
ABSTRACT

Integrated-Likelihood-Ratio Confidence Intervals Obtained from Data Via a
Double-Sampling Scenario

Briceön Curtis Wiley, Ph.D.

Chairperson: James D. Stamey, Ph.D.

Hypothesis testing has been a primary focus of statistical inference. Recently,

confidence intervals (CIs) have been suggested as a superior inference form because

of the additional information they provide to a scientist to aid decision making. For

public health data, business data, and other types of data, misclassification is often

present and can cause estimators to be biased, thus leading to incorrect conclusions.

Tenenbein (1970) has provided a double-sampling scheme to correct for misclassifica-

tion through the use of an infallible data set that is combined with a larger fallible

data set subject to misclassification. Many authors have utilized the double-sampling

procedure to correct for misclassification in their data. When constructing confi-

dence intervals, for instance, Rahardja and Yang (2015) derived Wald intervals for

one-sample binomial problems, and Lyles (2002) proposed a Wald interval for two-

sample binomial problems. Also, Riggs et al. (2009) provided confidence intervals for

one-sample Poisson rate parameters. In addition, Li (2009) built similar intervals for

the difference of two Poisson rate parameters.

We derive integrated-likelihood-ratio (ILR) confidence intervals, first proposed

by Severini (2010), for each of these situations to demonstrate their effectiveness in

estimating parameters from data subject to misclassification. In chapter one, we



derive an ILR CI for a one-sample binomial data set and demonstrate that it has

at least nominal coverage while providing narrow average interval widths when the

binomial parameter is small. In chapter two, we apply a transformation related to one

from Fisher and Robbins (2019) to make the ILR CI less conservative when estimating

a one-sample binomial parameter, thus providing closer-to-nominal coverage while

decreasing the average interval width. In chapter three, we extend the ILR CI to

estimate the log odds-ratio of two binomial parameters when the binary data are

subject to misclassification. Finally, in chapter four we demonstrate the ILR CI’s

efficacy versus the Wald and score CIs for estimating the ratio of two Poisson rate

parameters using data sampled via a double-sampling scenario.
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CHAPTER ONE

An Integrated-Likelihood-Ratio Confidence Interval for a Proportion Based on
Misclassified Data from a Double-Sampling Scenario

This chapter is pending publication:

Wiley, B., Elrod, C., Young, P. D., and Young, D. M. (2021). An
integrated-likelihood-ratio confidence interval for a proportion based on

under-reported and infallible data. Statistica Neerlandica

1.1 Introduction

Estimating a binomial probability of success is one of the most common ap-

plications of statistical analysis. A frequently overlooked and violated assumption is

that all outcomes are correctly classified. However, such an infallible classification

method may not exist in practice. Several authors have addressed misclassification

problems associated with inference for a single proportion parameter. For instance,

Bross (1954) demonstrated that traditional estimation of a proportion parameter in

the presence of misclassification produces a biased estimator. Tenenbein (1970) ac-

counted for misclassification with a double-sampling scheme. Lie et al. (1994) and

Moors et al. (2000) considered misclassification on a proportion parameter when un-

dercounts are obtained. Boese et al. (2006) developed several interval estimators for

the case where double sampling was used when false-positive counts occurred in the

fallible sample. In addition, Riggs (2015) derived Wald and Score interval estimates

for a proportion parameter using double sampling with inverse sampling of fallible

data.

Here, suppose we have a data set that originates from two different classifiers:

the larger sample is produced by a fallible classifier, while the smaller validation data

set contains results from both the infallible and fallible classifiers. In this double-

sampling method, similar to Raats and Moors (2003), the main study and validation

1



study are produced independently. Table 1.1 summarizes the structure of this double-

sampling scheme. We denote m as the total number of observations for the main,

Table 1.1. One-sample misclassified binary data obtained using double sampling.

Fallible Classifier
Study Infallible Classifier 0 1 Total
Sub 0 n00 n01 n0·

1 n10 n11 n1·
Total n·0 n·1 n

Main Not available y x m

fallible data set, while n is the total number of observations for the infallible data

set. Thus, the total sample size is N = m + n. Also, x and y are the positive and

negative observation counts, respectively, from the main data set. The cell counts nij

are the total number of cases where the infallible classifier (i) and fallible classifier (j)

classify observations. The corresponding probabilities on each of these cell counts is

used to construct the likelihood function. Similar to Rahardja and Yang (2015), we

denote the infallible and fallible classifier outcomes as T and F , respectively, with the

understanding that we have observed data for both classifiers in our validation study,

but only results for the fallible classifier in the main data set. We let F = 1 and T = 1

denote positive outcomes for the fallible and infallible classifiers, respectively, while

F = 0 and T = 0 denote negative outcomes. Furthermore, we have p := P (T = 1)

and π := P (F = 1), as well as the false-positive and false-negative probabilities

φ := P (F = 1|T = 0) and θ := P (F = 0|T = 1), respectively. We use the law of total

probability to find that π = p(1− θ) + (1− p)φ.

Table 1.2 displays the probabilities for each of the cells for both the fallible and

infallible counts. Rahardja and Yang (2015) derived an adjusted or modified Wald

(mWald) CI for p that yields superior coverage properties and often better average

interval widths than the usual Wald CI. Here, we derive a new integrated-likelihood-

2



ratio (ILR) CI for p. We demonstrate that our derived ILR CI provides superior

coverage properties when contrasted with the coverage properties of the mWald CI.

Furthermore, although our ILR CI is slightly conservative in terms of coverage, it

yields narrower average interval widths when p < 0.10 or p > 0.90. Thus, the ILR

CI is a notable improvement over the mWald CI proposed by Rahardja and Yang

(2015). Using a Monte Carlo simulation and real data, we demonstrate that the ILR

CI should be implemented instead of the mWald CI, especially when n > 200 for all

values of p and when n < 200 and p 6∈ [0.40, 0.60] .

Table 1.2. Cell probabilities for the double-sample multinomial distribution.

Fallible Classifier
Study Infallible Classifier 0 1 Total
Sub 0 (1− p)(1− φ) (1− p)φ (1− p)

1 pθ p(1− θ) p
Main Not available 1− π π 1

The remainder of the paper is organized as follows. In Section 1.2, we describe

the ILR, nWald, and mWald CIs that we contrast here. In Section 1.3, we describe

the design and results of four Monte Carlo simulations examining average interval

widths and coverage properties. In Section 1.4, we contrast the three considered CIs

on real data. Finally, we briefly discuss our results in Section 1.5.

1.2 CI Methods for Estimating p

Using the information from the double-sampling scheme summarized in Ta-

bles 1.1 and 1.2, we obtain the likelihood function from which all CIs considered here

are derived, namely,

L(p|θ, φ) = [(1− p)(1− φ)]n00 [(1− p)φ]n01 [pθ]n10 [p(1− θ)]n11πx(1− π)y. (1.1)

3



From (1.1), we construct our ILR CI and present two competing CIs derived by Ra-

hardja and Yang (2015). The goal for each CI is to estimate the binomial proportion

parameter p using both the fallible and infallible data.

1.2.1 An Integrated-Likelihood-Ratio CI for p

Motivated by Berger et al. (1999) and Severini (2010), we construct an ILR

CI for a single binomial parameter p using the double-sampling method described in

Section 1.1. The integrated likelihood is

LI(p) =

∫ 1

0

∫ 1

0

L(p, θ, φ)g(θ, φ|p)dθdφ, (1.2)

where θ and φ are the false negative and false positive rates, respectively, and g(θ, φ|p)

is a weighting function for θ and φ. In Section 1.6, we have derived a closed-form

expression for (1.2), which is

LI(p) =
x∑
i=0

y∑
j=0

(
x

i

)(
y

j

)
(1− p)n00+n01−i−j+x+ypn10+n11+i+j

×B(n00 + y − j + 1, n01 + x− i+ 1)B(n10 + j + 1, n11 + i+ 1),

(1.3)

where B(a, b) denotes a Beta function with parameters a and b. Without vectoriza-

tion, (1.3) can prove to be computationally complex. Therefore, the use of numerical

integration with (1.2) can provide results more quickly. However, with vectorization,

both numerical integration of (1.2) and direct usage of (1.3) prove to be comparable

in speed in R version 3.6.1. One can find the ILR CI by determining all values of p

satisfying {
p : −2 log

(
LI(p)

LI(p̂IL)

)
< χ2

(1,1−α)

}
, (1.4)

where p̂IL is the MLE of p determined numerically from the likelihood function (1.2),

and χ2
(1, 1−α) denotes the (1− α)th quantile of a central chi-square distribution with

one degree of freedom.
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1.2.2 A Wald-type CI for p

Rahardja and Yang (2015) have introduced what they refer to as a “näıve”

100(1− α)% Wald CI for p, or more succinctly, an nWald interval for p. This CI is

p̂± zα/2σ̂, (1.5)

where p̂ = π̂λ̂1 + (1 − π̂)λ̂2 is the MLE of the likelihood for p, zα/2 is the (α/2)th

quantile of the standard normal distribution, and

σ̂ =

√
π̂λ̂1(1− λ̂1)

n
+

(1− π̂)λ̂2(1− λ̂2)
n

+
(λ̂1 − λ̂2)2π̂(1− π̂)

N
.

The estimators λ̂1, λ̂2, and π̂ are each calculated under a re-parameterization of

the likelihood function (1.1) found in Rahardja and Yang (2015). These MLE s are

λ̂1 = n11/n·1, λ̂2 = n10/n·0, and π̂ = (x+ n·1)/N . Rahardja and Yang (2015) refer to

this CI for p as “näıve” because the CI (1.5) can result in bounds that are outside of

the interval [0, 1], thus resulting in truncated CIs when p is relatively small or large.

1.2.3 A Modified Wald CI for p

In an effort to improve upon their nWald CI for p, Rahardja and Yang (2015)

have suggested the use of the logit transformation so that

δ̂ = logit(p̂) = log

(
p̂

1− p̂

)
. (1.6)

This transformation, when applied to the MLE of p, yields an improved approxima-

tion of the transformed sampling distribution of p̂ to a normal distribution. Rahardja

and Yang (2015) have shown via the delta method that τ̂ 2 := V̂ar(δ̂) ≈ σ̂2/[p̂(1− p̂)]2.

Therefore, a 100(1− α)% CI for δ is

δ̂ ± zα/2τ̂ . (1.7)

Rahardja and Yang (2015) exponentiated the endpoints of the CI in (1.7) to obtain

what they labeled as a modified Wald, or mWald, CI

[exp(δ̂ − zα/2τ̂)/(exp(δ̂ − zα/2τ̂) + 1), exp(δ̂ + zα/2τ̂)/(exp(δ̂ + zα/2τ̂) + 1)]. (1.8)
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1.3 Monte Carlo Simulations

To determine the CI coverage properties and average interval widths for each

of the three CIs described above, we performed four simulation studies. The goal of

the first simulation study was to determine coverage properties and average widths

of the three competing CIs as p varies. The purpose of the second simulation study

was to demonstrate each CI’s coverage and interval-width performance as the overall

sample size, N , increased. Our third simulation study provided a direct coverage

contrast (as derived in Graham et al. (2003)) between our ILR CI and Rahardja and

Yang’s mWald CI. The fourth simulation study contrasted the coverage properties

of the ILR and mWald CIs over a range of both sample sizes and values of p. The

simulations were performed via the computer language R 3.6.0.

1.3.1 Simulation 1: Design and Results

We performed the first simulation study to display the coverage properties and

average widths of each competing CI as the parameter of interest, p, varied. We

chose our initial value of p to be 0.05 and increased it by 0.05 to 0.95. The overall

sample size was fixed at N = 400, with n = 40 and m = 360, and the two nuisance

parameters were set so that θ = φ = 0.10. We simulated the three CIs for 10,000

multinomial data sets and displayed our results in Figure 1.1.

Figure 1.1a shows that the ILR CI yielded superior coverage properties when

contrasted to both the nWald and mWald CIs. In particular, we see that the mWald

and nWald CIs yielded considerable under-coverage for p < 0.20 and p > 0.80. Fur-

thermore, in Figure 1.1b, one can determine that the average width of the ILR CI

was comparable to the average widths of the nWald and mWald CIs for values of p,

where 0.15 < p < 0.85. Moreover, the ILR CI had a smaller average width than the

mWald CI for p < 0.10 and p > 0.90.
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(a) Coverage curves as p increases from 0.05 to 0.95 when N = 400,
m = 360, and n = (1/9)m.
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(b) Average-width curves as p increases from 0.05 to 0.95 when N =
400, m = 360, and n = (1/9)m.

Figure 1.1. Coverage and interval-width curves for 0.05 ≤ p ≤ 0.95 and θ = φ = 0.10.

1.3.2 Simulation 2: Design and Results

Our second simulation study increased N from 100 to 500 by 50 with p, θ,

and φ fixed at 0.10. For each value of N , n = 0.10 × N and m = 0.90 × N so n

increased from 10 to 50 and m increased from 90 to 450. We simulated the three CIs

for 10,000 multinomial data sets. Figure 1.2 shows that as N increased, the ILR CI

displayed slightly above nominal coverage. However, the rival mWald CI considerably

under-covered the parameter value p = 0.10 when N < 400 and did not quite achieve

nominal 0.95 coverage for N = 500. Also, in Figure 1.2b, note that average widths

for the ILR and Wald CIs were essentially identical for N > 150.
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(a) Coverage curves as N increases from 100 to 500 with m = 0.90N
and n = (1/9)m with p = θ = φ = 0.10.
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(b) Average-width curves as N increases from 100 to 500 with m =
0.90N and n = (1/9)m with p = θ = φ = 0.10.

Figure 1.2. Coverage and average interval-width contrasts for 100 ≤ N ≤ 500 and
p = θ = φ = 0.10.

1.3.3 Simulation 3: Design and Results

In the third simulation study, we contrasted the coverage properties of the ILR

and mWald CIs for multiple simulations at three sample sizes: N = 100 (n = 10, m =

90), 250 (n = 25, 225), and 500 (n = 50, m = 450). More specifically, we performed

Monte Carlo simulations of 1000 repetitions consisting of 5000 intervals at each value

of N . In Figure 1.3, we see that the mWald CI consistently under-covers compared

to the new ILR CI. Moreover, we see that for N < 250, the coverage of the mWald CI

is well below the nominal value of 0.95. However, the ILR CI’s coverage performance

is slightly conservative for N = 250 and more conservative for N = 100.
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(a) Coverage comparison of ILR CI and mWald CI when N = 100,
m = 90, and n = (1/9)m.
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(b) Coverage comparison of ILR CI and mWald CI when N = 250,
m = 225, and n = (1/9)m.
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(c) Coverage comparison of ILR CI and mWald CI when N = 500,
m = 450, and n = (1/9)m.

Figure 1.3. Point cloud plots for contrast of coverage probabilities for the ILR and
mWald CIs, where N = 100, 250, 500 and p = θ = φ = 0.10.
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1.3.4 Simulation 4: Design and Results

Additionally, in Figure 1.4, we display a three-dimensional comparison of the

coverage properties of the ILR and mWald CIs plotted over N and p. For every

combination of N and p from N = 100 to N = 500 and from p = 0.05 to p = 0.95,

respectively, the ILR CIs displayed above nominal coverage while the mWald CIs

displayed below nominal coverage. Moreover, we see in Figure 1.4 that the mWald CI

drastically under-covered when p < 0.2 and p > 0.8 for all sample sizes shown here,

while the ILR CI is somewhat conservative for N < 300, especially for p ∈ [0.20, 0.80].

Figure 1.4. Three-dimensional plot of the ILR coverage probability (light plot) versus
the mWald coverage probability (dark plot) as p varies from 0.05 to 0.95 and N varies
from 100 to 500, m = 0.90N , n = (1/9)m, and θ = φ = 0.10. We include a reference
nominal coverage plane of 0.95 (gray plane).
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1.4 A Real-Data Example

Here, we consider the social security payment data in Raats and Moors (2003)

for estimating p using double sampling with under-counted and over-counted data.

Rahardja and Yang (2015) have used this data to demonstrate the efficacy of the

mWald CI on real data. We computed the MLE p̂ in addition to the three competing

CIs: the nWald CI, mWald CI, and ILR CI. We observed that six companies were

responsible for social security payments in the Netherlands. Because of the nature

of this business model mistakes were possible, therefore they wanted to estimate the

probability of mispayment. To estimate this parameter, an internal auditor checked

a random sample of 500 social security payments, among which he found seventeen

mistakes. However, because the internal auditor was also fallible, a supervising insti-

tution was hired to double check 53 of the 500 observed payments. As we can see in

Table 1.3, the resulting data from the double-sampling scheme are n00 = 49, n01 = 1,

n10 = 1, n11 = 2, x = 14, and y = 433. We then applied each of the three competing

CI methods discussed in Section 1.3 and summarized the results, which can be found

in Table 1.4.

In Table 1.4, we see that each of the CIs returned upper bounds that were close

to or less than 0.10, thus suggesting that the value of p is relatively small. Based on

the coverage and average interval widths examined in the above simulation studies,

we have substantial evidence that the ILR CI will yield coverage slightly greater than

the nominal level of 0.95. Furthermore, from the “Width” column of Table 1.4, we

see that the ILR CI also yielded the smallest interval width. Hence, our proposed

ILR CI yielded superior coverage and a shorter interval width than the mWald and

nWald CIs derived by Rahardja and Yang (2015).
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Table 1.3. Social security payment data.

Internal Auditor
Study Infallible Auditor 0 1 Total
Sub 0 49 1 50

1 1 2 3
Total 50 3 53

Main Not available 433 14 447

Table 1.4. CIs and Interval Widths.

Interval Lower End Point Upper End Point Width
ILR CI 0.0114 0.0911 0.0797
nWald CI 0.0000 0.0870 0.0870
mWald CI 0.0141 0.1183 0.1042

1.5 Discussion

We have derived an alternative CI for the parameter p of one-sample, misclas-

sified, binary data using a double-sampling scheme involving independent data sets

produced by fallible and infallible classifiers. From our simulation results and the re-

sults from a real data set, we suggest that our ILR CI be used instead of the mWald

or nWald CIs, especially when p < 0.10 or p > 0.90 for all sample sizes. Not only

does the ILR CI provide greater than nominal coverage over the support of p, but it

does so more efficiently for p 6∈ [0.10, 0.90] by providing narrower CIs for p than both

the nWald and mWald CIs.
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1.6 Appendix: A Derivation of a Closed-Form Integrated Likelihood Function for p

Here, we derive a closed-form integrated likelihood function for a binomial pa-

rameter using double sampling. We take the weighting function to be g(θ, φ) =

h1(θ)h2(φ), where hi(∗) is a Beta(1, 1) density function with i = 1, 2.

LI(p) =

∫ 1

0

∫ 1

0

L(p|θ, φ)g(θ, φ|p)dθdφ

=

∫ 1

0

∫ 1

0

[(1− p)(1− φ)]n00 [(1− p)φ]n01 [pθ]n10 [p(1− θ)]n11πx(1− π)y

× h1(θ)h2(φ)dθdφ

=

∫ 1

0

∫ 1

0

[(1− p)(1− φ)]n00 [(1− p)φ]n01 [pθ]n10 [p(1− θ)]n11 [p(1− θ) + (1− p)φ]x

× [1− p(1− θ)− (1− p)φ]y(1)(1)dθdφ

=

∫ 1

0

∫ 1

0

[(1− p)(1− φ)]n00 [(1− p)φ]n01 [pθ]n10 [p(1− θ)]n11 [p(1− θ) + (1− p)φ]x

× [1− p+ pθ − (1− p)φ]ydθdφ

=

∫ 1

0

∫ 1

0

[(1− p)(1− φ)]n00 [(1− p)φ]n01 [pθ]n10 [p(1− θ)]n11 [p(1− θ) + (1− p)φ]x

× [(1− p) + pθ − (1− p)φ]ydθdφ

=

∫ 1

0

∫ 1

0

[(1− p)(1− φ)]n00 [(1− p)φ]n01 [pθ]n10 [p(1− θ)]n11 [p(1− θ) + (1− p)φ]x

× [pθ + (1− p)− (1− p)φ]ydθdφ

=

∫ 1

0

∫ 1

0

[(1− p)(1− φ)]n00 [(1− p)φ]n01 [pθ]n10 [p(1− θ)]n11 [p(1− θ) + (1− p)φ]x

× [pθ + (1− p)(1− φ)]ydθdφ

=

∫ 1

0

∫ 1

0

[(1− p)(1− φ)]n00 [(1− p)φ]n01 [pθ]n10 [p(1− θ)]n11

×

[
x∑
i=0

(
x

i

)
[p(1− θ)]i[(1− p)φ]x−i

][
y∑
j=0

(
y

j

)
[pθ]j[(1− p)(1− φ)]y−j

]
dθdφ

=

∫ 1

0

∫ 1

0

x∑
i=0

y∑
j=0

(
x

i

)(
y

j

)
(1− p)n00+n01−i−j+x+ypn10+n11+i+j

× (1− φ)n00+y−jφn01+x−iθn10+j(1− θ)n11+idθdφ
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=
x∑
i=0

y∑
j=0

(
x

i

)(
y

j

)
(1− p)n00+n01−i−j+x+ypn10+n11+i+j

× B(n00 + y − j + 1, n01 + x− i+ 1)

B(n00 + y − j + 1, n01 + x− i+ 1)

∫ 1

0

(1− φ)n00+y−jφn01+x−idφ

× B(n10 + j + 1, n11 + i+ 1)

B(n10 + j + 1, n11 + i+ 1)

∫ 1

0

θn10+j(1− θ)n11+idθ

=
x∑
i=0

y∑
j=0

(
x

i

)(
y

j

)
(1− p)n00+n01−i−j+x+ypn10+n11+i+j

×B(n00 + y − j + 1, n01 + x− i+ 1)B(n10 + j + 1, n11 + i+ 1)

×
∫ 1

0

(1− φ)n00+y−jφn01+x−i

B(n00 + y − j + 1, n01 + x− i+ 1)
dφ

×
∫ 1

0

θn10+j(1− θ)n11+i

B(n10 + j + 1, n11 + i+ 1)
dθ

=
x∑
i=0

y∑
j=0

(
x

i

)(
y

j

)
(1− p)n00+n01−i−j+x+ypn10+n11+i+j

×B(n00 + y − j + 1, n01 + x− i+ 1)B(n10 + j + 1, n11 + i+ 1)(1)(1)

=
x∑
i=0

y∑
j=0

(
x

i

)(
y

j

)
(1− p)n00+n01−i−j+x+ypn10+n11+i+j

×B(n00 + y − j + 1, n01 + x− i+ 1)B(n10 + j + 1, n11 + i+ 1).
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CHAPTER TWO

Coverage Correction for an Integrated-Likelihood-Ratio Confidence Interval for a
Proportion from Misclassified Data using a Double-Sampling Scheme

2.1 Introduction

A major focus in statistical analysis is classification of unlabeled data. Of-

ten, researchers seek to learn enough information about their subjects to correctly

classify a given individual in a category. However, rarely do observations receive per-

fect classification. For many studies, researchers are working with fallible classifiers

that cause biased estimators because of misclassification. In fact, Bross (1954) and

Hansen et al. (1960) showed that traditional estimation of the population propor-

tion parameter in the presence of misclassification produced biased estimators that

greatly affect summarizing information gathered from surveys and censuses. To ac-

count for the errors that fallible classifiers introduce, Tenenbein (1970) proposed a

double-sampling scheme that employed both a fallible classifier and a gold-standard,

or infallible, classifier. This sampling scheme was used by Boese et al. (2006) to

develop various interval estimators for a binomial proportion parameter while Green-

land (2008) produced interval estimators for the odds ratio when data are subject to

misclassification. In addition, Riggs (2015) has used inverse sampling in combination

with the double-sampling scheme to derive various interval estimators for a binomial

parameter.

Here, as illustrated by Tenenbein (1970) and Raats and Moors (2003), we as-

sume that we have data produced from both fallible and infallible classifiers via a

double-sampling plan. The fallible data consist of a larger sample that is used for our

main information source, while the infallible data set is smaller and used for valida-

tion and bias correction. These two samples are taken independently of each other.
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The structure of this double-sampling scheme is displayed in Table 2.1. We allow

m to be the sample size for the fallible data set, and we let n represent the sample

size of the infallible data set, thus resulting in a total sample size of N = m + n.

Our cell counts are represented as nij, where i represents the classification label of

the infallible classifier and j represents the classification label of the fallible classifier.

The counts x and y are the positive and negative counts, respectively, from the main

study.

Table 2.1. One-sample misclassified binary data obtained using double sampling.

Internal Auditor
Study Infallible Auditor 0 1 Total
Sub 0 n00 n01 n0.

1 n10 n11 n1.

Total n.0 n.1 n
Main Not available y x m

Table 2.2 provides the corresponding probabilities that we use to construct the

likelihood function derived from our double-sampling scheme. We label our outcomes

Table 2.2. Cell probabilities for the double-sampling multinomial distribution.

Internal Auditor
Study Infallible Auditor 0 1 Total
Sub 0 (1− p)(1− φ) (1− p)φ (1− p)

1 pθ p(1− θ) p
Main Not available 1− π π 1

for the infallible and fallible classifiers as T and F , respectively. Table 2.2 also displays

data for both classifiers in the validation study, but only data for the fallible classifier

in the main study. We define the parameters as follows: p := P (T = 1), π := P (F =

1), φ := P (F = 1|T = 0), and θ := P (F = 0|T = 1). The parameters φ and θ are the

17



probabilities of a false-positive and a false-negative classification, respectively. Using

this information and the law of total probability, we have that π = p(1−θ)+(1−p)φ.

Rahardja and Yang (2015) recently derived a modified version of the classic

Wald CI for a binomial parameter estimated with misclassified data to provide better

coverage properties than a Wald CI while decreasing the average interval width. In

addition, Wiley et al. (2021) derived an integrated-likelihood-ratio (ILR) CI that

yielded better coverage properties than the mWald CI. The ILR CI also provided

narrower average interval widths for extreme values of p. However, the ILR CI was

consistently conservative in its coverage properties for sample sizes less than N = 600.

Here, by following the adjustments related to that proposed by Fisher and Robbins

(2019), we derive an adjusted ILR CI that provides closer-to-nominal coverage when

compared to the non-adjusted ILR CI while still displaying at least nominal coverage

properties. Through Monte Carlo simulations, we demonstrate the superiority of the

adjusted integrated-likelihood-ratio (aILR) CI when contrasted to the ILR CI.

The remainder of this paper is organized as follows. In Section 2.2, we describe

the ILR, aILR, and mWald CIs for a binomial parameter with possible misclassifi-

cation in the fallible data set. In Section 2.3, we describe the design and results of

our Monte Carlo simulations that examine the average interval widths and coverage

properties of each CI. We contrast the ILR, aILR, and mWald CIs on real data in

Section 2.4. Finally, we present a brief discussion of our results in Section 2.5.

2.2 CI Methods for Estimating p

Using the information given in the double-sampling scheme summarized in Ta-

bles 2.1 and 2.2, we obtain the likelihood function from which all CIs considered here

are derived, namely

L(p|θ, φ) = [(1− p)(1− φ)]n00 [(1− p)φ]n01 [pθ]n10 [p(1− θ)]n11πx(1− π)y. (2.1)
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The goal of each CI is to estimate the binomial proportion parameter p using both

fallible and infallible data sets obtained via a double-sampling scenario.

2.2.1 An Integrated-Likelihood-Ratio CI for p

Motivated by the work of Berger et al. (1999) and Severini (2010), and fully

derived in Wiley et al. (2021), we present an ILR CI for a single binomial parameter

p using the double-sampling scheme expressed in Tables 2.1 and 2.2. An integrated

likelihood function for p is

LI(p) =

∫ 1

0

∫ 1

0

L(p, θ, φ)g(θ, φ|p)dθdφ, (2.2)

where L(p, θ, φ) comes from (2.1) and g(θ, φ|p) is a weighting function for θ and φ.

Wiley et al. (2021) derived a closed-form expression for (2.2), which is

LI(p) =
x∑
i=0

y∑
j=0

(
x

i

)(
y

j

)
(1− p)n00+n01−i−j+x+ypn10+n11+i+j

×B(n00 + y − j + 1, n01 + x− i+ 1)B(n10 + j + 1, n11 + i+ 1),

(2.3)

consisting of Beta functions, B(a, b) with parameters a and b. The ILR CI is all

values of p that satisfy {
p : −2 log

(
LI(p)

LI(p̂IL)

)
< χ2

(1,1−α)

}
, (2.4)

where p̂IL is the MLE of p determined numerically from the likelihood function (2.2),

and χ2
1,(1−α) denotes the (1−α)th quantile of the central chi-square distribution with

one degree of freedom.

2.2.2 An Adjusted Integrated-Likelihood-Ratio CI for p

Wiley et al. (2021) derived an ILR CI for the binomial parameter p using data

subject to misclassification and obtained from a double-sampling scenario. They

demonstrated that for most values of p, their ILR CI has conservative coverage. That

is, their ILR CI yields CIs whose coverage exceeds the nominal coverage probability
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for almost all combinations of p and N ≤ 700. Moreover, the ILR CI yields very

conservative coverage properties when p < 0.30 and N < 400. To shrink the ILR CI

interval width, we use a transformation motivated by Fisher and Robbins (2019). Let

χ2
(1,1−α) denote the (1− α)th quantile of the central chi-square distribution with one

degree of freedom. We transform the quantile χ2
(1,1−α) to get

c(1−α) = nk
[
1− exp(−χ2

(1−α)/n
k)
]
, (2.5)

where k ∈ (0, 1), to shorten the ILR CI interval width and, therefore, to reduce the

over-coverage of the ILR CI. We use Monte Carlo simulations to choose an appropriate

value of k for a fixed value of the sample size N so that the adjusted ILR CI is{
p : −2 log

(
LI(p)

LI(p̂IL)

)
< c(1−α)

}
, (2.6)

where p̂IL is the maximum integrated likelihood estimator of p numerically optimized

from the likelihood function (2.2), and c(1−α) is defined in (2.5).

2.2.3 A Modified Wald CI for p

Rahardja and Yang (2015) first introduced a “naive” 100(1− α)% Wald CI for

p by using a double sample to correct for under-reporting. Their Wald CI for p is

p̂± zα/2σ̂, (2.7)

where p̂ = π̂λ̂1 +(1− π̂)λ̂2 is the MLE for p of the likelihood (2.1), zα/2 is the (α/2)th

quantile of the standard normal distribution, and

σ̂ =

√
π̂λ̂1(1− λ̂1)

n
+

(1− π̂)λ̂2(1− λ̂2)
n

+
(λ̂1 − λ̂2)2π̂(1− π̂)

N

Rahardja and Yang (2015) used a re-parameterization of (2.1) to derive λ̂1, λ̂2, and

π̂. Because (2.7) tends to produce CIs with bounds outside of [0, 1], they proposed a

modified interval to correct this issue. By using the logit transformation

δ̂ = logit(p̂) = log

(
p̂

1− p̂

)
, (2.8)
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Rahardja and Yang (2015) were able to better approximate the transformed sampling

distribution of p̂ to an approximate normal distribution. Also, using the delta method,

they obtained the estimator τ̂ 2 := V̂ar(δ̂) ≈ σ̂2/[p̂(1− p̂)]2, and therefore constructed

an approximate 100(1− α)% CI for δ, which is

δ̂ ± zα/2τ̂ . (2.9)

Finally, by exponentiating the boundaries of (2.9), they obtained the CI

[exp(δ̂ − zα/2τ̂)/(exp(δ̂ − zα/2τ̂) + 1), exp(δ̂ + zα/2τ̂)/(exp(δ̂ + zα/2τ̂) + 1)], (2.10)

which is the Rahardja and Yang (2015) mWald CI for p.

2.3 Monte Carlo Simulations

We performed two simulation studies to determine the CI coverage properties

and average interval-width characteristics for each of the three previously described

CIs: the mWald, the ILR, and the aILR. For each of the studies, we have chosen k

for the aILR to be

k =


0.45 N ≤ 150,

0.55 150 < N ≤ 400,

0.60 400 > N.

The first simulation study served to examine the coverage properties and average CI

widths of the three CIs as N varied from 50 to 700 and p was fixed at p = 0.10, 0.30,

and 0.50. The second simulation study provided the coverage properties for the three

CI methods as both N and p were varied. Each simulation was performed with the

computer language R.

2.3.1 Simulation 1: Design and Results

The first simulation study demonstrated the coverage properties and average

interval widths of the three competing CIs as the sample size, N , varied for three

different fixed values of p. We began with N = 50 and increased N by 25 to N = 700
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while we let m = 0.9 × N and n = 0.1 × N . In addition, we set θ = φ = 0.10

and simulated the Wald, ILR, and aILR CIs for 10,000 multinomial data sets. The

simulation results for p = 0.10, p = 0.30, and p = 0.50 are displayed in Figures 2.1,

2.2, and 2.3, respectively.
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(a) Coverage curves as N increases from 50 to 700 with m = 0.9N
and n = (1/9)m for p = 0.10 and θ = φ = 0.10.
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(b) Average-width curves as N increases from 50 to 700 with m =
0.9N and n = (1/9)m for p = 0.10 and θ = φ = 0.10.

Figure 2.1. Coverage and average interval-width plots for 50 ≤ N ≤ 700 when m =
0.9N , n = (1/9)m, p = 0.10, and θ = φ = 0.10.

Figure 2.1a provides the simulation coverage properties for the three competing

CIs when p = 0.10 and 50 ≤ N ≤ 700. We observed that all three CIs covered at

least nominally or near-nominally when N ≥ 500. However, the aILR CI was less

conservative in terms of coverage than the ILR CIs for all sample sizes. Figure 2.1b

also provides plots for the average interval widths and shows that the aILR CI has

narrower average interval widths when N < 400.
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Figures 2.2 and 2.3 provide very similar coverage and average interval-width

results for the cases when p = 0.30 and p = 0.50, respectively. As discussed previously,

in Figure 2.2a we see that the aILR CI outperformed the mWald and ILR CIs by

yielding closer to nominal coverage without having less than nominal coverage for

all values of N . The average width of the mWald CI is too narrow when N ≤ 700.

The aILR CI’s average interval width was also moderate compared to that of the

mWald and the ILR CIs, as seen in Figure 2.2b. When p = 0.50, Figure 2.3a shows
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(a) Coverage curves as N increases from 50 to 700 with m = 0.9N
and n = (1/9)m for p = 0.30 and θ = φ = 0.10.
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(b) Average-width curves as N increases from 50 to 700 with m =
0.9N and n = (1/9)m for p = 0.30 and θ = φ = 0.10.

Figure 2.2. Coverage and average interval-width contrasts for 50 ≤ N ≤ 700 when
p = 0.30 and θ = φ = 0.10.

that the mWald CI demonstrated better coverage properties than the mWald CI did

when p = 0.10. However, for all N considered here, the coverage for the mWald CI

was less than nominal while the aILR CI steadily approached nominal coverage as

N increased. As stated in Wiley et al. (2021), when p is very small or very large, as
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is the case in Figure 2.1, the mWald CI performed very poorly in terms of coverage.

However, the aILR-based CI is somewhat conservative in coverage while the ILR CI

is very conservative, especially when N < 600. Thus, we have shown here that the

conservativeness of the regular ILR CI can be reduced by the aILR CI to achieve

closer-to-nominal coverage for sample sizes where N < 700.

0.94

0.96

0.98

1.00

200 400 600

N

C
ov

er
ag

e Interval
ILR
k=0.45
k=0.55
k=0.6
mW

(a) Coverage curves as N increases from 50 to 700 with m = 0.9N
and n = (1/9)m for p = 0.50 and θ = φ = 0.10.
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(b) Average-width curves as N increases from 50 to 700 with m =
0.9N and n = (1/9)m for p = 0.50 and θ = φ = 0.10.

Figure 2.3. Coverage and average interval-width contrasts for 50 ≤ N ≤ 700 when
p = 0.50 and θ = φ = 0.10.

2.3.2 Simulation 2: Design and Results

The second simulation study focused on the two ILR-based CIs. We varied

N from 50 to 700 and p from 0.05 to 0.95 to provide a three-dimensional coverage

plot for the aILR and ILR CIs and then contrast their respective coverage properties.

These results appear in Figure 2.4.
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(a) Perspective one. (b) Perspective two.

Figure 2.4. Three-dimensional plot of the ILR (black points) and aILR (gray plane)
CIs coverage curves for k ∈ {0.45, 0.55, 0.60} as N increases from 50 to 700 with
m = 0.9N and p increases from 0 to 1 with n = (1/9)m and θ = φ = 0.10.

First, we notice that the ILR CI coverage, represented by the points in Fig-

ures 2.4a and 2.4b, is all above the gray surface that represents the aILR CI cover-

age. As seen in our previous simulations, the aILR CI is consistently less conservative

than the ILR CI while providing at least nominal coverage for all values of N and p,

except when p is close to one. Both CIs approached nominal coverage as N increased;

however, if one desires shorter CI interval widths with at least nominal coverage, the

aILR CI is superior when compared to the ILR CI as an omnibus CI, regardless of

the values of p and N .

2.4 A Real-Data Example

Next, we revisit the social security payment data that was introduced by Raats

and Moors (2003) for estimating p using double sampling with fallible data consisting

of both under-counted and over-counted data. Rahardja and Yang (2015) initially

used this data to demonstrate the efficacy of the mWald CI on real data. Wiley et al.

(2021) also utilized this data to demonstrate the superiority of the ILR CI coverage
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and width to the mWald CI coverage and width when p < 0.05. Here, we computed

the MLE p̂ along with five competing CIs: the mWald CI, the ILR CI, and three aILR

CIs with k ∈ {0.45, 0.55, 0.60}. The data come from six companies that were respon-

sible for social security payments in the Netherlands. Because of the complications

that come with social security payments, mis-payments are often made. Therefore,

we wish to estimate the probability of issuing an incorrect payment. To estimate

this proportion of mis-payments, an internal auditor checked a random sample of

500 social security payments and found 17 mistakes. Because of the fallibility of the

internal auditor, a supervising institution was hired to review a subset of 53 observed

payments. Table 2.3 displays the resulting counts from the double-sampling scheme,

which are n00 = 49, n01 = 1, n10 = 1, n11 = 2, x = 14, y = 433. The results of

applying each of the five CIs to this data are provided in Table 2.4.

Table 2.3. Social security payment data

Internal Auditor
Study Infallible Auditor 0 1 Total
Sub 0 49 1 50

1 1 2 3
Total 50 3 53

Main Not available 433 14 447

We see that Table 2.4 suggests that the actual value for p must be small because

the upper bound of each of our CIs is at or below 0.10. From our simulation studies

in Section 2.3, we know that we can achieve near-nominal coverage based on an

appropriate value k. We also see in Table 2.4 that the aILR CI provides a narrower

interval than the mWald and ILR CIs. Because our real data example has N = 500,

we suggest using an aILR CI with k between 0.45 and 0.60 to determine an appropriate

CI for p. This choice of k provides a narrower CI than the ILR CI, which has at least

nominal coverage.
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Table 2.4. CIs and Interval Widths

Interval Lower End Point Upper End Point Width
aILR CI k = 0.45 0.0124 0.0868 0.0744
aILR CI k = 0.55 0.0120 0.0887 0.0768
aILR CI k = 0.60 0.0117 0.0898 0.0781
ILR CI 0.0114 0.0911 0.0797
mWald CI 0.0141 0.1183 0.1042

2.5 Discussion

The ILR CI, introduced by Wiley et al. (2021), for estimating the parameter

p using misclassified, binary data from a double-sampling scheme can be quite con-

servative. Therefore, we propose an aILR CI that yields much narrower CIs but still

produces close-to-nominal coverage. Through our simulation results and an applica-

tion to a real data set, we determined that an aILR CI with our adjustment should

be used. We also remark that the value of k that shortens the ILR CI depends on the

values of N , p, φ and θ. Using Monte Carlo simulation, one can determine aILR CIs

that have near nominal coverage while they possess narrower interval widths, thus

allowing for much more efficient CIs than both the mWald and ILR CIs.
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CHAPTER THREE

Integrated-Likelihood-Ratio Confidence Interval for the Log Odds-Ratio and
Odds-Ratio Derived using Misclassified Data from a Double-Sampling Scenario

3.1 Introduction

In case-control studies, a common measure of interest is the odds-ratio. Szumi-

las (2010) explained that researchers are primarily interested in contrasting how the

presence or absence of an exposure, typically a disease, affects the odds of a particular

outcome. In many situations, especially in public health applications, outcomes are

mislabeled. Spencer et al. (2018) showed that when error is present in the measure-

ment of outcomes and not accounted for, then misclassification bias is introduced into

the analyses’ conclusions.

Currently, many statistical methods exist that aid one in dealing with misclas-

sification bias. Greenland (1988) considered methods for the calculation of variance

estimators for epidemiologic-effect estimators in epidemiological studies where data

are subject to misclassification. Carroll et al. (1993) explored the estimation of pa-

rameters for logistic models when the data for a rare disease are derived from a case-

control study subject to misclassification. Also, Morrissey and Spiegelman (1999)

considered corrections for the odds-ratio that adjust for bias by using both the ma-

trix and inverse matrix methods. Prescott and Garthwaite (2002) then provided a

Bayesian approach to label misclassification when considering case-control studies.

In addition, Tenenbein (1970) introduced a double-sampling approach to correct

for misclassification. Table 3.1 shows counts for a double-sampling plan for case-

control data. Here, mC is the total number of observations present in our main,

fallible data set for sample C, where C = 1 represents the cases and C = 0 represents

the controls, while nC is the total number of observations in the infallible data set.
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Table 3.1. Single-sample misclassified binary data obtained using double sampling
where C represents the cases (C = 1) or controls (C = 0).

Fallible Classifier
Study Infallible Classifier F = 0 F = 1 Total
Sub T = 0 nC00 nC01 nC0·

T = 1 nC10 nC11 nC1·
Total nC·0 nC·1 nC

Main Not available yC xC mC

Our total sample size, therefore, is NC = mC + nC , C = 0, 1. We let xC and yC

denote the total positive and negative counts that we observe in the fallible data

set, respectively. Also, we let each of the cell counts be denoted as nCTF , where C

represents the group the count is sampled from, T represents the label of the infallible

classifier, and F represents the label of the fallible classifier. The corresponding

proportions for Table 3.1 are given in Table 3.2. We define pC =: P (T = 1) as the

Table 3.2. Cell probabilities for the double-sample multinomial distribution.

Fallible Classifier
Study Infallible Classifier F = 0 F = 1 Total
Sub T = 0 (1− pC)(1− φC) (1− pC)φC (1− pC)

T = 1 pCθC pC(1− θC) pC
Main Not available 1− πC πC 1

prevalence and πC := P (F = 1) as the probability of the fallible classifier denoting

a positive occurrence. Our false-positive and false-negative probabilities are φC :=

P (F = 1|T = 0) and θC := P (F = 0|T = 1), respectively.

Several confidence intervals (CIs) for the odds-ratio have been proposed. Woolf

(1955) presented what is considered to be the first confidence interval for the odds-

ratio, while Mantel and Haenszel (1959) provided an improvement. Haldane (1956)

and Gart and Zweifel (1967) discussed methods for improving the performance of

a typical Wald CI for the odds-ratio. Some of these improvements were further
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explored by Agresti and Coull (1998). Cornfield (1956) first introduced a score CI for

the odds-ratio, and Agresti (2011) provided various extensions. Agresti (2003) also

discussed the calculation of exact CIs for the odds-ratio through application of the

hypergeometric function.

Although one commonly estimates the odds-ratio in case-control studies by

using CIs, few CIs exist that consider or correct for the impact of misclassification.

Lyles (2002) provided a Wald CI that accounts for misclassification through “crude”

estimation of the variance; however, apparently no other CIs exist for the odds-ratio

that account for misclassification. Therefore, here we introduce integrated-likelihood-

ratio (ILR) CIs for the log odds-ratio and the odds-ratio. We determine that the ILR

CI yields better coverage properties than Lyles’ Wald CI for the log odds-ratio and is

comparable in average width to the Wald CI for sufficiently large samples sizes, N0

and N1.

The remainder of the paper is organized as follows. In Section 3.2, we derive an

ILR CI and describe a Wald CI for the log odds-ratio and odds-ratio. In Section 3.3,

we describe the design and results of our Monte Carlo simulations examining average

interval widths and interval coverage properties of the two CIs for the log odds-ratio.

We contrast the two competing CIs on real data in Section 3.4, and finally, we briefly

discuss our results in Section 3.5.

3.2 Two Confidence Intervals for Estimating the Odds-Ratio

If we assume the double-sampling scheme summarized in Tables 3.1 and 3.2,

we can produce the relevant likelihood function for pC , C = 0, 1, the probability of

the prevalence of the disease of interest, which is

L(pC |θC , φC ,dC) = [(1− pC)(1− φC)]nC00 [(1− pC)φC ]nC01 [pCθC ]nC10

× [pC(1− θC)]nC11πxCC (1− πC)yC ,

(3.1)
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where dC := (nC00, nC01, nC10, nC11, xC , yC)′ and πC = pC(1 − θC) + (1 − pC)φC ,

C = 0, 1. Agresti (1999) explained that large-sample CIs based on the log odds-ratio

often outperform CIs for the odds-ratio. We let

γ = log

[
p1/(1− p1)
p0/(1− p0)

]
(3.2)

be the log odds-ratio. Then,

γ = log

[
p1/(1− p1)
p0/(1− p0)

]
=⇒ p0 =

p1
(1− p1)eγ + p1

,

and the likelihood function for the control contribution, C = 0, in terms of γ is

L(γ|Θ0,d0) =

[(
1− p1

(1− p1)eγ + p1

)
(1− φ0)

]n000
[(

1− p1
(1− p1)eγ + p1

)
φ0

]n001

×
[

p1
(1− p1)eγ + p1

θ0

]n010
[

p1
(1− p1)eγ + p1

(1− θ0)
]n011

×
[

p1
(1− p1)eγ + p1

(1− θ0) +

(
1− p1

(1− p1)eγ + p1

)
φ0

]x0
×
[
1− p1

(1− p1)eγ + p1
(1− θ0)−

(
1− p1

(1− p1)eγ + p1

)
φ0

]y0
,

(3.3)

where Θ0 := (p1, θ0, φ0)
′ represents the parameter vector for C = 0. Therefore, the

full likelihood function for γ for our two-sample problem is

L(γ|Θ,d) = L(p1|θ1, φ1)× L(γ|p1, θ0, φ0)

= [(1− p1)(1− φ1)]
n100 [(1− p1)φ1]

n101 [p1θ1]
n110 [p1(1− θ1)]n111

× [p1(1− θ1) + (1− p1)φ1]
x1 [1− p1(1− θ1)− (1− p1)φ1]

y1

×
[(

1− p1
(1− p1)eγ + p1

)
(1− φ0)

]n000
[(

1− p1
(1− p1)eγ + p1

)
φ0

]n001

×
[

p1
(1− p1)eγ + p1

θ0

]n010
[

p1
(1− p1)eγ + p1

(1− θ0)
]n011

×
[

p1
(1− p1)eγ + p1

(1− θ0) +

(
1− p1

(1− p1)eγ + p1

)
φ0

]x0
×
[
1− p1

(1− p1)eγ + p1
(1− θ0)−

(
1− p1

(1− p1)eγ + p1

)
φ0

]y0
,

(3.4)
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where Θ := (p1, θ0, φ0, θ1, φ1)
′ represents our full parameter vector for the transformed

likelihood function and d := (d0,d1)
′. Using the likelihood function (3.4), we can

construct an ILR CI for γ, given in (3.2), and ψ = p1/(1−p1)
p0/(1−p0) . Here, we are interested

in deriving an ILR CI for γ and contrasting the coverage and average interval widths

to those of the Wald CI for γ.

3.2.1 An Integrated-Likelihood-Ratio CI for γ

Motivated by Berger et al. (1999) and Severini (2010), we construct an ILR CI

to estimate the log odds-ratio using both fallible and infallible data from a double-

sampling method like the one described by Tenenbein (1970). An integrated likelihood

function for γ is

LI(γ) =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

L(γ|p1, θ1, θ0, φ1, φ0)

× g1(θ1, φ1|p1)g0(θ0, φ0|p0)dp1dθ1dθ0dφ1dφ0,

(3.5)

where θC and φC , C = 0, 1, are the false negative and false positive proportions,

respectively, for each of our two populations. In addition, gC(θC , φC |pC), C = 0, 1

are weighting functions for the two sets of misclassification parameters. In Section 3.6,

we have derived a closed-form expression for (3.5), which is

LI(γ) =

x1∑
i=0

y1∑
j=0

x0∑
k=0

y0∑
l=0

(
x1
i

)(
y1
j

)(
x0
k

)(
y0
l

)
[eγ]−n010−n011−k−l

×B(y1 + n100 − j + 1, x1 + n101 − i+ 1)

×B(y0 + n000 − l + 1, x0 + n001 − k + 1)

×B(n110 + j + 1, n111 + i+ 1)B(n010 + l + 1, n011 + k + 1)

× Γ(n100 + n101 + n000 + n001 + x1 + y1 + x0 + y0 − i− j − k − l + 1)

× Γ(n110 + n111 + n010 + n011 + i+ j + k + l + 1)

× 2F1(n110 + n111 + n010 + n011 + i+ j + k + l + 1, N0, 2 +N1 +N0;

1− cosh(γ) + sinh(γ)), (3.6)
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where B(a, b) denotes a Beta function with parameters a and b, and Γ(a) denotes

a Gamma function with parameter a. Also, 2F1(a, b, c; z) denotes the regularized

hypergeometric function defined in Clyde et al. (2011) and Hankin (2015), as

2F1(a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt.

The calculation of (3.6) is computationally demanding. Therefore, we recommend

numerical integration of (3.5) for calculating the ILR CI for γ, which is{
γ : −2 log

(
LI(γ)

LI(γ̂IL)

)
< χ2

(1,1−α)

}
, (3.7)

where γ̂IL, is the MLE of γ derived from the integrated likelihood function LI(γ)

found by numerical optimization, and χ2
(1,1−α) denotes the (1 − α)th quantile of a

central chi-square distribution with one degree of freedom. This ILR CI for γ can be

transformed into a CI for the odds-ratio ψ = p1/(1−p1)
p0/(1−p0) through exponentiation of the

lower and upper bounds.

3.2.2 A Wald-type CI for γ

Lyles (2002) introduced a Wald CI for estimating crude odds-ratios in case-

control studies. Lyles’ Wald CI for γ is

γ̂ ± zα/2σ̂2 {γ̂} , (3.8)

where

σ̂2 {γ̂} =
1∑

C=0

{p̂C(1− p̂C)}−2
[(
P̂PV C + N̂PV C − 1

)2
σ̂2 {π̂C}

+ (π̂C)2 σ̂2
{
P̂PV C

}
+ (1− π̂C)2 σ̂2

{
N̂PV C

}]
,

(3.9)

with

p̂C = π̂CP̂PV C + (1− π̂C)(1− N̂PV C),

π̂C = (xC + nC.1)/NC , σ̂2 {π̂C} = π̂C(1− π̂C)/NC ,

P̂PV C = nC11/nC.1, σ̂2
{
P̂PV C

}
= P̂PV C(1− P̂PV C)/nC.1,

N̂PV C = nC00/nC.0, σ̂2
{
N̂PV C

}
= N̂PV C(1− N̂PV C)/nC.0.
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3.3 Monte Carlo Simulations

We performed a simulation study to compare and contrast the coverage prop-

erties and average interval widths of the ILR CI and the Wald CI where γ was

allowed to vary. For the simulation, we chose to vary p1 from 0.05 to 0.95 while

holding p0 constant at 0.30. We simulated data sets for five different sample sizes

Ni ∈ {50, 100, 150, 200, 250}, i = 0, 1 with N0 = N1, mi = 0.9 × Ni, and

ni = 0.1 × Ni for i ∈ {0, 1}. Finally, our misclassification parameters were set

as φ0 = 0.20, θ0 = 0.25, φ1 = 0.10, and θ1 = 0.15. We simulated 10,000 multinomial

data sets for each unique sample size, Ni, i = 0, 1. All calculations were performed

via the computer language R version 3.6.1.

Figure 3.1 provides us with the simulation results when N0 = N1 = 50. We see

a large difference between the coverage properties for the two CIs. Figure 3.1b shows

that the Wald CI was considerably narrower. However, we see the ramifications of

this fact in Figure 3.1a in that the narrower Wald CI has less than nominal coverage

for most values of γ considered here. We can see that the Wald CI attained nominal

coverage or slightly above nominal coverage when p0 ≈ p1, but otherwise, the Wald

CI coverage was mostly less than nominal and was very poor for γ > 1. However,

the ILR CI attained above nominal coverage for most values of γ but dipped below

nominal coverage when p1 was considerably greater than p0.
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Figure 3.1. Coverage and average-interval-width curves for 0.05 ≤ p1 ≤ 0.95 when
N0 = N1 = 50, m1 = 45, n1 = 5, φ1 = 0.10, θ1 = 0.15, p0 = 0.30, φ0 =
0.20, and θ0 = 0.25.
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In Figure 3.2 we see that the increase in sample sizes from N0 = N1 = 50

to N0 = N1 = 100 caused an increase in the coverage of the Wald CI, shown in

Figure 3.2a, and a decrease in the average-width of the ILR CI, shown in Figure 3.2b.

Though the Wald CI coverage increased, it still provided mostly less than nominal

coverage, while the ILR CI gave conservative coverage and produced closer to nominal

coverage. We also see that the average CI widths for the two CIs began to converge,

so the issue of producing a relatively wider ILR CI quickly dissipated as the sample

size was increased.
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Figure 3.2. Coverage and average-interval-width curves for 0.05 ≤ p1 ≤ 0.95 when
N0 = N1 = 100, m1 = 90, n1 = 10, φ1 = 0.10, θ1 = 0.15, p0 = 0.30, φ0 =
0.20, and θ0 = 0.25.

Figure 3.3 displays the simulation results for Ni ∈ {150, 200, 250}, i = 0, 1.

When the sample sizes were increased to N0 = N1 = 150, Figures 3.3a and 3.3b show

that the coverages and average interval widths of the Wald and ILR CIs become more

similar. This fact is further supported through the sample size increases shown in

Figures 3.3c, 3.3b, 3.3e and 3.3f. Also, we see in each of these instances that the

ILR CI provided slightly above nominal coverage, falling below 95% only when p1

deviated largely from p0. The Wald CI more often provided slightly below nominal

coverage. More interestingly, we see that as the sample sizes increased, the average

interval widths of both the Wald and ILR CIs decreased, but the ILR CI provided

narrower CIs for extreme γ values and the Wald CI was slightly narrower than the
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(d) Average-width curves forN0 = N1 = 200
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Figure 3.3. Coverage and average-interval-width curves for 0.05 ≤ p1 ≤ 0.95 when
φ1 = 0.10, θ1 = 0.15, p0 = 0.30, φ0 = 0.20, and θ0 = 0.25, with mi = 0.9Ni and
ni = (1/9)m, i = 0, 1.

ILR CI for moderate values of γ. This result is especially evident in Figures 3.3d and

3.3f.

3.4 A Real-Data Example

Here, we compare and contrast the performance of the ILR and Wald CIs on

a simulated sample version of a real-data example. Our motivation comes from the

SIDS data set provided by Drews et al. (1990). As stated in Greenland (2008), we

use the false-positive rate φ̂1 = 0.13, sensitivity ŜE1 = 0.63, and positive predictive-
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value P̂PV 1 = P (T = 1|F = 1) = 0.57 to estimate the probability of death by SIDS,

which was p̂ = P (T = 1) = 0.2184. We followed a similar procedure to estimate these

probabilities for the control group. The resulting estimated probabilities are provided

in Table 3.3.

Table 3.3. Probabilities for example where NC = 500.

Case Control
p̂1 0.2148 p̂0 0.1792

φ̂1 0.1300 φ̂0 0.0700

θ̂1 0.3700 θ̂0 0.4300

We then used the information provided in Table 3.3 to simulate a data set to

display the effectiveness of the two CIs for estimating ψ when our data were grouped

by these probabilities and when NC = 500, C = 0, 1. These data are provided in

Table 3.4. Next, we then used the data in Table 3.4 to construct Wald and ILR CIs

Table 3.4. Cell counts for example where NC = 500.

Study C = 1 F = 0 F = 1 C = 0 F = 0 F = 1
Sub T = 0 67 8 T = 0 78 6

T = 1 14 11 T = 1 5 11
Main 311 89 329 71

for the odds of death by SIDS in this mock case-control study. The MLE for ψ was

ψ̂ = p̂1(1−p̂0)
p̂0(1−p̂1) = 1.253. We then calculated the ILR and Wald CIs given in Table 3.5.

We see that the two CIs are comparable in both location and interval width. The ILR

CI is slightly more conservative and, thus, is slightly wider in width than the Wald

CI for ψ. We conclude that, based on our results in Section 3.3, one should adopt

the ILR CI in this situation and similar ones where N ≥ 200 and p0 6≈ p1 because it

should more consistently capture ψ while remaining comparable in interval width.
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Table 3.5. CIs and Interval Widths

Interval Lower End Point Upper End Point Width
Wald 0.972 3.342 2.370
ILR 1.002 3.466 2.464

3.5 Discussion

We have derived a new CI for the log odds-ratio and odds-ratio parameters γ

and ψ, respectively, when dealing with data consisting of two sample misclassified

binary observations that are obtained via a double-sampling scheme involving inde-

pendent data sets produced by fallible and infallible classifiers. After reviewing our

results from the simulations in Section 3.3 and the real data set in Section 3.4, we

recommend the use of our new ILR CI rather than the Wald CI proposed by Lyles

(2002) because of its coverage properties. We have shown that the ILR CI for γ

not only has conservative coverage properties, but also has very comparable average

interval widths when compared to the Wald CI for γ when p1 ∈ [0.10, 0.90] and

N0 = N1 ≥ 250.
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3.6 Appendix: A Derivation of a Closed-Form Integrated Likelihood Function for γ

Here, we derive a closed-form integrated likelihood function for the log odds-

ratio of two binomial parameters using double-sampling paradigm. We use the weight-

ing functions gi(θi, φi) = hi1(θi)hi2(θi), where hij(∗) is a Beta(1, 1) density function

with i = 0, 1 and j = 1, 2.

LI(γ) =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

L(γ|p1, θ1, θ0, φ1, φ0)g1(θ1, φ1|p1)g0(θ0, φ0|p0)dp1dθ1dθ0dφ1dφ0

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

[(1− p1)(1− φ1)]
n100 [(1− p1)φ1]

n101 [p1θ1]
n110 [p1(1− θ1)]n111

× [p1(1− θ1) + (1− p1)φ1]
x1 [1− p1(1− θ1)− (1− p1)φ1]

y1

×
[(

1− p1
(1− p1)eγ + p1

)
(1− φ0)

]n000
[(

1− p1
(1− p1)eγ + p1

)
φ0

]n001

×
[

p1
(1− p1)eγ + p1

θ0

]n010
[

p1
(1− p1)eγ + p1

(1− θ0)
]n011

×
[

p1
(1− p1)eγ + p1

(1− θ0) +

(
1− p1

(1− p1)eγ + p1

)
φ0

]x0
×
[
1− p1

(1− p1)eγ + p1
(1− θ0)−

(
1− p1

(1− p1)eγ + p1

)
φ0

]y0
dp1dθ1dθ0dφ1φ0

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(1− p1)n100+n101pn110+n111
1

×
(

1− p1
(1− p1)eγ + p1

)n000+n001 p1
(1− p1)eγ + p1

n010+n011

× (1− φ1)
n100φn101

1 (1− φ0)
n000φn001

0 θn110
1 (1− θ1)n111θn010

0 (1− θ0)n011

× [p1(1− θ1) + (1− p1)φ1]
x1 [1− p1 + p1θ1 − φ1 + p1φ1]

y1

×
[

p1
(1− p1)eγ + p1

(1− θ0) +

(
1− p1

(1− p1)eγ + p1

)
φ0

]x0
×
[
1− p1

(1− p1)eγ + p1
+

p1θ0
(1− p1)eγ + p1

− φ0 +
p1φ0

(1− p1)eγ + p1

]y0
dp1dθ1dθ0dφ1φ0

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(1− p1)n100+n101pn110+n111
1 pn010+n011

1

× (1− φ1)
n100φn101

1 (1− φ0)
n000φn001

0 θn110
1 (1− θ1)n111θn010

0 (1− θ0)n011

39



× ((1− p1)eγ + p1 − p1)n000+n001((1− p1)eγ + p1)
−(n000+n001+n010+n011+x0+y0)

× [p1(1− θ1) + (1− p1)φ1]
x1 [(1− p1)(1− φ1) + p1θ1]

y1

× [p1(1− θ0) + ((1− p1)eγ + p1 − p1)φ0]
x0

× [(1− p1)eγ + p1 − p1 + p1θ0 − ((1− p1)eγ + p1)φ0 + p1φ0]
y0

dp1dθ1dθ0dφ1φ0

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(1− p1)n100+n101pn110+n111
1 ((1− p1)eγ)n000+n001pn010+n011

1

× (1− φ1)
n100φn101

1 (1− φ0)
n000φn001

0 θn110
1 (1− θ1)n111θn010

0 (1− θ0)n011

× ((1− p1)eγ + p1)
−N0

× [p1(1− θ1) + (1− p1)φ1]
x1 [(1− p1)(1− φ1) + p1θ1]

y1

× [p1(1− θ0) + (1− p1)eγφ0]
x0

× [(1− p1)eγ + p1θ0 − (1− p1)eγφ0]
y0dp1dθ1dθ0dφ1φ0

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(1− p1)n100+n101+n000+n001pn110+n111+n010+n011
1

× (1− φ1)
n100φn101

1 (1− φ0)
n000φn001

0 θn110
1 (1− θ1)n111θn010

0 (1− θ0)n011

× [p1(1− θ1) + (1− p1)φ1]
x1 [(1− p1)(1− φ1) + p1θ1]

y1

× [p1(1− θ0) + (1− p1)eγφ0]
x0 [(1− p1)eγ(1− φ0) + p1θ0]

y0

× ((1− p1)eγ + p1)
−N0 [eγ]n000+n001 dp1dθ1dθ0dφ1φ0

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(1− p1)n100+n101+n000+n001pn110+n111+n010+n011
1

× (1− φ1)
n100φn101

1 (1− φ0)
n000φn001

0 θn110
1 (1− θ1)n111θn010

0 (1− θ0)n011

×
x1∑
i=0

(
x1
i

)
pi1(1− θ1)i(1− p1)x1−iφ

x1−i
1

×
y1∑
j=0

(
y1
j

)
(1− p1)y1−j(1− φ1)

y1−jpj1θ
j
1

×
x0∑
k=0

(
x0
k

)
pk1(1− θ0)k(1− p)x0−kφx0−k0 [eγ]x0−k
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×
y0∑
l=0

(
y0
l

)
(1− p1)y0−l(1− φ0)

y0−l [eγ]y0−l pl1θ
l
0

× ((1− p1)eγ + p1)
−N0 [eγ]n000+n001 dp1dθ1dθ0dφ1φ0

=

x1∑
i=0

y1∑
j=0

x0∑
k=0

y0∑
l=0

∫ 1

0

(
x1
i

)(
y1
j

)(
x0
k

)(
y0
l

)
[eγ]n000+n001+x0+y0−k−l

×
∫ 1

0

(1− φ1)
n100+y1−jφn101+x1−i

1 dφ1

∫ 1

0

(1− φ0)
n000+y0−lφn001+x0−k

0 dφ0

×
∫ 1

0

θn110+j
1 (1− θ1)n111+idθ1

∫ 1

0

θn010+l
0 (1− θ0)n011+kdθ0

× (1− p1)n100+n101+n000+n001+x1+y1+x0+y0−i−j−k−l

× pn110+n111+n010+n011+i+j+k+l
1 ((1− p1)eγ + p1)

−N0dp1

=

x1∑
i=0

y1∑
j=0

x0∑
k=0

y0∑
l=0

(
x1
i

)(
y1
j

)(
x0
k

)(
y0
l

)
[eγ]n000+n001+x0+y0−k−l

×B(y1 + n100 − j + 1, x1 + n101 − i+ 1)

×B(y0 + n000 − l + 1, x0 + n001 − k + 1)

×B(n110 + j + 1, n111 + i+ 1)B(n010 + l + 1, n011 + k + 1)

×
∫ 1

0

(1− p1)n100+n101+n000+n001+x1+y1+x0+y0−i−j−k−l

× pn110+n111+n010+n011+i+j+k+l
1 ((1− p1)eγ + p1)

−N0dp1

=

x1∑
i=0

y1∑
j=0

x0∑
k=0

y0∑
l=0

(
x1
i

)(
y1
j

)(
x0
k

)(
y0
l

)
[eγ]n000+n001+x0+y0−k−l

×B(y1 + n100 − j + 1, x1 + n101 − i+ 1)

×B(y0 + n000 − l + 1, x0 + n001 − k + 1)

×B(n110 + j + 1, n111 + i+ 1)B(n010 + l + 1, n011 + k + 1)

× 2F1(n110 + n111 + n010 + n011 + i+ j + k + l + 1, N0, 2 +N1 +N0;

1− cosh(γ) + sinh(γ)) [eγ]−N0

× Γ(n100 + n101 + n000 + n001 + x1 + y1 + x0 + y0 − i− j − k − l + 1)

× Γ(n110 + n111 + n010 + n011 + i+ j + k + l + 1)

41



=

x1∑
i=0

y1∑
j=0

x0∑
k=0

y0∑
l=0

(
x1
i

)(
y1
j

)(
x0
k

)(
y0
l

)
[eγ]−n010−n011−k−l

×B(y1 + n100 − j + 1, x1 + n101 − i+ 1)

×B(y0 + n000 − l + 1, x0 + n001 − k + 1)

×B(n110 + j + 1, n111 + i+ 1)B(n010 + l + 1, n011 + k + 1)

× Γ(n100 + n101 + n000 + n001 + x1 + y1 + x0 + y0 − i− j − k − l + 1)

× Γ(n110 + n111 + n010 + n011 + i+ j + k + l + 1)

× 2F1(n110 + n111 + n010 + n011 + i+ j + k + l + 1, N0, 2 +N1 +N0;

1− cosh(γ) + sinh(γ)).
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CHAPTER FOUR

Confidence Intervals for the Ratio of Two Poisson Rate Parameters with
Under-Reported Data Using a Double-Sampling Scenario

4.1 Introduction

Misclassified data is relatively common in research problems in many disciplines.

For instance, Fujisawa and Izumi (2000) discussed the importance of managing mis-

classification in quality control for repeated measures in a laboratory and manufac-

turing setting. Also, Ji et al. (2006) discussed the effects of misclassification among

phenotypes and genotypes on the power of tests that detect genetic association. In

addition, DiBartolomeo and Witkowski (1997) examined the costs of misclassifica-

tion due to ignored external factors involved in building mutual funds. Often, the

researcher is focused on correcting misclassification bias in point estimators. One can

find examples of this type in Tenenbein (1970), Whittemore and Gong (1991), Viana

(1994), and Joseph et al. (1995). Though point estimators are useful in answer-

ing proposed research questions, interval estimators can provide more information

for guiding the actions and conclusions of decision makers, as explained by Altman

(2005) and Wasserstein and Lazar (2016).

Less research has been published concerning interval estimators for data sub-

ject to misclassificaiton. A contrast of various confidence intervals (CIs) for a one-

population binomial parameter with under-reported successes was performed by Boese

et al. (2006), and a two-population binomial model with under-reporting was proposed

by Lyles (2002). Here, we consider a Poisson model with under-reported counts first

introduced by Sposto et al. (1992) that focuses on two Poisson rate parameters.

Closed-form maximum likelihood estimators for this Poisson model were developed

by Stamey et al. (2005b), where the data were observed via a double-sampling scheme.
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This scheme, introduced by Tenenbein (1970), is a standard technique for correcting

misclassification where information observed by both fallible and infallible samples is

combined to improve the quality and efficiency of the estimators of interest.

Using this Poisson model and a double-sampling scheme, Riggs et al. (2009)

derived maximum-likelihood-based CIs for an individual Poisson rate parameter while

accounting for the misclassification in the individual counts. Li (2009) then derived

CIs for the difference between the two Poisson rate parameters of interest. In both

papers, the authors derived CIs by inverting the Wald, score, and profile log-likelihood

statistics. Here, we wish to construct a new CI for the ratio of the two Poisson

rate parameters with misclassified data based on an integrated-likelihood-ratio (ILR)

statistic. This ILR CI is motivated by the work in Berger et al. (1999) and Severini

(2010).

We have organized the remainder of the paper as follows. In Section 4.2, we

describe the Wald, score, and ILR CIs that we examine and contrast here. In Sec-

tion 4.3, we describe the design and results of Monte Carlo simulations examining

average interval widths and coverage properties. We then compare and contrast the

three CIs on real data in Section 4.4. Finally, we briefly discuss the utility of the

proposed ILR CI in Section 4.5.

4.2 Confidence Intervals for Estimating the Ratio of Poisson Rate Parameters

We begin by discussing the double-sampling based model that was first em-

ployed by Sposto et al. (1992) and further explored by Stamey et al. (2005a), Stamey

et al. (2005b), and Riggs et al. (2009). For this model, we let zi denote the observed

counts from our fallible classifier for population i, we let mi denote the unobserved

correctly classified counts in population i from our fallible classifier, and we let yi

denote the unobserved mislabeled counts in population i that are said to belong to

population j from our fallible classifier, where i, j = 1, 2, i 6= j and zi = mi−yi +yj.
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These counts are modeled as

zi ∼ Poisson(N [λi(1− θi) + λjθj]),

mi ∼ Poisson(Nλi),

and

yi|mi ∼ binomial(mi, θi),

where N is the sample size of our error-prone sample. Though N is referred to as the

sample size, it is often given as person-years, machine-time, etc.

Because of the misclassified counts affecting zi, the model is over parameterized,

and the observed data allows us to estimate only the parameter µ = N [λi(1 − θi) +

λjθj]. Therefore, we use a training sample to estimate the parameters λi and θi.

This additional sample yields m0i, the count of correctly classified individuals in our

sample obtained from an infallible classifier, and y0i, the count of incorrectly classified

individuals obtained from the infallible classifier. The infallibly labeled sample size

is denoted as N0. The observed data are modeled as

zi ∼ Poisson(N [λi(1− θi) + λjθj]),

m0i ∼ Poisson(N0λi),

and

y0i|m0i ∼ binomial(m0i, θi),

where i, j = 1, 2, i 6= j. The corresponding likelihood function is

L(Θ|d) = λm01
1 λm02

2 e−N0(λ1+λ2)θy011 (1− θ1)m01−y01θy022 (1− θ2)m02−y02

× [λ1(1− θ1) + λ2θ2]
z1 [λ2(1− θ2) + λ1θ1]

z2e−N(λ1+λ2),

(4.1)

where Θ := (λ1, λ2, θ1, θ2)
′ and d := (z1, z2,m01,m02, y01, y02)

′. However, because we

are interested in the ratio φ := λ1/λ2 we perform the reparameterization

φ =
λ1
λ2

=⇒ λ1 = φλ2

45



so that λ1 is expressed in terms of φ. This transformation changes the vector of

parameters to Θ∗ := (φ, λ2, θ1, θ2)
′, and we obtain the transformed likelihood function

L(Θ∗|d) = φm01λm01+m02+z1+z2
2 e−λ2(φ+1)(N0+N)[φ(1− θ1) + θ2]

z1 [(1− θ2) + φθ1]
z2

× θy011 (1− θ1)m01−y01θy022 (1− θ2)m02−y02 .

(4.2)

Thus, the log-likelihood function is

`(Θ∗|d) = log(L(Θ∗|d))

= m01 log(φ) + (m01 +m02 + z1 + z2) log(λ2)− λ2(φ+ 1)(N0 +N)

+ z1 log[φ(1− θ1) + θ2] + z2 log[(1− θ2) + φθ1] + y01 log(θ1)

+ (m01 − y01) log(1− θ1) + y02 log(θ2) + (m02 − y02) log(1− θ2).

(4.3)

From (4.3), we derive the Hessian and the Fisher’s information matrices,

H =



hφ hφλ2 hφθ1 hφθ2

hλ2φ hλ2 hλ2θ1 hλ2θ2

hθ1φ hθ1λ2 hθ1 hθ1θ2

hθ2φ hθ2λ2 hθ2θ1 hθ2


and I(Θ∗) =



iφ iφλ2 iφθ1 iφθ2

iλ2φ iλ2 iλ2θ1 iλ2θ2

iθ1φ iθ1λ2 iθ1 iθ1θ2

iθ2φ iθ2λ2 iθ2θ1 iθ2


,

for the parameter vector Θ∗, which one needs to obtain the Wald and score CIs for

φ. One can find these derivations for H and I(Θ∗) in Section 4.6 and Section 4.7,

respectively.

4.2.1 A Wald CI for φ

A Wald CI for each of our Poisson rate parameters λi, i = 1, 2, was derived

by Riggs et al. (2009). To calculate a Wald CI for φ, one needs the unrestricted

maximum likelihood estimates for each of our parameters in Θ∗ = (φ, λ2, θ1, θ2)
′,

which are represented as Θ̂∗ = (φ̂, λ̂2, θ̂1, θ̂2)
′. Stamey et al. (2005b) have shown that

λ̂i =
zi +m0i +

y0izj
z0j
− y0jzi

z0i

N +N0

(4.4)
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and

θ̂i =
y0iz0i(zj + z0j)

y0iz0i(zj + z0j) + (m0i − y0i)z0j(zi + z0i)
, (4.5)

where z0i = m0i− y0i + y0j and i, j = 1, 2, i 6= j. Because of the invariance property

of MLE’s, we have φ̂ = λ̂1/λ̂2.

The Wald CI is based on the fact that when n is sufficiently large, φ̂∼̇N(φ, I11(Θ∗)),

where I11(Θ∗) is the (1, 1) element of [I(Θ∗)]−1. Thus, Riggs et al. (2009) inverted

the statistic Z = φ̂−φ√
I11(Θ∗)

∼ N(0, 1) to determine the Wald CI for φ, which is

φ̂± zα/2
√
I11(Θ∗), (4.6)

where zα/2 is the (1− α
2
)th quantile of the standard normal distribution. We remark

that this Wald CI is somewhat crude at times, providing bounds that are outside of

the support of φ; that is, for small values of φ, the Wald CI can have a lower bound

that is less than zero.

4.2.2 A Score CI for φ

Riggs et al. (2009) and Li (2009) derived a score CI using the double-sampling

procedure described in Section 4.2. An important difference when one is finding

the score CI compared to the Wald CI is that one needs Θ̂∗φ = (λ̂2φ, θ̂1φ, θ̂2φ)′, the

restricted MLE’s, for a given φ. Riggs et al. (2009) and Li (2009) both utilized the

EM algorithm to calculate these restricted MLE’s. Here, for a specific data set, we

use optimization and root-finding methods available in the computer software R to

calculate these values numerically. To construct the score CI, one determines the

score function, uφ

(
Θ̂∗φ

)
, which is the first derivative of the log-likelihood in (4.3)

taken with respect to φ. Then one evaluates this function with the restricted MLE’s.

Using the fact that the score statistic has the approximate distribution

[uφ(Θ̂∗φ)]2I11(Θ̂∗φ)∼̇χ2
1,
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where χ2
1 is the central chi-square distribution with one degree of freedom, we obtain

the score CI {
φ : [uφ(Θ̂∗φ)]2I11(Θ̂∗φ) ≤ χ2

(1,1−α)

}
,

where χ2
(1,1−α) is the (1−α)th quantile of the central chi-square distribution with one

degree of freedom.

4.2.3 An Integrated-Likelihood-Ratio CI for φ

We next consider the integrated-likelihood-ratio (ILR) CI for φ, the ratio of

two Poisson rate parameters. The motivation for this CI comes from Berger et al.

(1999) and Severini (2010) and we use the likelihood function (4.2) to determine the

integrated-likelihood function

LI(φ) =

∫ 1

0

∫ 1

0

∫ ∞
0

L(Θ∗|d)f(λ2, θ1, θ2|φ)dλ2dθ1dθ2. (4.7)

Here, we use f(λ2, θ1, θ2|φ) = g(λ2)h1(θ1)h2(θ2) as a weighting function for λ2, θ1,

and θ2, respectively. We let g(λ2) be a Gamma(0.001, 0.001) density function and let

hi(∗) be a Beta(1, 1) density function for i = 1, 2. In Section 4.8, we have derived a

closed-form for (4.7), which is

LI(φ) =
1

[(φ+ 1)(N0 +N) + 0.001]m01+m02+z1+z2+0.001

z1∑
i=0

z2∑
j=0

(
z1
i

)(
z2
j

)
φm01+i+j

×B (y01 + j + 1, m01 − y01 + i+ 1)

×B (y02 + z1 − i+ 1, m02 − y02 + z2 − j + 1) ,

(4.8)

where B(a, b) denotes a Beta function with parameters a and b. We recommend the

use of (4.8) because of its decreased computational complexity contrasted to (4.7).The

ILR CI is {
φ : −2 log

(
LI(φ)

LI(φ̂IL)

)
< χ2

(1,1−α)

}
, (4.9)
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where we find φ̂IL by maximizing LI(φ) over the parameter space of φ, and χ2
(1,1−α)

denotes the (1− α)th quantile of a central chi-square distribution with one degree of

freedom.

4.3 Monte Carlo Simulations

To compare and contrast the coverage properties and interval widths of the

Wald, score, and ILR CIs, we performed a simulation study for various sample sizes,

N0 and N . We performed seven separate simulations with the (N0, N) pairs (1, 2),

(1, 3), (2, 4), (2, 6), (3, 6), (3, 9), and (4, 8). For each simulation, we let λ1 vary from

1 to 8 by 1 while λ2 was fixed at 4; therefore, we let φ vary from 0.25 to 2.00 by 0.25.

Also, we assumed θ1 = θ2, which were allowed to vary from 0.05 to 0.95 by 0.05. Thus,

we examined 152 unique combinations of φ, θ1, and θ2 at each separate sample-size

pair (N0, N). We generated 10,000 simulated data sets for each parameter-sample-size

combination using the computer language R version 3.6.2.

In this first simulation, because of missing data issues, particularly with the

Wald and score intervals, we added 0.50 to the counts m01, m02, y01, or y02 when

those counts were zero. Figure 4.1 contains the coverage and interval-width results

for the simulation where N0 = 1 and N = 2. In particular, one can view the coverage

results for this simulation in Figure 4.1a and observe that the three CIs rarely obtained

approximately nominal coverage. The Wald CI consistently under-covered for larger

values of φ but over-covered when φ < 0.75. We see that the score and ILR CIs

had similar coverage properties. In particular, the score CI under-covered whenever

φ < 0.25 and θ1 = θ2 were marginal. In Figure 4.1b, we display the simulation

results for the interval widths. The Wald CI, on average, produced the narrowest

CIs, as one might expect, and the score CI had moderate interval widths while the

ILR CI produced the widest intervals. However, in the situations where the ILR CI

gave the widest interval width, we see in Figure 4.1a that the ILR CI over-covered
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(a) Heat map of coverage properties for Wald, ILR, and score CIs
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(b) Heat map of average interval widths for Wald, ILR, and score CIs

Figure 4.1. Coverage and average interval-width heat maps for the ratio of two Poisson
rate parameters for N0 = 1, N = 2, 0.25 ≤ φ ≤ 2.00, and 0.05 ≤ θ1, θ2 ≤ 0.95.

only slightly more than the score CI and had better coverage properties for several

parameter configurations, especially for the case where φ = 0.25.

Figure 4.2 shows the coverage and average interval-width simulation results for

N0 = 1 and N = 3. Here, we see much of the same behavior for the Wald CI as

in Figure 4.1, that is, large over-coverage when φ was small for considerable under-

coverage as φ approached 2 with 0.20 ≤ θi ≤ 0.80, θi = 1, 2. The ILR CI’s behavior

showed mostly slight over-coverage for values of φ, where 0.50 ≤ φ ≤ 1.25. However,

among the three CIs, the ILR demonstrated the best coverage for φ = 0.25. The

score CI also demonstrated slight over-coverage but slightly outperformed the ILR
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for moderate values of θ1 = θ2 and φ when φ ≥ 1.25. The average interval widths

shown in Figure 4.2b are shorter than those shown in Figure 4.1b. However, similar

patterns were observed; that is, the Wald CI provided the narrowest intervals while

the ILR and score CIs were comparable in average interval width with the ILR CI

typically being slightly wider.
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(a) Heat map of coverage properties for Wald, ILR, and score CIs
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(b) Heat map of average interval widths for Wald, ILR, and score CIs

Figure 4.2. Coverage and average interval-width heat maps for the ratio of two Poisson
rate parameters for N0 = 1, N = 3, 0.25 ≤ φ ≤ 2.00, and 0.05 ≤ θ1, θ2 ≤ 0.95.

In Figure 4.3, we find the coverage and average interval-width results for N0 =

2 and N = 4. Here, all three CIs began to show evidence of convergence to the

nominal coverage. The Wald CI still over-covered when φ ≤ 0.50 and under-covered
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for φ ≥ 1.00, but we see in Figure 4.2a that this coverage result was to a lesser

extent than in Figure 4.1a. Both the ILR and score CIs showed much more evidence

of approximately nominal coverage, with the ILR CI providing nearer-to-nominal

coverage than the score CI. We remark that fewer instances occurred of the score CI

achieving nominal coverage than for the ILR CI. For instance, when the ILR CI under-

covered, specifically when θ1 = θ2 = 0.50 and φ = 0.25, the score CI under-covered

for more values of θ1 = θ2 when φ = 0.25. Figure 4.2b also shows evidence that the

average interval widths of the three CIs became more similar to each other than those

observed in Figure 4.1, with the Wald CI still yielding the narrowest intervals while

often having less-than-nominal coverage.

Figure 4.4 displays the coverage properties for the remaining (N0, N) combina-

tions: {(2, 6), (3, 6), (3, 9), and (4, 8)}. When (N0, N) = (2, 6), we see that the Wald

CI continued the under-coverage that we observed in previous simulations. However,

when (N0, N) = (4, 8), the Wald CI’s began to yield closer-to-nominal coverage, albeit

still under-covering for most of the parameter configurations, and over-covering for

φ = 0.25 and 0.05 ≤ θ1, θ2 ≤ 0.95. We also see evidence that the score CI was some-

what conservative for the four sample-size pairs (N0, N), becoming less conservative

as the sample sizes increased. However, the score CI still over-covered for most param-

eter configurations. Meanwhile, the ILR CI demonstrated the best overall coverage

properties. Similar to its competitors, the ILR CI over-covered for extreme values of

θ1 = θ2, i.e., when θi < 0.25 and θi > 0.75, i = 1, 2, with φ < 0.10. However, the ILR

CI appears to consistently provide near-nominal coverage for most combinations of φ

and θ1 = θ2.

Figure 4.5 displays the average interval-width behavior of the three competing

CIs for (N0, N) ∈ {(2, 6), (3, 6), (3, 9), and (4, 8)}. When (N0, N) = (2, 6), we

observe that the Wald CI produced the narrowest CIs while the score CI and ILR CI

were comparable in terms of average widths, with the score CI often being slightly
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(b) Heat map of average interval widths for Wald, ILR, and score CIs

Figure 4.3. Coverage and average interval-width heat maps for the ratio of two Poisson
rate parameters for N0 = 2, N = 4, 0.25 ≤ φ ≤ 2.00, and 0.05 ≤ θ1, θ2 ≤ 0.95.

narrower than the ILR CI. However, as the sample sizes increased, the three CIs

began to converge to the same interval widths. When (N0, N) = (4, 8), we see what

appears to be very similar behavior for the CI widths among the three competing

CIs. Taking what we see here in consideration with the coverage properties visible in

Figure 4.4, we concluded that the ILR CI was comparable in width to the score CI

while also being, on average, less conservative. Moreover, the ILR CI demonstrated

closer-to-nominal coverage compared to the score CI coverage for many combinations

of φ and θi, i = 1, 2.
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Figure 4.4. Coverage heat maps for Wald, ILR, and score CIs of the ratio of two Poisson
rate parameters for (N0, N) ∈ {(2, 6), (3, 6), (3, 9), and (4, 8)} when 0.25 ≤ φ ≤ 2.00
and 0.05 ≤ θ1, θ2 ≤ 0.95.
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Figure 4.5. Average interval-width heat maps for Wald, ILR, and score CIs of the
ratio of two Poisson rate parameters for (N0, N) ∈ {(2, 6), (3, 6), (3, 9), and (4, 8)}
when 0.25 ≤ φ ≤ 2.00 and 0.05 ≤ θ1, θ2 ≤ 0.95.

54



4.4 A Real-Data Example

Next, we analyze data derived from Whittemore and Gong (1991) in order to

demonstrate the efficacy of the Wald, score, and ILR CIs for the ratio of two Poisson

rate parameters that follow a double-sampling scheme when counts are subject to

misclassification. The data are based on reports of death by cervical cancer in Eu-

ropean countries from 1969 to 1973. Though Whittemore and Gong observed data

from England and Wales, Belgium, France, and Italy, we will focus only on France

and Italy. We consider the information reported at the country level as the falli-

ble sample and the further investigation done by country-specific physicians as the

infallible sample.

We desire to estimate φ = λ1/λ2, where λ1 represents the rate of deaths by

cervical cancer in France and λ2 represents the same for Italy. For our situation, the

value of φ allows us to determine whether or not a statistically significant difference

exists between the rate of deaths in France and Italy. Table 4.1 shows the counts

for the fallible and infallible samples. The notation zi represents the count of deaths

from population i, i = 1, 2, from the fallible classifier. The notation m0i represents

the count of deaths from population i, i = 1, 2, that were correctly labeled by the

fallible classifier and confirmed by the infallible classifier. Finally, y0i represents the

count of deaths from population i, i = 1, 2, that were incorrectly labeled by the

fallible classifier and then correctly identified by the infallible classifier. Here, i = 1

represents deaths from France and i = 2 represents deaths from Italy. To emphasize

the performance of the Wald, score, and ILR CIs on small samples, we take the data

provided in Whittemore and Gong (1991) and, using a portion of the fallible sample

results, calculate the MLE’s for the original data set. We then use these MLE’s to

simulate the data provided in Table 4.2.

The three CIs based on the data given in Table 4.2 are displayed in Table 4.3.

We observe that each CI contains the value φ = 1, which corresponds to λ1 = λ2.
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Table 4.1. Original cervical cancer data with training sample size N0 = 2301 and
validation sample size N = 15, 246

Investigated Counts
Group Country Data Correct Misclassified
France z1 = 1117 m01 = 38 y01 = 15
Italy z2 = 839 m02 = 41 y02 = 9

Table 4.2. Simulated cervical cancer data with training sample size N0 = 2.301 and
validation sample size N = 15.246

Investigated Counts
Group Country Data Correct Misclassified
Injured z1 = 137 m01 = 17 y01 = 5
Uninjured z2 = 105 m02 = 26 y02 = 8

Because our CIs contain one, we found no evidence of a statistical difference between

the rate parameters of death by cervical cancer for French and Italian women at the

5% significance level. We also observe that all of the CIs were comparable in size.

However, the ILR CI was the narrowest.

Table 4.3. CIs and Interval Widths

Interval Lower End Point Upper End Point Width
Wald CI 0.304 1.193 0.889
score CI 0.416 1.274 0.858
ILR CI 0.568 1.335 0.767

4.5 Discussion

Here, we have derived an ILR CI for the ratio of two complementary Poisson

rate parameters and contrasted its efficacy to two other CIs for φ = λ1/λ2 using

data containing counts that are subjected to misclassification. To account for the

misclassified observations, we used a double-sampling scheme that provides us with
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both fallible and infallible samples with which we construct the CIs. We used Monte

Carlo simulations to examine the coverage and average interval-width properties of

each CI and to compare and contrast their individual performances for various sample

size and parameter configurations. We observed that the Wald CI typically provided

narrower intervals that tended to under-cover while the score and ILR CIs provided

similar coverage results. However, the ILR CI most consistently provided nominal

coverage results, and the score CI had slightly narrower average interval-widths. Fi-

nally, we observed that for a real-data example involving rates of death by cervical

cancer in France and Italy, the ILR CI gave the narrowest CI from among all of the

CIs considered here.
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4.6 Appendix: A Derivation of the Hessian Matrix from the Likelihood Function of

φ

Here, we derive the Hessian matrix, or the observed information matrix, for the

log-likelihood function (4.2) described in Section 4.2. We have

H :=



∂2l
∂φ2

∂2l
∂φ∂λ2

∂2l
∂φ∂θ1

∂2l
∂φ∂θ2

∂2l
∂λ2∂φ

∂2l
∂λ22

∂2l
∂λ2∂θ1

∂2l
∂λ2∂θ2

∂2l
∂θ1∂φ

∂2l
∂θ1∂λ2

∂2l
∂θ21

∂2l
∂θ1∂θ2

∂2l
∂θ2∂φ

∂2l
∂θ2∂λ2

∂2l
∂θ2∂θ1

∂2l
∂θ22


=



hφ hφλ2 hφθ1 hφθ2

hλ2φ hλ2 hλ2θ1 hλ2θ2

hθ1φ hθ1λ2 hθ1 hθ1θ2

hθ2φ hθ2λ2 hθ2θ1 hθ2


,

where

hφ = −m01

φ2
− z1(1− θ1)2

(θ2 + (1− θ1)φ)2
− z2θ

2
1

(1− θ2 + θ1φ)2
,

hφλ2 = −N −N0,

hφθ1 =
z1(1− θ1)φ

(θ2 + (1− θ1)φ)2
− z1
θ2 + (1− θ1)φ

− z2θ1φ

(1− θ2 + θ1φ)2
+

z2
1− θ2 + θ1φ

,

hφθ2 = − z1(1− θ1)
(θ2 + (1− θ1)φ)2

+
z2θ1

(1− θ2 + θ1φ)2
,

hλ2 = −m01 +m02 + z1 + z2
λ22

,

hλ2θ1 = 0,

hλ2θ2 = 0,

hθ1 = −m01 − y01
(1− θ1)2

− y01
θ21
− z1φ

2

(θ2 + (1− θ1)φ)2
− z2φ

2

(1− θ2 + θ1φ)2
,

hθ1θ2 =
z1φ

(θ2 + (1− θ1)φ)2
+

z2φ

(1− θ2 + θ1φ)2
,

and

hθ2 = −m02 − y02
(1− θ2)2

− y02
θ22
− z1

(θ2 + (1− θ1)φ)2
− z2

(1− θ2 + θ1φ)2

with hφλ2 = hλ2φ, hφθ1 = hθ1φ, hφθ2 = hθ2φ, hλ2θ1 = hθ1λ2 , hλ2θ2 = hθ2λ2 , and hθ1θ2 =

hθ2θ1 .
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4.7 Appendix: A Derivation of the Information Matrix from the Likelihood

Function of φ

Here, we derive Fisher’s Information Matrix associated with the log-likelihood

function given in (4.2). We have

I(φ) :=



−E
(
∂2l
∂φ2

)
−E

(
∂2l

∂φ∂λ2

)
−E

(
∂2l

∂φ∂θ1

)
−E

(
∂2l

∂φ∂θ2

)
−E

(
∂2l

∂λ2∂φ

)
−E

(
∂2l
∂λ22

)
−E

(
∂2l

∂λ2∂θ1

)
−E

(
∂2l

∂λ2∂θ2

)
−E

(
∂2l

∂θ1∂φ

)
−E

(
∂2l

∂θ1∂λ2

)
−E

(
∂2l
∂θ21

)
−E

(
∂2l

∂θ1∂θ2

)
−E

(
∂2l

∂θ2∂φ

)
−E

(
∂2l

∂θ2∂λ2

)
−E

(
∂2l

∂θ2∂θ1

)
−E

(
∂2l
∂θ22

)



=



iφ iφλ2 iφθ1 iφθ2

iλ2φ iλ2 iλ2θ1 iλ2θ2

iθ1φ iθ1λ2 iθ1 iθ1θ2

iθ2φ iθ2λ2 iθ2θ1 iθ2


,

where

iφ = −E
(
−m01

φ2
− z1(1− θ1)2

(θ2 + (1− θ1)φ)2
− z2θ

2
1

(1− θ2 + θ1φ)2

)
=
N0φλ2
φ2

+
(1− θ1)2N [φλ2(1− θ1) + λ2θ2]

(θ2 + (1− θ1)φ)2
+
θ21N [λ2(1− θ2) + φλ2θ1]

(1− θ2 + θ1φ)2

=
N0λ2
φ

+
(1− θ1)2Nλ2
θ2 + (1− θ1)φ

+
θ21Nλ2

1− θ2 + θ1φ
,

iφλ2 = −E (−N −N0)

= N +N0,

iφθ1 = −E
(

z1(1− θ1)φ
(θ2 + (1− θ1)φ)2

− z1
θ2 + (1− θ1)φ

− z2θ1φ

(1− θ2 + θ1φ)2
+

z2
1− θ2 + θ1φ

)
+
θ1φN [λ2(1− θ2) + φλ2θ1]

(1− θ2 + θ1φ)2
− N [λ2(1− θ2) + φλ2θ1]

1− θ2 + θ1φ

= − (1− θ1)φNλ2
θ2 + (1− θ1)φ

+Nλ2 +
θ1φNλ2

1− θ2 + θ1φ
−Nλ2

= − (1− θ1)φNλ2
θ2 + (1− θ1)φ

+
θ1φNλ2

1− θ2 + θ1φ
,

iφθ2 = −E
(
− z1(1− θ1)

(θ2 + (1− θ1)φ)2
+

z2θ1
(1− θ2 + θ1φ)2

)
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=
(1− θ1)Nλ2
θ2 + (1− θ1)φ

− θ1Nλ2
1− θ2 + θ1φ

,

iλ2 = −E
(
−m01 +m02 + z1 + z2

λ22

)
=

1

λ2
(N0φ+N0 +N [φ(1− θ1) + θ2 +N [(1− θ2) + φθ1])

=
(N0 +N)(φ+ 1)

λ2
,

iλ2θ1 = −E (0) = 0,

iλ2θ2 = −E (0) = 0,

iθ1 = −E
(
−m01 − y01

(1− θ1)2
− y01

θ21
− z1φ

2

(θ2 + (1− θ1)φ)2
− z2φ

2

(1− θ2 + θ1φ)2

)
=
N0φλ2 −m01θ1

(1− θ1)2
+
m01

θ1
+

φ2Nλ2
θ2 + (1− θ1)φ

+
φ2Nλ2

1− θ2 + θ1φ
,

iθ1θ2 = −E
(

z1φ

(θ2 + (1− θ1)φ)2
+

z2φ

(1− θ2 + θ1φ)2

)
= − φNλ2

θ2 + (1− θ1)φ
− φNλ2

1− θ2 + θ1φ
,

and

iθ2 = −E
(
−m02 − y02

(1− θ2)2
− y02

θ22
− z1

(θ2 + (1− θ1)φ)2
− z2

(1− θ2 + θ1φ)2

)
=
N0λ2 −m02θ2

(1− θ2)2
+
m02

θ2
+

Nλ2
θ2 + (1− θ1)φ

+
Nλ2

1− θ2 + θ1φ
,

with iφλ2 = iλ2φ, iφθ1 = iθ1φ, iφθ2 = iθ2φ, iλ2θ1 = iθ1λ2 , iλ2θ2 = iθ2λ2 , and iθ1θ2 = iθ2θ1 .
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4.8 Appendix: A Derivation of a Closed-Form Integrated-Likelihood-Function for φ

Here, we derive a closed-form integrated-likelihood-function kernel for the ratio

of two Poisson rate parameters under a double-sampling paradigm. We use the weight-

ing function f(λ2, θ1, θ2) = g(λ2)h1(θ1)h2(θ2), where g(λ2) is a Gamma(0.001, 0.001)

density function and hi(∗) is a Beta(1, 1) density function with i = 1, 2. Let d =

(z1, z2,m01,m02, y01, y02)
′ and Θ∗ = (φ, λ2, θ1, θ2)

′. Then,

LI(φ) =

∫ 1

0

∫ 1

0

∫ ∞
0

L(Θ∗|d)f(λ2, θ1, θ2|φ)dλ2dθ1dθ2

=

∫ 1

0

∫ 1

0

∫ ∞
0

L(Θ∗|d)g(λ2)h1(θ1)h2(θ2)dλ2dθ1dθ2

∝
∫ 1

0

∫ 1

0

∫ ∞
0

φm01λm01+m02+z1+z2
2 e−λ2(φ+1)(N0+N)[φ(1− θ1) + θ2]

z1

× [(1− θ2) + φθ1]
z2θy011 (1− θ1)m01−y01θy022 (1− θ2)m02−y02

× λ0.001−12 e−0.001λ2dλ2dθ1dθ2

=

∫ 1

0

∫ 1

0

∫ ∞
0

φm01λm01+m02+z1+z2+0.001−1
2 e−λ2[(φ+1)(N0+N)+0.001]

× [φ(1− θ1) + θ2]
z1 [(1− θ2) + φθ1]

z2θy011 (1− θ1)m01−y01

× θy022 (1− θ2)m02−y02dλ2dθ1dθ2

=
Γ(m01 +m02 + z1 + z2 + 0.001)φm01

[(φ+ 1)(N0 +N) + 0.001]m01+m02+z1+z2+0.001

×
∫ 1

0

∫ 1

0

[φ(1− θ1) + θ2]
z1 [(1− θ2) + φθ1]

z2

× θy011 (1− θ1)m01−y01θy022 (1− θ2)m02−y02dθ1dθ2

=
Γ(m01 +m02 + z1 + z2 + 0.001)φm01

[(φ+ 1)(N0 +N) + 0.001]m01+m02+z1+z2+0.001

×
∫ 1

0

∫ 1

0

θy011 (1− θ1)m01−y01θy022 (1− θ2)m02−y02

×
z1∑
i=0

(
z1
i

)
φi(1− θ1)iθz1−i2

z2∑
j=0

(
z2
j

)
(1− θ2)z2−jφjθj1dθ1dθ2

=
Γ(m01 +m02 + z1 + z2 + 0.001)φm01

[(φ+ 1)(N0 +N) + 0.001]m01+m02+z1+z2+0.001

z1∑
i=0

z2∑
j=0

(
z1
i

)(
z2
j

)
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× φi+j
∫ 1

0

∫ 1

0

θy01+j1 (1− θ1)m01−y01+iθy02+z1−i2 (1− θ2)m02−y02+z2−jdθ1dθ2

=
Γ(m01 +m02 + z1 + z2 + 0.001)φm01

[(φ+ 1)(N0 +N) + 0.001]m01+m02+z1+z2+0.001

z1∑
i=0

z2∑
j=0

(
z1
i

)(
z2
j

)
× φi+jB (y01 + j + 1, m01 − y01 + i+ 1)

×B (y02 + z1 − i+ 1, m02 − y02 + z2 − j + 1)

=
1

[(φ+ 1)(N0 +N) + 0.001]m01+m02+z1+z2+0.001

z1∑
i=0

z2∑
j=0

(
z1
i

)(
z2
j

)
φm01+i+j

×B (y01 + j + 1, m01 − y01 + i+ 1)

×B (y02 + z1 − i+ 1, m02 − y02 + z2 − j + 1) .
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