

THE COMPLEXITY OF DETECTING SYMMETRIC
FUNCTIONS

Peter M. Maurer
Dept. of Computer Science

Baylor University
Waco, TX

ABSTRACT
The characterization of the symmetries of boolean functions is important both in automatic layout

synthesis, and in automatic verification of manually created layouts. It is possible to characterize the
symmetries of an n-input boolean function as an arbitrary subgroup, G, of Sn, the symmetric group of order
n. Given an expression e, which represents an n-input boolean function F, and a subgroup G of Sn, the
problem of whether F possesses symmetry G is an NP-complete problem. The concept of an orbit can be
used to characterize the various types of symmetry for a specified number of inputs. This classification can
then be used, along with a few partitioning rules to completely determine the symmetries of a boolean
function. This technique requires that the truth-table of a function be completely enumerated, and thus has
a running time proportional to 2n, where n is the number of inputs of the function. Some of the
mathematical concepts presented to support the NP-completeness result have intriguing possibilities for
circuit minimization.

THE COMPLEXITY OF DETECTING SYMMETRIC
FUNCTIONS

Peter M. Maurer
Dept. of Computer Science

Baylor University
Waco, TX

1. Introduction.

The study of symmetric boolean functions in n variables has a long history. The original motivation
for studying such functions was to simplify the analysis and design of relay-based switching networks[1,2].
(Although curiously enough, more recent research in circuit complexity shows that symmetric functions do
not necessarily have simple implementations[3].) Over the years attempts have been made to find efficient
algorithms for identifying symmetric functions[4] and for creating symmetric functions from general
boolean formulas [5,6,7]. The techniques for identifying symmetric functions require that the truth-table of
the function (or some variation thereof) be enumerated. When applied to boolean expressions, these
techniques are exponentially bounded with respect to the length of the expression. Indeed, Section 4
shows that the set of boolean formulas that represent non-totally-symmetric functions is NP-
complete[8,9,10].

Today there are still strong motivations for studying symmetric functions. First, the symmetry of
certain functions can be used to simplify routing problems encountered in the automatic synthesis of
integrated-circuit layouts. (This is generally known as the pin assignment problem[11].) For a pin-
assignment algorithm to work effectively, it must possess an accurate knowledge of the symmetries of the
gates used in the layout. Second, when manually-created integrated circuit layouts are automatically
verified against logic specifications[12], an accurate knowledge of gate-symmetries is essential to avoid
generating spurious error messages. In neither case is it necessary for the algorithms to dynamically
analyze the symmetry of a gate. It is sufficient for the analysis of a gate's symmetry to be determined "off-
line" and either recorded in a cell-library or hard-coded into the algorithms.

The primary purpose of this paper is to show that the problem of determining whether the function
represented by a boolean expression has a certain type of symmetry is NP-complete. This paper uses a
somewhat more general definition of symmetry than is found in most discussions of symmetric functions.
In particular, Section 2 of this paper introduces the concept of G-symmetry for a general permutation group
G. This more general definition is necessary because there exist functions that possess these types of
symmetries, and these functions must be correctly handled by pin-assignment and layout verification
programs. Section 2 introduces the mathematical background of the work presented in the paper. For the
most part, this background is taken from elementary group theory. Readers requiring a more
comprehensive introduction should consult an introductory text such as [13]. Section 3 presents the
primary NP-Completeness results. Section 4 suggests a method for determining the symmetries of a
specific function. Section 5 presents an analysis of the symmetries of 2, 3, and 4-input gates. Section 6
discusses opportunities for future research, and elaborates on some of the mathematical concepts
introduced in Section 2. Section 7 draws conclusions.

2. Mathematical Background.

Much of the existing work on symmetric boolean functions relies on an intuitive definition of
symmetry. This approach works quite well, and could be used to obtain the results presented in this paper.
However, there are some interesting twists to the formal mathematical definition of symmetry that will be
discussed in section 6. Furthermore, the mathematical approach tends to clarify some of the concepts that
are intuitively difficult to grasp. For this reason, this paper will lean more toward mathematical rigor than
toward intuition, although formalism for the sake of formalism will be avoided.

2

Intuitively, a symmetric function is on in which the inputs may be permuted, or rearranged, without
changing the value of the function. When a function is written as a logical expression, this is taken to
mean rearranging the variables of the expression. The primary problem with such a definition is that it
may be possible to represent a 6-input function (say) with an expression containing only four variables.
Some concepts discussed in this paper require us to describe the effect of rearranging all inputs of a
function, not just those that appear in an expression representing the function.

We begin with the concept of a permutation. A permutation on Xn, a set of n objects, is a one-to-one
function from Xn to itself. For simplicity, we will assume that Xn = {1,2,3, ... , n}. The set of all
permutations on a set of n objects forms a group called the symmetric group of order n, written Sn. Now,
suppose V is an n-dimensional vector space, and N is the set of all non-singular linear transformations from
V to itself. A representation of Sn is a homomorphism K from Sn to N. If K is an isomorphism, the
representation is said to be faithful.

Any n-input boolean function, F, can be considered to be a function on GF(2)n, the vector space of
dimension n, where GF(2) is the integers modulo-2. Let p∈Sn, and (a1,a2, ... ,an)∈GF(2)n. Let M(p)=Tp
be the transformation defined as follows: Tp(a1,a2, ... , an) = (ap(1),ap(2), ... , ap(n)). For all p∈Sn, Tp is

a non-singular linear transformation from GF(2)n to itself. M is a faithful representation of Sn called the
canonical modulo-2 representation of Sn. Although rearrangements of n-element vectors can be easily
understood without this formalism, there are modulo-2 representations of Sn other than the canonical
representation. These representations will be discussed briefly in Section 6. It is impossible to discuss
these other representations without recourse to the formal definition of a representation. In most cases, it
will not be necessary to formally distinguish between a permutation p and the linear transformation Tp
representing it. Therefore, we will speak of permutations whenever there is no possibility of confusion.

Let F be an n-input boolean function, and let p be a permutation, and let Fp be the composition of the
two. The function Fp is called a rearrangement of F. The permutation p is compatible with F if and only
if Fp=F. For any n-input function F, the set of all permutations compatible with F is a subgroup, G, of Sn.,
called the symmetry rule of the function. If G is equal to Sn, then F is said to be totally symmetric, if G
contains only the identity element, then F is said to be non-symmetric, if G is isomorphic to Sm, where
m<n, then F is said to be partially symmetric, otherwise F is said to be G-symmetric. Of course, the
concepts of rearranging the inputs of a boolean function, and rearranging the variables of a boolean
expression representing the function are equivalent.

The proofs presented in the next section require that certain operations be performed on expressions
rather than on the functions they represent. Furthermore, it is necessary to be able to characterize the
performance of these operations to permit a complete analysis of the computational complexity of various
algorithms. To this end, consider the grammar for boolean expressions pictured in Figure 1.

 <exp> -> <exp> + <term>
 <exp> -> <term>
 <term> -> <term> <factor>
 <term> -> <factor>
 <factor> -> <var>
 <factor> -> <var>'
 <factor> -> (<exp>)

Figure 1. A Grammar for Boolean Expressions.

For simplicity, the logical-complement operation has been omitted from the grammar illustrated in
Figure x, however, since complemented inputs are allowed, the grammar is sufficiently powerful to
describe any boolean function. Furthermore, it is obvious that adding the complement operation will not
significantly change the grammar Note that this grammar is known to be both unambiguous and LR(1).

3

Let e be an expression representing an n-input function. The value of e on an n-element vector v, is
given by the function eval(e,v), which is defined in Figure 2.. It is obvious from Figure x that "eval" is
polynomially bounded in the length of e.

 eval(exp+term,v) = OR(eval(exp,v),eval(term, v))
 eval(term factor,v) = AND(eval(term,v),eval(factor,v))
 eval((exp),v) = eval(exp,v)
 eval(ai ,v) = vi
 eval(ai ',v) = NOT(vi)

Figure 2. An Expression Evaluator.

The function Ci is used to complement the ith variable of an expression. The dual of this function in
the domain of boolean vectors is ci, which complements the ith element of a boolean vector. The
definition of Ci is given in Figure 3. Again, it is obvious from Figure 3, that Ci is polynomially bounded
in the length of e. Using the definition of Ci and the definition of "eval" it is possible to prove that Ci and
ci are equivalent.

 Ci(exp + term) = Ci(exp) + Ci(term)
 Ci(term factor) = Ci(term) Ci(factor)
 Ci((exp)) = (Ci(exp))
 Ci(var) = var' if var = ai, and var otherwise.
 Ci(var') = var if var = ai, and var' otherwise.

Figure 3. A Variable Complementer.

Finally, function Vp is the dual of Tp in the domain of boolean expressions.. The function Vp is
defined in Figure 4. The expression to which Vp is applied is assumed to represent an n-input function,
and the variable-names used in the expression are assumed to be taken from the set {a1, a2, ... , an}. (If the
expression is not already in this form, it can be placed in this form in polynomial time.)

 Let q = p-1.
 Vp(exp+term) = Vp(exp)+Vp(term)
 Vp(term factor) = Vp(term) Vp(factor)
 Vp((exp)) = (Vp(exp))
 Vp(ai) = aq(i)
 Vp(ai') = a'q(i)

Figure 4. A Variable Permuter.

If e represents a function F with "don't care" inputs,it is possible for Vp(e) to contain variable names
that do not occur in e. Like the other functions presented in this section, Vp is polynomially bounded.

The weight of an n-element boolean vector v is the number of "ones" in the vector. The function w(v)
represents the weight of v. As noted by Shannon[2], the value of a totally symmetric function depends
only on the weight of its input vector, not on the positions of the ones and zeros. This fact will be used in
the next section to demonstrate that certain functions are not totally symmetric.

4

3. Complexity Results

The first result is to show that the set of expressions that represent non-totally-symmetric functions is
NP-complete. Let EXP be the set of all boolean expressions, and let SYM be the set of boolean
expressions that represent totally symmetric functions. Let NSYM be the complement of SYM with
respect to EXP. Membership in NSYM is complicated by the fact that an expression e can represent
several different functions. It is conceivable that e represents a non-totally symmetric function on GF(2)n,
but is not in NSYM because it represents a totally symmetric function on GF(2)n+k for some k>0.
Happily, this situation does not occur, as the following lemma shows.

LEMMA. If e represents a non-totally symmetric function on GF(2)n then e represents a non-
totally symmetric function on GF(2)n+k for all k>0.

Proof. The proof is by induction on k with the basis given by the statement of the lemma.
Suppose e represents a non-totally symmetric function f on GF(2)n. Then there are two n-element
vectors of equal weight v1=(x1,x2, ... ,xn) and v2=(y1,y2, ... ,yn) such that f(v1)=1 and f(v2)=0.
Now v1'=(x1,x2, ... ,xn,0), and v2'=(y1,y2, ... ,yn,0) are of equal weight. And certainly,
eval(e,v1')=eval(e,v1)=1, while eval(e,v2')=eval(e,v2)=0. Therefore e represents a non-totally
symmetric function on GF(2)n+1.∴

This lemma shows that membership in NSYM can be established by showing that e represents a non-
totally symmetric function on GF(2)n, where n is the number of distinct variables in e. This fact will be
used in the proof of Theorem 1.

THEOREM 1. The set NSYM is NP-complete.

Proof. To prove NP-completeness, we must establish two things. First we must show that any
element of NSYM can be identified in polynomial time by a non-deterministic Turing Machine.
Second, we must exhibit a polynomially bounded function f such that for some known
NP-complete set X, f(x)∈NSYM if and only if x∈X. We will use SAT, the set of all satisfiable
boolean expressions as our known NP-complete set. To show that NSYM is in NP, consider the
following algorithm.

 Input e
 n<- the number of distinct variables in e.
 Choose an n-element vector v1.
 Choose an n-element vector v2.
 a<- the weight of v1
 b<- the weight of v2
 x<- eval(e,v1)
 y<- eval(e,v2)
 if a=b and x≠y then ACCEPT

Each each step of this algorithm is polynomially bounded. Since the procedure contains no loops,
the overall time bound is also given by a polynomial.

Given a boolean expression e let x and y be variables that do not appear in e. In general x and y
can be found in no more than O(n2) time where n is the length of e. Now let f(e)=x(e)+y '(e).
Assume that e∈SAT. Then there exists a v∈GF(2)k such that eval(e,v) = 1. Suppose v=(x1,x2, ...
,xk). Let v1=(x1, ... ,xk,1,0), and v2 = (x1, ... ,xk,0,1). Then

5

eval(f(e),v1)=
OR(AND(1,eval(e,v1)),AND(NOT(0),eval(e,v1)))=
OR(AND(1,eval(e,v)),AND(NOT(0),eval(e,v)))=
OR(AND(1,1),AND(1,1))=
OR(1,1)=1.

But

eval(f(e),v2)=
OR(AND(0,eval(e,v2)),AND(NOT(1),eval(e,v2)))=
OR(AND(0,eval(e,v)),AND(NOT(1),eval(e,v)))=
OR(AND(0,1),AND(0,1))=
OR(0,0)=0.

Since v1 and v2 obviously have the same weight, f(e)∈NSYM. Now suppose that e is not
satisfiable. Then eval(e,v)=0 for all v∈GF(2)n n>=k. Let v1=(x1,x2,...,xk+2) be an element of

GF(2)k+2. Then

eval(f(e),v1)=
OR(AND(xk+1,eval(e,v1)),AND(xk+2,eval(e,v1)))=
OR(AND(xk+1,eval(e,v)),AND(xk+2,eval(e,v)))=
OR(AND(xk+1,0),AND(xk+2,0))=
OR(0,0)=0.

Therefore f(e) is not satisfiable. Since f(e) is not satisfiable, it represents the totally symmetric
zero function.∴

Theorem 1 shows that the set of expressions that represent non-totally-symmetric functions is NP-
complete. Now, the symmetry group of a totally-symmetric function is as large as it could possibly be. If
a smaller symmetry group were chosen, would the problem of identifying functions not compatible with
the group become easier? Theorem 2 shows that the answer is no. Even if the "smallest possible"
symmetry group were chosen, the problem of identifying functions not compatible with the group remains
NP-complete. The group chosen for Theorem 2 is one containing the identity element and a single 2-cycle.
Recall that a 2-cycle is a permutation that exchanges two elements of X sub n, say i and j, and leaves the
other elements of X sub n intact. It is written (i j).

THEOREM 2. Let i and j be integers such that i<j. Let EXP be the set of boolean expressions,
and let Yi,j be the set of expressions in EXP that represent functions compatible with the
permutation group {I,(i j)}. The complement of Yi,j in EXP, denoted NYi,j, is NP-complete.

Proof. Note that if an n-input boolean function f is compatible with (i , j) then for all values of
(x1,...,xi-1,xi,xi+1,...,xj-1,xj,xj+1,...,xn),
f(x1,...,xi-1,1,xi+1,...,xj-1,0,xj+1,...,xn)=
f(x1,...,xi-1,0,xi+1,...,xj-1,1,xj+1,...,xn).
The following algorithm shows that NYi,j is in NP.

Choose n-2 boolean values x1,...,xi-1,xi+1,...,xj-1,xj+1,...,xn ;
a<- f(x1,...,xi-1,1,xi+1,...,xj-1,0,xj+1,...,xn);
b <- f(x1,...,xi-1,0,xi+1,...,xj-1,1,xj+1,...,xn);
If a != b ACCEPT ;

6

To show that NYi,j is NP-hard, we will exhibit a polynomial-time mapping g from the set of
expressions to EXP such that g(e)∈Yi,j if and only if e∈SAT. The function g is defined as
follows. If e is a boolean expression, then g(e) = xi(e+Ci(e)+Cj(e)+Cj(Ci(e))). If e is not
satisfiable, then neither is Ci(e). This, in turn implies that if e is not satisfiable then neither is
g(e), by the following calculation.

eval(g(e),v)=
eval(xi(e+Ci(e)+Cj(e)+Cj(Ci(e))),v)=
AND(eval(xi,v),
 OR(OR(OR(eval(e,v),eval(Ci(e),v)),eval(Cj(e),v)),eval(Cj(Ci(e)),v)))=
AND(eval(xi,v),OR(OR(OR(0,0),0),0))=
AND(eval(xi,v),0)=0.

Any non-satisfiable expression represents the zero function which is totally symmetric and
compatible with any permutation. So if e is not satisfiable, then g(e)∈Yi,j. Now suppose e has a
satisfying assignment (x1,...,xi-1,xi,...,xj-1,xj,...,xn). Then Ci(e) has a satisfying assignment
(x1,...,xi-1,NOT(xi),...,xj-1,xj,...,xn), and e+Ci(e) has (at least) two satisfying assignments,
(x1,...,xi-1,0,...,xj-1,xj,...,xn) and
(x1,...,xi-1,1,...,xj-1,xj,...,xn).
By a similar argument, e+Ci(e)+Cj(e)+Cj(Ci(e)) has (at least) four satisfying assignments:
(x1,...,xi-1,0,...,xj-1,0,...,xn),
(x1,...,xi-1,1,...,xj-1,0,...,xn),
(x1,...,xi-1,0,...,xj-1,1,...,xn), and
(x1,...,xi-1,1,...,xj-1,1,...,xn).

Therefore:

eval(g(e),(x1,...,xi-1,0,...,xj-1,1,...,xn))=
AND(eval(xii,(x1,...,xi-1,0,...,xj-1,1,...,xn)),1)=
AND(0,1)=0.

But

eval(g(e),(x1,...,xi-1,1,...,xj-1,0,...,xn))=
AND(eval(xii,(x1,...,xi-1,1,...,xj-1,0,...,xn)),1)
AND(1,1)=1.

Thus, if e is satisfiable, g(e)∈NYi,j..∴

Since the set of expressions that represent functions not compatible with a permutation group is NP-
complete when the group is as large as possible, and is NP-complete when the group is as small as
possible, it is reasonable to ask whether it is always NP-complete. Theorem 7 shows that the set of
expressions that represent functions not compatible with an arbitrary permutation is NP-complete, thus
extending the NP-completeness result to all cyclic subgroups of Sn. A corollary to Theorem 7 establishes
NP-completeness for all permutation groups.

7

THEOREM 3. Let p be an arbitrary permutation on a set of k elements. Let Yp be the set of
expressions in EXP that represent functions that are compatible with p, and let NYp be the
complement of Yp with respect to EXP. The set NYp is NP-complete.

Proof. The following algorithm shows that NYp is in NP.

Input expression e.;
Choose a boolean vector a;
b<- p(a);
x<- eval(e,a);
y<- eval(e,b);
if x≠y then ACCEPT;

To show that NYp is NP-hard, first assume that p is represented as a product of disjoint cycles. If
p contains a 2-cycle, then the proof of Theorem 2 applies. Therefore assume that the shortest
cycle of p is a j-cycle, where j>2. Assume that the j-cycle is of the form (s,q,r,...), where s, q, and
r are integers. Let e be an arbitrary boolean expression, and let g1 be the function defined as
follows. g1(e)=e+Cq(e)+Cr(e)+Cq(Cr(e)). If e is not satisfiable, then neither is g1(e), however if
e is has a satisfying assignment v, then g1(e) has (at least) four satisfying assignments, v, cq(v), ...
. Now let g2 be the function g1(Vp(e)). If e is not satisfiable, then neither is g2(e), however if e
has a satisfying assignment v, then g2(e) has (at least) four satisfying assignments of the form
Tp(v), Tp(cq(v)), Tp(cr(v)), Tp(cq(cr(v))). Finally, let g be the function g(e) = xq(g1(e)+g2(e)).
From the above it is clear that g1(e) has a satisfying assignment v with xq=1 and xr=0 such that
Tp(v) is a satisfying assignment of g2(e). Therefore both v and Tp(v) satisfy g1(e)+g2(e). Note,
however, that in bold Tp(v), xq=0. Therefore eval(g(e),v)= AND(eval(xq,v),1)= 1 , and
eval(g(e),Tp(v))= AND(eval(xq,Tp(v)),1)= 0. So if e is satisfiable, then g(e) is not compatible
with p. On the other hand, if e is not satisfiable, then neither is g(e). A non-satisfiable expression
represents the totally symmetric zero function, which is compatible with any permutation ∴

COROLLARY. Given an arbitrary permutation group G ⊆ Sn, let YG be the subset of
expressions in EXP that represent functions compatible with G, and NYG be the complement of
YG with respect to EXP. The set NYG is NP-complete.

Proof. Modify the algorithm used in the proof of Theorem 3 to non-deterministically choose a
permutation p. For some element q of G, create a function gq, in the manner of the proof of
Theorem 3. Use this function to show NP-hardness in the manner of Theorem 3.∴

4. Orbits in GF(2)n.

One way to determine the symmetry rule of an n-input function F would be to test every element of Sn
to determine if it is compatible with F. Unfortunately, this process can be quite time consuming. The
concept of an orbit of a subgroup can simplify the process of obtaining the symmetry rule of a gate. To
begin with, the orbit of a particular element v∈GF(2)n under a subgroup H⊆Sn is the set of all elements of

GF(2)n onto which v is mapped by elements of H, and is written O(v,H). That is, O(v,H)={Tp(v)|p∈H}.

Belonging to the same orbit is an equivalence relation, so every subgroup H partitions GF(2)n into disjoint
subsets. It is possible for several different subgroups to have the same partitioning, but for each

8

partitioning, there will be one largest subgroup with that partitioning, in the sense that this subgroup will
contain all others with the same partitioning.

Now, if H is the symmetry rule of a function F, and a∈O(b,H), then by the definition of compatibility,
F(a)=F(b). Therefore, the function F can be viewed as a function defined on the orbits of H. Not
surprisingly, a∈O(b,Sn) if and only if a and b have the same weight. This implies that if a and b have

different weights then a∉O(b,H) for all subgroups H⊆Sn.

Now, let c(v) be the function that complements every element of the vector v, and if X⊆GF(2)n, let
c(X) be the set obtained by applying the function c to every element of X. It is easy to show that if p∈Sn

and a∈GF(2)n, then c(p(a))=p(c(a)). This implies that c maps orbits to orbits, in other words,
c(O(a,H))=O(c(a),H).

Given an n-input function F whose truth table is known, GF(2)n can be partitioned as follows. First,
the elements of GF(2)n are partitioned according to weight. Next each set X from the first partitioning is
split into two sets X1={x|F(x)=1 & x∈X} and X0={x|F(x)=0 & x∈X}. (One of X1 or X0 may be empty.)
Finally, c(Y) is computed for each subset Y in the second partition. If c(Y) is a proper subset of some set Z
of the second partition, then Z is split into two sets c(Y) and Z-c(Y). This last process continues until no
further partitioning is possible. The symmetry rule of F.is the largest subgroup of Sn that preserves the
third partition. With respect to a boolean expression e, this process is exponentially bounded, because in
the worst case the length of the truth table of a function represented by an expression e, is an exponential
function of the length of e. However, the NP-Completeness results of Section x, suggest that this is the
best we can do for an arbitrary expression e.

5. An Analysis of 2-, 3-, and 4-Input Functions.

When computing the symmetries of different n-input gates, it quickly becomes obvious that some
symmetry rules are fundamentally different from one another, and some are "the same, but applied to
different inputs." This distinction is more than intuitive and can be used to simplify the categorization of
symmetry rules. Mathematically, the symmetry rules that are "the same but applied to different inputs," are
conjugates of one another. Formally, a conjugate of a permutation p∈Sn is the permutation q-1pq where q
is any element of Sn. If H is a subgroup of Sn, and p is any element of Sn, then the conjugate of H by p,

written Hp, is the set (p-1qp | q∈H}. It is easy to show that Hp is also a subgroup of Sn. In fact if H is the

symmetry rule of an n-input function F, then Hp is the symmetry rule of Fp. (Recall that the function Fp is
the definition of a rearrangement of a function F.)

The relationship of being conjugate to one another is an equivalence relation on the subgroups of Sn.
Because of this, it is possible to enumerate symmetry rules for a particular n by listing one example from
each conjugacy class. To clarify the concept of a conjugacy class, consider the example of a 4-input
function which is partially symmetric with respect to its first two inputs. The symmetry-rule of this
function would be H={I, (1 2)}. The conjugates of H are all of the form K={I, (i j)}, where 1≤i<j≤4, that is
the symmetry rules that specify partial symmetry with respect to inputs i and j. Conceptually, the
permutation of the form p-1qp is constructed so that p moves inputs i and j to positions 1 and 2, then p, an
element of H, is applied to inputs 1 and 2, and then p-1 is used to move inputs 1 and 2 back to positions i
and j.

In the remainder of this section we enumerate the various symmetry rules for 2, 3, and 4-input boolean
functions. First, 2-input functions cannot be partially symmetric or G-symmetric, but they can be totally
symmetric. The following theorem characterizes all symmetric 2-input functions.

THEOREM 4. A 2-input gate G is totally symmetric if and only if G(0,1)=G(1,0).

There are 16 2-input functions, and 8 totally symmetric 2-input functions. Thus half of all 2-input
functions are totally symmetric. An example of a totally symmetric 2-input function is ab while an

9

example of a non-symmetric 2-input function is ab'. Gates with three inputs are also simple to categorize.
There are only three forms of symmetry.

THEOREM 5. A 3-input gate is either non-symmetric, totally symmetric, or partially symmetric
with a symmetry rule conjugate to the subgroup {I, (1 2)}.

There are 256 3-input functions, 16 of which are totally symmetric. Since {I, (1 2)} has six distinct
orbits in GF(2)3, there are 64 functions compatible with {I, (1 2)}. However, 16 of these are totally
symmetric, so there are 48 functions with symmetry rule {I, (1 2)}. There are two conjugates of the
subgroup {I, (1 2)}, and for each there are 48 functions that possess it as a symmetry-rule. Therefore, there
are 144 partially symmetric and 96 non-symmetric 3-input gates. Examples of the three types of functions
are abc, ab+c, and a'b+c.

The symmetries of 4-input gates are considerably more interesting than those for 2- and 3-input gates,
as the following theorem shows.

THEOREM 6. A 4- input gate is either non-symmetric, totally symmetric, partially symmetric
with a symmetry rule conjugate to {I, (1 2)} or {I, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}, or G-
symmetric with a symmetry rule conjugate to one of the following three subgroups
{I, (1 2)(3 4)},
{I, (1 2), (3,4), (1 2)(3 4)}, or
{I, (1 2), (3 4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 4 2 3), (1 3 2 4)}.

The function abcd is an example of a totally-symmetric function, while the function ab'+c+d' is an
example of a non-symmetric function. The functions ab+cd' and abc+d are examples of the two types of
partial symmetry. The function ac'+bd' is an example of the first type of G-symmetry, while ab+c'd' is an
example of the second. The third type of G-symmetry is exemplified by the function ab+cd.

6. Opportunities for Future Research.

One opportunity for future research is the complexity of the problem of determining whether a
function is partially symmetric or G-symmetric, without necessarily determining the symmetry rule. In
Theorem 3, it is assumed that the permutation or the symmetry rule has already been given. The question
of whether a function is partially symmetric with respect to any inputs seems more difficult to answer than
the question of partial symmetry with respect to a specific set of inputs, however the complexity of this
problem is currently unknown.

Another avenue for future research is the investigation of non-canonical modulo-2 representations of
Sn. As mentioned in section 2, the mapping from Sn to the set of linear transformations on the vector

space GF(2)n defined by M(p)=Tp is an isomorphism, called the canonical modulo-2 representation of Sn.
It is possible to consider a general modulo-2 representation of Sn, which is a homomorphism K from Sn to

the set of linear transformations on GF(2)n. Recall that if K is an isomorphism, then K is said to be a
faithful representation of Sn. The faithful representations of Sn are quite easy to obtain. If L is a non-

singular linear transformation from GF(2)n to itself, let ML(p)=L-1M(p)L. Any faithful representation of
Sn must be of the form ML for some non-singular linear transformation L.

Let K be a representation of Sn. If p∈Sn, q=K(p), and F is an n-input boolean function such that
Fq=F then p is K-compatible with F. Using this relationship, it is possible to define symmetry with respect
to a general representation K, in the same way as symmetry was defined for the canonical representation
M. The terms "totally K-symmetric," "partially K-symmetric," "K-G-Symmetric," and "non-K-symmetric"
are defined in the obvious way.

For a representation ML the transformation L can be used for logic simplification by observing that

for any n-input boolean function F, FL-1L=F, and that in many cases, FL-1 is simpler to implement than F.
Now, if it is necessary to implement several functions F1, ..., Fk on the same set of inputs, it may be

10

advantageous to first transform the input vector using L and then implement F1L-1, ... , FkL-1. As an
example, let F be the 4-input even-parity function. The 2-level boolean equation for this function is
a'b'c'd'+abc'd'+ab'cd'+ab'c'd+a'bcd'+a'bc'd+a'b'cd+abcd. Let L be the linear transformation defined by the
following matrix.

1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

⎛
⎜
⎜⎜⎝

⎞
⎟
⎟⎟⎠

The boolean equation for FL-1 is a'c'+bd. Of course to implement FL-1, one must first implement L.
The implementation of L requires 3 2-input exclusive OR gates. Although the reduction in the complexity
of the implementation of F will be negated by the necessity of implementing L, if several functions can be
simplified using a single linear transformation L, the savings may be considerable. Furthermore if
K=L-1ML, and F is totally K-symmetric (partially K-symmetric, K-G-symmetric) then FL-1 is totally
symmetric (partially symmetric, G-symmetric).

The concept of non-canonical modulo-2 representations of Sn is an intriguing idea that merits more
research.

7. Conclusion.

It has been shown that the symmetry of an n-input boolean function can be expressed as a subgroup of
Sn, the symmetric group of order n. Given an arbitrary subgroup G of Sn, the problem of determining
whether the function represented by an expression e possesses G as a symmetry rule is NP-complete,
regardless of the structure of G. The paper presents a method for determining the symmetry rule of a
boolean function. This technique requires that one enumerate the truth table of the function, so it is
exponentially bounded in the number of function inputs. Furthermore, the method requires a knowledge of
the orbits in GF(2)n of every subgroup of Sn. These restrictions imply that the technique is limited to a
small number of inputs, (probably less than 10,) but this is precisely the type of function for which
determination of the symmetry rule is essential.

An analysis of 2, 3, and 4 input gates is presented, along with examples of functions that exhibit each
type of symmetry. Finally opportunities for future research are presented. For the most part, these are
based on the mathematical concepts introduced in Section 2. In particular, non-canonical modulo-2
representations of Sn appear to merit more investigation.

11

REFERENCES
1. C. E. Shannon, "A Symbolic Analysis of Relay and Switching Circuits," AIEE Transactions, Vol. 57,

pp. 713-723, 1938.

2. C. E. Shannon, "The Synthesis of Two-Terminal Switching Circuits," Bell Systems Technical
Journal, Vol. 28, pp. 59-98, Jan., 1948.

3. A, Salomaa, Formal Languages,Academic Press, New York, 1973.

4. A. Mukhopadhyay, "Detection of total or Partial Symmetry of a Switching Function with the Use of
Decomposition Charts," IEEE Transactions on Electronic Computers, Vol. EC-12, pp. 553-557, Oct.,
1983.

5. W. H. Kautz, "The Realization of Symmetric Switching Functions With Linear-Input Logical
Elements," IRE Transactions on Electronic Computers, Vol. EC-10, pp. 371-378, Sept., 1961.

6. S. S. Yau and Y. S. Tang, "Transformation of an Arbitrary Switching Function to a Totally
Symmetric Function," IEEE Transactions on Computers, Vol. C-20, pp. 1606-1609, Dec., 1971.

7. B. Dahlberg, "On Symmetric Functions With Redundant Variables - Weighted Functions," IEEE
Transactions on Computers, Vol. C-22, pp. 450-458, May, 1983.

8. S. A. Cook, "The Complexity of Theorem Proving Procedures," in Proc. Third Annual ACM Symp.
on Theory of Computing, 1971, pp. 151-158.

9. R. M. Karp, "Reducibility Among Combinatorial Problems," in Complexity of Computer
Computations, R. E. Miller and J. W. Thatcher, Eds.,m New York: Plenum, 1972, pp. 85-103.

10. M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, New York: W. H. Freeman and Co., 1979.

11. Brady, H. "An Approach to Topological Pin Assignment," IEEE Transactions on Computer Aided
Design, Vol. CAD-3, pp. 250-255, Jul. 1984.

12. P. M. Maurer, A. D. Schapira "A Logic-to-Logic Comparator for VLSI Layout Verification", IEEE
Transactions on Computer Aided Design of Integrated Circuits and Systems, Vol. 7, No. 8, pp.897-
907, Aug 1988.

13. D. J. S. Robinson, A Course in the Theory of Groups, New York: Springer-Verlag, 1982.

