
ABSTRACT

Static Analysis-based Software Architecture Reconstruction And Its Applications in
Microservices

Dipta Das, M.S.

Mentor: Tomas Cerny, Ph.D.

Microservice architecture (MSA) is the predominant building block of mod-

ern cloud-based enterprise applications. MSA has several advantages over monolithic

applications like scalability and maintainability, but it comes with some downsides.

Modern enterprise applications consist of hundreds of individual microservices and

lack a unified view. Due to this lack of unified view and distributed nature, security

and anomaly assessments are harder to automate for MSA. Software Architecture

Reconstruction (SAR) can be used to construct a centralized perspective for MSA.

This thesis proposes an approach to automate the process of SAR using static code

analysis. Also, we extend SAR for containerized microservices which are typically

deployed and managed using dedicated orchestration tools like Kubernetes. In addi-

tion, we demonstrate two applications of SAR in MSA: Role-Based Access Control

(RBAC) inconsistency detection and code smell detection. Finally, we verify our

approach through case studies on two real-world benchmark projects.

Static Analysis-based Software Architecture Reconstruction And Its Applications in
Microservices

by

Dipta Das, B.S.

A Thesis

Approved by the Department of Computer Science

Erich Baker, Ph.D., Chairperson

Submitted to the Graduate Faculty of
Baylor University in Partial Fulfillment of the

Requirements for the Degree
of

Master of Science

Approved by the Thesis Committee

Tomas Cerny, Ph.D., Chairperson

Eunjee Song, Ph.D.

Enrique Blair, Ph.D.

Accepted by the Graduate School

August 2021

J. Larry Lyon, Ph.D., Dean

Page bearing signatures is kept on file in the Graduate School.

Copyright © 2021 by Dipta Das

All rights reserved

TABLE OF CONTENTS

LIST OF FIGURES . vii

LIST OF TABLES . viii

ATTRIBUTION . ix

ACKNOWLEDGMENTS . xi

DEDICATION . xii

1 Introduction . 1

2 Background and Related Works . 4

2.1 Microservice Architecture . 4

2.2 Containers and Their Orchestration 5

2.3 Static Code Analysis . 6

2.4 Software Architecture Reconstruction 7

2.5 Role-Based Access Control . 9

2.6 Code Smells . 11

3 On Automated RBAC Assessment By Constructing Centralized Perspective
For Microservice Mesh . 13

3.1 Abstract . 13

3.2 Introduction . 13

3.3 Related Work . 16

3.3.1 Role-Based Access Control . 16

iv

3.3.2 Software Architecture Reconstruction 20

3.4 Proposed Method . 22

3.5 Case Study . 32

3.6 Threats to Validity . 38

3.6.1 Internal Threats . 39

3.6.2 External Threats . 40

3.7 Conclusion . 40

4 Automated Code-Smell Detection in Microservices Through Static Analysis:
A Case Study . 42

4.1 Abstract . 42

4.2 Introduction . 42

4.3 Related Work . 44

4.4 Microservice Code Smell Catalogue 47

4.5 Code Analysis and Extension for Enterprise Architectures 50

4.6 Proposed Solution to Detect Code Smells 52

4.6.1 ESB Usage . 54

4.6.2 Too Many Standards . 54

4.6.3 Wrong Cuts . 55

4.6.4 Not Having an API Gateway 55

4.6.5 Shared Persistency . 56

4.6.6 Inappropriate Service Intimacy 56

4.6.7 Shared Libraries . 56

4.6.8 Cyclic Dependency . 57

4.6.9 Hard-Coded Endpoints . 57

4.6.10 API Versioning . 58

v

4.6.11 Microservice Greedy . 59

4.7 Case Study . 59

4.7.1 Train Ticket . 60

4.7.2 Teacher Management System 64

4.7.3 Validity Threats . 67

4.8 Future Trends . 69

4.9 Conclusions . 70

5 Software Architecture Reconstruction for Containerized Microservices . . . 71

5.1 Proposed Method . 71

5.2 Case Study . 72

5.3 Threats to Validity . 75

6 Conclusion And Future Work . 77

BIBLIOGRAPHY . 79

vi

LIST OF FIGURES

3.1 A sample user-defined role hierarchy tree. 28

3.2 Construction of combined method-call graphs. 30

3.3 Reduction and aggregation of RBAC roles. 32

3.4 Role hierarchy tree of the TMS application. 33

3.5 Inter microservice REST communications in TMS. 35

3.6 Conflicting hierarchy violation among CMS and UMS. 36

3.7 Conflicting hierarchy violation within QMS. 36

3.8 RBAC assessment pseudocode. 39

4.1 Example ESB Usage . 47

4.2 Shared Persistency . 49

4.3 Inappropriate Service Intimacy . 49

4.4 MSANose architecture diagram. 54

4.5 Train Ticket testbed architecture diagram. 63

4.6 Inter microservice REST communications of TMS application. 65

5.1 Inter microservice REST communications of TMS containers. 76

vii

LIST OF TABLES

1 Contributions of authors for an article included in Chapter 3 ix

2 Contributions of authors for an article included in Chapter 4 x

3.1 JAVA EE security annotations . 25

3.2 Annotations used in TMS project . 33

3.3 Runtime against TMS testbed . 38

4.1 Comparison of architectural code smell detection tools. 50

4.2 Case study on Train Ticket benchmark. 61

4.3 Case study on TMS benchmark. 64

viii

ATTRIBUTION

Chapter three of this paper is duplicated from the published journal article

“On Automated RBAC Assessment By Constructing Centralized Perspective For

Microservice Mesh” (Das et al. 2021). Contributions of each author are listed bellow

and summarized in Tables 1.

(1) Dipta Das analyzed the existing works, defined the problem, designed the

solution, performed experiments, prepared the contents (text/figures/tables),

performed major revisions, and approved the final draft.

(2) Andrew Walker proposed the inclusion of Software Architecture Reconstruc-

tion (SAR), reviewed the paper, and approved the final draft.

(3) Vincent Bushong performed minor revisions, reviewed the paper, and ap-

proved the final draft.

(4) Jan Svacina reviewed the paper and approved the final draft.

(5) Tomas Cerny administrated the research, reviewed the paper, and approved

the final draft.

(6) Vashek Matyas reviewed the paper and approved the final draft.

Table 1. Contributions of authors for an article included in Chapter 3

Contribution Dipta
Das

Andrew
Walker

Vincent
Bushong

Jan
Svacina

Tomas
Cerny

Vashek
Matyas

Design X

Experiment X

Content X X

Revision Major Minor

Review X X X X X X

Administration X

ix

Chapter four of this paper is duplicated from the published journal article

“Automated Code-Smell Detection in Microservices Through Static Analysis: A Case

Study” (Walker et al. 2020). Contributions of each author are listed bellow and

summarized in Tables 2.

(1) Andrew Walker analyzed the existing works, defined the problem, designed

the solution, performed experiments, prepared the contents (text/figures/ta-

bles) for initial submission, and approved the final draft.

(2) Dipta Das analyzed the existing works, designed the solution for SAR, re-

worked the experiments for new submission after initial rejection, prepared

the contents (text/figures/tables), performed major revisions, and approved

the final draft.

(3) Tomas Cerny administrated the research, reviewed the paper, and approved

the final draft.

Table 2. Contributions of authors for an article included in Chapter 4

Contribution Andrew Walker Dipta Das Tomas Cerny

Design X X

Experiment X X

Content X X

Revision Major

Review X X X

Administration X

x

ACKNOWLEDGMENTS

First and foremost, I have to thank my parents for their endless support and

encouragement. I could never have made it to this point without my parents. I must

express my immense gratitude to Dr. Tomas Cerny for his guidance through this

entire process. He has been incredibly generous with his time and offered invaluable

advice and encouragement. I have learned so much through his knowledgeable in-

sights, not only about research but also about time and responsibility management. I

am truly honored to have worked with such a remarkable person. I like to thank the

entire faculty of the Department of Computer Science for their support and valuable

time. I learned a lot from the courses I took at Baylor. In particular, I want to

thank Dr. Greg Hamerly for his effort in effectively designing course materials, which

significantly improved my brainstorming capability. I like to thank Andrew Walker

and other coauthors of my journal articles for their valuable contribution. Finally, I

am grateful to God for everything in my life.

xi

This thesis is dedicated to my parents.

xii

CHAPTER ONE

Introduction

In modern enterprise applications, Microservice Architecture (MSA) is the

dominant approach (NGINX, Inc. 2015). There are numerous benefits to using this

architecture, which has contributed to its popularity (Cerny et al. 2018). Microser-

vices are self-contained modules that aim to reduce coupling among the services. The

distributed nature of a microservice-based application allows for greater flexibility

for the developer. For example, separate teams can work on separate modules inde-

pendently. It allows developers to chose different languages and frameworks without

thinking about the compatibility issue with other modules. Also, since microservices

are self-contained, it is possible to deploy each microservice independently. Similarly,

it allows developers to fix bugs and release new versions just for a single module. It

improves the scalability and maintainability of the applications. As microservices are

loosely coupled, if one module fails, others can still operate which ensures increased

availability. For example, in a e-commerce system, if the search module crashes,

payment module can still operate. It was not possible in traditional monolithic de-

ployment.

Large enterprise applications highly depend on automated tools for security

and anomaly assessments. However, in MSA, the security aspects gradually become

more complex as the number of microservices grows. Modern microservice-based

applications have a large number of distinct microservices created individually by

separate teams due to their high feature set and operational complexity. These

microservices typically communicate with each other using Representational State

Transfer (REST) calls (Vural et al. 2017; Salah et al. 2016). Enforcing a strong

security solution for such systems is time-consuming for developers and may result

1

in security disagreements among microservices. This is because individual developers

are only aware of a subset of the microservices they manage but have no grasp of

the bigger picture. Even system architects may not have a comprehensive view of

the application since many of those microservices may not have been included in the

initial plan of the application but were added later.

Thus, we need an automated approach to reconstruct the architecture of the

whole application to apply robust security solutions and run security assessments.

This process is known as Software Architecture Reconstruction (SAR). In this paper,

we present an approach to automate SAR by identifying inter-microservice REST

calls. We utilized static code analysis in our proposed solution to extract the re-

quired information from the applications’ codebase. Static code analysis can be done

either through source code analysis or bytecode analysis. While bytecode analysis is

simpler than source code analysis, thanks to canonicalization done by compilers, not

all languages support bytecode. Our approach is generalized for both bytecode and

source code which allows us to apply it for both interpreted and compiled languages.

Unlike runtime analysis like penetration testing, the static analysis does not require

an application to be deployed and hence is more cost-effective.

SAR can be leveraged to answer numerous research questions. In this pa-

per, we demonstrate two use cases to verify the capability of SAR generated by our

proposed method. One identifies Role-Based Access Control (RBAC) inconsistencies

among microservices and another detects MSA-specific code smells. Both cases are

solely based on static analysis. Furthermore, we extend our proposed method of SAR

for containerized microservices which shows it is possible to apply static analysis on

containers.

The primary security requirement of an application is to guarantee that it

can only be accessed by authorized users. Role-Based Access Control (RBAC) is a

2

common technique of protecting REST services in which each application user is allo-

cated to a set of roles that grant access to various parts of the system. Due to varying

levels of abstraction, poor coding practices, and interaction with third-party services,

finding discrepancies across RBAC rules in a large system is a time-consuming and

complex process. The ability to automatically identify potential security flaws can

greatly minimize the chance of such events.

Code smells are irregularities within codebases (Fowler 2018). They have no

bearing on an application’s performance or correct functionality. They can, however,

have an impact on a wide variety of program quality traits such as reusability, testa-

bility, and maintainability. Thus, it is critical that code smells are properly recognized

and handled in an application (Fowler 2018; Yamashita and Moonen 2013a). Because

of the distributed structure of the application, microservices present a unique scenario

in terms of code smells. Inter-module concerns, rather than intra-module ones, are

frequently the subject of microservice-specific code smells. Due to this, traditional

code smell detection tools fail to operate on MSA and so it is required to revisit them

for MSA.

We verify both use cases through rigorous case studies where we used two real-

world benchmark applications. Our results show that it is possible to automate the

security and anomaly assessments for MSA by augmenting SAR with static analysis.

The rest of the thesis is organized as follows. Chapter 2 discusses the background

and related works for MSA, containers, SAR, static analysis, RBAC, and code smells.

Chapter 3 presents our proposed solution for SAR and how it can be utilized to detect

RBAC inconsistencies. Chapter 4 describes how we identified eleven MSA-specific

code smells using SAR. Chapter 5 represents the extension of our proposed method

of SAR for containerized microservices. Lastly, Chapter 6 concludes the work and

highlights future perspectives.

3

CHAPTER TWO

Background and Related Works

2.1 Microservice Architecture

As the recent business trend pushes towards mass size, cloud computing, and

distribution, microservices are becoming the leading design in modern enterprise sys-

tems (NGINX, Inc. 2015). A few years ago, the trend in distributed system in-

tegration was to modularize functionality into services and utilize Service-Oriented

Architecture (SOA) (Buelow et al. 2009) with centralized Enterprise Service Bus

(ESB) (Cerny et al. 2018) to route messages and interconnect services. ESB can be

used to centralize processes and apply restrictions where new services can be easily

integrated into the existing process flow. Although designed for distributed systems,

such architecture of SOA leads to a monolithic deployment and often uses a single

schema for data modeling. It limits developers’ ability to independently evolve cer-

tain modules (Cerny et al. 2018) that further impedes the cloud-friendliness of the

application (Kratzke and Quint 2017).

Because of the above limitations, the software industry has pushed for innova-

tive distributed and cloud-friendly Microservice Architecture (MSA) (Finnigan 2018;

Cerny et al. 2018). MSA is built on three principles (Wolff 2016): “A program should

fulfill only one task and do it well, programs should be able to work together, and

programs should use a universal interface.” The primary distinction between SOA

and MSA is that MSA uses a share-as-little-as-possible design concept that strongly

focuses on the idea of bounded context. SOA, on the other hand, is a share-as-much-

as-possible design paradigm that emphasizes the reuse of abstraction and business

features (Cerny et al. 2018).

4

The entire MSA system is separated into several heterogeneous, self-contained,

self-deployable modules that communicate via remote calls or messages. This con-

struction has several advantages. Individual modules can be developed by multiple

teams, each of which can use a different language and framework. Modules can be

deployed, maintained, and evolved independently since they are self-contained. While

this provides greater flexibility for faster delivery, improved scalability (Walker and

Cerny 2020), it makes understanding the overall structure of the application harder as

software expands over time. It is possible to manually reconstruct the architecture for

a smaller number of microservices. However, modern enterprise applications tend to

have thousands of microservices. Thus it is required to have an automated approach

to reconstruct the architecture for MSA. Software Architecture Reconstruction (SAR)

can be used to solve this problem.

2.2 Containers and Their Orchestration

Virtual machines (VMs) have been used to achieve isolation in cloud-based

software deployment. In recent years, containerization has become popular as an

alternative to VMs. Containers provide lightweight virtualization and consume fewer

resources compared to VMs. Unlike VMs, containers share the host OS’s kernel where

each container runs as an isolated process in userspace (Singh and Singh 2016). There

exist several containerization tools among which Docker is the most popular one.

Docker relies on AuFS (Advanced Multi-Layered Unification Filesystem) that can

maintain a diff of changes in filesystem (Scheepers 2014). This layering approach

allows us to extract files from the container filesystem using the appropriate client

tool.

As modern enterprise applications tend to have hundreds of microservices,

it is important to orchestrate them using a separate tool. Kubernetes (k8s) is the

first choice among developers for container orchestration (Cerny et al. 2020) which

provides a wide range of features including automatic scaling, load balancing, and

5

failure handling. Kubernetes also provides in-cluster service discovery where one

container can be accessed from another container using a service name instead of a

hardcoded IP address.

2.3 Static Code Analysis

Static code analysis (Cerny et al. 2020) creates a representation of the ap-

plication by recognizing components like classes, methods, fields, and annotations.

These representations include Abstract Syntax Trees (AST), Control-Flow Graphs

(CFG), or Program Dependency Graphs (PDG). Unlike runtime analysis, such as

penetration testing or log analysis, the static analysis does not need the deployment

of an application, making it more cost-effective. Also, developers can apply static

analysis during the development phase of the application which mitigates the risk of

inconsistencies in production deployments.

There are two common approaches for static code analysis. Bytecode anal-

ysis (Albert et al. 2007) uses the application’s compiled code while in source code

analysis we parse through the source code of the application without having to com-

pile it into an immediate representation. Source code parsing can be tricky due to

different coding conventions while compilers typically normalize bytecode. Besides,

bytecode analysis can be utilized as an alternative to source code analysis when we

do not have access to the application’s source code. Although bytecode analysis can

be computationally easier and more accessible, not all languages support bytecode.

Bytecode is only available for interpreted languages like JAVA, Python, PHP, etc.

This paper uses static code analysis to extract REST API specifications, which are

then combined into a REST interaction graph. The applications of SAR that we

demonstrated i.e. RBAC inconsistency and code smells detection are also based on

static code analysis. Our approach can utilize both bytecode and source code analysis

and hence is generalized for both complied and interpreted languages.

6

2.4 Software Architecture Reconstruction

SAR utilizes an iterative reverse engineering process to extract a representation

of software architecture from source code, or documentation (Bass et al. 2003).

Historically it is defined with following four phases (Bass et al. 2003):

(1) Extraction: All necessary artifacts are collected in the extraction phase where

each set of related artifacts is relevant to a view.

(2) Construction: The representations of the views are canonicalized in the con-

struction phase.

(3) Manipulation: The views are combined to create a more compact represen-

tation in the manipulation phase.

(4) Analysis: Specific research questions like security vulnerabilities, architec-

tural fault, etc. are addressed from the reconstructed views in the analysis

phase.

The creation of effective views of a system’s architecture is at the heart of

successful SAR. It is critical to select perspectives that are appropriate to the ques-

tions being addressed about a system. Rademacher et al. (Rademacher et al. 2020a)

described SAR from following four different views:

(1) Domain view is based on the bounded context of entity objects.

(2) Technology view emphasises on the technology stack of each microservice.

(3) Services view concentrates on how services are connected i.e. inter microser-

vice REST calls.

(4) Operation view focuses on the deployment and infrastructure aspects of the

system like containerization, service discovery, and monitoring.

The Model-Driven Engineering (MDE) approach is widely used in SAR. In

MDE, models are recognized as first-class entities to construct an efficient represen-

tation of the software architecture. Alshuqayran et al. (Alshuqayran et al. 2018a)

described an MDE approach for SAR that maps a metamodel to the architecture

7

using mapping rules. The authors initially created the metamodel and mapping rules

for one system and then validated them using seven additional systems.

Mayer et al. (Mayer and Weinreich 2018) described an automatic method

for extracting the domain, service, and operation information of an application. It

uses a combination of static analysis and runtime analysis to construct a language-

independent representation of each service and its interaction with other services. The

advantage of this approach is that it does not require separate parsers for the different

languages of a heterogeneous system. However, it can generate an incomplete view

since communication paths that are not traversed during the extraction phase are

absent from the final view.

MicroART (Granchelli et al. 2017a) tool automates the service and operations

views of SAR. It applies source code analysis to extract information about the service

concerns like service names, ports, etc. Besides, it employs log analysis during runtime

to discover containers, network interfaces, and service interaction.

SAR has been used to answer a wide range of research questions, many of

which are related to security analysis and code anomalies. Walker et al. (Walker

et al. 2020) described a method to identify microservice-specific code smells (Taibi

and Lenarduzzi 2018) by reconstructing a REST communication graph. Ibrahim et

al. (Ibrahim et al. 2019) propose an approach to extract a attack graph to identify

attack paths that lead to vulnerability exploitation. They analyzed container-based

deployment configuration files, more specifically, Docker Compose files to extract

MSA module topology. Their implementation is based on Clair (Quay 2020) which

is an open-source vulnerability scanner for Docker containers.

In this thesis, we utilized static analysis to accomplish SAR by reconstructing

the inter-microservice REST communication graph. However, the preliminary results

of our ongoing research indicate that SAR can also be achieved by dynamic analysis

8

like log tracing, making it language agnostic. We listed this approach as our future

work in Chapter 6.

2.5 Role-Based Access Control

In microservice-based applications, each microservice implements a subset of

functionality. These functionalities can be accessed by end-users or other microser-

vices via an Application Programming Interface (API). There are generally two pri-

mary API development options: REST and SOAP (Simple Object Access Protocol)

(Tihomirovs and Grabis 2016). While REST is an API development framework that

uses the standard HTTP protocol, SOAP is just a protocol. SOAP was the de facto

standard for web service interfaces for many years. However, in recent years, REST

has ruled. According to Stormpath, REST is used in the design of more than 70% of

public APIs (Hunsaker 2015). REST’s major benefit over SOAP is its simplicity and

ease of understanding. REST is lightweight, making it suitable for a broad range of

devices, including mobile devices (Wagh and Thool 2012). In addition, REST em-

ploys the JavaScript Object Notation (JSON) format, which is faster to parse than

the Extensible Markup Language (XML) standard used in SOAP (Tihomirovs and

Grabis 2016; Castillo et al. 2011).

Securing REST API endpoints is generally easy when existing HTTP security

approaches are leveraged instead of implementing a new security model (Sudhakar

2011). Securing REST endpoints involves both authentication and authorization

(Brachmann et al. 2012). Authentication is the process of verifying the credentials

associated with a particular request. To authenticate incoming requests, many en-

terprise apps employ various techniques such as basic authentication, token-based

authentication, hash-based digest authentication (HMAC), OAuth, and so on (Lee

et al. 2015). Authorization, on the other hand, entails determining if a request

connection is authorized to execute a certain activity via a REST API.

9

Securing REST API endpoints is generally easy when existing HTTP security

approaches are leveraged instead of implementing a new security model (Sudhakar

2011). Securing REST endpoints involves both authentication and authorization

(Brachmann et al. 2012). Authentication is the process of verifying the credentials

associated with a particular request. Different enterprise applications use different

strategies to authenticate incoming requests, such as basic authentication, token-

based authentication, hash-based digest authentication (HMAC), OAuth, etc. (Lee

et al. 2015). On the other hand, authorization involves verifying whether a re-

quest connection is allowed to perform a particular action through a REST endpoint.

Mandatory access control (MAC), discretionary access control (DAC), attribute-based

access control (ABAC), and role-based access control (RBAC) are popular approaches

for enforcing authorization (Sandhu and Samarati 1994).

Because of its simplicity and flexibility, RBAC has been extensively embraced

as an alternative to traditional discretionary and obligatory access controls (Sandhu

and Samarati 1994; Sandhu et al. 1996). It restricts users’ access to resources based

on the roles and permissions (Ahn and Sandhu 2000). System administrators can

statically or dynamically control user’s access by defining roles, role hierarchies, re-

lationships, and constraints (Ferraiolo et al. 1995). In distributed systems, RBAC

controls can be split into central and local domains (Ferraiolo et al. 1995). In the

case of MSA, RBAC can be implemented centrally using a separate identity man-

agement tool, such as Red Hat’s Keycloak (Red Hat Inc 2020a). It is also possible

for each microservices to enact RBAC locally by utilizing security features of under-

lying frameworks, such as spring-security for spring-based applications (Scarioni and

Nardone 2019).

Because of the importance of security-related concerns, significant research

and development have gone into resolving role violations. One similar study focused

on finding security vulnerabilities of API implementations among different libraries

10

based on security-sensitive events using a flow graph (Srivastava et al. 2011). Another

research study described a model-based approach for testing access control rules based

on consistency, completeness, and redundancy (Xu et al. 2012). The tool FixMeUp

(Son et al. 2013) proposed an automated way to fix access control issues in PHP

applications using static code analysis. It automatically edits the source code to

resolve access control issues. Walker et. al (Walker et al. 2020a) described a similar

static analysis on enterprise JAVA applications to find issues in RBAC rules defined

using security annotations. However, it only considers intra-microservice RBAC issues

while in this paper we demonstrated both inter and intra-microservice issues by using

SAR. Distributed RBAC (dRBAC) (Freudenthal et al. 2002) and Separation of Duties

(SoD) (Basin et al. 2009) has also been widely studied in the context of RBAC. A

more detailed analysis of RBAC-related studies is discussed in Chapter 3.

2.6 Code Smells

Code smell was first defined by Fowler (Fowler 2018) as problems in code

caused by poor design decisions. It grew in the field of modern software engineering

as the characteristics of the software that indicate a code or design problem and make

software hard to evolve and maintain (Fontana and Zanoni 2011).

Code smells are not always an issue, but they are a sign of one. They are

code structures that suggest a breach of fundamental design principles and have a

detrimental influence on design quality (Suryanarayana et al. 2014). Urgent main-

tenance efforts that prioritize feature delivery over code quality frequently result in

code smells (Tufano et al. 2015). Code smells may have an impact on several aspects

of software, including reusability, testability, and maintainability.

Emden and Mooden (Van Emden and Moonen 2002) created an automated

code-smell detection tool for Java which was one of the earliest efforts at automatic

code-smell detection. Since then, the field of code-smell detection has expanded.

Code smell tools have been developed for high level design (Alikacem and Sahraoui

11

2009; Marinescu and Ratiu 2004; Rao and Reddy 2008), architectural smells (Moha

2007; Moha et al. 2010; Moha et al. 2008), and language-specific code smells (Moha

et al. 2010; Khomh et al. 2009; Moha et al. 2006), measuring not just code smells

but also the quality (Marinescu 2005; Gupta et al. 2016) of the application.

In monolithic systems code smells are frequently identified using static code-

analysis. For instance, tools such as SpotBugs (SpotBugs 2019), FindBugs (Pugh

2015), CheckStyle (CheckStyle 2019), or PMD (PMD 2019) can detect code patterns

that resemble a code smell. Anil et al. (Mathew and Capela 2019) recently analyzed

24 code smells detection tools.

While significant research has been conducted to identify and detect code

smells in monolithic applications, less study has been conducted for distributed sys-

tems and microservices (Azadi et al. 2019). Developers could conduct code-smell

detection on each of the individual modules, but this would not address any code

smells unique to microservice architecture. Because of the distributed structure of

the application, microservices create a unique issue when it comes to code smells.

Microservice-specific code smells are frequently associated with inter-module concerns

rather than intra-module issues. Taibi et al. (Taibi and Lenarduzzi 2018) proposed

a catalog of eleven microservice-specific code smells. A detailed discussion about

general code smells and MSA-specific code smells are presented in Chapter 4.

12

CHAPTER THREE

On Automated RBAC Assessment By Constructing Centralized Perspective For
Microservice Mesh

This chapter is published as: Das D, Walker A, Bushong V, Svacina J, Cerny T,
Matyas V. On automated RBAC assessment by constructing a centralized
perspective for microservice mesh. 2021. PeerJ Computer Science 7:e376.

https://doi.org/10.7717/peerj-cs.376.

3.1 Abstract

It is important in software development to enforce proper restrictions on pro-

tected services and resources. Typically software services can be accessed through

REST API endpoints where restrictions can be applied using the Role-Based Access

Control (RBAC) model. However, RBAC policies can be inconsistent across services,

and they require proper assessment. Currently, developers use penetration testing,

which is a costly and cumbersome process for a large number of APIs. In addition,

modern applications are split into individual microservices and lack a unified view

in order to carry out automated RBAC assessment. Often, the process of construct-

ing a centralized perspective of an application is done using Systematic Architecture

Reconstruction (SAR). This paper presents a novel approach to automated SAR to

construct a centralized perspective for a microservice mesh based on their REST

communication pattern. We utilize the generated views from SAR to propose an

automated way to find RBAC inconsistencies.

3.2 Introduction

With the software industry’s growth, the complexity of security administration

is becoming more and more challenging. As the current software development trend

is moving rapidly from monolithic to microservices architecture (MSA), we must

address communication patterns not only for the simple client to server scenarios but

13

https://doi.org/10.7717/peerj-cs.376

also for service to service scenarios. Since the client-server communication pattern

has existed for many years, its security implications have already been well addressed.

In contrast, not much has been studied for service-to-service communication patterns.

Currently, the most popular way to establish communication between ser-

vices is to use Representational State Transfer (REST) (Vural et al. 2017; Salah

et al. 2016). Developing a secured REST-based infrastructure is relatively easy for

a smaller number of microservices. However, the security aspects gradually become

more complex as the number of microservices grows. Due to their high feature set

and operational complexity, modern microservice-based applications tend to have a

large number of individual microservices developed separately by separate teams. En-

forcing a robust security solution for such applications is tedious for developers and

might lead to security disagreement among microservices. This is because individual

developers only have an idea of a subset of microservices they maintain but lack an

understanding of the overall picture. Even system architects may not understand the

complete picture of the application since many of those microservices may not be in

the initial blueprint of the application but rather were added later.

Thus, we need to establish an automatic way to generate the overall communi-

cation pattern for the whole application before diving into the security aspects. This

is done through a process of Systematic Architecture Reconstruction (SAR) in which

overall views are constructed from existing application artifacts. SAR is divided into

four phases: extraction, construction, manipulation, and analysis.

In this paper, we first introduce a solution for automatic SAR of a microser-

vice application, which generates a view of the microservices’ REST communication

pattern. By automating the first three phases of SAR and utilizing the constructed

views, we can focus on the analysis phase and present an approach to enumerate

possible security loopholes in the application. More specifically, we focused on find-

ing Role-Based Access Control (RBAC) inconsistencies among microservices using

14

static code analysis. We present a case study on a single enterprise application called

Teacher Management System (TMS) consisting of four individual microservices. This

application was developed separately but re-purposed here as a testbed for performing

static code analysis. Our work focuses on intra- and inter-microservice inconsistencies

highlighting all possible role-based access control issues.

An application’s core security requirement is to ensure that it can only be

used by legitimate users (Mohanty et al. 2016). Role-Based Access Control (RBAC)

is one of the popular methods of securing REST services where each user of the

application is assigned to a set of roles that grant access to different parts of the

system. In microservice-based applications, there can be two different abstractions

to enforce RBAC rules. First, centralized among all the microservices and, second,

per microservice-based.

Thus, next in this paper, we focus on the centralized approach. Finding in-

consistencies among RBAC rules in a large system is a cumbersome and difficult

task due to different levels of abstractions, poor coding practices, and coupling with

third-party services. According to a survey conducted in 2014 by the International

Data Group (IDG) (Mohanty et al. 2016), about 63% of applications have not been

tested for security vulnerabilities. This can be easily mitigated by enforcing standard

security features during the regular software development process (McGraw 2004).

Ignoring such security vulnerabilities is expensive. Security breaches can cost compa-

nies billions and require significant time and effort to resolve. For example, the 2014

eBay hack, which was caused by improper access control restrictions, impacted over

145 million users (Swinhoe 2020). Being able to list possible security vulnerabilities

automatically can significantly reduce the likelihood of such incidents.

System administrators should wisely choose the approaches to test the security

vulnerability of the system. The most accurate outcome from such a test can be

obtained via rigorous penetration testing. However, such an approach needs the

15

application to be fully deployed, and running penetration tests against a production

deployment could lead to disruption for end users. Also, it is difficult to emulate all

possible scenarios for penetration testing. In contrast, static code analysis can be a

much easier alternative that does not require an application to be deployed and hence

is more cost-effective. Although static code analysis is no panacea, when carefully

implemented, it can detect many vulnerabilities. It is for these reasons we use static

code analysis for our automated SAR process.

The paper is organized as follows. Section two discusses the related work and

state of the art. Section three describes our proposed method in detail, and section

four explores a case study. Finally, we conclude our paper by summarizing our work

outcomes, describing our future goals, and listing the references. Throughout the

paper, the terms “inconsistency”, “violation” and “issue” are used interchangeably

to indicate a potential flaw.

3.3 Related Work

In this section, we present related work from the two different perspectives

considered in this paper. First, we assess the limitations of RBAC analysis in the

context of enterprise systems. Next, we assess existing approaches for the SAR.

3.3.1 Role-Based Access Control

In microservice-based applications, each microservice implements a subset of

features. End-users or other microservices can access these features through an appli-

cation programming interface (API). There are typically two main API development

choices: REST and SOAP (Simple Object Access Protocol) (Tihomirovs and Grabis

2016). While REST is an architecture for API development that works over standard

HTTP protocol, SOAP is just a protocol. For many years, SOAP was a standard ap-

proach for web service interfaces. However, it has been dominated by REST in recent

years. According to Stormpath, over 70% of public APIs are designed using REST

16

(Hunsaker 2015). The main advantage of REST compared to SOAP is its simplicity

and ease of learning. REST is lightweight and hence better suited for a wide range of

devices, including mobile devices (Wagh and Thool 2012). Apart from that, REST

uses JavaScript Object Notation (JSON) format which is faster to parse compare to

Extensible Markup Language (XML) used in SOAP (Tihomirovs and Grabis 2016;

Castillo et al. 2011).

Securing REST API endpoints is generally easy when existing HTTP security

approaches are leveraged instead of implementing a new security model (Sudhakar

2011). Securing REST endpoints involves both authentication and authorization

(Brachmann et al. 2012). Authentication is the process of verifying the credentials

associated with a particular request. Different enterprise applications use different

strategies to authenticate incoming requests, such as basic authentication, token-

based authentication, hash-based digest authentication (HMAC), OAuth, etc. (Lee

et al. 2015). On the other hand, authorization involves verifying whether a re-

quest connection is allowed to perform a particular action through a REST endpoint.

Mandatory access control (MAC), discretionary access control (DAC), attribute-based

access control (ABAC), and role-based access control (RBAC) are popular approaches

for enforcing authorization (Sandhu and Samarati 1994). In this paper, instead of

authentication breaches, we focus on exploring and detecting possible authorization

inconsistencies, specifically role-based authorization inconsistencies.

RBAC has been widely adopted as an alternative to classical discretionary

and mandatory access controls because of its advancement in flexibility and detail of

control (Sandhu and Samarati 1994; Sandhu et al. 1996). It regulates users’ access to

information and system resources based on activities that users need to execute in the

system and requires the identification of roles in the system (Ahn and Sandhu 2000).

RBAC’s administrative capabilities have made it stand out from the alternative ap-

proaches because system administrators can statically or dynamically regulate user’s

17

access by defining roles, role hierarchies, relationships, and constraints (Ferraiolo et al.

1995). For distributed systems, another advantage is that RBAC administrative re-

sponsibilities can be divided into central and local protection domains (Ferraiolo et al.

1995). In the case of microservice-based applications, these can be translated into

central policies for all associated microservices and per microservice-based policies.

Central RBAC policies can be enforced by delegating authentication and authoriza-

tion tasks to a separate identity management tool, such as Red Hat’s Keycloak (Red

Hat Inc 2020a). On the other hand, individual microservices can carry out such

policies using security features of underlying frameworks, such as spring-security for

spring-based applications (Scarioni and Nardone 2019).

Due to the high impact of security-related issues, much research and develop-

ment have been done addressing role violations. (Ciuciu et al. 2012) described one

such strategy where appropriate security annotations are recommended for developers

based on the ontology extracted from the business information. However, since this

recommendation strategy works only based on business information irrespective of

source code, if the business information provided is flawed, then the recommendation

will also be faulty.

One similar study focused on finding security vulnerabilities of API implemen-

tations among different libraries based on security-sensitive events (Srivastava et al.

2011). It finds discrepancies among security policies associated with the same API

using a flow graph. The inherent drawback of this approach is that it requires mul-

tiple independent implementations of the same API, and it can not find which ones

of whose multiple implementations are faulty. Another research study described a

model-based approach for testing access control rules based on consistency, complete-

ness, and redundancy (Xu et al. 2012). It checks whether access control rules are

consistent across the methods, whether they are unnecessarily repeated, and whether

they covered all subset of permissions. However, the coverage of access control rules

18

over a set of methods does not necessarily relate to security issues. In (Xu et al.

2012), the system under study does not allow a user to rent a book on maintenance

due to the incompleteness of access control rules, which is more of a system flaw

rather than a security issue. In contrast, our proposed method finds whether a user

can access a resource-restricted by one RBAC rule through an alternative path that

has less restriction.

The tool FixMeUp (Son et al. 2013) proposed an automated way to fix access

control issues in PHP applications using static code analysis. It automatically edits

the source code to resolve access control issues. Although it seems compelling to

automate the task, it might lead to syntax errors and might result in unintended

consequences in case of false positives. On the other hand, our RBAC tool pinpoints

the location of possible inconsistencies in the source code without adversely affecting

the codebase since it does not modify the source code while performing analysis.

The most similar analysis to our proposed method has been described by

(Walker et al. 2020a). That tool performs static code analysis on enterprise JAVA

applications to find issues in RBAC rules defined using security annotations. The key

difference is that it only considers intra-microservice issues, while our method works

for both intra- and inter-microservice issues, taking into account all the microservices

that constitute the application.

(Freudenthal et al. 2002) proposed a distributed RBAC (dRBAC) mechanism

that decentralizes the trust-management across multiple administrative domains. Due

to its distributive nature dRBAC is highly scalable for a large number of mutually

anonymous users. It features third-party delegation that enables one authorized entity

to entrust roles created by another entity. Besides, it controls the access levels for the

same resource by valued attributes. Also, dRBAC presents continuous monitoring by

utilizing a pub-sub model to ensure the validity of trust relationships for extended

interactions. In this paper we do not assess such decentralized RBAC techniques,

19

rather we assume that the user authentication and role mapping are handled through

a centralized service while individual microservices are responsible for the imposition

of those roles on API endpoints.

Separation of Duties (SoD) has been widely studied in the context of RBAC.

It ensures data integrity and fraud prevention by distributing critical tasks among

multiple users (Basin et al. 2009). It enforces that no single user can execute all

actions and thus any kind of fraudulent activity will cause collision among at least

two users (Habib et al. 2014). In RBAC, SoD can either static or dynamic (Sandhu

1990). In the static separation of duties (SSD) constraints are enforced during the

assignment of users to roles. On the other hand, in dynamic separation of duties

(DSD) constraints are activated on the roles within a user session (Omicini et al.

2005). In this paper, we are not considering the user assignments and user sessions.

Instead, we performed static code analysis that solely focused on a subset of SSD

including statically defined roles and role hierarchies.

3.3.2 Software Architecture Reconstruction

Although many studies address access control issues, most of them are focused

on single microservice or monolith applications. However, modern cloud-based ap-

plications are commonly designed as a set of microservices for better flexibility and

scalability (Salah et al. 2016). The key challenge to perform a holistic analysis across

multiple microservices is the automated construction of the application’s centralized

perspective. SAR extracts a representation of software architecture from source code

or documentation through an iterative reverse engineering process (Bass et al. 2003).

It is historically defined with four phases: extraction, construction, manipulation,

and analysis (Bass et al. 2003). In the extraction phase, all necessary artifacts are

collected. Each set of related artifacts is relevant to a view that represents rela-

tions among certain elements of the software architecture (Bass et al. 2003). The

20

construction phase creates canonical representations of the views. Then the manipu-

lation phase combines the views to create a more compact representation to answer

specific questions in the analysis phase. Lastly, the analysis phase answers specific

research questions from the reconstructed views. In this paper, the analysis phase

addresses the detection of possible RBAC inconsistencies. Also, to the best of our

knowledge SAR has not been used to detect RBAC inconsistencies in MSA.

One approach of SAR of microservice-based systems is described by (Rademacher

et al. 2020a). This method describes different modeling based on different viewpoints

(Rademacher et al. 2020) where domain modeling is based on bounded context, ser-

vices modeling is based on REST calls, and operation modeling is based on deploy-

ment specifications, e.g., Dockerfiles.

The Model-Driven Engineering (MDE) approach is commonly used in SAR.

In MDE, models are used as first-class entities to depict an efficient representation

of the software architecture (Cicchetti et al. 2013). (Alshuqayran et al. 2018a) de-

scribed a manual analysis through the MDE approach to reconstruct the architecture

of microservice-based open-source projects. They defined a metamodel which is then

mapped to the architecture using mapping rules. The metamodel and mapping rules

are initially created for one system and then refined and validated using seven addi-

tional systems. However, the authors did not apply their reconstruction strategy to

answer specific questions.

(Ibrahim et al. 2019) proposes an approach to derive MSA module topology

from container-based deployment configuration files, more specifically, from Docker

Compose files. In addition to topology, they extracted the attack graph, a directed

acyclic graph, to identify attack paths that lead to vulnerability exploitation. Their

implementation is based on a open-source vulnerability scanner for Docker containers

named Clair (Quay 2020).

21

The MicroART tool described by (Granchelli et al. 2017b) extracts the de-

ployment architecture of a microservice-based system from the source code repository.

It utilizes a domain-specific language to represent key elements of the architecture

by using the MDE approach. It employs runtime log analysis to discover containers,

network interfaces, and service interactions. However, users need to provide a refer-

ence to the container engine since MicroART does not automatically detect it from

deployment configuration files.

Our proposed method reconstructs MSA architecture based on the REST com-

munication pattern, similar to the service modeling described by (Rademacher et al.

2020a). However, unlike that system, which depends on a Service Modeling Language

(Rademacher et al. 2020), our reconstruction is solely based on static code analysis

and works independently.

3.4 Proposed Method

Enterprise applications are typically organized into a three-layer structure:

controller layer, service layer, and repository layer. It is also common to organize mi-

croservices into the presentation layer, business layer, persistence layer, and database

layer (Richards 2015). These two commonly used structures essentially indicate the

same strategy. The presentation layer maps to the controller layer, which defines API

endpoints, and the business layer maps to the service layer, which contains business

logic. The persistence layer maintains data access objects (DAO) to interact with the

database layer (Alur et al. 2003). These two layers (persistence and database) are

consolidated into the repository layer in the three-layer architecture (Richards 2015;

Steinegger et al. 2017).

Microservices typically communicate over REST APIs (Salah et al. 2016).

Each microservice’s controller layer defines the REST endpoints that serve as request

entry points for that particular microservice. Requests are delegated from the con-

troller layer to the service layer. The service layer typically implements business logic.

22

It processes the request and generates an appropriate response. The service layer can

also incorporate with the persistence layer to store and retrieve data relevant to a

specific request. However, sometimes the service layer depends on other microservices

to process the request. In that case, it creates REST calls to other microservices and

implements business logic based on the response. This describes a typical REST

communication scenario among microservices. In particular, the service layer of one

microservice makes REST calls to other microservice’s controller layers to implement

its business logic. Thus, the REST endpoints of each microservice can be either

accessed by end-users or other microservices.

Enterprise frameworks adopted annotation-based configuration to define REST

endpoints, for example, @RestController annotation in Spring-based JAVA applica-

tions and @app.route annotation in Flask based Python applications (VMware Inc

2020; Pallets Projects 2020). Since the REST endpoints are the entry points to the mi-

croservice, securing them is the single most important task for the developers. While

there are several ways to enforce role-based authorization, the most widely adopted

method in enterprise applications is to define authorization realms through the appli-

cation server (Oberle et al. 2004) or through separate identity management tools like

Keycloak (Red Hat Inc 2020b). A realm is a security policy domain defined in the ap-

plication server that contains a collection of users (Jendrock et al. 2014). These users

might be further organized into several groups (Jendrock et al. 2014). Centralized

authorization systems like Keycloak handles user authentication and role mapping.

But such systems do not verify whether developers properly enforced RBAC policies

during API implementation or not. For example, some API endpoints might have

missing RBAC roles. In that case, any authenticated user can access those endpoints.

Similarly, two API endpoints with different roles might eventually access the same

entity which might be unintentional and left unnoticed. These inconsistencies are not

23

flagged by the centralized authorization system and thus defining authorization poli-

cies are not enough to secure the endpoints. Developers need to enforce those policies

within the application’s source code that runs in that application server. Designing

proper authorization policies are just one part of ensuring robust RBAC enforcement,

we need to consider coding problems that might lead to security loopholes. In this

paper, we focused on detecting such coding problems through static code analysis.

Also, it is important to classify these problems to understand the severity and origin

of them. We have defined five types of possible inconsistencies or violations:

(1) Missing role violations: This type of violation occurs when an API endpoint

does not have any roles associated with it. In this case, all authenticated users

can access the endpoint. Such violation typically happens when developers

forget to enforce authorization roles on an API endpoint. However, it could

be false-positive, for example, some API endpoint might be intentionally left

open for all users.

(2) Unknown access violations: If an API endpoint contains an authorization

role that is not present in the user-defined role hierarchy, then we define it

as an unknown access violation. Usually this type of violation results from

typographical errors and in most cases, such typos are left unnoticed since

they do not cause any compilation errors. As a result, legitimate users with

proper access are denied from accessing the endpoint.

(3) Entity access violations: If input and output i.e. request and response types of

two API endpoints are similar but they have different authorization roles, then

we classify it as an entity access violation. This kind of violation indicates

that the same entity is being accessed by users with different access roles.

(4) Conflicting hierarchy violations: This type of violation happens when an in-

termediate method in the service layer or repository layer contains two differ-

ent roles that are ancestor of each other’s in the role hierarchy. This violation

24

signifies that users with a junior role are accessing some functionalities that

might be intended for users with a senior role (Walker et al. 2020a).

(5) Unrelated access violations: Similar to conflicting hierarchy these violations

focus on intermediate methods instead of endpoint methods. When an in-

termediate method contains two multiple roles that are located in different

subtrees of the role hierarchy, we classify it as an unrelated access violation.

This type of violation indicates poorly separated concerns while distributing

access roles across different functionalities of the application (Walker et al.

2020a).

Like REST configurations, authorization policies are typically applied by anno-

tating methods or functions with appropriate security annotations. These annotations

can differ based on the framework used to develop the application; for example, JAX-

RS security annotations are used with JAVA EE based application (Oracle 2020).

A similar approach to enforce RBAC using annotation can also be found in Python

applications based on the Flask framework (Thio 2020). These security annotations

define the level of restrictions applied to the associated methods or functions. Table

3.1 highlights the most commonly used security annotations in JAVA EE applications

supported by JSR 250 (Mordani 2016; Oracle 2020).

Table 3.1. JAVA EE security annotations

Annotation Description
@permitAll All security roles are permitted
@denyAll No security roles are permitted

@rolesAllowed List of permitted security roles

For example, if we add a @rolesAllowed(ADMIN) annotation to a controller

endpoint method, only the users that have the “ADMIN” role (defined in the realms)

can access the endpoint. However, since the number of such endpoint methods can

be significant and can grow over each iteration of the development cycle, it is possible

25

to introduce inconsistencies among the allowed roles or even missing roles. Moreover,

since these inconsistencies and missing roles do not cause any compilation or run

time error, it is tempting for developers to overlook them, and that might result in

potential security loopholes.

Our proposed method analyzes a set of microservice artifacts that communi-

cate with each other through REST calls. It finds potential RBAC violations for the

whole microservice mesh by scrapping security metadata of individual microservices

and by combining them based on their REST communication flow. We divided the

analyzer into three modules: a discovery module, a flow-matcher module, and an

analysis module. The discovery module implements the extraction phase of SAR. It

collects endpoint specification and security metadata. Next, the flow-matcher module

performs the construction and manipulation phases of SAR by resolving the interac-

tion among microservices. Finally, the analysis module completes the analysis phase

of SAR and detects potential RBAC violations based on the other two modules’

output.

The discovery module performs static code analysis on individual microservice

artifacts. It detects the REST endpoints and security roles attached to those end-

points. Apart from that, it also lists the REST calls to other microservices, which

are typically implemented in the service layer. The discovery module works for both

source code artifacts and bytecode artifacts (e.g., JAR file, Python bytecode) and

thus provides generalization for both interpreted languages (e.g., JAVA, Python) and

compiled languages (e.g., C++, Go). The source code version of the discovery module

takes a microservice artifact as input and parse class definitions while the bytecode

version does the same using bytecode analysis. As discussed above, both REST

endpoints and security policies are typically defined using the annotation-based con-

figuration in enterprise applications. The descriptions of these annotations are well

26

structured and preserved in the source code and in the bytecode. The discovery mod-

ule scans each class to find REST annotations and security annotations that define

REST endpoints and security roles, respectively. It aggregates class-level annotations

with method-level annotations to derive the complete definition of each REST end-

points. It collects the allowed roles, port, path, HTTP type, type of request object,

and type of response object for each endpoint. It takes account of all standard HTTP

types, with the most commonly used ones being GET, POST, PUT, and DELETE.

The discovery module then further analyzes service layer classes to detect REST calls

to other microservices. For each REST call, it detects the URL, HTTP type, type

of request object, and type of response object. It parses REST client definitions to

gather those attributes.

However, detecting the URL string involves further intensive analysis since the

URL string is usually constructed by performing consecutive append operations in

different parts of the source code. For this, our discovery module applies a backward

recursive data flow analysis from the point where the URL is used to the point where

the URL was initialized. In each intermediate step of the data flow where the URL

was referenced, it scans for any append operations and resolves them to restore the

final URL. Parts of the URL may also be constructed using values defined in the con-

figuration files instead of hardcoded strings within the source code. Our module also

scans configuration files of the project to resolve those values. Finally, the discovery

module generates method-call graphs for individual microservices. It takes each con-

troller method as the root node and populates child nodes by traversing subsequent

method calls to the service layer and repository layer methods. For each microservice,

the discovery module organizes all the scrapped information described above into a

usable structure and passes them to the flow matcher module and analysis module.

As discussed by (Walker et al. 2020a), RBAC security analysis for individual

microservices is insufficient. It fails to acknowledge violations when an end-user gains

27

access to a normally restricted resource by creating a proxy request through another

microservice mediating the resource access through service layer REST calls. To

detect such violations, we need to consider the whole MSA mesh instead of a single

MSA, and we need to resolve REST communications between them to construct a

complete centralized perspective. In our proposed model, the flow matcher module

constructs the centralized communication graph for the whole MSA mesh. It takes

descriptions of REST-endpoints and REST-calls for each microservice prepared by

the discovery module. It combines all the REST endpoints into a list and all the

REST calls into another list. Then it performs a brute force matching between those

two lists to resolve all REST communications among the microservices. This involves

matching the URL (including port and path), HTTP method, request type, and

response type.

However, it is common for modern microservices to use service discovery and

service registry instead of a hardcoded IP address in the URL (Montesi and Weber

2016). To resolve this, our flow matcher module matches both the IP address and

service name and checks if one of them matches. The service name is usually defined

in each microservices’ configuration files and scrapped during the discovery phase.

The flow matcher module also generates a diagram of REST communication for the

whole microservice mesh for better visualization.

Role S

Role QRole P

Role CRole BRole A

Figure 3.1. A sample user-defined role hierarchy tree.

28

The analysis module takes descriptions of method-call graphs and allowed

roles from the discovery module and REST communication descriptions from the

flow matcher module. Additionally, it takes the role hierarchy tree from the user.

Figure 3.1 shows a user-defined role tree passed to the analysis module as input.

Roles higher in the hierarchy tree are senior to the roles below in the tree; senior roles

should have all the access rights junior roles have, plus additional rights the junior

roles do not have. Roles in separate paths of the hierarchy are not related to each

other. The analysis module combines method-call graphs of different microservices

based on their REST communication. Figure 3.2 depicts a typical scenario of how

combined method-call graphs are constructed. Each node of the combined graphs can

be a controller node, service node, or repository node. Typically, only the controller

nodes contain RBAC information, i.e., a list of allowed roles; however, the service

layer and repository layer nodes can also have RBAC information. To find potential

RBAC violations in those layers, the analysis module loops through all the nodes and

analyzes the roles associated with them. The first three types of violations are only

related to controller nodes. If any controller node does not have any roles associated

with it, we detect it as a missing role violation. This is the most common type of

violation that might occur since missing roles on controller methods do not cause

any compilation errors. If a node contains a role that is not defined in the user-

provided role hierarchy, we detect it as an unknown access violation. This type of

violations typically results from typographical errors. If request types, response types,

and HTTP types of two controller methods are equal, but they have different RBAC

roles, we detect it as an entity access violation. This violation implies similar access

to a particular entity with different roles.

The unrelated access and conflicting hierarchy violations occur when a node

contains multiple roles after performing the reduction and aggregation. In the reduc-

tion phase, the analysis module goes through each node and keeps the lowest role

29

Microservice A

controllerMethodA2

serviceMethodA2

Microservice B

controllerMethodB1

repositoryMethodB1

GET

JAR files

Application X

Application X

controllerMethodA2

serviceMethodA2

controllerMethodB1

serviceMethodB1

repositoryMethodB1

repositoryMethodA1

serviceMethodA1

controllerMethodA1

Microservice A

controllerMethodA2

serviceMethodA2

repositoryMethodA1

serviceMethodA1

controllerMethodA1

controllerMethodA1

serviceMethodA1

repositoryMethodA1

Analysis
Module

Flow Matcher
Module

Discovery
Module

serviceMethodB1

Microservice B

controllerMethodB1

repositoryMethodB1

serviceMethodB1

Figure 3.2. Construction of combined method-call graphs.

defined in the user-provided role hierarchy. The significance of this reduction is that

it defines the minimum role required to access a specific part of the application. Af-

ter reduction, in the aggregation phase, the analyzer traverses each graph and copies

the allowed role from the parent node to the child node. If a child node contains an

RBAC role or a child node has multiple parents with different roles, then it aggregates

the roles for that particular child node. Figure 3.3 shows how the analysis module

labels each child node using the RBAC roles of its parent nodes according to the role

hierarchy shown in Figure 3.1. Senior roles are higher in the tree; in this example,

30

Role S is the most senior role, Role A is senior to B, which is senior to C. Role P is

senior to Q.

The conflicting hierarchy violation occurs when a node code contains two dif-

ferent roles where one role is an ancestor of another role in the user-defined role

hierarchy. This violation indicates a place where a junior role potentially accesses

an area reserved for a more senior role. It is only a potential violation because it is

ambiguous whether a junior role is accessing an area reserved for a senior role or the

senior role is accessing something allowed for the junior role (Walker et al. 2020a).

The unrelated access violation is the opposite of the conflicting role violation. It hap-

pens when a node contains two roles located in a different subtree of the user-defined

role tree, i.e., one role is not an ancestor of another role. This violation indicates

areas where unrelated roles are accessing the same application area, which may indi-

cate poorly separated concerns that could be refactored (Walker et al. 2020a). For

example, considering the role hierarchy shown in Figure 1, if a node has roles {A,

C} then it is detected as a conflicting hierarchy violation, and if a node has roles

{A, P} then it is marked as an unrelated access violation. The categorization of

violations defined in our proposed method is mostly similar to the ones discussed by

(Walker et al. 2020a). However, (Walker et al. 2020a) only considered only a single

microservice at a time, whereas we also analyze inconsistencies across microservices.

Our system finds potential RBAC violations based on a user-defined role hier-

archy for the whole microservice mesh (a set of microservices). It warns the developer

about potential violations by providing a report of specific locations where the viola-

tions are detected and the categories, as discussed above. While some of the detected

violations may be false-positive and intentional, our proposed method provides an

overall idea of all possible RBAC violations for a large and complex system. The cat-

egorization of the violations helps the developer understand each violation’s severity,

while the specific locations of the violations help to find and fix them easily.

31

controllerMethod01
Roles: {A,B,C}

controllerMethod02
Roles: {P,Q}

serviceMethod01 serviceMethod02

repositoryMethod01 repositoryMethod02

controllerMethod01
Roles: {C}

controllerMethod02
Roles: {Q}

serviceMethod01 serviceMethod02

repositoryMethod01 repositoryMethod02

controllerMethod01
Roles: {C}

controllerMethod02
Roles: {Q}

serviceMethod01
Roles: {C}

serviceMethod02
Roles: {Q}

repositoryMethod01
Roles: {C,Q}

repositoryMethod02
Roles: {Q}

reduction

aggregation

Figure 3.3. Reduction and aggregation of RBAC roles.

3.5 Case Study

The Teacher Management System (TMS)1 is an enterprise application de-

veloped at Baylor University for Central Texas Computational Thinking, Coding,

and Tinkering to facilitate the Texas Educator Certification training program. The

whole TMS system consists of four individual microservices: user management sys-

tem (UMS), question management system (QMS), exam management system (EMS),

and configuration management system (CMS). All of the microservices are developed

using the Spring Boot framework (Walls 2016) and structured into the controller,

service, and repository layers. The RBAC authorization is enforced using annota-

tions on each controller method for the individual microservices, while the central

authentication and authorization policies are defined using Keycloak (Red Hat Inc

2020a). Figure 3.4 shows the role hierarchy tree for the TMS application. For our

case study, we added mutants (Jia and Harman 2011) for each type of violations that

1https://github.com/cloudhubs/tms2020

32

resulted in a total of seven RBAC violations. Our system successfully detected all

those violations and provided a report with specific locations of the violations. In

this section, we will discuss how our analysis process works in detail for the mutated

application.

SuperAdmin

ReviewerModerator

GuestUserAdmin

Figure 3.4. Role hierarchy tree of the TMS application.

The TMS project utilizes an annotation-based configuration technique to de-

fine application layers. REST API configurations and RBAC restrictions are also

applied through annotations, which are common practice for enterprise applications.

Table 3.2 lists frequently used annotations throughout the TMS project.

Table 3.2. Annotations used in TMS project

Annotation Target Description
@Controller

Class
Indicates controller, service,

and repository layers
@Service

@Repository

@RestController Class
Sub type of @Controller to activate

REST APIs

@RequestMapping Class and Method
Defines HTTP types and paths for

REST endpoints

@GetMapping

Method
Sub types of @RequestMapping for

specific HTTP types
@PostMapping

@DeleteMapping

@RolesAllowed Method Lists a set of allowed roles

33

For our purpose, we only looked for the @RestController annotation in the

discovery module. The HTTP and paths type were extracted from the parameters of

@RequestMapping annotation or subtype annotations. Paths can be defined at both

class level or method level. We aggregated the class level paths with method-level

paths to get the final path for each endpoint. The endpoints’ request and response

types are resolved by detecting parameters and return types of respective methods

where the endpoints are defined. Finally, the RBAC roles are listed by detecting the

parameters of the @RolesAllowed annotation applied to each endpoint method.

The RestTemplate class is usually used for making REST calls in the Spring

Boot applications where the methods exchange, getForObject, postForObject,

deleteForObject, etc. are used for performing REST calls with specific HTTP

type. Each of those methods takes a URL parameter and a request object and re-

turns a response object. We scan classes annotated with @Service annotation and

filter them if they contain RestTemplate in their import statements to detect service

layer REST calls. We then look for the methods described above and detect request

and response types by checking the parameter type and return type. The URLs are

detected by performing a backward data flow analysis recursively, as described in the

proposed method section. The method calls graph is constructed by traversing each

endpoint method to the service layer and repository layer methods.

After the discovery module completes gathering metadata for each MSA, the

flow matcher module combines them, and the analysis module performs the final

analysis. The flow matcher module also generates a visual graph of the REST com-

munications among the microservices using Graphviz library (Ellson et al. 2002).

Figure 3.5 shows the generated graph for the TMS application.

While matching the request and response types, we only considered the super-

type of the generic types. For example, List<AClass> and ArrayList<AClass> are

considered equal during matching.

34

/tms/tms-ems/target/ems-0.1.0.jar

/tms/tms-qms/target/qms-0.0.1-SNAPSHOT.jar
/tms/tms-cms/target/cms-0.0.1-SNAPSHOT.jar

/tms/tms-ums/target/ums-1.0-SNAPSHOT.jar

edu.baylor.ecs.ems.controller.ExamController.deleteINITExam

edu.baylor.ecs.ems.controller.ExamController.listAllQuestionsForExam

edu.baylor.ecs.ems.controller.ExamController.listAllExams

edu.baylor.ecs.ems.controller.ExamController.createExam

edu.baylor.ecs.qms.controller.CategoryInfoController.findAllCategoryInfos

edu.baylor.ecs.qms.controller.ConfigurationController.findAllConfigurations

edu.baylor.ecs.qms.controller.ConfigurationController.createConfiguration
edu.baylor.ecs.cms.service.QmsService.createConfiguration

POST http://localhost:12345/configuration

edu.baylor.ecs.cms.service.EmsService.getQuestionsForExam GET http://localhost:10002/exam/{id}/questions

edu.baylor.ecs.cms.service.EmsService.deleteINITExam DELETE http://localhost:10002/exam/{id}

edu.baylor.ecs.cms.service.EmsService.createExam POST http://localhost:10002/exam

edu.baylor.ecs.cms.service.QmsService.getConfigurations
GET http://localhost:12345/configuration

edu.baylor.ecs.cms.service.UmsService.isEmailValid edu.baylor.ecs.ums.controller.UserInfoController.isEmailInUseGET http://localhost:9004/userinfo/emailInUse/{email}

edu.baylor.ecs.cms.service.UmsService.getExamineeInfo edu.baylor.ecs.ums.controller.UserInfoController.getUserByIdGET http://localhost:9004/userinfo/userById/{id}

edu.baylor.ecs.cms.service.EmsService.getExams GET http://localhost:10002/exam

edu.baylor.ecs.cms.service.EmsService.getINITExams

GET http://localhost:10002/exam

edu.baylor.ecs.cms.service.UmsService.getAllUsers edu.baylor.ecs.ums.controller.UserInfoController.getAllUsersGET http://localhost:9004/userinfo/users

edu.baylor.ecs.cms.service.QmsService.getCategoryInfoDtos
GET http://localhost:12345/categoryinfo

Figure 3.5. Inter microservice REST communications in TMS.

Our analyzer reported two missing-role violations for the mutated applications

by specifying the fully qualified name (MSA name + package name + class name +

method name) of the endpoint methods that are defined without specifying any RBAC

roles. It detected two unknown-role violations along with their locations. These two

violations have resulted from data entry errors where “user” and “admin” roles are

mistakenly typed as “usre” and “adnin” respectively, which are not present in the

role hierarchy shown in Figure 3.4. Our analyzer flagged one entity access violation

by pointing out a pair of fully qualified method names. Methods getExams and

getINITExams in CMS have the same return type List<Exam> and the same HTTP

type GET but they have different RBAC roles: “user” and “moderator” respectively.

We found two conflicting hierarchy violations in the mutated TMS applica-

tion. One of them occurred in inter microservice communication, shown in Figure

3.6, where the CMS module calls the UMS module to retrieve examinee info. The

getExaminee endpoint method in CMS can be accessed with a “user” role which calls

the getUserById endpoint method of EMS via service layer REST call. However, the

35

ConfigurationController::getExaminee()
Roles: {user, admin}

Reduction & aggregation: {user}

UserInfoController::getUserById()
Roles: {admin, superAdmin}

Reduction & aggregation: {user, admin}

UmsService::getExamineeInfo()
Roles: {}

Reduction & aggregation: {user}

UserRepository::getById()
Roles: {}

Reduction & aggregation: {user, admin}

GET

CMS UMS

Figure 3.6. Conflicting hierarchy violation among CMS and UMS.

CategoryController::createCategory()
Roles: {user, admin, superAdmin}

CategoryController::deleteCategory()
Roles: {admin, superAdmin}

CategoryRepository::save()
Roles: {user, admin}

CategoryRepository::delete()
Roles: {admin}

Figure 3.7. Conflicting hierarchy violation within QMS.

getUserById method in EMS has annotated with the “admin” role, which is a direct

ancestor of the “user” role. The second conflicting hierarchy violation, shown in Fig-

ure 3.7, occurred entirely within the QMS module where both createCategory and

deleteCategory endpoint methods call the save method of CategoryRepository

with conflicting roles. Finally, we detected one unrelated access violation between

CMS and EMS, where the method getQuestions in CMS has transitive access to

the method listAllQuestionsForExam in EMS via service layer REST call. They

are annotated with “user” and “moderator” roles, respectively defined in separate

subtrees of the role hierarchy.

We tested both source code and bytecode version of our discovery module,

which utilizes the JavaParser library (Bruggen 2020) to parse the source code and

36

JavaAssist library (Chiba 1998) to perform bytecode analysis to extract class def-

initions. We published our implementation as an open-source tool234. We ran it

against the TMS project for benchmarking our analyzer and separately measured the

runtime for each discovery, flow matcher, and analysis modules. For the discovery

module, we break down our measurements for each microservice (CMS, QMS, EMS,

and UMS) and count the number of classes it scanned. Note that the discovery mod-

ule performs a deep scanning for the controller layer classes that are annotated with

@RestController annotation and service layer classes that have RestTemplate im-

port to detect REST endpoints, security roles, and REST calls. For other classes, it

performs just a shallow scan to construct the method call graphs.

Table 3.3 shows the total runtime5 for each module and the breakdown for

the discovery module for static bytecode analysis. We can immediately see that

the discovery module takes the most significant time since it performs scanning of

all class files to extract metadata. In contrast, the flow-matcher and the analysis

module, operating on the extracted metadata, take comparatively less time. For the

discovery module, runtime depends on the number of class files in each microservices.

The runtime of the flow-matcher module depends on the number of REST endpoints

and the number of REST calls, while the runtime of the analysis module depends on

the number of inter-microservice REST connections and the depth of the function

call graph.

2SAR from bytecode: https://github.com/cloudhubs/rad

3SAR from source code: https://github.com/cloudhubs/rad-source

4RBAC analysis: https://github.com/cloudhubs/rad-analysis

5The benchmark is run on a Mac OS computer with a 2.9 GHz 6-core Intel Core i9 processor
and 32 GB RAM

37

Table 3.3. Runtime against TMS testbed

Module Total Time Breakdown
Name Runtime (sec) MSA Time (sec)

Discovery 1.04 CMS 0.43
EMS 0.18
QMS 0.31
UMS 0.12

Flow Matcher 0.13 -
Analysis 0.29 -

Our experiment exhibits a reasonable runtime to perform the static code anal-

ysis for enterprise applications. In total, it took 1.43 seconds against the TMS ap-

plication, which consists of four microservices, a total of 102 classes, and 11 inter-

microservice REST connections. For enterprise applications with many microservices,

it is possible to run the discovery module in parallel for multiple microservices, which

will significantly reduce the runtime.

To show the performance of our method on larger systems, the pseudocode for

our algorithm is given in Figure 3.8. The amount of work necessary scales linearly

with both the number of methods in the system and with the product of the REST

calls and endpoints within the system, meaning our algorithm runs in O(M +E ∗C),

where M is the number of methods, E is the number of REST endpoints, and C is

the number of REST calls. Since the number of methods in a system is usually much

larger than the number of REST calls and endpoints, our algorithm will usually run in

O(M). This is in line with the results of our experiment; the discovery module, which

searches every method for the needed metadata, was responsible for the majority of

the time taken.

3.6 Threats to Validity

There are several threats to the validity of our work to address. Some of these

arise from our experiment and some from how generalizable our approach is.

38

RBACAssessment(pathToMicroservices, roleHierarchy) {
// extract metadata
for each path in pathToMicroservices {

analyze project property files to get service-name,
port, hard-coded string values, etc.

extract class definition using static code analysis

// populate serverList and clientList
for each class {

for each method {
if the method annotated with REST annotations {

extract API endpoint definition metadata

add extracted metadata to serverList

follow each method call to create a method call graph

extract RBAC security roles associated with those methods

add the graph to methodCallGraph as a subgraph
}
if the method contains REST API calls {

extract API call descriptions e.g. HTTP method, URL, etc.

add extracted metadata to clientList
}

}
}

}
// resolve inter-microservice REST connections
for each server in serverList {

for each client in clientList {
if URL, port, HTTP method matches for server and client {

add (server, client) pair to restConnections
}

}
}
// update method call graph
for each connection in restConnections {

add an edge from client to server in methodCallGraph
}
// reduction
for each method in methodCallGraph {

keep only the lowest role in roleHierarchy and discard others
}
// aggregation
for each disjoint subgraph in methodCallGraph {

traverse all paths and merge the roles from parent to child
}
// find inconsistencies
for each method in methodCallGraph {

if the method has conflicting roles according to roleHierarchy {
report inconsistency

}
}

}

Figure 3.8. RBAC assessment pseudocode.

3.6.1 Internal Threats

The primary threats to the validity of our experiment are the accuracy of

the violations detected and the accuracy of the performance measures. Since we

introduced known mutants for the errors, we know our tool accurately detected all

of the issues. Performance-wise, we showed that our tool performed well on a small-

sized application, and that the algorithm should scale up well with larger applications

39

since the most expensive portion of the analysis scales only linearly with the number

of methods in the project.

3.6.2 External Threats

There are three external threats to our work’s validity, which may affect how

generalizable our results are. First, some of the detected inconsistencies might be

false positives i.e. those might be intentionally left behind by the developers. Second,

it depends on a user-defined role hierarchy that is assumed to contain roles universal

to the application. This may not be true if users are defined in separate security

realms; a role name in one realm may not be equivalent to the same role name in

a different realm, either in its own access rights or in its relative position in the

role hierarchy. In this case, a mapping would have to be supplied, showing which,

if any, roles should be equivalent across the different realms. Another limitation is

the use of security annotations. If security policies are implemented differently than

through annotations, are defined in a language or a framework that does not support

annotations, the current approach would not detect the roles. However, if another

method was used to extract allowed roles, they could be used in the rest of the analysis

process.

3.7 Conclusion

We introduced a novel solution to automatically detect authorization incon-

sistencies in the role-based access control (RBAC) implementation for enterprise ap-

plications using automated SAR. Our solution categorizes the violations into five

types: missing-role violation, unknown access violation, entity access violation, unre-

lated access violation, and conflicting hierarchy violation. Our analyzer scans a set

of microservice artifacts and provides a report listing all the possible violations by

pinpointing their locations and types. While some of the detected violations may be

false-positive, the violation type, along with a specific location, helps the developer

40

easily debug them, fix them, or discard them if they were intentional. Although our

analyzer was developed for a JAVA enterprise application, our proposed approach is

not restricted to any particular programming language or framework. It can easily

be implemented for other languages and frameworks since all modern languages now

have a well-structured abstraction for REST APIs and RBAC policies.

One major shortcoming of our method is that it assumes the role hierarchy and

association of users with roles are defined centrally. However, individual microservices

can have separate role hierarchies or even different user-role associations. Similarly,

the trust management can be distributed across multiple domains like the dRBAC.

In the future, we will extend our system to address these issues to allow multiple role

hierarchies and multiple role mappings along with their decentralization. Besides,

we like to experiment on role assignment within a user session to identify possible

inconsistencies while enforcing DSD. Our long term goal is to perform such analysis

within the cloud-native environment commonly used in production deployments, for

example, analyzing Dockerfiles and Kubernetes artifacts.

41

CHAPTER FOUR

Automated Code-Smell Detection in Microservices Through Static Analysis: A Case
Study

This chapter is published as: Walker A, Das D, Cerny T. Automated Code-Smell
Detection in Microservices Through Static Analysis: A Case Study. 2020. Applied

Sciences 10(21):7800. https://doi.org/10.3390/app10217800.

4.1 Abstract

Microservice Architecture (MSA) is becoming the predominant direction of

new cloud-based applications. There are many advantages to using microservices,

but also downsides to using a more complex architecture than a typical monolithic

enterprise application. Beyond the normal poor coding practices and code smells of

a typical application, microservice-specific code smells are difficult to discover within

a distributed application setup. There are many static code analysis tools for mono-

lithic applications, but tools to offer code-smell detection for microservice-based ap-

plications are lacking. This paper proposes a new approach to detect code smells

in distributed applications based on microservices. We develop an MSANose tool to

detect up to eleven different microservice specific code smells and share it as open-

source. We demonstrate our tool through a case study on two robust benchmark

microservice applications and verify its accuracy. Our results show that it is possible

to detect code smells within microservice applications using bytecode and/or source

code analysis throughout the development process or even before its deployment to

production.

4.2 Introduction

Microservices are becoming the preeminent architecture in modern enterprise

applications (NGINX, Inc. 2015). There are several advantages to utilizing this archi-

tecture, which have led to its rise in popularity (Cerny et al. 2018). The distributed

42

https://doi.org/10.3390/app10217800

nature of a microservice-based application allows for greater autonomy of developer

units. While this provides greater flexibility for faster delivery, improved scalability,

and benefits in existing problem domains (Walker and Cerny 2020), it also presents

the opportunity for code smells to be more readily created within the application.

This is especially true since distinct teams manage different distributed modules of

the overall system.

Code smells (Fowler 2018) are anomalies within codebases. They do not nec-

essarily impact the performance or correct functionality of an application. They are

patterns of poor programming practice and deteriorate program quality. They can

affect a wide range of quality attributes in a program including reusability, testability,

and maintainability. If code smells go unchecked in a microservices-based applica-

tion, the benefits of using a distributed development process can be mitigated. It

is therefore crucial that the code-smells in an application are appropriately detected

and managed (Fowler 2018; Yamashita and Moonen 2013a).

Microservices present a unique situation when it comes to code-smells due

to the distributed nature of the application. Microservice-specific code smells often

focus on inter-module issues rather than an intra-module issue. Traditional code-

smell detecting tools cannot detect code smells between discrete modules, so these

issues go unchecked during the development process. This paper shows that when we

augment static code analysis to recognize enterprise development constructs, then we

can effectively detect code smells in distributed microservice applications.

We share a case study targeting eleven recently identified code smells for this

architecture to demonstrate our approach. Furthermore, we develop a prototype code

smell detector for microservices and share it with the community as open-source.

Our prototype bases on code-analysis and recognizes Java code along with Enterprise

Java platform constructs and standards (DeMichiel and Shannon 2016; DeMichiel

43

and Keith 2006; Bernard 2009; DeMichiel 2009; Hopkins 2009). Next, it identifies

eleven microservice code smells targeted in this chapter.

The rest of the chapter is as follows. Section 3 assesses related work for code

smells detection and the shortcomings for distributed systems. Section 4 introduces

the code smells used in this paper. Section 5 describes the static code analysis of

enterprise systems. Section 6 proposes our solution for automatic code-smell detec-

tion for microservices. Section 7 verifies our approach on two existing microservice

benchmark applications. Lastly, Sections 8 and 9 conclude the work and highlight

future perspectives.

4.3 Related Work

Although first defined by Fowler (Fowler 2018) as problems in code caused

by poor design decisions, code smells have evolved in the world of modern software

engineering to encompass much more. Code smells can be defined as “characteristics

of the software that may indicate a code or design problem that can make software

hard to evolve and maintain” (Fontana and Zanoni 2011).

Code smells are not necessarily a problem but rather an indicator of a problem.

They can be seen as code structures that indicate a violation of fundamental design

principles and negatively impact design quality (Suryanarayana et al. 2014). Urgent

maintenance activities prioritizing feature delivery over code quality often lead to

code smells (Tufano et al. 2015). Thus, code smells are codebase anomalies and

do not necessarily impact the performance or correct functionality; they are poor

programming practice patterns. Code smells can affect a wide range of areas in a

program, including reusability, testability, and maintainability.

Gupta et al. (Gupta et al. 2016) underlined that it is essential to identify

and control code smells during the design and development stages to achieve higher

code maintainability and quality. However, even if developers are not invested in fix-

ing them, code smells do matter to the overall software maintainability (Yamashita

44

and Moonen 2013b; Moonen and Yamashita 2012; Yamashita and Counsell 2013).

Furthermore, if left unchecked, code smells can begin to impact the overall system’s

architecture (Macia et al. 2012). Code smells can be deceptive and hide the true

extent of their ‘smelliness’ and even carry into further refactorings of the code (Coun-

sell et al. 2010; Macia et al. 2012). Frequently code smells are also related to

anti-patterns (Reeshti et al. 2019) in an application.

Code-smell correction is a necessary process for developers (Sae-Lim et al.

2017), but it is often pushed aside. A study by Sae-Lim et al. (Sae-Lim et al. 2017)

found that the most prevalent factor towards developers addressing code smells is the

importance of the issue and the relevance of the issue to the task they were working

on. Another study by Peters et al. (Peters and Zaidman 2012) found that, while

developers are frequently aware of the code smells in their application, they do not care

about actively fixing them. Most of the time, the code smells are fixed accidentally

through unrelated code refactoring (Fowler 2018). Much has been done in research to

address the problem of code smells, and many studies have been performed, exploring

how code smells are created (Counsell et al. 2010), managed (Oliveira 2016), and fixed

in industry (Tufano et al. 2017).

Tahir et al. (Tahir et al. 2020) studied how developers discussed code smells in

stack exchange sites and found that these sites work as an informal crowd-based code

smell detector. Peers discuss the identification of smells and how to get rid of them in

a specific given context. Thus, the question is how to detect and eliminate them in a

given context. They found that the most popular smells discussed between developers

are also shown to be most frequently covered by available code analysis tools. It is

also noted that, while Java support is the broadest, other platforms, including C#,

JavaScript, C++, Python, Ruby, and PHP, are lacking in support. Concerns were

also raised that there is a missing classification for how harmful smells are on a given

application.

45

Some researchers would argue that developers do not have the time to fix all

smells. For instance, Gupta et al. (Gupta et al. 2016) identified 18 common code

smells and the driving power of these code smells to improve the overall code main-

tainability. The effect is that developers could refactor one of the smells with higher

driving power, rather than address all smells in an application, and still significantly

improve code maintainability.

One of the first attempts at automatic code-smell detection came from Emden

and Mooden (Van Emden and Moonen 2002), who defined an automated code-smell

detection tool for Java. Since then, the field of code-smell detection has continued

to grow. Code smell tools have been developed for high level design (Alikacem and

Sahraoui 2009; Marinescu and Ratiu 2004; Rao and Reddy 2008), architectural smells

(Moha 2007; Moha et al. 2010; Moha et al. 2008), and language-specific code smells

(Moha et al. 2010; Khomh et al. 2009; Moha et al. 2006), measuring not just code

smells but also the quality (Marinescu 2005; Gupta et al. 2016) of the application.

The field of automatic code-smell detection continues to evolve with an ever-changing

list of code smells and languages to cover.

It is common to identify code smells in monolithic systems using code-analysis.

For instance, tools such as SpotBugs (SpotBugs 2019), FindBugs (Pugh 2015), Check-

Style (CheckStyle 2019), or PMD (PMD 2019) can detect code patterns that resemble

a code smell. Anil et al. (Mathew and Capela 2019) recently analyzed 24 code smells

detection tools. While the tools correctly mapped the code smells in an application,

they are limited to a single codebase, and so they become antiquated as modern

software development tends towards microservice architectures.

While extensive research has been done to define and detect code smells in

a monolithic application, little has been done for distributed systems (Azadi et al.

2019). It would be possible for a developer to run code-smell detection on each of the

46

individual modules, but this does not address any code smells specific to microservice

architecture.

In a distributed environment, in particular microservices, there have been

multiple code smells identified. In one study (Taibi and Lenarduzzi 2018), these

smells include improper module interaction, modules with too many responsibilities,

or a misunderstanding of the microservice architecture. Code smells can be specific

to a certain application perspective, including the communication perspective, or in

the development and design process of the application. These smells can be detected

manually, which usually requires assessing the application and a basic understanding

of the system, but this demands considerable effort from the developers. With code

analysis instruments, smells can be discovered almost instantly and automatically

with no previous knowledge of the system required. However, we are aware that

no tool can detect the code anomalies that can exist between discrete modules of a

microservice application.

4.4 Microservice Code Smell Catalogue

For this paper’s purposes, we reused the definition of eleven microservice spe-

cific code smells from a recent exploratory study by Taibi et al. (Taibi and Lenarduzzi

2018). It used existing literature and interviews with industry leaders to distill and

rank these eleven code smells for microservices. The code smells are briefly summa-

rized as follows:

Microservice 1 Microservice 2 Microservice 3

Microservice 4
possible ESB

Figure 4.1. Example ESB Usage

47

• ESB Usage (EU): An Enterprise Service Bus (ESB) (Cerny et al. 2018) is a

way of message passing between modules of a distributed application in which

one module acts as a service bus for all of the other modules to pass messages

on. There are pros and cons to this approach. However, in microservices,

it can become an issue of creating a single point of failure, and increasing

coupling, so it should be avoided. An example is displayed in Fig. 4.1.

• Too Many Standards (MS): Given the distributed nature of the microservices

application, multiple discrete teams of developers often work on a given mod-

ule, separate from the other teams. This can create a situation where multiple

frameworks are used when a standard should be established for consistency

across the modules.

• Wrong Cuts (WC): This occurs when microservices are split into their tech-

nical layers (presentation, business, and data layers). Microservices are sup-

posed to be split by features, and each fully contains their domain’s presen-

tation, business, and data layers.

• Not Having an API Gateway (NAG): The API gateway pattern is a design

pattern for managing the connections between microservices. In large, com-

plex systems, this should be used to reduce the potential issues of direct

communication.

• Hard-Coded Endpoints (HCE): Hardcoded IP addresses and ports to com-

municate between services. By hardcoding the endpoints, the application

becomes more brittle to change and reduces the application’s scalability.

• API Versioning (AV): All Application Programming Interfaces (API) should

be versioned to keep track of changes properly.

• Microservice Greedy (MG): This occurs when microservices are created for

every new feature, and oftentimes, these new modules are too small and do

not serve many purposes. This increases complexity and the overhead of

the system. Smaller features should be wrapped into larger microservices if

possible.

48

• Shared Persistency (SP): When two microservice application modules access

the same database. This breaks the microservice definition. Each microser-

vice should have autonomy and control over its data and database. An ex-

ample is provided in Fig. 4.2.

• Inappropriate Service Intimacy (ISI): One module requesting private data

from a separate module. This likewise breaks the microservice definition.

Each microservice should have control over its private data. An example is

given in Fig. 4.3.

• Shared Libraries (SL): If microservices are coupled with a common library,

that library should be refactored into a separate module. This reduces the

fragility of the application by migrating the shared functionality behind a

common, unchanging interface. This will make the system resistant to ripples

from changes within the library.

• Cyclic Dependency (CD): Cyclic connection between calls to different mod-

ules. This can cause repetitive calls and also increase the complexity of un-

derstanding call traces for developers. This is a poor architectural practice

for microservices.

To highlight the gap in microservice code smells, we took a list of existing

state-of-the-art architecture-specific code-smell detection tools from a previous and

recent study (Azadi et al. 2019) and verified whether they detect any of the previ-

ously mentioned microservice-specific code smells. We chose these tools as they were

D
at
ab
as
e

Microservice 1 Microservice 2

Figure 4.2. Shared Persistency

D
at

ab
as

e
1

Microservice 1 Microservice 2

D
at

ab
as

e
2

Figure 4.3. Inappropriate Service Intimacy

49

Table 4.1. Comparison of architectural code smell detection tools.

Tools 1
EU

2
MS

3
WC

4
NAG

5
HCE

6
AV

7
MG

8
SP

9
ISI

10
SL

11
CD

AI Reviewer (Logarix) X

ARCADE (Le et al. 2015) X

Arcan (Pigazzini et al.
2020)

X X X

Designite (Sharma 2016) X

Hotspot Detector (Mo et al.
2015)

X

Massey Architecture Ex-
plorer (Dietrich 2012)

X

MSA Nose X X X X X X X X X X X

Sonargraph (Von Zitzewitz
2019)

X

STAN (Bugan IT Consult-
ing UG 2020)

X

Structure 101 (Headway
Software Technologies Ltd)

X

compiled to study the existing state of the art of architecture smell detection tools

and were shown to meet a minimum threshold of documentation and information

about the tool. We compile our results in Table 4.1. The closest tool, called Arcan,

was recently published (Pigazzini et al. 2020) and only detected three of the smells.

4.5 Code Analysis and Extension for Enterprise Architectures

Static code analysis (Cerny et al. 2020) is one of the most important software

development topics, primarily its role in detecting bugs in a system. However, as

with most other problem domains, there exist gaps around enterprise architectures.

The two static code analysis processes, source code and bytecode analysis, ultimately

create a representation of the application. This is done through several processes,

50

including recognizing components, classes, methods, fields, or annotations, tokeniza-

tion, and parsing, which produce graph representations of the code. These include

Abstract Syntax Trees (AST), Control-Flow Graphs (CFG) (Kumar and Malathi

2017; Ribeiro et al. 2007; Syaikhuddin et al. 2018), or Program Dependency Graphs

(PDG) (Roy et al. 2009; Selim et al. 2010).

Bytecode analysis (Albert et al. 2007) uses the application’s compiled code

and is useful in uncovering endpoints, components, authorization policy enforcements,

classes, and methods. It can augment or derive CFG or AST (Keivanloo et al. 2014;

Keivanloo et al. 2012; Lau 2018). However, the disadvantage is that not all languages

have a bytecode.

In source code analysis (Chatley et al. 2016), we parse through the source

code of the application without having to compile it into an immediate representation.

Many approaches exist to do this; however, most tools tokenize the code and construct

trees, including AST (Roy et al. 2009; Selim et al. 2010), CFG (Kumar and Malathi

2017; Ribeiro et al. 2007; Syaikhuddin et al. 2018), or PDG (Gabel et al. 2008; Su

et al. 2016).

However, limits exist with these representations in encapsulating the com-

plexity of enterprise systems. To mitigate the shortcomings of existing static code

analysis techniques on enterprise systems, we augment the current techniques to rec-

ognize enterprise standards (DeMichiel and Shannon 2016; Makai 2019). A more

realistic representation of the enterprise application can be constructed with aid from

either source code analysis or bytecode analysis. This includes a tree representation,

detection of the system’s endpoints, and a communication map’s construction. These

augmented representations along with metadata have been successful in other prob-

lem domains including security (Walker et al. 2020b), networking (Trnka et al. 2020)

and semantic clone detection (Svacina et al. 2020).

51

The following section shows how we can use these representations and meta-

data for a more thorough analysis of code smells in microservice applications.

4.6 Proposed Solution to Detect Code Smells

Previous studies have shown that, without readily available information about

the code smells and easy integration into the software development pipeline, the smells

are often not addressed. Thus, our approach uses static-code analysis for fast and

easily-integrated reports on the code smells in an application. To cover a wide variety

of possible issues within a microservice application, as well as the different concerns

(application, business, and data) that the identified smells cover, we must statically

analyze a couple of different areas of an application. Our approach specifically involves

the Java Enterprise Editions platform because of its rich standards for enterprise de-

velopment. In fact, we include Spring Boot (https://spring.io/projects/spring-boot)

and Java EE (https://docs.oracle.com/javaee). However, alternative standard adop-

tions exist also for other platforms. Next, these standards can promote to UML

(Torres et al. 2009; Cerny et al. 2013), which shows platform-independence. Fur-

thermore, extending our tool to another language would be trivial since we utilize an

intermediate representation for analysis, as explained below.

The core of our solution is an automated derivation of a centralized view of

the application, also sometimes referred to as Software Architecture Reconstruction

(Rademacher et al. 2020b; Alshuqayran et al. 2018b; Granchelli et al. 2017a). To

begin with, we individually analyze each microservice in the application. Once each

module is fully analyzed, it can be aggregated into a larger service mesh. Then, the

full detection can be done on the aggregated mesh.

Our analysis process’s first step is to generate a graph of interaction between

the different microservices. This involves exploring each microservice for a connection

to another microservice, which is usually done through a REST API call. The inter-

microservice communications are realized using a two-phase analysis: scanning and

52

https://spring.io/projects/spring-boot
https://docs.oracle.com/javaee

matching. In the first phase, we scan each microservice to list all the REST endpoints

and their specification metadata. This metadata contains the HTTP type, path, pa-

rameter, and return type of the endpoint. Additionally, the server IP addresses (or

their placeholders) are resolved by analyzing application configuration files that ac-

company system modules. These IP addresses, together with the paths, define the

fully-qualified URLs for each endpoint. We further analyze each microservice to enu-

merate all REST calls along with request URLs and similar metadata. We list these

endpoints and REST calls based solely on static code analysis, where we leverage the

annotation-based REST API configuration commonly used in enterprise frameworks.

We match each endpoint with each REST call across different microservice modules

based on the URL and metadata in the second phase. During matching, URLs are

generalized to address different naming of path variables across different microservice

modules. Each resultant matching pair indicates inter-microservice communication.

Afterward, the underlying dependency management configuration file is ana-

lyzed for each of the different microservices (e.g., pom.xml file for maven). This allows

us to find the dependencies and libraries used by each of the applications. Lastly, the

application configuration, where developers define information such as the port for

the module, the databases it connects to, and other relevant environment variables

for the application, is analyzed.

The overall architecture of our proposed solution is shown in Figure 4.4. The

resource service module takes the path of the source files and extracts metadata from

those files. These metadata are then fed into the entity service and API service

modules, which produce descriptions of entities and definitions of API endpoints,

respectively. The REST discovery service module takes the definitions of the API

endpoints and resolves inter-microservice communications. Once the processing of

each module is done, we begin the process of code-smell detection. In the following

text, we provide details relevant to each particular smell and its detection.

53

Resource Service Entity Service API Service REST Discovery
Service

Too Many
Standard

Shared
Persistency

Shared Library

Wrong Cut

Microservice
Greedy

No API Gateway

Hard Coded
Endpoint

API Versioning

Inappropriate
Service Intimacy

Cyclic
Dependency

ESB Service

Report Code Smells

Path to sources

Connectivity threshold
Endpoints threshold

Standard threshold

Figure 4.4. MSANose architecture diagram.

4.6.1 ESB Usage

To detect if an Enterprise Service Bus (ESB) is being used, we start by tallying

up all of the incoming and outgoing connections within each module of the system.

We define an ESB as a module with a high, almost outlier, number of connections

and a relatively equal number of incoming and outgoing connections. Additionally,

an ESB should connect to nearly all the modules.

4.6.2 Too Many Standards

Detecting if too many standards are used in an application is a tricky problem

since it is entirely subjective on how many standards is ”too many.” Additionally,

there are very good reasons developers would choose different standards for differ-

ent system modules, including speed, available features, and security (Walker et al.

2020b). We tally the standards used for each of the layers of the application (presen-

tation, business, and data). The user can configure how many standards is too many

for each of the respective sections.

54

4.6.3 Wrong Cuts

Wrong cuts depend on the business logic and, therefore, nearly impossible to

automatically detect without extrapolating a deep understanding of the business do-

main. However, we would expect to see an unbalanced distribution of artifacts within

the microservices along with the different layers of the application (presentation, busi-

ness, and data). To detect an unbalance presentation microservice, we look for an

abnormally high number of front-end artifacts (such as HTML/XML documents for

JSP). For the potentially wrong cut business microservices, we look for an unbalanced

number of service objects, and, lastly, for wrongly cut data microservices, we look

for an unbalanced number of entity objects. To find microservices with this smell,

we look for outliers in the number of the specified artifacts within each microservice.

Next, we report the possibility of a wrongly cut microservice to the user. We define an

outlier count of greater than two times the standard deviation away from the average

count of the artifacts in each microservice, which is seen in Equation (4.1).

2 ∗

√∑n
i=0(xi − X̄)2

n− 1
(4.1)

4.6.4 Not Having an API Gateway

Not having an API gateway is something that is not always possible to de-

termine from code analysis alone. It is especially the case as cloud applications

increasingly rely on routing frameworks such as AWS API Gateway (https://aws.

amazon.com/api-gateway/), which uses an online configuration console and is not

discoverable from code analysis, to handle routing API calls. In the study by Taibi

et al. (Taibi and Lenarduzzi 2018), it was found that developers could adequately

manage up to 50 distinct modules without needing to rely on an API gateway. For

this reason, if the scanned application has more than 50 distinct modules, we include

55

https://aws.amazon.com/api-gateway/
https://aws.amazon.com/api-gateway/

a warning message in the final report that they will likely want to use an API gateway.

This is not classified as an error but rather a suggestion for best practice.

4.6.5 Shared Persistency

Shared persistency happens when two or more modules of the application share

the same relational database. An example of this can be seen in Figure 4.2. This is

detected by parsing the application’s configuration files and finding the submodules’

persistence settings location. For example, in a Spring Boot application, the appli-

cation YAML file is parsed for the datasource URL. Then, the persistence of each

module is compared to the others to find shared datasources.

4.6.6 Inappropriate Service Intimacy

Inappropriate service intimacy can appear in a couple of different ways. It is

defined as one microservice requesting the private data of another microservice. An

example of this can be seen in Figure 4.3. One of the ways we detect this is as a variant

of the shared persistency problem. Here, instead of sharing a datasource between two

or more modules, a module is directly accessing another’s datasource in addition to

its own. This is detected in a similar way as shared persistency; however, once a

duplicate datasource is found, if the module also has its own private datasource, then

it is an instance of inappropriate service intimacy. Another way in which we search

for inappropriate service intimacy is to look for two modules with the same entities.

If one of those modules is only modifying/requesting the other’s data, we define it as

inappropriate service intimacy.

4.6.7 Shared Libraries

To detect shared libraries, the dependency management files are scanned for

each module of the application to locate all shared libraries. Clearly, some shared

outside libraries will exist among the microservices; however, the focus should be on

56

Listing 4.1. Find All Cycles.

boolean isCyclic () {

// Mark all the vertices as not visited

// and not part of recursion stack

boolean [] visited = new boolean[V];

boolean [] recStack = new boolean[V];

// Call the recursive helper function to

// detect cycle in different DFS trees

for (int i = 0; i < V; i++)

if (isCyclicUtil(i, visited , recStack))

return true;

return false;

}

any in-house libraries. Developers can then decide to extract into a separate module

if necessary to bolster the application against changes in the libraries.

4.6.8 Cyclic Dependency

To find all cycles between modules, we use a modified depth first search (Tarjan

1971). First, we extract the REST communication graph for the microservice mesh.

In the graph, each vertex represents a microservice, and each edge represents a REST

API call. Then, we run our cyclic dependency detection algorithm on the graph. We

maintain a recursive stack of vertices while traversing the graph. Since the graph is

unidirectional (client to server), we mark it as a cycle if a vertex already exists in the

stack. The algorithm is presented in Listing 4.1 and Listing 4.2.

4.6.9 Hard-Coded Endpoints

Hard-coded endpoints are found during the bytecode analysis phase of the ap-

plication. Using the bytecode instructions, we can peek at the variable stack and see

what parameters are passed into the function calls used to connect to other microser-

vices. In the case of Spring Boot, for example, we look at any calls from RestTemplate.

We then link the passed address back to any parameters passed to the function or

57

Listing 4.2. A Helper Function to Find All Cycles.

boolean isCyclicUtil(int i,

boolean [] visited ,

boolean [] recStack) {

// Mark the current node as visited

// and part of recursion stack

if (recStack[i])

return true;

if (visited[i])

return false;

visited[i] = true;

recStack[i] = true;

List <Integer > children = adjList.get(i);

for (Integer c: children)

if (isCyclicUtil(c,visited ,recStack))

return true;

recStack[i] = false;

return false;

}

any class fields to find the path parameters used. Our system tests for both hard-

coded port numbers and hardcoded IP addresses. Both should be avoided to make

scalability of the system easier in the future.

4.6.10 API Versioning

To find unversioned APIs in the application, we first find all fully qualified

paths for the application. For example, the Spring Boot code in Listing 4.3 would pro-

duce a fully qualified API path of “/api/v1/users/login”. Each API path is matched

against a regular expression pattern .*/v[0-9]+(.?[0-9]*).* to locate the unver-

sioned paths. All unversioned APIs are reported back to the user.

58

Listing 4.3. Example Spring Boot API.

@RestController

@RequestMapping("/api/v1/users")

public class UserController{

@Autowired

private UserService userService;

@Autowired

private TokenService tokenService;

@PostMapping("/login")

public ResponseEntity <?> getToken (...){

return ResponseEntity.ok (...);

}

...

}

4.6.11 Microservice Greedy

To find superfluous microservices, we find a couple of different metrics for each

microservice. This includes front-end files (e.g., HTML, CSS, and javaScript), service

objects, and entity objects in the application. Then, we find outliers, if any exist, as

potential microservice greedy modules. We define outliers in the same way as when

finding a wrongly cut microservice using Equation (4.1). However, we focus only on

those that are outliers due to being undersized, as opposed to too large.

4.7 Case Study

Based on the described approach, we developed a prototype tool called MSANose

(https://github.com/cloudhubs/msa-nose). This tool accepts Java-based microser-

vice projects and performs static analysis of microservice modules. From the individ-

ual modules, it extracts the interaction patterns. It combines the partial results from

each module to derive a single overall holistic view of the distributed system.

MSANose utilizes the system’s derived centralized perspective to perform the

eleven distinct detections mentioned above. The tool’s outcome is a report containing

a list of microservice code smell patterns with references to the offending modules and

59

https://github.com/cloudhubs/msa-nose

code. In the next section, we describe a case study to demonstrate our approach and

the developed prototype tool MSANose.

Recent efforts (Márquez and Astudillo 2019) to catalog microservice testbed

applications have found a lack of applications that adhere to the guidelines for testbeds

outlined by Aderaldo et al. (Aderaldo et al. 2017). We processed the benchmarks

list and concluded that these are insufficient in size, nature, and state to study code

smells. We introduce two testbed systems to verify the effectiveness of our application.

4.7.1 Train Ticket

To test our application, we chose to run it on an existing microservices bench-

mark, the Train Ticket Benchmark (Zhou et al. 2018). We chose this benchmark

since it is a reasonable size for a microservice application and would provide a

good test of all of our application conditions. This benchmark was designed as a

model of real-world interaction between microservices in an industry environment.

Next, it is one of the largest microservice benchmarks available. This benchmark

consists of 41 microservices and contains over 60,000 lines of code. It uses either

Docker (https://www.docker.com/) or Kubernetes (https://kubernetes.io/) for de-

ployment which relies on either NGINX (https://www.nginx.com/) or Ingress (https:

//kubernetes.io/docs/concepts/services-networking/ingress/) for routing.

Before running our application on the testbed system, we manually analyzed

the testbed for each of the eleven microservice code smells. This was performed as fol-

lows: first, through manual tracing of REST calls, and then through the cataloging of

entities and endpoints within the system. We utilized two student researchers familiar

with research into enterprise systems to ensure our manual assessment accuracy. We

show the results of our manual assessment in Column 2 of Table 4.2.

After taking the results manually, we ran our application on the testbed sys-

tem. Column 3 of Table 4.2 is a quick overview of the results from running our

application on the testbed. The application took just 10 s to run on a system with

60

https://www.docker.com/
https://kubernetes.io/
https://www.nginx.com/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/

Table 4.2. Case study on Train Ticket benchmark.

Smell Manual MSANose Time (ms)
ESB Usage No No 1
Too Many Standards No No 213
Wrong Cuts 0 2 1487
Not Having an API Gateway No No 1
Hard-Coded Endpoints 28 28 1
API Versioning 76 76 1981
Microservice Greedy 0 0 2093
Shared Persistency 0 0 123
Inappropriate Service Intimacy 1 1 1617
Shared Libraries 4 4 237
Cyclic Dependency No No 1
Total 7755

an Intel i7-4770k and 8 Gb of RAM. This includes the average time (taken over ten

runs) to analyze the source code and compile bytecode of the testbed application. An

individual breakdown of the times for each of the code smells available in Column 4

of Table 4.2.

We tested the testbed for potential ESBs with a connectivity threshold on the

microservices of 80%, which could be adjusted by the user. Our application reported

no potential ESBs, which matched our earlier manual assessment of the system.

Further, the testbed is built with Spring Boot, MongoDB, and uses static

hosting for the front-end. We confirmed this through manual verification and the

publicly available design documents (https://github.com/FudanSELab/train-ticket)

for the system. Our application correctly identified these standards. We test for too

many standards specifically within each layer (presentation, business, and data), and

so no layer was beyond our threshold of two standards.

Wrong cuts were one of the most difficult to discern within the testbed. Since

the testbed used static files for the front-end, we could only detect microservices that

were wrongly split based on the business and data layers. We manually searched for

wrongly cut microservices, but the testbed was designed well and did not have any

61

https://github.com/FudanSELab/train-ticket

that we could manually determine were wrongly cut. However, our application found

two potential wrongly cut microservices in the system. To find the wrong cuts on the

business and data layers, we looked at the distribution of services and entities within

the microservices. We know that any microservice that is wrongly cut with on the

business layer would have excess amounts of services, and any cut wrongly on the

data layer would have excess entities.

To discover the entity objects as part of the system’s data model, we utilized

standard annotations (DeMichiel and Shannon 2016) for entities and @Document

annotation for MongoDB entities. We then matched any object we found in the

system against the previously known entities and on name similarity match. To

calculate name similarity, we used the WS4J project (https://github.com/Sciss/ws4j).

Based on this, we could determine that object was an entity in its microservice.

The two potential wrong cuts we found were both microservices with an unusu-

ally high number of entity objects. Since the application only has 41 microservices,

we did not report a need to use an API gateway; however, we can verify using the

publicly available design document, as seen in Figure 4.5, that an API gateway is

nonetheless used.

Of the 28 hard-coded endpoints we found, all of them were hardcoded port

numbers. This is still an issue for the application, as it makes it significantly harder

to scale and change the microservices later.

Of the 76 API endpoints that were unversioned, most were found in the admin

modules, and some miscellaneous, non-data endpoints throughout the other modules.

62

https://github.com/Sciss/ws4j

Advanced travel
(route info & tickets)

Traffic management

Gateway

Service
discovery

(Kubernetes)

Service
registry

Load
balancing

Monitoring & metrics

Travel admin
(order, route, station)

Ticket
rebook

High-speed
ticket reserve

Ticket
reserve News

Ticket
office

Route plan
(price, change, time)

Ticket
execute

Pay
High-speed

travel explore
Travel

explore Security
Cancel
order

Inside
pay Consign

Route Seat Voucher High-speed
order

Ticket info Order
Consign

price

AssuranceUser
Basic
infoNotifyFood

service

Food
map Config Station Train Contact Price

Verify
code Authorization

Figure 4.5. Train Ticket testbed architecture diagram.

There were no shared persistencies among the microservices, as each microser-

vice had its own database. We could manually verify one inappropriate service in-

timacy in the system, which our tool correctly found. The modules ts-admin-route-

service and ts-route-service both use the exact same entities, and ts-admin-route-

service solely requests/modifies the private data of ts-route-service as opposed to

using its own data.

Of the four shared libraries our application found, only one was widespread.

The library was also not a public library, but an in-house library developed for the

system. This is a perfect example of a library that is too coupled to the microservices

and should be refactored. Lastly, no cyclic dependencies were found, which matches

both what we found in our manual testing and the architecture diagram in Figure

4.5.

63

Table 4.3. Case study on TMS benchmark.

Smell Manual MSANose Time (ms)
ESB Usage No No 1
Too Many Standards No No 66
Wrong Cuts 0 0 279
Not Having an API Gateway Yes No 1
Hard-Coded Endpoints 2 2 1
API Versioning 62 62 546
Microservice Greedy 0 0 271
Shared Persistency 0 0 60
Inappropriate Service Intimacy 0 0 1
Shared Libraries 2 2 47
Cyclic Dependency No No 1
Total 1074

4.7.2 Teacher Management System

The Teacher Management System (TMS) (https://github.com/cloudhubs/tms2020)

is an enterprise application developed at Baylor University for Central Texas Com-

putational Thinking, Coding, and Tinkering to facilitate the Texas Educator Cer-

tification training program. The TMS application consists of four microservices:

user management system (UMS), question management system (QMS), exam man-

agement system (EMS), and configuration management system (CMS). All of the

microservices are developed using the Spring Boot framework and structured into the

controller, service, and repository layers. It uses Docker for application packaging,

Docker-compose (https://docs.docker.com/compose/) for deployment, and NGINX

for routing.

Similar to the first case study, we manually analyzed the testbed for each of

the eleven microservice code smells. Then, we ran our MSANose application on the

TMS testbed. It took around 2 s to run the benchmark on a 2.9 GHz Intel Core i9

computer with 32 GB of RAM. Table 4.3 shows the results of the manual assessment

and results from MSANose side-by-side. An individual breakdown of the times for

each of the code smells is listed in Column 4 of Table 4.3.

64

https://github.com/cloudhubs/tms2020
https://docs.docker.com/compose/

/Users/das/Baylor/RA/tms-testbed/tms-cms/target/cms-0.0.1-SNAPSHOT.jar

/Users/das/Baylor/RA/tms-testbed/tms-ums/target/ums-1.0-SNAPSHOT.jar

/Users/das/Baylor/RA/tms-testbed/tms-ems/target/ems-0.1.0.jar

/Users/das/Baylor/RA/tms-testbed/tms-qms/target/qms-0.0.1-SNAPSHOT.jar

edu.baylor.ecs.cms.service.QmsService.createConfiguration

edu.baylor.ecs.qms.controller.ConfigurationController.createConfiguration

POST http://qms-service/configuration

edu.baylor.ecs.cms.service.EmsService.getQuestionsForExam edu.baylor.ecs.ems.controller.ExamController.listAllQuestionsForExamGET http://ems-service/exam/{id}/questions

edu.baylor.ecs.cms.service.EmsService.deleteINITExam edu.baylor.ecs.ems.controller.ExamController.deleteINITExamDELETE http://ems-service/exam/{id}

edu.baylor.ecs.cms.service.EmsService.createExam edu.baylor.ecs.ems.controller.ExamController.createExamPOST http://ems-service/exam

edu.baylor.ecs.cms.service.UmsService.isEmailValid
edu.baylor.ecs.ums.controller.UserInfoController.isEmailInUse

GET http://ums-serivce/userinfo/emailInUse/{email}

edu.baylor.ecs.cms.service.QmsService.getConfigurations edu.baylor.ecs.qms.controller.ConfigurationController.findAllConfigurationsGET http://qms-service/configuration

edu.baylor.ecs.cms.service.UmsService.getExamineeInfo
edu.baylor.ecs.ums.controller.UserInfoController.getUserById

GET http://ums-serivce/userinfo/userById/{id}

edu.baylor.ecs.cms.service.EmsService.getExams edu.baylor.ecs.ems.controller.ExamController.listAllExamsGET http://ems-service/exam

edu.baylor.ecs.cms.service.EmsService.getINITExams

GET http://ems-service/exam

edu.baylor.ecs.cms.service.UmsService.getAllUsers
edu.baylor.ecs.ums.controller.UserInfoController.getAllUsers

GET http://ums-serivce/userinfo/users

edu.baylor.ecs.cms.service.QmsService.getCategoryInfoDtos

edu.baylor.ecs.qms.controller.CategoryInfoController.findAllCategoryInfos

GET http://qms-service/categoryinfo

edu.baylor.ecs.ems.service.QmsService.getQuestions edu.baylor.ecs.qms.controller.createTestGET http://129.62.148.179:12345/test?configId={id}

Figure 4.6. Inter microservice REST communications of TMS application.

We ran our MSANose tool on the TMS testbed for potential ESBs with a

connectivity threshold on the microservices of 80%. Our tool reported no potential

ESBs, which can be verified using the REST communication diagram shown in Figure

4.6. At first look, one might think of the CMS as an ESB since most of the outgoing

connections are from CMS. However, ESBs are simply routers with some intelligence

like data conversion and filtering. Thus, ESBs typically have a high number of in-

coming and outgoing connections compared to microservices. In Figure 4.6, we can

see that CMS does not have any incoming connection. This indicates CMS is not an

ESB and our tool produced the correct result for ESB detection.

Our manual assessment found that the testbed is built with Spring Boot,

PostgreSQL with JPA is used for persistence, and static hosting is used for the front-

end. Our application correctly identified these standards. We ran our tool for too

many standards for each of the presentation, business, and data layers. No layer was

beyond our threshold of two standards.

Since the application has only four microservices, we did not explicitly report

for an API gateway. However, our manual assessment found that no API gateway

was used. Our tool did not report any possible wrong cuts. We manually checked for

access amount of services in the business layers and access amount of entities in the

65

data layers. Our manual assessment confirmed that the application was well designed,

and there were no possible wrong cuts.

Our tool found two hard-coded endpoints, both of them were in EMS and

pointing to QMS. Both of these endpoints were hardcoded IP, which makes it harder

to scale the application. From our manual assessment, as shown in Figure 4.6, we

found QMS is also accessed from CMS using a non-hard coded endpoint, which is

considered to be the best practice. Thus, those hardcoded endpoints were probably

mistakenly left unnoticed during the application development process.

The MSANose tool did not report any shared presidencies for the testbed, and

we confirmed it by identifying that each microservices had its own database. There

was no inappropriate service intimacy. We manually checked all entities and did not

found any pair of entities that are exactly the same.

Our tool identified 62 unversioned API endpoints, which were verified by our

manual assessment. The further assessment found that the application did not use

any API versioning at all, which is critical for client-side code stability. Two shared

libraries were identified, which matches the count of our manual assessment. However,

both of those libraries are related to the Spring Boot framework. Thus, it is one of

the false-positive warnings reported by our tool and can be ignored safely. Lastly, no

cyclic dependency was found, which matches our manual assessment.

Our tool correctly analyzed both testbed systems and successfully identified

the applications’ microservice code smells. Code smells do not always break the

system or cause system-crashing bugs, but they are problems nonetheless and are

indicators of poor programming practice. As a system grows organically, as the

testbed applications have done over the past couple of years, these smells can easily

work their way into the system. Our tool can assist developers in locating code smells

in their enterprise application, as well as providing a catalog of the smells and their

common solutions as they attempt to fix them.

66

4.7.3 Validity Threats

One of the main validity threats is the three code smells microservice greedy,

wrong cuts, and too many standards. While these code smells are specifically defined

as to what they are, they do not have an established system for detection or solu-

tion (Taibi and Lenarduzzi 2018). We used our discretion, along with knowledge of

enterprise architecture, to determine how our application would detect those, but it

is ultimately up to interpretation. Below, we also address the internal and external

threats to validity.

4.7.3.1 Internal Threats. We ran our application ten times to validate that

the times we record in Tables 4.2b and 4.3b for our system’s running time to avoid

an unusual system deviation. Our application is tested against manually gathered

results. To mitigate potential error when collecting the results, we had multiple

researchers gather the results and matched them. We used these results to validate

the correctness of our system.

Our application uses several thresholds for determining different code smells,

which are documented with the results. These thresholds are required to estimate the

severity of certain code smells and set our detection algorithms’ tolerance. We used

80% connectivity threshold for detecting ESB Usage. A threshold of 50 microservices

was used to report not having an API gateway. The default values of those thresholds

were originally proposed by Taibi et al. (Pigazzini et al. 2020) through an extensive

survey among industry specialist. However, these thresholds could be adjusted by

the user, which would produce different results.

4.7.3.2 External Threats. Our application was run on two open-source ben-

chmark applications that were similar to real-world conditions to make our test as

applicable as possible. Our analysis utilizes established enterprise standards. Thus,

if applications follow the best practice standards, they are analyzable by our system.

67

Both of the benchmark applications used in the case study are primarily writ-

ten in Java. However, microservice architecture usually follows polyglot programming

styles. We utilized bytecode and source code analysis in our tool to show that it can

support both interpreted and compiled languages. We used Java Parser and Javassist

for parsing Java source code and bytecode, respectively. Similar parsing tools are

available for other modern languages; for example, Python and Golang have a built

in parser package to obtain AST from the source code. Provided that a language

has an appropriate parser, our tool can be extended to support a wide variety of

languages used in MSA.

We designed generic interfaces to analyze and detect code smells. In our case

study, we chose our first benchmark application (Train Ticket) randomly from a list of

exclusively designed applications for benchmarking (Zhou et al. 2018). Then, we im-

plemented those interfaces for Spring boot and enterprise Java since the chosen bench-

mark follows these standards. To verify our prototype is not application-specific, we

chose our second benchmark application (Teacher Management System) that follows

similar standards. However, there might exist different standards in other languages.

To address this, we need to implement the interfaces for those specific standards.

Modern cloud-native microservices are usually packaged as containers and de-

ployed using orchestration platforms such as Kubernetes, Cloud Foundry, Docker

Swarm, etc. During containerization, source codes are not typically included; only

the compiled artifacts such as JAR or EXE files are added into the containers. It

is still possible to perform bytecode analysis for containerized microservices by ex-

tracting the bytecode artifacts (e.g., JAR file) from container layers (Cerny et al.

2020). For this approach, we also need to analyze the deployment configuration files

to identify service names associated with each microservices (Cerny et al. 2020).

68

However, additional hard-coded dependencies in container images might require fur-

ther research to identify them properly. In addition, for compiled languages, source

code analysis is not possible within a containerized environment.

4.8 Future Trends

The area of microservice verification has only recently begun to be thoroughly

explored. This means that an enterprise system’s typical problem domains, such as

security (Walker et al. 2020b), data constraints, and networking (Smid et al. 2019),

have only a surface-level examination for verification. The problem domain for code

smells is not different. Although this work is based on established code smells from

industry advice and examination (Taibi and Lenarduzzi 2018), there exists the pos-

sibility to expand the pool of code smells for microservice-based applications. For

monolithic systems, there exists hundreds of code smells in a multitude of languages.

Definitions of those code smells can be adjusted to make them appropriate for MSA

through an extensive survey among industry specialists. For example, the Artificial

Coupling and Hidden Dependencies smells described in (Fowler 2018) can be inter-

preted for microservice level coupling instead of class-level coupling. In addition,

similar to the study described in (Mantyla et al. 2003), a taxonomy of code smells

can be done exclusively for MSA.

Our implementation has a clear separation between the metadata extraction

and code-smell detection, where each detection algorithm is implemented in separate

modules. Thus new detection mechanisms can be easily plugged in as a discreet

module without affecting the existing metadata extraction and detection algorithms.

Similarly, this research could be expanded into other languages and enterprise

standards. In addition, exploration for containerized microservices along with rig-

orous deployment configuration analysis can be done for cloud-native applications

(Cerny et al. 2020).

69

Our open-source tool can be integrated into the software development lifecycle.

For instance, it can be added to the CI/CD pipeline to run an automatic screening

test before performing the deployment. Further, it can be used to accelerate the code

review process. These adoptions will reduce the manual efforts and human errors

of code reviewers and DevOps engineers resulting in a shortened release and update

cycle of a microservice applications along with improved code quality.

4.9 Conclusions

In this paper, we discuss the nature of code smells in software applications.

Code smells, which may not break the application in the immediate time-frame,

can cause long-lasting problems for maintainability and efficiency later on. Many

tools have been developed which automatically detect code smells in applications,

including ones designed for architecture and overall design of a system. However,

none of these tools adequately address a distributed application’s needs, specifically

a microservice-based application. To address these issues, we draw upon previous

research into defining microservice specific code smells to build an application capable

of detecting eleven unique microservice-based code smells. Our prototype application,

MSANose, is open-source and available at https://github.com/cloudhubs/msa-nose.

We ran our application on two established microservice benchmark applications and

compared our results to manually gathered ones. We show that it is possible, through

static code analysis, to analyze a microservice-based application and accurately derive

microservice-specific code smells.

For future work, we plan to assess more application testbeds. Moreover, we

plan to continue our work on integrating the Python platform to our approach since

there are no platform-specific details, and most of the enterprise standards apply

to across platforms. We also plan to detect code clones in distributed enterprise

microservice applications in future work.

70

https://github.com/cloudhubs/msa-nose

CHAPTER FIVE

Software Architecture Reconstruction for Containerized Microservices

Microservices are commonly packaged and delivered as containers that ensure

seamless deployment in a cloud-cluster. Although several studies on Software Archi-

tecture Reconstruction (SAR) for MSA have been conducted, those methods require

access to each module’s source code. However, access to source code may not be

readily available where containers are more easily accessible. Thus, current solutions

for SAR need to be adjusted to operate on containers instead of source code. This

chapter presents an effective method to perform SAR on containerized microservices.

Our solution augments container instrumentation with bytecode analysis. We fur-

ther analyzed deployment files to operate on container orchestration frameworks like

Kubernetes.

5.1 Proposed Method

Our proposed solution reconstructs the REST interaction graph for a set of

containerized microservices. We divided our approach into two phases. First, we

analyzed deployment configuration files and instrument container images to extract

executable bytecode artifacts. Second, the REST endpoint’s specifications are col-

lected using bytecode analysis, which is then merged to accomplish SAR. Our pro-

posed method of SAR combines the service and operation views of the application

architecture.

Our analysis process begins by examining a set of deployment configuration

files. More specifically, we analyzed Kubernetes’ deployment and service files. This

analysis can be either static or dynamic. In the case of static analysis, deployment

files are inputted as standalone JSON or YAML files. For dynamic analysis, we

connect to a running Kubernetes cluster with user-provided credentials and enumerate

71

all currently deployed containers. Next, we examine each container image using a

Docker client, which is the primary way to interact with Docker containers. For static

analysis, we use a standalone Docker client. However, for dynamic analysis, we run

the Docker client within a Docker container that links the underlying Docker host of a

Kubernetes cluster. It can be achieved by mounting the host Docker socket path which

is typically set to /var/run/docker.sock. This ensures that the same containers as

the deployed ones are being analyzed. The remaining steps are similar for both

static and dynamic analysis. The Docker client has the capability to instrument and

decompose file system layers of a Docker container. We examine each container image

to find the path to the executable bytecode file, i.e., JAR file and then extract that

file from the file system layers of the container. Once all bytecode files are extracted,

we analyzed the labels and selectors to find service names and ports associated with

each container.

In the second phase, we used bytecode analysis to recognize REST API end-

points and API calls to reconstruct a REST interaction graph. This requires ex-

ploring each module’s bytecode for a connection to another module, i.e., identifying

inter-module REST API calls. The generation of the interaction graph involves two

steps: scanning and matching. In the scanning step, we analyze each module to list all

REST endpoints and REST calls and their specifications. This specification includes

the IP address or service name, port, HTTP type, path, parameter, and return type.

In the matching step, we compare REST endpoints with REST calls based on their

specification. Each matching pair indicates an inter-module REST connection.

5.2 Case Study

This section evaluates the accuracy and performance of our proposed method

through a case study on the Teacher Management System (TMS)1 project. TMS is

1https://github.com/cloudhubs/tms2020

72

an enterprise application developed at Baylor University for Central Texas Computa-

tional Thinking, Coding, and Tinkering to facilitate the Texas Educator Certification

training program. The TMS application comprises four individual microservices: user

management system (UMS), question management system (QMS), exam management

system (EMS), and configuration management system (CMS). All of the microser-

vices are developed using the Spring Boot framework (Walls 2016) and structured

into the controller, service, and repository layers. However, unlike the case studies

described in Chapter 3 and 4, here all four of these microservices are packaged is

packaged and delivered through Docker containers. The whole application can be

deployed either using Docker Compose or Kubernetes.

We deployed the TMS project in a single node Kubernetes cluster using

Minikube (The Kubernetes Authors 2021) and connected to the cluster using the

Java client of kubernetes. Listings 5.1 and 5.2 are the Kubernetes service and de-

ployment for the CMS microservice.

First, we list all the available k8s services excluding the built-in services. How-

ever, a Kubernetes cluster can contain multiple applications. Thus, we utilized the

user-provided label "project: tms" to filter the services that are relevant to the

TMS application. Services allow k8s containers to publish specific ports to receive

incoming API calls. We parsed the name and port of the service which are "cms"

and "80" respectively in Listing 5.1. Next, we parse the selectors of the services

e.g. "app: cms". These selectors are used to link a deployment pod with a service.

Afterward, we list all the k8s deployments that match the selectors of the services.

Once deployments are filtered out, we extract the container image names for each of

them e.g. "cloudhubs2/tms-cms" in Listing 5.2. Then the list of all container images

is passed to the Docker client. The Docker client analyzes each container image and

extracts bytecode artifacts from their file system layers. These bytecode artifacts are

then dumped into a separate location for further analysis.

73

Listing 5.1. CMS Service

apiVersion: v1

kind: Service

metadata:

name: cms -service

labels:

project: tms

spec:

selector:

app: cms

ports:

- targetPort: 9081

port: 80

name: http

type: NodePort

Once all the executable bytecode artifacts are extracted, we run the bytecode

analysis for each of them. We analyzed the annotations associated with each class

and methods to find REST endpoint descriptions. Typically, REST endpoints are

defined in controller classes which are marked with a @RestController annotation

in Spring Boot projects. Each of the endpoint methods is then analyzed based on the

annotations associated with them. For example, @GetMapping annotation is used to

define a GET API while @PostMapping annotation is used to define a POST API.

Parameters of these annotations are also examined to find the API paths, query

parameters, request type, and response type.

Unlike REST endpoints, REST API calls are tricky to identify as they are not

defined using annotations. In a Spring Boot application, API calls are typically done

through the RestTemplate class where the methods getForObject, postForObject,

deleteForObject, etc. are used for performing REST calls with specific HTTP type.

Each of those methods takes a URL parameter which can be either a hardcoded IP

address or, service name.

For each of the REST endpoints and REST API calls, a Fully Qualified Domain

Name (FQDN) is generated by concatenating the service name, port, and path. If

74

Listing 5.2. CMS Deployment

apiVersion: apps/v1

kind: Deployment

metadata:

name: cms

labels:

app: cms

spec:

replicas: 1

template:

metadata:

name: cms

labels:

app: cms

spec:

containers:

- name: cms

image: cloudhubs2/tms -cms

ports:

- containerPort: 9081

selector:

matchLabels:

app: cms

the FQDN and HTTP type match for a pair of an API call and an API endpoint,

then we identify it as a REST connection between two modules.

Figure 5.1 shows the REST interaction graph of the TMS application that

consists of twelve inter-module REST connections.

Among the twelve inter-module REST connections shown in Figure 5.1, our

tool detected eleven of them that use service name. It fails to detect the one that uses

a hardcoded IP address. However, using a hardcoded IP address is not recommended

as it reduces the scalability of the application and commonly recognized as a code

smell (Walker, Das, and Cerny 2020).

5.3 Threats to Validity

Our proposed solution of SAR for containerized microservices relies on byte-

code analysis. However, not all languages support intermediate bytecode representa-

tion. For compiled languages like C++ or Golang, it is possible to extract executable

75

Deployment: cms Service: cms-service Port: 80
Entrypoint: /bin/cms-0.0.1-SNAPSHOT.jar

Deployment: ums Service: ums-service Port: 80
Entrypoint: /bin/ums-0.0.1-SNAPSHOT.jar

Deployment: ems Service: ems-service Port: 80
Entrypoint: /bin/ems-0.0.1-SNAPSHOT.jar

Deployment: qms Service: qms-service Port: 80
Entrypoint: /bin/qms-0.0.1-SNAPSHOT.jar

edu.baylor.ecs.cms.service.QmsService.createConfiguration

edu.baylor.ecs.qms.controller.ConfigurationController.createConfiguration

POST http://qms-service/configuration

edu.baylor.ecs.cms.service.EmsService.getQuestionsForExam edu.baylor.ecs.ems.controller.ExamController.listAllQuestionsForExamGET http://ems-service/exam/{id}/questions

edu.baylor.ecs.cms.service.EmsService.deleteINITExam edu.baylor.ecs.ems.controller.ExamController.deleteINITExamDELETE http://ems-service/exam/{id}

edu.baylor.ecs.cms.service.EmsService.createExam edu.baylor.ecs.ems.controller.ExamController.createExamPOST http://ems-service/exam

edu.baylor.ecs.cms.service.UmsService.isEmailValid
edu.baylor.ecs.ums.controller.UserInfoController.isEmailInUse

GET http://ums-serivce/userinfo/emailInUse/{email}

edu.baylor.ecs.cms.service.QmsService.getConfigurations edu.baylor.ecs.qms.controller.ConfigurationController.findAllConfigurationsGET http://qms-service/configuration

edu.baylor.ecs.cms.service.UmsService.getExamineeInfo
edu.baylor.ecs.ums.controller.UserInfoController.getUserById

GET http://ums-serivce/userinfo/userById/{id}

edu.baylor.ecs.cms.service.EmsService.getExams edu.baylor.ecs.ems.controller.ExamController.listAllExamsGET http://ems-service/exam

edu.baylor.ecs.cms.service.EmsService.getINITExams

GET http://ems-service/exam

edu.baylor.ecs.cms.service.UmsService.getAllUsers
edu.baylor.ecs.ums.controller.UserInfoController.getAllUsers

GET http://ums-serivce/userinfo/users

edu.baylor.ecs.cms.service.QmsService.getCategoryInfoDtos

edu.baylor.ecs.qms.controller.CategoryInfoController.findAllCategoryInfos

GET http://qms-service/categoryinfo

edu.baylor.ecs.ems.service.QmsService.getQuestions edu.baylor.ecs.qms.controller.createTestGET http://129.62.148.179:12345/test?configId={id}

Figure 5.1. Inter microservice REST communications of TMS containers.

files from the Docker file system, but extracting REST API definitions from those

executable files will require a complex reverse engineering process. Our current im-

plementation can only analyze microservice bytecode that is developed using Java EE

and Spring Boot frameworks. However, our proposed method uses generic standards

of MSA. Thus it can be extended for other interpreted languages and frameworks.

76

CHAPTER SIX

Conclusion And Future Work

Compared to traditional monolithic applications, MSA provides greater flex-

ibility for faster delivery and cloud deployment along with improved scalability and

maintainability. However, these added benefits come with the cost of the increased

complexity of application architecture. Developers need to have a firm understanding

of the overall system to implement new features or trace errors. Besides, automating

security assessments is harder in MSA due to the lack of a unified view. SAR can

be used to mitigate this problem by reconstructing a centralized perspective of the

application. In this thesis, we described an approach to automate the SAR process

through static analysis. However, since microservices are commonly delivered as con-

tainers, it is important to revisit SAR approaches and include containerization. Thus,

we extended our proposed method further for containerized microservices. This ex-

tension made our method stand out from traditional SAR strategies that operated

only on the source code of the application. Based on the generated SAR, we demon-

strated two use cases of our approach. One of them finds RBAC inconsistencies

among microservices while another identifies MSA-specific code smells. Finally, we

presented separate case studies for each of our proposed methods to verify them on

two industry-standard benchmark projects.

In the future, we plan to extend our case study for a heterogeneous bench-

mark application. We are also working on an extension of the tool for Python and

Golang frameworks. Apart from these, we are investigating on the following research

questions:

77

(1) Is it possible to generalize SAR for all languages? Can we define an intermedi-

ate language-agnostic Microservice Descriptor (MSD) to represent all entities

and services along with their interactions?

(2) Is it feasible to achieve SAR using dynamic analysis instead of static analysis?

This approach will remove the language dependency associated with static

code analysis. Our ongoing work indicates a positive outcome where we

are utilizing the log tracing of service mesh (Li et al. 2019) deployed in a

Kubernetes cluster.

(3) Similar to SAR, can we conduct business processes modeling (BPM) (Mayr

et al. 2007) using static analysis? BPM creates a compact representation of

the applications’ critical paths that can significantly improve the onboarding

experience of new developers on an existing project. However, current BPM

approaches mostly work on a single module. We can augment them with SAR

to make them suitable for MSA.

(4) Can we utilize SAR for estimating MSA-specific technical debt (Cunningham

1992) that traditional tools fail to approximate?

78

BIBLIOGRAPHY

Aderaldo, C. M., N. C. Mendonça, C. Pahl, and P. Jamshidi (2017). Benchmark
requirements for microservices architecture research. In Proceedings of the 1st
International Workshop on Establishing the Community-Wide Infrastructure for
Architecture-Based Software Engineering, ECASE ’17, pp. 8–13. IEEE Press.

Ahn, G.-J. and R. Sandhu (2000, November). Role-based authorization
constraints specification. ACM Trans. Inf. Syst. Secur. 3 (4), 207–226.
https://doi.org/10.1145/382912.382913.

Albert, E., M. Gómez-Zamalloa, L. Hubert, and G. Puebla (2007). Verification of
java bytecode using analysis and transformation of logic programs. In M. Hanus
(Ed.), Practical Aspects of Declarative Languages, Berlin, Heidelberg, pp. 124–
139. Springer Berlin Heidelberg.

Alikacem, E. H. and H. A. Sahraoui (2009). A metric extraction framework based
on a high-level description language. In 2009 Ninth IEEE International Work-
ing Conference on Source Code Analysis and Manipulation, pp. 159–167.

Alshuqayran, N., N. Ali, and R. Evans (2018a). Towards micro service architec-
ture recovery: An empirical study. In 2018 IEEE International Conference on
Software Architecture (ICSA), pp. 47–4709.

Alshuqayran, N., N. Ali, and R. Evans (2018b). Towards micro service architec-
ture recovery: An empirical study. In 2018 IEEE International Conference on
Software Architecture (ICSA), pp. 47–4709.

Alur, D., D. Malks, J. Crupi, G. Booch, and M. Fowler (2003). Core J2EE Patterns
(Core Design Series): Best Practices and Design Strategies (2 ed.). USA: Sun
Microsystems, Inc.

Azadi, U., F. Arcelli Fontana, and D. Taibi (2019). Architectural smells detected
by tools: a catalogue proposal. In 2019 IEEE/ACM International Conference
on Technical Debt (TechDebt), pp. 88–97.

Basin, D., S. J. Burri, and G. Karjoth (2009). Dynamic enforcement of abstract
separation of duty constraints. In M. Backes and P. Ning (Eds.), Computer
Security – ESORICS 2009, Berlin, Heidelberg, pp. 250–267. Springer Berlin
Heidelberg.

Bass, L., P. Clements, and R. Kazman (2003). Software architecture in practice.
Addison-Wesley Professional.

79

Bernard, E. (2009, November). JSR 303: Bean validation. http://jcp.org/en/jsr/
detail?id=303. Accessed 16 July 2020.

Brachmann, E., G. Dittmann, and K.-D. Schubert (2012). Simplified authen-
tication and authorization for restful services in trusted environments. In
F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.), Service-Oriented and Cloud
Computing, Berlin, Heidelberg, pp. 244–258. Springer Berlin Heidelberg.

Bruggen, D. V. (2020). JavaParser : Analyse, transform and generate your Java
codebase. https://javaparser.org. Accessed 14 August 2020.

Buelow, H., M. Deb, J. Kasi, D. LHer, and P. Palvankar (2009). Getting Started
With Oracle SOA Suite 11G R1 A Hands-On Tutorial. Packt Publishing.

Bugan IT Consulting UG (2020). STAN: Structure Analysis for Java. http://
stan4j.com. Accessed 21 September 2020.

Castillo, P., J. Bernier, M. Arenas, J. Merelo Guervós, and P. Garćıa-Sánchez
(2011, 01). Soap vs rest: Comparing a master-slave ga implementation.
CoRR abs/1105.4978.

Cerny, T., K. Cemus, M. J. Donahoo, and E. Song (2013). Aspect-driven, data-
reflective and context-aware user interfaces design. ACM SIGAPP Applied
Computing Review 13 (4), 53–66.

Cerny, T., M. J. Donahoo, and M. Trnka (2018, January). Contextual understand-
ing of microservice architecture: Current and future directions. SIGAPP Appl.
Comput. Rev. 17 (4), 29–45.

Cerny, T., J. Svacina, D. Das, V. Bushong, M. Bures, P. Tisnovsky, K. Frajtak,
D. Shin, and J. Huang (2020). On code analysis opportunities and challenges
for enterprise systems and microservices. IEEE Access , 1–22.

Chatley, G., S. Kaur, and B. Sohal (2016, 01). Software clone detection: A review.
International Journal of Control Theory and Applications 9, 555–563.

CheckStyle (2019). Checkstyle: A development tool to help programmers write
java code that adheres to a coding standard. https://checkstyle.sourceforge.io.
Accessed March 27, 2020.

Chiba, S. (1998, October). Javassist – a reflection-based programming wizard for
Java. In Proceedings of the ACM OOPSLA’98 Workshop on Reflective Pro-
gramming in C++ and Java.

Cicchetti, A., D. Di Ruscio, L. Iovino, and A. Pierantonio (2013, February). Man-
aging the evolution of data-intensive Web applications by model-driven tech-
niques. Software & Systems Modeling 12 (1), 53–83.

80

http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=303
https://javaparser.org
http://stan4j.com
http://stan4j.com
https://checkstyle.sourceforge.io

Ciuciu, I., Y. Tang, and R. Meersman (2012). Towards evaluating an ontology-
based data matching strategy for retrieval and recommendation of security an-
notations for business process models. In K. Aberer, E. Damiani, and T. Dillon
(Eds.), Data-Driven Process Discovery and Analysis, Berlin, Heidelberg, pp.
103–119. Springer Berlin Heidelberg.

Counsell, S., H. Hamza, and R. M. Hierons (2010). The ‘deception’ of code smells:
An empirical investigation. In Proceedings of the ITI 2010, 32nd International
Conference on Information Technology Interfaces, pp. 683–688.

Cunningham, W. (1992). The wycash portfolio management system. In Adden-
dum to the Proceedings on Object-Oriented Programming Systems, Languages,
and Applications (Addendum), OOPSLA ’92, New York, NY, USA, pp. 29–30.
Association for Computing Machinery.

Das, D., A. Walker, V. Bushong, J. Svacina, T. Cerny, and V. Matyas (2021,
February). On automated RBAC assessment by constructing a centralized per-
spective for microservice mesh. PeerJ Computer Science 7, e376.

DeMichiel, L. (2009). JSR 317: JavaTM persistence API, version 2.0. http://jcp.
org/en/jsr/detail?id=317. Accessed 16 July 2020.

DeMichiel, L. and M. Keith (2006). JSR 220: Enterprise javabeans version 3.0.
java persistence API. http://jcp.org/en/jsr/detail?id=220. Accessed 16 July
2020.

DeMichiel, L. and W. Shannon (2016). JSR 366: Java Platform, Enterprise Edition
8 Spec. https://jcp.org/en/jsr/detail?id=342. Accessed 27 March 2020.

Dietrich, J. (2012). Upload your program, share your model. In Proceedings of the
3rd Annual Conference on Systems, Programming, and Applications: Software
for Humanity, SPLASH ’12, New York, NY, USA, pp. 21–22. Association for
Computing Machinery.

Ellson, J., E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull (2002).
Graphviz - open source graph drawing tools. In P. Mutzel, M. Jünger, and
S. Leipert (Eds.), Graph Drawing, Berlin, Heidelberg, pp. 483–484. Springer
Berlin Heidelberg. http://www.graphviz.org. Accessed 16 July 2020.

Ferraiolo, D., J. Cugini, and R. Kuhn (1995, December). Role-Based Access Con-
trol (RBAC): Features and Motivations. In Proceedings of the 11th Annual
Computer Security Applications Conference, pp. 241–248. IEEE.

Finnigan, K. (2018). Enterprise Java Microservices. Manning Publications.

Fontana, F. A. and M. Zanoni (2011). On investigating code smells correlations. In
2011 IEEE Fourth International Conference on Software Testing, Verification
and Validation Workshops, pp. 474–475.

81

http://jcp.org/en/jsr/detail?id=317
http://jcp.org/en/jsr/detail?id=317
http://jcp.org/en/jsr/detail?id=220
https://jcp.org/en/jsr/detail?id=342
http://www.graphviz.org

Fowler, M. (2018). Refactoring: Improving the Design of Existing Code. USA:
Addison-Wesley Longman Publishing Co., Inc.

Freudenthal, E., T. Pesin, L. Port, E. Keenan, and V. Karamcheti (2002). drbac:
distributed role-based access control for dynamic coalition environments. In
Proceedings 22nd International Conference on Distributed Computing Systems,
pp. 411–420.

Gabel, M., L. Jiang, and Z. Su (2008). Scalable detection of semantic clones.
In Proceedings of the 30th International Conference on Software Engineering,
ICSE ’08, New York, NY, USA, pp. 321–330. ACM.

Granchelli, G., M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino, and A. Di
Salle (2017a). Towards recovering the software architecture of microservice-
based systems. In 2017 IEEE International Conference on Software Architec-
ture Workshops (ICSAW), pp. 46–53.

Granchelli, G., M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino, and A. Di
Salle (2017b). Towards recovering the software architecture of microservice-
based systems. In 2017 IEEE International Conference on Software Architec-
ture Workshops (ICSAW), pp. 46–53.

Gupta, V., P. Kapur, and D. Kumar (2016, 04). Modelling and measuring code
smells in enterprise applications using tism and two-way assessment. Interna-
tional Journal of System Assurance Engineering and Management 7.

Habib, M. A., N. Mahmood, M. Shahid, M. U. Aftab, U. Ahmad, and C. M.
Nadeem Faisal (2014). Permission based implementation of dynamic separation
of duty (dsd) in role based access control (rbac). In 2014 8th International
Conference on Signal Processing and Communication Systems (ICSPCS), pp.
1–10.

Headway Software Technologies Ltd. Structure101. https://structure101.com. Ac-
cessed 21 September 2020.

Hopkins, W. (2009). JSR 375: JavaTM EE security API. https://jcp.org/en/jsr/
detail?id=375. Accessed 16 July 2020.

Hunsaker, C. (2015). REST vs SOAP: When is REST better for web service inter-
faces? https://stormpath.com/blog/rest-vs-soap. Accessed 14 August 2020.

Ibrahim, A., S. Bozhinoski, and A. Pretschner (2019). Attack graph generation
for microservice architecture. In Proceedings of the 34th ACM/SIGAPP Sym-
posium on Applied Computing, SAC ’19, New York, NY, USA, pp. 1235–1242.
Association for Computing Machinery.

Jendrock, E., I. Evans, D. Gollapudi, K. Haase, C. Srivathsa, R. Cervera-Navarro,
and W. Markito (2014, May). Working with realms, users, groups, and roles.
In The Java EE 7 tutorial: volume 2. Addison-Wesley Professional.

82

https://structure101.com
https://jcp.org/en/jsr/detail?id=375
https://jcp.org/en/jsr/detail?id=375
https://stormpath.com/blog/rest-vs-soap

Jia, Y. and M. Harman (2011). An analysis and survey of the development of
mutation testing. IEEE Transactions on Software Engineering 37 (5), 649–678.
https://doi.org/10.1109/TSE.2010.62.

Keivanloo, I., C. K. Roy, and J. Rilling (2012). Java bytecode clone detection via
relaxation on code fingerprint and semantic web reasoning. In Proceedings of
the 6th International Workshop on Software Clones, IWSC ’12, Piscataway, NJ,
USA, pp. 36–42. IEEE Press.

Keivanloo, I., C. K. Roy, and J. Rilling (2014). Sebyte: Scalable clone and similarity
search for bytecode. Science of Computer Programming 95, 426–444. Special
Issue on Software Clones (IWSC’12).

Khomh, F., M. Di Penta, and Y. Gueheneuc (2009). An exploratory study of the
impact of code smells on software change-proneness. In 2009 16th Working
Conference on Reverse Engineering, pp. 75–84.

Kratzke, N. and P.-C. Quint (2017). Understanding cloud-native applications after
10 years of cloud computing - a systematic mapping study. Journal of Systems
and Software 126, 1–16.

Kumar, K. S. and D. Malathi (2017, April). A novel method to find time complexity
of an algorithm by using control flow graph. In 2017 International Conference
on Technical Advancements in Computers and Communications (ICTACC), pp.
66–68.

Lau, D. (2018). An abstract syntax tree generator from java bytecode. https:
//github.com/davidlau325/BytecodeASTGenerator. Accessed 27 March 2020.

Le, D. M., P. Behnamghader, J. Garcia, D. Link, A. Shahbazian, and N. Medvidovic
(2015). An empirical study of architectural change in open-source software
systems. In 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories, pp. 235–245.

Lee, S., J. Jo, and Y. Kim (2015). Method for secure restful web service. In
2015 IEEE/ACIS 14th International Conference on Computer and Information
Science (ICIS), pp. 77–81. https://doi.org/10.1109/ICIS.2015.7166573.

Li, W., Y. Lemieux, J. Gao, Z. Zhao, and Y. Han (2019). Service mesh: Challenges,
state of the art, and future research opportunities. In 2019 IEEE International
Conference on Service-Oriented System Engineering (SOSE), pp. 122–1225.

Logarix. AI Reviewer. http://aireviewer.com. Accessed 21 September 2020.

Macia, I., J. Garcia, P. Daniel, A. Garcia, N. Medvidovic, and A. Staa (2012, 03).
Are automatically-detected code anomalies relevant to architectural modular-
ity? an exploratory analysis of evolving systems. AOSD’12 - Proceedings of
the 11th Annual International Conference on Aspect Oriented Software Devel-
opment .

83

https://doi.org/10.1109/TSE.2010.62
https://github.com/davidlau325/BytecodeASTGenerator
https://github.com/davidlau325/BytecodeASTGenerator
https://doi.org/10.1109/ICIS.2015.7166573
http://aireviewer.com

Makai, M. (2019). Object-relational mappers (orms). https://www.
fullstackpython.com/object-relational-mappers-orms.html. Accessed 27 March
2020.

Mantyla, M., J. Vanhanen, and C. Lassenius (2003). A taxonomy and an initial
empirical study of bad smells in code. In International Conference on Software
Maintenance, 2003. ICSM 2003. Proceedings., pp. 381–384.

Marinescu, R. (2005). Measurement and quality in object-oriented design. In
21st IEEE International Conference on Software Maintenance (ICSM’05), pp.
701–704.

Marinescu, R. and D. Ratiu (2004). Quantifying the quality of object-oriented
design: the factor-strategy model. In 11th Working Conference on Reverse
Engineering, pp. 192–201.

Márquez, G. and H. Astudillo (2019). Identifying availability tactics to support
security architectural design of microservice-based systems. In Proceedings of
the 13th European Conference on Software Architecture - Volume 2, ECSA ’19,
New York, NY, USA, pp. 123–129. Association for Computing Machinery.

Mathew, A. P. and F. A. Capela (2019). An analysis on code smell detection tools.
17th SC@ RUG 2019-2020 , 57.

Mayer, B. and R. Weinreich (2018). An approach to extract the architecture of
microservice-based software systems. In 2018 IEEE Symposium on Service-
Oriented System Engineering (SOSE), pp. 21–30.

Mayr, H. C., C. Kop, and D. Esberger (2007). Business process modeling and
requirements modeling. In First International Conference on the Digital Society
(ICDS’07), pp. 8–8.

McGraw, G. (2004). Software security. IEEE Security Privacy 2 (2), 80–83.
https://doi.org/10.1109/MSECP.2004.1281254.

Mo, R., Y. Cai, R. Kazman, and L. Xiao (2015). Hotspot patterns: The formal
definition and automatic detection of architecture smells. In 2015 12th Working
IEEE/IFIP Conference on Software Architecture, pp. 51–60.

Moha, N. (2007). Detection and correction of design defects in object-oriented
designs. In OOPSLA ’07.

Moha, N., Y. Gueheneuc, L. Duchien, and A. Le Meur (2010). Decor: A method for
the specification and detection of code and design smells. IEEE Transactions
on Software Engineering 36 (1), 20–36.

Moha, N., Y. Gueheneuc, and P. Leduc (2006). Automatic generation of detection
algorithms for design defects. In 21st IEEE/ACM International Conference on
Automated Software Engineering (ASE’06), pp. 297–300.

84

https://www.fullstackpython.com/object-relational-mappers-orms.html
https://www.fullstackpython.com/object-relational-mappers-orms.html

Moha, N., Y.-G. Guéhéneuc, A.-F. Meur, L. Duchien, and A. Tiberghien (2010,
05). From a domain analysis to the specification and detection of code and
design smells. Formal Aspects of Computing 22.

Moha, N., Y.-G. Guéhéneuc, A.-F. L. Meur, and L. Duchien (2008). A Domain
Analysis to Specify Design Defects and Generate Detection Algorithms. In
Proceedings of the 11th International Conference on Fundamental Approaches
to Software Engineering, Volume 4961 of Lecture Notes in Computer Science,
pp. 276–291. Springer International Publishing.

Mohanty, H., J. Mohanty, and A. Balakrishnan (2016). Trends in Software Testing.
Springer Singapore. https://doi.org/10.1007/978-981-10-1415-4.

Montesi, F. and J. Weber (2016, September). Circuit breakers, discovery, and api
gateways in microservices. arXiv:1609.05830 [cs] . arXiv: 1609.05830.

Moonen, L. and A. Yamashita (2012). Do code smells reflect important maintain-
ability aspects? In Proceedings of the 2012 IEEE International Conference on
Software Maintenance (ICSM), ICSM ’12, USA, pp. 306–315. IEEE Computer
Society.

Mordani, R. (2016). JSR 250: Common Annotations for the JavaTM Platform.
https://jcp.org/en/jsr/detail?id=250. Accessed 27 March 2020.

NGINX, Inc. (2015). The Future of Application Development and Delivery Is Now
Containers and Microservices Are Hitting the Mainstream. https://www.nginx.
com/resources/library/app-dev-survey. Accessed 27 March 2020.

Oberle, D., A. Eberhart, S. Staab, and R. Volz (2004). Developing and managing
software components in an ontology-based application server. In H.-A. Jacob-
sen (Ed.), Middleware 2004, Berlin, Heidelberg, pp. 459–477. Springer Berlin
Heidelberg.

Oliveira, R. (2016). When more heads are better than one? understanding and
improving collaborative identification of code smells. In 2016 IEEE/ACM 38th
International Conference on Software Engineering Companion (ICSE-C), pp.
879–882.

Omicini, A., A. Ricci, and M. Viroli (2005). Rbac for organisation and security in
an agent coordination infrastructure. Electronic Notes in Theoretical Computer
Science 128 (5), 65–85. Proceedings of the 2nd International Workshop on
Security Issues in Coordination Models, Languages, and Systems (SecCo 2004).

Oracle (2020). Securing RESTful web services using Java security annotations.
https://docs.oracle.com/middleware/1212/wls/RESTF/secure-restful-service.
htm#RESTF280. Accessed 14 August 2020.

Pallets Projects (2020). Flask documentation quickstart (1.1.x). https://flask.
palletsprojects.com/en/1.1.x/quickstart. Accessed 14 August 2020.

85

https://doi.org/10.1007/978-981-10-1415-4
https://jcp.org/en/jsr/detail?id=250
https://www.nginx.com/resources/library/app-dev-survey
https://www.nginx.com/resources/library/app-dev-survey
https://docs.oracle.com/middleware/1212/wls/RESTF/secure-restful-service.htm#RESTF280
https://docs.oracle.com/middleware/1212/wls/RESTF/secure-restful-service.htm#RESTF280
https://flask.palletsprojects.com/en/1.1.x/quickstart
https://flask.palletsprojects.com/en/1.1.x/quickstart

Peters, R. and A. Zaidman (2012). Evaluating the lifespan of code smells using
software repository mining. In 2012 16th European Conference on Software
Maintenance and Reengineering, pp. 411–416.

Pigazzini, I., F. A. Fontana, V. Lenarduzzi, and D. Taibi (2020). Towards mi-
croservice smells detection. In The 42nd International Conference on Software
Engineering, pp. 0.

PMD (2019). PMD: An extensible cross-language static code analyzer. https:
//pmd.github.io. Accessed March 27, 2020.

Pugh, B. (2015). Findbugs. http://findbugs.sourceforge.net. Accessed March 27,
2020.

Quay (2020). Clair: Vulnerability static analysis for containers. https://github.
com/quay/clair. Accessed 11 December 2020.

Rademacher, F., S. Sachweh, and A. Zündorf (2020a). A modeling method for
systematic architecture reconstruction of microservice-based software systems.
In S. Nurcan, I. Reinhartz-Berger, P. Soffer, and J. Zdravkovic (Eds.), Enter-
prise, Business-Process and Information Systems Modeling, Cham, pp. 311–326.
Springer International Publishing.

Rademacher, F., S. Sachweh, and A. Zündorf (2020b). A modeling method for
systematic architecture reconstruction of microservice-based software systems.
In S. Nurcan, I. Reinhartz-Berger, P. Soffer, and J. Zdravkovic (Eds.), Enter-
prise, Business-Process and Information Systems Modeling, Cham, pp. 311–326.
Springer International Publishing.

Rademacher, F., J. Sorgalla, P. Wizenty, S. Sachweh, and A. Zündorf (2020).
Graphical and Textual Model-Driven Microservice Development, pp. 147–179.
Cham: Springer International Publishing.

Rao, A. and K. Reddy (2008, 03). Detecting bad smells in object oriented design
using design change propagation probability matrix. Lecture Notes in Engi-
neering and Computer Science 2168.

Red Hat Inc (2020a). Keycloak. https://www.keycloak.org. Accessed 14 August
2020.

Red Hat Inc (2020b). Keycloak authorization services guide. https://www.
keycloak.org/docs/latest/authorization services. Accessed 14 August 2020.

Reeshti, R. Sehgal, R. Nagpal, and D. Mehrotra (2019). Measuring code smells and
anti-patterns. In 2019 4th International Conference on Information Systems
and Computer Networks (ISCON), pp. 311–314.

Ribeiro, J. C. B., F. F. de Vega, and M. Zenha-Rela (2007). Using dynamic analysis
of java bytecode for evolutionary object-oriented unit testing. In 25th Brazilian
Symposium on Computer Networks and Distributed Systems (SBRC).

86

https://pmd.github.io
https://pmd.github.io
http://findbugs.sourceforge.net
https://github.com/quay/clair
https://github.com/quay/clair
https://www.keycloak.org
https://www.keycloak.org/docs/latest/authorization_services
https://www.keycloak.org/docs/latest/authorization_services

Richards, M. (2015, February). Layered architecture. In Software Architecture
Patterns. O’Reilly Media, Inc.

Roy, C. K., J. R. Cordy, and R. Koschke (2009, May). Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach. Sci.
Comput. Program. 74 (7), 470–495.

Sae-Lim, N., S. Hayashi, and M. Saeki (2017). How do developers select and prior-
itize code smells? a preliminary study. In 2017 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pp. 484–488.

Salah, T., M. Jamal Zemerly, Chan Yeob Yeun, M. Al-Qutayri, and Y. Al-Hammadi
(2016). The evolution of distributed systems towards microservices architec-
ture. In 2016 11th International Conference for Internet Technology and Se-
cured Transactions (ICITST), pp. 318–325.

Sandhu, R. S. (1990). Separation of duties in computerized information systems.
In DBSec, pp. 179–190. Citeseer.

Sandhu, R. S., E. J. Coyne, H. L. Feinstein, and C. E. Youman (1996, February).
Role-based access control models. Computer 29 (2), 38–47. https://doi.org/10.
1109/2.485845.

Sandhu, R. S. and P. Samarati (1994). Access control: principle and practice. IEEE
Communications Magazine 32 (9), 40–48. https://doi.org/10.1109/35.312842.

Scarioni, C. and M. Nardone (2019). Spring Security Architecture and Design.
In C. Scarioni and M. Nardone (Eds.), Pro Spring Security: Securing Spring
Framework 5 and Boot 2-based Java Applications, pp. 69–116. Berkeley, CA:
Apress.

Scheepers, M. J. (2014). Virtualization and containerization of application infras-
tructure : A comparison.

Selim, G. M. K., K. C. Foo, and Y. Zou (2010, October). Enhancing source-
based clone detection using intermediate representation. In 2010 17th Working
Conference on Reverse Engineering, pp. 227–236.

Sharma, T. (2016). Designite - A Software Design Quality Assessment Tool.

Singh, S. and N. Singh (2016). Containers docker: Emerging roles future of cloud
technology. In 2016 2nd International Conference on Applied and Theoretical
Computing and Communication Technology (iCATccT), pp. 804–807.

Smid, A., R. Wang, and T. Cerny (2019). Case study on data communication
in microservice architecture. In Proceedings of the Conference on Research
in Adaptive and Convergent Systems, RACS ’19, New York, NY, USA, pp.
261–267. Association for Computing Machinery.

87

https://doi.org/10.1109/2.485845
https://doi.org/10.1109/2.485845
https://doi.org/10.1109/35.312842

Son, S., K. S. Mckinley, and V. Shmatikov (2013). Fix me up: Repairing access-
control bugs in web applications. In In Network and Distributed System Security
Symposium.

SpotBugs (2019). Spotbugs: Find bugs in java programs. https://spotbugs.github.
io. Accessed March 27, 2020.

Srivastava, V., M. D. Bond, K. S. McKinley, and V. Shmatikov (2011). A security
policy oracle: Detecting security holes using multiple api implementations. In
Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’11, New York, NY, USA, pp. 343–354. As-
sociation for Computing Machinery.

Steinegger, R., P. Giessler, B. Hippchen, and S. Abeck (2017, 04). Overview
of a domain-driven design approach to build microservice-based applications.
SOFTENG: The Third International Conference on Advances and Trends in
Software Engineering.

Su, F.-H., J. Bell, K. Harvey, S. Sethumadhavan, G. Kaiser, and T. Jebara (2016).
Code relatives: Detecting similarly behaving software. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, FSE 2016, New York, NY, USA, pp. 702–714. ACM.

Sudhakar, A. (2011). Techniques for securing rest. CA Technology Exchange, 32.

Suryanarayana, G., G. Samarthyam, and T. Sharma (2014). Refactoring for Soft-
ware Design Smells: Managing Technical Debt (1st ed.). San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.

Svacina, J., J. Simmons, and T. Cerny (2020). Semantic code clone detection for
enterprise applications. In Proceedings of the The 35th ACM/SIGAPP Sympo-
sium On Applied Computing, ACM SAC ’20, pp. 1–3. ACM.

Swinhoe, D. (2020). The 15 biggest data breaches of the 21st cen-
tury. https://www.csoonline.com/article/2130877/the-biggest-data-breaches
of-the-21st-century.html. Accessed 14 August 2020.

Syaikhuddin, M. M., C. Anam, A. R. Rinaldi, and M. E. B. Conoras (2018). Con-
ventional software testing using white box method. Kinetik: Game Technology,
Information System, Computer Network, Computing, Electronics, and Con-
trol 3 (1), 65–72.

Tahir, A., J. Dietrich, S. Counsell, S. Licorish, and A. Yamashita (2020). A large
scale study on how developers discuss code smells and anti-pattern in stack
exchange sites. Information and Software Technology 125, 106333.

Taibi, D. and V. Lenarduzzi (2018, May). On the definition of microservice bad
smells. IEEE Software 35 (3), 56–62.

88

https://spotbugs.github.io
https://spotbugs.github.io
https://www.csoonline.com/article/2130877/the-biggest-data-breaches_of-the-21st-century.html
https://www.csoonline.com/article/2130877/the-biggest-data-breaches_of-the-21st-century.html

Tarjan, R. (1971). Depth-first search and linear graph algorithms. In 12th Annual
Symposium on Switching and Automata Theory (swat 1971), pp. 114–121.

The Kubernetes Authors (2021). Minikube: Run kubernetes locally. https://
github.com/kubernetes/minikube. Accessed 14 April 2021.

Thio, L. (2020). Role-based Authorization — Flask-User v1.0 documenta-
tion. https://flask-user.readthedocs.io/en/latest/authorization.html. Accessed
14 August 2020.

Tihomirovs, J. and J. Grabis (2016). Comparison of soap and rest based web
services using software evaluation metrics. Information Technology and Man-
agement Science 19 (1), 92–97.

Torres, A., R. Galante, and M. S. Pimenta (2009). Towards a uml profile for
model-driven object-relational mapping. In 2009 XXIII Brazilian Symposium
on Software Engineering, pp. 94–103. IEEE.

Trnka, M., J. Svacina, T. Cerny, E. Song, J. Hong, and M. Bures (2020, June). Se-
curing internet of things devices using the network context. IEEE Transactions
on Industrial Informatics 16 (6), 4017–4027.

Tufano, M., F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, and
D. Poshyvanyk (2015). When and why your code starts to smell bad. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol-
ume 1, pp. 403–414.

Tufano, M., F. Palomba, G. Bavota, R. Oliveto, M. D. Penta, A. De Lucia,
and D. Poshyvanyk (2017). When and why your code starts to smell bad
(and whether the smells go away). IEEE Transactions on Software Engineer-
ing 43 (11), 1063–1088.

Van Emden, E. and L. Moonen (2002). Java quality assurance by detecting code
smells. In Proceedings of the Ninth Working Conference on Reverse Engineering
(WCRE’02), WCRE ’02, USA, pp. 97. IEEE Computer Society.

VMware Inc (2020). Building a RESTful web service. https://spring.io/guides/
gs/rest-service. Accessed 14 August 2020.

Von Zitzewitz, A. (2019). Mitigating technical and architectural debt with
sonargraph. In 2019 IEEE/ACM International Conference on Technical Debt
(TechDebt), pp. 66–67.

Vural, H., M. Koyuncu, and S. Guney (2017). A systematic literature review on
microservices. In O. Gervasi, B. Murgante, S. Misra, G. Borruso, C. M. Torre,
A. M. A. Rocha, D. Taniar, B. O. Apduhan, E. Stankova, and A. Cuzzocrea
(Eds.), Computational Science and Its Applications – ICCSA 2017, Cham, pp.
203–217. Springer International Publishing.

89

https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://flask-user.readthedocs.io/en/latest/authorization.html
https://spring.io/guides/gs/rest-service
https://spring.io/guides/gs/rest-service

Wagh, D. K. and R. Thool (2012, 07). A comparative study of soap vs rest web
services provisioning techniques for mobile host. Journal of Information Engi-
neering and Applications 2, 12–16.

Walker, A. and T. Cerny (2020). On cloud computing infrastructure for existing
code-clone detection algorithms. SIGAPP Appl. Comput. Rev. 20 (1), 5–14.

Walker, A., D. Das, and T. Cerny (2020, January). Automated Code-Smell De-
tection in Microservices Through Static Analysis: A Case Study. Applied Sci-
ences 10 (21), 7800.

Walker, A., J. Svacina, J. Simmons, and T. Cerny (2020a). On automated role-
based access control assessment in enterprise systems. In K. J. Kim and H.-Y.
Kim (Eds.), Information Science and Applications, Singapore, pp. 375–385.
Springer Singapore.

Walker, A., J. Svacina, J. Simmons, and T. Cerny (2020b). On automated role-
based access control assessment in enterprise systems. In K. J. Kim and H.-Y.
Kim (Eds.), Information Science and Applications, Singapore, pp. 375–385.
Springer Singapore.

Walls, C. (2016). Spring Boot in Action (1st ed.). USA: Manning Publications Co.

Wolff, E. (2016). Microservices: Flexible Software Architectures. CreateSpace
Independent Publishing Platform.

Xu, D., L. Thomas, M. Kent, T. Mouelhi, and Y. Le Traon (2012). A model-based
approach to automated testing of access control policies. In Proceedings of the
17th ACM Symposium on Access Control Models and Technologies, SACMAT
’12, New York, NY, USA, pp. 209–218. Association for Computing Machinery.

Yamashita, A. and S. Counsell (2013). Code smells as system-level indicators of
maintainability: An empirical study. Journal of Systems and Software 86 (10),
2639–2653.

Yamashita, A. and L. Moonen (2013a). Do developers care about code smells? an
exploratory survey. In 2013 20th Working Conference on Reverse Engineering
(WCRE), pp. 242–251.

Yamashita, A. and L. Moonen (2013b). Exploring the impact of inter-smell rela-
tions on software maintainability: An empirical study. In 2013 35th Interna-
tional Conference on Software Engineering (ICSE), pp. 682–691.

Zhou, X., X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and W. Zhao (2018). Benchmark-
ing microservice systems for software engineering research. In M. Chaudron,
I. Crnkovic, M. Chechik, and M. Harman (Eds.), Proceedings of the 40th Inter-
national Conference on Software Engineering: Companion Proceeedings, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018, pp. 323–324. ACM.

90

	LIST OF FIGURES
	LIST OF TABLES
	ATTRIBUTION
	ACKNOWLEDGMENTS
	DEDICATION
	CONTENT
	Introduction
	Background and Related Works
	Microservice Architecture
	Containers and Their Orchestration
	Static Code Analysis
	Software Architecture Reconstruction
	Role-Based Access Control
	Code Smells

	On Automated RBAC Assessment By Constructing Centralized Perspective For Microservice Mesh
	Abstract
	Introduction
	Related Work
	Role-Based Access Control
	Software Architecture Reconstruction

	Proposed Method
	Case Study
	Threats to Validity
	Internal Threats
	External Threats

	Conclusion

	Automated Code-Smell Detection in Microservices Through Static Analysis: A Case Study
	Abstract
	Introduction
	Related Work
	Microservice Code Smell Catalogue
	Code Analysis and Extension for Enterprise Architectures
	Proposed Solution to Detect Code Smells
	ESB Usage
	Too Many Standards
	Wrong Cuts
	Not Having an API Gateway
	Shared Persistency
	Inappropriate Service Intimacy
	Shared Libraries
	Cyclic Dependency
	Hard-Coded Endpoints
	API Versioning
	Microservice Greedy

	Case Study
	Train Ticket
	Teacher Management System
	Validity Threats

	Future Trends
	Conclusions

	Software Architecture Reconstruction for Containerized Microservices
	Proposed Method
	Case Study
	Threats to Validity

	Conclusion And Future Work
	BIBLIOGRAPHY

