
 
 
 
 
 
 
 
 

ABSTRACT 
 

Application of Machine Learning and Magnetotellurics to Aid in Subsurface 
Characterization of Petroleum and Geothermal Reservoirs 

 
Elisabeth G. Rau, Ph.D. 

 
Chairperson: Stacy C. Atchley, Ph.D. 

 
 

Energy is the foundation of society and with future energy demand expected to 

increase significantly over the next few decades, solutions contributing to future energy 

resources are of high interest scientifically, geopolitically, and economically. Data 

analytics and machine learning provide useful tools to more efficiently and cost-

effectively produce petroleum and geothermal resources vital for our energy future. 

Supervised and unsupervised machine learning can aid in the prediction of 

sedimentological and reservoir attributes in wells lacking core control to better and more 

efficiently characterize subsurface petroleum reservoirs. Using tree-based machine 

learning models, core-observed depositional attributes from the Late Devonian Duvernay 

Formation in Alberta, Canada may be predicted in wells lacking core control when class 

proportion and thickness conditions are met. Unsupervised machine learning technique, 

non-negative matrix factorization with k-means clustering (NMFk), automatically 

identifies reservoir significance, undetected through the traditional deterministic 

modelling, within the Duvernay Formation without calibration to core observations. The 



application of NMFk with petrophysical data may assist in highlighting intervals of 

interest in advance of core descriptions reducing observer inconsistency and bias and 

enhancing the quality and relevance of core description for reservoir correlation and 

mapping. Machine learning methods provide precise, consistent, and objective 

petrophysical interpretations and reservoir characterization, and increases the consistency 

and accuracy of resource assessment for petroleum exploration and production. 

Unsupervised machine learning and magnetotellurics are useful analytical tools to assess 

prospective geothermal resources in the Tularosa Basin of south-central New Mexico 

based on heat flow, temperature, porosity, and permeability. The unsupervised machine 

learning method, NMFk, identifies locations with the highest likelihood of geothermal 

success, and the passive geophysical method, magnetotellurics can detect subsurface 

geothermal prospects.  The integration of NMFk and MT can provide a 3D assessment of 

heat flow, temperature, and permeability for geothermal exploration. This research 

provides innovative methods to aid in the development of efficient and cost-effective 

approaches for future energy exploration and production. 
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CHAPTER ONE 
 

Introduction 
 
 

Energy is a primary factor for economic growth, and reliable access greatly 

impacts quality of life. Within the United State for example, the industrial revolution 

accelerated energy demand and the associated production of fossil fuels that provided a 

high standard of living that was envied worldwide (Jones, 2001).  Currently, developing 

countries with burgeoning economies are experiencing a similar wave of industrialization 

and associated acceleration in energy demand (Rahman et al., 2021). This rapidly 

increasing energy demand among developing nations, combined with the continuously 

expanding demands of developed nations sets the stage for a global energy deficit. 

During 2021 global energy consumption was 601 quadrillion BTU, and energy 

consumption is projected to increase by 42% to 886 quadrillion BTU by 2050 (U.S. 

Energy Information Administration, 2021).  

A sustained supply of energy is required to satisfy societal aspirations for a high 

standard of living. Since the 20th century, fossil fuels have been the primary global 

energy source and currently accounts for approximately 80% of global energy 

consumption (U.S. Energy Information Administration, 2021). Fossil fuels will continue 

to contribute toward global energy access and security; however, fossil fuel use will 

proportionately decrease because they are non-renewable and of finite supply, and 

because of the environmental priority to increasingly employ noncarbon, renewable 

energy resources (U.S. Energy Information Administration, 2021).  
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The results of this dissertation research contribute to the development of efficient 

and cost-effective approaches for energy exploration and production. With the increase in 

computational power and growth of data availability, data analytics and modelling are 

increasingly used to understand and predict subsurface geology and associated energy 

resources. In this research, machine learning and geophysical models are employed to aid 

in the characterization of high potential hydrocarbon and geothermal reservoirs.  

Oil and natural gas are derived from organic material preserved in the subsurface. 

Through deep geologic time organic material subjected to high temperature and pressure 

transforms into hydrocarbons that migrate and accumulate in subsurface reservoirs. These 

reservoirs are the target for hydrocarbon exploration and production. Chapters 2 and 3 of 

this dissertation demonstrate the applicability of machine learning statistical techniques in 

the exploration and development of hydrocarbons in the Late Devonian Duvernay 

Formation, a shale reservoir within the Western Canada Sedimentary Basin. Chapter 2 

evaluates supervised, tree-based machine learning methods in the prediction of core-

calibrated facies and/or facies associations from wireline logs and investigates how 

thickness, proportion, and distinguishability impact class performance and facies 

association prediction. Chapter 3 compares two statistical approaches for the prediction 

of core-observed reservoir and non-reservoir facies within wireline well logs: 1) an 

unsupervised machine learning algorithm, and 2) a traditional deterministic approach. 

The comparison details how the unsupervised model provides more precise, consistent, 

and objective predictions. Both chapters 2 and 3 demonstrate how the application of 

advanced statistical models more reliably predict the occurrence of hydrocarbon 

reservoirs beneath the earth’s surface.  
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Geothermal energy is a nonintermittent, renewable resource that has the potential 

to help alleviate concerns associated with growing global energy demand while also 

mitigating carbon emissions that result from the burning of fossil fuels. The radioactive 

decay of unstable isotopes in the deep subsurface generates thermal energy that may heat 

and convect groundwater. The hot water and steam recovered through drilling is used to 

turn turbines that generate electricity. Chapter 4 demonstrates how the integration of 

unsupervised machine learning and passive geophysical methods can provide a 3D 

assessment of subsurface geothermal potential through the combined evaluation of heat 

flow, temperature, porosity, and permeability. The unsupervised machine learning 

approach identifies subsurface locations with the highest likelihood of geothermal 

success, whereas the geophysical method identifies specific subsurface geothermal 

prospects. 
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CHAPTER TWO 
 

Applicability of Decision Tree-based Machine Learning Models in the Prediction of 
Core-Calibrated Shale Facies from Wireline Logs in the Late Devonian Duvernay 

Formation, Alberta, Canada 
 

This chapter published as: Rau, E. G., James, S. C., Breen, K., Atchley, S. C., Thorson, 
A. M., Yeates, D. W., Applicability of decision tree-based machine learning models in 
the prediction of core-calibrated shale facies from wireline logs in the late Devonian 

Duvernay Formation, Alberta, Canada: Interpretations, 10, 1-45. 
 
 

Abstract 
 
 Well logs provide insight into stratigraphically-compartmentalized rock properties 

and are a cost-effective alternative to core. The identification of reservoir (and non-

reservoir) facies in core, and their calibration to well log response, has traditionally relied 

on expert domain knowledge and is inherently inconsistent. Such analyses are time 

consuming, tedious, error-prone, and often biased due to a lack of objectivity. Automated 

lithological interpretations from wireline logs appear to be a promising solution to 

identifying and understanding depositional complexity within a reservoir. Using the 

Duvernay Formation in the Western Canada Sedimentary Basin as a case study, we 

evaluate the applicability of decision tree-based, machine learning methods in the 

prediction of core-calibrated facies and/or facies association distributions within wireline 

logs. We use three independent, decision tree-based machine learning models to predict 

(1) facies (FACM), (2) facies associations (FAM), and (3) reservoir rock (RESM) from 

wireline-logs. Model accuracies are 60.3%, 88.1%, and 88.1% for FACM, FAM, and 

RESM respectively, but individual class F1 scores range from 0 to 0.92. We attribute 

discrepancies in individual class performance to interval thickness, sample proportion of 
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training data, and distinguishability of the output class. Classes thicker than 3m and 

encompassing at least 16% of the training dataset have F1 scores greater than 0.60. We 

attribute exceptions to these general cutoffs to the ability to recognize diagnostic 

sedimentologic features observed in core. Results from this study help in understanding 

stratigraphic complexity in absence of core aiding in subsurface characterization of 

reservoirs.  

 
Introduction 

 
Facies and facies associations are used to describe and interpret stratigraphic 

architectural complexity within a reservoir. Facies consist of a recurring assemblage of 

depositional attributes and are combined into associations that consist of more broadly 

varying, but genetically similar facies, i.e., facies associations. Together, facies and facies 

associations account for the variable distribution of rock properties within a stratigraphic 

framework. As pertains to unconventional shale reservoirs, a determination of the spatial 

distribution of organic-rich facies and/or facies association is essential in the efficient 

development of hydrocarbon resources. 

         Machine learning (ML) algorithms belong to a family of stochastic, data-driven 

algorithms. Supervised-ML classification techniques generate a mapping (Θ) to 

transform inputs (X) such that the discrete output labels (Y) are predicted with minimal 

error. Both Baldwin et al. (1990) and Rogers et al. (1992) demonstrated early the 

applicability of using ML to predict lithological changes in well logs. Recent studies have 

used a variety of ML algorithms to determine facies classifications from wireline log data 

(Dubois et al., 2007; Wang and Carr, 2013; Saneifar et al., 2015; Bhattacharya et al., 

2016; Bhattacharya and Carr, 2019; Imamverdiyev and Sukhostat, 2019). As ML 
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techniques gained popularity in the oil and gas industry, advances in computational 

hardware have facilitated the ascent of increasingly complex models that improve overall 

classification performance.  

Decision trees are a type of supervised, ML algorithm that recursively splits the 

input data into smaller subsets until a prediction is possible (Quinlan, 1990 and Loh, 

2011). The utility of decision trees is well documented in the literature as an effective ML 

model for classification tasks (Breiman et al., 1984; Quinlan, 1990; Geurts et al., 2006; 

Kotsiantis, 2007, 2013; Loh, 2011). Decision tree-based algorithms are common 

supervised ML algorithms that combine multiple decision trees to optimize model 

performance (Ho, 1998 and Geurts et al., 2006). Decision tree-based algorithms have 

been successful in the classification of facies from wireline logs (Hall and Hall 2017). 

Specifically, tree-based algorithms such as Extra Trees and Random Forests have been 

used for lithological identification resulting in overall model accuracies between 62% to 

96% (Hall, 2016; Bestagini et al., 2017; Hall and Hall, 2017; Sun et al., 2019; Tewari et 

al., 2019; Bressan et al., 2020; Holotel et al., 2020; Ippolito et al., 2021).  Although these 

results are encouraging for an automated system, there are still major discrepancies 

between the ability to classify specified classes. For example, Bestagini et al. (2017) 

reported a median accuracy of 62.3% in their prediction of 9 facies; however, 

classification accuracy for individual facies ranged from 12 – 77%.  Bressan et al. (2020) 

had 4 different class lithologies with classification accuracies ranging from 71 – 86%. 

Sun et al. (2019) and Ippolito et al. (2021) had higher classification accuracy for 

individual classes of 70 – 95% and 82 – 100%, respectively. 
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Geologic setting 

The Late Devonian (Frasnian) Duvernay Formation is a source rock for the 

conventional reservoirs that have accounted for the historically prolific hydrocarbon 

production within the Western Canada Sedimentary Basin (WCSB). The formation is 

composed of organic rich-mudrocks and carbonates and has TOC values ranging from 3-

5 wt. % (Preston et al., 2016). As a results, since 2011 the Duvernay Formation has been 

developed as a shale reservoir through horizontal multistage fracturing (Preston et al., 

2016). The Duvernay Formation accumulated as a restricted intracratonic basinal deposits 

contemporaneous with the shallow marine platform carbonates of the Leduc and 

Grosmont Formations. The Duvernay is overlain by the basinal mudrock of the Ireton 

Formation which commonly serves as the caprock seal for conventional Leduc reservoirs 

within the basin (Fig. 2.1) (Stoakes, 1980; Witzke and Heckel, 1988; Switzer et al., 1994; 

Weissenberger and Potma, 2001; Blakey, 2011; Weissenberger et al., 2016; Wong et al., 

2016). During deposition, the WCSB was partitioned into the East and West Shale Basins 

by a linear Leduc Reef complex known as the Rimbey-Meadowbrook trend (Fig. 2.2) 

(Porter et al., 1982; Allan and Creaney, 1991). Late Cretaceous and Early Paleogene 

Laramide deformation resulted in crustal thrust-loading immediately west of the study 

area. This caused asymmetrical regional subsidence and southwestern dip of the 

Duvernay Formation (Porter et al., 1982; Stoakes and Creaney, 1984; Weissenberger and 

Potma et al., 2001). Trends of Duvernay thermal maturity mimic structural depths within 

the asymmetric basin (Stoakes and Creaney, 1984; Rokosh et al., 2012). Recent studies 

have evaluated the reservoir potential of the Duvernay Formation (Dunn et al., 2016; 

Preston et al., 2016; Chopra et al., 2017; Wong et al., 2016; Bauman, 2018; Datta, 2018; 
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Harris et al., 2018; Dong et al., 2019; Knapp et al., 2019; Li et al., 2020) including the 

identification and mapping of Duvernay facies based upon the evaluation and integration 

of whole core and wireline log data (Thorson, 2019).  

 
 

Figure 2.1. (a) Late Devonian (Frasnian) stratigraphic correlation chart for south-central Alberta, Canada 
showing relationships between the contemporaneous Duvernay, Leduc, Ireton and Grosmont Formations 
(modified from Chow et al., 1995). (b) Late Devonian paleogeography of North America (Wong et al., 
2016) with the position of present-day Alberta outlined in black (modified from Blakey, 2013). 

 
 

 
 

Figure 2.2. Late Devonian paleogeography of Alberta, Canada (modified from Switzer et al., 1994, Rokosh 
et al., 2012, Preston et al., 2016, Wang et al., 2016). The Rimbey-Meadowbrook trend is a linear 
stromatoporoid barrier reef trend that partitions the West and East Shale Basins. The Duvernay Formation 
was deposited as basinal fill within both basins. Circles identify well locations used in this study.  
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Objective 

Using the Late Devonian Duvernay Formation as a test case, the objective of this 

study is to further evaluate the applicability of tree-based ML methods in the prediction 

of core-calibrated facies and/or facies association distributions using wireline logs, and 

investigate how thickness, proportion, and distinguishability impact the performance of 

classes. Proportion is the percentage of the total dataset the respective class represents. It 

is important there be an adequate number of training samples for the model to effectively 

learn relationships and apply them to unseen data. Distinguishability is the ability to 

differentiate a specific class based on their sedimentological attributes. Classes with 

distinguishable sedimentological attributes have less overlap in log responses with other 

classes, and thus easier to predict using a tree-based ML model.  

 
Methods 

 
We use three different datasets for (1) facies, (2) facies associations, and (3) 

reservoir/non-reservoir designation that are based on the core-derived facies model of 

Thorson (2019). Three decision tree-based models, one for each dataset, are implemented 

by modifying the available code from the top-performing teams of the 2016 ML 

competition (sensu Hall and Hall, 2017) with the objective of automating and refining the 

log-based classification of facies (FACM), facies associations (FAM), and reservoir/non-

reservoir units (RESM). Code used in this project is available at 

https://github.com/elisabethrau/FaciesClassificationMachineLearning. 
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Decision tree-based machine learning  

In a supervised classification problem, input features and known output labels are 

used to train a model to predict unknown outputs from new values not used in training 

(Loh, 2011). Ideally, input features cluster into k distinct areas, A1, A2 , … Ak, with each 

area representing the output class k (Loh, 2011). If new input features cluster into Ak, then 

the predicted output label belongs to class k. Decision trees for classification tasks 

establish distinct areas by recursively splitting the data into smaller subsets one input 

feature at a time (Loh, 2011). The Gini Index and Entropy is used to determine optimal 

features and feature values for each split (Breiman et al., 1984). For this study, input 

features are the various well log data types, and output features are respective model 

output class labels, i.e., facies, facies association, and reservoir/non-reservoir 

designations. 

Care must be taken to mitigate the tendency of decision trees to overfit the 

training data, where patterns in data are “memorized” as opposed to “learned” (Ho, 1998; 

Bestagini et al., 2017). Decision tree-based methods such as Extra Trees and Random 

Forest classifiers combine multiple decision-tree predictions adding randomness to the 

model which reduces overfitting (Breiman et al., 1984; Ho, 1998; Geurts et al., 2006). In 

this study tree-based pipeline optimization (TPOT) determines the top-performing 

decision tree-based algorithm and associated hyperparameters (Olson and Moore, 2016). 

Extra Trees classifier is the classifier for the FACM, and Random Forest classifier is the 

classifier for the RESM and FAM. Table 2.1 lists the optimized hyperparameters for each 

model as a result of TPOT.   
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Table 2.1. List of hyperparameters for each model as a result of TPOT. 

Hyperparameter RESM FAM FACM 

Classifier Random forest Random forest Extra trees 

n_estimators 100 100 100 

criterion entropy entropy gini 

min_samples_split 2 7 5 

min_samples_leaf 6 4 1 

max_features 0.10 0.95 0.45 

 

Data acquisition and preprocessing 

A total of 18 wells in the West Shale Basin are used in this study (Fig. 2.2, Table 

2.2). Each well has digital wireline log data ensuring modern, high-quality, open-hole 

well logs. Wireline logs include gamma ray, deep resistivity, photoelectric effect, 

neutron-density porosity and bulk density. Log samples are selected every tenth of a 

meter and are the input features for the model.  

 
Table 2.2. List of West Shale Basin wells used in this study. 

Training Testing 

00-01-12-064-25W5 00-13-23-064-23W5 

00-01-18-061-17W5 00-13-32-063-16W5 

00-01-24-061-23W5 02-13-07-045-05W5 

00-01-35-045-10W5  

00-02-17-043-04W5  

00-04-21-064-16W5  

00-04-32-064-20W5  

00-06-15-056-18W5  

00-08-05-043-06W5  

00-13-05-064-15W5  

00-14-10-044-07W5  

00-14-19-062-15W5  

00-15-18-049-13W5  

02-04-09-046-09W5  

02-16-28-066-02W6  
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In total, the dataset includes 9,858 wireline log samples and associated class 

labels. The dataset is split into training (75%) and testing (25%) subsets with similar well 

log data distributions. The training dataset is comprised of samples used for learning a 

mapping between wireline log data and class labels (Ripley, 1996). In this study, 15 wells 

(7,386 samples) are used for training and three wells (2,472 samples) are used for blind 

testing as shown in Figure 2.2 and Table 2.2. Prior to training, three wells are removed 

from the training dataset for cross validation and are used to validate and optimize the 

trained model. 

Input features are preprocessed to remove outliers and erroneously high or low 

values commonly present at the beginning and end of a wireline run caused by surface 

casing and bottom hole effects. Outliers in this study are statistically defined as 

datapoints falling 1.5 interquartile ranges below or above the 1st and 3rd quartile, 

respectively. Some datapoints identified statistically as outliers are not discarded based 

on expert knowledge. For example, based on the outlier definition, gamma ray values 

above 221 API are statistically outliers; however, those values are not removed because 

geologically they are true observations that commonly characterize the best reservoir-

quality rock (Thorson, 2019). Once the dataset is cleaned, each petrophysical log is 

scaled to the standard normal distribution. 

Additional input features are used to enhance model performance and include the 

outputs from RESM and FAM and engineered features. The three models used in this 

study are independent of each other. Looking at them compared to scale, RESM 

encompasses the largest scale, and FACM encompasses the smallest scale with FAM 

falling in between. The outputs from the larger scale models are used as inputs for the 
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smaller scale models. The RESM outputs are inputs for both smaller scale FAM and 

FACM and the FAM outputs are inputs for the smallest scale FACM. Furthermore, 

because the vertical distribution of facies is not random, additional input features relating 

to gradients of petrophysical responses are engineered from wireline logs following the 

methods outlined in Bestagini et al. (2017). 

 

 
 

Figure 2.3. Organization chart showing groupings of facies into facies associations and facies associations 
into reservoir/non-reservoir designations. Several of the platform carbonate facies are only present in one 
or two wells and are thus not included in the model. These are indicated by an asterisk (*). The caret (^) 
indicates facies that are not contemporaneous with the Duvernay Formation.  A complete listing of facies 
and their diagnostic attributes is provided within (Thorson et al., 2019).  

 

Output labels comprise facies, facies association, and reservoir/non-reservoir 

designation. Figure 2.3 displays an organizational chart of the relationship between 

facies, facies associations and reservoir/non-reservoir designations previously established 

by Thorson et al. (2019). For this research, 18 continuously cored wells (1,500 m (4,921 

ft) of total core length) were described in detail to account for the occurrence of facies, 

texture, allochem type and abundance, mechanical and biological structures, and fracture 
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density. Core descriptions were digitized and merged with their corresponding 

petrophysical data using synthetic gamma ray total counts derived from uranium, 

thorium, and potassium concentrations (sensu Crain, 2018) collected from core at 1-meter 

resolution using a Bruker hand-held XRF. Facies designations (9 total; Thorson et.al. 

(2019)) were grouped into the following four associations: (1) open basin, (2) transitional 

basin, (3) restricted basin, and (4) platform carbonates (Fig. 2.3). Some facies comprising 

the platform carbonates only appear in one or two wells and thus could not be evaluated 

for their predictive potential (Fig. 2.3). The open basin, transitional basin, and restricted 

basin represent Duvernay-specific facies, whereas platform carbonates are associated 

with the contemporaneous Leduc and Grosmont Formations. The restricted basin 

association has the highest total organic carbon (TOC) estimates, and accordingly, most 

favorable hydrocarbon production potential (Thorson, 2019). Table 2.3 show the median 

log responses for each facies.  

 

Table 2.3. Median log responses for each corresponding facies. 

Facies 
Facies 

Association 

Gamma 
Ray 

(API) 

Deep 
Resistivity 
(ohm-m) 

Neutron 
Porosity 
(fraction) 

Density 
Porosity 
(fraction) 

RHOB 
kg/m3 

PE 
(barns/electron) 

BM 
Transitional 

Basin 
109.8 245 0.12 0.05 2662 4.36 

LN Open Basin 47.4 41 0.07 0.003 2705 5.19 

BLM 
Restricted 

Basin 
113.6 42 0.16 0.08 2538 4.04 

BMLM 
Restricted 

Basin 
114.7 406 0.14 0.09 2555 3.65 

BN Open Basin 41.3 70 0.06 0.01 2691 5.00 

BBM 
Restricted 

Basin 
151.9 79 0.16 0.08 2583 4.28 
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Oversampling. For ideal supervised classification tasks, class labels are evenly 

distributed within classes, i.e., each class contains approximately the same number of 

samples. Observational datasets, including the data used in this study, often have 

unbalanced classes where certain classes are more frequent (majority class) than others 

(minority class). The histogram of the original data in Figure 2.4 shows for each model at 

least one class more abundant than all others. Black laminated mudstone (BLM), 

restricted basin (RB), and reservoir (Res) rock comprised 45%, 83%, and 83% of their 

training datasets, respectively (Figure 2.4). Training an ML model with unbalanced class 

labels can lead to skewed accuracy metrics as accuracy may be artificially high because 

the majority class has a heavy influence, i.e., the majority class is predicted accurately 

and more often than classes with fewer training samples (Chawla et al., 2002; He and 

Garcia, 2009). For example, 83% of the RESM dataset is reservoir and if a model were to 

assign every sample as reservoir, the accuracy would look promising at 83%, but in 

reality, the model cannot distinguish classes. 

Oversampling techniques, adaptive synthetic sampling (ADASYN) and synthetic 

minority oversampling technique (SMOTE) are applied to create synthetic samples of 

minority classes to balance label frequency as shown in the “oversampling” histogram in 

Figure 2.4 (Chawla et al., 2002; He et al., 2008; Krawczyk, 2016; Gosain and Sardana, 

2017; Cahyana et al., 2019). SMOTE generates minority samples by finding k-nearest 

neighbors of existing classes, drawing a line between the neighbors of the same class, and 

selecting random points along that line (Chawla et al., 2002; Gosain and Sardana, 2017).  

Like SMOTE, ADASYN generates synthetic samples along a straight line between k-

nearest neighbors. ADASYN differs in that it generates more samples for minority 
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classes with more majority samples as neighbors to reduce the learning bias from the 

original imbalanced dataset (He et al., 2008). ADASYN is used in the RESM and FAM 

datasets. For FACM, SMOTE is better suited because each class size is relatively small 

and can be difficult to find the nearest neighbors needed for ADASYN. 

 

 
 
Figure 2.4. Histograms comparing the number of samples in each class for the original dataset and for the 
results of oversampling techniques (ADASYN or SMOTE) for facies, facies associations, and 
reservoir/non-reservoir designation training datasets. The original data histograms display unbalanced 
datasets compared to the oversampling histograms that show balanced datasets.  
 

Evaluation metrics 

 Classification accuracy was evaluated using F1 scores for each class. An F1 score 

is calculated as a weighted average 

!1	 = 	2 × ' × ('	 + 	(  

where p is the classification precision and r is the recall. Precision quantifies the number 

of correct predictions for a class and recall (sensitivity) quantifies a model’s ability to 
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correctly predict a class. The best performing classes have F1 scores above 0.90. 

Accuracy, the fraction of correctly classified output classes, is used to evaluate and 

compare overall model performances. It is important to note that while useful, accuracy 

values can be artificially high because of the influence from the majority class. 

 
Results 

 
 Three test wells excluded from model training and validation are used to assess 

model performance (Fig. 2.2). For each model, 1000 predictions are made to analyze a 

distribution of results. Table 2.4 displays specific output labels’ F1-scores for the best 

prediction and corresponding average thickness and proportion of training dataset. Table 

2.5 displays statistical descriptions of the results from each model. Furthermore,  displays 

confusion matrices for the best predictions and are used to quantitatively summarize the 

performance of the individual model classifications. No platform carbonate (PC) facies 

are included in the testing set due to their sparsity. 

 

 
Figure 2.5 Confusion matrix providing a summary of the best classification results for each respective 
model. The correctly classified samples are along the diagonal, and the misclassified samples are off-
diagonal. For example, for RESM, 625 reservoir and 1553 non-reservoir samples are correctly identified. 
On the contrary, 261 reservoir samples are misclassified as non-reservoir and 33 non-reservoir samples are 
misclassified as reservoir.  
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Table. 2.4. Facies-specific model test results for F1-scores, average thickness, and proportion of 
training dataset values. Classes are ranked based on F1-scores. 
 

Class Precision Recall F1-score Thickness (m) 
Proportion of 

Training Dataset 
(%) 

RB 0.86 0.98 0.92 13.68 83.1 
Reservoir 0.86 0.98 0.91 13.68 82.9 

LN 0.82 0.82 0.82 4.18 13.8 
OB 0.95 0.71 0.82 4.15 16.6 

Non-reservoir 0.95 0.71 0.81 3.16 17.1 
BMLM 0.77 0.61 0.68 3.80 16.6 
BLM 0.5 0.65 0.56 3.71 44.9 
BLMi 0.61 0.22 0.32 4.38 2.0 
BBM 0.06 0.2 0.09 2.12 21.4 
BN 0 0 0 1.41 0.8 
TB 0 0 0 0.23 0.1 
BM 0 0 0 0.23 0.1 

 
 
Table 2.5. Predictive accuracy statistics for FACM, FAM and RESM based on 1000 
model runs 
 

 Statistic RESM FAM FACM 
Highest 88.1% 88.1% 60.3% 

Average 87.0% 87.6% 58.3% 
Minimum 86.0% 87.1% 56.5% 

Median 87.1% 87.7% 58.3% 
Variance 1.1 x 10

-5 3.1 x 10
-6 3.9 x 10

-5 
Error 0.22 0.22 0.40 

 
 
Reservoir model 

RESM correctly predicts 88.1% of the classes. Both classes receive relatively 

high F1 scores with non-reservoir rock being 0.81 and reservoir rock being 0.91 (Table 
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2.4). According to and Figure 2.5, 12% of samples are misclassified with most being 

reservoir rock misclassified as non-reservoir. Although the model correctly identifies 

general changes in reservoir and non-reservoir rock, discrepancies between the predicted 

and actual classifications are more likely to occur within thin beds at or below well log 

resolution, i.e., typically less than 1m. Additional discrepancies occur at class change 

boundaries. For example, as seen in Figure 2.6, the model recognizes that the deeper 

section of well 02 /13-07-045-05W5 transitions from reservoir to non-reservoir at 2,978 

m which is 2.5 m deeper than observed in core.  

 
Facies association model 

FAM achieves an accuracy of 88.1 % (Table 2.5), and F1 scores for each class are 

provided in Table 2.4. The confusion matrix in Figure 2.5 indicates the RB facies 

association has the fewest misclassifications with only 2% of the RB misclassified. Most 

(92% or 24 samples) misclassifications for RB are erroneously assigned as OB, with only 

two samples misclassified as carbonate. As shown in Figure 2.5 and Figure 2.6, the OB 

facies association has 29% of samples misclassified as RB. The TB facies association 

samples are thin and infrequent in the training dataset, so no test samples are correctly 

identified with 72% being misclassified as RB and 28% misclassified as OB. Similar to 

the RESM, the FAM also successfully identifies general facies association changes. For 

example, as shown in Figure 2.6 in well 02 /13-07-045-05W5 at 2,942 m and 2,661 m 

and in well 00/13-32-063-16W5 at 2,865 m there are changes in facies association, and 

the change in facies association is predicted using the model. The FAM generally 

identifies the change to either RB or OB but fails to identify the transition to TB. 
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Figure 2.6. Comparison of log response with core-observed and model-predicted distributions of facies, facies associations and reservoir versus non-reservoir for 
wells for wells 02/12-07-045-05W5 and 00/13-32-063-16W5.  
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Facies model 

FACM correctly identified 60.3% of the test set for all classes (Table 2.5). As 

listed in Table 2.4, the highest F1 scores are the laminated nodular (LN), black 

mechanically laminated mudstone (BMLM), and black laminated mudstone (BLM) facies 

with scores of 0.82, 0.68, and 0.56, respectively. F1 scores for Ireton black laminated 

mudstone (BLMi) and black burrowed mudstone (BBM) are 0.32 and 0.09 (Table 2.4). 

According to Table 2.4, burrowed mudstone (BM) and burrowed nodular (BN) both 

represent less than 1% of the training dataset and are not able to be classified.  The 

confusion matrix in Figure 2.5 indicates overall 40% (982) of the test set is misclassified. 

Of the misclassifications, 54% (529) are predicted as BLM, 14% (139) predicted as 

BBM, and 14% (135) predicted as BMLM. Figure 2.6 shows FACM generally can 

identify the LN, BLM, and BMLM facies. 

 
Feature importance 

Feature importance scores are determined using the classification and regression 

trees (CART) algorithm in Scikit-learn. Figure 2.7 illustrates the feature importance 

scores for the input features in each respective model. The higher the relative score the 

more relevant the feature is to the desired output. For RESM there is little difference 

(~0.03) between the feature importance scores indicating all input features have some 

importance to the reservoir non-reservoir designation. For FAM and FACM, the reservoir 

designation and the facies association are the most important input features, respectively.    

For all three models, there is little difference between the relative feature 

importance of each well log indicating all input logs are useful in the prediction of facies, 

facies associations, and reservoir non-reservoir designation. Recent works (Zhang et al., 
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2018; Jian et al., 2020; Hossain et al., 2020) establish methods to handle missing well log 

data that can be common in larger datasets, and Thorson (2019) established a semi-

quantitative methodology to assign Duvernay facies using limited well logs.  

 

 

Figure 2.7. Feature importance scores for RESM, FAM and FACM. For each model, the features with 
larger importance values are more useful in classifying model output. GR = gamma ray, AT90 = deep 
resistivity, PE = photoelectric effect, NPHI = neutron porosity, DPHI = density porosity, RHOB = bulk 
density. Res = predicted outputs from the RESM used as inputs in FAM and FACM, and FA = predicted 
outputs from the FAM used as an input in FACM.  

 
 

Discussion 

These results demonstrate that it is possible to predict some facies, facies 

associations, and reservoir rock from wireline log using the method described here. 

Although overall performance accuracy exceeds 60%, some classes are misidentified. 
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The reason some classes are more successfully predicted than others is a combination of 

sample interval thickness and vertical resolution of the petrophysical data, sample 

proportion, and the distinguishability of the specific output class. Figure 2.8 shows two 

scatter plots detailing the relationship between F1 scores versus thickness and proportion 

respectively and the expected results. Classes falling above the trendline overperformed 

and classes falling below the trendline underperform.  

 
Thickness 

Petrophysical data used is limited by the vertical resolution of the instrumentation, 

with each log type having a finite resolution as determined by variables such as sonde 

design and sensor position, data sampling rate, logging speed, and data processing 

methods ( Passey et al., 2006; Bond et al., 2010; Diniz Ferreira and Torres-Verdin, 2012). 

In terms of the well log data used in this study, the deep resistivity has the highest vertical 

resolution (0.6m [2 ft]), and therefore, defines the lower limit of attribute thickness 

resolved by the models (Passey et al., 2006). According to Figure 2.8, higher F1 scores 

are associated with thicknesses greater than approximately 3m (9 ft), a value greater than 

the resolution limit of deep resistivity. The discrepancy may be due to factors such as 

high petrophysical data sample rate (1 sample/0.1m) and subsequent interval averaging 

across bed edges, errors in core to well log depth correction, and incorrect bed boundary 

identification in core. The presence of thick (greater than 3m) beds mitigates the 

aforementioned factors and enhances the prediction of less distinguishable classes. 

 



25 

 

Figure 2.8. Scatter plots of thickness and proportion versus F1-score. The trend line is used as a baseline for 
expected results. In general, F1-scores increase as thickness and proportion increase.  

 

Proportion 

 
An adequate number of samples must be available for each class for the model to 

learn and apply relationships to unseen data. Figure 2.8 shows in general, as class 

representation increases, F1 score increases. At some lower limit, however, the sample 

proportion unsuccessfully predicts a given class. As listed in Table 2.4, BM and BN 
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facies represent 0.10% and 0.80% of their respective training datasets. Each of their F1 

scores are 0 and indicate a failure to identify using a tree-based ML model. As indicated 

in Figure 2.8, in general, F1-scores notably increase above a proportion of 16%.   

 
Distinguishability 

 
Classes that do not follow the proportion and thickness trends discussed above are 

likely affected by distinguishability, i.e., the human ability to label the class correctly and 

consistently in core. Figure 2.9 shows representative core photos of facies affected by 

distinguishability. Facies that are more distinguishable have higher F1 scores than 

expected for their respective thickness and proportion. According in Figure 2.8, LN 

overperforms based on the facies thickness and proportion. The presence of diagnostic 

sedimentologic features, such as the trace fossil Chondrites allow LN to be readily 

identified in core as seen in Figure 2.9d. Conversely, some facies lack diagnostic 

sedimentologic attributes and result in inconsistent facies designations amongst trained 

geologists. Less distinguishable facies underperform relative to their proportion and 

thickness. For example, as listed in Table 2.4, BLM has a proportion of 44% and an 

average thickness of 3.71m, both above the respective cutoffs, and yet has an F1 score of 

0.56. The homogeneous dark color and ubiquitous and ambiguous millimeter lamina of 

BLM make differentiation from BBM difficult as shown in Figure 2.9. Furthermore, 

being the transitional facies between the BMLM and BBM end members, BLM has a 

wider range of petrophysical responses thus making it more difficult for the model to 

establish unique petrophysical cutoffs. Because the sedimentologic variability of BLM 

effects both a geologist’s facies assignment and petrophysical response, the BLM facies 
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is commonly misclassified as BMLM or BBM, thereby lowering its precision and 

associated F1-score. 

 

Figure 2.9. Representative core photo of (a) BBM, (b) BLM, (c) BMLM, and (d) LN. Scale bar is 1 cm. 
 
 

Conclusion 
 

With the increase in computation power and growth of data availability, ML has 

been increasingly used in the oil and gas industry to understand subsurface rock 

attributes. Decision tree-based algorithms are common ML methods used for lithological 

classification tasks. In this study, three decision tree-based models are applied to core-

calibrated petrophysical data to predict facies, facies associations, and reservoir rock 

within the Late Devonian Duvernay Formation. Analyses are based upon 18 post-1980 

vintage vertical wells with continuous whole core. Core sedimentologic features are 

digitized and depth-adjusted to their corresponding petrophysical data that includes 

gamma ray, deep resistivity, photoelectric effect, neutron-density porosity and bulk 
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density. Using this dataset, each of the three models ran 1000 times. Models for both 

reservoir rock (RESM) and facies associations (FAM) performed the best with accuracies 

of 88.1%. The model for depositional facies (FACM) had an accuracy of 60.3%. Relative 

feature importance scores for each model indicate that all well logs are useful for the 

prediction of facies, facies associations, and reservoir/non-reservoir designation.  

         For decision tree-based techniques to be useful for subsurface rock-type 

predictions from wireline logs, it is important to know the model’s predictive capabilities 

and limitations. In the case of the Duvernay Formation, some output classes are easier to 

classify using decision tree-based models than others. In general, classes thicker than 3m 

(10 ft) and encompassing at least 16% of the training dataset have a greater likelihood to 

be predicted. Exceptions to these cutoffs are attributed to diagnostic sedimentological 

features observed in core. Facies with ambiguous features have lower than expected F1 

scores, whereas facies with more distinctive characteristics have higher than expected F1 

scores. Overall, facies designations that are confidently assigned based upon conspicuous 

sedimentological features observed in whole core play a large role in the prediction of a 

desired class, because such facies are the most reliable for a model to learn and interpret. 

For facies lacking diagnostic attributes, and therefore lower confidence in their 

classification, increases in thickness and proportion improve the models’ predictive 

ability by alleviating errors associated with inconsistent core observations and description 

and bed boundary identification. Results from this research suggest that core-observed 

depositional attributes may be predicted in wells lacking core control by having the 

necessary well logs, and as such, may be a valuable tool in petroleum reservoir 

correlation and mapping.  
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Duvernay Formation, Western Canada Sedimentary Basin, Alberta: AAPG Geohorizons 

 
 

Abstract 

 
 Facies interpretation from wireline logs has traditionally been performed through 

the comparison of core-observed facies distributions and associated log response from 

which log-based, deterministic algorithms are developed for the prediction of facies in 

wells lacking core control. In contrast, the unsupervised learning stochastic approach 

analyzes and automatically clusters recurring well log data associations without 

calibration to core observations. From petrophysical and core observation data collected 

from the Late Duvernay Formation of Alberta, Canada, this study investigates whether 

unsupervised machine learning detects lithologic, and hence, reservoir attributes at a 

higher resolution than the deterministic approach. The unsupervised machine learning 

methodology non-negative matrix factorization with k-means clustering (NMFk) is 

applied to petrophysical data to determine and assign groupings independent of core 

observations. Results from the NMFk model are then compared to the predicted 

petrofacies from the deterministic approach. Four NMFk groups are identified: three 

groups coincide with varying shale lithologies and one group with carbonate lithologies. 

The NMFk model differentiates lithologic associations with reservoir significance that 

were undetected through deterministic modelling. The three “shale” groups successfully 
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discriminate the Duvernay into intervals of high, intermediate, and low reservoir quality. 

Such a differentiation is unrecognized by the deterministic approach.  

 
Introduction 

 
Facies and facies associations commonly account for the variably distributed rock 

properties within a petroleum reservoir. For unconventional shale reservoirs, 

understanding the spatial distribution of organic-rich facies and/or facies association is 

essential in the efficient development of hydrocarbon resources. Although facies 

distributions are ostensibly identified at high resolution through detailed core description 

and analysis, continuous core is uncommonly collected, the data collection process is 

time consuming, and the data collected are oftentimes inconsistent between workers. 

Well log data, on the other hand, are widely available, and once calibrated to core 

observations, are oftentimes used to predict facies occurrence in wells lacking core 

control. Such predictions are based upon deterministic analysis of well log data where the 

characteristic range of well log response for each facies and/or facies association is 

identified from univariate statistical analysis, and algorithms are subsequently developed 

that predict facies and/or facies association occurrence in non-cored wells (e.g., Atchley 

et al., 2010; Atchley et al., 2018). A similar deterministic approach was successfully 

applied to the Duvernay Formation within the Western Canada Sedimentary Basin 

(Thorson, 2019). Based upon a combinations of gamma ray, density and neutron porosity, 

photoelectric effect, and deep resistivity logs, Thorson et al. (2022) developed algorithms 

for the prediction of four facies associations with 75% accuracy.  

With advances in computational power, stochastic machine learning methods are 

increasingly used in various geoscience applications including petrophysical facies 
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prediction where the methodology has proven to be efficient, objective and reliable 

(Bhattacharya et al. 2016; Feng et al., 2020; Hussein et al., 2021; Wu et al., 2021, Rau et 

al., in review). Unsupervised learning is a subset of machine learning that analyzes and 

clusters unlabeled data. Non-negative matrix factorization with k-means clustering 

(NMFk) is a novel unsupervised machine learning algorithm that combines two 

unsupervised machine learning algorithms: 1) non-negative matrix factorization (NMF), 

and 2) k-mean clustering (Iliev et al., 2018; Vesselinov et al., 2018). In both methods, the 

optimal number of clusters, k, is unknown. However, by combining NMF with k-means 

clustering, k is automatically estimated (Ahmmed et al., 2021). NMFk has been 

successful in a variety of geoscience applications such as geothermal exploration (Siler et 

al., 2021), carbon sequestration (Ahmmed et al., 2021), hydrogeology (Alexandrov and 

Vesselinov, 2014) and contaminate transport (Vesselinov et al., 2018). Siler et al. (2021) 

used NMFk to identify key geologic factors that control hydrothermal circulation within a 

shallow geothermal reservoir, and Ahmmed et al. (2021) used NMFk to understand 

mineral-trapping mechanisms due to carbon injection. Alexandrov and Vesselinov (2014) 

applied NMFk to identify the source of transient pressure fluctuations in monitoring 

wells, and Vesselinov et al. (2018) demonstrated the capability of NMFk in the 

identification of aquifer contaminant sources.  Because of the demonstrated versatility 

and effectiveness of NMFk, this study uses NMFk to classify reservoir-defining 

petrofacies based on the analysis of a variety of well log data. Although deterministic 

approaches are successful at identifying reservoir facies, the objective of this study is to 

investigate if NMFk applied to well log data independent of core observations provides a 

more objective approach to facies detection and reservoir characterization of the 
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Duvernay Formation, and at a higher resolution than the recent deterministic approach of 

Thorson et al. (2022). 

 
Geologic Setting 

 
The Late Devonian (Frasnian) Duvernay Formation accumulated within the 

Western Canada Sedimentary Basin (WCSB) as a euxinic, organic-rich basinal deposit 

contemporaneous with marine platform carbonates of the Leduc and Grosmont 

Formations and is overlain by inorganic basinal mudrock of the Ireton Formation (Fig. 

3.1). During the Late Devonian, the WCSB was partitioned into the East and West Shale 

Basins by a linear reef complex known as the Rimbey-Meadowbrook trend (Fig. 3.2). 

The WCSB is presently bounded to the east by the Precambrian Canadian Shield and to 

the west by the Laramide fold and thrust complex (Fig. 3.2). The western portion of the 

WCSB, including the study area, is an asymmetrical foreland basin originating from 

cratonic thrust-loading associated with the northwest-trending Laramide fold-and-thrust 

belt (Porter et al., 1982; Weissenberger and Potma, 2001; Weissenberger et al., 2016). 

Duvernay thermal maturity trends mimic present-day structural depths within the WCSB 

foreland basin (Stoakes and Creaney, 1984; Rokosh et al., 2012).  
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Figure 3.1. a) Late Devonian stratigraphic correlation for south-central Alberta, Canada showing 
relationships between the contemporaneous Duvernay, Leduc, Ireton and Grosmont Formations (modified 
from Chow et al., 1995). b) Late Devonian paleogeography of North America (Wong et al., 2016) with the 
position of present-day Alberta outlined in black and the paleoequator in red (modified from Blakey, 2013). 
 

 

Figure 3.2. Late Devonian paleogeography of Alberta, Canada (modified from Switzer et al., 1994, Rokosh 
et al., 2012, Preston et al., 2016, Wang et al., 2016). The Duvernay was deposited as basinal fill within both 
the East and West Shale basins that are partitioned by the Rimbey-Meadowbrook trend. Blue circles 
identify well locations used in this study. 
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The Duvernay Formation is a major source rock for the conventional reservoirs 

that accounted for prolific hydrocarbon production within the WCSB during the 20th 

century. Since 2011, the Duvernay has been targeted as an unconventional reservoir and 

extensively studied for its reservoir potential (Dunn et al., 2016; Preston et al., 2016; 

Chopra et al., 2017; Wong et al., 2016; Bauman, 2018; Datta, 2018; Harris et al., 2018; 

Dong et al., 2019; Knapp et al., 2019; Thorson, 2022; Li et al., 2020). Duvernay facies 

have been recently classified, correlated, and mapped within the West and East Shale 

Basins based upon the evaluation and integration of whole core and wireline log data 

(Thorson, 2019). The facies and associated reservoir quality framework of Thorson 

(2019) is used in the analyses and results of this study. 

 
Methods 

 
 
Petrophysical Data 
 

A total of 18 wells in the West Shale Basin with continuous core through the 

Duvernay Formation are used in this study (Fig. 3.2). Each well includes the following 

modern (post-1980 vintage) digital wireline log types: gamma ray, deep resistivity, bulk 

density, neutron-density porosity (calibrated to limestone matrix), and photoelectric 

effect. In total, the dataset includes 9,858 wireline log samples. The vertical resolution for 

each well log type is as follows: gamma ray (0.6 m), deep resistivity (2.1 m), bulk density 

(0.5 m), neutron-density (0.6 m), and photoelectric effect (0.05 m) (Alberty, 1992). A 

theoretical and operational summary of each log is provided within Alberty (1992). 
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Gamma ray. The gamma ray log (GR) measures natural gamma radiation derived 

from uranium, potassium, and thorium that are commonly associated with clay minerals. 

GR, therefore, is useful in the differentiation of shale (clay-rich) and non-shale 

sedimentary lithologies. Uranium is oftentimes highly concentrated in organic-rich shales 

and results in uncommonly high gamma ray activity, as is the case with the Duvernay 

Formation (Thorson, 2019). 

 
Deep resistivity. The measurement of deep resistivity is influenced by rock matrix 

composition, porosity and associated pore fluid type and saturation, and the occurrence of 

organic matter (Passey et al., 1990; Alberty, 1992). Within thermally mature, organic-rich 

mudrock successions, as commonly occur within the Duvernay Formation, resistivity is 

particularly high due to the occurrence of both kerogen and associated pore-filling 

hydrocarbons.   

 
Bulk density and compensated neutron density and porosity. Bulk density and 

derivative density porosity are influenced by both the composition of rock matrix 

material and the associated pore volume and fluid fill. Because organic matter has a much 

lower density than matrix minerals, the presence of organic matter causes a significant 

reduction in measured bulk density and a corresponding increase in calculated porosity 

(Meyer and Nederlof, 1982; Passey et al., 2010). The neutron porosity log measures the 

occurrence of hydrogen that may occur in association with pore-filling water or 

hydrocarbon, organic matter, or clay-bound hydroxyl (OH-) ions. Estimates of neutron 

porosity use the occurrence of hydrogen as a proxy for porosity, and as such, mimic 
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density porosity estimates (Passey et al., 2010). Total organic carbon (TOC) rich intervals 

in the Duvernay correlate with higher neutron and density porosity.  

 
Photoelectric effect. The photoelectric effect (PE) is recorded as a compliment to 

bulk density measurements and uses the bulk density radioactive source and detector. The 

PE measures a rock interval’s ability to absorb induced gamma rays, which corresponds 

closely with mineralogy and related lithology (Alberty, 1992). The Duvernay is 

influenced by the surrounding carbonates of the Leduc and Grosmont Formations and 

results in variably calcareous facies and variably high PE values.  

 
Unsupervised Machine Learning  
 

In this study, NMFk is used to automatically detect the number of petrophysical 

groups identifiable in the petrophysical data. NMFk combines two unsupervised machine 

learning methods, non-negative matrix factorization (NMF) and k-means clustering 

(Alexandrov et al., 2014; Iliev et al., 2018). Specifically, the petrophysical groups are 

identified by analyzing the reconstruction error from NMF and the silhouette width from 

k-means clustering. Model input data X of size (n, m) is the petrophysical data where n is 

the borehole measured depth and m is the number of input features which in this study are 

the well logs.  

NMF projects input data into a lower dimension to extract meaningful features 

(Ropes and Ribeiro, 2015). The NMF portion of NMFk decomposes the X matrix into 

matrices W of size (n,k) and H of size (k,m) as:  

! = #	 × & + ((*) 
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where # is the depth matrix, & is the features matrix and ((*) is the error (Iliev et al., 

2018; Ahmmed et al., 2021). The # matrix is commonly called the mixing matrix which 

in this study represents how each depth is measuring a mixture of petrophysical groups 

established by NMF. The & matrix depicts the relationship between the petrophysical 

groups and each well log. The loss function (ℒ) is minimized using Frobenius norm for a 

specified k resulting in non-negative W and H matrices. In NMF the value for k is 

unknown, therefore, NMF is performed for k = 2,3, ..., d where d is the maximum 

number of well logs. The optimal number of signals cannot be more than the number of 

input features. For example, in this study the number of well logs used for input features 

is 6 which is the maximum possible number of petrophysical groups. For each k, NMF 

solves for 1000 random solutions of W and H matrices. The lowest value of ℒ for a given 

k is considered the best reconstruction error.  

Results from NMF are coupled with k-means clustering to identify the optimal 

number of petrofacies. The k-means clustering algorithm divides the data into a specific 

number of groups, k, such that the sum of squared distances between the data and center 

of each cluster is minimized (Hartigan and Wong, 1979). Similar to NMF, the value for k 

must be specified to execute the k-means clustering algorithm so k-means clustering is 

iteratively performed using a specified range of k values. For each iteration of k, 

similarities between the clusters are evaluated using the silhouette width (Rousseeuw et 

al., 1987). The silhouette width quantifies how well a point fits within its assigned cluster 

compared to neighboring clusters. The value ranges from -1 to 1 with higher positive 

values indicating that the point is very well clustered. Silhouette width typically declines 



45 

after the optimal number of k is reached. The optimal number of petrophysical groups has 

low reconstruction error from NMF and higher silhouette values in k-means clustering.    

 
Core Description Data 

 
All cored wells (750 m [2,460 ft] of total core length) were described in detail to 

account for the occurrence of facies, texture, allochem type and abundance, mechanical 

and biological structures, and fracture density. Core descriptions were digitized and 

merged with their corresponding petrophysical data. Each digitized core data value was 

depth-shifted to coincide with well log measured depths through comparison with a core-

derived synthetic gamma ray log composed of gamma ray total counts derived from 

uranium, thorium, and potassium concentrations (sensu Crain, 2018) measured within 

core at 1-meter resolution using a Bruker hand-held X-ray fluorescence (XRF). The core 

synthetic gamma ray was plotted and depth-shifted to coincide with graphical trends 

observed on the well log gamma ray. The resulting depth shift was applied to all digitized 

core description data. 

Based on the recurrence of sedimentologic features, 10 facies are identified and 

grouped into 3 facies associations (Thorson, 2019): open basin, transitional basin, and 

restricted basin. Of the 10 facies, 6 are observed within the study wells (Fig. 3.3, Table 

3.1). The open basin consists of the burrowed nodular (BN) and laminated nodular (LN) 

facies, the transitional basin of the burrowed mudstone (BM) facies, and the restricted 

basin of the black laminated mudstone (BLM), black mechanically laminated mudstone 

(BMLM), and the black burrowed mudstone (BBM). The restricted basin association has 

the highest total organic carbon (TOC) estimates, and accordingly, most favorable 

hydrocarbon production potential (Thorson, 2019). Three non-Duvernay facies are also 
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present in the 18 wells used in this study.  The fine skeletal packstone (FSP) and diverse 

skeletal packstone (DSP) from the contemporaneous Leduc and Grosmont Formations are 

present, but in small quantities.  The black laminated mudstone of the Ireton Formation 

(BLMi) overlies the Duvernay Formation. 

 

 
Figure 3.3. Representative core photo of (A) black burrowed mudstone (BBM), (B) black laminated 
mudstone (BLM), (C) black mechanically laminated mudstone (BMLM), (D) burrowed mudstone (BM), 
(E) laminated nodular (LN), and (F) burrowed nodular (BN). Scale bar is 1 cm. 
 
 
Deterministic Facies Association Prediction  

 
Duvernay petrofacies are based on the aforementioned facies associations and are 

predicted in non-cored wells based on their characteristic well log responses (Thorson, 

2019). Using univariate statistical characterization of well log response from 42 cored 

Duvernay wells located within the West and East Shale Basins, Thorson et al. (2022) 

establishes well log cutoffs that are diagnostic of the open basin, restricted basin, Ireton 

Shale (BLMi) and undifferentiated Leduc/Grosmont “platform to slope” carbonates 

(Table 3.2). These cutoffs are used to predict the occurrence of petrofacies (identified in 

Table 3.2) in all 18 wells included in this study, although as prescribed by Thorson 

(2022), predictions are primarily based on gamma ray and deep resistivity responses and 

secondarily by the other log responses. 
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Table 3.1. Duvernay Formation facies summary table for the study area (modified from Thorson, 2019). 

Facies 
Association Open Basin Restricted Basin 

Facies Name Burrowed Nodular 
(BN)  

Laminated Nodular 
(LN)  

Burrowed Mudstone 
(BM) 

 

Black Burrowed 
Mudstone 
(BBM) 

 

Black Mechanically 
Laminated 
(BMLM) 

 

Black Laminated 
Mudstone 

(BLM) 
 

Environment peri-platformal basinal  
basinal 

 
basinal 

 
basinal 

(restricted) 
basinal 

(restricted) 

Texture mudstone 
(wackestone) mudstone mudstone 

(local packstone) mudstone mudstone mudstone 

Grains 
brachiopods, 
crinoids, SK, 

intraclasts, peloids 

brachiopods, crinoids, 
intraclasts, SK, peloids, 

gastropods 

brachs., crinoids, SK, 
few mudstone-

textured intraclasts 
and lithoclasts, 

peloids 

few: SK, brachiopods, 
crinoids 

few: Amphipora, 
crinoids, brachiopods, 

SK 

few: brachiopods, crinoids, 
SK (<0.5mm), intraclasts 

Sedimentary 
Features 

TH, PL, AST, 
GLOSSI, 

hardground 
/firmground, 

irregular mudstone 
nodules 

elongate horiz. mudstone 
nodules, cm-lamina, 

(few) mm-lamina 
between mudstone 

nodules & burrows, CH, 
TH, PL 

TH, PL, GLOSSI, 
CH, mm-lamina, 
few cm-lamina, 

firmground/ 
hardground 

massive/dark mm-lamina, 
dark color mottling, 
TH, PL, occasional 

BLM/BMLM 
interbeds, imbricate 
sed. gravity flows 

mm to cm-lamina: 
alternating silt-sized 
carbonate grains and 

mud, TH, PL, Z, 
calcite concretions 

mm-lamina, few TH, 
GLOSSI, PL, event beds 
(silt-sized CO3 grains), 

firmg./hardg. West Basin: 
dark grey to black, poker-

chip recovery 

Average 
ichnofabric 
index (0-6) 

6 5 6 3 1 
1 
 

Average 
hardness   (R 

values) 
37 32 33 20 20 19 

Average 
fracture 
density 

(frac./m or /ft) 

5 13 4 4 1 3 

Representative 
core photo Figure 3.3F Figure 3.3E Figure 3.3D Figure 3.3A Figure 3.3C Figure 3.3B 
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Table 3.2. Well log cutoffs established by Thorson (2019) for the prediction of Duvernay Formation petrofacies. 

Facies Association  Gamma 
Ray (API) 

Neutron 
Porosity 
(fraction) 

Density 
Porosity 
(fraction) 

PE 
(barns/electron) 

Deep 
Resistivity 
(ohm-m) 

Comments 

Ireton 75-100 0.0-0.2 0.0-0.2 3.8-4.0 0.2-20 Resistivity values 
take precedence 
in distinguishing 
from RB FA. 

OB/TB FA: BN, LN, 
BM 

20-85 0.0-0.5 0.0-0.3 4.2-5.1 200-1000 Gamma-ray and PE 
values take 
precedence in 
distinguishing 
from RB FA. 

RB FA: BBM, 
BMLM, BLM 

75-100 0.1-0.4 0.1-0.3 3.7-4.7 700-1000 Higher gamma-ray, 
resistivity, and 
porosity values 
than OB/TB FA. 

Platform to Slope 
Carbonates 

0-15 0.0-0.3 0.0-0.2 4.7-5.0 10-100 Lowest gamma-ray 
values of all 
petrofacies 

 

 



49 

Results 
 

From NMFk stochastic analysis, the optimal number of recurring petrophysical 

groups is 4 because the silhouette width decreases after 4 and the reconstruction error is 

relatively low (<0.25) (Fig. 3.4). The model assigns one of the 4 groups to each of the 

9,858 wireline log samples. The interquartile range for log responses for each group are 

listed in Table 3.3, and box and whisker plots for each group versus well log responses 

are provided in Figure 3.5. TOC weight percent is calculated using the Schmoker and 

Hester (1983) equation based on bulk density values from wireline logs.  Group A is 

characterized by the highest gamma ray activity and TOC, and relatively high deep 

resistivity values. These attributes indicate organically enriched shale, and the associated 

low bulk density and PE values suggest a high proportion of matrix quartz. Group B is 

characterized by relatively high gamma ray values and low deep resistivity values 

indicative of inorganic shale, and the comparatively elevated PE values suggest a higher 

proportion of matrix carbonate than associated with either Group A or D. Group C has 

low gamma ray and relatively high bulk density and PE values that suggest a high 

proportion of matrix carbonate. Group D is characterized by the highest gamma ray 

activity, high deep resistivity, low bulk density and associated high density and neutron 

porosity that collectively indicate organic-rich mudrock. The associated low bulk density 

and PE values indicate a comparatively high proportion of quartz-rich matrix.
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Table 3.3 The interquartile range for log response of each NMFk group and their associated well log interpretation. 

Group Gamma 
Ray (API) 

Deep 
Resistivity 
(ohm-m) 

Neutron 
Porosity 
(fraction) 

Density 
Porosity 
(fraction) 

Bulk 
Density 
(gm/cc) 

PE 
(barns/electron) 

Calculated 
TOC 

(wt%) Interpretation 

A 107-161 45-254 0.14-0.18 0.09-0.12   2.51-2.56 3.3-3.9 3.0-4.2 
Quartz-rich, 

hydrocarbon bearing 
shale, good reservoir 
quality 

B 99-145  8-68  0.14-0.19  0.03-0.07 2.60-2.67  4.0-4.5 0.6-2.1 Inorganic shale, poor 
reservoir quality 

C 36-60  22-94  0.04-0.09  0.0-0.01 2.69-2.71  4.8-5.2  0.0-0.1 Allochthonous 
carbonates 

D 97-148  597-911  0.12-0.16 0.08-0.11 2.53-2.57 3.5-3.9 2.8-3.8 
Quartz-rich, 

hydrocarbon bearing 
shale, excellent 
reservoir quality  
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Figure 3.4. NMFk reconstruction error (red line) and silhouette width (blue line) for different numbers of 
clusters k. The optimal k value has low reconstruction error and higher silhouette values. The optimal 
number of groups is 4 because silhouette width decreases after 4 and reconstruction error is relatively low 
(<0.25).   
 
 

 
 

Figure 3.5. Box and whisker plot of well log type versus NMFk groups. Gamma ray and PE responses 
indicate Group A, B, and D are clay dominated lithologies and C is carbonate-dominated lithologies. 
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Sedimentologic Characterization of NMFk Groups 
 

A comparison of the four NMFk groups with the core-observed depositional 

facies of Thorson (2019) indicates that the stochastic NMFk petrophysical groupings 

correspond with a combination of core-observed facies (Fig. 3.6). The BLM, BMLM, and 

BBM depositional facies all occur within Groups A, B, and D and indicates that NMFk 

identifies the restricted basin facies association, but it does not differentiate the specific 

restricted basin facies. About 93% of core-observed restricted basin facies (i.e., facies 

association) are assigned as either Group A, B, or D.  Group A is characterized by all 

three restricted basin facies. BLM, BMLM, and BBM represent 51%, 29% and 17% of 

Group A, respectively. Group B includes BLM (52%) or BBM (28%), and Group D is 

dominated by BLM (35%) and BMLM (63%). In contrast, 89% of core-observed open 

basin facies associations coincide with Group C. LN and BN account for 66% and 8% of 

Group C (Fig. 3.6). The close correspondence of BLM, BMLM, and BBM with Groups 

A, B, and C and LN and BN with Group C indicates that objective NMFk model results 

coincide with depositionally-controlled lithologic attributes, which in this case is the open 

basin (non-reservoir) and restricted basin (reservoir) facies associations of the Duvernay. 

 
Comparison of Deterministic and NMFk Approaches 
 

Deterministic and NMFk petrofacies predictions were made on all 18 wells, and 

Figure 3.7 associates the well log response with core-observed depositional facies, 

petrofacies identified from the deterministic approach, and unsupervised groups assigned 

by the stochastic NMFk approach for two of the wells. For the deterministic model, the 

occurrence of “Ireton facies”, “open basin and transitional basin facies association” 

(combined), and “restricted basin facies association” closely corresponds with the 
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occurrence of core observed facies associations which are predicted with 88% accuracy 

(Fig. 3.7). The distribution of NMFk groups A, B, and C mimic the distribution of both 

core-observed facies associations and petrofacies predicted by the deterministic model 

(Fig. 3.7). Of the predicted restricted basin facies association from the deterministic 

model, 93% coincides with either Group A, B, and D. Groups A, B and D, however, 

occur as relatively thin intercalations within the comparatively homogenous, blocky 

occurrence of the deterministic restricted basin facies association (Fig. 3.7).  Well 00/01-

35-045-10W5 has two predicted restricted basin intervals that extend from 3290 m 

(10,794 ft) to 3301 m (10,830 ft) and from 3306 m (10,846 ft) to 3330 m (10,925 ft), and 

well 00/13-32-063-16W5 has one predicted restricted basin interval extending from 2836 

m (9304 ft) to 2864 m (9396 ft).  In all instances, deterministically-derived restricted 

basin facies association intervals are partitioned into thin alternations of NMFk groups A, 

B and D (Fig. 3.7).  

 

 

Figure 3.6. The proportion of core-observed depositional facies (all 18 wells) that occur within each NMFk 
group.
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Figure 3.7. Well log responses for wells 00/13-32-063-16W5 and 00/01-35-045-10W5 annotated with the distribution of core-observed facies and facies 
associations, deterministic model predicted petrofacies, and NMFk groups 
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Discussion 
 

The highly interstratified distribution of NMFk groups (i.e., D, highest reservoir 

potential, A, intermediate reservoir potential, and B, lowest reservoir potential) within the 

otherwise homogenous deterministic “restricted basin” intervals of the Figure 3.7 wells 

suggests that NMFk analysis detects meaningful variability in rock properties at a higher 

resolution than the deterministic approach.  Fluid type, mineralogy, and TOC are factors 

affecting shale reservoirs that are readily detected by wireline logs, and therefore 

influence stochastic group assignments by NMFk analysis (Guo et al., 2017; Hou et al., 

2021, Luo et al., 2021). Group D, for example, is characterized by high resistivity values 

induced by rock attributes such as the occurrence of organic matter and associated 

porosity and pore-filling hydrocarbon fluids. Although all restricted basin depositional 

facies within the restricted basin facies association are sedimentologically similar, subtle 

variability in both organic matter richness and fluid type cause variability in measured 

resistivity that is within the range deterministically-defined as the restricted basin 

association. Group D strata, which include the restricted basin depositional facies 

association, are categorized by NMFk on the basis of the petrophysical response to all 

rock and fluid attributes. Conversely, depositional facies are classified on the basis of 

rock attributes alone. Since variations in fluid type and abundance were not explicitly 

used in the classification of depositional facies, but do influence log response, facies and 

associated deterministic petrofacies assignments accordingly do not reliably account for 

fluid-induced variability in resistivity measurements. NMFk group assignments, 

however, do. As such, NMFk analysis discriminates reservoir defining attributes encoded 
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within the petrophysical response that are difficult to recognize in core without detailed 

sampling for geochemical and/or petrographic analysis. 

NMFk analysis results in a more detailed accounting of lithologic variability and 

provides more precise and objective recognition of varying reservoir attributes. This has 

implications on the mapping of reservoir attributes and assignment of rock volume and 

associated reserve estimates at the exploration and development scale. When used during 

production well planning, NMFk results may more accurately depict the location of the 

most prospective reservoir zones, and therefore optimize the placement of lateral 

boreholes. Furthermore, Results from NMFk analysis may also be used to anticipate and 

document lithologic variability during core description and sampling, thereby minimizing 

the inconsistency and error that is inherent to subjective human core description, 

particularly when core description involves multiple individuals within a project.  

 
Conclusion 

 
1. Four recurring petrophysical groups are identified through stochastic NMFk analysis 

of gamma ray, deep resistivity, bulk density, neutron-density porosity, and 

photoelectric effect log responses collected from the Late Devonian Duvernay 

Formation within the Western Canada Sedimentary Basin. Groups A, B, and D 

coincide with the restricted basin depositional facies association, but Groups A, B, 

and D are characterized by intermediate, low and high reservoir quality respectively. 

Group C coincides with the open basin (non-reservoir) depositional facies 

association.   

2. NMFk resolves detail within the Duvernay restricted basin facies association that is 

not detected from deterministic petrofacies modeling. The petrophysical groups 
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established through NMFk discriminate reservoir defining attributes detected in the 

petrophysical response that are difficult to recognize in core or require further core 

analyses.  

3. NFMk analysis provides objective petrophysical groups, thus minimizing human-

based subjectivity during core description and analysis. This provides more precise, 

consistent, and objective petrophysical interpretation and reservoir characterization, 

and increases the consistency and accuracy of resource assessment and borehole 

placement and completion. 

4. In shale reservoirs, the application of NMFk petrophysical analysis may assist in 

highlighting intervals of interest in advance of core description. This enhances the 

quality and relevance of the core description, and reduces observer inconsistency and 

bias, particularly when multiple individuals are participating in the description and 

analysis of core.  
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CHAPTER FOUR 
 

Geothermal play assessment in the Tularosa Basin, south-central New Mexico using 
integrated unsupervised machine learning and geophysical methods 

 
 

Abstract 
 

With increasing global energy demand, there is a need to explore and develop 

alternative forms of energy. As a nonintermittent resource, geothermal energy has the 

potential to help satisfy growing energy demands while simultaneously mitigating the 

emission of greenhouse gases produced from the burning of fossil fuels. Using the 

unsupervised machine learning technique, non-negative matrix factorization with k-

means clustering (NMFk) and the passive geophysical method, magnetotellurics (MT), 

this study identifies prospective geothermal targets within the Tularosa Basin of south-

central New Mexico based on heat flow, temperature, porosity, and permeability. Two 

locations in the Tularosa Basin are assessed for their geothermal potential, White Sands 

Missile Range and McGregor Range at Fort Bliss. NMFk analysis identifies spatial 

locations at White Sands Missile Range with the highest likelihood of geothermal 

success, whereas MT is used to detect subsurface geothermal prospects at McGregor 

Range based on resistivity. Four groups (Signals A, B, C and D) are established from 

NMFk analysis at White Sands and evaluated for their geothermal resource potential. Of 

these, Signal A is identified as having the highest geothermal potential based upon the 

co-occurrence of relatively high heat flow, reservoir temperatures, and vertical 

permeability. Through application of the MT method at McGregor Range, three 

resistivity layers (L1, L2 and L3) and two resistivity structures (RS1 and RS2) are 
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identified. Based on MT analysis, the highest likelihood for geothermal resources occurs 

in the western portion of McGregor Range where thick, low resistivity earth materials are 

present. Results from this study demonstrate how the integration of NMFk and MT can 

provide a 3D assessment of heat flow, temperature, and permeability for geothermal 

exploration. 

 
Introduction 

 
The United States Energy Information Administration projects a 50% increase in 

global energy consumption between 2020 and 2050 (U.S. Energy Information 

Administration, 2021). Geothermal energy is a nonintermittent, renewable resource 

which has the potential to alleviate concerns associated with growing global energy 

demand while mitigating carbon emissions attributed to the burning of hydrocarbons. 

Specifically, in the United States, geothermal electric power capacity has the potential to 

increase from 2.3 GWe in 2019 to 60 GWe by 2050 (Hamm et al., 2021; Tester et al., 

2021). Thermal energy is generated from the decay of naturally occurring radioactive 

elements deep in the Earth. Even though there is an inexhaustible thermal energy supply 

in the subsurface, much of the heat is unevenly distributed, seldomly concentrated, and 

too deep to be economically exploited (Barbier et al., 2002). However, through 

hydrothermal convection, hot water may flow through naturally occurring vertical 

fractures and faults to locations accessible by drilling (Barbier et al., 2002, Jolie et al., 

2021). These locations are the targets for geothermal exploration. 

Productive geothermal systems have a combination of three major factors: high 

heat flow, high temperature and high permeability. Geothermal resources are confined to 

regions of high heat flow (up to 600 – 800 mW m-2) and temperature (125 – 225 °C) as a 
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result of magmatism and/or crustal thinning (Ussher et al., 2000, Blackwell et al., 2006, 

Elders and Moore, 2016; Jolie et al., 2021). Vertical fractures and faults play a key role in 

the potential permeability of a geothermal resource. Faults and fractures facilitate 

geothermal fluid flow from hot rock units located deep within the earth’s crust, to faulted 

and fractured rock units located at shallower depths more suitable for geothermal energy 

exploitation (Jolie et al., 2021).  

Integration of unsupervised machine learning and geophysical techniques are 

useful in the assessment of heat flow, temperature, porosity and permeability for 

geothermal exploration and development. Unsupervised learning is a subset of machine 

learning that analyzes and clusters unlabeled data. Non-negative matrix factorization with 

k-means clustering (NMFk) is a novel unsupervised machine learning algorithm that can 

cluster data related to heat flow, temperature, and permeability to establish signals with 

geothermal resource significance (Iliev et al., 2018; Vesselinov et al., 2018). NMFk has 

been successful in a variety of geothermal applications including the identification of 

spatial locations of potential geothermal resources (Vesselinov et al., 2021; Ahmmed and 

Vesselinov et al. 2021) and geologic factors associated with geothermal production (Siler 

et al., 2021). Magnetotellurics (MT) is a passive geophysical technique used for 

measuring electrical resistivity structures in the subsurface (Vozoff, 1991) and is 

commonly used to characterize geothermal resources (Johnson et al., 1992; Arnason et 

al., 2000; Cumming, 2007; Muñoz et al., 2014, Coppo et al., 2015; Cherkose and 

Mizunaga, 2018; Han et al., 2021; Miri et al., 2021). Resistivity is one of the most useful 

indicators in the identification of geothermal resources, varying considerably with 

porosity (Arnason et al., 2000; Ussher et al., 2000; Barbier, 2002). In general, high 
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potential geothermal systems are characterized by low resistivity because of the 

occurrence of conductive geothermal fluids within the pore space. As such, geothermal 

systems are commonly associated with faulted and fractured rocks and associated 

secondary pore networks filled with low resistivity, high salinity geothermal fluids 

(Ussher et al., 2000 and Muñoz, 2014). The correlation between low resistivity and 

geothermal resources makes MT surveys ideal for geothermal resource exploration and 

development.  

The objective of this study is to evaluate geothermal targets in the Tularosa Basin 

of south-central New Mexico based on heat flow, temperature, porosity and permeability 

using NMFk and MT. NMFk analysis identifies the spatial location with the highest 

likelihood of geothermal success based on heat flow, temperature, and permeability, and 

MT provides insight into subsurface porosity and the potential for thermal convection of 

associated water. A play fairway analysis (PFA) performed by Ruby Mountain Inc. and 

the Energy and Geoscience Institute at the University of Utah identifies two prospective 

geothermal locations in the Tularosa Basin of New Mexico: White Sands Missile Range 

and the McGregor Range at Fort Bliss (Bennett et al., 2020). White Sands Missile Range 

is used to demonstrate the ability of NMFk to characterize geothermal targets, whereas 

the McGregor Range is used to demonstrate the ability of MT to identify geothermal 

prospects from resistivity in the subsurface. This study aims to show how integrating 

NMFk and MT can provide a 3D assessment in terms of heat flow, temperature, and 

permeability of potential geothermal resources in the Tularosa Basin.   
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Geologic Background 
 

The Tularosa Basin is located on the eastern flank of the Late Paleogene Rio 

Grande Rift (Seager and Morgan., 1979; Sinno et al., 1986). The Rio Grande Rift occurs 

as a north trending, intermontane graben within south-central New Mexico and is 

bounded to the east by the Sacramento Mountains and to the west by the Organ and San 

Andreas Mountains (Fig. 4.1). Faults associated with the Rio Grande rift have several 

thousand feet of displacement and separate the basin from the surrounding uplifted 

mountains (Sandeen, 1954). Paleogene rifting induced high heat flow within 

southwestern New Mexico, and therefore, makes the southern portion of the Tularosa 

Basin favorable for geothermal exploration (Blackwell et al., 2011; Nash and Bennett, 

2015). In the southern part of the basin, temperatures recorded from drilled wells range 

from 170°C to 200°C (Finger and Jacobson, 1997; Blackwell et al., 2011; Nash and 

Bennett, 2015) and clay mineral analysis indicate temperatures as high as 225°C (Ussher 

et al., 2000; Barker et al., 2014).  

The Tularosa Basin is filled with strata of Paleozoic to Tertiary age (Finger and 

Jacobson, 1997; O’Donnell Jr. et al., 2001, Broadhead et al., 2002; Barker et al., 2014) 

(Fig. 4.2). Bedrock consists primarily of Paleozoic carbonates, including Ordovician and 

Silurian dolomite, Devonian and Mississippian interbedded chert-rich shales and 

limestones, and Pennsylvanian limestone with thinly bedded shales. Tertiary felsic 

intrusions commonly cross-cut the Paleozoic bedrock, and Quaternary graben fill overlies 

the bedrock and is composed of gravel, sand, silt, and clay derived from prograding 

alluvial fans originating from the edge of the rift valley.  
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Figure 4.1. Location of the White Sands Missile Range and McGregor Range study areas within the 
Tularosa Basin in southern New Mexico. The Tularosa Basin is an intermontane graben located on the 
eastern flank of the Rio Grande Rift zone. 

 
 

 

Figure 4.2. Generalized stratigraphic succession of the Tularosa Basin sedimentary and igneous fill. 
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Methods 
 
 
NMFk 
 

Non-negative matrix factorization with customized k-means clustering (NMFk) is 

used to determine the high geothermal resource prospective areas (Ahmmed, 2021, Siler 

et al., 2021) by automatically identifying the optimal number of groupings/signatures 

within a geothermal dataset. NMFk couples two unsupervised machine learning 

techniques called non-negative matrix factorization (NMF) and k-means clustering. NMF 

decomposes/factorizes the data matrix, Xmxn, into Wmxk and Hnxk (Lee and Seung, 1999). 

The optimal number of signatures is represented by k. Wmxk and Hnxk matrices represent 

groupings in location and attribute, respectively. K-means clustering measures the 

goodness of each NMF solution (Wmxk and Hnxk matrices) using silhouette width 

(Rousseeuw, 1987, Vesselinov et al., 2019) that helps explaining the outputs. 

Mathematical details and its application to different datasets can be found at Vesselinov 

et al., 2014; 2018; Vesselinov et al., 2019. 

NMFk was implemented using GeoThermalCloud, an open-source tool, available 

at https://github.com/SmartTensors/GeoThermalCloud.jl. GeoThermalCloud capabilities 

include (1) analyzing large field datasets, (2) assimilating model simulations (large inputs 

and outputs), (3) processing sparse datasets, (4) performing transfer learning (between 

sites with different exploratory levels), (5) extracting hidden geothermal signatures in the 

field and simulation data, (6) labeling geothermal resources and processes, (7) identifying 

high-value data acquisition targets, and (8) guiding geothermal exploration and 

production by selecting optimal exploration, production, and drilling strategies. 
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The following 10 attributes are used as input data for NMFk analysis to assess 

heat flow, temperature, and permeability of potential geothermal resources from 120 

locations (Fig. 4.3): heat flow, gravity, temperature at 2m depth (temperature@2m), 

NaK-Giggenbach geothermometer, K-Mg geothermometer, NaK-Fourneir 

geothermometer, silica geothermometer, fault distance, quaternary fault density, and 

Lithium concentration. Heat flow measurements are from the 2011 “SMU Geothermal 

Laboratory Heat Flow Map of the Coterminous United States” (Blackwell et al., 2011). 

Heat flow can furthermore be assessed through gravity data as positive gravity anomalies 

correlate with high heat flow (Atef et al., 2016). Data from shallow temperature surveys 

and various geothermometers are used to evaluate subsurface temperature. Temperature 

surveys at 2 meters are effective in detecting thermal anomalies (Coolbaugh et al., 2007; 

Zehner et al., 2012), whereas the various geothermometers estimate subsurface 

temperatures based on elemental concentration distributions in ground water (Fournier, 

1977). Permeability is evaluated based on distance to the nearest fault (fault distance) and 

the number of quaternary faults per square meter (faults density), since faults can act as 

conduits for water transmission and storage. Li concentrations are an indicator of vertical 

permeability and associated hydrothermal convection because Li is derived from deeper 

magmatic water flow. (Wang et al., 2020).  
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Figure 4.3. Locations (120 total) near White Sands selected as input data for NMFk. At each site, 11 
geothermal attributes are collected and used as input into the NMFk model. 
 
 

With an observational dataset, it can be difficult to obtain values for all 10 

attributes at each location. In this study the only attribute available at all 120 locations is 

temperature@2m. For locations lacking the other attributes, we applied interpolation 

techniques so that all 10 attributes are included at each location. For heat flow, 

geothermometers, gravity, and Li concentration, three interpolation methods were applied 

and evaluated: block mean, kriging, and inverse distance weighting. Evaluation metrics, 

computed R2 scores based on interpolated values and real values, were equivalent for the 

three interpolation methods. Block mean was ultimately selected due to its low 

computational time. ArcMap was used to interpolate fault distance and fault density 

values. Specifically, the near coverage tool was used to find the distance from location to 

nearest fault and the kernel density function was used to calculate fault density.   
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Magnetotellurics  
 

Magnetotellurics (MT) is a passive geophysical technique used for measuring 

electrical resistivity structures (Vozoff, 1991). Solar winds and lightning from 

thunderstorms cause natural variations in the earth’s magnetic field which penetrates the 

subsurface and induces an electrical current (Coppo et al., 2015) The electromagnetic 

fields (EM) from an MT survey are recorded at frequencies ranging generally from 0.001 

kHz to 10 kHz (Yadav et al., 2020). The low frequency response originates from solar 

winds and the high frequency response originates from worldwide lightning strikes 

(Coppo et al., 2015; Cherkose and Mizunaga 2018). 

In MT data a time series of the 2 components of the electric field (Ex and Ey) and 

3 components of the magnetic field (Hx, Hy, and Hz) are measured on the earth’s surface 

(Fig. 4.4). The ratio between the electric and magnetic field components (E/H) is called 

the impedance tensor (Z). As a proportion of the electric and magnetic fields the 

impedance tensor can be written as:  

! = 	 $% 

The horizontal components of electrical and magnetic fields are related to Z as follows:  

&'!'"( = 	&
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The impedance tensor, Z, is used to determine the apparent resistivity and phase (Coppo 

et al., 2015; Cherkose and Mizunaga, 2018). The following equations use the components 

of Z to calculate apparent resistivity (+#$) and phase (,#$): 

+#$ =	
1
./%
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& 



72 

,#$ = 123'( 456()#$)9:()#$)
; 

Where 56 and 9: are the imaginary and real parts of the impedance component, 

respectively.  Both apparent resistivity and phase are commonly plotted as a function of 

frequency for MT data analysis of subsurface structures. 

 

 
Figure 4.4. Schematic of the arrangement and setup of electrodes and coils in the field during MT data 
acquisition (modified from Grimm et al., 2021). 
 
 

A 56 station MT survey was conducted at the McGregor Range by Quantec 

Geoscience and the inversion modelling was accomplished by the Energy and 

Geoscience Institute at the University of Utah (Fig. 4.5). Details about the inversion are 

described by Bennett and Nash (2020).  
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Figure 4.5. Geologic map of McGregor Range with MT station locations (blue) and slimhole core locations 
(red). McGregor is largely covered by Recent eolian sands, although Paleozoic and Tertiary outcrops occur 
in the northeast portion of the study area at Davis Dome. 
 
 

Results 
 
 
Geothermal Characterization of NMFk Signals 
 

NMFk helps determine the optimal solution for < by comparing reconstruction 

error =(<) and average silhouette width >(<) (Fig. 4.6).  Optimal solutions have low 

=(<) and high >(<)values. Generally, low =(<) and >(<)>0.25 are acceptable solutions 

(Ahmmed et al., 2021). NMFk was ran for 2 to 10 signals and k=4 solution is found to be 

optimal solution because of its low =(<) and high >(<) values. The solution with k<4 is 

an underfitting representation of data whereas k>4 is an overfitting representation of data. 
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Figure 4.6. NMFk reconstruction error (red line) and silhouette width (blue line) for different numbers of 
clusters k. The optimal k value has low reconstruction error and higher silhouette values. In this study, the 
optimal number of signals is 4. 
 
 

Geothermal signal heatmaps identify dominant attributes in each signal (Fig. 4.7). 

The warm colors represent a high weight between the signal and attribute and the cool 

colors represent a relatively low weight. Furthermore, for the geothermal attributes the 

warm colors correlate to high values and the cool colors correlate to lower values. The 

dominant attributes of signal A are heat flow, K-Mg geothermometer, silica 

geothermometer and quaternary fault density indicating high heat flow, subsurface 

temperature, and permeability. Similar to signal A, signal B is characterized by high heat 

flow and temperature@2m. Furthermore, the high Li concentration indicates that signal B 

is characterized by high vertical permeability. No geothermometer had a significant 

contribution to signal B. Fault distance is the major attribute in signal C. This indicates 

locations assigned as C have lower potential vertical permeability because they are 

relatively far from faults which act as conduits for fluid flow. Signal C is characterized by 

lower heat flow and temperature relative to the other signals. The dominant attributes for 

signal D are Na-K Giggenbach geothermometer and NaK-Fourneir geothermometer 

indicating high subsurface temperatures. Moderate weights for quaternary fault density 

and Li concentrations in signal D indicate relatively high permeability. Heat flow and 

temperature@2m have a relatively low contribution to signal D.  
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Figure 4.7. Results from the NMFk model. A) Heatmap identifying the dominant geothermal attributes in 
each signal. The warmer the color the more dominant the attribute for a particular signal. B) Spatial 
distribution of signals for the 120 locations at White Sands. 

 
 
Subsurface Characterization of Potential Geothermal Locations 
 
 

Data imaging and analysis. Apparent resistivity and phase curves display 

resistivity trends using period as a proxy for depth (longer periods correspond to 

increased depth). Congruent MT apparent resistivity curves of Zxy and Zyx indicate 1D 

resistivity structure, whereas separation indicates more complicated 2D or 3D resistivity 

structure (Coppo et al., 2015, Zhang et al., 2015). For example, MT apparent resistivity 

curves for station MT017 located in the northeast section of the survey show separation 

between the two curves at shorter periods, i.e., shallower depths (Fig. 4.8). This 

corresponds to geological structures related to Davis Dome, a small intra-bolson horst 

near station MT017 (Fig. 4.5 and Fig. 4.8) (Barker et al., 2014).  
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Figure 4.8. Apparent resistivity curves for MT station 017. Period is a proxy for depth, i.e., longer periods 
are deeper depths. Separation of Zxy and Zyx curves at 0.05 s indicate 2D or 3D resistivity structures. 
 
 

MT apparent resistivity and phase curves of Zxy and Zyx from all 56 MT sites are 

shown in Figure 4.9. The apparent resistivity values show a cyclic trend from shorter to 

longer periods (shallower to deeper depths). At shallower depths, the apparent resistivity 

gradually decreases. Between 1 s and 100 s the apparent resistivity increases. At deeper 

depths, longer than 100s, the apparent resistivity decreases. Furthermore, at longer 

periods, the Zxy and Zyx curves diverge indicating complex, 3D resistivity structure at 

deeper depths. The depth of the low apparent resistivity varies from east to west. For MT 

sites 019, 022, and 025 the troughs for apparent resistivity occur at 1 s, 0.3 s, and 0.1 s, 

respectively (Fig. 4.10). The longer period to the west indicates the low resistivity unit 

occurs deeper in the west than the east. 
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Figure 4.9. Apparent resistivity curves from all 56 MT stations. From shorter to longer periods the general 
apparent resistivity trend is lower at shorter periods, increases at medium periods, and then decreases at 
longer periods for a low-high-low trend. Furthermore, at longer periods, the Zxy and Zyx curves separate 
indicating 2D or 3D structure at deeper depths. 
 
 

 

Figure 4.10. Apparent resistivity curves for MT sites 019, 022, and 025. The curves show a change in the 
low resistivity unit depth from west to east. The low apparent resistivity trough of the Zxy and Zyx curves for 
MT019 occur at 1 s.  The trough of the Zxy and Zyx curves for MT022 occur at 0.3 s. The trough of the Zxy 

and Zyx curves for MT025 occur at 0.1 s.  The decrease in periods from west to east indicates the low 
resistivity unit occurs deeper in the west than the east. 
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Phase tensor analysis. Dimensionality of the resistivity structure is determined by 

phase tensors. One-dimensional resistivity structures indicate a natural change in 

resistivity with depth due to compaction (James et al., 1987; Caldwell et al., 2004). Phase 

tensors are useful in the identification of lateral variations (2D and 3D resistivity 

structures) in the underlying regional resistivity (Caldwell, et al., 2004). Lateral 

variations in resistivity are a result of changes in porosity due to fault- and/or fracture-

related diagenesis, and/or changes in lithology.  A phase tensor (ϕ) is the ratio of the real 

(X) and imaginary parts (Y) of the complex impedance tensors (Z). 

@ = A'(B 

where 

! = A + DB 

The phase tensor is commonly plotted as an ellipse with a minimum and maximum 

principal axis and skew angle, b (measure of asymmetry) (Fig. 4.11A). In Figure 4.11B, 

ellipses are colored based on the skew angle. Yellow colors indicate a skew angle of 0 

and the red and blue colors indicate larger skew angles (± 5°). The larger the skew angle, 

the more asymmetric the phase tensor indicating higher dimension resistivity structures. 

For 1D resistivity structures, the minimum and maximum principal axes are the same 

(fmax = fmin) resulting in the phase tensor characterized by a yellow, circular shape. The 

phase tensor of a 2D resistivity structure is characterized with an elliptical shape and a 

skew angle close to zero (± 3°). For 3D resistivity structures the phase tensor is 

asymmetric, and hence, the phase tensor is characterized by blue or red color. 

Furthermore, a rapid direction change in the phase tensor’s principal axes between sites is 

indicative of 3D resistivity structure (Cherkose and Mizunaga, 2018). 
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Figure 4.11. A) Graphical representation of the phase tensor (from Caldwell et al., 2004). B) Phase tensor maps at 0.1, 0.01, 1, 10, 50 and 100 s indicated the 
spatial distribution of resistivity structures with depth. 
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In general, across the study area the shorter periods are characterized by 1D 

resistivity structures and then higher dimension 2D and 3D resistivity structures with 

depth (Fig. 4.11B). This observation is consistent with the separation in apparent 

resistivity curves at longer periods (Fig. 4.8). Specifically, at 0.01 s and 0.1 s the phase 

tensors are characterized by 1D structures as indicated by the yellow circles. An 

exception to this observation is the northeastern corner of the study area where the shape 

of the tensors is more elliptical, and the skew angle is higher indicating lateral variation 

in the resistivity structure. This increase in dimensionality is consistent with shallow 

structural features and northwest trending faults associated with Davis Dome (O’Donnell 

et al., 2001). The shape of the ellipses and the red, blue, and orange colors at periods 

greater than 1 s indicate 2D or 3D resistivity structures. Specifically, the abrupt changes 

in the ellipses shape at 10 s suggest possible faulting. Caution must be taken when 

interpreting phase tensors at longer periods as they are more affected by attenuation.  

 
Discussion 

 
 
Geothermal Resource Potential of Signals 
 

Temperature, heat flow, and permeability are the main geothermal attributes 

driving geological success (Jolie et al., 2021). Signal A has high geothermal resource 

potential because of the characteristically high heat flow, high K-Mg and silica 

geothermometers, and medium to high quaternary fault density. Therefore, signal A has a 

high likelihood of possessing higher temperature, heat flow and permeability compared to 

the other signals. Signal D has moderate geothermal potential because of the combination 

of high NaK-Giggenbach and NaK-Fourneir geothermometers values and low 
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temperature@2m and heat flow. Signal B has moderate geothermal potential because of 

high temperature@2m, heat flow, quaternary fault density and Li concentrations; 

however, low values for the geothermometers suggest subsurface temperatures may not 

be as suitable as other signals. Signal C has the lowest geothermal resource potential 

because no geothermal attributes have a major contribution to the signal. 

 
MT Inversion Interpretation 
 

Once a spatial location is determined through NMFk, MT can be a valuable tool 

to aid in the subsurface characterization of a potential geothermal resource by analyzing 

resistivity trends. We interpret the MT data of the McGregor geothermal system as 

having 3 mappable resistivity layers and 2 resistivity structures (Fig. 4.12).  

Layer 1 (L1) is characterized by the lowest resistivity (<8 Ωm) and is confined 

generally to the upper 500 m of the study area. L1 is thickest to the west and thins to 

about 300 m in the east (Fig. 4.12). L1 is thinnest in the northeast corner near Davis 

Dome. This regional low resistivity cap is most likely attributed to basin fill deposits. 

O’Donnell, Jr., et al. (2001) performed a seismic reflection survey over the same study 

area and observed a wedge-shaped feature above the bedrock that was attributed to 

alluvial fan deposits shed from the surrounding mountains. The observed thickening of 

L1 to the west in the MT data is consistent with the wedge-shaped feature observed in the 

seismic survey (Fig. 4.12).  

Layer 2 (L2) is a low resistivity (10 – 100 Ωm) layer with the top located 200 – 

600 m beneath the surface. In general, L2 is shallower to the east (~300 m) and deeper to 

the west (~ 600 m). Wells drilled in the northeast portion of the study area suggest the top 

of L2 corresponds to Paleozoic (Pennsylvanian limestone) bedrock (Finger and Jacobson, 
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1997; Barker et al., 2014). Finger and Jacobson (1997) observed and measured fracture 

permeability in core in nearly all Paleozoic units. Phase tensor analysis in the western 

part of the study area indicate 2D resistivity structure that suggests the presence of a 

possible fault system (Fig. 4.11). The thicker and lower resistivity L2 in the west may be 

attributed to an increase in fractures and/or faults that act as storage or conduits for 

geothermal fluids decreasing resistivity, i.e., L2 in the west is influenced by higher 

fractured and/or faulted units. 

 A low resistivity structure (RS1) is present below MT stations 039, 047, 051, 

052, and 053 in the southeast section of the study area (Fig. 4.12). The structure has 

similar resistivity as L2 but extends to 2000 m. The lower resistivity of RS1 is interpreted 

to be related to a deformation observed in surrounding wells. A thrust fault and 

overturned beds are observed in core from well 51-8 located to the northeast of cross 

section EW 3 suggesting deformation in the area (Fig. 4.12) (Finger and Jacobson, 1997). 

Units related to this structure are pervasively fractured and may provide a conduit for 

fluid flow and associated lower resistivity in RS1 as observed in the Figure 4.12 (Finger 

and Jacobson, 1997; O’Donnell et al., 2001).  

Layer 3 (L3) is characterized by the highest resistivity values (>100 Ωm) and the 

top is located about 250 – 2000 m beneath the surface (Fig. 4.12). In the east, the top of 

L3 is shallower (~500 m) and in the west the top of L3 is deeper (~1800 m).  
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Figure 4.12. Three north-south and east-west MT cross sections with interpreted resistivity layers and 
structures. The low resistivity to the west is interpreted as a fault system. The faults, fractures, and possible 
dissolution as a result of geothermal fluids increase porosity thus decreasing resistivity. Assuming 
temperature is consistent with a geothermal reservoir, the west-central part of the McGregor Range has the 
highest geothermal potential because of the increase in porosity and associated permeability attributed to 
the interpreted fault system. 
 
 

A high resistivity structure (RS2) is present in the northeast portion of the study 

area and has similar resistivity values to L3 (Fig. 4.12). The spatial location and cored 

wells in the area (45-5, 46-6, and 61-6) suggest RS2 coincides with structures related to 
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Davis Dome, an intrusive igneous laccolith (Fig. 4.12). Cored wells encounter felsite 

sills, a felsite laccolith, and Mississippian limestone and shale at relatively shallow depths 

between 360 m and 530 m (Finger and Jacobson, 1997; O’Donnell Jr. et al., 2001). The 

thin L2 layer above RS2 is most likely fractured Paleozoic strata, and high resistivity RS2 

is most likely a low permeability felsic body associated with the Davis Dome intrusion 

(O’Donnell Jr. et al., 2001). These interpretations are consistent with a structural high 

from a laccolith intrusion observed in seismic, velocity and gravity models from 

O’Donnell Jr, et al. (2001).     

The west-central section of L2 is interpreted as a possible fault system and has the 

highest geothermal potential. Geothermal reservoirs tend to have resistivity values 

between 10 – 60 Ωm similar to those observed in L2 (Cherkose and Mizunaga, 2018, 

Johnston et al., 1992, Yadav et al., 2020). The location where L2 is the thickest coincides 

with north-northwest trending, anomalously high thermal gradients (up to 140°C/km) 

delineated by Roy and Taylor (1980). According to Henry and Gluck (1981) the anomaly 

may be due to geothermal waters rising along a common fault zone or fractured bedrock 

adjacent to the fault zone which is consistent with the highly faulted and/or fractured 

units observed in L2 to the west (Fig. 4.12). Furthermore, the westward thickening of L2 

suggests the possibility for a corresponding increase in reservoir transmissivity and 

increase in well productivity (Hurter and Schellschmidt, 2003; Augustine, 2014).   

 
Limitations of MT  
 

MT data is limited by its hectometer-scale vertical resolution. Resistivity is 

measured in well 56-6 using wireline logs that have a vertical resolution of 0.6 m (Passey 

et al., 2006). When compared to inverted MT resistivity, the well logs provide more 
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detailed variations in resistivity (Fig. 4.13). For example, from 90 – 220 m, well log 

resistivity is characterized by high variability due to thinly interbedded limestones and 

shales that are not detected in the MT resistivity. Only general interpretations of fluid 

saturation and porosity can be made with MT data because of the low vertical resolution. 

 

 

Figure 4.13. Comparison of resistivity from wireline logs and MT. The resistivity from well logs provides 
more detailed variations in resistivity that are not detected from lower resolution, inverted MT resistivity 
data. Lithologies are based on petrophysical interpretations from accompanying gamma ray (GR), neutron 
and density porosity, photoelectric effect (PE), and deep resistivity logs (Alberty, 1992) and core cutting 
descriptions. 
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Lithologic interpretations from MT inversions are difficult to make since 

resistivity is highly influenced by porosity and associated pore-filling fluid (Ussher et al., 

2000). Because all rock matrices are highly resistive across the study area and saturated 

with similarly saline water, the primary control on resistivity variations is porosity. In 

general, lithification increases with depth and is associated with a decrease in porosity 

and permeability that is consistent with the observed increase in MT resistivity from L1 

to L3 (Fig. 4.12) (James et al., 1987).  Correlations between the four cored wells in the 

northeast portion of the study area indicate that L1 coincides with Quaternary basin fill 

that is under-compacted and highly porous and permeable, and therefore, characterized 

by low resistivity. Older strata associated with L2 and L3 are highly compacted and 

cemented and characterized by lower porosity and permeability and higher resistivity.  

The transition from L2 to L3 is controlled by porosity rather than lithology. For example, 

as seen in EW2, L2 thickness increases to the west suggesting an increase in porosity. 

The phase tensors in the west show 2D resistivity structures with increasing depth 

suggestive of a possible fault system (Fig. 4.12). Secondary pore networks derived from 

fluid-rock interactions induced by the high permeability fault system are interpreted to be 

filled with high salinity, low resistivity fluids. Also, cored wells 61-6, 45-5, 46-6, 56-6, 

and 51-5 indicate that L2 and L3 coincide with Paleozoic bedrock composed primarily of 

resistive carbonates. The resolution limitations of MT resistivity measurements mean that 

small-scale changes in carbonate lithologies are not detected and suggests that differences 

between L2 and L3 are not related to lithology (Fig. 4.13) (Finger and Jacobson, 1997).  
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Conclusion 

1) NMFk is a useful analytical tool to assess prospective geothermal regions through the

evaluation of variability in heat flow, porosity, permeability, and temperature. In the

southwestern portion of the Tularosa Basin at White Sands Missile Range, 4 signals

were established through NMFk that were evaluated for their geothermal resource

potential. Signal A is interpreted to have the highest geothermal potential due to a

combination of high heat flow, reservoir temperatures, and comparatively high

porosity and permeability. Signals B and D have moderate potential because of their

relatively low heat flow and temperature. Signal C has the lowest geothermal

resource potential because no geothermal attributes have a major contribution to the

signal.

2) MT inversions detect subsurface geothermal prospects based on resistivity. MT

provides insight into relative porosity and associated permeability that is related to the

subsurface resistivity trends detected in the MT inversion. From a MT survey from

McGregor Range, three resistivity layers (L1, L2 and L3) and 2 resistivity structures

(RS1 and RS2) are identified. The layers are inferred to be related to a combination of

depth-related compaction and lithification effects and the resistivity structures are

related to Davis Dome, an intrusive igneous laccolith, and differential faulting and

fracturing. A fault system is interpreted in the western portion of the study area as

indicated by the thickening of L2. Because low resistivity is a defining characteristic

of geothermal prospects, the western portion of the McGregor MT survey has the

highest geothermal potential.
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3) The low vertical resolution of MT data, in contrast with high-resolution borehole 

resistivity measurements, make it difficult to relate lithological variability and 

associated rock attributes with MT inversions. MT is limited in that the interpreted 

resistivity layers only provide insight into relative porosity and do not correlate with 

lithological or stratigraphic units. Only large-scale characterization of porosity and 

associated permeability can be made when interpreting MT inversions. 
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CHAPTER FIVE 
 

Conclusions 
 
 

Key findings of this dissertation project include the following.  

1) Decision tree-based machine learning models applied to core-calibrated 

petrophysical data predict facies, facies associations, and reservoir rock within the 

Late Devonian Duvernay Formation. Models for both reservoir rock (RESM) and 

facies associations (FAM) performed the best with accuracies of 88.1%. The 

model for depositional facies (FACM) had an accuracy of 60.3%. 

2) For decision tree-based machine learning models to be useful for Duvernay 

Formation subsurface rock-type prediction from wireline logs, classes should be 

thicker than 3m (10 ft) and encompassing at least 16% of the machine learning 

training dataset. Exceptions to these cutoffs are attributed to diagnostic 

sedimentological features observed in core. Facies with ambiguous features 

achieve lower than expected results, whereas facies with more distinctive 

characteristics have higher than expected results. 

3) The unsupervised machine learning model, NMFk, identifies 4 reoccurring 

petrophysical groups within the Duvernay Formation. When compared to 

deterministic petrofacies modelling, the NMFk groups resolve more detail within 

the Duvernay. Specifically, NMFk discriminates reservoir-defining petrophysical 

attributes that are difficult to recognize in core or require further core analyses 
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4) The objectivity of NMFk provides a more precise and consistent petrophysical 

interpretation that can be used to anticipate and document lithologic variability 

during core description and sampling. This minimizes the inconsistency and error 

that is inherent to subjective human core description and results in more 

consistent reservoir characterization.  

5) NMFk is a useful analytical tool to assess prospective geothermal regions through 

the evaluation of variability in heat flow, porosity, permeability and temperature. 

When applied to the Tularosa Basin in south-central New Mexico, 4 signals were 

established that each have varying geothermal potential. 

6) MT detects subsurface geothermal prospects by providing insight into relative 

porosity and associated permeability that influence subsurface resistivity trends 

detected in the MT inversion. Low resistivity (associated with porous strata 

saturated with conductive groundwater) is a defining characteristic of geothermal 

prospects and is interpreted to occur within the western portion of the McGregor 

Range in the southern part of the Tularosa Basin. MT is limited in that resistivity 

only provides insight into relative porosity and does not correlate with lithological 

or stratigraphic units.
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