i

j 

)
(x)} converges uniformly on each compact subinterval of (a, b). 

In the context of conjugate boundary value problems for (2.1), Peterson [56] 

established a converse to Theorem 2.4. 

Theorem 3.3. Assume with respect to (2.1), conditions (A) and (B) are satisfied. 

Assume also that solutions of (2.1) satisfying 2-point conjugate boundary conditions 

(i.e. (2.14), (2.15), (2.16)), are unique, when they exist. Then solutions of 4-point 

and 3-point conjugate boundary value problem for (2.1) (i.e. (2.10), (2.11), (2.12), 

(2.13)) are unique when they exist. 
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We remark that Peterson also proved a uniqueness implies existence result. 

Theorem 3.4. Assume with respect to (2.1), conditions (A) and (B) are satisfied. 

Assume also that solutions of (2.1):(2.10) are unique, when they exist. Then there 

exist solutions of 4-point, 3-point and 2-point conjugate boundary value problems for 

(2.1). (i.e. for any of (2.11), . . ., (2.16)) 

We also mention here a uniqueness result due to Henderson and Jackson [25]. 

Theorem 3.5. Assume (A) and (B) and uniqueness of solutions of 3-point conjugate 

boundary value problems for (2.1). Then solutions of 2-point conjugate boundary 

value problems for (2.1) are unique. 

As a consequence, we have a summary statement. 

Theorem 3.6. Assume (A)and (B) are satisfied and that given k ∈ {2, 3, 4} solutions 

of k-point conjugate boundary value problems for (2.1) are unique. Then, each 2­

point, 3-point and 4-point conjugate boundary value problems for (2.1) has a unique 

solution. 

We finally remark that, if solutions of (2.1):(2.4), (2.1):(2.5) and (2.1):(2.6), 

(2.1):(2.7) are unique, then solutions, by the Mean Value Theorem, of 3-point conju­

gate boundary value problems are unique. 

We now provide a type of converse to Theorems 2.6, 2.8 and 2.10. 

Theorem 3.7. Assume (A) and (B)are satisfied. Assume solutions of (2.1) satisfying 

any of (2.4)-(2.7)are unique, when they exist. Then the solutions of (2.1):(2.2) and 

(2.1):(2.3) are unique. 

Proof. We establish the result for only (2.1):(2.2). Suppose (2.1):(2.2) has two distinct 

solutions y(x) and z(x), for some a < x1 < x2 < x3 < x4 < x5 < b and some 

y1, y2, y3, y4 ∈ R. That is, 

y(xi) = z(xi), i = 1, 2, 3, and y(x4) − y(x5) = z(x4) − z(x5). 
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By assumptions (A) and (B) and uniqueness of solutions of 4-point nonlocal 

boundary value problems, (2.1):(2.4), (2.1):(2.5), (2.1):(2.6) and (2.1)(2.7), we know 

solutions of all conjugate boundary problems for (2.1) are unique, and hence all 

conjugate boundary problems have unique solutions. 

For each n ≥ 1, let yn(x) be the solution of the conjugate boundary value 

problems for (2.1) satisfying conditions of (2.11), 

yn(x3) = y(x3) = z(x3), 

y� (x3) = y�(x3) − n,n

yn(x4) = y(x4), 

yn(x5) = y(x5). 

It follows from uniqueness of solutions of 4-point conjugate problems that, for 

n ≥ 1, 

y(x) < yn(x) < yn+1(x) 

on (a, x3). 

For each n ≥ 1, let 

En = {x : x1 ≤ x ≤ x2| where yn(x) ≤ z(x)}. 

We claim that En =� ∅, for each n ≥ 1. In that direction, suppose there exists 

n0 so that En0 = ∅. Then yn0 (x) > z(x) on [x1, x2]. 

Next, for all � ≥ 0, let y� be the solution of (2.1):(2.11) satisfying the 2-1-1 

conjugate boundary conditions, 

y�(x3) = y(x3) = z(x3), 

y�
�(x3) = y�(x3) − �, 

y�(x4) = y(x4), 

y�(x5) = y(x5). 
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Note when � = 0, y�(x) = y(x). 

Define 

S = {� ≥ 0| for some x1 ≤ x ≤ x2, y�(x) ≤ z(x)}, 

S =� ∅ since 0 ∈ S. Now since En0 = ∅, S is bounded above. 

Let �0 = sup S, and consider the solution, y�0 (x) of equation (2.1). We claim 

there exists τ ∈ (x1, x2) so that y�0 (τ) ≤ z(τ). If not, then y�0 (x) > z(x), for all x1 ≤ 

x ≤ x2. By continuous dependence of solutions of (2.1):(2.11) on boundary conditions, 

there exists 0 < �1 < �0, so that y�1 (x) > z(x) for all x1 ≤ x ≤ x2. Therefore �1 is 

an upper bound of S. But by assumption �0 = sup S, whereas 0 < �1 < �0. This is a 

contradiction. Therefore there exists τ ∈ (x1, x2) so that y�0 (τ) ≤ z(τ). 

Next, if y�0 (τ) < z(τ), then by continuity, there exists an interval [τ − ρ, τ + ρ] 

so that y�0 (x) < z(x) on [τ − ρ, τ + ρ]. So there exists �0 < �2 so that y�2 (x) ≤ z(x), 

on some interval [τ − η, τ + η] ⊂ [τ − ρ, τ + ρ] ⊂ [x1, x2]. So �2 ∈ S. But �2 > �0, 

and so we contradict that �0 is the least upper bound of S. 

Now for this τ ∈ (x1, x2), y�0 (τ ) = z(τ), and y�0 (x) ≥ z(x) for all x ∈ 

[x1, x2] \ {τ}. 

In particular, 

y�0 (τ) = z(τ), 

y�
�
0 
(τ) = z�(τ), 

y�0 (x3) = z(x3), 

y�0 (x4) − y�0 (x5) = z(x4) − z(x5). 

By the uniqueness of solutions of 4-point nonlocal conjugate boundary problems, we 

reach a contradiction. So En =� ∅, for all n ≥ 1. 

Thus, En+1 ⊂ En ⊂ (x1, x2), for each n ≥ 1, and each En is also compact. 

Hence, 
∞

En := E =� ∅. 
n=1 



32 

Next, we observe that the set E consists of a single point {x0} with x1 < x0 < x2. 

To see this, suppose there are points t1, t2 ∈ E with x1 < t1 < t2 < x2. 

We claim that the interval [t1, t2] ⊆ E. Suppose to the contrary that there 

exists τ ∈ (t1, t2) such that τ /∈ E. Then, there exists an N ∈ N such that, for each 

n ≥ N, yn(τ) > z(τ). By continuity, there exists a λ > 0 such that, for each n ≥ N, 

z(x) < yn(x) < yn+1(x), x ∈ [τ − λ, τ + λ]. 

With the solution y�(x) of (2.1) as defined above, we define a new set 

S � = {� ≥ 0| for some τ − λ ≤ x ≤ τ − λ, y�(x) ≤ z(x)}. 

Again 0 ∈ S �, and so S � �= ∅. In this case N is an upper bound of S �. We reach 

the same contradiction as above in showing the foregoing sets En are nonnull. We 

conclude that the interval [t1, t2] ⊆ E, and the claim is verified. 

However, [t1, t2] ⊆ E implies that the sequence {yn(x)} is uniformly bounded 

on [t1, t2]. It follows from Theorem 3.2 that there is a subsequence {ynj (x)} such that 

for each i = 0, 1, 2, 3, {yn
(i

j 

)
(x)} converges uniformly on each compact subinterval of 

(a, b). However, 

lim yn
�

j 
(x3) = lim y�(x3) − nj = −∞; 

j→∞ j→∞ 

this is a contraction. 

Thus we conclude, 

E = {x0}, 

with x1 < x0 < x2, and we also have 

lim yn(x0) ≤ z(x0). 
n→∞ 

Now, let y0(x) be the solution of the 4-point conjugate boundary value problem 

for (2.1) satisfying 

lim yn(x0) = y0(x0), y0(x3) = y(x3) = z(x3), y0(x4) = y(x4), y0(x5) = y(x5). 
n→∞ 
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By the Vidossich Theorem, Theorem 3.1, {yn 
(i)

(x)} converges to y0
(i)

(x), i = 0, 1, 2, 3, 

on each compact subinterval of (a, b). 

So y0(x0) ≤ z(x0), which we claim leads to contradictions. There are two cases 

to resolve. First, assume y0(x0) = z(x0). Then we have two solutions y0(x) and z(x) 

of equation (2.1) satisfying 

y0(x0) = z(x0), y0
� (x0) = z�(x0), y0(x3) = z(x3), 

y0(x4) − y0(x5) = y(x4) − y(x5) = z(x4) − z(x5), 

and so by uniqueness of 4-point nonlocal boundary value problems (2.1):(2.4), y0(x) ≡ 

z(x) on (a, b). This is a contradiction. So limn→∞ yn(x0) =� z(x0). 

The remaining case is that y0(x0) < z(x0). In this case, by the continuity of 

y0(x), there exists δ > 0 with [x0 − δ, x0 + δ] ⊂ (x1, x2) on which y0(x) < z(x). Since 

limn y(x) = y0(x) uniformly on each compact subinterval of (a, b), it follows that 

[x0 − δ, x0 + δ] ⊂ E. This is a contradiction. 

From this final contradiction, we conclude that y0(x0) ≤ z(x0) is impossible.This 

resolves all situations, and we conclude solutions of (2.1):(2.2) are unique. Of course, 

completely symmetric arguments yield that solutions of (2.1):(2.3) are unique. 



CHAPTER FOUR


Existence


Having established in Chapters Three and Four, under the assumptions (A) 

and (B), the equivalence of the uniqueness of solutions for (2.1):(2.2) and (2.1):(2.3) 

with that of the uniqueness of solutions for (2.1):(2.4) - (2.1):(2.9), we now deal with 

uniqueness of solutions implying their existence for these problems. 

As was discussed in great detail in Chapter One, much study has been devoted 

to uniqueness implies existence questions for boundary value problems, with the first 

work by Lasota and Opial [42], and then followed by landmark papers by Hartman 

[17] and Klaasen [37] for conjugate problems. Later, Henderson [19] obtained close 

analogues for right focal boundary value problems. Since then, similar questions have 

been resolved in the context of finite difference equations as well as dynamic equations 

on time scales; see [6], [26] and [31, 32]. 

For the results of this chapter, continuous dependence, as in Theorems 2.3 and 

others, plays a role, as does the precompactness condition in Theorem 3.2. We state 

here for convenience our assumptions for this chapter. 

(A) f : (a, b) × R4 → R is continuous. 

(B) Solutions of initial value problems for (2.1) are unique and exist on all of 

(a, b). 

(C) Given a < x1 < x2 < x3 < x4 < x5 < b, if y(x) and z(x) are two solutions of 

(2.1) satisfying 

y(x1) = z(x1), y(x2) = z(x2), y(x3) = z(x3), y(x4) − y(x5) = z(x4) − z(x5), 

then y(x) = z(x), a < x < b. 

34 
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(D) Given a < x1 < x2 < x3 < x4 < x5 < b, if y(x) and z(x) are two solutions of 

(2.1) satisfying 

y(x1) − y(x2) = z(x1) − z(x2), y(x3) = z(x3), y(x4) = z(x4), y(x5) = z(x5), 

then y(x) = z(x), a < x < b. 

Of course, from the results of Chapters Two and Three, solutions of 5-point, 4-point 

and 3-point nonlocal boundary value problems are unique, when they exist. Our first 

existence result deals with solutions of (2.1):(2.2). 

Theorem 4.1. Assume hypotheses (A), (B) and (C) are satisfied with respect to equa­

tion (2.1). Then, given a < x1 < x2 < x3 < x4 < x5 < b and y1, y2, y3, y4 ∈ R, there 

exists a unique solution of (2.1):(2.2) on (a, b). 

Proof. Let a < x1 < x2 < x3 < x4 < x5 < b and y1, y2, y3, y4 ∈ R be selected. 

We note, as in Chapter Three that 4-point, 3-point, as well as 2-point, conjugate 

boundary value problems have unique solutions; that is, solutions of (2.1) satisfying 

any of (2.10) to (2.16) have unique solutions. 

Let z(x) be the solution of (2.1) satisfying the 4-point conjugate boundary 

conditions at x1, x2, x3 and x4, 

z(x2) = y2, z(x3) = y3, z(x4) = y4, z(x5) = 0. 

Observe that z(x4) − z(x5) = y4. Next, define the set 

S = {u(x1)| u(x) is a solution of equation (2.1) satisfying 

u(x2) = z(x2), u(x3) = z(x3), u(x4) − u(x5) = z(x4) − z(x5)}. 

We observe first that S is nonempty, since z(x1) ∈ S. 
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Next, choose s0 ∈ S. Then, there is a solution u0(x) of (2.1) satisfying 

u0(x1) = s0,


u0(x2) = z(x2),


u0(x3) = z(x3),


u(x4) − u(x5) = z(x4) − z(x5).


By the continuous dependence theorem, Theorem 2.3, there exists a δ > 0 such 

that, for each 0 ≤ |s − s0| < δ, there is a solution us(x) of (2.1) satisfying 

us(x1) = s, us(x2) = u0(x2) = z(x2), us(x3) = u0(x3) = z(x3), 

and 

us(x4) − us(x5) = u0(x4) − u0(x5) = z(x4) − z(x5), 

or in other words, s ∈ S; in particular, (s0 − δ, s0 + δ) ⊂ S, and so S is an open subset 

of R. 

The remainder of the argument is devoted to showing that S is also a closed 

subset of R. To that end, we assume for the purpose of contradiction that S is not 

closed. Then there exists an r0 ∈ S\ S and a strictly monotone sequence {rk} ⊂ S 

such that limn→∞ rk = r0. 

We may assume, without loss of generality, that rk ↑ r0. By the definition of S, 

we denote, for each k ∈ N, by uk(x) the solution of equation (2.1) satisfying 

uk(x1) = rk, uk(x2) = z(x2),


uk(x3) = z(x3), uk(x4) − uk(x5) = z(x4) − z(x5).


By uniqueness of solutions of (2.1):(2.2), we have for each k ∈ N, 

uk(x) < uk+1(x) on (a, x2). 

We now claim that {uk(x)} is not uniformly bounded above on each compact subin­

terval of (a, x1) and (x1, x2). Suppose there exists a subinterval [c, d] ⊂ (a, x1) so that 
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{uk(x)} is uniformly bounded above on [c, d]. That is there exists H > 0 so that 

uk(x) ≤ H, for all c ≤ x ≤ d and k ≥ 1. In particular, 

u1(x) ≤ uk(x) ≤ H for all c ≤ x ≤ d and k ≥ 1. 

But by the precompactness condition of Theorem 3.2, we know there exists a subse­

quence {ukj (x)} such that {u(i)
(x)} converges uniformly on each compact subinterval kj 

of (a, b), i = 0, 1, 2, 3. 

Suppose u(i)
(x) v(i)(x) uniformly on the compact interval [x1, x5], for i = kj 

→ 

0, 1, 2, 3. Then by Theorem 3.1, v(x) is a solution of equation (2.1) satisfying 

v(x1) = lim ukj (x1) = lim rkj = r0, 
j→∞ j→∞ 

v(x2) = z(x2), v(x3) = z(x3), 

and 

v(x4) − v(x5) = lim (ukj (x4) − ukj (x5)) = z(x4) − z(x5). 
j→∞ 

Therefore r0 ∈ S. But this is contradictory to the assumption r0 ∈/ S. So {uk(x)} is 

not uniformly bounded above on each compact subinterval of (a, x1). The argument 

relative to (x1, x2) is exactly analogous. 

Next let w(x) be the solution of the 3-point conjugate boundary problem for 

equation (2.1) satisfying, 

w(x1) = r0, w�(x1) = 0, w(x2) = y2, w(x3) = y3. 

It follows that, for some K large, there exists points a < τ1 < x1 < τ2 < x2 so that 

uK (τ1) = w(τ1), uK (τ2) = w(τ2). 

Also, 

uK (x2) = z(x2) = w(x2), uK (x3) = z(x3) = w(x3). 
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By uniqueness of solutions of 4-point conjugate boundary value problems for (2.1), 

we have uK ≡ w. However, 

w(x1) = r0 > rK = uK (x1), 

which gives a contradiction. Thus S is also a closed subset of R. 

In summary, S is a nonempty subset of R that is both open and closed. We 

have S = R. By choosing y1 ∈ S, there is a corresponding solution y(x) of equation 

(2.1) such that 

y(x1) = y1, y(x2) = z(x2) = y2, y(x3) = z(x3) = y3, 

y(x4) − y(x5) = z(x4) − z(x5) = y4. 

This completes the proof. 

We now turn to existence of solutions for 4-point and 3-point nonlocal boundary 

value problems for (2.1). We first address the 4-point problems. 

Theorem 4.2. Assume (A), (B) and (C) are satisfied with respect to (2.1). Given 

points a < x1 < x2 < x3 < x4 < b, and y1, y2, y3, y4 ∈ R, there exists a unique 

solution of (2.1):(2.4) on (a, b). 

Proof. Let a < x1 < x2 < x3 < x4 < b, and y1, y2, y3, y4 ∈ R be selected. Also, 

fix a < τ < x1. We repeat again that 4-point, 3-point, as well as 2-point, conjugate 

boundary value problems for (2.1) have unique solutions. 

Let z(x) be the solution of the nonlocal 5-point boundary value problem (2.1):(2.2) 

obtained in Theorem 4.1 and satisfying, 

z(τ ) = 0, z(x1) = y1, z(x2) = y3, z(x3) − z(x4) = y4. 

This time, define the set 

S u(x)is a solution of (2.1) satisfying = {u�(x1)| 
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u(x1) = z(x1), u(x2) = z(x2), u(x3) − u(x4) = z(x3) − z(x4)}. 

Again S is nonempty since z�(x1) ∈ S. 

Next, choose s0 ∈ S. Then, there is a solution u0(x) of (2.1) satisfying 

u0(x1) = z(x1),


u�0(x1) = s0,


u0(x2) = z(x2),


u0(x3) − u0(x4) = z(x3) − z(x4).


By the continuous dependence theorem, Theorem 2.7, there exists a δ > 0 such 

that, for each 0 ≤ |s − s0| < δ, there is a solution us(x) of (2.1) satisfying 

us(x1) = u0(x1) = z(x1), us
� (x1) = s, us(x2) = u0(x2) = z(x2), 

and 

us(x3) − us(x4) = u0(x3) − u0(x4) = z(x3) − z(x4), 

or in other words, s ∈ S; in particular, (s0 − δ, s0 + δ) ⊂ S, and so S is an open subset 

of R. 

As in the proof of Theorem 4.1, the remainder of the argument is devoted to 

showing S is also a closed subset of R. We assume, for contradiction, that S is not 

closed. Then, there is an r0 ∈ S\S and a strictly monotone sequence {rk} ⊂ S such 

that limk→∞ rk = r0. Again, we may assume rk ↑ r0. 

By the definition of S, we denote, for each k ∈ N, by uk(x) the solution of (2.1) 

satisfying 

uk(x1) = z(x1), u�k(x1) = rk, uk(x2) = z(x2), 

uk(x3) − uk(x4) = z(x3) − z(x4). 

By uniqueness of solutions of (2.1):(2.2), we have 

uk(x) > uk+1(x) on (a, x1), and uk(x) < uk+1(x) on (x1, x2). 
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We claim that {uk(x)} is not uniformly bounded below on each compact subin­

terval of (a, x1) and is not uniformly bounded above on each compact subinterval 

of (x1, x2). Suppose there exists a subinterval [c, d] ⊂ (a, x1) so that {uk(x)} is uni­

formly bounded below on [c, d]. That is there exists H > 0 so that uk(x) ≥ H for all 

c ≤ x ≤ d and k ≥ 1. In particular, 

u1(x) ≥ uk(x) ≥ H for all c ≤ x ≤ d and k ≥ 1. 

So by the precompactness condition of Theorem 3.2, we know there exists a subse­

quence {ukj (x)} such that {u(i)
(x)} converges uniformly on each compact subinterval kj 

of (a, b), i = 0, 1, 2, 3. 

Suppose uk
(i

j 

)
(x) → v(i)(x) uniformly on the compact interval [x1, x4], where 

i = 0, 1, 2, 3. Then by Theorem 3.1, v(x) is a solution of equation (2.1) satisfying 

v(x1) = z(x1), v�(x1) = lim u�kj 
(x1) = r0, v(x2) = z(x2), 

j→∞ 

and 

v(x3) − v(x4) = lim (ukj (x3) − ukj (x4)) = z(x3) − z(x4). 
j→∞ 

Therefore r0 ∈ S, which is a contradiction to the assumption r0 ∈/ S. So {uk(x)} is 

not uniformly bounded below on each compact subinterval of (a, x1). The argument 

that {uk(x)} is not uniformly bounded above on each compact subinterval on (x1, x2) 

is completely analogous. 

Next let w(x) be the solution of the 3-point conjugate boundary problem for 

equation (2.1) satisfying, 

w(x1) = z(x1), w�(x1) = r0, w(x2) = z(x2), w(x3) = z(x3). 

It follows that, for some K large, there exists points a < τ1 < x1 < τ2 < x2 so that 

uK (τ1) = w(τ1), uK (τ2) = w(τ2). 

Also, 

uK (x1) = z(x1) = w(x1), uK (x2) = z(x2) = w(x2). 
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By uniqueness of solutions of 4-point conjugate boundary value problems for (2.1), 

we have uK ≡ w. However, 

w�(x1) = r0 > rK = u�K (x1), 

which is a contradiction. Thus S is also a closed subset of R. 

In summary, S is a nonempty subset of R that is both open and closed. We 

have S = R. By choosing y2 ∈ S, there is a corresponding solution y(x) of equation 

(2.1) such that 

y(x1) = z(x1) = y1, y�(x1) = y2, y(x2) = z(x2) = y3, 

y(x3) − y(x4) = z(x3) − z(x4) = y4. 

This completes the proof. 

Theorem 4.3. Assume (A), (B) and (C) are satisfied with respect to (2.1). Given 

points a < x1 < x2 < x3 < x4 < b, and y1, y2, y3, y4 ∈ R, there exists a unique 

solution of (2.1):(2.6) on (a, b). 

Proof. Let a < x1 < x2 < x3 < x4 < b, and y1, y2, y3, y4 ∈ R be selected. Also, fix 

x1 < τ < x2. We repeat again that 4-point, 3-point, as well as 2-point, conjugate 

boundary value problems for (2.1) have unique solutions. 

Let z(x) be the solution of the nonlocal 5-point boundary value problem (2.1):(2.2) 

obtained in Theorem 4.1 and satisfying, 

z(x1) = y1, z(τ) = 0, z(x2) = y2, z(x3) − z(x4) = y4. 

This time, define the set 

S = {u�(x2)| u(x)is a solution of (2.1) satisfying 

u(x1) = z(x1), u(x2) = z(x2), u(x3) − u(x4) = z(x3) − z(x4)}. 
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Again S is nonempty since z�(x2) ∈ S. It follows from Theorem 2.9 that solu­

tions of (2.1):(2.6) depend continuous on boundary conditions. The standard argu­

ment then yields that S is an open subset of R. 

As in the proof of Theorem 4.1, the remainder of the argument is devoted to 

showing S is also a closed subset of R. We assume, for contradiction, that S is not 

closed. Then, there is an r0 ∈ S\S and a strictly monotone sequence {rk} ⊂ S such 

that limk→∞ rk = r0. Again, we may assume rk ↑ r0. 

By the definition of S, we denote, for each k ∈ N, by uk(x) the solution of (2.1) 

satisfying 

uk(x1) = z(x1), uk(x2) = z(x2), uk
� (x2) = rk, 

uk(x3) − uk(x4) = z(x3) − z(x4). 

By uniqueness of solutions of (2.1):(2.2), we have 

uk(x) > uk+1(x) on (x1, x2), and uk(x) < uk+1(x) on (x2, x3). 

We claim that {uk(x)} is not uniformly bounded below on each compact subin­

terval of (x1, x2) and is not uniformly bounded above on each compact subinterval 

of (x2, x3). Suppose there exists a subinterval [c, d] ⊂ (x1, x2) so that {uk(x)} is uni­

formly bounded above on [c, d]. That is there exists H > 0 so that uk(x) ≥ H for all 

c ≤ x ≤ d and k ≥ 1. In particular, 

u1(x) ≥ uk(x) ≥ H for all c ≤ x ≤ d and k ≥ 1. 

So by the precompactness condition of Theorem 3.2, we know there exists a subse­

quence {ukj (x)} such that {u(i)
(x)} converges uniformly on each compact subinterval kj 

of (a, b), i = 0, 1, 2, 3. 

Suppose uk
(i

j 

)
(x) → v(i)(x) uniformly on the compact interval [x1, x4], where 

i = 0, 1, 2, 3. Then by Theorem 3.1, v(x) is a solution of equation (2.1) satisfying 

v(x1) = z(x1), v(x2) = z(x2), v�(x2) = lim u�kj 
(x2) = r0, 

j→∞ 
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and 

v(x3) − v(x4) = lim (ukj (x3) − ukj (x4)) = z(x3) − z(x4). 
j→∞ 

Therefore r0 ∈ S, which is a contradiction to the assumption r0 ∈/ S. So {uk(x)} is 

not uniformly bounded below on each compact subinterval of (x1, x2). The argument 

that {uk(x)} is not uniformly bounded above on each compact subinterval on (x2, x3) 

is completely analogous. 

Next let w(x) be the solution of the 3-point conjugate boundary problem for 

equation (2.1) satisfying, 

w(x1) = z(x1), w(x2) = z(x2), w�(x2) = r0, w(x3) = z(x3). 

It follows that, for some K large, there exists points x1 < τ1 < x2 < τ2 < x3 so that 

uK (τ1) = w(τ1), uK (τ2) = w(τ2). 

Also, 

uK (x1) = z(x1) = w(x1), uK (x2) = z(x2) = w(x2). 

By uniqueness of solutions of 4-point conjugate boundary value problems for (2.1), 

we have uK ≡ w. However, 

w�(x2) = r0 > rK = u�K (x2), 

which is a contradiction. Thus S is also a closed subset of R. 

In summary, S is a nonempty subset of R that is both open and closed. We 

have S = R. By choosing y3 ∈ S, there is a corresponding solution y(x) of equation 

(2.1) such that 

y(x1) = z(x1) = y1, y(x2) = z(x2) = y2, y�(x2) = y3, 

y(x3) − y(x4) = z(x3) − z(x4) = y4. 

This completes the proof. 
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In a like manner, we now show that there are solutions for the 3-point nonlocal 

boundary value problems. 

Theorem 4.4. Assume (A), (B) and (C) are satisfied with respect to (2.1). Given 

points a < x1 < x2 < x3 < b, and y1, y2, y3, y4 ∈ R, there exists a unique solution of 

(2.1):(2.8) on (a, b). 

Proof. Let a < x1 < x2 < x3 < b, and y1, y2, y3, y4 ∈ R be selected. Also, fix 

a < τ < x1. As before, we repeat that 4-point, 3-point, as well as 2-point, conjugate 

boundary value problems for (2.1) have unique solutions. 

Let z(x) be the solution of the 4-point nonlocal boundary value problem (2.1):(2.6) 

obtained in Theorem 4.3 and satisfying, 

z(τ) = 0, z(x1) = y1, z�(x1) = y2, z(x2) − z(x3) = y4. 

Now, define the set 

S = {u��(x1)| u(x) is a solution of (2.1) satisfying 

u(x1) = z(x1), u�(x1) = z�(x1), u(x2) − u(x3) = z(x2) − z(x3)}. 

This time z��(x1) ∈ S, and so S is nonempty. It follows from Theorem 2.11 that 

solutions of (2.1):(2.8) depend continuous on boundary conditions. The standard 

argument then yields that S is an open subset of R. 

As in the previous theorems, the remainder of the argument is devoted to show­

ing S is also a closed subset of R. We assume, for contradiction, that S is not closed. 

Then there is an r0 ∈ S\S and a strictly monotone sequence {rk} ⊂ S such that 

limk→∞ rk = r0. Again, we may assume rk ↑ r0. 

By the definition of S, we denote, for each k ∈ N, by uk(x) the solution of (2.1) 

satisfying 

uk(x1) = z(x1), u�k(x1) = rk, uk
��(x1) = rk, 

uk(x2) − uk(x3) = z(x2) − z(x3). 
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Since rk < rk+1, by uniqueness of solutions of (2.1):(2.4) and (2.1):(2.6), we have 

uk(x) < uk+1(x) on (a, x2)\{x1}. 

We now claim that {uk(x)} is not uniformly bounded above on each compact 

subinterval of (a, x1) and (x1, x2). Suppose there exists a subinterval [c, d] ⊂ (a, x1) 

so that {uk(x)} is uniformly bounded above on [c, d]. That is there exists H > 0 so 

that uk(x) ≤ H for all c ≤ x ≤ d and k ≥ 1. Then 

u1(x) ≤ uk(x) ≤ H for all c ≤ x ≤ d and k ≥ 1. 

So by the precompactness condition of Theorem 3.2, we know there exists a subse­

quence {ukj (x)} such that {u(i)
(x)} converges uniformly on each compact subinterval kj 

of (a, b), i = 0, 1, 2, 3. 

Suppose u(i)
(x) v(i)(x) uniformly on the compact interval [x1, x3], for i = kj 

→ 

0, 1, 2, 3. Then by Theorem 3.1, v(x) is a solution of equation (2.1) satisfying 

v(x1) = z(x1), v�(x1) = z�(x1), v��(x1) = lim u��kj 
(x1) = r0, 

j→∞ 

and 

v(x2) − v(x3) = lim (ukj (x2) − ukj (x3)) = z(x2) − z(x3). 
j→∞ 

Therefore r0 ∈ S. But this contradicts the assumption r0 ∈/ S, so {uk(x)} is not 

uniformly bounded above on each compact subinterval of (a, x1) and (x1, x2). 

Next let w(x) be the solution of the 2-point conjugate boundary problem for 

equation (2.1) satisfying, 

w(x1) = z(x1), w�(x1) = z�(x1), w��(x1) = r0, w(x3) = z(x3). 

It follows that, for some K large, there exists points a < τ1 < x1 < τ2 < x2 so that 

uK (τ1) = w(τ1), uK (τ2) = w(τ2), 

Also, 

uK (x1) = z(x1) = w(x1), u�K (x1) = z�(x1) = w�(x1). 
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By uniqueness of solutions of 3-point conjugate boundary value problems for (2.1), 

we have uK ≡ w. However, 

w��(x) = r0 > rK = u�� (x1),K 

which is a contradiction. Thus S is also a closed subset of R. 

In summary, S is a nonempty subset of R that is both open and closed. We 

have S = R. By choosing y3 ∈ S, there is a corresponding solution y(x) of equation 

(2.1) such that 

y(x1) = z(x1) = y1, y�(x1) = z�(x1) = y2, y��(x1) = y3, 

y(x2) − y(x3) = z(x2) − z(x3) = y4. 

This completes the proof. 

There is a list of dual uniqueness implies existence results for (2.1) with respect 

to solutions satisfying conditions (2.3), (2.5), (2.7) and (2.9). We list these results 

without proof. For these results, rather than hypothesis (C), we will assume the dual 

condition (D). 

Theorem 4.5. Assume hypotheses (A), (B) and (D) are satisfied with respect to equa­

tion (2.1). Then, given a < x1 < x2 < x3 < x4 < x5 < b, and y1, y2, y3, y4 ∈ R, there 

exists a unique solution of (2.1):(2.3) on (a, b). 

Theorem 4.6. Assume (A), (B) and (D) are satisfied with respect to (2.1). Given 

points a < x1 < x2 < x3 < x4 < b, and y1, y2, y3, y4 ∈ R, there exists a unique 

solution of (2.1):(2.5) on (a, b). 

Theorem 4.7. Assume (A), (B) and (D) are satisfied with respect to (2.1). Given 

points a < x1 < x2 < x3 < x4 < b, and y1, y2, y3, y4 ∈ R, there exists a unique 

solution of (2.1):(2.7) on (a, b). 
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Theorem 4.8. Assume (A), (B) and (D) are satisfied with respect to (2.1). Given 

points a < x1 < x2 < x3 < b, and y1, y2, y3, y4 ∈ R, there exists a unique solution of 

(2.1):(2.9) on (a, b). 



CHAPTER FIVE


Local Existence Theorems


In this chapter, we discuss the local existence of solutions of nonlocal boundary 

value problems associated with the nonlinear equation 

y(4) = f(x, y, y�, y��, y���). (5.1) 

Theorem 5.1. Assume that f(x, u1, u2, u3, u4) : [a, b] × R4 → R is continuous. Then 

a function y(x) ∈ C(4)[a, b] is a solution of the boundary value problem for (5.1) 

satisfying 

y(x1) = y1, y(x2) = y2, y(x3) = y3, y(x4) − y(x5) = y4, (5.2) 

where a = x1 < x2 < x3 < x4 < x5 = b and y1, y2, y3, y4 ∈ R, if and only if 

y(x) ∈ C(3)[a, b] is a solution of the integral equation � b 

y(x) = w(x) + G(x, s)f(s, y(s), y�(s), y��(s), y���(s))ds, (5.3) 
a 

on [a, b], where G(x, s) is the Green’s function for 

y(4) = 0, y(x1) = 0, y(x2) = 0, y(x3) = 0, y(x4) − y(x5) = 0, (5.4) 

and w(x) is the solution of 

y(4) = 0, y(x1) = y1, y(x2) = y2, y(x3) = y3, y(x4) − y(x5) = y4. (5.5) 

Proof. First assume that y(x) ∈ C(4)[a, b] is a solution of the stated boundary prob­

lem. Then y(x) ∈ C(3)[a, b], and 

y(4)(x) = f(x, y(x), y�(x), y��(x), y���(x)) := h(x) ∈ C[a, b], 

and satisfies 

y(x1) = y1, y(x2) = y2, y(x3) = y3, y(x4) − y(x5) = y4. 
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Thus, we are considering a solution of 

y(4) = h(x), y(x1) = y1, y(x2) = y2, y(x3) = y3, y(x4) − y(x5) = y4. 

It follows that � b � b 

y(x) = w(x) + G(x, s)h(s)ds = w(x) + G(x, s)f(s, y(s), y�(s), y��(s), y���(s))ds. 
a a 

Conversely, let’s suppose that y(x) ∈ C(3)[a, b] and satisfies the integral equation 

(5.3) on [a, b]. Now because w(x) is a solution of (5.5) and because of properties of 

G(x, s), it follows that 

y(4) = f(x, y(x), y�(x), y��(x), y���(x)) 

on [a, b], so that y(x) ∈ C(4)[a, b]. Moreover, from the properties of w(x) and � b 

G(x, s)f(s, y(s), y�(s), y��(s), y���(s))ds, 
a 

we also have y(x1) = y1, y(x2) = y2, y(x3) = y3, y(x4) − y(x5) = y4. 

Therefore, y(x) is a solution of the boundary value problem (5.1):(5.2). 

The following fixed point theorem, known as the Contraction Mapping Theo­

rem, will be fundamental in obtaining our local existence results. 

Theorem 5.2. Let < M, d > be a complete metric space and let T : M M be such → 

that there exists 0 ≤ α < 1, with d(T (x), T (y)) ≤ αd(x, y), for all x, y ∈ M. Then T 

has a unique fixed point in M. 

Now, by the properties of the Green’s function for (5.4), there exist constants 

γ1, γ2, γ3, γ4, independent of x1 < x2 < x3 < x4 < x5, such that � b 

|G(x, s)|ds ≤ γ1(b − a)4 , � a
b ∂G(x, s)| 

∂x 
|ds ≤ γ2(b − a)3 , � ab ∂2G(x, s)| 

∂x2 
|ds ≤ γ3(b − a)2 , �a b ∂3G(x, s)| 

∂x3 
|ds ≤ γ4(b − a). 

a 
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Theorem 5.3. Let f(x, u1, u2, u3, u4) : [a, b] × R4 → R be continuous and satisfy a 

Lipschitz condition, 

|f(x, y1, y2, y3, y4)−f(x, z1, z2, z3, z4)| ≤ K|y1 −z1|+L|y2 −z2|+M |y3 −z3|+N |y4 −z4| 

on [a, b] × R4 . Then if 

Kγ1(b − a)4 + Lγ2(b − a)3 + Mγ3(b − a)2 + Nγ4(b − a) < 1, 

the boundary value problem 

y(4) = f(x, y, y�, y��, y���), 

y(x1) = y1, y(x2) = y2, y(x3) = y3, y(x4) − y(x5) = y4, 

has a unique solution for all a = x1 < x2 < x3 < x4 < x5 = b, and y1, y2, y3, y4 ∈ R. 

Proof. First define a mapping: T : C(3)[a, b] C(3)[a, b] via → � b 

(Th)(x) = w(x) + G(x, s)f(s, h(s), h�(s), h��(s), h���(s))ds, 
a 

for a ≤ x ≤ b, h ∈ C(3)[a, b], where G(x, s) is the Green’s function for (5.4) and w(x) 

is determined by (5.5). 

We shall show that T is a contraction mapping with respect to the metric on 

C(3)[a, b], 

d(h, g) = �h − g� = K|h − g|∞ + L|h� − g�|∞ + M |h�� − g��|∞ + N |h��� − g���|∞, 

where |h|∞ = maxa≤x≤b |h(x)|. 



51 

So, let h, g ∈ C(3)[a, b]. Then, for a ≤ x ≤ b, � b 

|(Th)(x) − (Tg)(x)| = |G(x, s)||f(s, h(s), h�(s), h��(s), h���(s)) 
a 

f(s, g(s), g�(s), g��(s), g���(s)) ds− � b 

|

≤ |G(x, s)|[K|h(s) − g(s)| + L|h�(s) − g�(s)|
a 

+M h��(s) − g��(s) + N h���(s) − g���(s) ]ds � b 

| | | | 

≤ |G(x, s)|[K|h − g|∞ + L|h� − g�|∞ 
a 

+M h�� − g�� h��� − g��� ∞ ]ds � b 

| |∞ + N | |

= |G(x, s)|�h − g�ds 
a 

≤ γ1(b − a)4�h − g�. 

Similarly, � b 

(Th)�(x) − (Tg)�(x)
∂G(x, s) 

ds| | ≤ �h − g� 
a 
| 

∂x 
|

≤ γ2(b − a)3�h − g�, 

� b 

(Th)��(x) − (Tg)��(x)
∂2G(x, s) 

ds| | ≤ �h − g� 
a 
| 

∂x2 
|

≤ γ3(b − a)2�h − g�, 

� b 

(Th)���(x) − (Tg)���(x)
∂3G(x, s) 

ds| | ≤ �h − g� 
a 
| 

∂x3 
|

≤ γ4(b − a)�h − g�. 

Each of these bounds are independent of x. Hence 

|Tg − Th|∞ ≤ γ1(b − a)4�h − g�, 

|(Tg)� − (Th)�|∞ ≤ γ2(b − a)3�h − g�, 

|(Tg)�� − (Th)��|∞ ≤ γ3(b − a)2�h − g�, 

|(Tg)��� − (Th)���|∞ ≤ γ4(b − a)�h − g�. 
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Consequently, 

d(Th, Tg) = �Th − Tg� 

= K|Th − Tg|∞ + L|(Th)� − (Tg)�|∞ 

+M |(Th)�� − (Tg)��|∞ + N |(Th)��� − (Tg)���|∞ 

≤ (Kγ1(b − a)4 + Lγ2(b − a)3 + Mγ3(b − a)2 + Nγ4(b − a))�h − g� 

= (Kγ1(b − a)4 + Lγ2(b − a)3 + Mγ3(b − a)2 + Nγ4(b − a))d(h, g). 

Hence, if 

Kγ1(b − a)4 + Lγ2(b − a)3 + Mγ3(b − a)2 + Nγ4(b − a) < 1, 

then T is a contraction mapping, and thus there exists a unique fixed point y(x) ∈ 

C(3)[a, b]. In particular, there is a unique y(x) satisfying � b 

y(x) = (Ty)(x) = w(x) + G(x, s)f(s, y(s), y�(s), y��(s), y���(s))ds, 
a 

and by Theorem 5.1, y(x) is the unique solution of (5.1):(5.2). 

In view of the above result establishing local existence and uniqueness of solu­

tions of (5.1):(5.2), and from the uniqueness implies existence results of Chapter Four, 

we can state as corollaries, some local existence and uniqueness results for 4-point 

and 3-point nonlocal boundary value problems for (5.1). 

Corollary 5.1. Let f(x, u1, u2, u3, u4) : [a, b] × R4 → R be continuous and satisfy a 

Lipschitz condition, 

|f(x, y1, y2, y3, y4)−f(x, z1, z2, z3, z4)| ≤ K|y1 −z1|+L|y2 −z2|+M |y3 −z3|+N |y4 −z4| 

on [a, b] × R4 . Then if 

Kγ1(b − a)4 + Lγ2(b − a)3 + Mγ3(b − a)2 + Nγ4(b − a) < 1, 
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the boundary value problem for (5.1) satisfying 

y(x1) = y1, y
�(x1) = y2, y(x2) = y3, y(x3) − y(x4) = y4, 

has a unique solution for all a < x1 < x2 < x3 < x4 < b and y1, y2, y3, y4 ∈ R. 

Corollary 5.2. Let f(x, u1, u2, u3, u4) : [a, b] × R4 → R be continuous and satisfy a 

Lipschitz condition, 

|f(x, y1, y2, y3, y4)−f(x, z1, z2, z3, z4)| ≤ K|y1 −z1|+L|y2 −z2|+M |y3 −z3|+N |y4 −z4| 

on [a, b] × R4 . Then if 

Kγ1(b − a)4 + Lγ2(b − a)3 + Mγ3(b − a)2 + Nγ4(b − a) < 1, 

the boundary value problem for (5.1) satisfying 

y(x1) = y1, y(x2) = y2, y
�(x2) = y3, y(x3) − y(x4) = y4, 

has a unique solution for all a < x1 < x2 < x3 < x4 < b and y1, y2, y3, y4 ∈ R. 

Corollary 5.3. Let f(x, u1, u2, u3, u4) : [a, b] × R4 → R be continuous and satisfy a 

Lipschitz condition, 

|f(x, y1, y2, y3, y4)−f(x, z1, z2, z3, z4)| ≤ K|y1 −z1|+L|y2 −z2|+M |y3 −z3|+N |y4 −z4| 

on [a, b] × R4 . Then if 

Kγ1(b − a)4 + Lγ2(b − a)3 + Mγ3(b − a)2 + Nγ4(b − a) < 1, 

the boundary value problem for (5.1) satisfying 

y(x1) = y1, y
�(x1) = y2, y

��(x1) = y3, y(x2) − y(x3) = y4, 

has a unique solution for all a < x1 < x2 < x3 < b and y1, y2, y3, y4 ∈ R. 
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