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Abstract
Nonlinear frequency response analysis is a widely used method for determining system dynamics
in the presence of nonlinearities. In dusty plasmas, the plasma–grain interaction (e.g. grain
charging fluctuations) can be characterized by a single-particle non-linear response analysis, while
grain–grain non-linear interactions can be determined by a multi-particle non-linear response
analysis. Here a machine learning-based method to determine the equation of motion in the
non-linear response analysis for dust particles in plasmas is presented. Searching the parameter
space in a Bayesian manner allows an efficient optimization of the parameters needed to match
simulated non-linear response curves to experimentally measured non-linear response curves.

1. Introduction

Machine learning (or deep learning) has recently become one of the hottest analysis techniques in the
scientific world as application of this powerful numerical method has proven useful in solving problems
across a wide range of fields. For example, convolutional neural networks (LeNet, AlexNet) [1, 2] now fulfill
object recognition tasks to a high degree of accuracy; recurrent neural networks (LSTM) [3] are improving
computational understanding of natural language; reinforcement learning agents are out-performing human
experts in strategic decision making (AlphaGo) [4, 5]; and generative adversarial networks (GANs) [6] are
showing the ability to create music, paintings and dialogue in a human manner. In addition to industrial
applications, machine learning techniques are now also being applied to solve physics problems. Examples
include the prediction of molecular atomization energies by employing regression models [7], the
application of a neural network to solve quantum many-body problems [8], and crystallization recognition
through the use of a shallow neural network [9].

In this paper, a machine learning-based method is applied to non-linear response problems in dusty
plasmas. Dusty plasmas [10–12] are systems containing both weakly ionized gas and charged micron-sized
dust particles. Due to the higher thermal velocities of electrons compared to ions, dust particles in a dusty
plasma become negatively charged [13] in response to the frequent collisions between the plasma particles
and a dust grain’s surface. Dust particle behavior in plasmas is determined by many factors, with the
restoring confinement caused by the balance between the electrostatic force and gravity, the neutral gas drag,
and particle-particle interactions between dust particles among the primary of these. Understanding the
physics behind dust particle behavior (i.e. investigating these factors) is one of the most important tasks in
dusty plasmas. One of the ways in which this can be fulfilled is by studying the response of the particles to
external excitations [14, 15]. This is known as the non-linear frequency response analysis, which has a wide
application in mechanics, material science and nano science [16–18].

Here, a Bayesian optimization framework [19] is used to resolve a non-linear response analysis [20–23]
in a numerical manner in a dusty plasma. The undetermined coefficients in the equation of motion for a
dust grain are derived by optimizing the simulated motion to match that obtained from experimental results.
These are compared to the analytic results from a multiple-scale perturbation method. The non-linearity is
measured to the 4th order in displacement, which helps correctly characterize the potential energy of particle
in the plasma sheath to an accuracy not obtained before.
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Figure 1. Sketch of the modified GEC RF reference cell.

It is important to note that this framework is not limited to non-linear response analysis, but can also be
applied to the more general case of physics problems where the experimental results can be reproduced by
simulations. In these cases, undetermined physical quantities can be revealed efficiently (especially when the
simulation is very computational expensive) by optimizing the simulations to experimental results in this
Bayesian manner.

2. Experiment and Bayesian optimization

The experiment which will be discussed in this paper was conducted in a modified Gaseous Electronics
Conference (GEC) RF reference cell (see figure 1) filled with argon gas. A single melamine formaldehyde
(MF) particle having a diameter of 8.89± 0.09µm was inserted into a glass box (height: 20 mm, length:
18 mm, width: 18 mm) placed on the lower electrode which was powered at 13.56MHz. The plasma power
and pressure were fixed at 1.68 W and 40mTorr, respectively. The MF particle was levitated in the plasma
sheath region due to the balance between gravity and the electrostatic force produced by the negatively
charged lower electrode. The dust particle was illuminated by a laser sheet (wavelength of 660 nm) with the
resulting motion recorded at a rate of 500 fps by a high speed camera mounted at the side port of the cell.

A primary amplitude-frequency response curve was measured by applying a sinusoidal excitation signal
to the lower electrode with a fixed amplitude at various frequencies. Particle motion was recorded and then
transformed into the frequency domain (FFT spectrum) using a Fourier transform for each value of the
excitation frequency. The peak height of the FFT spectrum at the excitation frequency was measured,
providing the primary response at this excitation. The secondary (super-harmonic) response to the
excitation (a non-linear response), can also be measured from the peak height of the FFT spectrum at twice
the excitation frequency. (Sample response curves are shown in figure 2.)

The motion of a single such particle levitating inside the plasma sheath under a vertical sinusoidal
excitation can be modeled as a forced oscillator [20],

ẍ+µẋ+ω 2x+αx2 +βx3 = F exp(iΩt)+ c.c., (1)

where µ is the neutral drag coefficient, ω is the restoring constant, α and β are the second and third order
derivatives of the restoring field, Ω is the frequency of the sinusoidal excitation, F is the amplitude of the
excitation (in units of acceleration) and c.c. stands for the complex conjugate. The neutral drag coefficient
can be theoretically identified as [24]:

µ= δ
4π

3
Nmnc̄nr

2
p , (2)

where N,mn, c̄n and rp are the neutral gas number density, mass of a neutral gas atom, the thermal speed of
the gas and the radius of the dust particle, respectively. The coefficient δ accounts for the type of reflection or
absorption of the neutral gas particle. An estimate of the drag coefficient for the given experimental
conditions yields µ= 7.71–11.09 s−1 [25], with δ in a range from 1.26 to 1.44 (with uncertainty considered)
[26]. Often, the effective restoring force experienced by the particle at equilibrium can be approximated as a
linear function in displacement (i.e.−ω2x where ω is the natural resonance frequency) under the
assumption that the particle is levitating in a region where the sheath can be considered to exhibit a perfect
parabolic sheath potential [27, 28]. For the given experimental conditions, ω is estimated to be 11.3–12.6 Hz
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by taking the spectral power density of the particle’s thermal motion, as described in [29]. Unfortunately, this
approximation becomes invalid in most realistic situations, such as where charge fluctuations are considered
[21, 22], or when the oscillation of the dust particle is so large that the sheath potential can no longer be
considered parabolic. In this case, it is necessary to extend the restoring force to the non-linear regime as
−ω 2x−αx2 −βx3 with terms higher than O(x3) ignored for simplicity.

Based on equation (1), the particle motion as a function of time x(t) under an excitation with frequency
Ω can be simulated (or numerically solved) given a set of known parameters θ= {µ,ω,α,β, F}. In this case,
the particle motion was simulated employing the velocity Verlet algorithm, which updates the position and
velocity in each iteration as

x(t+ dt) = x(t)+ v(t)dt+
a(t)

2
(dt)2,

v(t+ dt) = v(t)+
a(t+ dt)+ a(t)

2
dt, (3)

where dt is the time step of the simulation, v(t) is the velocity at time t and a(t) is the acceleration
normalized by the particle mass at time t as determined by equation (1):

a(t) =−µv(t)−ω 2x(t)−αx2(t)−βx3(t)+ 2Fcos(Ωt). (4)

Following the same approach described above for the experiment, the primary and secondary
amplitude-frequency response curves can also be measured from the simulated particle motion x(t) by
varying the excitation frequency Ω over the range of excitation frequencies used in the experiment.

This allows a parameter set θ∗ = {µ∗,ω ∗,a∗,b∗,F∗} characterizing the properties of the dust motion
(which depend on properties of the nearby plasma environment) to be determined by searching the
parameter space for the optimal set of parameters that generates a simulated amplitude-frequency response
curve which most closely matches the experimentally measured amplitude-frequency response curve. This
process can be quantified as

θ∗= argmin
θ

(L(Re,Rs(θ))), (5)

where Re represents the experimentally measured response curve and Rs(θ) represents the simulated
response curve for a given set of parameters {µ,ω,α,β, F}. L(Re,Rs) is a measure of the difference between
the experimentally measured and simulated response curves. In order to quantify this difference, we define L
as a function L : θ = {µ,ω,α,β,F} 7→ R that maps a set of parameters to a real value which measures the
‘distance’ between the experimentally measured and the simulated response curve as

L(θ) =
N∑
i=1

(
re(Ωi)− rs(Ωi,θ)

re(Ωi)

)2

, (6)

where re(Ωi) and rs(Ωi) are the experimentally measured and simulated response amplitudes at the excitation
frequency Ωi, respectively. The summation is carried out over the span of the excitation frequencies
employed in the experiment. The difference are squared to ensure that L(θ) does not yield negative values,
which guarantees the existence of minimal points. It is important to mention that this type of loss function
L(θ) may not be well-defined everywhere. For unrealistic parameters sets, i.e. sets that either have no physical
meaning or are not suitable for describing the condition of the plasma sheath, the simulated non-linear
response curves diverge, resulting in an undefined distance function. In these cases, a large value is assigned
to the distance function (e.g. L= 105) in order to ensure optimization success.

As can be seen from equation (6), calculation of the loss function L(θ) for even one set of parameters
requires multiple simulations of the particle’s motion, i.e. one for each excitation frequency used for
measuring the response curve in the experiment. For example, the response curve shown in figure 2 requires
71 independent simulations to calculate the distance function for just one set of parameters. This is
computationally expensive and, as such, a minimization of the distance function L(θ) based on a random
search of the parameter space θ is infeasible.

Therefore, this loss function is minimized employing a Bayesian optimization. This technique has shown
great promise in machine learning, especially for the fine tuning of neural networks for model selection.
Instead of randomly searching the parameter space and then conducting simulations for each set, only those
parameter sets selected in a Bayesian manner are simulated. A surrogate function f is introduced to model
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Algorithm: Bayesian optimization (TPE).

Define a loss function L(θ);
Initialing a data setD1:t = {θ1:t,L(θ1:t)} by randomly sampling parameters θ1:t ;
while NOT converged do

Calculate f ∗ as the lower 25% quantile of the loss functions for the up-to-date data setD1:t;
Estimate l(θ) using data with loss function less than f ∗;
Estimate g(θ) using data with loss function greater than f ∗;
Calculate θt+ 1 that maximizes l(θ)/g(θ);
Run simulation on θt+ 1, and update the data setD1:t with {θt+1,L(θt+1)};

end

the distribution of the value of the loss function L(θ). The posterior distribution of this surrogate function at
the parameter θ given the data observedD1:t = {θ1:t,L(θ1:t)} can be derived using Bayes’ law:

p( f |θ;D1:t) =
p(θ| f ;D1:t)p( f ;D1:t)

p(θ;D1:t)
, (7)

where tree-structured Parzen density estimators [30] (a generative model) are used to model the likelihood
function p(θ| f ;D1:t) defined as

p(θ| f ;D1:t) =

{
l(θ), if f< f∗

g(θ), if f≥ f∗.
(8)

In this likelihood function, l(θ) and g(θ) are non-parametric Parzen density estimators. To estimate l(θ) and
g(θ), the data set needs to be split into two subsetsD< andD>, whereD< contains the data with loss
functions less than a threshold f ∗ (the lower 25% quantile of the loss function) whileD> contains the rest of
the data. In this case, l(θ) and g(θ) can be evaluated as l(θ) = 1

n<

∑
θi∈D<

K(θ,θi) and

g(θ) = 1
n>

∑
θi∈D>

K(θ,θi), where n<, n> are the size ofD< andD> respectively, and K(θ, θi) is a kernel
function (e.g. Gaussian kernel). As such, the marginal distribution of the parameter set given the observed
data setD1:t (the denominator of equation (7)) can in turn be calculated as

p(θ;D1:t) =

ˆ ∞

−∞
p(θ| f ;D1:t)p( f ;D1:t)df

= (l(θ)− g(θ))

ˆ f∗

−∞
p( f ;D1:t)df+ g(θ). (9)

The criteria for exploring the overall parameter space is to choose the next set of simulation parameters
that maximizes the expected improvement E[max( f ∗ − f,0)] [31] as

θt+1 = argmax
θ

ˆ ∞

−∞
max( f ∗ − f,0)p( f |θ;D1:t)df

= argmax
θ

´ f∗
−∞( f ∗ − f)p( f ;D1:t)df

g(θ)
l(θ) (1−

´ f∗
−∞ p( f ;D1:t)df)+

´ f∗
−∞ p( f ;D1:t)df

= argmax
θ

l(θ)

g(θ)
, (10)

where the last equation holds since the cumulative distribution
´ f∗
−∞ p( f ;D1:t)df is strictly less than 1, and

this result is not affected by the exact form of the prior p( f ;D1:t). The next parameter set whose loss function
will be simulated is chosen to maximize the quotient of the Parzen density estimators l(θ)/g(θ). As each new
simulation is conducted, the data setD is updated with the new simulated data points. The algorithm is
generalized as the following.

Since secondary responses (as non-linear responses) are very sensitive to non-linear terms, i.e. αx2 and
βx3, while the primary responses are more sensitive to the linear terms, it is necessary to minimize the loss
functions for both primary and secondary responses simultaneously. One simple way of achieving this is
to minimize a weighted sum of these two loss functions rather than minimizing them individually
(e.g. L= Lp + 0.05Ls).
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Figure 2. The primary Bayesian optimized (based on equation (1)) and experimentally measured response curves plotted in
dashed red and solid black, respectively, under (a) 1.0 V excitation and (b) 1.5 V excitation. The corresponding secondary
(super-harmonic) response curves are shown in the subplots with the same color distribution. Dashed blue curves are the
Bayesian optimized response curves based on equation (14).

Table 1. The parameter space measured for Model 1 (equation (1)) from the Bayesian optimization method and the multiple-scale
perturbation method, and for Model 2 (equation (14)) from the Bayesian optimization method. For the Bayesian optimization method,
the measurements are averages of five independent experimental trials, with the corresponding CV shown in parentheses.

Methods µ (s−1) ω (Hz) |α| (µm−1 × s−2) β (µm−2 × s−2) F (µm−1 × s−2) |γ| (µm−3 × s−2)

Excitation 1.0 V
Model 1 10.1 (0.6%) 11.9 (0.1%) 2.1 (0.9%) 3.9× 10−4 (5.7%) 6.3× 105 (0.4%)
Multiple-scale 9.6 11.9 2.0 3.5× 10−4 6.2× 105

Model 2 9.7 (1.5%) 11.8 (0.3%) 2.0 (1.2%) 14.2× 10−4 (7.3%) 6.2× 105 (0.4%) 1.8× 10−6 (6.6%)
Excitation 1.5 V

Model 1 10.9 (0.1%) 11.9 (0.0%) 2.1 (0.8%) 3.8× 10−4 (4.0%) 9.4× 105 (0.2%)
Multiple-scale 10.2 11.9 1.9 2.1× 10−4 9.1× 105

Model 2 10.3 (1.3%) 11.7 (0.2%) 2.0 (1.2%) 15.5× 10−4 (3.5%) 9.0× 105 (0.6%) 1.2× 10−6 (5.6%)

3. Results

Figure 2 shows the Bayesian-optimized simulated primary response curves (dashed red curves) of a single
dust particle levitated in the plasma sheath in the GEC RF reference cell at a plasma power of 1.68W and
pressure of 40mTorr. The corresponding secondary response curves are shown in the subplots. Particles
excited under excitation amplitudes of 1.0 and 1.5 V are plotted in figures 2(a) and (b), respectively. As
shown, the optimized response curves (dashed red curves simulated according to equation (1)) resemble the
experimentally measured responses curves (solid black curves) in both the primary and secondary regions.
Also, note that the spring softening phenomenon (i.e. the non-linear phenomenon that results in the
primary resonance peak being ‘bent’ in the low frequency direction) becomes more obvious as the excitation
amplitude increases (figure 2(a)).

The corresponding optimized parameters obtained from model 1 (equation (1)) are calculated as the
average over five independent trials of the optimizing experiment and their values are listed in table 1
(method ‘Model 1’), with the corresponding coefficient of variations (CV) shown in parentheses. Notice that
the sign of the coefficient of the quadratic non-linearity α is irrelevant in this response analysis since it only
changes the direction of the asymmetric motion of the dust particle. Even though there is a large variation in
randomness in this Bayesian search of the parameter space, the optimizing experiment converges to yield
consistent results as evidenced by the low CV. The relatively high CV for the parameter β (the coefficient of
the cubic non-linearity) is due to the fact that the response curves are robust in responding to variation of
nonlinearities of higher order. As such, a small variation in β will not significantly perturb the entire
response curve.

Figure 3 shows the loss (equation (6)) as a function of the number of iterations for the dust particle
excited at both 1.0 V (a) and 1.5 V (b), each of which has five independent experimental trials. As shown, the
loss values decrease rapidly after the first several iterations, reaching convergence after a few hundred
iterations. (This again indicates the efficiency of the presented Bayesian optimization method in exploitation
of the parameter space.) However, in order to boost overall accuracy and ensure wider exploration of the
parameter space, we conducted a large number of iterations. The observed higher convergency loss value for
the dust particle under 1.5 V excitation (≈4.3× 10−3) as compared to that under 1.0 V excitation
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Figure 3. The loss (the ‘distance’ between the experimentally measured and the simulated response curve) as a function of the
number of iterations for a dust particle excited under an excitation amplitude of (a) 1.0 V and (b) 1.5 V. Colors denote the five
independent trials.

(≈2.2× 10−3) can be attributed to the increased difficulty of capturing the spring softening phenomenon as
the excitation amplitude becomes larger (compare figures 2(a) and (b)).

4. Multiple-scale perturbationmethod

The parameters can also be derived analytically by solving the equation of motion (equation (1)) employing
the multiple-scale perturbation method. The details of this method are given in [23, 32], with the main
results needed for the analysis given below.

Assuming an external excitation at a frequency of approximately half that of the oscillator resonance
frequency ω, i.e. Ω≈ 1

2ω, the solution to equation (1), to first order, yields

x(t) =
F

ω 2 −Ω2
cos(Ωt)

− αF2

4ω(ω 2 −Ω2)2
√

µ 2

4 +(2Ω−ω)2
sin(2Ωt−ϕ), (11)

where ϕ is the shifted phase which is dependent on the excitation frequency as ϕ= arctan( 4Ω−2ω
µ ). The

parameters ω, µ and α are determined using the experimentally measured secondary response curve fitted to

the steady state theoretical secondary response αF2/4ω(ω 2 −Ω2)2
√

µ 2

4 +(2Ω−ω)2. Considering an

external excitation having a frequency approximately equal to the oscillator resonant frequency, i.e. Ω≈ ω,
the solution to equation (1), to first order of approximation yields

x(t) = A(Ω)cos(Ωt−ϕ ′), (12)

where the shifted phase is ϕ ′ =Ω−ω−β. By eliminating the secular term appearing in the equation of
motion to second order of approximation, the steady state theoretical primary response A(Ω) can now be
derived as
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F2

4ω 2
=

(
Aµ

2

)2

+

[(
9βω 2 − 10α2

24ω3

)
A3 − (Ω−ω)A

]2

. (13)

By fitting the corresponding experimentally measured primary response curve to equation (13), the
parameter space for the cubic nonlinearities β and F can now be investigated. The parameters obtained in
this way are shown in table 1 (method ‘Multiple-scale’). As shown, the parameters measured from the
Bayesian optimization are consistent with those measured from the multiple-scale perturbation, except for
the value of β under 1.5 V excitation (with approximately 57.6% difference). Notice that the measurements
of the parameters from the multiple-scale perturbation serve as a benchmark and should not be considered
as true values since they are derived and are precise only to the first order of approximation.

Due to limitations of the multiple-scale perturbation method, any extension of the model (equation (1))
(e.g. including higher order nonlinearities of either displacement x or velocity ẋ) and derivation of the
corresponding approximate solutions would be tediously complicated. However, the Bayesian optimization
scheme described here allows this process to be simplified greatly. As an example, the model is extended to
include an additional non-linearity of higher order in displacement x:

ẍ+µẋ+ω 2x+αx2 +βx3 + γx4 = F exp(iΩt)+ c.c. (14)

Applying the Bayesian method, the optimized parameters are measured, with the results shown in table 1
(with method ‘Model 2’) and the corresponding simulated response curves shown in figure 2 (dashed blue
curves). Again, the corresponding CV for the five independent trials are shown in parentheses.

5. Discussion and conclusion

By considering nonlinearities to fourth order, the primary response curves (dashed blue line) in figure 2(a)
more closely resemble the spring softening behavior than do those considering nonlinearities to third order
(dashed red line). Also, the loss is further reduced, reaching 1.6× 10−3 for a 1.0-V excitation and 2.3× 10−3

for a 1.5 V excitation, as compared to values based on the model with third order nonlinearities
(equation (1)) which results in loss values of 2.2× 10−3 and 4.3× 10−3, respectively. This indicates a closer
match of the simulated response curves to the experimentally measured ones. After introducing
nonlinearities to the fourth order, the measured drag coefficient µ, excitation amplitude F, and the
coefficient of the quadratic non-linearity αmore closely approach the values measured from the
multiple-scale perturbation. However, it is noted that the coefficient for the cubic nonlinearities, β exhibits a
large deviation. Considering the conditions for the existence of the spring softening effect (seen from
equation (13)):

9βω 2 − 10α2 < 0, (15)

the critical value of β for the existence of the spring softening phenomenon can be derived as
β < βc ≈ 8.1× 10−4 (by taking into consideration the fact that the measured values for the coefficient of the
quadratic non-linearity α are consistent in both models given by equations (1) and (14)). In this case, a large
value of β as measured for both a 1.0 V excitation and a 1.5 V excitation, based on the model represented by
equation (14), seems to violate the condition of the existence of the spring softening phenomenon
(equation (15)). However, equation (15) is derived from only the first order of approximation in the
multiple-scale perturbation. Thus, although a response curve simulated with a parameter β violating the
condition given by equation (15) still reveals the spring softening phenomenon, this indicates a limited
ability and accuracy of the multiple-scale perturbation method to explain non-linear responses since it
ignores higher order nonlinearities. In order to accurately determine the coefficient of the cubic
nonlinearities β (an important factor characterizing the non-linearity of the plasma sheath [20, 21]), the
effects from higher order nonlinearities are important and should not be ignored. Figure 4(a) shows the
effective restoring potential energy Φ of the particle (divided by the particle mass) in the vicinity of its
equilibrium position for both Model 1 (red) and Model 2 (blue). The difference in restoring potential energy
is observable for these two models.

With the coefficient for the fourth order non-linearity available, the change in the electric field and the
grain charge at varying levitation positions can be further investigated. By considering an expansion in the
electric field E and grain charge Q:

E= E0 + E1x+ E2x
2 + E3x

3,

Q= Q0 +Q1x+Q2x
2 +Q3x

3, (16)
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Figure 4. (a) Restoring potential energy around the equilibrium levitation position (divided by the mass of the particle) for Model
1 (red) and Model 2 (blue). The perfect parabolic approximation is shown by the black line as a benchmark. The region over
which a particle oscillates in this experiment (with maximum amplitude of 1.2 mm) is also indicated. Grain charge (b) and the
electric field (c) in the vicinity of the equilibrium position. Red, blue and black solid lines correspond to the third order, second
order and linear polynomial expansion of the grain charge with a linear electric field, respectively. The dashed lines correspond to
the second order polynomial expansion for both grain charge and the electric field.

the electrostatic force can be written as

Fstat = (E0Q0)+ (E0Q1 + E1Q0)x

+(E0Q2 + E1Q1 + E2Q0)x
2

+(E0Q3 + E1Q2+ E2Q1 + E3Q0)x
3

+(E1Q3 + E2Q2 + E3Q1)x
4. (17)

The coefficients of the polynomial in this expansion are related to the corresponding coefficients in
equation (14). By assuming a linear electric field (i.e. E2 = E3 = 0), the nonlinearities in charge Q can be
explored to the third order (Q3) with γ provided by the Bayesian optimization approach (Model 2), while
without γ, the nonlinearities in charge can only be explored up to the second order (Q2). Figure 4(b) shows
the grain charge in the vicinity of the equilibrium position for the third order polynomial
(Q= Q0 +Q1x+Q2x2 +Q3x3) and second order polynomial (Q= Q0 +Q1x+Q2x2) expansion in red and
blue, respectively. As a reference, a linear charge model (Q= Q0 +Q1x) is also shown in black. The
corresponding linear electric field (divided by the particle mass) for each charge expansion are shown in
figure 4(c). The equilibrium charge Q0 ≈ 1.4× 104e was estimated by using the levitation position
comparison method [33]. In this method, a vertically aligned two-particle pair is formed, and the difference
in the levitation position for the upstream particle with and without the presence of the downstream particle
(where the downstream particle is knocked out of the system using a laser pulse), is measured. As shown, the
third order polynomial charge model predicts a weaker charge reduction in the downstream region, but a
stronger charge accumulation in the region above the equilibrium position.

Beyond assuming a linear electric field, we can also investigate the non-linear expansions for the E-field
and the grain charge simultaneously (i.e. E= E0 + E1x+ E2x2 andQ= Q0 +Q1x+Q2x2). However, due to a
lack of constraints, this investigation can only be explored to the second order for both electric field and
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grain charge even with γ known. Figure 4(b) and (c) show the result of this charge model and the
corresponding non-linear electric field as dashed lines. As shown, both the grain charge and the electric field
can be very different from the cases where the electric field is assumed to be linear in the downstream region.
This indicates a reasonable assumption of a linear electric field in the close vicinity of the equilibrium
position. It is instructive to compare these results against the usual linear models for both the particle charge
and electric field. With the assumption of a linear electric field, the charge varies considerably from the linear
charge model in the upstream direction. Conversely, with the assumption of a quadratic electric field, it is
seen that the charge varies significantly from the linear charge model in the downstream direction. Future
experiments may be designed to determine which of these models is correct.

In conclusion, a non-linear response analysis for dust particles in plasma was provided employing a
machine learning based method. An efficient technique for optimizing the comparison between numerically
simulated and experimentally measured response curves by searching the parameter space in a Bayesian
manner was described. Using this approach, the physical parameters characterizing the plasma conditions
can be derived. The non-linearity of the response was determined to the fourth order, which is necessary in
order to accurately determine the coefficients for lower-order nonlinearities, as well as to correctly
characterize the potential energy of the particle in the sheath. Beyond the field of dusty plasmas, the
proposed framework provides a general method for measuring physical quantities by optimizing simulation
parameters to match experimental observations in an efficient manner, especially when the simulation is
computationally expensive.
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