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This paper will examine the intersection of cybersecurity and machine learning.
Use cases integrating machine learning for both defensive and offensive cybersecurity
will be surveyed. Within defensive cybersecurity, this paper will investigate how
machine learning is being used to protect against external threats and internal threats.
To show an interesting way machine learning may be used in a cyber attack, this
paper will look at a Prime+Probe cache side-channel attack that aims to learn which
machine learning transfer model a program is running. From an external perspective,
the analysis will show how the side-channel attack may be implemented, and how
it can be defended against. Finally, we propose an additional method to detect and
prevent this attack on an internal network.
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CHAPTER ONE

Introduction and Motivation

Cyberspace is now the fifth domain of war.1 Everyday new cybersecurity

breaches, exploits, and attacks are observed, mitigated, and studied. Cyber security

professionals constantly improve their capabilities to thwart these evolving attacks.

Cyber attacks come from unsophisticated sources: scriptkiddies and lone wolf hack-

ers, but they are increasingly coming from very sophisticated sources: nation-states,

criminal hacking rings, and tech-savy insiders. These malicious actors are motivated

to commit cyber crimes because this attack vector avoids direct conflict and has a low

risk-reward ratio compared to more base ways of committing crimes. Additionally,

as our world becomes more technologically advanced, more data is put on computers

that may be susceptible to cyber attacks, especially from sophisticated sources. Ma-

licious actors know how to monetize or create value from stolen data or compromised

computational resources. A hacker may use ransomware to get rich or sell personal

information on the dark web to further identity fraud, and a nation-state may profit

politically from national secrets or may inflict harm by manipulating power grids or

elections, or may improve military technology by stealing intellectual property.

As more and more value is realized from cyber attacks the intent to make

these attacks more effective increases. Malicious actors creatively use new technology

to develop attacks and develop new attacks to exploit new technology. Machine

learning is one such technology that is positioned at the intersection of helping defend

against new attacks and helping deploy new attacks. For example, machine learning

1. Charles H Hall, Operational Art in the Fifth Domain, technical report (NAVAL
WAR COLL NEWPORT RI JOINT MILITARY OPERATIONS DEPT, 2011).
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may be used defensively to make better tools that scan one’s network looking for

vulnerabilities.2 However, this same use for machine learning may aid malicious

actors in finding vulnerabilities in one’s network to exploit. Additionally, machine

learning technology itself may be attacked to steal intellectual technology or to reverse

engineer the technology to learn how it can be tricked.3 Being able to trick a classifier

that depends on machine learning gives an attacker the ability to bypass the virtual

security check the program is designed to implement. For instance, if an attacker

can reverse engineer the machine learning model used to classify an executable as

a virus or not, the attacker is much closer to tricking the model into classifying a

program that is a virus as a benign program when deploying infectious code on a

victim system.

The attack this paper will ultimately look at in depth is the Prime+Probe

cache side-channel timing attack.4 It is proposed that this attack can be used to

predict which transfer machine learning model a program is using and that machine

learning may be used to help execute this attack. The Prime+Probe attack monitors

the last level cache on a processor shared by more than one user. The attack gleans

information by detecting patterns in which cache sets/lines are used by a victim pro-

cess. If a machine learning neural network is used to process an item for classification

the Prime+Probe attack may be used to monitor this process to learn which neural

2. Fabian Yamaguchi, Felix Lindner, and Konrad Rieck, “Vulnerability extrapola-
tion: Assisted discovery of vulnerabilities using machine learning,” in Proceedings of
the 5th USENIX conference on Offensive technologies (USENIX Association, 2011),
13–13.

3. Sanghyun Hong et al., “Security analysis of deep neural networks operating in
the presence of cache side-channel attacks,” arXiv preprint arXiv:1810.03487, 2018,

4. Fangfei Liu et al., “Last-level cache side-channel attacks are practical,” in 2015
IEEE Symposium on Security and Privacy (IEEE, 2015), 605–622.
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network model is being used. The two methods proposed to predict ML models is:

1) take a snapshot of the launch or other common point during the neural network

classification process in testing and use this snapshot to predict a model based on a

snapshot from a black box, and 2) use the Prime+Probe attack to find the time it

takes a machine learning model to classify an input and use this timing information to

predict models based on run-time information gleaned from white-box test programs.

Machine learning technology may be used to help implement these attacks

by training a model to predict which snapshots or timing information correspond to

which transfer model. In the wild it appears it is highly unlikely snapshots or timing

information will match testing data exactly because several programs will be using

the cache at one time. It is important to account for error and use a system for

predicting models based on a data range rather than perfect match.

As machine learning programs become widely deployed it may be useful for

malicious actors to learn which transfer model a program uses as a first step to com-

promise the model. Knowing the teacher model a program uses limits the attackers

search space of neural networks so they can focus their energies on one to a few net-

work architectures. With a reduced list of models, an attacker can use other methods

to reverse engineer the model or learn how to trick the model using a Generative

Adversarial Network (GAN).5 Knowing which model a program uses to then attack

it is similar to how attackers learn what operating system a server runs to learn form

there what exploits it may be vulnerable to and how to compromise it. Without re-

ducing the number of possibilities in the search space, the potential time to generate

a successful attack increases significantly and there is a reduced chance of success.

The ability to predict neural network models using the Prime+Probe attack could

5. Ian Goodfellow et al., “Generative adversarial nets,” in Advances in neural in-
formation processing systems (2014), 2672–2680.
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be a tool that malicious actors widely share to be used in attack suites such as Kali

Linux.6 Therefore, if an attacker wanted to target a machine learning program or

wanted to compromise one found in reconnaissance, this tool could be used without

having to spend the time to craft it themselves. The widespread use of a tool like

this would make exploiting machine learning models easier, thus compromising their

general integrity.

6. Kali, “Kali Linux,” 2020, accessed March 29, 2020, https://www.kali.org/.
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CHAPTER TWO

Background

While machine learning was once just an idea, today it is a sophisticated

science. Machine learning is used as a tool to perform tasks faster and potentially more

accurately than humans. Most tools used in the cybersecurity space are classification

engines. They act as a black box that receives inputs, analyzes the data, and then

reports a predicted classification of the input. For example, a machine learning model

may be used to classify program files as malicious or not malicious.7 Or this tool could

be used to classify images as adversarial or benign.8 For malicious actors, a machine

learning based tool could be used to generate adversarial images by altering the image

data until the image is misclassified.

Machine learning is an exceptional classification tool for several reasons. Ma-

chine learning can accurately classify data it has never seen before, but is similar to

what it was trained on. Machine learning can also continuously improve to better

classify inputs. Finally, machine learning is widely used because it can process data

at a blinding fast rate. As this technology developed, cybersecurity professionals and

researchers began adapting it to the security domain for defense, and hackers began

adapting it for cyber offense. It is evident that this trend is entrenched in cyber space

and will only grow in the future.

7. Dragoş Gavriluţ et al., “Malware detection using machine learning,” in 2009
International Multiconference on Computer Science and Information Technology
(IEEE, 2009), 735–741.

8. Warren He et al., “Adversarial example defense: Ensembles of weak defenses are
not strong,” in 11th {USENIX} Workshop on Offensive Technologies ({WOOT} 17)
(2017).
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While the study of machine learning is integral to fully understanding the

intersection of machine learning and cybersecurity, for purposes of this paper we do

not analyze machine learning in depth. If the reader would like more information

on machine learning we encourage them to see Appendix A where we discuss many

aspects of machine learning programs and neural networks. Additionally, in this

appendix the reader will find a survey of five transfer learning models. This survey

may be useful to gain an understanding of what the Prime+Probe attack aims to

attack.

6



CHAPTER THREE

The Intersection of ML and Cybersecurity

This section will be an analysis of where machine learning (ML) and cyberse-

curity are intersecting today, and where they are projected to intersect in the future.

We will look at where machine learning is being used in offensive cyber as well as de-

fensive cybersecurity, and withing defensive cybersecurity we will look at how machine

learning is being used to defend against external and internal threats.

Offensive Cyber Attacks

With the advent of machine learning the question is not whether ML is being

used by cyber criminals, but how it is being used by cyber criminals. While there

is documentation proving how some cyber criminals have or can use ML to their

advantage, some use cases can be inferred by aligning the advantages of ML with the

problems cyber criminals try to solve.

Machine Learning Used in Cyber Attacks

Machine learning may be used in cyber attacks where detailed classification or

the automation of analyzing data is needed. This tool may allow an attacker to expand

their capabilities and range. For purposes of this paper we will look at how machine

learning is being used in the domains of social engineering, broken authentication,

attack performance, and tool automation.

Consider that in a social engineering attack the cyber criminal tries to use false

7



enticement or an impersonation to get victims to do something that will be harmful.

The success of an attacker may depend on how well they convince victims to believe

a lie. ML may help attackers sell a lie in two ways. First, ML may be used in the

reconnaissance phase of the attack. A cyber criminal may use ML to scan social

media and the web to learn about the behaviour of a potential victim. With more

information gathered an attacker will be more informed on how to manipulate the

victim. For example, if a scan on a victim shows that the individual shops excessively

at store X, the attacker will know to package an attack in a fake advertisement from X.

Second, ML may be used by an attacker when preparing a social engineering attack.

Consider an attacker wanting to write a message to user A that looks like it was from

user B. If the attacker has a sample of user B’s writing, they can train a ML program

to output sentences in the style of B. An example of this is how researchers trained

a ML program to write in the style of Shakespeare.9 Additionally, cyber criminals

can now use ML to generate videos of real people saying things they never had said.

These deceptive videos are commonly called deep fakes.10 The fraudulent qualities

of these videos are almost imperceptible to the human eye and can be used in social

engineering to try and manipulate victims into believing something that is false.

Malicious actors can also use ML to compromise accounts and passwords. In

recent years there have been large breaches that have exposed billions of users pass-

words.11 These passwords reveal patterns that can be helpful in predicting new user

9. Rosaria Silipo, “Can AI write like Shakespeare?,” 2020, accessed March 28, 2020,
https://towardsdatascience.com/can-ai-write-like-shakespeare-de710befbfee.

10. David Güera and Edward J Delp, “Deepfake video detection using recurrent
neural networks,” in 2018 15th IEEE International Conference on Advanced Video
and Signal Based Surveillance (AVSS) (IEEE, 2018), 1–6.

11. Brian Barrett, “Hack Brief: An Astonishing 773 Million Records Exposed in
Monster Breach,” 2019, accessed January 16, 2019, https://www.wired.com/story/
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passwords. ML is used to extract these patterns and create more accurate password

tables to use in future attacks.12 With more accurate password tables, attackers in-

crease their chance of gaining access to accounts especially when they already can

guess valid usernames such as email addresses or simple name concatenation.

ML can also be used in the CAPTCHA step of the authentication process.13

After entering a valid username and password some applications will require you to

pass a CAPTCHA to verify that you are a user and not a bot. The CAPTCHA is

designed to filter out bots because the user must select images containing objects not

easily recognizable by an image classification engine or letters from a highly altered

character set. Researchers have developed ways, however, of using ML programs to

successfully get through the CAPTCHA and accurately identify vague characters in

an image.14 This allows the cyber criminal to better automate cyber attacks and

expand the number of accounts they can try to breach at any given time.

Defensive Cybersecurity

Defensive cybersecurity may be divided into 8 domains: Security Manage-

ment, Identity and Access Management, Security Engineering, Business Continuity,

Compliance, Cryptography, Physical Security, Software Development Security, and

collection-one-breach-email-accounts-passwords/.

12. Christoffer Olsen, “A Machine Learning Approach to Predicting Passwords,”
2018,

13. Suphannee Sivakorn, Iasonas Polakis, and Angelos D Keromytis, “I am
robot:(deep) learning to break semantic image captchas,” in 2016 IEEE European
Symposium on Security and Privacy (EuroS&P) (IEEE, 2016), 388–403.

14. Fabian Stark et al., “CAPTCHA Recognition with Active Deep Learning”
(September 2015).
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Security Operations.15 While Machine Learning may be deployed in certain domains

more than others, there is likely at least one use case for ML technology in each of

these domains. However, for purposes of this paper we will consider the following

domains: Identity and Access Management, Security Engineering, and Security Op-

erations.

Identity and Access Management

This domain covers the necessary tools and techniques to identify and authen-

ticate users requesting access to a computer system. This could be logging into a

terminal at one’s place of work, logging in remotely using a VPN, or swiping a key

card to be let into a server room. In each situation proper access management is

required to prevent the opportunity for unauthorized use to occur and to correctly

attribute actions on the system to users. Machine learning technology is commonly

deployed today to assist with access management and new techniques are being de-

veloped.

Machine learning is primarily used in access management through biometric

authentication. Biometric authentication has been developed to identify an indi-

vidual based on their face, hand, fingerprint, void, ear, vein orientation, and other

attributes.16 In many cases the user must have their physical characteristic input to

a ML model to have it trained on.17 Once the model is able to classify the person’s

15. Kenneth Magee, “The CISSP Domains - An Overview,” 2020, accessed
March 28, 2020, https : / / resources . infosecinstitute . com / the - cissp - domains - an -
overview/#gref.

16. Debnath Bhattacharyya et al., “Biometric authentication: A review,” Interna-
tional Journal of u-and e-Service, Science and Technology 2, no. 3 (2009): 13–28.

17. K. Sadeghi et al., “Performance and Security Strength Trade-Off in Machine
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characteristic it will uniquely identify that person in future situations when they go

through the identification process for device or location access.

An area of research related to identity and access management is continuous

behavioral analysis. This analysis would be used to monitor when a user is on a

system or at a workstation to grant access as long as the correct user remains in

control of the system.18 19 If for example, another person comes to the user’s work-

station to access their terminal, the system would identify the anomaly and lock the

user’s account. Semantics such as keyboard typing patterns, voice recognition, mouse

movements may be used in addition to facial recognition.20 This technology would

insure that even if a malicious actor gained access to a user’s device or workstation,

they would not continually gain access to the resource.

Security Engineering

Security engineering refers to building the technology used in cyber defense.

This technology may be firewalls, routers, intrusion detection and prevention systems,

antivirus tools, email filtering, and vulnerability scanning tools. Because machine

learning can be used to process vast amounts of data and identify anomalies or in-

puts with specific characteristics, there are many uses for ML in this domain. For

Learning Based Biometric Authentication Systems,” in 2017 16th IEEE International
Conference on Machine Learning and Applications (ICMLA) (2017), 1045–1048.

18. Kyle O Bailey, James S Okolica, and Gilbert L Peterson, “User identification
and authentication using multi-modal behavioral biometrics,” Computers & Security
43 (2014): 77–89.

19. Respondus Monitor, “Respondus Monitor,” 2020, accessed April 17, 2020, https:
//web.respondus.com/he/monitor/.

20. Bhattacharyya et al., “Biometric authentication: A review.”
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example, ML may be used in intrusion detection and prevention systems to identify

traffic that is suspicious or traffic that has been flagged in the past.21 The type of

request or IP address of the traffic may be the specific data points the ML model looks

for. Additionally, vulnerability scanning tools may use ML to learn how to better

search for weaknesses in a network.22 A ML classifier may also be a better filter for

emails because it can be constantly trained on emerging phishing email attacks to

shut down a malicious email broadcast within an organization before users have the

chance to view the malicious content.

Security Operations

Security operations entails using existing technology, techniques, and methods

to analyze a system for security vulnerabilities, incidents, and threats. In this do-

main many of the tools that may use ML are deployed to assist security analysts in

performing their tasks. Tasks may be finding vulnerabilities in a newly deployed net-

work, discovering how an attack broke through network defenses, and finding which

user’s behavior is suspicious to attribute data exfiltration to an account.

A specific point of interest in this domain is how to make better use of a

security analyst’s time. Research is currently being done to determine how to achieve

this through the use of machine learning.23 For example, intrusion detection and

21. Anna L Buczak and Erhan Guven, “A survey of data mining and machine learn-
ing methods for cyber security intrusion detection,” IEEE Communications surveys
& tutorials 18, no. 2 (2015): 1153–1176.

22. Patrice Godefroid, Hila Peleg, and Rishabh Singh, “Learn&fuzz: Machine learn-
ing for input fuzzing,” in 2017 32nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE) (IEEE, 2017), 50–59.

23. James B Fraley and James Cannady, “The promise of machine learning in cy-
bersecurity,” in SoutheastCon 2017 (IEEE, 2017), 1–6.
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prevention systems can generate more data than a team of analysts have time to

search through. A ML classification system can be used to analyze the data to

find the reports most likely to have critical information that deserves the analysts

attention.24 In this case the analysts are directed to the incidents that are most

sensitive and critical to the network.

Defense Against External Threats

While the majority of research into using machine learning for cybersecurity

focus on defense against external threats, some applications and research naturally

overlap with defense against internal threats. Applications unique to external threats

include, network protection, intrusion detection and prevention, phishing email scans,

and virus scans. While an insider may execute one of these attacks, they are uniquely

viewed as coming from external sources.

Applications of machine learning in cyber security that overlap with defense

against external and internal threats include authentication and access management,25

incident analysis,26 and network anomaly detection.27 The ML classifiers used in

access management may be intended to prevent an external actor from being let into

proprietary domains, but they also prevent internal actors from gaining access to

24. Buczak and Guven, “A survey of data mining and machine learning methods
for cyber security intrusion detection.”

25. Bhattacharyya et al., “Biometric authentication: A review.”

26. Buczak and Guven, “A survey of data mining and machine learning methods
for cyber security intrusion detection.”

27. Taeshik Shon and Jongsub Moon, “A hybrid machine learning approach to net-
work anomaly detection,” Information Sciences 177, no. 18 (2007): 3799–3821.
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resources they are not cleared to access. In incident analysis the source of an incident

a ML tool identifies may lead to an internal actor as well as an external actor. A

network anomaly that ML scans find interesting may be a firewall rule change or

excessive traffic to a network resource. The tool will alert security analysts to this

anomaly regardless if the actor is internal or external even though it is considered

unlikely an internal actor would exhibit the kind of risky behavior detected my the

ML tool.

Defense Against Internal Threats

Internal threats in cybersecurity are generally considered to be the threats

that come from people within an organization. Insiders may include a consulting web

developer, a disgruntled administrator, or a CEO. Insiders posing a risk to a system

are commonly categorized as ignorant, abusive, or malicious. A threat from ignorance

is observed when a user clicks a malicious link, or downloads a malicious file when

they were not aware there was any risk in their action. A threat of abusiveness is

observed when a user clicks a malicious link, or downloads a malicious file despite

knowing that there are guidelines and policies to follow to make sure their action is

safe. A threat from a malicious insider is set apart from the other threats because

here the user intends harm. This is when an insider, for example, creates a malicious

link, or distributes a malicious file to steal, damage, or disrupt the organization.

It is difficult to discern what machine learning technology has been developed

to protect uniquely against internal threats. Typically, threats introduced by ignorant

or careless insiders are mitigated by virus scanners, network scanners, and incident

response tools developed to defend against external threats. Because ignorant or

careless users let in threats, rather than generate them, the system will typically need

14



to defend against the threats let in rather than the users who unknowingly let them

in.

An area where machine learning may be used to help defend against the ig-

norant or careless insider threats is in static code analysis tools.28 Today, when an

application is built and deployed on the web it is usually highly complex. It is difficult

to analyze all of the code in the application to make sure it was programmed with

security in mind. To help developers secure applications, static code analysis tools

have been developed to identify security flaws before code is put into production. It

is reasonable to assume some developers are ignorant of secure programming, and

some developers are careless of security measures when developing an application.

Therefore, it would be beneficial to make a static code analysis tool to continually

perform better and identify as many security flaws as possible. While it is not clear

whether machine learning has been deployed to this end yet, it may be a suitable tool

to improve code analysis tools currently used.29

The unique internal threats an organization may encounter will typically be

introduced by the malicious insider and it is not clear how organizations are currently

or planning to mitigate this risk. Reasons this is not clear may be that organizations

are keeping their technology private or that insider threats are so unique to an or-

ganization that they do not consider widely disseminating their work. Additionally,

some organizations may deem insider threats to be a low enough risk that they are

not taking measures to defend against them using machine learning.

Protecting against data exfiltration is one way machine learning could be used

28. Ulas Yüksel and Hasan Sözer, “Automated classification of static code analysis
alerts: a case study,” in 2013 IEEE International Conference on Software Mainte-
nance (IEEE, 2013), 532–535.

29. Ibid.
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to defend against a malicious insider threat. Data exfiltration by an insider is when

an employee exports an organization’s intellectual property to a location it is unau-

thorized to be. Exfiltration could be removing documents from the office, allowing

an outsider to view proprietary materials, or uploading data to an offsite server. Ma-

chine learning could be used to detect the presence of data exfiltration by detecting

patterns or anomalies that suggest this is happening. For example, a ML program

could alert a cyber security analyst if a user has a pattern of emailing large attach-

ments to an email address outside the company. Additionally, a ML program could

use a workstation webcam to detect if an external person is present when sensitive

information is being displayed on the user’s device. While the ML technology used

in these tools is similar to existing ML technology used to for access management,30

systems engineering, and security operations,31 it would be directed at a use case

specific to defending against internal threats.

30. Bailey, Okolica, and Peterson, “User identification and authentication using
multi-modal behavioral biometrics.”

31. Buczak and Guven, “A survey of data mining and machine learning methods
for cyber security intrusion detection.”
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CHAPTER FOUR

Prime+Probe Cache Attack

The Prime+Probe32 cache side-channel attack exploits natural behavior of

microchip hardware to steal privileged information. The vulnerability this attack

exploits is the situation when the last-level cache stores user data that other users

may observe. Users may not explicitly observe data in the last-level cache if the

data was loaded by another user, but by using the Prime+Probe attack they may

indirectly glean information about the data. This attack is possible because the last-

level cache is shared between all processes using a cpu, and because there are assembly

instructions to manipulate the cache.

Why the Prime+Probe Attack

The Prime+Probe attack emerged from the interest in hardware side-channel

attacks that resulted from the Meltdown33 and Spectre side-channel attack.34 The

attack is interesting because it exploits a vulnerability inherent to most processors,

namely the shared cache. This cache was built to improve the performance of CPU’s,

and the naive defense to the Prime+Probe attack of eliminating the last-level cache

would reduce performance. Because of the attrition between performance and secu-

32. Liu et al., “Last-level cache side-channel attacks are practical.”

33. Moritz Lipp et al., “Meltdown: Reading Kernel Memory from User Space,” in
27th USENIX Security Symposium (USENIX Security 18) (2018).

34. Paul Kocher et al., “Spectre Attacks: Exploiting Speculative Execution,” in 40th
IEEE Symposium on Security and Privacy (S&P’19) (2019).
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rity, it is likely this kind of vulnerability will remain in place for at least the near

future and will be of interest to malicious actors and researchers alike.

Setting

The Prime+Probe attack must be performed in a shared environment where

multiple users may use the same computer resources at one time. Obvious settings

where this occurs is in cloud computing or shared corporate environments. While the

shared system gives the appearance that each user has dedicated computer resources,

many users may be allocated to one cpu or server and will share the resource with

many other users. This environment is good for efficiency and resource allocation,

but through hardware attacks, this environment makes the data loaded onto the cpu

visible to the other user processes through side-channel attacks.

Implementation

The attack functions through a malicious process priming the cache with

known dummy data and then probing the cache at intervals for the dummy data

to determine which data has been evicted by the other users’ processes. If the ma-

licious actor has run this attack on known processes, the attacker may compare the

live attack prime and probe data to the trial data to know more specifically what the

other user is doing. This process has no interaction with the user process other than

impacting the user data loaded in the cache.

18



Proposed Prime+Probe Attack Implementation

We propose that the Prime+Probe attack may be used to learn what machine

learning transfer model another user or process may be running on a shared resource

by detecting the run time of a single classification or by viewing a snapshot of the

cache during a classification. For example, consider a deep learning model being used

to classify malware binaries as benign or malicious. Note that we are interested in

detecting a transfer model and not custom models. To learn precisely what model a

program is running would require learning much about the architecture. We would

need to learn the number of layers, number of nodes per layer, activation functions,

and more to reverse engineer the model. If you consider sophisticated models such as

transfer models, more information would be needed such as how many residual layers

a model has, whether it has max pooling layers, and where the frozen layers begin.

This information is very granular would be very difficult to glean from a side-channel

attack. The Prime+Probe attack is useful for gleaning big picture information from

the cache. For this reason we chose to be interested in detecting one of a few transfer

models from high level details. For this implementation to work, the attacker must

already know or must assume the victim program is using a transfer model.

In a corporate environment a machine learning classification tool such as a

virus detection engine may be running on the same central computing resources that

other users are allowed to access under the assumption the users’ processes will not

interfere with the machine learning processes. Since transfer models are becoming

increasingly common, a malicious insider may assume the virus binary classifier is a

transfer model trained on binaries. By choosing one of the common malicious binary

data sets,35 the insider may build a suite of transfer models to classify malware binaries

35. VIRUSTOTAL, “VIRUSTOTAL,” 2020, accessed March 28, 2020, https : / /
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hoping that at least one model is likely used by the organization. After running the

attack on this suite of models the insider would be prepared to run the live attack.

The insider would have data to show what the run-time of each model is and what

the cache looks like at specific points during the classification process. This data can

be used by the attacker to compare against the results of the live attack to determine

which model the antivirus tool is using.

Unless there are detection measures in place, an insider may run the Prime+Probe

attack unfettered to try and learn what deep learning transfer model the organization

has deployed. If the insider gleans data that closely matches one of the suite models,

they are much closer to compromising the deployed model. With the correct model in

place and a relatively similar binary data set, the malicious insider can craft malware

and test it on the model to determine what will be misclassified as benign and be

allowed to be executed on the system.

The advent of transfer learning models in particular makes this attack possible.

The Prime+Probe attack is used to learn general information and cannot extract the

data in the cache to look at it directly. If a malicious actor tried to learn all the

characteristics of a ML model by attacking the cache to reverse engineer the model

they would likely fail. Other research demonstrates the limits of the Prime+Probe

to this end and propose that the Flush+Reload cache side-channel attack36 is more

relevant to learning granular information.37

www.virustotal.com/gui/intelligence-overview.

36. Yuval Yarom and Katrina Falkner, “FLUSH+ RELOAD: a high resolution,
low noise, L3 cache side-channel attack,” in 23rd {USENIX} Security Symposium
({USENIX} Security 14) (2014), 719–732.

37. Hong et al., “Security analysis of deep neural networks operating in the presence
of cache side-channel attacks.”
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CHAPTER FIVE

Proposed Defenses to the Attack

To defend against this implementation of the Prime+Probe attack one must

either be able to detect and shut down the attack, or one must create an environment

where the attack does not have one or more necessary conditions to execute. Cur-

rently, the only proposed methods to protect against the attack are to eliminate a

condition necessary to execute the attack. Otherwise, it is recommended to alter the

program being spied on to protect it from the attack. The idea behind this method

is that even if the ML model is identified, the attacker will not be able to trick it

because it has been modified or designed with this possible situation in mind. In

addition to discussing these methods of defense we will propose one new method to

detect and shut down the attack.

Harden the Victim Program

Researchers have already proposed ways and tested methods to defend transfer

models against attacks similar to the Prime+Probe attack. The existing methods fo-

cus on hardening transfer learning models from being able to be tricked.38 Hardening

the models have the potential to do two things: 1) they alter the architecture of the

model so it is not easily guessed, and 2) they alter the layers in the model so it will not

be tricked.39 This method attempts to make sure that even if a model is predicted

38. Liu et al., “Last-level cache side-channel attacks are practical.”

39. Alexey Kurakin, Ian Goodfellow, and Samy Bengio, “Adversarial machine learn-
ing at scale,” arXiv preprint arXiv:1611.01236, 2016,
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and inputs are crafted to try and trick it, the victim model will be sophisticated

enough that it will not misclassify the malicious inputs. Specific implementations

of this method include mandating certain layers be retrained by the user, allowing

users to remove layers to change the structure of the model, and training the parent

on altered inputs to make it as difficult as possible for someone to craft a successful

malicious input.40

The method of altering the architecture of the model is particularly useful

to defend against this implementation of the Prime+Probe attack. Altering the

architecture has the potential to change the run-time of a classification and therefore

the cache set use because it will make the model unique to the user. If the run-time of

a classification is unique and the cache set use is unique the attack will have reduced

ability to predict which transfer model is running based on samples taken from testing

on the generic transfer model. The run-time and cache set use may be similar enough

to a model that the attack prediction will be accurate, but this is uncertain without

testing.

Change the Hardware

Because the Prime+Probe attack depends on multiple users sharing a system,

and multiple processes sharing a CPU, one may consider how to defend against the

attack by limiting how systems allocate users to machines and how processes are

allocated to CPUs. Methods to defend against the attack within this category include:

isolating virtual machines in multi-user systems, allowing one process on a CPU at

a time, partitioning the last level cache for each process, making virtual memory

40. Kurakin, Goodfellow, and Bengio, “Adversarial machine learning at scale.”
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randomly assigned to cache sets, or eliminating the last level cache on the chip.41

While each of these methods would be effective at blocking the attack, they all reduce

the efficiency of the system. Resources are allocated to multiple users and processes

to maximize resource occupation and use. In the general scenario, systems maximize

the number of users that may be sharing a system, they maximize the number of

processes that may run, and they maximize the how fast processes are run. The

system can no longer reach the same peak performance if these defense measures are

in place. For this reason these defense measures are not desirable, especially if the

risk of a model being compromised is low.

Attack Instruction Detection

At this time, it appears no detection measures have been proposed for the

Prime+Probe attack. An insider may execute the attack as they wish on a system

and no malicious activity will be attributed to the insider. To detect the Prime+Probe

execution, we propose that an operation signature be created for the attack so network

scanners may identify it. We define an operation signature as an operation or set

of operations that is unique to the attack. For example, the Prime+Probe attack

must populate the last-level cache with data it can probe for, and then it must

probe the entire cache for the data it placed there to learn what was evicted. This

process must be executed constantly to glean useful information from the cache.

If the Prime+Probe instruction execution pattern is unique enough, this operation

signature may be used to identify when a process is running the attack on a network.

The drawback to the instruction detection method is that monitoring pro-

41. Liu et al., “Last-level cache side-channel attacks are practical.”
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cesses for malicious execution patterns will add overhead to the system which will

reduce efficiency. Additionally, a sophisticated malicious actor may find a way to

Prime+Probe the cache using novel techniques that will not be detected using a

tool that looks for operation signatures unique to the existing Prime+Probe attack.

Ideally, an operation signature would be identified that the Prime+Probe attack is

dependent upon and that is also unique enough to minimize the number of false

positives this detection method may generate.
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CHAPTER SIX

Conclusion

Recent advances in machine learning have made it an attractive tool to use

in many areas of our digital world. These powerful classification engines can help us

drive our cars, secure access to our devices, and help detect when people are lying.

For cyber criminals, machine learning also presents both a new target for attack, and

a weapon to add to their arsenal. Evidence suggests that cyber security and machine

learning are intersecting today, and we project they will continue to intersect in the

future.

Because malicious insiders have the potential to execute powerful attacks, it is

important to direct focus to this area of cyber defense. To illuminate where machine

learning and cybersecurity are intersecting, and where internal threats are the primary

concern, we propose a new implementation of the Prime+Probe attack42 that aims to

learn which machine learning transfer model a program is using. Our implementation

of the Prime+Probe attack tries to guess which transfer model a program is using

to learn how to trick the model for malicious purposes. For example, an insider

may want to know which transfer model their organization is using to scan program

binaries for viruses so the insider can learn how to craft a malicious binary that will be

classified as benign by the scanner. The Prime+Probe attack is particularly relevant

to insiders because the attack depends on two users or processes being co-hosted

on the same system hardware. Furthermore, the malicious insider may use machine

learning to improve the attack effectiveness by training a model that classifies data

42. Liu et al., “Last-level cache side-channel attacks are practical.”
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from the attack execution as indication one of several potential transfer models.

We believe machine learning will continue to be integrated into cybersecurity

and it is important for organization leaders to be aware of what ML technology

exists at present. Machine learning has the power to transform cyber defense and

offense because this technology can perform tasks that previous computer systems

have not been able to perform. Security professionals must be vigilant against this

new threat and not overlook the lone malicious insider for the multitude of known

external attackers.

26



Appendices

27



APPENDIX A

A Machine Learning

Machine learning is the use of algorithms, mathematical models, and compu-

tational tools to automate the improvement of a program. Use cases for machine

learning are limitless. The purpose of a machine learning program may be to detect

cats in an image, play a game of AlphaGo, or discover vulnerabilities in a network.

Developing programs often requires expert oversight, but once they are deployed they

may function autonomously. One example of this is when researchers set up a ma-

chine learning program and instructed it to learn how to understand a language by

viewing captioned videos.43 Initially the bot was illiterate. After training though, this

bot became proficient at recognizing the English language and could predict what a

spoken sentence meant.

If a machine learning program were a body, the neural network would be the

brain. These networks are mathematical models trained on labeled data so they

accurately classify new but similar data. These models are made up of algorithms,

data structures, and data points that are manipulated to increase the classification

accuracy. Much of a machine learning program is refining and improving the neural

network to improve its decision making ability. Therefore, accuracy of a machine

learning program is dependent on the neural network. This is why much research and

effort is put into building improved neural networks designs and algorithms.

Transfer learning models are highly sophisticated neural networks that have

43. Candace Ross et al., “Grounding language acquisition by training semantic
parsers using captioned videos,” in Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing (2018), 2647–2656.
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been developed in the last decade. Neural networks emerged as a simple idea in the

1950’s, first became feasible in the late 1990’s, and are now so sophisticated that

it is non-trivial to construct a neural network that outperforms a transfer learning

model. With some study one may easily grasp how to build a simple neural network

to classify inputs. There are now several open source machine learning platforms

and an equal number of tutorials. The simplest design of a model that one could

build is the perceptron, a basic three layer neural network. However, it is typically

in the interest of users to adapt a transfer model to their own needs rather than

construct and train a neural network independently. By adapting a transfer model

users take advantage of all the expertise and time it took to build a model that is

highly accurate. For example, transfer models have reached accuracy above 95% when

classifying handwritten digits from the MNIST data set.

In the remainder of this section we will discuss universal and specific elements

of neural networks. The reader may notice that much of our discussion of neural

networks will be related to models designed to classify images. We chose to focus on

image classification models because it appears these models have the most documen-

tation which makes it easier to understand their architecture than less documented

models. Additionally, we believe image classification models represent the essential

elements of a neural network well, and the sophisticated elements of these models are

representative of what other models have or strive to have. Other models may be

designed for source file classification, natural language processing, voice recognition,

and more.
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Neural Network Architecture

Figure 1.1: A Simple Neural NetworkReal caption44

Neural networks, as their name indicates, are modeled after neural pathways

in the human brain. The idea of a brain’s neural pathways behaving as a system of

connected nodes that self-strengthened as the pathways were used was proposed in the

late 1940’s. In the 1950’s this idea was transferred to computer science and the first

machine neural network was designed. This first artificial neural network was called

a perceptron. Similarly to how the human brain contains a web of neural pathways,

these primitive neural network models had a network of their own. However, instead

of cell based neurons, the networks were made up of an input layer of nodes, one

inner (hidden) layer of nodes to operate on the input data, and an output layer that

classified the input as something the network was told to predict.

44. “simple-neural-network,” 2019, accessed December 9, 2019, https://www.resea
rchgate.net/figure/A-simple-neural-network-with-two-hidden-layers-of-two-nodes-
each-four-inputs-and-a fig1 327637282
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Figure 1.2: Artificial NN vs Biological NN45

Today, the architecture of neural networks is much more complex than the

primitive perceptrons. Every architecture, however, is essentially a directed acyclic

graph that shares a basic structure containing an input layer, multiple inner or hidden

layers, and an output layer, each containing nodes, weights, biases, and activation

functions.

45. Gogoi, “ann-vs-bnn,” 2019, accessed December 9, 2019, https://blog.knoldus.
com/first-interaction-artificial-neural-network/
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Figure 1.3: Inception-v1 Layers46

Input Layer:

An input layer is a collection of passive neurons that receive the data being

input into the neural network. These neurons typically do not alter the data. They

only prepare the data to be passed to the subsequent layers of the network.

Inner/Hidden Layers:

A neural network will have at least one inner/hidden layer. Inner layers are

responsible for manipulating the data or directing it through the network to optimize

classification. The inner layers are where the decisions of the network are formed.

The parameters within the inner layers are what is trained to improve the classifica-

tion accuracy of the model.

46. Christian Szegedy et al., “Going deeper with convolutions,” in Proceedings of
the IEEE conference on computer vision and pattern recognition (2015), 1–9
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Output Layer:

The output layer is the final layer in a neural network. At this layer the input

is finished being processed and is prepared for classification. Typically the output

layer will contain a number of nodes equal to the number of classification options.

For example, if a network is designed to classify an animal as a cat or a dog, the

output layer will have two nodes.

Nodes:

All neural network layers are composed of an arrangement of nodes. Nodes

operate on the data being processed by the neural network in several ways. The nodes

are typically associated with an activation function, discussed below, to normalize the

data and to keep the associated value, generally a real number, within an acceptable

range. The number of nodes per layer can vary, ranging from 10 for a very simple

network to hundreds for advanced deep networks. Nodes are essentially structures

that know how to methodically process the data passing through it.

Edges & Weights:

Like any directed graph, nodes between layers are connected by edges. The

number of edges can be maximized as in fully connected layers or minimized as in

sparsely connected layers. Typically, edges have an associated weight that alters the

data being transferred through the edge. These weights are key to training neural

networks to classify data accurately. In general, the higher the weight the more effec-

tive an input is in classification. The weights are constantly adjusted to manipulate

the data so the correct classification score is output after all the processing is complete.
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Biases:

Biases are constant values added to the value computed at each node. A bias

is optional but very useful at making the model best fit the data. Biases are tuned

during training just as weights are. For example, in a simple neural network a bias is

equivalent to a y intercept being added to a linear equation. It will shift the value of

the data along an axis of a two dimensional plane. Some neural networks are more

than two dimensions and therefore do not simply ”shift” along any one axis.

Activation Functions:

Activation functions are the operations responsible for determining the output

of a neuron. Each neuron has an associated activation function, and often all nodes of

a layer will share an activation function. The activation can act as a switch, turning

a node on or off depending on a threshold, or as a transformer that alters the data

so it is received with new information by the next neuron. See figure 3.4 for a list of

common activation functions.
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Figure 1.4: Activation Functions 47

With these base elements, a neural network can be built that classifies input

data. Depending on the kind of input, the input layer will be configured to receive

all data points. The data will then be processed by one to hundreds of inner layers.

At each layer the data will be transformed by the activation function, which will take

in the predetermined edge weight and node bias as arguments. The data will finally

reach the output layer and will be given a classification score to identify what type

of input it likely is.

47. Sebastian Raschka, “Activation Functions,” 2019, accessed December 9, 2019,
http://rasbt.github.io/mlxtend/user guide/general concepts/activation-functions/
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Training Neural Networks

Every neural network must be trained on test data to optimize the classification

accuracy. Training involves running test data through the neural network, observing

which inputs are misclassified, and then going back into the neural network to alter

the weights of the edges to fix the misclassifications when the test data is run through

again. Modern networks typically use a method known a Stochastic Gradient Descent

to minimize a loss function to measure classification optimization. This is achieved

over numerous training iterations called epochs. When the output layer receives a

value produced by the network, the results reverse through the network through a

process called back propagation. This process alters the biases and edge weights in

a way that is likely to fix the misclassification. The loss associated with a neural

network is the error in classification predictions. By repeatedly processing labeled

test data the neural network can learn how to best classify the input.

A neural network must have lots of good test data to properly learn how to

classify inputs over multiple epochs. Good data implies data that is varied, numerous,

and labeled correctly. For example, if you train a neural network to classify an animal

as a wolf on pictures that all display wolves in snow. Then the network may classify a

wolf not pictured in snow as not a wolf because the network was trained to associate

snow with being a wolf. In addition to images that are varied you want lots of pictures

of wolves in different settings to optimally prepare the network for any input, and

you naturally want each picture of a wolf correctly labeled as a wolf, not a dog, which

would lead the network to misclassify the image.
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Figure 1.5: Wolf in Denali National Park48

Figure 1.6: Wolf pictured with snow in background49

48. Nathan Kostegian, “Wolf in Denali National Park,” 2019, accessed December 9,
2019, https://www.nps.gov/dena/learn/nature/wolves.htm

49. MacNeil Lyons, “Wolf with Snow in Background,” 2019, accessed December 10,
2019, https://www.flickr.com/photos/usfwsmidwest/6545954933

37



Validating Neural Networks

A validation data set is used to monitor how well the neural network is clas-

sifying inputs. This data is separate from test data and the neural network does

not learn from these inputs. Processing the validation data set through the network

helps insure the network is not overfitting. For example, if the accuracy on the test

data is very good, but very poor on the validation data, overfitting is likely occur-

ring. Overfitting is when the neural network makes strong predictions based on very

specific details. An example would be a network classifying a wolf based on snow in

the image rather than the specific details of the animal. Processing validation data

is an objective measure of accuracy because the network has not learned on these

inputs. Therefore, it is essential that validation data is varied, numerous and labeled

correctly, just like training data.

Features of state of the art neural networks

The architectural components of neural networks discussed thus far have been

the essential elements of a neural network. These elements are required to construct

a state-of-the art neural network, but they are no longer sufficient to build a top per-

forming neural network. There have been several advances in network architecture

to improve classification accuracy. Modern transfer learning models all use a combi-

nation of these features to maximize performance. Some of the common features are

discussed below.
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Convolutional layers:

Nodes in a common neural network layer are connected to several nodes in

the following layer. In convolutional layers, the nodes are not typically connected to

many nodes in the next layer. Several nodes in the convolutional layer are referred to

as receptor fields and the convolutional layer attempts to build a feature map from

these fields. A feature map is essentially a 2 dimensional grid of values that highlight

where a feature may exist. Each value represents the likelihood of a feature existing

at that position in the data. Imagine taking all the pixels of an image as the input

and the first convolutional layer attempting to find all straight edges as the features.

If the pixel value data is displayed as a 2 dimensional grid, the n x n filter would slide

over the entire grid to filter out values that correspond to an edge. Convolutions are

used to build a feature map, which is why a layer implementing convolutions is called

a convolutional layer. Convolutions are the process of convolving a two dimensional

kernel/filter with predefined weights. Each convolution reduces the filter to a single

output to identify a feature.

Convolutional layers are also different because all nodes share the same weight

and bias. This allows features to be detected anywhere on an image, and at differ-

ent scales. This works because convolutional layers typically build a feature map by

looking for one feature at a time. Directly following pooling layers can further help

convolutional layers identify features in an input.
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Figure 1.7: Convolution Filter50

Max pooling layers:

In general, max pooling layers reduce the size of the input. If you imagine a

two dimensional data set like an image, consider max pooling shrinking the input to

half its size, but keeping the same scale. Max pooling acts upon data according to

an n x n filter and a stride. The stride is the distance the map moves over the data.

A pooling layer is called a max pooling layer when the max value is computed within

the filter each time it strides over the data.

50. Dong Ping Zhang David Kaeli, “Convolution Filter,” 2019, accessed Decem-
ber 10, 2019, https://www.sciencedirect.com/topics/computer-science/convolution-
filter
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Figure 1.8: Max Pooling Example51

Many hidden layers:

Transfer learning models may have hundreds of hidden layers, whereas earlier

neural networks may have typically had fewer than 100. The number of layers is a

result of adding different types of layers to operate on the data, processing larger sizes

of input, and having the computational capacity to process data through hundreds

of layers and back propagating to train the model.

Figure 1.9: Inception-v1 Architecture52

51. Craig Will, “Max Pooling Filter,” 2019, accessed December 10, 2019, https://pri
nciplesofdeeplearning.com/index.php/2018/08/27/is-pooling-dead-in-convolutional-
networks/

52. Szegedy et al., “Going deeper with convolutions”
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Frozen layers:

Layers are frozen to speed up the time it takes to train a neural network.

When a layer is frozen the weights associated with that layer no longer can be al-

tered. Researchers have found that some layers stop improving accuracy in training

before other layers and it is effective to freeze them and focus processing power on

the untrained layers to speed up the process. Transfer learning models commonly

have many of the first layers frozen to speed up training by the user. This allows the

user to train more cost effectively because only some of the layers are being processed

while not sacrificing any significant amount of accuracy.

Figure 1.10: Frozen Layers of Model Example53

53. Ravi Samala et al., “Mass detection in digital breast tomosynthesis: Deep convo-
lutional neural network with transfer learning from mammography,” Medical Physics
43 (December 2016): 6654, doi:10.1118/1.4967345]

42



Machine Learning Transfer Models

Transfer learning models are highly accurate classification tools that are offered

for reuse. These models have been built and trained by experts from cutting edge

organizations, such as Google, Microsoft, and the University of Oxford. Transfer

models have also had the benefit of being trained on the most expansive data sets

available. Transfer models have become so sophisticated that it is now expensive

and difficult to build superior models. The architecture of these models has been

finely tuned by machine learning and data science experts to reach peak classification

accuracy. Furthermore, these models are being used more and more as machine

learning becomes more prevalent. One may deploy this model in their own program,

train it on their specific data set, modify the architecture, and then use it as they

please. By doing this one takes advantage of all the work put into these models that

would be difficult to emulate in a scaled down setting.

In the next section we will look at an overview of five of the top transfer learn-

ing neural networks: Inception-V1 (GoogLeNet),54 Inception-V3,55 Inception-V4,56

Resnet,57 and VGGnet.58 These models are all state-of-the art and highly praised

54. Szegedy et al., “Going deeper with convolutions.”

55. Christian Szegedy et al., “Rethinking the inception architecture for computer
vision,” in Proceedings of the IEEE conference on computer vision and pattern recog-
nition (2016), 2818–2826.

56. Christian Szegedy et al., “Inception-v4, inception-resnet and the impact of resid-
ual connections on learning,” in Thirty-First AAAI Conference on Artificial Intelli-
gence (2017).

57. Kaiming He et al., “Deep residual learning for image recognition,” in Proceedings
of the IEEE conference on computer vision and pattern recognition (2016), 770–778.

58. Karen Simonyan and Andrew Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014,
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in the machine learning community. We will analyze these models to understand

what the Prime+Probe attack will aim to learn. Additionally, by understanding the

complexity of these models, we hope to provide background for why we chose the

methods of attack proposed in this paper to learn which model a program is running.

44



Inception-V1

Figure 1.11: Inception-v1 Neural Network59
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Inception-v1, also known as GoogLeNet,60 emerged from Google in 2014 to

compete in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC).61

This neural network was designed to classify images as the name of the competi-

tion indicates it would need to do. The designers of Inception-v1 state that advances

in this network are more a result of ”new ideas, algorithms and improved network

architecture” than ”more powerful hardware, larger data sets and bigger models.”62

Inception-v1 is a 22 layer deep convolutional neural network. This network uses

12 times fewer parameters (weights, biases, etc.) than the leading image classification

neural network of 2012. This network is also deeper than most earlier models, such

as AlexNet63 which had eight layers and VGGNet64 which had nineteen layers.

59. Szegedy et al., “Going deeper with convolutions”

60. Ibid.

61. Olga Russakovsky et al., “Imagenet large scale visual recognition challenge,”
International journal of computer vision 115, no. 3 (2015): 211–252.

62. Szegedy et al., “Going deeper with convolutions.”

63. Ilya Sutskever, Geoffrey E Hinton, and A Krizhevsky, “Imagenet classification
with deep convolutional neural networks,” Advances in neural information processing
systems, 2012, 1097–1105.

64. Simonyan and Zisserman, “Very deep convolutional networks for large-scale im-
age recognition.”
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Figure 1.12: Inception-v1 Layers65

The following features make this network unique: 1 X 1 convolution filters,

the inception module, and global average pooling.66 Like other convolutional filters,

the 1 x 1 filter is used to to reduce the size of the data being processed. This addition

reduced the number of operations that the network must perform and therefore made

it possible to add additional layers without making the model exceptionally inefficient.

Specifically, this allowed the designers to include the inception module.

65. Szegedy et al., “Going deeper with convolutions”

66. Ibid.
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Figure 1.13: Inception-v1 Module Naive67

Figure 1.14: Inception-v1 Module68

The inception module is made possible by the addition of 1 x 1 filters. By

carefully adding 1 x 1 filters total operations are reduced and more layers may be

inserted. As you can see by comparing figure 4.13 and 4.14, the inception module

includes two additional 1 x 1 filters. The result of the inception module is dimension

reduction of the data, less computation, and reduced overfitting.

Global average pooling rather than fully connected layers is used near the end

67. Szegedy et al., “Going deeper with convolutions”

68. ibid.
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of the network. Global average pooling averages each 7 x 7 feature map to a 1 x 1

feature map and does not have weights. This reduction in data greatly lessens the

computation requirements while maintaining accuracy. By using global average pool-

ing accuracy went up by roughly 0.6% and overfitting was reduced.

Inception-V3

Figure 1.15: Inception-v369

Inception-v3 like the other versions of the Inception models is designed and

built by researchers at Google. Inception-v3 was built in 2015 and was used to

compete in the ILSVRC.70 This neural network relied heavily on Inception-v1 as a

foundation to improve upon.

The following features make this network unique: factorizing convolutions,

69. Szegedy et al., “Rethinking the inception architecture for computer vision”

70. Russakovsky et al., “Imagenet large scale visual recognition challenge.”
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auxiliary classifiers, and batch normalization.71 Factorizing convolutions was intro-

duced to maintain efficiency while introducing data reduction. One way this is

achieved is by replacing a 5 x 5 convolution filter with two 3 x 3 filters. By 3 x

3 filters ”the number of parameters is reduced by 28%”.72 Additionally, this improve-

ment can be achieved by replacing a 3 x 3 filter with two other filters, a 3 x 1 filter

and a 1 x 3 filter.

Auxiliary classifiers are essentially mini neural networks inserted into the over-

all architecture. In this network only one auxiliary classifier is inserted. The purpose

of these classifiers is to compute a loss that is added to the overall network loss during

training time. Additionally, in Inception-v3 the auxiliary classifier is used as a ”reg-

ularizer”.73 Weight regularization is primarily used to reduce overfitting in the model.

Figure 1.16: Inception-v3 Auxiliary Classifier 74

71. Szegedy et al., “Rethinking the inception architecture for computer vision.”

72. Ibid.

73. Ibid.
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Batch normalization reduces overfitting, lessens dropout, and increases accu-

racy in the face of covariance shift.75 It does this by normalizing the resulting calcula-

tion from nodes so they are never abnormally high or low. Two trainable parameters

are inserted specific layers so the network can alter the values with each epoch to

find the optimum normalization. Dropout is the process of randomly nullifying data

points in input to force the network to account for atypical inputs. Covariance shifts

is the idea of introducing a type of input that is similar in most regards, but very

different in at least one regard, which often leads to misclassification. For example,

consider neural network trained to detect stop signs. We know stop sign are typically

hexagonal. However, what if there were also square stop signs and the network needed

to be trained on them? Everything about the signs may be identical, but because the

shape is different, the network will likely have a high misclassification rate on these

inputs.

Inception-V4

Inception-v4 is the most recent generation of the Inception neural networks

built by teams at Google. This version of the Inception neural networks was designed

in 2016 and it also was used to compete in the ImageNet classification challenge. This

generation heavily relies on the architecture of its predecessors as did Inception-v3.

However, residual connections, as introduced by the ResNet neural network built by

74. Szegedy et al., “Rethinking the inception architecture for computer vision”

75. Sergey Ioffe and Christian Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015,
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Microsoft,76 were added to speed up the training process.

The creators of Inception-v4 observe that this network has a simpler architec-

ture than its Inception-v3.77 In addition to adding residual connections, it is different

because it has more inception modules than its predecessor. However, the marginal

gains are slimmer than the gains observed in the earlier Inception networks.78

Residual blocks or connections occur when each layer feeds into the immedi-

ately following layer and layers not immediately following the layer. These layers are

called residual layers, rather than skip layers which may be more intuitive, because

the layer receiving input from the residual layer is actually seeing the residual output

from that layer, not the true output as sequential layers see. This idea emerged from

the challenge researchers faced of how to improve accuracy without simply adding

more layers to the network. At this time adding more layers began producing dimin-

ishing marginal returns in improved accuracy and new ideas were needed to realize

better performance.

Inception-v4 specifically has three primary inception modules. The design of

these modules follows the design originally introduced in Inception-v1. Additional

modules and the ability to handle the additional overload allows this network to com-

pound the benefits of this feature. There is better data reduction, fewer computations

required, and lessened overfitting.

76. He et al., “Deep residual learning for image recognition.”

77. Szegedy et al., “Inception-v4, inception-resnet and the impact of residual con-
nections on learning.”

78. Ibid.
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Resnet

Figure 1.17: Residual Architecture79
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Figure 1.18: Residual Architecture Breakdown80

Resnet defines a family of neural networks that utilize residual network archi-

tecture. This innovative architecture feature emerged in 2015 from teams at Microsoft

Research.81 Since being introduced to the machine learning community, numerous

transfer models have included residual layers in their architecture. We will consider

here the ResNet neural network as it was introduced in 2015. This is the network that

won the ILSVRC competition in 2015 with an error race of 3.57% on the ImageNet

data set.82

Teams at Microsoft built residual networks with up to 152 layers to prove these

networks could be extended greatly without significantly increasing complexity. In

2015, a 152 layer network was 8 times deeper than VGG networks, another state-of-

the-art transfer model. Like with Inception-v4, residual networks add residual layers

79. He et al., “Deep residual learning for image recognition”

80. ibid.

81. Ibid.

82. Ibid.
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so the model can have better accuracy, but will not be inefficient and suffer from

diminishing marginal returns of added complexity and overfitting.

Figure 1.19: Residual Block83

The Resnet model originally had 34 layers. The majority of these layers were

convolutional. the convolutional layers used a 3 x 3 filter and a stride of 2. The

last two layers are a global average pooling layer and a 1000-way fully connected

layer using the softmax activation function to prepare the data for classification. The

designers of ResNet note that this network has ”fewer filters and lower complexity

than VGG nets.”84 It has 3.6 billion multiply-adds vs 19.6 billion multiply-adds in

VGG.85

In addition to having 13 residual layers, Resnet has three shortcut layers to

adjust identity mapping for inputs with increased dimensions. The shortcut layers

pad zeros to the data rather than introduce additional parameters, or they use an

equation to match the dimension to what the network expects. This helps the neural

network classify varying sizes of input because it may happen that not all images in

83. He et al., “Deep residual learning for image recognition”

84. Ibid.

85. Ibid.
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a data set are uniform in size.

VGGNnet

Figure 1.20: VGG Model Layer Breakdown86

86. Simonyan and Zisserman, “Very deep convolutional networks for large-scale im-
age recognition”
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VGG was built by the Visual Geometry Group based at the University of Ox-

ford.87 This model was 1st runner-up in the 2014 ILSVRC ImageNet classification

competition, but won the localization task. The localization task is where the model

must bound objects it identifies in an image. VGG was praised at this time for being

a significant improvement over ZFNet and AlexNet, the two models that won the

ILSVRC competition in 2013 and 2012 respectively. This was the first year where

models achieved an error rate of less than 10%. Additionally, models today are still

being designed using VGG net as a baseline.

Figure 1.21: Localization Task88

While there were six VGG networks (VGG-11, VGG-11 (LRN), VGG-13,

VGG-16 (Conv1), VGG-16, and VGG-19),89 VGG-16 and VGG-19 are the most com-

monly discussed and used. The primary reason is that these two versions of VGG

87. Simonyan and Zisserman, “Very deep convolutional networks for large-scale im-
age recognition.”

88. Matthew B Blaschko and Christoph H Lampert, “Learning to localize ob-
jects with structured output regression,” in European conference on computer vision
(Springer, 2008), 2–15

89. Simonyan and Zisserman, “Very deep convolutional networks for large-scale im-
age recognition.”
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achieved the lowest error rates. It is interesting to note that these two models have

the most parameters as well. However, VGG-16 achieved the best accuracy using

fewer layers and parameters than VGG-19. VGG-16 acheived an 8.8% error rate

while VG-19 achieved a 9.0% error rate.90

Figure 1.22: VGG Number of Parameters 91

The VGG-16 and VGG-19 models use 16 layers and 19 layers respectively. The

majority of these layers are convolutional for feature mapping. Most of the filters are

3 x 3, but some 1 x 1 filters are also used. The stride is uniformly set to 1. Max

pooling is also implemented in five layers using a 2 x 2 filter with a stride of 2. For all

models three fully connected layers are added to the end of the network to prepare

to map the output. The final layer has a 1000 nodes to map the output to one of the

1000 categories in the ImageNet classification competition. Every hidden layer uses

the ReLu (Rectifyer-Linear) activation function.

VGG overall is different than the two previous ImageNet competition winners

because it consistently uses small filters in its convolutional layers. VGG uses 3 x 3

filters whereas AlexNet92 used 11 x 11 filters with a stride of 4, and ZFNet93 used

90. Simonyan and Zisserman, “Very deep convolutional networks for large-scale im-
age recognition.”

91. He et al., “Deep residual learning for image recognition”

92. Sutskever, Hinton, and Krizhevsky, “Imagenet classification with deep convolu-
tional neural networks.”

93. Matthew D Zeiler and Rob Fergus, “Visualizing and understanding convolu-
tional networks,” in European conference on computer vision (Springer, 2014), 818–
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7 x 7 filters with a stride of 2. The 1 x 1 filters used in VGG were taken from the

GoogLeNet project (Inception-v1) to increase the depth of the model without hitting

diminishing marginal returns of added complexity.

Machine Learning and Neural Networks for Cybersecurity

In general, there is no machine learning/deep learning technology or transfer

model built uniquely for cybersecurity. Rather, existing ML models are trained to

solve a problem relating to cybersecurity. One example is training machine learning

model to identify a virus based on viewing the code binary.94 The ML model may

be the same as a model trained to identify a binary specific to a certain company or

organization, but is trained on data unique to cybersecurity to solve this problem.

Additionally, ML models used in cybersecurity may be altered to harden them

against adversarial attacks intended to trick the model or reverse engineer it. It

is recommended that these models be hardened against attacks because they likely

perform a critical function that must not fail. An adversary may be motivated to

trick the model to, for example, get a piece of malware to be classified as benign and

able to be installed on a system. An adversary may also be motivated to reverse

engineer a model to be able to test on it in a way that does not garner suspicion to

ultimately know how to trick the model in the future. How adversarial may try to

trick or reverse engineer ML models will be discussed in more detail later.

833.

94. Olivier Henchiri and Nathalie Japkowicz, “A feature selection and evaluation
scheme for computer virus detection,” in Sixth International Conference on Data
Mining (ICDM’06) (IEEE, 2006), 891–895.
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