
ABSTRACT

Krylov Methods for Solving a Sequence of Large Systems of Linear Equations

Huy V. Nguyen, Ph.D.

Advisor: Ronald B. Morgan, Ph.D.

Consider solving a sequence of linear systems

A(i)x
(i) = b(i), i = 1, 2, ...

where A(i) ∈ Cn×n and b(i) ∈ Cn using some variations of Krylov subspace methods,

like GMRES. For a single system Ax = b, it is well-known that the eigenvectors of

the coefficient matrix A can be used to speed up the convergence of GMRES by

deflating the corresponding eigenvalues.

In this dissertation, we propose a deflation-based algorithm that utilizes the

eigenvalue and eigenvector information obtained from one system to improve the

convergence of GMRES for solving the subsequent systems. When the change in the

system is small enough, the algorithm will reuse the eigenvectors from the previous

system to deflate the small eigenvalues from the new system via a projection to

speed up convergence. When the change is significant enough that projection loses

effectiveness, the algorithm will recycle the eigenvectors from the previous system

by adding them to the new Krylov subspace, thus improving them so that they can

be suitable candidates for deflation once again. If the system has changed too much,

or the new system is completely unrelated to the previous system, the algorithm will

regenerate a new set of eigenvectors to help with deflation.

Krylov Methods for Solving a Sequence of Large Systems of Linear Equations

by

Huy V. Nguyen, B.S., M.S.

A Dissertation

Approved by the Department of Mathematics

Lance L. Littlejohn, Ph.D., Chairperson

Submitted to the Graduate Faculty of
Baylor University in Partial Fulfillment of the

Requirements for the Degree
of

Doctor of Philosophy

Approved by the Dissertation Committee

Ronald B. Morgan, Ph.D., Chairperson

John M. Davis, Ph.D.

Joseph Kuehl, Ph.D.

Frank H. Mathis, Ph.D.

Qin Sheng, Ph.D.

Accepted by the Graduate School
August 2015

J. Larry Lyon, Ph.D., Dean

Page bearing signatures is kept on file in the Graduate School.

Copyright c© 2015 by Huy V. Nguyen

All rights reserved

TABLE OF CONTENTS

LIST OF FIGURES vi

LIST OF TABLES vii

ACKNOWLEDGMENTS viii

1 Introduction 1

2 Preliminaries 3

2.1 Krylov Methods for Solving Linear Equations 3

2.1.1 Building Krylov Subspaces: The Arnoldi Algorithm 5

2.1.2 Extracting the Solution: Orthogonal Projections 6

2.1.3 Convergence of Krylov Methods: Eigenvalues and Polynomial 8

2.1.4 GMRES - Generalized Minimum Residual Method 9

2.2 Krylov Methods for Eigenvalue Problems 13

2.2.1 Rayleigh-Ritz Procedure . 13

2.2.2 Harmonic Rayleigh-Ritz Procedure 15

2.3 Improving the Convergence of GMRES using Eigenvectors 16

2.3.1 GMRES-E: Restarted GMRES with Eigenvectors 17

2.3.2 GMRES-DR: GMRES with Deflated Restarting 23

3 Solving a Sequence of Systems of Linear Equations 31

3.1 Same Matrix, Changing Right-hand Sides 31

3.2 Changing Matrices, Changing Right-hand Sides 32

3.2.1 Reusing Eigenvectors with GMRES-Proj 32

3.2.2 Recycling Eigenvectors with GMRES-E 38

3.2.3 Regenerating New Eigenvectors with GMRES-DR 44

iv

3.2.4 Combined Algorithm: GMRES-RRR 46

3.2.5 Numerical Results . 53

4 Comparing GMRES-RRR to Subspace Recycling 64

4.1 Implementation of GCRO-DR . 64

4.2 Numerical Results . 66

4.3 Some Analysis of Subspace Recycling 70

5 Further Considerations and Challenges 73

5.1 Considerations . 73

5.2 Challenges . 75

6 Conclusion and Future Work 76

BIBLIOGRAPHY 77

v

LIST OF FIGURES

2.1 Visualizing the Arnoldi relations. 6

2.2 Comparing the convergence of GMRES(25) and GMRES(400). 12

2.3 GMRES-E(25,10) vs GMRES(25) and GMRES(400). 24

2.4 GMRES-DR(25,10) vs GMRES(25) and GMRES(400). 30

3.1 GMRES-DR (top) vs GMRES-DR/GMRES-Proj (bottom). 33

3.2 GMRES-DR (top) vs GMRES-DR/G-Proj (bottom). 36

3.3 GMRES-E(recycled)(25,10) (top) vs GMRES-DR(25,10)(bottom). . . 47

3.4 Eigenresiduals of GMRES-E(recycled)(top) and GMRES-DR(bottom). 49

3.5 Eigenresiduals of GMRES-E(recycled)(top) and GMRES-DR(bottom). 50

3.6 Eigenresiduals at the beginning of each linear system. 58

3.7 GMRES-RRR(25,10) and GMRES-RRR(25,15). 62

vi

LIST OF TABLES

2.1 Smallest ten and largest two eigenvalues of A 11

3.1 Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 1.0e− 6 35

3.2 Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 1.0e− 5 37

3.3 Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 1.0e− 5 39

3.4 Residual norms of the 10 approximate eigenvectors 45

3.5 Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 1.0e− 2 48

3.6 Some eigenvalue of A(3) . 51

3.7 Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 1.0e− 2 52

3.8 Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 1.0e− 5 55

3.9 Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 4.0e− 5 57

3.10 Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 4.0e− 5 60

3.11 Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 1.0e− 2 63

4.1 Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 1.0e− 5 67

4.2 Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 4.0e− 5 68

4.3 Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 1.0e− 2 69

vii

ACKNOWLEDGMENTS

I would like to thank the Department of Mathematics at Baylor University for

the generous financial support, and for the invaluable opportunity to learn from

some of the very best in the field. Special thanks to Dr. Lance Littlejohn and Dr.

Qin Sheng for introducing me to the possibility of a career in mathematics, and for

inspiring me to become a math major as an undergraduate.

To Dr. Ronald B. Morgan, words cannot express my deepest gratitude. You

have been more than a mentor, an advisor, and a teacher to me. Thank you for

giving me the privilege to learn from you, for showing me how to aim higher, work

harder, and persevere; thank you for your countless number of advice and your

inexhaustible amount of patience; and most importantly, thank you for believing in

me. I could not have done this without you.

To my previous teaching mentors – Dr. Ed Oxford and Dr. Jonatan Lenells

– thank you for your guidance during my early teaching career. To the members

of the dissertation committee, thank you for your extremely helpful feedback and

suggestions. To Dr. Mark Sepanski, Dr. John Davis, Dr. Klaus Kirsten, and Dr.

Robert Kirby, thank you for challenging me to push myself beyond the edge of my

abilities. To the wonderful secretaries – Mrs. Dees, Mrs. Massey, and Mrs. Salinas

– thank you for all of your hard work and your kindness.

Lastly, I would like to thank my family – especially my mother, my brother,

and my grandparents – for their love and constant support. To all of my friends and

the brothers of Kappa Kappa Psi - Beta Alpha, thank you for making my journey

at Baylor University an absolutely extraordinary experience.

viii

CHAPTER ONE

Introduction

Differential Equations are arguably some of the greatest tools we have to model

our natural world, from physics, to neuroscience, to finance, and to various fields

of engineering. The solutions to these equations offer great insights into how each

process works. However, finding exact, analytic solutions to differential equations

is often difficult, and sometimes impractical if we need to use them for any ac-

tual computations. In those cases, we turn to numerical solutions. The idea is to

convert a continuous problem into a discrete problem whose solutions can be good

approximations to the analytic solutions of the continuous problem. This is called

a discretization process. There are many different ways to discretize a differential

equation such as Finite Difference or Finite Elements. In most cases, they end up

requiring the solution of a system of linear equations, sometimes many systems of

linear equations. In order to achieve high accuracy, a large number data points are

usually used, which results in very large systems of linear equations.

There are many methods developed to solve systems of linear equations: from

direct solvers like Gaussian Elimination to classical iterative solvers like Jacobi

method. For very large systems of linear equations, some of the most popular choices

belong to a class of iterative methods called Krylov subspace methods, including:

CG, BGC, FOM, GMRES, QMR, BICGSTAB, TFQMR... In Chapter Two, we

mainly focus on variations of GMRES – the Generalized Minimum Residual Method.

We will describe the algorithm for GMRES and include some convergence analysis to

show how eigenvalues affect the convergence of GMRES for solving linear equations.

We discuss the negative impact of having small eigenvalues and demonstrate how to

address that issue via two deflation-based approaches: GMRES-E and GMRES-DR.

1

We also briefly show two procedures to compute eigenvalues and eigenvectors while

solving the linear equations.

In Chapter Three, we show an approach of reusing eigenvectors from one

system to speed up the convergence of GMRES for solving systems with the same

coefficient matrix and multiple right-hand sides called GMRES-Proj. When the

matrix and the right-hand side are both changing from one system to the next, we

use an updated version of GMRES-E that has the capability to recycle eigenvectors

from a previous system to make them more suitable for deflation in the current

system. We call this GMRES-E(recycled).

We combine GMRES-Proj, GMRES-E(recycled), and GMRES-DR into a new

algorithm, GMRES-RRR, that can efficiently solve a sequence of linear systems,

switching between methods to take full advantage of what each method does best:

GMRES-Proj to reuse the eigenvectors, GMRES-E(recycled) to recycle the eigen-

vectors, and GMRES-DR to regenerate new eigenvectors. We also provide some

guidelines to help the user choose the switching conditions. We provide numerical

results to demonstrate the effectiveness of the new algorithm.

In Chapter Four, we compare GMRES-RRR to one of the more standard ap-

proaches of subspace recycling, GCRO-DR, to show that GMRES-RRR can perform

just as competitively, and sometimes with a slight advantage due to its speed and

simple implementation.

In Chapter Five, we discuss some further considerations based on previous

work. We also mention some challenges that GMRES-E(recycled) may face, and

offer some suggestions for improvement.

2

CHAPTER TWO

Preliminaries

2.1 Krylov Methods for Solving Linear Equations

There are many well-known methods for computing the solution of a system of

linear equations of the form Ax = b. For a reasonably small matrix, a direct solver,

such as Gaussian Elimination, can be applied; however, as the size of the matrix

increases, the computational cost also increases. When using a direct solver becomes

impractical, one must employ an iterative method, where one chooses and initial

guess, computes an approximation, checks the accuracy, and repeats if necessary.

Some of the classical iterative methods include Jacobi, Gauss-Seidel, and Successive-

Over-Relaxation Methods [26].

Each of these methods has its own disadvantages and limitations, such as slow

convergence often seen in Jacobi method. The negative impacts of these disadvan-

tages become even more significant as the size of the systems increases. To avoid

the some of the shortcomings of classical iterative methods, especially for very large

systems, many new methods were developed. Some of the most popular choices

belong to a class of iterative methods called Krylov Subspace Methods, named after

the Russian mathematician, Alexei Krylov.

The basis of these methods comes from the idea that the approximate solution

to the system of linear equations Ax = b can be found in a Krylov subspace of the

form

Km(A, b) = span{b, Ab,A2b, A3b, ..., Am−1b} (2.1)

which is sometimes referred to as a search subspace of dimension m. The most

simplistic algorithm for solving Ax = b using a Krylov Method can be described in

Algorithm 2.1.

3

Algorithm 2.1 Basic Krylov Method for solving Ax = b

1: Choose a value for m.
2: Form the Krylov Subspace of dimension m: Km(A, b).
3: Extract the approximate solution x̂ from the subspace.
4: Check for convergence, if satisfied then stop, else increase m and go to 2.

As the size of the subspace, m, increases, the cost to build the subspace in-

creases by at least O(m2n), and the memory cost increases by O(mn) [26]. One

way to address this issue is to fix a relatively small value for m and use a restarted

version, as described in Algorithm 2.2.

Let x0 be the initial guess, and the initial residual vector is r0 = b − Ax0,

for implementation purposes, instead of solving Ax = b, we will solve the recast

problem:

b− Ax0 = r0

Ax− Ax0 = r0

A(x− x0) = r0

which results in a Krylov subspace of the form

Km(A, r0) = span{r0, Ar0, A2r0, ..., A
m−1r0} (2.2)

from which xm ∈ Km(A, r0), the approximate solution to the recast problem A(x−

x0) = r0, can be extracted and used to find x̂ = x0 + xm, the approximate solution

to the original problem Ax = b.

Algorithm 2.2 Restarted Krylov Method for Solving Ax = b

1: Choose an initial guess x0 and a value for m.
2: Compute r0 = b− Ax0.
3: Form the Krylov Subspace Km(A, r0).
4: Extract xm from Km(A, r0) and compute x̂ = x0 + xm.
5: Check for convergence, if satisfied, then stop, else set x0 = x̂, and go to 2.

The details on how to form the Krylov subspace and how to extract the ap-

proximate solution will be given in the following sections.

4

2.1.1 Building Krylov Subspaces: The Arnoldi Algorithm

The Arnoldi algorithm [1] builds an orthogonal basis for the Krylov subspace,

Km(A, r0). We will use the Modified Gram-Schmidt version, which is more reliable

than the basic version in the presence of round-off error [26].

Algorithm 2.3 Arnoldi with Modified Gram-Schmidt

1: Choose a vector v1 of norm 1.
2: for j = 1, 2, ...,m do
3: Compute w = Avj
4: for i = 1, 2, ..., j do
5: hij = (w, vi)
6: w = w − hijvi
7: end for
8: hj+1,j = ||w||. If hj+1,j = 0, Stop.
9: vj+1 = w/hj+1,j

10: end for

This algorithm produces an orthonormal basis Vm = [v1, v2, ..., vm] forKm(A, r0)

and an upper Hessenberg matrix Hm ∈ Cm×m, whose entries below the first subdiag-

onal are zeros. The non-zero entries are the scalars hi,j from the Arnoldi iterations.

Let Hm ∈ C(m+1)×m be given by

Hm =

 Hm

hm+1,me
T
m


The resulting matrices satisfy the following relations:

AVm = Vm+1Hm (2.3)

Hm = V ∗mAVm (2.4)

which are sometimes referred to as the Arnoldi relations.

The following Figure 2.1 illustrates the structures and sizes of the matrices

produced by the Arnoldi iterations.

5

Figure 2.1: Visualizing the Arnoldi relations.

2.1.2 Extracting the Solution: Orthogonal Projections

Next, the method needs to find a vector xm ∈ Km(A, r0) such that the norm

of the residual vector will be minimized. In order to achieve this, we will utilize the

concept of orthogonal projections.

Definition 2.1. Given any vector b ∈ Cn and a subspace S, b̂ ∈ S is an orthogonal

projection of b onto S if and only if (b− b̂) ⊥ S.

Proposition 2.1. If b̂ is orthogonal projection of b onto S, then

||b− b̂|| = min
s∈S
||b− s|| (2.5)

for all s ∈ S.

Proof. Let s be any vector of S. Consider the norm squared

||b− s||2 = ||b− b̂+ b̂− s||2

6

For cleanliness, let u = b − b̂ and v = b̂ − s. Note that since u ⊥ S and v ∈ S, we

have u∗v = v∗v = 0.

||b− s||2 = ||u+ v||2

= (u+ v)∗(u+ v)

= u∗u+ u∗v + v∗u+ v∗v

= ||u||2 + 0 + 0 + ||v||2

= ||b− b̂||2 + ||b̂− s||2

Since ||b̂− s||2 ≥ 0, we have

||b− s||2 ≥ ||b− b̂||2, for all s ∈ S

In other word,

||b− b̂|| = min
s∈S
||b− s||

By the above proposition, in order to minimize the norm of the residual vector

r = r0 − Axm, the vector Axm must be the orthogonal projection of r0 onto the

space AKm(A, r0), which also means r ⊥ AKm(A, r0). Since the columns of Vm form

an orthonormal basis for Km(A, r0), we can write xm = Vmd for some d ∈ Cm. Also,

recall from the Arnoldi Algorithm 2.3 that v1 = r0/||r0||, we have:

r ⊥ AKm(A, r0)

(AVm)∗r = 0

(AVm)∗(r0 − Axm) = 0

(Vm+1Hm)∗Axm = (Vm+1Hm)∗r0

H∗mV
∗
m+1Vm+1Hmd = H∗mV

∗
m+1||r0||v1

H∗mHmd = H∗m||r0||e1

7

Let β = ||r0||, solving the normal equation

H∗mHmd = H∗m||r0||e1

is equivalent to solving

min
d∈Cm

||βe1 −Hmd||

It follows that in order to find xm ∈ Km(A, r0) that minimizes the norm of the

residual vector, the method will need to find d ∈ Cm, the solution to the (m+1) by m

least-square problem mind∈Rm ||βe1−Hmd||, which can be solved using an orthogonal

factorization of H. This is a much smaller problem compared to the original problem

as illustrated in Figure 2.1.Furthermore, since Hm is already upper-Hessenberg, it

is rather inexpensive to transform it to upper-triangular form [26].

2.1.3 Convergence of Krylov Methods: Eigenvalues and Polynomial

In order to monitor the convergence of Krylov Methods for solving linear sys-

tems, we look at the norm of the residual vector r given by

r = r0 − Axm

where xm ∈ span{r0, Ar0, A2r0, A
3r0, ..., A

m−1r0} is the approximate solution to the

recast problem A(x− x0) = r0, which can be written as a linear combination of the

vectors in the Krylov Subspace

xm =
m−1∑
i=0

ciA
ir0

Let p(α) =
m−1∑
i=0

ciα
i be a polynomial of degree m− 1 or less, then

xm = p(A)r0

Define q(α) = 1− αp(α), then

r = r0 − Axm = r0 − Ap(A)r0 = (I − Ap(A))r0 = q(A)r0

8

where q(α) is a polynomial of degree m or less and q(0) = 1. Suppose A has

eigenvalues {λ1, λ2, ..., λn} and eigenvectors {z1, z2, ..., zn}, the right-hand side r0

can be expanded in terms of the eigenvectors

r0 =
n∑

j=1

βjzj

As a result, the residual vector can be viewed as

r = q(A)r0 =
n∑

j=1

βjq(A)zj =
n∑

j=1

βjq(λj)zj (2.6)

In order for the norm of the residual vector to be small, q(α) must be small at each

λj for j = 1, 2, ..., n. Since q(0) = 1, this is essentially using q(α) to interpolate n+1

points. Hence, when the degree of q(α) is n, the method is guaranteed to converge

because q(α) will be able to go through each λj, i.e. q(λj) = 0 for all j, thus makes

||r|| = 0. However, having such a high-degree polynomial corresponds to building a

large Krylov subspace, which can be impractical. As a result, for the most part, m

must remain relatively small, which means certain matrices will have spectra with

favorable properties that would result in fast convergence, and certain spectra would

cause slow, or no convergence. Some of the main causes for slow convergence include:

matrices that have very (relatively) small eigenvalues, and matrices that have both

positive and negative eigenvalues

The formulation of the residual vector in (2.6) gives insight to how the eigen-

values of A affect the convergence of Krylov methods, which provides guidelines to

some of the later methods that seek to improve the convergence.

2.1.4 GMRES - Generalized Minimum Residual Method

There are many variations of Krylov subspace methods for solving a system of

linear equations. For instance, in the Arnoldi algorithm, instead of Gram-Schmidt,

some methods use Householder transforms to create the orthonormal basis. Instead

of restarting, some methods use a truncation approach to avoid running out of

9

storage [26]. Different implementations result in different methods. For the scope of

this dissertation, we will focus on restarted variations of the Generalized Minimum

Residual Method (GMRES for short) that use the Modified Gram-Schmidt version

of the Arnoldi Algorithm.

Algorithm 2.4 Restarted GMRES

1: Choose x0.
2: Compute r0 = b− Ax0. Let v1 = r0/||r0||, and β = ||r0||.
3: for j = 1, 2, ...,m do
4: Compute w = Avj
5: for i = 1, 2, ..., j do
6: hij = (w, vi)
7: w = w − hijvi
8: end for
9: hj+1,j = ||w||. If hj+1,j = 0, set m = j and go to 12.

10: vj+1 = w/hj+1,j

11: end for
12: Define the (m + 1) ×m Hessenberg matrix Hm whose entries are the hij from

the Arnoldi iteration.
13: Compute d that minimizes ||βe1 −Hmd||.
14: Update the approximate solution x̂ = x0 + Vmd
15: Check for convergence. If satisfied, then Stop, else set x0 = x̂ and go to 2.

Example 2.1. Effect of Small Eigenvalues - To demonstrate the ill-effect of small

eigenvalues on restarted GMRES. Consider solving a 500 by 500 linear system

with A = tridiag(−1, 2,−1) and b is a random vector using GMRES(25) and GM-

RES(400). 

2 −1

−1 2 −1

−1 2 −1

.

−1 2 −1

−1 2





x1

x2

x3
...

x499

x500


=



b1

b2

b3
...

b499

b500



10

We choose this particular matrix because it has many relatively small eigen-

values. Table 2.1 shows the smallest 10 eigenvalues compared to the 2 largest in

magnitude. The condition number is κ =
λ500
λ1
≈ 1.02× 105.

Table 2.1: Smallest ten and largest two eigenvalues of A

Sorted Eigenvalues of A in Order of Magnitude
λ1 0.00003932084757
λ2 0.0001572818442
λ3 0.0003538783514
λ4 0.000629102639
λ5 0.0009829438849
λ6 0.001415388176
λ7 0.001926418508
λ8 0.002516014786
λ9 0.003184153828
λ10 0.003930809361
...

...
λ499 3.999842718
λ500 3.999960679

Recall how the residual vector can be expressed as a polynomial q(α) of degree

m (2.6). Since q(0) must be 1 and q(λi) needs to be small for each i, having λ1 so

close to 0 while the rest of the eigenvalues so spread out requires the polynomial to

have a high enough degree in order to be effective. Since the degree of the polynomial

is fixed in restarted methods, even though GMRES(25) will find the best degree 25

polynomial to minimize the norm of the residual vector at the end of each cycle, it is

simply not good enough, which results in a very slow convergence rate. On the other

hand, GMRES(400) uses a large enough subspace that it is able to reach convergence.

Figure 2.2 demonstrate the difference between the convergence of GMRES(25) and

GMRES(400). However, m = 400 relatively close to the actual size of the original

problem, n = 500, which can be impractical especially if n is very large.

11

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Matrix−Vector Products

R
e
s
id

u
a
l
N

o
rm

s

GMRES(25)

GMRES(400)

Figure 2.2: Comparing the convergence of GMRES(25) and GMRES(400).

12

2.2 Krylov Methods for Eigenvalue Problems

Before showing how eigenvalues and eigenvectors can help improving the con-

vergence of GMRES, we will briefly discuss a few approaches to extract the approx-

imate eigenvalues and eigenvectors of a matrix from a Krylov subspace.

2.2.1 Rayleigh-Ritz Procedure

In general, given a matrix A ∈ Cn×n and a subspace K of dimension m, we

want to find a vector yi ∈ K and some θi ∈ C such that θi and yi are approximations

of λi and zi, respectively, where (λi, zi) is an eigenpair of A, i.e. Azi = λizi.

Define the residual of an eigenvector

ri = Ayi − θiyi (2.7)

In order for (θi, yi) to be a good approximation as an eigenpair of A, the norm of ri

must be small. Using the technique of orthogonal projection, as shown in Proposition

2.1, we see that ||Ayi − θiyi|| is minimized when

(Ayi − θiyi) ⊥ K (2.8)

Let V ∈ Cn×m be a matrix whose columns form an orthonormal basis of K, then we

can write yi = V gi for some gi ∈ Cm and

V ∗(Ayi − θiyi) = 0

V ∗AV gi − θiV ∗V gi = 0

V ∗AV gi = θigi

Define Hm = V ∗AV , it follows that (θi, gi) is an eigenpair of Hm. So, in order to

find approximate eigenvectors of A from the subspace K, all we have to do is solve

the eigenvalue problem

Hmg = θg

13

This is a much easier problem since Hm is an m by m matrix, which is relatively small

compared to A. Once we have found θi’s and gi’s, the eigenvalues and eigenvectors of

Hm, we can get θi’s and yi = V gi’s, approximate eigenvalues and approximate eigen-

vectors of A. θi’s and yi’s are also called Ritz values and Ritz vectors, respectively.

This is essentially the idea behind the Rayleigh-Ritz procedure in Algorithm 2.5.

When used in conjunction with a Krylov method, such as GMRES, the orthonormal

basis, the matrices V and Hm are already available from the Arnoldi iteration, which

allows approximate eigenvalues and eigenvectors to be computed without incurring

much additional expenses.

Algorithm 2.5 Rayleigh-Ritz Procedure

1: Find an orthonormal basis {v1, v2, ..., vm} for K.
2: Let V = [v1v2...vm].
3: Form the matrix H = V ∗AV
4: Find θi’s and gi’s, the eigenvalues and eigenvectors of H
5: θi’s and yi = V gi’s are approximate eigenvalues and eigenvectors of A

Without going into much details, we will show that in general, if the subspace

K contains an exact eigenvector, the Rayleigh-Ritz procedure will extract it.

Proposition 2.2. Suppose z1 is an eigenvector of A with corresponding eigenvalue λ1.

If z1 ∈ K, then one of the Ritz pairs produced by the Rayleigh-Ritz procedure will be

(λ1, z1).

Proof. Let V = [v1v2...vm] be the matrix whose columns form an orthonormal basis

for K where v1 = z1 and ||z1|| = 1. Consider the matrix H in the Rayleigh-Ritz

procedure

H = V ∗AV =



v∗1Av1 v∗1Av2 ... v∗1Avm

v∗2Av1 v∗2Av2 v∗2Av3 ... v∗2Avm

v∗3Av1 v∗3Av2 v∗3AV3 ... v∗3Avm
...

...
...

...
...

v∗mAv1 v∗mAv2 v∗mAm


14

Consider the entries of the first column of H

h11 = v∗1Av1 = z∗1Az1 = z∗1(λ1z1) = λ1z
∗
1z1 = λ1

hi1 = v∗iAv1 = v∗iAz1 = v∗i (λ1z1) = λ1v
∗
i v1 = 0 for i = 2, ...,m.

So, H actually looks like

H =



λ1 ∗ ∗ ... ∗

0 ∗ ∗ ... ∗

0 ∗ ∗ ... ∗
...

...
...

...
...

0 ∗ ∗ ... ∗


Denote the length m vector e1 = (1 0 0 ... 0)T , we see that

He1 = λ1e1

which means λ1 is an eigenvalue of H with corresponding eigenvector e1. The

Rayleigh-Ritz procedure yields λ1 as the Ritz value of A with corresponding Ritz

vector V e1 = v1 = z1.

2.2.2 Harmonic Rayleigh-Ritz Procedure

The Rayleigh-Ritz procedure is generally more reliable at extracting exterior

eigenvalues [21] but not for interior eigenvalues [11], which we might need in order

to speed up the convergence of GMRES. To compute interior eigenvalues, we will

use a modified version of the Rayleigh-Ritz procedure that can extract approximate

eigenvalues near any given value σ. Let V be the matrix whose columns span the

subspace K from which approximate eigenvectors are to be extracted. The modified

procedure solves the eigenvalue problem

V ∗(A− σI)∗V g =
1

θ̃ − σ
V ∗(A− σI)∗(A− σI)V g (2.9)

15

for eigenpairs

(
1

θ̃i − σ
, (A− σI)V gi

)
’s of the matrix (A − σI)−1. These, in turns,

will give the corresponding eigenpairs
(
θ̃i, (A− σI)V gi

)
of the matrix A [11].

Note that (A− σI)V gi is equivalent to V gi for each i since

A
(
(A− σI)V gi

)
= θ̃i(A− σI)V gi

(A− σI)−1A(A− σI)V gi = θ̃i(A− σI)−1(A− σI)V gi

(A− σI)−1(A2 − σA)V gi = θ̃iV gi

(A− σI)−1(A− σI)AV gi = θ̃iV gi

A(V gi) = θ̃i(V gi)

which shows that V gi’s are also approximate eigenvectors of A corresponding to θ̃i’s.

This is called the harmonic Rayleigh-Ritz procedure for finding interior eigen-

values near σ in [20]. θ̃i’s are the harmonic Ritz values, and V gi’s are the corre-

sponding harmonic Ritz vectors.

Since the slow convergence of GMRES is often caused by eigenvalues that are

very (relatively) small in magnitude, i.e. they are located near 0. In order to compute

those for use in deflation, we will apply the harmonic Rayleigh-Ritz procedure with

σ = 0. The problem in (2.9) becomes

V ∗A∗V g =
1

θ̃
V ∗A∗AV g (2.10)

We will use similar versions of the harmonic Rayleigh-Ritz procedure in the

next sections. Furthermore, we will include better formulas to yield more favorable

results in terms of accuracy and implementation.

2.3 Improving the Convergence of GMRES using Eigenvectors

As shown in Example 2.1, having unfavorable eigenvalues could have a signif-

icantly negative impact on the convergence of restarted GMRES. To address this

problem, one approach is to use a preconditioner [2, 3, 6, 9, 10, 25, 29] , which

16

effectively changes the spectrum and avoids having tough eigenvalues. Another ap-

proach is to eliminate – or to deflate – the unfavorable eigenvalues by adding the

corresponding approximate eigenvectors into the Krylov subspace [12] [14]. Combi-

nations of preconditioning and deflating are also possible. In this dissertation, we

will focus only on deflation by adding approximate eigenvectors into the subspace.

2.3.1 GMRES-E: Restarted GMRES with Eigenvectors

Developed by Ronald B. Morgan in 1995, the restarted GMRES method aug-

mented with eigenvectors (or GMRES-E) attempts to reduce the negative effect of

restarting and of having small eigenvalues by adding approximate eigenvectors into

the Krylov subspace [12]. Since the approximate eigenvalues and eigenvectors can

be computed from the same Krylov subspace generated during GMRES using the

Arnoldi method for eigenvalues [1, 23], this can be built into the algorithm without

incurring much additional expenses. Furthermore, it can be shown that adding a

converged eigenvector to the subspace will effectively eliminate the corresponding

eigenvalue from the spectrum, in other word, that eigenvalue is deflated.

The Krylov subspace generated by GMRES-E(m,k) is

K(m,k)(A, r0) = span{r0, Ar0, A2r0, ..., A
m−k−1r0, ỹ1, ỹ2, ...ỹk} (2.11)

where m is the size of the subspace, and ỹ1, ỹ2, ...ỹk are approximate eigenvectors

associated with the k smallest eigenvalues. Even though this subspace does not

have the form of a general Krylov subspace like (2.1), it is a Krylov subspace when

ỹ1, ỹ2, ...ỹk are computed as harmonic Ritz vectors [13].

Implementation of GMRES-E. The implementation for GMRES-E is quite

simple. Let m be the dimension of the Krylov subspace, and k be the number

of approximate eigenvectors used. The algorithm will generate a matrix Wm ∈

Cn×(m) whose first m−k columns are orthonormal Arnoldi vectors, and whose last k

vectors are the approximate eigenvectors, and a matrix Vm+1 ∈ Cn×(m+1) whose first

17

m− k+ 1 columns are the Arnoldi vectors, and whose last k columns are formed by

orthonormalizing the vectors Aỹi, for i = 1, 2, ..., k against the previous columns of

Vm+1, which results in the following Arnoldi recurrence:

AWm = Vm+1Hm (2.12)

where Hm is an (m+ 1) by (m) upper-Hessenberg matrix.

The minimum residual solution can be calculated the same way as for standard

GMRES. Let β = ||r0||, find d ∈ Cm that minimizes ||βe1 − Hmd||, then compute

the approximate solution

x̂ = x0 +Wmd (2.13)

In order to extract the approximate eigenvectors from the subspace, since we

want to find good approximations to the smallest eigenvalues that are responsible

for the slow convergence of restarted GMRES, we will use a harmonic version of the

Rayleigh-Ritz procedure in [13] to solve the reduced (m+ k) by (m+ k) generalized

eigenvalue problem

W ∗A∗Wgi =
1

θ̃i
W ∗A∗AWgi (2.14)

Using the Arnoldi recurrence (2.12), the (2.14) problem becomes

H∗mgi =
1

θ̃i
H∗mHmgi (2.15)

which makes the implementation a bit easier since the entries of Hm have already

been computed from the Arnoldi process. Another possibly better way [20] is to

solve

(Hm + h2m+1,mH
−∗
m eme

∗
m)gi = θ̃igi (2.16)

Only the gi’s associated with the k largest values of
1

θ̃i
’s (or k smallest har-

monic Ritz values θ̃i’s) are needed, which in turn give the approximate eigenvectors,

18

Algorithm 2.6 GMRES-E

1: Compute r0 = b−Ax0. Run one cycle of GMRES(m) and compute k harmonic
Ritz vectors: ỹ1, ỹ2, ..., ỹk.

2: Generate the Arnoldi basis Vm−k+1, and the matrix Hm−k.
3: Let W (:, 1 : m− k) = Vm−k, and W (:,m− k + 1 : m) = [ỹ1, ỹ2, ..., ỹk]
4: for j = m− k + 1 : m do
5: Compute w = Awj

6: for i = 1, 2, ..., j do
7: hij = (w, vi)
8: w = w − hijvi
9: end for

10: hj+1,j = ||w||.
11: vj+1 = w/hj+1,j

12: end for
13: Let β = ||r0||. Compute d that minimizes ||βe1 −Hmd||.
14: Update the approximate solution x̂ = x0 +Wmd
15: Check for convergence, if satisfied, then Stop, else set x0 = x̂, and r0 = b− Ax̂.
16: Solve (Hm + h2m+1,mH

−∗
m eme

∗
m)gi = θ̃igi for gi’s.

17: Form the new approximate eigenvectors ỹi = Wmgi, then go to Step 2.

in the form of harmonic Ritz vectors ỹi = Wmgi , that can be added to the subspace

to help with deflation.

Analysis of GMRES-E. The reason GMRES-E works so well is due to the fact

that not only that the subspace (2.11) is a Krylov subspace, it also contains smaller

Krylov subspaces with each ỹi as the starting vector

span{ỹi, Aỹi, A2ỹi, ..., A
m−1ỹi}

which allows each approximate eigenvector to be improved as the algorithm pro-

gresses until they are accurate enough to deflate the corresponding eigenvalue. Let

the approximate solution to the linear system is x̂ = x0 + Wmd and the approxi-

mate eigenvectors are ỹi = Wgi for i = 1, 2, ..., k as generated by GMRES-E(m,k).

Suppose the residual vector of the linear equations is given by

r = b− Ax̂

and the residuals of the eigenvectors (sometimes called the eigenresidual vectors)

19

are defined as

ri = Aỹi − θ̃iỹi, for each i = 1, ..., k

then r and ri’s are multiples of each other. In other word, ri = γir for some γ ∈ R

[13]. We use the residual norms of the eigenvectors (or eigenresidual norms) to

monitor the accuracy of the approximate eigenvectors.

Proposition 2.3. The subspace generated by GMRES-E is a Krylov subspace. i.e.

span{r0, Ar0, A2r0, ..., A
m−k−1r0, ỹ1, ỹ2, ...ỹk} = span{s, As,A2s, ..., Am−1s}

for some vector s. Furthermore, it contains Krylov subspaces with each ỹi as the

starting vector.

Proof. For simplicity, we will show that span{r0, Ar0, ỹi} = span{ỹi, Aỹi, A2ỹi},

where r0 is the new residual obtained from the end of the previous cycle

r0 = r = b− Ax̂

Since the residual vectors are multiples of each other, we have

ri = Aỹi − θ̃iỹi = γir0 for some γi ∈ R

We can write the residual of the linear system as

r0 =
1

γi
Aỹi −

θ̃i
γi
ỹi

which is a linear combination of ỹi and Aỹi, so

r0 ∈ span{ỹi, Aỹi, A2ỹi}

Next,

Ar0 =
1

γi
A2ỹi −

θ̃i
γi
Aỹi

20

which is a linear combination of Aỹi and A2ỹi, so

Ar0 ∈ span{ỹi, Aỹi, A2ỹi}

Hence,

span{r0, Ar0, ỹi} ⊂ span{ỹi, Aỹi, A2ỹi}

Now consider

Aỹi = θ̃iỹi + γir0

which is a linear combination of ỹi and r0, so

Aỹi ∈ span{r0, Ar0, ỹi}

Next,

A2ỹi = θ̃iAỹi + γiAr0

= θ̃i(θ̃iỹi + γir0) + γiAr0

= θ̃2i ỹi + θ̃iγir0 + γiAr0

which is a linear combination of r0, Ar0, and ỹi, so

A2ỹi ∈ span{r0, Ar0, ỹi}

Hence,

span{ỹi, Aỹi, A2ỹi} ⊂ span{r0, Ar0, ỹi}

It follows from the double inclusion that

span{r0, Ar0, ỹi} = span{ỹi, Aỹi, A2ỹi}

which is a Krylov subspace with ỹi as the starting vector. Furthermore, this is true

for each i = 1, 2, ..., k, and the proof can be extended for larger values of m.

As the algorithm progresses, it will keep improving the accuracy of each eigen-

vectors, and once they’re accurate enough they can effectively deflate the corre-

sponding small eigenvalues.

21

Proposition 2.4. Suppose the Krylov subspace generated by GMRES-E contains an

exact eigenvector z1 of A, i.e. K(m,1)(A, r0) = span{r0, Ar0, ..., Am−2r0, z1}, then

GMRES converges as if the eigenvalue λ1 isn’t in the spectrum, in other word, λ1 is

deflated.

Proof. Suppose A has eigenvalues {λ1, ..., λn} and eigenvectors {z1, ..., zn}.

The vector r0 can be expanded in terms of the eigenvectors

r0 =
n∑

j=1

βjzj

Let xm ∈ Km(A, r0) be the approximate solution extracted from the Krylov

subspace generated by GMRES-E.

xm = c1z1 + c2r0 + c3Ar0 + ...+ cmA
m−2r0

Define a polynomial q(α) = I − c2α− c3α2 − ...− cmαm−1

The residual vector can be written as

r = r0 − Axm = r0 − c1Az1 − c2Ar0 − c3A2r0 − ...− cmAm−1r0

= q(A)r0 − c1λ1z1

= β1q(λ1)z1 + β2q(λ2)z2 + ...+ βnq(λn)zn − c1λ1z1

Since the solution minimizes the residual norm, any choice we make for the co-

efficients ci’s will be at most as good as what the method comes up with. Pick

c1 =
β1q(λ1)

λ1
, the residual vector is now

r =
n∑

k=2

βiq(λi)zi

which means the method only needs to find a polynomial q(α) that is small over

[λ2, λn], i.e. λ1 no longer affects the convergence of GMRES. As a result, if λ1 was

the main reason for the slow convergence of GMRES, once it is deflated, GMRES

will converge at a much faster rate. Similar results can be shown for adding more

22

than one eigenvectors into the subspace, which effectively deflates more than one

eigenvalues.

Numerical results. The following Example 2.2 demonstrates the effect of defla-

tion via adding approximate eigenvectors into the subspace to improve convergence

of GMRES.

Example 2.2. Consider the previous Example 2.1 of solving a 500 by 500 linear

system with A = tridiag(−1, 2,−1) and b is a random vector, where GMRES(25)

converges very slowly. We will solve the system using GMRES-E(25,10), i.e. using

15 Arnoldi vectors and 10 approximate eigenvectors to maintain the same overall

size of the Krylov subspace. As a results, the method converges significantly faster.

It is quite amazing how simply deflating out 10 small eigenvalues while keeping the

size of the Krylov subspace small results in such a great improvement, even better

than using a much large subspace, GMRES(400).

2.3.2 GMRES-DR: GMRES with Deflated Restarting

Algebraically equivalent to GMRES-E [14], but instead of adding harmonic

Ritz vectors into the Krylov subspace after generating the Arnoldi vectors, GMRES-

DR adds the approximate eigenvectors into the subspace before generating the

Arnoldi vectors. Similar to GMRES-E, GMRES-DR also uses harmonic Ritz vectors.

Implementation of GMRES-DR. On the first cycle, GMRES-DR uses standard

GMRES(m) to generate Vm+1 and Hm with the Arnoldi iteration, and to compute

the approximate solution to the linear system as usual. The method then uses

the harmonic Rayleigh-Ritz procedure to compute k smallest eigenpairs (θ̃i, g̃i) of

the matrix Hm + h2m+1,mH
−∗
m eme

∗
m, where θ̃i’s are the harmonic Ritz values of A

[11, 18, 20] with corresponding harmonic Ritz vectors ỹi = Vmg̃i, for i = 1, 2, ..., k.

At the beginning of the next cycle, the deflation of small eigenvalues is done by

projecting the residual vector over the newly generated set of harmonic Ritz vectors.

23

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Matrix−Vector Products

R
e
s
id

u
a
l
N

o
rm

s

GMRES(25)

GMRES(400)

GMRES−E(25,10)

Figure 2.3: GMRES-E(25,10) vs GMRES(25) and GMRES(400).

24

Note that GMRES-DR does not actually form the harmonic Ritz vectors but carries

out the projection as described in Algorithm 2.7. This feature makes GMRES-DR

slightly less expensive than GMRES-E computationally, since GMRES-E needs to

form and store the approximate eigenvectors to add them into the Krylov subspace.

GMRES-DR uses the following subspace

span{ỹ1, ỹ2, ..., ỹk, r0, Ar0, A2r0, ..., A
m−k−1r0} (2.17)

and the Arnoldi reccurence

AVm = Vm+1Hm (2.18)

where Hm is upper-Hessenberg, except for a full leading (k + 1) by (k + 1) portion.

Analysis of GMRES-DR. Similar to GMRES-E, the subspace (2.17) generated

by GMRES-DR is a Krylov subspace. The proof for this is identical to the proof

shown in the analysis section of GMRES-E that involves implicit restarting [13].

However, for enrichment, here we will use a direct proof [14].

Lemma 2.1. For any scalar λ, define

ωi(λ) =
k∏

l=1,l 6=i

(θ̃l − λ)

Let θ̃1, θ̃2, ..., θ̃k be distinct scalars. Then for 0 ≤ j ≤ k − 2,

k∑
i=1

θ̃ji

ωi(θ̃i)
= 0.

Proof. See [14].

Proposition 2.5. Suppose a subspace S = span{ỹ1, ỹ2, ..., ỹk, v} has the property that

Aỹi − θ̃iỹi = γiv

for distinct θ̃1, ..., θ̃k, and for some nonzero γi’s, then S is a Krylov subspace.

25

Algorithm 2.7 GMRES-DR

1: Start: Choose m, k, initial guess x0, compute r0 = b − Ax0. Let v1 = r0/||r0||,
and β = ||r0||.

2: First Cycle: Apply standard GMRES(m): Generate Vm+1, and Hm with the
Arnoldi iteration, solve min||c−Hmd|| for d, where c = βe1, and form the new
approximate solution x̂ = x0 + Vmd. Let x0 = x̂ and r0 = b− Ax0. Compute k
smallest eigenpairs (θ̃i, g̃i) of Hm + h2m+1,mH

−∗
m eme

∗
m.

3: Orthonormalization of the first k vectors: Orthonormalize g̃i’s to form an m by
k matrix Pk. (It may be necessary to separate complex vectors into real and
imaginary parts and adjust k).

4: Orthonormalization of the k+1 vector: First, extend the columns of Pk to length
m+1 by appending a zero entry to each, then orthonormalize the vector c−Hmd
against them to form pk+1. Note that c − Hmd is the vector corresponding to
the GMRES residual vector.

5: Form portion of new H and V using the old H and V : Let Hnew
k = P ∗k+1HmPk

and V new
k+1 = Vm+1Pk+1. Then let Hk = Hnew

k and Vk+1 = V new
k+1 .

6: Reorthogonalization of the k + 1 vector: Orthogonalize vk+1 against the earlier
columns of the new Vk+1.

7: Arnoldi iteration: Apply the Arnoldi iteration from this point to from the rest
of Vm+1 and Hm. Let β = hm+1,m.

8: Form the approximate solution: Let c = V ∗m+1r0 and solve min||c−Hmd|| for d.
Let x̂ = x0 + Vmd. Compute the residual vector r = b− Ax̂ = Vm+1(c−Hmd).
Check ||r|| for convergence, and proceed if not satisfied.

9: Eigenvalue computations: Compute the k smallest eigenpairs (θ̃i, g̃i) of Hm +
h2m+1,mH

−∗
m eme

∗
m.

10: Restart: Let x0 = x̂, r0 = r, and go to 3.

26

Proof. Since this is a direct approach, we will show that

span{ỹ1, ỹ2, ..., ỹk, v} = span{s, As,A2s, ..., Aks}

for some s.

Let the starting vector s be

s =
k∑

i=1

1

γiωi(θ̃i)
ỹi

with ωi defined as in Lemma 2.1. Then for j < k, Ajs is a combination of ỹi’s, in

particular

Ajs =
k∑

i=1

θ̃ji

γiωi(θ̃i)
ỹi (2.19)

To show this inductively, notice that for j = 0, (2.19) holds trivially since it is

how s is defined.

Suppose the following is true:

Aj−1s =
k∑

i=1

θ̃j−1i

γiωi(θ̃i)
ỹi

Multiply both sides by A then use the property Aỹi − θ̃iỹi = γiv, we have

Ajs =
k∑

i=1

θ̃j−1i

γiωi(θ̃i)
Aỹi

=
k∑

i=1

θ̃j−1i

γiωi(θ̃i)
(θ̃iỹi + γiv)

=
k∑

i=1

θ̃ji

γiωi(θ̃i)
ỹi +

k∑
i=1

θ̃j−1i

ωi(θ̃i)
v

=
k∑

i=1

θ̃ji

γiωi(θ̃i)
ỹi + (0)v, (by Lemma 2.1)

By induction, (2.19) holds for j < k.

Given the construction of the subspace using the specific choice of s, we have

span{s, As,A2s, ..., Ak−1s} = span{ỹ1, ỹ2, ..., ỹk}

27

Multiply Ak−1s by A and use the property Aỹi − θ̃iỹi = γiv again, we see that Aks

is a combination of ỹi’s and v.

It follows that

span{ỹ1, ỹ2, ..., ỹk, v} = span{s, As,A2s, ..., Aks}

.i.e. S is a Krylov subspace.

Proposition 2.6. The subspace generated by GMRES-DR

span{ỹ1, ỹ2, ..., ỹk, r0, Ar0, A2r0, ..., A
m−k−1r0}

is a Krylov subspace.

Proof. Define the harmonic Ritz residual vectors as

ri = Aỹi − θ̃iỹi

Similar to GMRES-E, these vectors are multiples of the GMRES residual vector

[13], in other word,

ri = Aỹi − θ̃iỹi = γir0

for some γi’s. By the previous proposition,

span{ỹ1, ỹ2, ..., ỹk, r0}

is a Krylov subspace. Furthermore, since GMRES-DR adds more vectors to subspace

using an Arnoldi process, the resulting subspace will be a Krylov subspace. To see

what this subspace looks like, first let v1, ..., vk+1 be the orthonormal basis for the

subspace span{ỹ1, ỹ2, ..., ỹk, r0} and consider the next vector vk+2 generated by the

Arnoldi algoritm.

Since the vector vk+2 comes from orthonormalizing Avk+1 and we can write

Aỹi = θ̃iỹi + γir0, we have

Avk+1 = A

(
ck+1r0 +

k∑
i=1

ciỹi

)
28

= ck+1Ar0 +
k∑

i=1

ciAỹi

= ck+1Ar0 +
k∑

i=1

ci(θ̃iỹi + γir0)

which is a linear combination of ỹi’s, r0, and Ar0. So,

vk+2 ∈ span{ỹ1, ỹ2, ..., ỹk, r0, Ar0}

Continue for the next basis vectors vk+3, ..., vm+1, we see that the Krylov sub-

space generated by GMRES-DR is, in fact, the subspace

span{ỹ1, ỹ2, ..., ỹk, r0, Ar0, A2r0, ..., A
m−k−1}

As mentioned before, in GMRES-DR, the harmonic Ritz vectors are not ac-

tually formed, which makes it slightly less expensive in terms of storage compared

to GMRES-E, where the approximate eigenvectors need to be computed and added

into the Krylov subspace. In general, GMRES-DR is favored over GMRES-E when

it comes to implementation, unless approximate eigenvectors need to be computed.

Numerical results. The following Example 2.3 demonstrates the effect of defla-

tion via adding approximate eigenvectors into the subspace to improve convergence

of GMRES. Unlike in GMRES-E, here, the eigenvectors are not actually formed.

Example 2.3. For comparison purposes, we will solve the same 500 by 500 linear

system with A = tridiag(−1, 2,−1) and b is a random vector, where GMRES(25)

fails to converge, this time with GMRES-DR(25,10) , i.e. using 15 Arnoldi vectors

and 10 harmonic Ritz vectors. Since GMRES-DR(25,10) is algebraically equivalent

to GMRES-E(25,10), the convergence is improved at a similar rate.

29

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Matrix−Vector Products

R
e
s
id

u
a
l
N

o
rm

s

GMRES(25)

GMRES(400)

GMRES−DR(25,10)

Figure 2.4: GMRES-DR(25,10) vs GMRES(25) and GMRES(400).

30

CHAPTER THREE

Solving a Sequence of Systems of Linear Equations

3.1 Same Matrix, Changing Right-hand Sides

Consider a sequence of linear systems that come from a numerical partial

differential equation where the coefficient matrix stays the same while the right-hand

sides are changing (due to changes in the boundary conditions, perhaps). Supposed

we have solved the first system Ax(1) = b(1) using GMRES-DR. Since we now have

good approximate eigenvectors of A, we should be able to take advantage of them

immediately for solving the second system Ax(2) = b(2). The deflation should be

effective to speed up the convergence of GMRES right from the start, instead of

having to wait for the eigenvectors to become accurate, as seen in GMRES-DR.

This approach, called GMRES-Proj [14], has cycles of GMRES alternating with a

projection phase over a the fixed set of approximate eigenvectors. Suppose at the

end of GMRES-DR, we save a fixed portion of the matrices V and H, the following

recurrence holds

AVk = Vk+1Hk (3.1)

where Hk is a k + 1 by k full matrix and Vk has columns that span the set of

approximate eigenvectors. This can be used to project the residual vector over the

approximate eigenvectors in Algorithm 3.1.

Example 3.1. Consider solving a sequence of five 500 by 500 linear systems where

A = tridiag(−1, 2,−1) and the right-hand sides b(1), ..., b(5) are random vectors. For

comparison, in the first plot, we solve each system using GMRES-DR(25,10), which

costs a total of 6205 matrix-vector products. In the second plot, we solve the first

system using GMRES-DR(25,10), then run GMRES-Proj for the remaining 4, using

the approximate eigenvectors obtained from the first run. Since the eigenvectors

31

Algorithm 3.1 GMRES-DR/GMRES-Proj with MINRES Projection

1: Solve the first system Ax(1) = b(1) using GMRES-DR(m,k) and keep the matrices
V pr
k+1, and Hpr

k at the end.
2: for i = 2 : number of right-hand sides. do
3: Let the current approximate solution be x0
4: Let the residual vector be r0 = b(i) − Ax0
5: Solve min||c−Hpr

k d||, where c = (V pr
k+1)

∗r0.
6: Update the new approximate solution xk = x0 + V pr

k+1d.
7: Update the new residual vector rk = r0 − AV pr

k+1d.
8: Check for convergence, if satisfied, then Stop, else let r0 = rk and x0 = xk.
9: Run one cycle of GMRES(m-k) with the new residual vector.

10: Solve the least-square problem. Compute the approximate solution x̂.
11: Check for convergence, if satisfied, then Stop, else let x0 = x̂ and go to 3.
12: end for

are accurate enough, GMRES-Proj can start the deflation process effectively, and

immediately, without having to wait for them to become accurate – a common delay

seen in GMRES-DR and GMRES-E. This requires only about 3885 matrix-vector

products, which is a significant cost reduction, especially if there are many more

right-hand sides. There are many methods developed to solve linear equations with

multiple right-hand sides such as block methods and seed methods [15, 16, 17].

3.2 Changing Matrices, Changing Right-hand Sides

Now consider solving a sequence of linear systems

A(i)x
(i) = b(i), i = 1, 2, ...

where A(i) ∈ Cn×n and b(i) ∈ Cn change from one system to the next. Each subse-

quent system can be viewed as a perturbation of the previous system

A(i+1) = A(i) + E(i)

where E(i) is the perturbation matrix.

3.2.1 Reusing Eigenvectors with GMRES-Proj

When ||E(i)|| is small enough so that E(i) does not significantly alter the spec-

trum of A(i), the approximate eigenvectors of A(i), namely y
(i)
1 , y

(i)
2 , ...y

(i)
k should also

32

0 1000 2000 3000 4000 5000 6000 7000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Matrix−Vector Products

R
e
s
id

u
a

l
N

o
rm

s

0 1000 2000 3000 4000 5000 6000 7000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Matrix−Vector Products

R
e

s
id

u
a
l
N

o
rm

s

Figure 3.1: GMRES-DR (top) vs GMRES-DR/GMRES-Proj (bottom).

33

be approximate eigenvectors of A(i+1), then GMRES-Proj can re-use them to deflate

small eigenvalues of A(i+1), thus speeding up the convergence of GMRES immedi-

ately. Example 3.2 illustrates this idea.

Example 3.2. Consider solving a sequence of twenty 500 by 500 linear systems where

A(1) = tridiag(−1, 2,−1), A(i) = A(i−1) + E for i = 2, 3, ..., 20, and E is a tridiag-

onal, random, nonsymmetric matrix with ||E|| = 1.0e − 6. The right-hand sides

are random vectors. For comparison, we first solved the sequence using GMRES-

DR(25,10) for every system. We then solve the same sequence, this time, using

GMRES-DR(25,10) on the first system, and generate 10 approximate eigenvectors;

for the remaining system, we use GMRES-Proj with the approximate eigenvectors

obtained from the first system. Even though the systems are changing, the change is

small enough that GMRES-Proj can take full advantage of the approximate eigenvec-

tors for deflation almost as effectively as the case where the matrix is not changing in

Example 3.1. The residual norms in Figure 3.2 and the matrix-vector products per

system in Table 3.1 demonstrate the advantage of reusing the eigenvectors from one

system to speed up the convergence of GMRES for solving the subsequent systems.

We use MATLAB’s default ‘Run and Time’ feature to calculate the total CPU time

to show how fast GMRES-Proj can be compared to GMRES-DR.

The results from Example 3.2 indicate that GMRES-Proj is very efficient at

re-using approximate eigenvectors when the systems do not change much. However,

for large enough change, or when the accumulated change is significant enough that

the approximate eigenvectors of A(i) are no longer good enough to deflate the small

eigenvalues of A(i+j) for some j ∈ N, we suspect that GMRES-Proj will lose its

effectiveness.

Example 3.3. We repeat Example 3.2 using a slightly larger perturbation, ||E|| =

1.0e − 5, and the resulting matrix-vector products to solve each system shown in

34

Table 3.1: Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 1.0e− 6

System All G-DR G-DR/G-Proj
1 1195 1195
2 1255 660
3 1210 615
4 1225 645
5 1255 660
6 1255 645
7 1210 660
8 1255 660
9 1210 630
10 1255 660
11 1225 645
12 1210 660
13 1225 645
14 1240 630
15 1165 570
16 1135 630
17 1225 630
18 1255 645
19 1270 660
20 1240 645

Total MVP’s 24515 13390
Total CPU Time 24.606s 7.827s

35

0 0.5 1 1.5 2 2.5

x 10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Matrix−Vector Products

R
e
s
id

u
a

l
N

o
rm

s

0 0.5 1 1.5 2 2.5

x 10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Matrix−Vector Products

R
e

s
id

u
a
l
N

o
rm

s

Figure 3.2: GMRES-DR (top) vs GMRES-DR/G-Proj (bottom).

36

Table 3.2 are as expected. Notice from system 14 and beyond, since the approximate

eigenvectors of A(1) are no longer good enough to help with deflating the small

eigenvalues of A(i) for i = 14, 15, ..., 20 at the desired rate, GMRES-Proj begins to

lose its effectiveness in terms of re-using approximate eigenvectors to speed up the

convergence of GMRES. We also include the total CPU time in seconds. These

numerical results suggest that we need a new method that has the capability not

only to re-use approximate eigenvectors from a previous system, but also to improve

those vectors to make them more suitable for the current system.

Table 3.2: Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 1.0e− 5

System All G-DR G-DR/G-Proj
1 1195 1195
2 1255 660
3 1210 615
4 1225 645
5 1255 660
6 1255 645
7 1210 660
8 1255 660
9 1210 645
10 1255 690
11 1225 660
12 1210 675
13 1225 690
14 1240 720
15 1180 810
16 1180 900
17 1225 1050
18 1255 1065
19 1270 1245
20 1240 1440

Total MVP’s 24575 16330
Total CPU Time 24.591s 9.468s

37

3.2.2 Recycling Eigenvectors with GMRES-E

When the change is significant enough that projection doesn’t work as well,

we will attempt to recycle and improve the eigenvectors by adding them into the

new Krylov subspace using an updated version of GMRES-E, namely GMRES-

E(recycled), which is almost the same as Algorithm 2.6 starting from Step 2 with

ỹ1, ỹ2, ..., ỹk are approximate eigenvectors obtained from a previous system instead

of being generated from scratch by running one cycle of GMRES(m). This approach

shortens the amount of time it takes for the eigenvectors to be accurate enough to

help with deflation, thus speeding up the convergence for solving the linear system.

Algorithm 3.2 GMRES-E(recycled)

1: Compute r0 = b−Ax0. If the approximate eigenvectors ỹ1, ỹ2, ..., ỹk are available,
then go to the next step. If not, Run one cycle of GMRES(m) and compute k
harmonic Ritz vectors: ỹ1, ỹ2, ..., ỹk.

2: Generate the Arnoldi basis Vm−k+1, and the matrix Hm−k.
3: Let W (:, 1 : m− k) = Vm−k, and W (:,m− k + 1 : m) = [ỹ1, ỹ2, ..., ỹk]
4: for j = m− k + 1 : m do
5: Compute w = Awj

6: for i = 1, 2, ..., j do
7: hij = (w, vi)
8: w = w − hijvi
9: end for

10: hj+1,j = ||w||.
11: vj+1 = w/hj+1,j

12: end for
13: Let β = ||r0||. Compute d that minimizes ||βe1 −Hmd||.
14: Update the approximate solution x̂ = x0 +Wmd
15: Check for convergence, if satisfied, then Stop, else set x0 = x̂, and r0 = b− Ax̂.
16: Solve (Hm + h2m+1,mH

−∗
m eme

∗
m)gi = θ̃igi for gi’s.

17: Form the new approximate eigenvectors ỹi = Wmgi, then go to Step 2.

Example 3.4. We repeat example 3.3 by solving the first system using GMRES-

DR(25,10) to generate 10 approximate eigenvectors. For the remaining systems,

instead of using GMRES-Proj, we use GMRES-E(25,10) (recycled), which improves

the approximate eigenvectors from the previous system to make them more suitable

for deflating the small eigenvalues in the current system.

38

Table 3.3: Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 1.0e− 5

System All G-DR G-DR/G-Proj G-DR/G-E(rec)
1 1195 1195 1195
2 1255 660 660
3 1210 615 630
4 1225 645 660
5 1255 660 660
6 1255 645 660
7 1210 660 660
8 1255 660 660
9 1210 645 630
10 1255 690 660
11 1225 660 645
12 1210 675 660
13 1225 690 660
14 1240 720 645
15 1180 810 570
16 1180 900 630
17 1225 1050 630
18 1255 1065 645
19 1270 1245 660
20 1240 1440 645

Total MVP’s 24575 16330 13465
Total CPU Time 24.591s 9.468s 34.599s

39

This new approach of recycling approximate eigenvectors and improving them

as the systems change eliminates the issue that arose in the previous approach of

using only GMRES-Proj for the subsequent systems.

Analysis of GMRES-E(recycled). As explained by Morgan in [14], the main

reason GMRES-E and GMRES-DR work so well is because the subspaces generated

by each method possess certain Krylov properties : the residual vectors are multiples

of each other; the whole subspace is a Krylov subspace that contains other Krylov

subspaces with each harmonic Ritz vector as the starting vector. Supposed we are

solving the lth system A(l)x
(l) = b(l) with GMRES-E(recycled) using approximate

eigenvectors y
(j)
1 , ..., y

(j)
k from a previous jth system. At the end of the first cycle,

the subspace generated is

K1 = span{r(l)0 , A(l)r
(l)
0 , ..., A

m−k+1
(l) r

(l)
0 , y

(j)
1 , ..., y

(j)
k } (3.2)

which is not a Krylov subspace, in general. However, the subspaces generated after

the first cycles have a chance to be Krylov subspaces and retain all of the Krylov

properties that GMRES-E has. To see this, we will explore the algorithm to see

what happens at the end of the first cycle of GMRES-E(recycled). Let Wm be the

m×m matrix whose first m−k columns are Arnoldi vectors and the last k columns

are approximate eigenvectors y
(j)
1 , ..., y

(j)
k . The Arnoldi algorithm produces the usual

orthonormal matrix Vm+1 and the upper-Hessenberg Hm with the relation

A(l)Wm = Vm+1Hm (3.3)

The algorithm then find d that minimizes ||βe1 −Hm||, where β = ||r(l)0 || and com-

putes the approximate solution to the linear system x̂ = x0 + Wmd. Next, the

algorithm computes the new approximate eigenvectors of A(l) by solving

W ∗A∗(l)Wgi =
1

θi
W ∗A∗(l)A(l)Wgi (3.4)

40

using the harmonic Rayleigh-Ritz procedures for gi’s, then form the new approximate

eigenvectors

y
(l)
i = Wmgi

Finally, the residual vector of the linear system is computed, checked for convergence

(which we assume is not reached since this is only after the first cycle)

r
(l)
0 = b(l) − A(l)x̂ (3.5)

This new residual vector will be used to build the subspace in the next cycle of

GMRES-E(rec).

Define the residual of the newly formed approximate eigenvectors

r
(l)
i = A(l)y

(l)
i − θiy

(l)
i , for i = 1, ..., k (3.6)

Lemma 3.1. Denote the dimension m subspace generated at the end of the first cycle

of GMRES-E(recycled)

K1 = span{r(l)0 , A(l)r
(l)
0 , ..., A

m−k+1
(l) r

(l)
0 , y

(j)
1 , ..., y

(j)
k }

If the subspace A(l)K1 has dimension m + 1, then the residual vectors r(l) and r
(l)
i ’s

are multiples of each other.

Proof. Since r(l) and r
(l)
i ’s reside in the same subspace, we will show that they are

orthogonal to the same subspace spanned by the columns of A(l)Wm.

First, using the Arnoldi relation (3.3),

(A(l)Wm)∗r(l) = (A(l)Wm)∗(r
(l)
0 − A(l)Wmd)

= (Vm+1Hm)∗r
(l)
0 − (Vm+1Hm)∗Vm+1Hmd

= H∗mV
∗
m+1r

(l)
0 −H∗mV ∗m+1Vm+1Hmd

= H∗mβe1 −H∗mHmd

= 0 (Since d is the solution of min ||βe1 −Hmd||)

41

Hence, r(l) ⊥ A(l)Wm, i.e. the residual vector of the linear equation is orthogonal to

the subspace spanned by the columns of A(l)Wm.

Now, consider the residuals of the eigenvectors

(A(l)Wm)∗r
(l)
i = (A(l)Wm)∗(A(l)y

(l)
i − θiy

(l)
i)

= W ∗
mA
∗
(l)A(l)Wmgi − θiW ∗

mA
∗
(l)Wmgi

= 0 (Since gi and θi come from solving (3.4))

Hence, r
(l)
i ⊥ A(l)Wm for each i = 1, ..., k, i.e. the residuals of the eigenvectors are

orthogonal to the subspace spanned by the columns of A(l)Wm.

Since the residual vectors reside in the same subspace of dimension m and they

are all orthogonal to the same subspace of dimension m + 1, they must be parallel

to each other, or multiples of each other.

As GMRES-E(recycled) continues, it uses the new residual (3.5) as the starting

vector to form the new subspace by letting r
(l)
0 = r(l).

span{r(l)0 , A(l)r
(l)
0 , ..., A

m−k+1
(l) r

(l)
0 , y

(l)
1 , ..., y

(l)
k } (3.7)

Proposition 3.1. Denote the dimension m subspace generated at the end of the first

cycle of GMRES-E(recycled)

K1 = span{r(l)0 , A(l)r
(l)
0 , ..., A

m−k+1
(l) r

(l)
0 , y

(j)
1 , ..., y

(j)
k }

If the subspace A(l)K1 has dimension m+ 1, then the subspace generated at the end

of the second cycle of GMRES-E(recycled)

K2 = span{r(l)0 , A(l)r
(l)
0 , ..., A

m−k+1
(l) r

(l)
0 , y

(l)
1 , ..., y

(l)
k }

is a Krylov subspace.

Proof. We will show span{r(l)0 , A(l)r
(l)
0 , y

(l)
i } = span{y(l)i , A(l)y

(l)
i , A

2
(l)y

(l)
i }. SinceA(l)K1

has dimension m+1, by Lemma 3.1, the residual vectors are multiples of each other.

r
(l)
i = A(l)y

(l)
i − θiy

(l)
i = γir

(l)
0 , for some γi ∈ C

42

we can write the residual of the linear system as

r
(l)
0 =

1

γi
A(l)y

(l)
i −

θi
γi
y
(l)
i

which is a linear combination of y
(l)
i and A(l)y

(l)
i , so

r
(l)
0 ∈ span{y

(l)
i , A(l)y

(l)
i , A

2
(l)y

(l)
i }

Next,

A(l)r
(l)
0 =

1

γi
A2

(l)y
(l)
i −

θi
γi
A(l)y

(l)
i

which is a linear combination of A(l)y
(l)
i and A2

(l)y
(l)
i , so

A(l)r
(l)
0 ∈ span{y

(l)
i , A(l)y

(l)
i , A

2
(l)y

(l)
i }

Hence,

span{r(l)0 , A(l)r
(l)
0 , y

(l)
i } ⊂ span{y(l)i , A(l)y

(l)
i , A

2
(l)y

(l)
i }

Now consider

A(l)y
(l)
i = θiy

(l)
i + γir

(l)
0

which is a linear combination of y
(l)
i and r

(l)
0 , so

A(l)y
(l)
i ∈ span{r

(l)
0 , A(l)r

(l)
0 , y

(l)
i }

Next,

A2
(l)y

(l)
i = θiA(l)y

(l)
i + γiA(l)r

(l)
0

= θi(θiy
(l)
i + γir

(l)
0) + γiA(l)r

(l)
0

= θ2i y
(l)
i + θiγir

(l)
0 + γiA(l)r

(l)
0

which is a linear combination of r
(l)
0 , A(l)r

(l)
0 , and y

(l)
i , so

A2
(l)y

(l)
i ∈ span{r

(l)
0 , A(l)r

(l)
0 , y

(l)
i }

Hence,

span{y(l)i , A(l)y
(l)
i , A

2
(l)y

(l)
i } ⊂ span{r(l)0 , A(l)r

(l)
0 , y

(l)
i }

43

It follows from the double inclusion that

span{r(l)0 , A(l)r
(l)
0 , y

(l)
i } = span{y(l)i , A(l)y

(l)
i , A

2
(l)y

(l)
i }

which is a Krylov subspace with y
(l)
i as the starting vector. Furthermore, this is true

for each i = 1, 2, ..., k, and the proof can be extended for larger values of m and for

the subsequent cycles of GMRES-E(recycled).

Unfortunately, in general, if the subspace K1 is not a Krylov subspace, the

subspace A(l)K1 is not guaranteed to have dimension m + 1, which means it will

not be Krylov. However, when the change in the system is small enough that

the subspaces generated are nearly Krylov, the method can still solve the linear

system as efficiently. Furthermore, by adding y
(j)
1 , ..., y

(j)
k to the subspace in the

first cycle, the approximate eigenvectors generated at the end of the first cycle of

GMRES-E(recycled) are much more accurate than those generated from scratch at

the end of the first cycle of GMRES-E. This allow deflation in GMRES-E(recycled)

to take place sooner since GMRES-E (and GMRES-DR) must wait longer until

the approximate eigenvectors are accurate enough for deflation to be effective. The

following Table 3.4 shows the residual norms of the eigenvectors generated at the

end of the first cycle of GMRES-E compared to those generated at the end of the

first cycle of GMRES-E(recycled) for solving the second system from Example 3.4.

3.2.3 Regenerating New Eigenvectors with GMRES-DR

Due to the loss of the Krylov property, GMRES-E(recycled) can only improve

the accuracy of the eigenvectors to a certain degree. For the most part, this does

not have a negative impact on the convergence of GMRES-E(recycled) when solving

the linear system, since the eigenvectors – although not very accurate – are accurate

enough to help with the deflation of small eigenvalues. However, there are extreme

cases where the the eigenvectors need to be just a little more accurate before they

can help with deflation, but since GMRES-E(recycled) is unable to improve them

44

Table 3.4: Residual norms of the 10 approximate eigenvectors

Residual Norm End of First Cycle of G-E End of First Cycle of G-E(rec)
||r1|| 6.50e-03 3.90e-06
||r2|| 2.79e-02 3.70e-06
||r3|| 6.52e-02 4.00e-06
||r4|| 1.14e-01 3.80e-06
||r5|| 1.67e-01 3.80e-06
||r6|| 2.62e-01 4.10e-06
||r7|| 3.34e-01 4.00e-06
||r8|| 4.50e-01 3.70e-06
||r9|| 5.47e-01 3.80e-06
||r10|| 6.72e-01 1.00e-05

any further, the method may fail to converge. In these instances, the eigenvectors

must be regenerated from a Krylov subspace, and our method of choice is GMRES-

DR. To illustrate the need for regenerating new eigenvectors instead of using recycled

eigenvectors, we use GMRES-E(recycled) to solve a sequence of linear systems where

the change from one matrix to the next is large, then compare the results to GMRES-

DR in Example 3.5.

Example 3.5. We repeat Example 3.4 solving A(i)x
(i) = b(i) for i = 1, 2, ..., 20 with

||E|| = ||A(i) − A(i−1)|| = 1.0e − 2 using GMRES-E(25,10)(recycled) and compare

the results to using GMRES-DR(25,10). Due to such a large, random, and non-

symmetric perturbation, the resulting systems are sometimes very tough to solve

and require very accurate eigenvectors in order to effectively deflate the small eigen-

values. The plot of the residual norms in Figure 3.3 (top) shows that GMRES-

E(recycled) converges very slowly, and sometimes even fails to converge. One of the

main reasons some of these systems are so tough to solve is due the fact that the

newly perturbed matrices might have very small eigenvalues, sometimes negative

eigenvalues near 0. Consider system 3 where GMRES-E(recycled) simply fails to

converge. We take a look at the spectrum of A(3) in in Table 3.6 and see that some

45

of the smallest eigenvalues are negative. This is a very tough problem because those

negative eigenvalues must be sufficiently deflated. Since GMRES-E(recycled) cannot

make the approximate eigenvectors accurate enough to effectively deflate the corre-

sponding eigenvalues, it may not converge. On the other hand, since GMRES-DR is

able to keep improving the accuracy of the eigenvectors until they can effectively de-

flate the small (and negative) eigenvalues, it actually reaches convergence for solving

the linear equations. This example justifies why sometimes new eigenvectors must

be regenerated. Figure 3.4 shows the residual norms of the eigenvectors computed

by GMRES-E(recycled) (top), and the residual norms computed by GMRES-DR

(bottom), indicating that, GMRES-DR is capable of improving the eigenvectors to

a much higher accuracy.

Example 3.6. The results from Example 3.5 suggest that GMRES-E(recycled) can

struggle when the change from one system to the next is big enough. Another

strategy besides regenerating new eigenvectors with GMRES-DR is to use a larger

subspace and/or to deflate more eigenvalues. We repeat Example 3.5 using GMRES-

E(recycled)(35,15) and compare it to GMRES-DR(35,15). Figure 3.5 shows that

even though the eigenvectors computed by GMRES-E(rec)(35,15) are not as accurate

as those computed by GMRES-DR(35,15), the subspace is sufficiently large that

GMRES-E(rec)(35,15) is still able to solve the linear system without struggling

like GMRES-E(rec)(25,10) did, and even performs slightly better than GMRES-

DR(35,15) in terms of matrix-vector products. Table 3.7

3.2.4 Combined Algorithm: GMRES-RRR

Although GMRES-E(recycled) alone is sufficient to solve a sequence of chang-

ing systems while minimizing the costs in terms of matrix-vector products, notice

from Table 3.3, for systems 2 to 12, GMRES-Proj and GMRES-E(recycled) both

incur similar expenses in terms of matrix-vector products, but since GMRES-Proj

46

0 2 4 6 8 10 12 14 16

x 10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Matrix−Vector Products

R
e
s
id

u
a

l
N

o
rm

s

GMRES−E(recycled)(25,10)

0 2 4 6 8 10 12 14 16

x 10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Matrix−Vector Products

R
e

s
id

u
a
l
N

o
rm

s

GMRES−DR(25,10)

Figure 3.3: GMRES-E(recycled)(25,10) (top) vs GMRES-DR(25,10)(bottom).

47

Table 3.5: Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 1.0e− 2

System All G-DR G-DR/GE(rec)
1 1195 1195
2 1480 1980
3 1255 10500
4 1525 10500
5 10510 10500
6 5905 10500
7 5260 10500
8 4270 10500
9 3895 10500
10 3265 9660
11 2995 6345
12 4000 6210
13 4045 7995
14 4255 3870
15 3130 7095
16 3115 4680
17 2845 4755
18 3220 4140
19 3925 8370
20 3505 10500

Total MVP’s 73595 150295
Total CPU Time 74.452s 330.198s

48

0 100 200 300 400 500 600 700
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eigenresiduals of GMRES−E (rec), system3

Matrix−Vector Products

R
e
s
id

u
a

l
N

o
rm

s

0 10 20 30 40 50 60 70 80 90
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Eigenresiduals of GMRES−DR, system3

Matrix−Vector Products

R
e

s
id

u
a
l
N

o
rm

s

Figure 3.4: Eigenresiduals of GMRES-E(recycled)(top) and GMRES-DR(bottom).

49

0 5 10 15 20 25 30 35
10

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eigenresiduals of GMRES−E (rec), system3

Matrix−Vector Products

R
e
s
id

u
a

l
N

o
rm

s

0 10 20 30 40 50 60 70 80 90 100
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Eigenresiduals of GMRES−DR, system3

Matrix−Vector Products

R
e

s
id

u
a
l
N

o
rm

s

Figure 3.5: Eigenresiduals of GMRES-E(recycled)(top) and GMRES-DR(bottom).

50

Table 3.6: Some eigenvalue of A(3)

Sorted Eigenvalues of A in Order of Magnitude
λ1 0.000202036743847
λ2 0.000376409685278
λ3 −0.000389932183701
λ4 −0.000519247933623
λ5 0.000664420018127
λ6 −0.000797329272257
λ7 0.001104429859130
λ8 0.001967643563859
λ9 0.002469946787251
λ10 0.003530443729578
...

...
λ499 4.000751339457972
λ500 4.001384339324436

is much faster and cheaper, we want to be able to take advantage of GMRES-Proj’s

speed when we can, and only use GMRES-E(recycled) when necessary. Therefore,

we propose a new algorithm of GMRES that reuses the approximate eigenvectors

from the previous system to deflate the small eigenvalues from the current system

using GMRES-PRoj when it is appropriate. When the projection loses its effective-

ness, the algorithm will recycle the approximate eigenvectors from the previous

system by adding them to the current Krylov subspace, thus improving them so that

they can be useful for deflation once again using GMRES-E(recycled). If the system

has changed too much, or the new system is completely unrelated to the previous

system, or the new systems are simply too tough to solve as seen in Example 3.5,

the algorithm will regenerate a new set of approximate eigenvectors to help with

deflation. We name the algorithm GMRES-RRR, where the R’s stand for reuse,

recycle, and regenerate.

We give the user the option to choose which method to use manually, or to

let the algorithm decide automatically. In order to help the algorithm select which

51

Table 3.7: Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 1.0e− 2

System All G-DR G-DR/GE(rec)
1 815 815
2 815 680
3 795 660
4 835 800
5 1475 620
6 735 880
7 715 520
8 715 460
9 695 440
10 1055 460
11 1715 1220
12 1095 1500
13 1275 1620
14 1415 1800
15 1495 1380
16 1235 1340
17 1555 1180
18 1235 1260
19 1635 1320
20 2055 1940

Total MVP’s 23360 20895
Total CPU Time 36.222 73.834

52

method to use, we introduce a switching criterion. Define the accumulated

change from the jth system to the lth system by

E = A(l) − A(j)

where A(l) is the coefficient matrix of the current system and A(j) is the matrix from

which the approximate eigenvectors were generated. The algorithm will use the norm

of E as the switching criterion. For example: Use GMRES-Proj if ||E|| < 1.0e − 4,

use GMRES-DR if ||E|| > 1.0e − 2, and use GMRES-E(recycled) otherwise. These

bounds are user-defined to accomodate a wider range of applications and suit each

user’s need for their designs.

Algorithm 3.3 GMRES-RRR

1: Initialization: Manually assign a value to method (1 to 3) or give an upperBound
and a lowerBound for the switching criterion so the algorithm can use to assign
values to method. Choose m and k.

2: if method is not assigned then
3: Compute criterion:= ||A(l) − A(j)|| if necessary.
4: if y1, ..., yk are not available OR criterion > upperBound then
5: method :=1
6: else if criterion < lowerBound then
7: method :=2
8: else
9: method :=3

10: end if
11: end if
12: for i=1: number of linear systems do
13: if method==1, solve A(i)x

(i) = b(i) using GMRES-DR(m,k).
14: Save k approximate eigenvectors at the end.
15: if method==2, solve A(i)x

(i) = b(i) using GMRES-Proj.
16: if method==3, solve A(i)x

(i) = b(i) using GMRES-E(m,k)(recycled).
17: Save k approximate eigenvectors at the end.
18: end for

3.2.5 Numerical Results

In order to test the performance of GMRES-RRR, we apply the algorithm to

different sequences of linear systems. The size of E is different for each sequence.

53

Example 3.7. We repeat Example 3.3 by solving the first system using GMRES-

DR(25,10) to generate 10 approximate eigenvectors. For the remaining systems,

instead of using only GMRES-Proj or only GMRES-E(recycled), we run GMRES-

RRR and let the algorithm decide which method to use. As for the switching

criterion, the algorithm will use GMRES-Proj if ||E|| < 1.0e − 4, use GMRES-DR

if ||E|| > 1.0e − 2, and use GMRES-E(recycled) otherwise. The results in Table

3.8 show that the algorithm was able to re-use the approximate eigenvectors gener-

ated from the first system for deflation using GMRES-Proj until system 12, where

as GMRES-Proj begins to lose effectiveness in previous example, GMRES-RRR re-

cycles and improves the approximate eigenvectors via GMRES-E(recycled), so that

for the subsequent systems, they become good enough that GMRES-Proj is effective

once again. By comparing the CPU times and the tota matrix-vector products in

Table 3.8, we see that GMRES-RRR has successfully taken full advantage of the

speed of GMRES-Proj and only need to call GMRES-E(recycled) once.

Next, we test the new algorithm for solving a sequence of linear systems when

the change from one system to the next is slightly larger that those seen in Example

3.7. We anticipate that since the approximate eigenvectors will be losing accuracy

more quickly, GMRES-RRR will need to call GMRES-E(recycled) more often.

54

Table 3.8: Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 1.0e− 5

System G-DR Only G-Proj G-E(rec) GMRES-RRR
1 1195 1195 1195 1195 (G-DR)
2 1255 660 660 660 (G-Proj)
3 1210 615 630 615 (G-Proj)
4 1225 645 660 645 (G-Proj)
5 1255 660 660 660 (G-Proj)
6 1255 645 660 645 (G-Proj)
7 1210 660 660 660 (G-Proj)
8 1255 660 660 660 (G-Proj)
9 1210 645 630 645 (G-Proj)
10 1255 690 660 690 (G-Proj)
11 1225 660 645 660 (G-Proj)
12 1210 675 660 660 (G-E(rec))
13 1225 690 660 660 (G-Proj)
14 1240 720 645 630 (G-Proj)
15 1180 810 570 570 (G-Proj)
16 1180 900 630 645 (G-Proj)
17 1225 1050 630 645 (G-Proj)
18 1255 1065 645 645 (G-Proj)
19 1270 1245 660 675 (G-Proj)
20 1240 1440 645 690 (G-Proj)

Total MVP’s 24575 16330 13465 13555
Total CPU Time 24.591s 9.468s 34.599s 9.306s

55

Example 3.8. We repeat Example 3.7 solving A(i)x
(i) = b(i) for i = 1, 2, ..., 20 with

||E|| = ||A(i)−A(i−1)|| = 4.0e−5 using the same switching criterion. As anticipated,

since the systems are changing more rapidly, GMRES-Proj loses effectiveness more

quickly, and as a result, our algorithm ends up using GMRES-E(recycled) more often.

Table 3.9. For comparison purposes, we include the results obtained by running only

GMRES-Proj after the first system. As the matrices change more and more from

the original system, GMRES-Proj’s effectiveness decreases rapidly, and eventually,

GMRES-Proj fails to converge when solving systems 13, ..., 20. This demonstrate one

of the major strengths of GMRES-RRR: by recycling the approximate eigenvectors,

even only once in every few system, GMRES-RRR is able to extend the usefulness

of those vectors for deflation to in order to minimize the total cost in matrix-vector

products while speeding up the convergence for solving linear systems. To illustrate

the actions of GMRES-RRR, we look at the residual norms on the eigenvectors

at the beginning of each linear system in Figure 3.6. When GMRES-RRR only

calls GMRES-Proj, as the systems change, the eigenvectors become less accurate.

Once the switching criterion is met, for system 4, GMRESS-RRR calls GMRES-

E(recycled) which improves the accuracy of some of the eigenvectors so they can

meet the condition to be re-used by GMRES-Proj once again for system 5 and 6.

The drops in the plots correspond to the use of GMRES-E(recycled).

During several experiments, we noticed that sometimes, even though the accu-

mulated change is still small enough to meet the criterion to use GMRES-Proj, the

convergence rate suggests that the algorithm should not have used GMRES-Proj.

For instance, in Example 3.8, GMRES-RRR uses GMRES-Proj to solve system 9,

15, and 18, which incurs higher cost in terms of matrix-vector products. This is not

a dramatic spike in expenses, but it does indicate that for some particular cases, the

user needs to introduce a stricter criteron for switching, especially when the major

computational cost is matrix-vector products.

56

Table 3.9: Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 4.0e− 5

System G-DR Only G-Proj G-E(rec) GMRES-RRR
1 1195 1195 1195 1195 (G-DR)
2 1255 660 660 660 (GProj)
3 1225 630 630 630 (GProj)
4 1240 660 660 660 (G-E(rec))
5 1270 1020 660 660 (GProj)
6 1255 1665 660 660 (GProj)
7 1225 1845 660 660 (G-E(rec))
8 1255 3330 660 705 (GProj)
9 1225 4140 630 930 (GProj)
10 1255 5685 675 675 (G-E(rec))
11 1240 7710 645 645 (GProj)
12 1225 9570 660 675 (GProj)
13 1240 10500 660 660 (G-E(rec))
14 1255 10500 645 645 (GProj)
15 1180 10500 600 885 (GProj)
16 1210 10500 630 630 (G-E(rec))
17 1255 10500 630 660 (GProj)
18 1270 10500 660 825 (GProj)
19 1285 10500 660 660 (G-E(rec))
20 1270 10500 660 660 (GProj)

Total MVP’s 24830 122110 13540 14380
Total CPU Time 24.63s 60.841s 37.202s 16.264s

57

0 2 4 6 8 10 12 14 16 18 20

10
−5

10
−4

Eigenresiduals at the end of each system

Number of Linear System

R
e

s
id

u
a
l
N

o
rm

s

Figure 3.6: Eigenresiduals at the beginning of each linear system.

58

Instead of considering only the size of the accumulated change from the pre-

vious system, we now also look at how accurately the eigenvectors of the previous

system, A(j), approximate the eigenvectors of the current system, A(l). Consider the

eigenresidual vectors

ri = A(l)y
(j)
i − ρ

(l)
i y

(j)
i , for i = 1, 2, ..., k

where y
(j)
i ’s are approximate eigenvectors of a previous matrix A(j) and ρ

(l)
i are the

Rayleigh Quotients

ρ
(l)
i =

(y
(j)
i)∗A(l)y

(j)
i

(y
(j)
i)∗y

(j)
i

Since, the norm of ri indicates whether y
(j)
i is a good approximate eigenvector of

A(l), in order to incorporate this into a switching criterion for GMRES-RRR, define

maxri = max
i=1:k
||ri||

GMRES-RRR will use GMRES-Proj when the accumulated change ||E|| < 1.0e− 4

AND maxri < 1.0e − 4. These bounds are also user-defined. With this stricter

switching criterion, GMRES-RRR would be able to avoid a scenario where the ac-

cumulated change is small but the eigenvectors have been altered significantly that

GMRES-Proj is no longer effective. Example 3.9 demonstrates the impact of having

stricter switching criteria.

Example 3.9. We repeat Example 3.8 with this new switching criterion: the al-

gorithm will use GMRES-PRoj if ||E|| < 1.0e − 4 AND maxri < 1.0e − 4, use

GMRES-DR if ||E|| > 1.0e − 2, and use GMRES-E(recycled) otherwise. As antici-

pated, from system 8 to system 9, even though the accumulated change is still less

than 1.0e − 4 but the eigenvectors are not good enough for projection, the stricter

switching criterion signals GMRES-RRR to use GMRES-E(recycled) instead. The

results in Table 3.10 show that by using a stricter switching condition, GMRES-

RRR is able to minimize the cost in terms of matrix-vectors product at the expense

59

of CPU time. This is one of the reasons why we let the users choose the switching

conditions depends on what’s more important to their models: minimizing the total

matrix-vector products or optimizing the overall speed for solving each sequence of

linear systems.

Table 3.10: Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 4.0e− 5

System G-DR Only GMRES-RRR GMRES-RRR (strict)
1 1195 1195 (G-DR) 1195 (G-DR)
2 1255 660 (G-Proj) 660 (G-Proj)
3 1225 630 (G-Proj) 630 (G-Proj)
4 1240 660 (G-E(rec)) 660 (G-E(rec))
5 1270 660 (G-Proj) 660 (G-Proj)
6 1255 660 (G-Proj) 660 (G-Proj)
7 1225 660 (G-E(rec)) 660 (G-E(rec))
8 1255 705 (G-Proj) 705 (G-Proj)
9 1225 930 (G-Proj) 630 (G-E(rec))
10 1255 675 (G-E(rec)) 660 (G-E(rec))
11 1240 645 (G-Proj) 645 (G-E(rec))
12 1225 675 (G-Proj) 660 (G-E(rec))
13 1240 660 (G-E(rec)) 660 (G-E(rec))
14 1255 645 (G-Proj) 645 (G-E(rec))
15 1180 885 (G-Proj) 630 (G-E(rec))
16 1210 630 (G-E(rec)) 630 (G-E(rec))
17 1255 660 (G-Proj) 630 (G-E(rec))
18 1270 825 (G-Proj) 660 (G-E(rec))
19 1285 660 (G-E(rec)) 660 (G-E(rec))
20 1270 660 (G-Proj) 660 (G-E(rec))

Total MVP’s 24830 14380 13600
Total CPU Time 24.63s 16.264s 26.084s

60

Next, we test GMRES-RRR on a sequence of systems where the change from

one system to the next is large enough that the approximate eigenvectors formed by

GMRES-E(recycled) are not effective enough that a set of new eigenvectors must

be regenerated from scratch by GMRES-DR so that they can reach the necessary

level of accuracy to be good enough for deflation. Note that these highly perturbed

systems generated for this example are for demonstrations only. In general, if the

sequence comes from a practical model, the change from one system to the next

will be small enough that GMRES-RRR will usually only need to switch between

GMRES-E(recycled) and GMRES-Proj.

Example 3.10. We repeat Example 3.7 solving A(i)x
(i) = b(i) for i = 1, 2, ..., 20 with

||E|| = ||A(i) − A(i−1)|| = 1.0e − 2 using the same switching criterion. This large

perturbation will signal GMRES-RRR(25,10) to use GMRES-DR for every system.

Having such a large random perturbation sometimes results in linear systems that

are very difficult for GMRES-DR(25,10) to solve, such as system 5. The plot of

the residual norms in Figure 3.7(top) illustrates GMRES-DR(25,10)’s struggle. One

simple way to address this issue is to use a larger subspace. However, suppose the

maximum size of the subspace is restricted to 25, we can address the convergence

issue by using more approximate eigenvectors for deflation. The plot of the residual

norms in Figure 3.7(bottom) indicates that by using 10 Arnoldi vectors and 15

approximate eigenvectors, GMRES-RRR(25,15) was able to solve every linear system

in the sequence while keeping the maximum size of the subspace at 25. The cost in

terms of matrix-vector products is given in Table 3.11. We also include the cost for

solving the sequence using GMRES-RRR(30,10) and GMRES-RRR(35,15) to show

how the overal performance can sometimes be improved simply by changing the size

of the subspace and/or increase the number of eigenvectors used for deflation.

61

0 1 2 3 4 5 6 7

x 10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Matrix−Vector Products

R
e
s
id

u
a

l
N

o
rm

s

GMRES−RRR(25,10)

0 1 2 3 4 5 6 7

x 10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Matrix−Vector Products

R
e

s
id

u
a
l
N

o
rm

s

GMRES−RRR(25,15)

Figure 3.7: GMRES-RRR(25,10) and GMRES-RRR(25,15).

62

Table 3.11: Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 1.0e− 2

System G-RRR(25,10) G-RRR(25,15) G-RRR(30,10) G-RRR(35,15)
1 1195 1095 1030 815
2 1480 1205 2130 815
3 1255 1025 1070 795
4 1525 3835 2890 835
5 10510 1315 1110 1475
6 5905 1355 3730 735
7 5260 2345 2650 715
8 4270 6805 2410 715
9 3895 1105 2710 695
10 3265 4265 2750 1055
11 2995 935 2870 1715
12 4000 1675 2490 1095
13 4045 5025 2530 1275
14 4255 3005 2110 1415
15 3130 3885 2570 1495
16 3115 2555 2070 1235
17 2845 2965 2970 1555
18 3220 2845 3190 1235
19 3925 2585 3670 1635
20 3505 2516 3910 2055

Total MVP’s 73595 52341 50860 23360
Total CPU Time 74.452s 69.027s 49.434s 29.008s

63

CHAPTER FOUR

Comparing GMRES-RRR to Subspace Recycling

The process of saving portions of one Krylov subspace to speed up the con-

vergence for solving the next systems is sometimes referred to as Krylov subspace

recycling. We will compare our new approach of recycling to a method developed by

Parks and De Sturler in [22] called GCRO-DR, which is a combination of GMRES-

DR and GCRO – the outer version of the Generalize Conjugate Residual method

[7]. We will give a brief description of GCRO-DR and a numerical example to see

how well GMRES-RRR performs compared GCRO-DR.

Similar to GMRES-RRR, when solving the first system or when the approx-

imate eigenvectors are not available, GCRO-DR will use GMRES-DR to solve the

linear equations and generate k harmonic Ritz vectors. For the next system, instead

of adding the approximate eigenvectors into the subspace like GMRES-E(recycled)

does, GCRO-DR uses the approximate eigenvectors to form a new linear operator

then generates the Krylov subspace with this operator instead of A.

4.1 Implementation of GCRO-DR

Suppose we have solved the jth system, A(j)x
(j) = b(j), and obtained k approx-

imate eigenvectors Yk = [ỹ1, ỹ2, ..., ỹk]. GCRO-DR then computes the matrices Uk

and Ck ∈ Cn×k such that

A(j+1)Uk = Ck and C∗kCk = Ik

Next, the method computes the optimal solution over the subspace range(Uk) as

x = x0 + UkC
∗
kr0

and set

r = r0 − CkC
∗
kr0 and v1 = r/||r||

64

Next, GCRO-DR generates the Krylov subspace of dimension m− k+ 1 using

the matrix (I − CkC
∗
k)A which results in the Krylov subspace

K = span{r0, (I − CkC
∗
k)Ar0,

(
(I − CkC

∗
k)A
)2
r0, ...,

(
(I − CkC

∗
k)A
)m−k+1

r0} (4.1)

and the Arnoldi relations

(I − CkC
∗
k)AVm−k = Vm−k+1Hm−k (4.2)

which can be rewritten as

A

[
Uk Vm−k

]
=

[
Ck Vm−k+1

] Ik Bk

0 Hm−k

 (4.3)

where Bk = C∗kAVm−k. Compute the diagonal matrix Dk such that Ũk = UkDk has

unit columns and define the following matrices

V̂m =

[
Ũk Vm−k

]
(4.4)

Ŵm+1 =

[
Ck Vm−k+1

]
(4.5)

Gm =

 Dk Bk

0 Hm−k

 (4.6)

the relation (4.3) can be rewritten as

AV̂m = Ŵm+1Gm (4.7)

Let β = ||r0||, GCRO-DR then solves the (m+ 1)×m least-square problem

min ||βek+1 −Gmd||

for d ∈ Cm and forms the approximate solution of the linear system

x̂ = x0 + V̂md

.

65

Similar to GMRES-E and GMRES-DR, in order to compute approximate

eigenvectors, GCRO-DR uses a version of the harmonic Rayleigh-Ritz procedure

to solve the generalized eigenvalue problem

G∗mGmgi = θ̃iG
∗
mŴ

∗
m+1V̂mgi (4.8)

The approximate eigenvectors are obtained as harmonic Ritz vectors ỹi = V̂mgi.

As noted by the author in [22], GCRO-DR is slightly more expensive than

GMRES-DR since it needs to store the approximate eigenvectors, as does GMRES-

E(recycled). In that regard, GMRES-RRR and GCRO-DR will be similarly expen-

sive in terms of matrix-vector products. However, GMRES-RRR can shine when it

is able to use GMRES-Proj instead of GMRES-E(recycled).

4.2 Numerical Results

The following examples help demonstrate how GMRES-RRR performs com-

pared to GCRO-DR in terms of matrix-vector products, and CPU time.

Example 4.1. We now compare the performance of GMRES-RRR(25,10) to GCRO-

DR(25,10) for solving a sequence of linear systems where the change from one sys-

tem to the next is relatively small, ||E|| = ||A(i) − A(i−1)|| = 1.0e− 5, by repeating

the experiment in Example 3.7. The costs in terms of matrix-vector products are

given in Table 4.1. Looking at computational costs in terms of matrix-vector prod-

ucts, GMRES-RRR(25,10) performs comparably to the more standard approach,

GCRO-DR(25,10). Furthermore, GCRO-DR is generally more expensive and more

complicated to implement while GMRES-RRR is much simpler to program and is

able to take advantage of the speed of GMRES-Proj, especially when the change in

the systems is small enough.

Example 4.2. This example compares the performance of GMRES-RRR(25,10) to

GCRO-DR(25,10) for solving a sequence of linear systems where the change from

66

Table 4.1: Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 1.0e− 5

System GMRES-RRR(25,10) GCRO-DR(25,10)
1 1195 (G-DR) 1195
2 660 (G-Proj) 660
3 615 (G-Proj) 615
4 645 (G-Proj) 645
5 660 (G-Proj) 660
6 645 (G-Proj) 645
7 660 (G-Proj) 660
8 660 (G-Proj) 660
9 645 (G-Proj) 630
10 690 (G-Proj) 660
11 660 (G-Proj) 645
12 660 (G-E(rec)) 660
13 660 (G-Proj) 645
14 630 (G-Proj) 630
15 570 (G-Proj) 570
16 645 (G-Proj) 630
17 645 (G-Proj) 630
18 645 (G-Proj) 645
19 675 (G-Proj) 660
20 690 (G-Proj) 645

Total MVP’s 13555 13390
Total CPU Time 9.306s 47.102s

67

one system to the next is larger, ||E|| = ||A(i)−A(i−1)|| = 4.0e− 5, by repeating the

experiment in Example 3.8. The costs in terms of matrix-vector products are given

in Table 4.2.

Table 4.2: Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 4.0e− 5

System GMRES-RRR(25,10) GCRO-DR(25,10)
1 1195 (G-DR) 1195
2 660 (G-Proj) 660
3 630 (G-Proj) 630
4 660 (G-E(rec)) 645
5 660 (G-Proj) 660
6 660 (G-Proj) 660
7 660 (G-E(rec)) 660
8 705 (G-Proj) 660
9 930 (G-Proj) 630
10 675 (G-E(rec)) 660
11 645 (G-Proj) 645
12 675 (G-Proj) 660
13 660 (G-E(rec)) 660
14 645 (G-Proj) 645
15 885 (G-Proj) 570
16 630 (G-E(rec)) 630
17 660 (G-Proj) 630
18 825 (G-Proj) 645
19 660 (G-E(rec)) 660
20 660 (G-Proj) 660

Total MVP’s 14380 13465
Total CPU Time 16.264s 49.329s

68

Example 4.3. Finally, we compare the performance of GMRES-RRR(25,10) to GCRO-

DR(25,10) for solving a sequence of linear systems where the change from one system

to the next is very large, ||E|| = ||A(i) − A(i−1)|| = 1.0e − 2, by repeating the ex-

periment in Example 3.10 The costs in terms of matrix-vector products are given

in Table 4.3. GCRO-DR(25,10) appears to be struggle in a way that is similar to

GMRES-E(recycled)(25,10) in Example 3.5 , which indicates that sometimes recy-

cling might not be very effective, and new eigenvectors need to be regenerated. As

mentioned, in the previous chapter, instead of regenerating new eigenvectors, we

could use a slightly larger subspace and/or deflate more eigenvalues.

Table 4.3: Matrix-Vector Products with ||E|| = ||A(i) − A(i−1)|| = 1.0e− 2

System GMRES-RRR(25,10) GCRO-DR(25,10)
1 1195 1195
2 1480 1680
3 1255 840
4 1525 1125
5 10510 9135
6 5905 3465
7 5260 10500
8 4270 10500
9 3895 3915
10 3265 3105
11 2995 3255
12 4000 9480
13 4045 10500
14 4255 10500
15 3130 8430
16 3115 4710
17 2845 4965
18 3220 4965
19 3925 4485
20 3505 5250

Total MVP’s 73595 112000
Total CPU Time 74.452s 669.663s

69

4.3 Some Analysis of Subspace Recycling

Here we discuss how GMRES-E and GCRO-DR improve approximate eigen-

vectors that they are given even though they are focusing mainly on solving linear

equations. It is assumed that the method starts with approximate eigenvectors from

a different matrix so that we do not have the Krylov properties of GMRES-DR. We

have seen examples in which both GMRES-E and GCRO-DR improve the approx-

imate eigenvectors enough to be effective even though the matrix is changing. We

now look at what makes them work. For GMRES-E, the situation is simpler, because

the GMRES-E subspace contains a Krylov subspace with the matrix A. Therefore

it is not surprising that this subspace helps improve approximate eigenvectors of A.

However, this improvement is much less than in GMRES-DR. This is because unlike

with GMRES-DR, GMRES-E does not have Krylov subspaces with the approximate

eigenvectors as starting vectors. For GCRO-DR, the operator that is used to build

a Krylov subspace is N ≡ (I − CC∗)A, where C = AU , with the columns of U

spanning the subspace of approximate eigenvectors Span{y1, y2 . . . , yk}. Since the

Krylov subspace is not generated with A, it seems that this is the wrong operator

to be using to improve eigenvectors of A. However, there are relationships between

the eigenpairs of N and those of A that show it is possible for a Krylov subspace

with N to improve eigenvectors of A.

The first proposition assumes that A is symmetric. It is also assumed that

we have the k exact eigenvectors of A for U , so that C has k exact eigenvectors of

A as columns. Then the eigenvectors of N are the same as those of A. However,

the k eigenvalues corresponding to the k eigenvectors in U are all at 0. The other

n − k eigenvalues do not change. So this points out that there is potential for a

Krylov subspace with N to help compute eigenvectors of A, since it has the correct

eigenvectors in this idealized situation.

70

Proposition 4.1. If A is symmetric and C = [z1z2 . . . zk], then N has k eigenvalues

at 0 with associated eigenspace Span{z1, z2, . . . , zk}. Also, for j > k, if (λj, zj) is

an eigenpair of A, then it is also an eigenpair of N .

Proof. We use the fact that since A is symmetric and we have exact eigenvectors, the

columns of U can be just the eigenvectors of A. For i = 1 . . . k, Nzi = (I−CC∗)Azi =

λi(I−CC∗)zi = λi(zi−Cei) = λi(zi− zi) = 0, where ei is the ith coordinate vector.

For j > k, Nzj = (I − CC∗)Azj = λj(I − CC∗)zj = λj(zj − 0) = λjzj.

Next we consider A nonsymmetric, and again assume that we have the exact

eigenvectors of A. While the columns of U span the subspace Span{z1, . . . , zk}, the

columns cannot equal to z1, . . . , zk as before because U has orthonormal columns.

Proposition 4.2. Assume the columns of U and thus C span Span{z1, z2 . . . , zk}.

Then N has k eigenvalues at 0 with associated eigenspace Span{z1, z2, . . . , zk}. Also,

for j > k, then the eigenvalue λj is an eigenvalue of N , with associated eigenvector

a combination of zj and z1, . . . zk.

Proof. . It is easy to show that Nzi = 0 for i from 1 to k, because the columns of

C span the subspace S = Span{z1, . . . , zk}. Thus (I −CC∗) projects all of S to the

zero vector. Next, for j > k, N(α1z1+ . . .+αkzk +αjzj) = 0+ . . .+0+αjλjw, where

w is a combination of z1, . . . , zk and zj. Then if the αi’s are chosen to match this

last combination, we have that α1z1 + . . .+ αkzk + αjzj is an eigenvector of N .

Next, the case of not having exact eigenvectors of A is considered. We let the

approximate eigenvectors of A be yi’s.

Proposition 4.3. Assume the columns of U span the subspace Span{y1, y2 . . . yk}.

Then N has k eigenvalues at 0 with associated eigenspace Span{y1, y2, . . . yk}.

Proof. . We will show that Nyi = 0 for i from 1 to k. Since the columns of C

span the subspace S = Span{Ay1, . . . , Ayk}, (I −CC∗) projects all of S to the zero

vector. So for i = 1, . . . , k, Nyi = (I − CC∗)(Ayi) = 0.

71

With the yi’s as eigenvectors, the operator N has approximations to the cor-

rect eigenvectors. However, more study is needed in order to fully understand how

GCRO-DR works.

72

CHAPTER FIVE

Further Considerations and Challenges

5.1 Considerations

GMRES-RRR is designed to work for the most general case where the change

from one system to the next is a random perturbation. However, in many appli-

cations, the changes can be more specific and have properties that GMRES-RRR

could take advantage to be more efficient. We include the results from previous

experiments to demonstrate this idea.

Consider the one-dimensional Poisson problem with Dirichlet boundary con-

ditions

−w′′(x) = f(x), for x ∈ (0, 1) (5.1)

w(0) = w(1) = 1 (5.2)

Using a second-order, central difference scheme over a general grid [x0, x1, ..., xN+1],

we have the following equations

li−1wi−1 +miwi + uiwi+1 = f(xi) (5.3)

li−1 = − 2

hi−1(hi + hi−1)
(5.4)

mi =
2

hihi−1
(5.5)

wi = − 2

hi(hi + hi−1)
(5.6)

where i = 1, ..., N , hi = xi+1 − xi, x0 = 0, xN+1 = 1, w0 = wN+1 = 1, and

w(xi) ≈ wi. This discretization results in a system of linear equations Tw = b where

w = (w1, ..., wN)T , b = (f(x1), ..., f(xN))T , and T is a tridiagonal matrix of the form

73

T =



m1 u1

l1 m2 u2

l2 m3 u3

.

lN−2 mN−1 uN−1

lN−1 uN


When the grid is uniform, the resulting matrix is

T ≡ TU =
1

h2



2 −1

−1 2 −1

−1 2 −1

.

−1 2 −1

−1 2


whose eigenvalues and eigenvectors can be computed explicitly,

λi =
1

h2

(
1 + 2 cos

(
iπ

N + 1

))
zi =

(
sin

(
iπ

N + 1

)
, ..., sin

(
iNπ

N + 1

))T

The matrices obtained from non-uniform grids can be viewed as perturbations of

the matrix from a uniform grid, that is T = TU + E, where E is a real, tridiagonal

perturbation matrix. As seen in previous examples, when E is small enough that

the eigenvectors of TU are good approximate eigenvectors of T , we can use them

to speed up the convergence for solving linear equations using GMRES-Proj [19].

Furthermore, we can take advantage of the fact that since all of these matrices come

from the same differential equation, their eigenvectors are closely related. We can

use the eigenvectors from one grid to generate approximate eigenvectors for another

grid via an interpolation method. This could be implemented in order to further

increase the effectiveness of GMRES-RRR.

74

5.2 Challenges

Due to the loss of the Krylov properties, GMRES-E(recycled) can only improve

the accuracy of the recycled eigenvectors to a certain degree. In general, these

eigenvectors – even though not very accurate – are accurate enough that they can

still help to speed up the convergence for solving the linear equations. However, as

seen in one of the examples, there are situations where the eigenvectors needs to

be just a little more accurate before they can be effective for deflation, and since

GMRES-E(recycled) can improve them no further, the method may fail to converge.

One potential fix, instead of having to regenerate a new set of eigenvectors, is to

implement a sub-routine that improves the eigenvectors outside of the subspace

generated by GMRES-E(recycled) using a version Arnoldi-E [11]. With the extra

help, the eigenvectors will be improved to the accuracy needed to help with solving

the linear equations; however, this requires generating additional Krylov subspaces,

which incurs extra cost. Further study and experiments are required in order to

determine the exact expense.

75

CHAPTER SIX

Conclusion and Future Work

With the updated version of GMRES-E, we now have a method that is capa-

ble of recycling approximate eigenvectors from a previous system to speed up the

convergence of GMRES for solving the subsequent systems. We combine this new

approach, GMRES-E(recycled), with GMRES-Proj and GMRES-DR into a new al-

gorithm to solve a sequence of linear systems, GMRES-RRR. The default algorithm

checks a user-defined criteria and switches between methods to take advantage of

each method’s best features: to reuse eigenvectors with GMRES-Proj, to recy-

cle eigenvectors with GMRES-E(recycled), or to regenerate new eigenvectors

with GMRES-DR. We also discuss some guidelines to help the user choose different

switching criteria, giving them the flexibility to fine-tune GMRES-RRR to suit their

models.

The numerical results indicate that GMRES-RRR can work very well, and

comparable to an industry-standard approach, especially when the change from one

system to the next is small enough.

For future work, we plan to apply our simple approach of subspace recycling

to solving sequences of linear systems that come from practical problems in various

disciplines such as computational fluid dynamics, financial derivatives, and other

nonlinear models.

76

BIBLIOGRAPHY

[1] W. E. Arnoldi, The principle of minimized iteration in the solution of the matrix
eigenvalue problem, Quart. Appl. Math., 9 (1951), pp. 17-29.

[2] O. Axelsson, A survey of preconditioned iterative methods for linear systems of
equations, BIT, 25 (1985), pp. 166-187.

[3] J. Baglama, D. Calvetti, G. H. Golub, and L. Reichel, Adaptively preconditioned
GMRES algorithms, SIAM J. Sci. Comput., 20 (1998), pp. 243-269.

[4] M. A. Beauregard and Q. Sheng, Solving degenerate quenching- combustion
equations by an adaptive splitting method on evolving grids, Comput. Struct.,
doi:10.1016/j.compstruc.2012.10.014, 2012.

[5] M. A. Beauregard and Q. Sheng, An adaptive splitting approach for the quench-
ing solution of reaction-diffusion equations over nonuniform grids, J. Com-
put. Appl. Math., 241 (2013), pp. 30-44.

[6] K. Burrage and J. Ethel, On the performance of various adaptive preconditioned
GMRES strategies, Num. Lin. Alg. with Appl., 5 (1998), pp. 101-121.

[7] E. De Sturler, Nested Krylov methods based on GCR, J. Comput. Appl. Math.,
67 (1996), pp. 1541.

[8] E. de Sturler, Truncation strategies for optimal Krylov subspace methods, SIAM
J. Numer. Anal., 36 (1999), pp. 864889.

[9] J. Erhel, K. Burrage, and B. Pohl, Restarted GMRES preconditioned by defla-
tion, J. Comput. Appl. Math., 69 (1996), pp. 303-318.

[10] S. A. Kharchenko and A. Y. Yeremin, Eigenvalue translation based precondi-
tions for the GMRES(k) method, Num. Lin. Alg. with Appl., 2 (1995), pp.
51-77.

[11] R. B. Morgan, Computing interior eigenvalues of large matrices, Linear Alge-
bra Appl., 154-156 (1991), pp. 289-309.

[12] R. B. Morgan, A restarted GMRES method augmented with eigenvectors, SIAM
J. Matrix Anal. Appl., 16(1995), pp. 1154-1171.

[13] R. B. Morgan, Implicitly restarted GMRES and Arnoldi methods for nonsym-
metric systems of equations, SIAM J. Matrix Anal. Appl., 21 (2000), No. 4,
pp. 11121135.

[14] R. B. Morgan, GMRES with deflated restarting, SIAM J. Sci. Comput.,
24(2002), pp. 20-37.

77

[15] R. B. Morgan, Restarted block GMRES with deflation of eigenvalues, Applied
Numerical Mathematics, vol. 54 (2005), pp. 222-236.

[16] R. B. Morgan, D. Darnell, W. Wilcox, Deflated GMRES for systems with mul-
tiple shifts and multiple right-hand sides, Lin. Alg. Appl., vol. 429 (2008),
pp. 2415-2434.

[17] R. B. Morgan, A. Rehim, and W. Wilcox, Improved seed methods for symmet-
ric positive definite linear equations with multiple right-hand sides. Numer.
Linear Alg. Appl., vol. 21 (2014), pp. 453-471.

[18] R. B. Morgan and M. Zeng, Harmonic projection methods for large non-
symmetric eigenvalue problems, Num. Lin. Alf. with Appl., 5 (1998), pp.
33-55.

[19] H. V. Nguyen, M. A. Beauregard and R. B. Morgan, Improving the Speed of
Convergence of GMRES for Certain Perturbed Tridiagonal Systems, IEEE
45th Southeastern Symposium on System Theory(SSST), (2013), pp. 63-67.

[20] C. C. Paige, B. N. Parlett, and H. A. van der Vorst, Approximate solutions
and eigenvalue bounds from Krylov subspaces, Num. Lin. Alg. with Appl., 2
(1995), pp. 115-133.

[21] B. N. Parlett, The Symmetric Eigenvalue Problem, PrenticeHall, Englewood
Cliffs, NJ, (1980).

[22] M. L. Parks, E. De Sturler, G. Mackey, D. D. Johnson, and S. Maiti, Recycling
Krylov subspaces for sequences of linear systems, SIAM J. Sci. Comput.,
Vol. 28, No. 5 (2006), pp. 1651-1674.

[23] Y. Saad, Variations on Arnoldi’s method for computing eigenelements of large
unsymmetric matrices, Linear Algebra Appl., 34 (1980), pp. 269-295.

[24] Y. Saad, Krylov subspace methods for solving large unsymmetric linear systems,
Math. Comp. 87 (1981), pp. 105-126.

[25] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci.
Statist. Comput., 14 (1993), pp. 461-469.

[26] Y. Saad, Iterative Methods for Sparse Linear System 2nd edition, SIAM,
Philadelphia, PA, 2003.

[27] Y. Saad and M. H. Schultz, GMRES: a generalized minimum residual algorithm
for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput.,
7(1986), pp.856-869.

[28] G. L. G. Sleijpen and H. A. van der Vorst, A Jacobi-Davidson iteration method
for linear eigenvalue problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp.
401425.

78

[29] A. Stathopoulos, Y. Saad, and C. Fischer, Robust preconditioning of large,
sparse, symmetric eigenvalue problems, J. compute. Apple. Math., 64 (1995),
pp. 197-215.

79

