
ABSTRACT 

Waveform and Circuit Optimizations to Provide Spectral Compliance for Cognitive Radar 

Matthew Fellows, M.S.E.C.E. 

Mentor: Charles P. Baylis II, Ph.D. 

Spectrum requirements on radar systems are becoming stricter due to the 

increasing number of wireless devices inhabiting the frequency spectrum. Future radar 

systems that are cognitive and flexible will be able to operate more effectively in the 

next-generation spectral environment. Cognitive Radar is a radar that can adapt to 

changing requirements placed upon it. The goal of the research presented in this thesis is 

to empower cognitive radar systems to adapt to changing requirements while maintaining 

the best level of performance possible. Maintaining that level of performance requires 

two things: adapting the radar waveform for optimum target detection capability and 

adapting the load impedance for optimum power efficiency while keeping in compliance 

with the spectrum requirements. 
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CHAPTER ONE 

Introduction 

Power amplifiers for radar transmission are being placed under increasingly strict 

spectral requirements. The increasing number of wireless devices is forcing the devices 

already using the frequency spectrum to become smarter in order to perform their tasks 

without interfering with neighbors. This need for spectral sharing is especially shown by 

the National Broadband Plan of 2010.  One provision in the Broadband Plan requires 500 

MHz of currently occupied frequency space to be released over 10 years (by 2020). Much 

of that space will need to be taken from radar applications, forcing those radars to 

perform the same tasks with less spectrum. Reduced spectrum access is a particularly 

challenging problem for radar, since higher signal bandwidth often gives desirable 

detection characteristics for radar systems. So while compliance with new, stricter 

regulation is very important for radar systems, it is also important for the radar to get as 

much power and bandwidth out of the space available for it to use. 

Radar’s answer to the growing spectrum access problem is cognitive radar, which 

is envisioned as a type of radar system that will be able to adjust its operating 

characteristics to meet new requirements [38]. This would be especially useful in a 

potential dynamic spectrum access environment, which is a path the regulation may take 

to allow certain frequency bands to be shared between multiple users. In order for 

cognitive radar systems to become reality, algorithms will be needed for optimizing the 

various components of the new radar system.  
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This thesis presents two useful optimizations for cognitive radar. Chapter 2 

includes the necessary background of important concepts involved in each search, as well 

as an establishment of the state of the art in related areas. In Chapter 3, an optimization is 

presented that will find the ideal load impedance for a radar power amplifier using a 

steepest-ascent, gradient-based search technique. The information in Chapter 3 was 

originally published in [1]. Chapter 4 presents an optimization which uses the radar 

ambiguity function to choose a good waveform for detection in the radar system. The 

information in chapter 4 was originally published in [2].  
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CHAPTER TWO 

Background 

In order to best understand the following chapters in this thesis, some background 

information about the subject matter is helpful. This chapter provides that background 

information and overviews the state-of-the-art in related work. Specifically, Section 2.1.1 

will discuss information related to the presented load-pull circuit optimization, Section 

2.1.2 will show the state-of-the-art in that area, Section 2.2.1 will discuss information 

related to the presented waveform optimization, and Section 2.2.2 will show the state-of-

the-art in that area. 

 
2.1 Background of Load-pull Circuit Optimization 

2.1.1 Discussion of Key Concepts 

 The load-pull circuit optimization serves to make sure the amplifier load 

impedance used in a cognitive radar system is ideally chosen for two criteria: power-

added efficiency (PAE) and adjacent channel power ratio (ACPR). PAE is a measure of 

how much of the DC power input to a power amplifier is converted to radio frequency 

(RF) power output from that amplifier. PAE is defined by 

𝑃𝐴𝐸 =
𝑃𝑜𝑢𝑡,𝑅𝐹 − 𝑃𝑖𝑛,𝑅𝐹

𝑃𝐷𝐶
  × 100%.                                                (2.1) 

Ideally PAE should be as high as possible for a power amplifier.  

ACPR measures the ratio of the power that spreads into neighboring bandwidths 

to the power in the main operating frequency band used by an amplifier. ACPR should be 
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a small number, since larger amounts of power in adjacent channels will be more likely to 

interfere with other devices attempting to use those frequency bands. Power from the 

amplifier leaks into the adjacent channels due to nonlinearities in the amplifier that result 

in spreading out the frequency spectrum output from the amplifier [13]. In the United 

States, this spectral spreading for radar is governed by the Radar Spectrum Engineering 

Criteria (RSEC), which are created by the National Telecommunications and Information 

Administration (NTIA) in the United States. The regulation for spectrum use takes the 

form of a spectral mask, which is simply a line that the measured spectrum cannot go 

above. Compliance with the spectrum regulations in the load-pull circuit optimization is 

achieved by setting a limit value of ACPR that is not exceeded by the chosen operating 

condition at the end of the optimization. An example of a spectral mask is shown in 

Figure 2.1.  

 

 

Figure 2.1 Example Spectral Mask (reprinted from [3]) 
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 PAE and ACPR are both functions of the load reflection coefficient Г𝐿 of the 

amplifier [12]. Those functions are best shown using contours on a Smith Chart as shown 

in Figure 2.2. Each point on one of those contours will have the same value for the 

related function, with the values for PAE getting smaller as the contours recede from the 

PAE maximum, and the values for ACPR getting bigger as the contours recede from the 

ACPR minimum. Note that the Smith Chart contours are specific to the device being 

tested, so the set shown in Figure 2.2 is only for one device. For a balance between PAE 

and ACPR, the ideal operating Г𝐿 can be defined as the value of Г𝐿 which gives the 

highest PAE within an ACPR limit, thus giving good efficiency while assuring spectral 

compliance. If one varies the ACPR limit and finds the best PAE measurement for all 

possible ACPR limits, the results will form a line of points connecting the PAE 

maximum to the ACPR minimum on the Smith Chart. This line is called the Pareto Front 

[4, 5].  

 

Figure 2.2 Example Contour Plots for PAE and ACPR. The PAE maximum and the 
ACPR minimum are indicated, as is the Pareto Front connecting the two. 

PAE 
Maximum 

ACPR 
Minimum ACPR 

Contours 



6 
  

 [4] presented the first version of an algorithm designed to find the best PAE 

within an ACPR limit for an amplifier. That optimization worked by starting from an 

arbitrary location on the Smith Chart and proceeding to the optimum Г𝐿 by taking the 

path of steepest ascent for PAE until the PAE maximum was reached, and then stepping 

down the Pareto Front until the search was under the ACPR limit. That algorithm 

achieved its goal, but the indirect path (going to the PAE maximum first) resulted in extra 

measurements being required to find the optimum. Chapter Three of this thesis presents a 

new optimization algorithm that takes a more direct path to the optimum Г𝐿, which 

results in a significant savings in measurements required for the algorithm to complete. 

 

2.1.2 State of the Art in Load-Pull Optimization 

 This subsection contains a brief overview of the literature references related to the 

presented work on circuit optimization. [5] describes basic principles of Pareto 

optimization. [6,7,8,9,10,11] are other papers involving Pareto optimization for a tradeoff 

between two objectives depending on common variables. PAE and ACPR’s dependence 

on Г𝐿 is shown in [12]. [13] addresses amplifier distortion due to nonlinearity. [14] 

recommends ACPR as a significant indicator of out-of-band emissions. [15,16] include 

considerations of intermodulation between in-band frequency components, resulting in 

spectral spreading. [12,17] represent earlier work on ACPR load-pull and ACPR’s 

dependence on load impedance.  

 [18] relates ACPR results for broadband signals to predictions based on 

intermodulation measurements. [19,20] demonstrate the use of a genetic algorithm for 

matching antenna impedance based on the voltage standing wave ratio. [21] shows that 
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real-time transmitter optimization is feasible using a genetic algorithm for tuning a 

transmitter amplifier with matching networks. [22] examines genetic algorithms and 

notes that they tend to be slower than other algorithms for some impedance-matching 

optimizations. [23,24,25] propose other matching network optimization approaches 

including fuzzy control [23], neural networks [24], and least-squares optimization [25]. 

[26] is a paper from 2011 work at Baylor Wireless and Microwave Circuits and Systems 

(WMCS) demonstrating a steepest-ascent algorithm for one-objective impedance 

optimization – optimizing output power. Baylor WMCS also created [27], which 

demonstrates the dependence of PAE and ACPR on amplifier load impedance for LFM 

chirp waveforms. 

2.2 Background of Waveform Optimization 

2.2.1 Discussion of Key Concepts 

 The waveform optimization works to make sure that the waveform chosen by a 

cognitive radar system is ideal for target detection. This is performed through use of the 

ambiguity function, which is defined as  

𝜒(𝜏, 𝑢) = � 𝑠(𝑡)
∞

𝑡=−∞
𝑠∗(𝑡 − 𝜏)𝑒−𝑗2𝜋𝑢𝑡𝑑𝑡.                                      (2.2) 

  s(t) is the transmitted radar signal, 𝜏 is the difference in time from the actual time 

delay associated with a target, and u is the difference in Doppler frequency shift from the 

actual Doppler shift of a target. As explained in detail in Chapter 4, the integral 

represents a variation in the correlator’s output over these differences in time and 

Doppler from the true time and Doppler of the target.  The variation of the integral’s 

value over these two differences will correspond with the transmitted signal’s ability to 
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provide resolution in range and target speed. Thus the ambiguity function provides a 

measure of how well a radar waveform will detect range and speed characteristics of a 

target. The ideal ambiguity function for target detection would have a high value of the 

ambiguity function at the origin (𝜏 = 0,𝑢 = 0) and a zero value everywhere else. This 

would indicate that particular signal gives a high return at the target’s actual range-

Doppler coordinates and a low return elsewhere. However, no waveform exists that gives 

those zero values everywhere except the origin [32]. 

 Magnitude plots of some example ambiguity functions are shown in Figures 2.3, 

2.4, and 2.5. The result in Figure 2.3 is the ambiguity function for a time domain impulse 

function. This would be the ideal waveform for range detection of a target, as the 

ambiguity is aligned along the u axis. This also makes intuitive sense, as it would be very 

easy to calculate the time delay for an impulse function, but there would be no frequency 

shift information to use for finding speed. 

 

 

Figure 2.3 Ambiguity function magnitude for time domain impulse 

 

u 𝝉 
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 Figure 2.4 shows the ambiguity function magnitude for a time domain sinusoid at 

constant frequency. A sinusoid is the intuitively ideal function for detecting speed, since 

one frequency gives very good Doppler detection capability. The high values in 

ambiguity in Figure 2.4 align along the 𝜏 axis, which fits with the intuition. There is some 

spreading out of the ambiguity in the figure, which is due to the time-limited nature of the 

sinusoid being used. 

 

 

Figure 2.4 Ambiguity Function Magnitude for time domain sinusoid 

 

 Figure 2.5 shows the ambiguity function for a linear frequency-modulated (LFM) 

chirp. A chirp is simply a sinusoid that increases or decreases over the time duration of its 

pulse. The chirp waveform is unique as it creates a narrow triangular ridge in the 

ambiguity function, with a tilt angle based on the ratio to the bandwidth of the chirp to 

the time length of the pulse. LFM chirps are very commonly used radar waveforms, and 

the waveform optimization presented in chapter 4 adjusts the ambiguity function by 

u 
𝝉 
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changing the bandwidth of the chirp in order to alter the tilt angle of the ridge in the 

ambiguity function. 

 

 

Figure 2.5 Ambiguity Function for LFM Chirp 

 

2.2.2 State of the Art in Waveform Optimization 

 This subsection contains an overview of literature references related to the 

presented work on waveform optimization. [28,29,30,31] show design of spectrally 

confined waveforms through various techniques. [28] used variable-modulus techniques,  

[29,30] used constant-modulus continuous phase modulation to minimize spectral 

spreading of waveforms. [31] used constant-modulus piecewise chirp optimization. [32] 

discussed the connection of ambiguity function with the waveform, including 

characteristics of chirps. [33] demonstrates optimization of LFM chirp design by tuning 

the nonlinear Fourier Series perturbations to phase. [34] uses the ambiguity function 

surface as a weighted error criterion for waveform optimization. [35] uses genetic 

algorithms to minimize the ambiguity function volume in different regions of the range-

Doppler plane. [36] applies least-squares optimization to radar waveforms.  

𝝉 
 

u 
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2.3 Summary 

 This chapter has shown background information in the areas of load-pull 

optimization and waveform optimization. Related to the load-pull optimization, this 

chapter has discussed PAE, ACPR, their relation to load reflection coefficient Г𝐿, and the 

Pareto Front of optimum solutions for different ACPR limits. Related to waveform 

optimizations, this chapter has described the ambiguity function and shown some 

ambiguity function results for simple waveforms. Chapter 3 and Chapter 4 will use the 

information from this chapter as a launching point for describing the presented 

optimizations. 
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CHAPTER THREE 

Direct Radar Amplifier Load-pull Optimization 

 This chapter has been accepted for publication as: [1] Fellows, M.; Baylis, C.; Martin, J.; 
Cohen, L.; Marks, R.J., “Direct Algorithm for the Pareto Load-Pull Optimization of 
Power-Added Efficiency and Adjacent-Channel Power Ratio,” –accepted for publication 
by IET Radar, Sonar, and Navigation 

 

In order to improve upon the previously designed load-pull optimization 

described in [4], an algorithm was needed that would use fewer measurements to find the 

optimum load reflection coefficient Г𝐿 for a radar power amplifier. The new algorithm 

achieves that goal using a vector-based method to more directly approach the optimum 

instead of finding the PAE maximum first. Section 3.1 describes the new algorithm, 

Section 3.2 shows results for computer simulations of the algorithm, and Section 3.3 

shows test bench measurement results for the direct load-pull algorithm. 

3.1 Method for Direct Load-pull Optimization 

The direct load-pull optimization is designed to start at an arbitrary reflection 

coefficient and take steps on the Smith Chart toward the optimum load impedance from 

there. As mentioned previously, the optimum reflection coefficient is defined as the 

location on the Smith Chart which contains the maximum PAE for a specified ACPR 

limit. At each candidate location three measurements on required. These measurements 

find the PAE and ACPR at the candidate point and at two neighboring points, which are 

separated from the candidate point by user-defined parameter 𝐷𝑛 as shown in Figure 3.1 

below.  
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Figure 3.1: Measurements required at each candidate location 

 

Using these measurements allows for gradients to be calculated for PAE and 

ACPR. That gradient is then used to find the directions of steepest ascent for PAE and 

steepest descent for ACPR. The algorithm then proceeds using equations 3.1-3.4: 

𝑣̅ = 𝑎�𝐷𝑎 + 𝑏�𝐷𝑏                                                                                   (3.1) 

𝑣̅ = 𝑝̂𝐷𝑎 + 𝑏�𝐷𝑏                                                                                 (3.2) 

𝐷𝑎 =
𝐷𝑠
2

|𝐴𝐶𝑃𝑅𝑚𝑒𝑎𝑠 − 𝐴𝐶𝑃𝑅𝑡𝑎𝑟𝑔𝑒𝑡 |
�𝐴𝐶𝑃𝑅𝑤𝑜𝑟𝑠𝑡 − 𝐴𝐶𝑃𝑅𝑡𝑎𝑟𝑔𝑒𝑡�

                                                           (3.3) 

𝐷𝑏 =
𝐷𝑠
2

|𝜃𝑚𝑒𝑎𝑠 − 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 |
𝜃𝑡𝑎𝑟𝑔𝑒𝑡

   .                                                                (3.4) 

(3.1) and (3.2) describe the possible step vectors that can be used in the search. 

(3.3) and (3.4) describe the magnitude used for each component of those step vectors. In 

those formulas, 𝑎� and 𝑝̂ represent unit vectors in the directions of steepest descent for 

ACPR and steepest ascent for PAE respectively. 𝑝̂ is the unit vector in the direction of the 

bisector angle between 𝑎� and 𝑝̂. 𝐷𝑎 and 𝐷𝑏 are the vector magnitudes that will be used 

with their associated vectors.. 𝐷𝑠 is the user-defined parameter which determines the 

largest possible step size. The various ACPR and 𝜃 terms reference the appropriate 

ACPR value and bisector angle between the PAE and ACPR gradients, respectively. 

𝐴𝐶𝑃𝑅𝑤𝑜𝑟𝑠𝑡 is the “worst” value of ACPR that has been measured by the search, where 

the worst value is chosen to be the value that maximizes |𝐴𝐶𝑃𝑅𝑤𝑜𝑟𝑠𝑡 − 𝐴𝐶𝑃𝑅𝑡𝑎𝑟𝑔𝑒𝑡 |. In 

𝐷𝑛 

𝐷𝑛 
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most cases, 𝐴𝐶𝑃𝑅𝑤𝑜𝑟𝑠𝑡 will be either the first measured ACPR or the measured ACPR at 

one of the first two neighboring points. However, the value is recalculated every time a 

new ACPR value is measured. 𝐴𝐶𝑃𝑅𝑡𝑎𝑟𝑔𝑒𝑡 is the ACPR limit for the search. 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 is 

equal to 90°, which is due to the fact that 𝑎� and 𝑝̂ will be pointing in opposite directions 

when the search is located on the Pareto Front. Thus a bisector angle of 90° indicates that 

the candidate point is on the Pareto Front, which is where 𝐷𝑏 should equal zero. 

  Using these equations the search proceeds in one of two ways. If the ACPR 

measurement at the current candidate location is greater than the ACPR limit, the search 

uses (3.1) for the step vector. This indicates that the current candidate is not meeting 

spectral regulations and needs to improve in ACPR. If the ACPR measurement at the 

current candidate is less than the ACPR limit then the search uses (3.2) for the step 

vector. This indicates that the search is complying with spectral regulations and needs to 

improve in PAE. Figure 3.2(a) and Figure 3.2(b) show representations of these two step 

methods. 

 Once the search enters the spectrally compliant region of the Smith Chart, two 

final considerations are added to the process. After each step, the algorithm checks if the 

new candidate point is (1) out of ACPR compliance (above the ACPR limit) or (2) has a 

lower PAE than the previous candidate. In either case, the search returns to the previous 

location and divides the value of 𝐷𝑠 by 3. These situations indicate that the algorithm 

stepped too far, overshooting the ACPR limit contour and/or the Pareto Front.  
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(a) (b) 
               

Figure 3.2: Representation of the step vector when (a) ACPR measured at Candidate 1 is 
greater than the limit (not spectrally compliant), or (b) ACPR measured at Candidate 1 is 
less than the limit (spectrally compliant) 

 

 Finally, the search terminates when the calculated vector step magnitude |𝑣̅| is 

less than the neighboring-point distance 𝐷𝑛, which is a user-defined parameter. Once that 

condition is met, the measured Г𝐿 with the highest PAE within the ACPR limit is chosen 

as the optimum load reflection coefficient. This Г𝐿 is typically either the last measured 

candidate point or one of the neighboring points for the second to last candidate. 

3.2 Computer Simulation Results using ADS 

The first method used for validating the specified algorithm was to use Agilent 

Advanced Design System (ADS) with a nonlinear field-effect transistor (FET) model 

from Modelithics. The specific simulated device for the results in this section was a 

TriQuint TGF2960-SD Packaged HFET.  The device was biased with 𝑉𝐷𝑆 = 8 V and 

𝐼𝐷 = 10 mA. The input signal for these simulations is a CDMA signal centered at 

800MHz with an available power of 11dBm. These settings resulted in the load-pull 

contours shown in Figure 3.3 below. Note that the ACPR minimum, and PAE maximum, 

and Pareto optimum locations are all shown. 
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Figure 3.3: PAE and ACPR contours for simulated load-pull data 

 

Figures 3.4-3.8 show the results for running the presented algorithm from several 

start locations on the Smith chart using an ACPR limit of -45 dBc. For each result the 

starting value of Г𝐿, the end value of Г𝐿, the final PAE, the final ACPR, and the number 

of measurements taken are shown in each figure. The results from these simulations are 

also compiled in Table 3.1. 
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Figure 3.4: Simulated search result for start location Г𝐿 =0.8 ∠ 90° 

 

 

Figure 3.5: Simulated search result for start location Г𝐿 =0.8 ∠ -90° 

 

 

START 

END 

START 

END 
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Figure 3.6: Simulated search result for start location Г𝐿 =0.8 ∠ 180° 

 

 

Figure 3.7: Simulated search result for start location Г𝐿 =0.8 ∠ 0° 

START 
END 

START 
END 
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Figure 3.8: Simulated search result for start location Г𝐿 =0 ∠ 0° 

Table 3.1: Simulation results for different starting reflection coefficients 

Start ΓL End ΓL End 
PAE 
(%) 

End 
ACPR 
(dBc) 

# Pts. 

0.8 <90º 0.383<94º 38.25 -45.78 17 
0.8 <-90º 0.147<34º 39.69 -45.30 11 
0.8 <180º 0.129<69º 38.90 -46.25 14 

0.8<0º 0.153<43º 40.56 -45.26 25 
0 0.177<60º 40.70 -45.27 11 

 

As these results show, the algorithm consistently attains measured values of 

ACPR less than the limit of -45dBc and attains similar results for PAE from all start 

locations, which indicates that the algorithm is attaining acceptable results. Furthermore, 

the variation in number of measured points for this algorithm varies from 11 to 25 points, 

which is much less than the number of points required for similar searches using the 

method described in [4]. These results do show some variation in the search’s end 

locations, but these variations are acceptable due to the closeness of the PAE results. 

These variations in location also make sense if the load-pull contours are examined, since 

the contours in the optimum region stretch from the top of the Smith chart toward the 

START 

END 
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bottom of the chart. So the simulation results show an acceptable level of performance 

for the presented algorithm. 

3.3 Test Bench Results 

   Once the algorithm had been validated in computer simulations it was tested using 

the bench-top load-pull system at the Baylor Research and Innovation Collaborative. That 

system uses a Maury Microwave Automated Tuner System (ATS) being controlled by 

MATLAB through a GPIB connection. To vary the load impedance, the ATS system uses 

mechanical tuners to adjust the reflection coefficient at the load of the amplifier under 

test. The bench top setup also includes a signal generator to produce LFM chirp 

waveforms, a DC power supply for amplifier biasing, a power meter for PAE 

measurements, and a spectrum analyzer for ACPR measurements. Figure 3.9 shows a 

picture of the load-pull system, which is also described in more detail in [37].  

 

 

Figure 3.9: Load-pull test bench system 
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  For the testing of the presented algorithm, a Skyworks SKY65017-70LF InGaP 

amplifier was used as the device under test. The bias conditions used a 9V DC power 

input with 100 mA of current. The input waveform was a LFM up chirp with 16 MHz 

bandwidth at a center frequency of 3.3 GHz and an input power of 2.0 dBm. In addition 

to testing the presented algorithm on the test bench, the algorithm from [4] was tested in 

order to provide a comparison. Figure 3.10(a) shows the load-pull contours for this 

device and Figure 3.10(b) shows the Pareto optimum found by a traditional load-pull. 

Figure 3.11(a) – Figure 3.11(j) show the results for running each algorithm from various 

start locations. The results for the new algorithm are summarized in Table 3.2, and the 

results from both algorithms are compared in Table 3.3.  

  



 

PAE 
optimum 

ACPR 
minimum 

PAE 
maximum 

Pareto  
optimum 

ACPR 
optimum 

PAE Contours 

ACPR Contours 
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Fig. 3.11.  New algorithm measurement search results (left column) and measurement 
search results for comparison algorithm presented in [4] (right column) from different 
starting ΓLvalues 

START 

START 

START 

START 

START 

START 

START 

START 

START 

START 

END 

END 

 END 

 END 
         END 

 END  END 

 END  END 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 

 END 
𝛤𝐿 = 0.9 < −90º 

Start: 

𝛤𝐿 = 0.9 < −90º 

Start: 

𝛤𝐿 = 0.9 < 90º 

Start: 

𝛤𝐿 = 0.9 < 90º 

Start: 

𝛤𝐿 = 0.9 < 180º 

Start: 

𝛤𝐿 = 0.9 < 180º 

Start: 

𝛤𝐿 = 0.9 < 0º 

Start: 

𝛤𝐿 = 0.9 < 0º 

Start: 

𝛤𝐿 = 0 

Start: 

𝛤𝐿 = 0 

Start: 



24 
  

 

Table 3.2: New Algorithm Measurement Results 

Start ΓL End ΓL End 

PAE 
(%) 

End 

ACP
R 

(dBc) 

# Pts. 

0.9 <-90º 0.623<-36.2º 6.55 -28.31 13 

0.9 <90º 0.592<-4.81º 6.67 -28.30 17 

0.9 <180º 0.621<-17.2º 6.53 -28.28 22 

0.9<0º 0.584<-8.99º 6.74 -28.32 11 

0 0.580<-17.7º 6.88 -28.28 13 

 

 

Table 3.3: Comparison between algorithms 

 

 

 

 

 

 

As in the ADS simulation results, the new algorithm consistently finds results 

with ACPR less than the limit and with minor variations in PAE. Once again the end 

locations vary somewhat, but the PAE does not vary enough for that to be a concern. 

Comparison with the two-step algorithm truly showcases the strength of the new, vector-

Start 
ΓL 

New 
Algorithm 
End PAE 

(%) 

Algorithm 
from [4] 

End PAE 
(%) 

New 
Alg’m 
# Pts. 

Alg’m 
from 
[4]          

# Pts. 

% 
Red. 

0.9 <-90º 6.55 6.59 13 25 48% 

0.9 <90º 6.67 6.14 17 31 45% 

0.9 <180º 6.53 6.50 22 40 45% 

0.9<0º 6.74 7.11 11 22 50% 

0 6.88 6.88 13 25 48% 
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based algorithm. The results for both algorithms have similar levels of quality, but the 

new algorithm consistently finds its optimum result with 45 to 50% fewer measurements. 

The presented algorithm demonstrates a significant savings in the number of 

measurements required to optimize the load reflection coefficient for a radar power 

amplifier. 

3.4 Summary 

This chapter has presented a direct algorithm for optimization of the load 

impedance for a radar power amplifier. This algorithms will obtain the highest possible 

PAE while meeting ACPR requirements. Significant improvement over previous versions 

of this algorithm has been demonstrated, and the success of the new algorithm has been 

shown in both simulation and measurement. This work can be broadly applied to both 

real-time reconfigurable systems and bench-top laboratory measurements. 
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CHAPTER FOUR 

Waveform Optimization using the Ambiguity Function 

This chapter published as: [2] Fellows, M.; Baylis, C.; Cohen, L.; Marks, R.J.,"Radar 
Waveform Optimization to Minimize Spectral Spreading and Achieve Target Detection," 
Wireless and Microwave Circuits and Systems (WMCS), 2013 Texas Symposium on , vol., 
no., pp.1,4, 4-5 April 2013 

 

The second portion of the real-time radar optimization is the waveform 

optimization. The proposed method for waveform optimization uses the ambiguity 

function, which is described in chapter 2. The optimization uses a minimax approach to 

minimize the ambiguity function at specific coordinates in the ambiguity function, which 

is ideal for optimizing the radar waveform to detect multiple targets.  It also ensures that 

the optimized waveform meets specified spectral mask requirements.   Section 4.1 

contains the math which shows how the ambiguity function can be optimized for multiple 

targets, Section 4.2 shows the optimization process, and Section 4.3 shows computer 

simulation results for using this process. 

4.1 Math behind Waveform Optimization using the Ambiguity Function 

In order to show mathematically that minimizing the ambiguity function at target 

coordinates will improve the waveform’s ability to detect a second target at those 

coordinates, it is necessary to consider both the ambiguity function and the range-

Doppler correlation for multiple targets. The range-Doppler correlation is used as a start 

point for mathematically comparing the received signal from a radar to the transmitted 

signal. When a radar signal reflects off the target and returns, the return signal should be 
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a version of the original signal that has been shifted in time depending on the range of the 

target, and shifted in frequency depending on the radial speed of the target. We define the 

range-Doppler correlation for a single target as  

𝜓𝑅,𝐷(𝜏, 𝑢) = � 𝑅(𝑡)𝑇∗(𝑡 − 𝜏)𝑒−𝑗2𝜋𝑢(𝑡−𝜏)𝑑𝑡
∞

𝑡=−∞
                                            (4.1) 

In (4.1), R(t) is the signal received by a radar, and T(t) is the signal transmitted by 

the radar. Suppose that instead of the received signal from (4.1) corresponding to a single 

target, suppose that a signal is received from two targets. This gives a two-target range-

Doppler correlation: 

 𝜓𝑅,𝐷(𝜏,𝑢) = ∫ [𝑅1(𝑡)+𝑅2(𝑡)]𝑇∗(𝑡 − 𝜏)𝑒−𝑗2𝜋𝑢(𝑡−𝜏)𝑑𝑡∞
𝑡=−∞ . (4.2) 

Now apply an arbitrary transmitted signal with arbitrary received time delays (𝛥𝑡1,𝛥𝑡2), 

Doppler shifts (𝛥𝑓1,𝛥𝑓2), and attenuation factors (𝑎1,𝑎2)  so that 

 𝑇(𝑡) = 𝑠(𝑡) (4.3) 

 𝑅1(𝑡) = 𝑎1𝑇(𝑡 − 𝛥𝑡1)𝑒𝑗2𝜋𝛥𝑓1(𝑡−𝛥𝑡1) = 𝑎1𝑠(𝑡 − 𝛥𝑡1)𝑒𝑗2𝜋𝛥𝑓1(𝑡−𝛥𝑡1) (4.4) 

 𝑅2(𝑡) = 𝑎2𝑇(𝑡 − 𝛥𝑡2)𝑒𝑗2𝜋𝛥𝑓2(𝑡−𝛥𝑡2) = 𝑎2𝑠(𝑡 − 𝛥𝑡2)𝑒𝑗2𝜋𝛥𝑓2(𝑡−𝛥𝑡2). (4.5) 

 

This leads to the correlation  

 𝜓𝑅,𝐷(𝜏,𝑢) = ∫
[𝑎1𝑠(𝑡 − 𝛥𝑡1)𝑒𝑗2𝜋𝛥𝑓1(𝑡−𝛥𝑡1) +

𝑎2𝑠(𝑡 − 𝛥𝑡2)𝑒𝑗2𝜋𝛥𝑓2(𝑡−𝛥𝑡2)]𝑠∗(𝑡 − 𝜏)𝑒−𝑗2𝜋𝑢(𝑡−𝜏)𝑑𝑡
∞
𝑡=−∞ . (4.6) 

Separating the integrals gives 

 𝛹𝑅,𝐷(𝜏,𝑢) = ∫ 𝑎1𝑠(𝑡 − 𝛥𝑡1)𝑒𝑗2𝜋𝛥𝑓1(𝑡−𝛥𝑡1)𝑠∗(𝑡 − 𝜏)𝑒−𝑗2𝜋𝑢(𝑡−𝜏)𝑑𝑡
∞
𝑡=−∞  
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 +∫ 𝑠(𝑡 − 𝛥𝑡2)𝑒𝑗2𝜋𝛥𝑓2(𝑡−𝛥𝑡2)]𝑠∗(𝑡 − 𝜏)𝑒−𝑗2𝜋𝑢(𝑡−𝜏)𝑑𝑡∞
𝑡=−∞ . (4.7) 

Now expand powers and combine like terms to obtain 

 𝛹𝑅,𝐷(𝜏,𝑢) = 𝑎1𝑒𝑗2𝜋(𝑢𝜏−𝛥𝑓1𝛥𝑡1) ∫ 𝑠(𝑡 − 𝛥𝑡1)𝑠∗(𝑡 − 𝜏)𝑒𝑗2𝜋(𝛥𝑓1−𝑢)𝑡𝑑𝑡
∞
𝑡=−∞  

 +𝑎2𝑒𝑗2𝜋(𝑢𝜏−𝛥𝑓2𝛥𝑡2) ∫ 𝑠(𝑡 − 𝛥𝑡2)𝑠∗(𝑡 − 𝜏)𝑒𝑗2𝜋(𝛥𝑓2−𝑢)𝑡𝑑𝑡
∞
𝑡=−∞ . (4.8) 

This is the two target range-Doppler correlation. Now, for time and Doppler shift 

corresponding to the first target, 𝜏 = 𝛥𝑡1 and 𝑢 = 𝛥𝑓1 are applied to get 

 𝛹𝑅,𝐷(𝜏,𝑢) = 𝑎1𝑒𝑗2𝜋(𝛥𝑓1𝛥𝑡1−𝛥𝑓1𝛥𝑡1) ∫ 𝑠(𝑡 − 𝛥𝑡1)𝑠∗(𝑡 − 𝛥𝑡1)𝑒𝑗2𝜋(𝛥𝑓1−𝛥𝑓1)𝑡𝑑𝑡
∞
𝑡=−∞  

 +𝑎2𝑒𝑗2𝜋(𝛥𝑓1𝛥𝑡1−𝛥𝑓2𝛥𝑡2) ∫ 𝑠(𝑡 − 𝛥𝑡2)𝑠∗(𝑡 − 𝛥𝑡1)𝑒𝑗2𝜋(𝛥𝑓2−𝛥𝑓1)𝑡𝑑𝑡
∞
𝑡=−∞  (4.9) 

which simplifies to  

 𝛹𝑅,𝐷(𝜏,𝑢) = 𝑎1 ∫ |𝑠(𝑡 − 𝛥𝑡1)|2𝑑𝑡∞
𝑡=−∞  

+𝑎2𝑒𝑗2𝜋(𝛥𝑓1𝛥𝑡1−𝛥𝑓2𝛥𝑡2) ∫ 𝑠(𝑡 − 𝛥𝑡2)𝑠∗(𝑡 − 𝛥𝑡1)𝑒𝑗2𝜋(𝛥𝑓2−𝛥𝑓1)𝑡𝑑𝑡
∞
𝑡=−∞ . (4.10) 

This result is the energy of the first signal multiplied by its attenuation factor) plus the 

correlation between the first signal and the second signal. Similarly, apply 𝜏 = 𝛥𝑡2 and 

𝑢 = 𝛥𝑓2 to (4.8) to obtain 

𝛹𝑅,𝐷(𝜏,𝑢) = 𝑎1𝑒𝑗2𝜋(𝛥𝑓2𝛥𝑡2−𝛥𝑓1𝛥𝑡1) � 𝑠(𝑡 − 𝛥𝑡1)𝑠∗(𝑡 − 𝛥𝑡2)𝑒𝑗2𝜋(𝛥𝑓1−𝛥𝑓2)𝑡𝑑𝑡
∞

𝑡=−∞
 

        +𝑎2𝑒𝑗2𝜋(𝛥𝑓2𝛥𝑡2−𝛥𝑓2𝛥𝑡2) ∫ 𝑠(𝑡 − 𝛥𝑡2)𝑠∗(𝑡 − 𝛥𝑡2)𝑒𝑗2𝜋(𝛥𝑓2−𝛥𝑓2)𝑡𝑑𝑡
∞
𝑡=−∞  (4.11) 

which simplifies to 

 𝛹𝑅,𝐷(𝜏,𝑢) = 𝑎1𝑒𝑗2𝜋(𝛥𝑓2𝛥𝑡2−𝛥𝑓1𝛥𝑡1) ∫ 𝑠(𝑡 − 𝛥𝑡1)𝑠∗(𝑡 − 𝛥𝑡2)𝑒𝑗2𝜋(𝛥𝑓1−𝛥𝑓2)𝑡𝑑𝑡
∞
𝑡=−∞  
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 +𝑎2 ∫ |𝑠(𝑡 − 𝛥𝑡2)|2𝑑𝑡∞
𝑡=−∞  (4.12) 

As in (4.10), this result is the energy of the second signal (divided by its attenuation 

factor) plus the correlation between the second signal and the first signal. Now we 

compare to the ambiguity function, which will require centering the range-Doppler 

correlation for one reflected signal, then doing the same for the other reflected signal. In 

order to center the correlation for the first reflected signal, apply the following to (4.8): 

 𝑡1′ = 𝑡 −  𝛥𝑡1 (4.13) 

 𝑑𝑡1′ = 𝑑𝑡 (4.14) 

 𝜏1′ = 𝜏 − 𝛥𝑡1 (4.15) 

 𝑢1′ = 𝑢 − 𝛥𝑓1. (4.16) 

This gives 

χ(𝜏1′ ,𝑢1′ )

= 𝑎1𝑒
𝑗2𝜋�(𝑢1′+𝛥𝑓1)(𝜏1′+𝛥𝑡1)

−𝛥𝑓1𝛥𝑡1
�
� 𝑠 �(𝑡1′ + 𝛥𝑡1)

−𝛥𝑡1
� 𝑠∗ �

(𝑡1′ + 𝛥𝑡1) −
(𝜏1′ + 𝛥𝑡1) � 𝑒

𝑗2𝜋�𝛥𝑓1−(𝑢1′
+𝛥𝑓1)

�(𝑡1′+𝛥𝑡1)
𝑑𝑡1′

∞

𝑡=−∞
 

 

+𝑎2𝑒
𝑗2𝜋�(𝑢1′+𝛥𝑓1)(𝜏1′+𝛥𝑡1)

−𝛥𝑓2𝛥𝑡2
�
∫ 𝑠 �(𝑡1′ + 𝛥𝑡1)

−𝛥𝑡2
� 𝑠∗ �

(𝑡1′ + 𝛥𝑡1) −
(𝜏1′ + 𝛥𝑡1) � 𝑒

𝑗2𝜋�
𝛥𝑓2

−(𝑢1′+𝛥𝑓1)
�(𝑡1′+𝛥𝑡1)

𝑑𝑡1′
∞
𝑡=−∞

  (4.17) 

Expand powers and combine like terms to obtain 
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χ(𝜏1′ ,𝑢1′ ) =

𝑎1𝑒𝑗2𝜋�𝑢1
′ 𝜏1′+𝜏1′ 𝛥𝑓1+𝑢1′𝛥𝑡1� ∫ 𝑠(𝑡1′)𝑠∗(𝑡1′ − 𝜏1′ )𝑒−𝑗2𝜋(𝑢1′ 𝑡1′+𝑢1′ 𝛥𝑡1)𝑑𝑡1′

∞
𝑡=−∞ +

𝑎2𝑒𝑗2𝜋�𝑢1
′ 𝜏1′+𝜏1′ 𝛥𝑓1−𝛥𝑓2𝛥𝑡2+𝑢1′ 𝛥𝑡1+𝛥𝑓1𝛥𝑡1� 

 ∫ 𝑠(𝑡1′ + 𝛥𝑡1 − 𝛥𝑡2)𝑠∗(𝑡1′ − 𝜏1′ )𝑒𝑗2𝜋�𝛥𝑓2𝑡1
′+𝛥𝑓2𝛥𝑡1−𝑢1′ 𝑡1′−𝑢1′𝛥𝑡1−𝛥𝑓1𝑡1′−𝛥𝑓1𝛥𝑡1�𝑑𝑡1′

∞
𝑡=−∞  

(4.18) 

and simplify to 

χ(𝜏1′ ,𝑢1′ ) = 𝑎1𝑒𝑗2𝜋𝜏1
′ �𝑢1′+𝛥𝑓1� � 𝑠(𝑡1′)𝑠∗(𝑡1′ − 𝜏1′ )𝑒−𝑗2𝜋𝑢1

′ 𝑡1′ 𝑑𝑡1′
∞

𝑡=−∞
 

 +𝑎2𝑒
𝑗2𝜋� 𝑢1′ 𝜏1′+𝜏1′ 𝛥𝑓1

+𝛥𝑓2𝛥𝑡1−𝛥𝑓2𝛥𝑡2
�
∫ 𝑠 �𝑡1

′ + 𝛥𝑡1
−𝛥𝑡2

� 𝑠∗(𝑡1′ − 𝜏1′ )𝑒
𝑗2𝜋�

𝛥𝑓2𝑡1′

−𝑢1′ 𝑡1′−𝛥𝑓1𝑡1′
�
𝑑𝑡1′

∞
𝑡=−∞ . (4.19) 

Note that this output from the correlator is equal to the single target ambiguity function 

(2.2) for the first reflected signal plus some extra terms caused by the second target. Now 

take (4.8) and center it for the signal reflected from the second target by applying 

 𝑡2′ = 𝑡 −  𝛥𝑡2 (4.20) 

 𝑑𝑡2′ = 𝑑𝑡 (4.21) 

 𝜏2′ = 𝜏 − 𝛥𝑡2 (4.22) 

 𝑢2′ = 𝑢 − 𝛥𝑓2. (4.23) 

This leads to 

χ(𝜏2′ ,𝑢2′ ) =

𝑎1𝑒
𝑗2𝜋�(𝑢2′+𝛥𝑓2)(𝜏2′+𝛥𝑡2)

−𝛥𝑓1𝛥𝑡1
�
∫ 𝑠 �(𝑡2′ + 𝛥𝑡2)

−𝛥𝑡1
� 𝑠∗ �

(𝑡2′ + 𝛥𝑡2)
−

(𝜏2′ + 𝛥𝑡2)
�𝑒

𝑗2𝜋�
𝛥𝑓1

−(𝑢2′+𝛥𝑓2)�(𝑡2′+𝛥𝑡2)
𝑑𝑡2′

∞
𝑡=−∞   
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+𝑎2𝑒
𝑗2𝜋�(𝑢2′+𝛥𝑓2)(𝜏2′+𝛥𝑡2)

−𝛥𝑓2𝛥𝑡2
�
∫ 𝑠 �(𝑡2′ + 𝛥𝑡2)

−𝛥𝑡2
� 𝑠∗ �

(𝑡2′ + 𝛥𝑡2) −
(𝜏2′ + 𝛥𝑡2) � 𝑒

𝑗2𝜋�
𝛥𝑓2

−(𝑢2′+𝛥𝑓2)
�(𝑡2′+𝛥𝑡2)

𝑑𝑡2′
∞
𝑡=−∞

  (4.24) 

Expand powers and combine like terms to obtain 

χ(𝜏2′ ,𝑢2′ )

= 𝑎1𝑒𝑗2𝜋�𝑢2
′ 𝜏2′+𝜏2′ 𝛥𝑓2+𝑢2′𝛥𝑡2+𝛥𝑓2𝛥𝑡2−𝛥𝑓1𝛥𝑡1�

· � 𝑠 �𝑡2
′ + 𝛥𝑡2
−𝛥𝑡1

� 𝑠∗(𝑡2′ − 𝜏2′ )𝑒𝑗2𝜋(𝛥𝑓1𝑡2′+𝛥𝑓1𝛥𝑡2−𝑢2′ 𝑡2′−𝑢2′ 𝛥𝑡2−𝛥𝑓2𝑡2′−𝛥𝑓2𝛥𝑡2)𝑑𝑡2′
∞

𝑡=−∞
 

 +𝑎2𝑒𝑗2𝜋�𝑢2
′ 𝜏2′+𝜏2′ 𝛥𝑓2+𝑢2′ 𝛥𝑡2� ∫ 𝑠(𝑡2′ )𝑠∗(𝑡2′ − 𝜏2′ )𝑒−𝑗2𝜋�𝑢2′ 𝑡2′+𝑢2′ 𝛥𝑡2�𝑑𝑡2′

∞
𝑡=−∞   (4.25) 

and simplify to 

χ(𝜏2′ ,𝑢2′ ) = 𝑎1𝑒
𝑗2𝜋� 𝑢2′ 𝜏2′+𝜏2′ 𝛥𝑓2

+𝛥𝑓1𝛥𝑡2−𝛥𝑓1𝛥𝑡1
�
� 𝑠 �𝑡2

′ + 𝛥𝑡2
−𝛥𝑡1

� 𝑠∗(𝑡2′ − 𝜏2′ )𝑒
𝑗2𝜋�

𝛥𝑓1𝑡2′−𝑢2′ 𝑡2′

−𝛥𝑓2𝑡2′
�
𝑑𝑡2′

∞

𝑡=−∞
 

 +𝑎2𝑒𝑗2𝜋𝜏2
′ (𝑢2′+𝛥𝑓2) ∫ 𝑠(𝑡2′ )𝑠∗(𝑡2′ − 𝜏2′ )𝑒−𝑗2𝜋𝑢2′ 𝑡2′ 𝑑𝑡2′

∞
𝑡=−∞ .  (4.26) 

This output from the correlator is equal to the single target ambiguity function for 

the second reflected signal plus some extra terms caused by the first reflected signal. The 

extra terms in (4.26) are very similar to the extra terms in (4.19). In fact, simply swapping 

out all the subscripts (ie. 𝑡1′  becomes 𝑡2′ ) will change (4.19) to (4.26). This shows the 

symmetry of the function and should mean that minimizing a location on the first 

reflected signal’s ambiguity function that corresponds to the range and Doppler shift of 

the second reflected signal should also succeed in minimizing a location on the second 

reflected signal’s ambiguity function that corresponds to the range and Doppler shift of 

the first target. 
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4.2 Process for Waveform Optimization using the Ambiguity Function 

As shown in the previous section, the waveform can be optimized for 

distinguishing between targets by minimizing the ambiguity function at the coordinates 

of secondary targets.  This chapter details a method for this optimization in which the 

user specifies an arbitrary number of minimization points, and the algorithm chooses the 

ideal waveform for those minimization points from a predefined library of waveforms. 

First, the algorithm compares the simulated spectrum for each waveform to a spectral 

mask and eliminates any waveforms that do not pass the mask. The algorithm then uses a 

minimax method to find the best one for the specified minimization points.  Specifically, 

the minimax method finds the maximum value of the ambiguity function at the 

designated minimization points (the minimax value) for each passing waveform, and then 

ranks the waveforms from the smallest minimax value (best) to the largest minimax value 

(worst).  For results using only computer simulations, the best waveform from these 

rankings is automatically chosen as the optimum. However, an extra step can be added to 

insure that waveform will also pass the spectral mask after being amplifier. For that step, 

the waveforms are implemented from best to worst on the test bench mentioned in 

chapter 3, and the first one to pass the spectral mask in the test bench measurement is 

chosen as the optimum waveform. 

4.3 Optimization Results 

 This search approach was tested for optimization over a library of linear 

frequency-modulated (FM) chirp waveforms. For the tests shown below, the library of 

waveforms was made up of linear frequency-modulated chirps with constant pulse 

duration and bandwidths varying from a 5 MHz up-chirp to a 5 MHz down chirp in steps 
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of 250 kHz. As mentioned in Chapter 2, the chirp waveform gives an ambiguity function 

with a triangle shape that can be rotated, according to the ratio of the pulse width to the 

bandwidth of the chirp [32]. Figures 4 and 5 show two results for using this algorithm in 

computer simulation. In each figure, (a) is the ambiguity function for the chosen chirp 

(with the minimization points shown by the yellow arrows), (b) shows the frequency vs 

time characteristic of the chosen chirp, and (c) shows the spectrum vs the spectral mask 

for the chosen chirp. 

As each result shows, the chirp’s ambiguity function is rotated such that the 

magnitude of the ambiguity function at the minimization points remains low. The result 

in figure 4.1 is a 1.75 MHz down chirp, which just barely passes the spectral mask. The 

minimization points in Figure 4.1(a) give a result that would be good for a range-focused 

radar. The result in figure 4.2 is a 500 kHz up chirp. This chirp passes the spectral mask 

quite easily, which makes sense from the narrower bandwidth. The minimization points 

in figure 4.2(a) result in a more Doppler-focused radar waveform. 
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(b) 

 

(c) 

Fig. 4.1.  (a) Ambiguity function magnitude with arrows representing range-Doppler 
combinations selected for minimization, (b) frequency vs time plot, and (c) baseband 
spectrum and spectral mask for the best chirp 
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(a) 

 

(b) 

 

(c) 

Fig. 4.2.  (a) Ambiguity function magnitude with arrows representing range-Doppler 
combinations selected for minimization, (b) frequency vs time plot, and (c) baseband 
spectrum and spectral mask for the best chirp 
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Figure 4.3 shows the result for implementing the test bench portion of the 

algorithm in addition to the computer simulation portion. As mentioned previously, the 

only difference between the simulation-only version of the optimization and this version 

is that this version contains a measurement of the spectrum at the output of a radar 

amplifier, in order to confirm that the spectrum still passes the mask. For Figure 4.3, the 

minimization points are indicated by the red arrows. Figure 4 contains the same parts as 

the previous two figures. Figure 4.4 shows the result when the waveform is passed 

through an amplifier and measured with a spectrum analyzer. The chirp implemented on 

the test bench has a center frequency of 3.3 GHz, which can be seen in the spectrum 

analyzer measurement of figure 4.4. 

Again, this result shows a low magnitude for the ambiguity function at the 

minimization points. Like in figure 4.1, this the minimization locations for this result 

gives a chirp with 1.75 MHz bandwidth. The results shown in figures 4.1, 4.2, and 4.3 

show that the waveform optimization using the ambiguity function effectively chooses a 

radar waveform for an adaptive radar system. 
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(a) 

 

(b) 

 

 

(c) 

Fig. 4.3.  (a) Ambiguity function magnitude, (b) frequency vs time plot, and (c) baseband 
spectrum and spectral mask for the best chirp 
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Fig. 4.4.  Spectrum analyzer measured spectrum and spectral mask 

 

4.4 Summary 

 This chapter has discussed a waveform optimization using the ambiguity function. 

This optimization will choose the best spectrally compliant waveform for detection of 

targets at various minimization locations using the ambiguity function. Several results 

have been shown proving the success of the minimax approach used to choose the 

spectrally compliant waveform with the best ambiguity function out of the provided 

library. This technique has been shown to work in computer simulation, with the ability 

to check if the chosen waveform will still pass a spectral mask after being amplifier and 

measured on a spectrum analyzer. 

 

 

  

Spectral 
Mask 



39 
  

 

 

CHAPTER FIVE 

Conclusion 

This thesis has presented an algorithm for optimizing the load impedance for a 

radar power amplifier and an algorithm for choosing a good chirp waveform for target 

detection and spectral compliance. The key contribution of both algorithms is that they 

are sensitive to concerns of spectral compliance. The circuit optimization has been shown 

to improve significantly on the number of measurements required to perform such an 

optimization. It should be noted, however, that the circuit optimization does still have two 

potential weaknesses. First, the circuit optimization will not handle encounters with local 

minima in ACPR or local maxima in PAE. Such measurements would result in a false 

Pareto front, which could lead to a less ideal result. Second, the fact that the presented 

version of the circuit optimization uses ACPR for its limit means that it does not account 

for a spectral mask that is not flat in the out-of-band regions. Real spectral masks are 

often sloped downward in the out-of-band regions.  This allows more spectral spreading 

close to the operating channel, but requires that power levels be lower at frequencies 

further from the operating channel.  The waveform optimization does not have any 

obvious weaknesses such as those, but it also does not employ any intelligent search 

techniques to make the problem easier.  It searches through the entire library of 

waveforms it is given and finds the result using a brute force approach.  

In ongoing and future work, it is expected that new and better versions of these 

algorithms will be presented. In the area of circuit optimization, a new measure of 

spectral compliance is being developed that allows circuit optimization based directly on 
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spectral mask compliance instead of ACPR. In addition, other search techniques may be 

tested in order to assure that the ideal type of search is being implemented. In the area of 

waveform optimization, the idea of using machine intelligent search techniques is also 

being considered.  

The big picture in the future of these optimizations, however, is a joint 

optimization that will combine elements from both the waveform and the circuit 

optimizations to create new optimizations. The new optimizations will seek to find the 

best waveform and circuit simultaneously. This is a necessary and useful step for 

cognitive radar because the variables will be interdependent on each other. The ambiguity 

function will be affected by the load impedance at the output of the power amplifier, and 

the best circuit to choose will be dependent on the bandwidth of the signal used. Future 

optimizations to jointly optimize waveform and circuit would likely operate in a three-

dimensional search space, varying waveform/bandwidth and load reflection coefficient 

simultaneously. The optimizations presented in this thesis are a good step toward a 

spectrally sensitive cognitive radar system.  Combining the two optimizations into one is 

expected to make the optimization process even faster and more effective. 
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