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CHAPTER ONE

Introduction

Let g be a complex simple Lie algebra of rank n and h a Cartan subalgebra of
g. Let @ C b* denote the associated root system of g. Choose a positive system ®*.
Let W be the associated Weyl group and for w € W, define ®,, := & Nw(—PT). In
[13], Kostant observed that wp = p — (®,,) for all w € W, where (V) =3, 8 for
¥ C d* and p = 5 (1), as usual. It follows from this formula that w-A = A —(®,,)
when A = 0. Thus the highest weights of consecutive parabolic Verma modules in the
BGG resolution of the irreducible g-module with highest weight A differ by a single
root. The goal of this work is to show that all unitary modules of simply laced type
have a sum of roots as the difference between consecutive parabolic Verma modules.
To that end, in Chapter Two we cover requisite background material, preparing for
the main result in Chapter Three. Then in Chapter Four we detail the proof of the

main result.



CHAPTER TWO

Background

2.1 Parabolic Subalgebras of Hermitian Type

Let g be a complex simple Lie algebra of rank n and h a Cartan subalgebra
of g. Let ® C h* denote the associated root system of g. Choose a simple system
A C & and enumerate the simple roots as A = {«y, ..., a,} as in Bourbaki [4]. This
determines a positive system ®*. Then g decomposes as

o= P s.obe P o
ac—o+ acd+

where g, := {z € g | [h, 2] = a(h)z for all h € h} is the one-dimensional root space
for each o € ®. The standard Borel subalgebra is given by

b::h@@ga.

acdt

A standard parabolic subalgebra is any subalgebra p O b. There is a correspondence
between such parabolics p and subsets of A as follows. Let I C A and
®; := ® Nspanyl. This defines a root system. Define
my ::f)@@ga and uj:= @ a-
acd; a€d+\d;

Then py := my @ uy is a standard parabolic subalgebra. If |A\ I| = 1 we say py is
a maximal parabolic subalgebra, which will be the focus for the remainder of this
work. To simplify notation we drop the subscript I and write p = m @ u. For later
reference, define ®(u) := &\ ¢y.

A maximal parabolic subalgebra p = m+u is of Hermitian type if u is abelian,
or equivalently, the unique simple root in A\I has coefficient one in the expression for

highest root #. In this setting, there is a noncompact real form gg of g, a compact
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real form mg of m, and an element hy € h such that mg is a maximal compact
subalgebra of gg with center Rihy and u = {x € g | [ho, 2] = x}. The following table
lists all possibilities (see [9]). The crossed node of the Dynkin diagram denotes the

simple root in A\ L.

Table 2.1. Maximal Parabolic Subalgebras of Hermitian Type

or Type Dynkin diagram

50(277, -1, 2) B, &—0O - 0—0—a>>D
12 - n
sp(n,R) C, 0—0---0—0—a="®
n—1
s0(2n — 2,2) D, ._oo_o_<<
12 - “on
n—1
50*(2n) D, o—oo—o—<
1 92 n
2
evI FEy o—o—I—o—c
1 3456
O—O—IEO—O—‘
¢ E
v ! 134567

2.2 Diagrams of Hermitian Type
When p is of Hermitian type, the posets ®(u) have Hasse diagrams which are

two-dimensional, as in Jakobsen [12].
Definition 2.1. Define 'W := {w e W | ®,, C ®(u)}.

We view the Hasse diagram of the lower order ideal ®,,, w € 'W, as a subdiagram

of the Hasse diagram of ®(u). We also associate a generalized Young diagram to
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each ideal ®,,: draw a square for each node of the Hasse subdiagram and rotate the
result clockwise so that the square corresponding to the simple root in A\ T is in
the top left.

Listed below are the Hasse and Young diagrams of the longest element of 'WW/
for each of the types from Table 2.1. If 3,8 € ®(u) with §/ — § = o; € A, then
the edge connecting the nodes corresponding to § and ' in the Hasse diagram is
labelled by the integer 7. Parallel edges have the same label. The boxes of the Young
diagrams are numbered as in [9]. Note the useful fact that every Young diagram
contains a fattened version of the Dynkin diagram.
gr = su(p, q) for p =4 and g = 3:

9:(){1+(12+(13+Oé4+065+046

gr = s0(2n — 1,2) for n = 5:

02061+2042+20é3+20é4+2045

[1]2]3[4

[ o] o




gr = sp(n,R) for n = 5:

0 = 2a1 + 200 + 203 + 204 + a5

514[3]2[1
543]2
5143
54
5

gr = s0(2n — 2,2) for n = 6:

Q:Oél+20é2—|—20é3+20é4+0é5+046

1[213]4]5
64
13
12
L1
gr = 50 (2n) for n = 6:
0 = oy + 2000 + 203 + 2004 + a5 +
6]4]3]2]1
54|32
643
514
6]




gr = evr:

9:(){1+2042+2043+30é4+20é5+0é6

6][5]4

[\
OO |0
QY| | —

[\

413]1]

gr = evir
0= 20(1+2Oé2+3063+40(4+3065+20é6+047

|71615]4[3]1
214|3
514|2
6/5(43
716]154
2

RN

Young subdiagrams provide a convenient graphical way of writing reduced ex-
pressions for elements of 'W. For example, the reduced expressions for the elements

w € W for g = su(2,2) are given by the following Hasse diagram:



2|1]_
312 — 85928515352
1]_
= 825183
2
: 5283 12[1]= 5281

2.3  Parabolic Category OP
Let U(g) be the universal enveloping algebra of g. The parabolic category OP

is the full subcategory of the category of U(g)-modules with objects V' satisfying:

(1) V is a finitely generated U(g)-module;

(2) V is a direct sum of finite dimensional simple modules, i.e. a semisimple

U(m)-module;
(3) dimU(u)v < oo for all v € V, i.e. V is locally u-finite.

Let Af :={ e b*| (A +p,a¥) €Zsy VYa € &} where (, ) is the nondegenerate
bilinear form on h* induced from the Killing form of g and o" := 2a//(«, ). There
is a correspondence given by A — F) between A" and the set of finite-dimensional
simple m-modules, where F) has highest weight A\ € A{". We view F) as a p-module

by having u act trivially. The parabolic Verma module with highest weight A is then
Mi(A) :==U(g) ®ug) Fi ,

which is a quotient of the ordinary Verma module of highest weight \. Let L(\)
denote the unique simple quotient of Mj(A).
The ordinary Verma module of highest weight A and its subquotients Mj(\)
and L(A) have an infinitesimal character x, : Z(U(g)) — C, i.e. a character of
7



Z(U(g)) with z-v = xx(z)v for all z € Z(U(g)) and all v in the particular module.
The infinitesimal block Of of OF is the subcategory of modules such that z — x,(z)
acts locally nilpotently for all z € Z(U(g)).

The Weyl group W acts on h* via “dot action:” w - A = w(\ + p) — p. By
Harish-Chandra, x) = x,, for A\, p € h* if and only if A € W - p. If (u+p, ") & Z
for all & € @1, i € b* is said to be antidominant. In fact, if A € h* is integral, then
there is a unique antidominant p € h* with A € W - . Unless otherwise stated, p
will denote an antidominant integral element of h* throughout this work; in other
words

(w+p,a¥) € Zey Va € DT,
If |W - p| = |W]|, pis called regular. This is equivalent to requiring (u + p,a) # 0
for all @ € . For p regular, the categories OF are Morita equivalent and we will
write OF,.

Let Wi = (s, | a € I) with wy its longest element. Then for w € W,

wiw - p €AY

Definition 2.2. Define ¥ =%, :={a € A| (u+ p,a”) = 0}. Let

W2 = {weW |w < ws, and ws, € 'W Va € %}

Note that y is regular if and only if ¥ = (). There is a correspondence between 'W*
and the set of simple modules in OF, by sending w € "W to L(w) := L(wyw-p). The

following will be important in our proof of the main result, and in its application.
Lemma 2.1. Let w € "W* with A\ = wyw - u. Then

(1) @, ={B € P(u) | (A+ p,wBY) > 0}, and

(2) Puuy, = {8 € (u) | (A+p,wf’) = 0}.

Proof. (1) Let 8 € ®(u) such that (A + p,wiY) = (u+ p, w BY) > 0. Then, since
 is antidominant, w™13 € —®* and hence 8 € ®,,.

8



For the other inclusion, suppose that 8 € ®,. Then w3 € —®* and it
follows that (1 + p,w™'8Y) = (A + p,w;B8Y) > 0. Suppose, to the contrary, that
(u+ p,w™'BY) = 0. Then w'B € —Pf and hence (wwg) ' = wyw™ '8 € OF.
This implies 8 & Pyuwy. On the other hand, since w € 'W*, we have wws, > w so

that ®,, C ®yy. This is a contradiction and we conclude that (A+p, wi;8Y) > 0. O

Proposition 2.1. Let z,y € '"W* such that ®, C ®,. Set & := wiz-pu and n = wry - f1.

Then & = sg, -+~ s, - 1, where {B1,..., Bk} is a subset of wi®, C ®(u) such that

E=mn—mipr—maPs— - —myfy
where m; == (sg,_, -+ sg,(n+p),B7) >0 for 1 <i<k.

Proof. Since x < y, we can write &, = {f,..., [} where the §; are chosen such

that {,...,0;} is a lower order ideal of ®(u) for all j and ®, = {f,..., fx}. Then

n+p=wy(p+p) =wisp, - Sp,,, (4 + p)
= (wrsgwy ) (wisg,_wi') -+ (wisg,,,wi wiz(p + p)

= SwifSwif-1 " 8w15k+1(§ +p)-
Equivalently, & + p = Suw8,,, SwiBys =+ Swig (0 + p). O

2.4 Classification of Unitary Highest Weight Modules

If there is a gg-invariant Hermitian scalar product on the simple module L(\)
in OF then L(\) is unitary. We follow the classification given by [5]. See also [6].
Any highest weight A must be an element of a cone of the form vertex A\, plus a
certain sum of fundamental weights C, as follows. Extend the Dynkin diagrams
from Table 2.1 in the usual way by adding a node for —0, where 6 is the highest
root. Draw a subdiagram of the extended Dynkin diagram containing the node —6
and the nodes for a; not the crossed node such that w; does not occur in the highest

weight \,. The connected component containing —6 is then the Dynkin diagram

9



for a reduced root system () with —0 as the crossed node. The cone C), is given by
the sum of a;w;, a; € Z>o, for a; not in the Dynkin diagram of () and is indexed
by a = (Q,1). We list the cones for Types A and D. See Tables 2.2 and 2.3 for the
remaining information.

n—q’
For Type A, G =SU(p,q) and C, ={ > aw; | ap = — > a;}.
i=p’ i#p
For Type D, G = SO*(2m), there are two possibilities for Q. If @ = SO*(2p)

m m—2
with 3 < p < m, then C, = {> aw; | am = —an_1 — > 2a;}. If Q = SU(1,q),
i=p

i=p
m m—2
1 < g <m-—1, wehave that C, = {ajw1 + > aw; | am =—a; —am_1— >, 2a;}.
i=q+1 i=q+1

For Type D, G = SO(2m — 2,2) and @ = SU(1,p), 1 < p < m — 1, we have

Co = {agwy + i aw; | a1 = —apm_1 — Ay — mi2 2a,}.
i=p+1 i=p+1
2.5 BGG Resolutions and Kostant Modules

The construction of a complex for any simple module L(w) in OF,, is directly
comparable to the construction of the resolution of a finite dimensional simple mod-
ule given by Lepowsky [14], and, for p = b, by Bernstein, Gelfand, and Gelfand [2].
If 2,y € 'W are connected in the Hasse diagram for "W with = < vy, then there is a
nonzero g-module map M;(z) — M;(y) which lifts to the standard map between the
orginary Verma modules with the same respective highest weights. It is possible to
assign +1 to the sides of every square in W so that the product of the four is —1.
This fact, together with the map M;(z) — M;(y), can be used to construct a matrix
of maps d; : C; — C;_1 where C; := @ M(z)

L) 1(r)=i

for 1 <i <lI(w). Together with the canonical quotient map dy : Cop = Mi(w) — L(w)

this gives the BGG complex of L(w) (see [9]).

Proposition 2.2. Let L(w) be a simple module in OF,,. Then the sequence
0= Cyw) = -+ = C1 = Cy = L(w) — 0 is a complex. Moreover, the restriction
of d; to My(z) is nonzero for each x < w with l(x) = l(w) — 1.

10



Table 2.2. Classification of Unitary Highest Weight Modules of Types A and D

G Ao Q Parameters [
SU(p q) wy +wn—g—(n+  SU(p,¢)  1<p <p, 1 <1< min(p,q)
L+1—p" —q)wy, 1<¢<q
SO*(2m) wy — (2m — 2)wy, SU(1,1) 1
w1+ w1 —(2m— SU(1,q) 2<qg<m-3 1
Q)W
w1+ wWm—1—(m+  SU(L,m — 2) 1
Dwm
w — (m— 1wy, SU(m — 1) 1
w, —2(m —p + SO*(2p) 3<p<m-2 1 <1< [5]
Dwn,
Win-1— (1420w,  SO*(2m — 2) 1< <[z
—(2l = 2)wp, SO*(2m) 1<I<[%]
SO(2m —2,2) —(2m—p—1)wi+ SU(1,p) 1<p<m-3 1
Wp+1
—(m+ 1w + SU(1,m —2) 1
Win—1 + W,
—(m—1)w; +w,  SU(L,m—1) 1
—(m —1)w; + SU(1,m —1) 1
Wm—1
0 SO(2m — 2,2) 1
—(m — 2)w; SO(2m —2,2) 2

11



Table 2.3. Classification of Unitary Highest Weight Modules of Type E

G A Q l
Es wy — 12wg SU(1,1) 1
wi — 12w SU(1,2) 1

w3 + w5 — 12w SU(1,3) 1

w3 — Ywy SU(1,4) 1

w1 + ws — 10ws SU(1,4) 1

ws — 8wg SU(1,5) 1

wy — Swe SO(2,8) 1

w; — 8wg SO(2,8) 2

—3wg FEk 2

E; w1 — 18wz SU(1,1) 1
ws — 18wy SU(1,2) 1

wy — 18wy SU(1,3) 1

wo + w5 — 18wy SU(1,4) 1

ws — 15wy SU(1,5) 1

wo + wg — 16wy SU(1,5) 1

wy — 13wy SU(1, 6) 1

wg — 10wy SO(2,10) 1

we — 14wy SO(2,10) 2

— 4wy E; 2

—8wry Er 3

12



For example, in OF_ for su(2,2) the BGG complex of the finite dimensional simple

reg

module is given by
0 — Mi(e) — Mi(o) — Mi(m) & Mi(B) — Mi(F) — Mi(E) — L(EH) — 0.

By truncating this complex we obtain complexes for the other simple modules in

Or

Feg» Such as

0 — Mi(e) = Mi(c) — My(m—m) — L(m) — 0.

Definition 2.3. A simple module L(w) in OF,, is a Kostant module if

reg

H(uwLw)= € F

l(w)—I(z)=i

as an m-module for ¢ > 0.

By Kostant’s theorem [13], L(w) is a Kostant module for w the longest element of
W and by Enright [7], every unitary highest weight module is a Kostant module.

Moreover, Boe and Hunziker [3] showed the following.

Proposition 2.3. Let L(w) be a simple module in OF,, for w € '"W. Then L(w) is a

reg

Kostant module if and only if the truncated BGG complex for L(w) is exact.

In [10, 11], Enright and Shelton showed that, in particular when the Dynkin diagram
is simply laced, there is an equivalence of categories given by an exact functor

E: Of(;g — OF, which maps simple modules to simple modules, and Verma modules
to Verma modules. Here p’ is a parabolic subalgebra of Hermitian type of a complex
simple Lie algebra g’ of rank at most n. Thus we may extend the definition of BGG
resolutions, and hence Kostant modules, to any infinitesimal block OF, by applying

the exact functor £. For example, consider gr = su(3,3) with ¥ = {az}. Then 'W*

has the following poset:

13



Since this is isomorphic to the poset 'W for gr = su(2,2), we obtain a BGG resolu-

tion
0 — Mi(e) = M) = Mi(H®) & Mi(f) — Mi(F") — Mi(EP) — L(HH) — 0.

of the simple module L(FH) in Or.

14



CHAPTER THREE

Theorem

Let A = 0 be the highest weight of the trivial representation. If Mi(w - \) —
Mi(w" - X\) is a map in the BGG resolution of L(A) = L(0), then there is a unique
root f in &, \ ®,,. From Kostant’s formula we have w - A = X\ — (®,,). Therefore

w-A=w"-X— . For example, in su(2,2) we have the following resolution:

M)
0 M) M) Y M(-) == M(}) L(X) 0
EIXM(‘)/;

Here the labels on the arrows denote the root § that is subtracted moving from right
to left. This pleasing property characterizes the trivial representation in the set of
all finite dimesional representations. For any other representation, we must subtract

multiples of roots, as in the following example for su(2, 2):

52% &63

0 M(-) &% 22 M(N) L(\) 0
2(61& /54

Moreover, if p is of Hermltlan type and gr is noncompact, the trivial repre-

sentation is the only unitarizable finite dimensional representation. The goal of this
work is to show that the BGG resolution of every unitary highest weight module
satisfies an analoguous property, namely that the m; from Proposition 2.1 are equal

to 1. To see this, let f: ®(u) — A be given by f(8) := v '3 for v € 'W such that

P, ={v € P(u) [y < B}

15



Lemma 3.1. Let x,y € "W such that ®, = &, U {3} for some 3 € ®(u). Then

wiz - p=wy-p+ (At p, f(B))wp.

Proof. Since @, = &, U {3}, we have y = szx. Hence

wiy(p+ p) = wisgr(p + p)
= (wsgwy wiz(p + p)
= Supwiz(p + p)
= wiz(p+ p) — (wiz(p + p), wi¥)w B
= wiz(p+ p) — (u+ p, 2~ 8 )wi

= wlx(:u’ + p) - (M +p, f(ﬁ)v)w167
using the fact that s, gA = A — (A, (wi8)Y)wif and that f(8) = z~'f. O

Proposition 3.1. Let z,y € 'W with x < y. If n = wyy - p and & = wyx - p, then
E=n+ D (n+p f(B))wb,
BEDY\ Dy
Proof. There exists a sequence * = xg — ¥, — -~ — 2, =y in 'W. For 1 <i <k,

we then have ®,, = ®,.  U{B;}, where f; € ®(u). By Lemma 3.1,

k

Wi - = wry - fi+ Z(M + 0, f(B:)" )wif;.
=1

This proves the proposition since ®, \ ®, = {51, ..., Ok} a

Consequently, we are interested in the coefficients (u + p, f(3;)") of wif;.

Theorem 3.1. Let L(w) # Mi(w) be a unitary highest weight module in O%,. If ® has

only one root length, i.e. if ® is of Type A, D, or E, then
(u+p,a¥) €{0,—-1} for all a € supp(w),

where supp(w) = {o; € A | s,, occurs in the reduced expression for w}.

16



The result then follows directly from this theorem: to obtain the highest
weights of consecutive parabolic Verma modules we subtract possibly multiple roots,
but never multiples of a root. For example, a Wallach representation of su(3,3) with

Y. = {as} gives us the following resolution:

M()
0—MO)=2M() @ MO EE M) L) —0
€1—€y4 %—56
M()

A quick method of determining the roots to subtract is to look at the Hasse diagram

of the poset 'W?*. For this particular example we have:

3
4

The roots to subtract are then the corresponding entries of w;®(u) for the boxes
removed going from top to bottom. For example, starting from the top Young
diagram, we must remove two boxes, namely the 2 and 4 on the lower right. These
correspond to €3 — €5 and €5 — €4.

We distinguish the proof of this our main result with its own chapter.
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CHAPTER FOUR
Proof

We proceed by cases corresponding to Tables 2.2 and 2.3, and write roots
and weights using coordinates with respect to the standard bases given by ¢;’s. The
general procedure will be as follows. Starting with a general highest weight from 2.4,
we evaluate (A + p, 8Y) for all 5 € ®(u). Then we arrange these values in the shape
of a Young diagram by labeling each node of the poset diagram for ®(u) with the
corresponding (A + p, 8Y), taking the involution w; into account. By Lemma 2.1, we
are only concerned with the positive entries in order to determine supp(w). In fact,
it will suffice to look at the entries corresponding to the Dynkin diagram within the
Young diagram, which is what we will list in each case below. Finally, we determine

i+ p from A + p by antidominance and calculate (x4 p, ") for a € supp(w).

4.1 Type A: gr = su(p,q)

From 2.4 we have that a general weight is of the form:

)x:(?’+q’+1—n—l,...,p'+q'+1—n—l,

~~
pl

pP+q¢d—-n—l—ay,....0' +¢ —n—-l—ay—-—ap,

~
p—p’

1+&p+1+"'+@nfq/> 1+&p+2+"'+@nfq/>"'a1+anfq’a

q—q'

Since in this type p = (n—1, n —2,...,1, 0), we then have

Atp=@+d-Lp+d—-1-1p+qd—-1-2...p+qd-1-(p-1),
p/
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¢ —1—1—ay, q/—l—2—ap/—ap/H,...,q/—l—(p—p/)—ap/—-~-—ap,£,

-

'

p—p’

g+ap+1+"'+an—q’a q_1+ap+2+"’+an—q’7"'7q,+1+an—Q’7

q—q
q-1,4¢-2,...,1,0)
7
For this type the relevant entries are the first row: (for § = €1 —€,,, €2—€,, ..., €,—€,)
Prd =L p+d—-1-1Lp+qd-1-2 -, ¢d-1+1,¢~-1-1-ay,
M
¢ —1—-2—ay —ays1, -, D +¢d —l—p—ay ——a,
and the first column: (8 =€, —€,, €1 — €41, ..., €1 — €n—gt1)
(
pP+q -1
P+d—-1-1
q/
p—1+2
p—1l+1
\

pP=l—1—=a, g

P4+qd —l—q+l—apo——a,y

PHd —l—q—ap1— - —ayy
We consider two cases for the smallest and largest subdiagrams. An arbitrary sub-
diagram then follows from recursion in the following way. Begin with the smallest
subdiagram, i.e. for a,_y > p'—1—1 and ay > ¢’ — [ — 1. Then add one box to
the diagram at a time, noting how this changes p + p, until we reach the largest
subdiagram, i.e. for all a; = 0. For example, consider p =¢ =6, p’ =5, ¢ =2, and

[ = 1. Then the largest subdiagram is
19



6 5} 4 3 2
5) 4 3 2 1
3 — aqo 2 —ay I —ayp
2 — a9 — ap 1 —ag—ay

I —ag—ag —ay
while )\+p:(6, 5, 4, 3, 2, —das, 6+&7+&8+&9+am, 5+a8+a9—|—a107 4+CL9+

ag, 3+ ay, 1, 0). The smallest subdiagram, for a;p > 3, is a 2x5 rectangle giving
supp(w) = {ag,...,ar} and p+ p = (—as, 0, 1, 2, 3, 4, 5, 6, 3+ a, 4+ ag +
aig, 5+ ag+ ag+ ay, 6+ ar + ag + ag + ajg). Adding a box to the lower left means
ayp = 2 and the 3 + ay¢ entry shifts one slot left in u + p. Continue adding boxes
on the lower left; the number of boxes in the third row gives the value of ayg, in the
fourth the value of ag, and so on. Each added box shifts entries from the right tail
of p+ p left one slot until we arrive at p+p = (—as, 0, 1, 2, 3, 34+ ao, 4, 4+ a9+

ayo, 5, b+ag+ag+ay, 6, 6+ay+ag+ag+aig) corresponding to ag = ag = ajp = 0.

4.1.1 Case 1: ap_y>p —l—1anday >¢ —1—1
By antidominance we have

Iu_|_p:(g'—l—(p—p/)—@p/_...—ap,l,...,q,—l—1—&},;,

—
p—p’

0,1,....¢d -1, ¢d—1+1,¢d—-1+1,....4d -1, ¢ -1,

-

q—l+1 2(1-1)

¢, d+1L....p+qd-1-1p+q -1

p/—l+1

¢+ 1t an g qFap -+ any)

-

a—q
This case corresponds to the smallest possible subdiagram, which has ¢’ entries in

the first column and p’ in the first row. Thus

Supp(w) = {Oépfpurb Ap—p/ 425 -+ -5 Ap—1, Qp, Apy1,.. ., O‘erq’fl}'
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Hence (u+ p, ) =—-1,...,—-1, 0, =1, 0,...,—1, 0, —1, —1,...,—1

.

q/:fﬂ 2(;1) ptl
fori=p—p' +1,...;p+¢ — 1.
4.1.2  Case 2: all a; =0
Here we are in the same situation as Case 1 if p’ =1 —1<0or¢ —1—1<0,
so suppose each is strictly greater than zero. This case corresponds to the largest
possible subdiagram above, which has p’ + ¢’ — [ — 1 entries in the first column and

in the first row. However, u + p depends on two additional relations. They are

independent, but for sake of brevity we combine them into two subcases.

4.1.2.1 Subcase 1: ¢ =1 <p—p andp' —1 < q—¢. There must be some
l<i<p—p and ¢ <j<n—p—1suchthat —ay —---—a,_;and a,_j+ -+ a,_g

have constant terms 0 and p’ + ¢’ — [, respectively. Then

:u—i_p:(g/_l_(p_p/)_&p/_”'_apfla"w_l_ap’_"'_&pfiJrl/a
pfptqurl
—Qy — =Gy, 0, L—ay — - —apiq, 1,...,¢ =l —1—ay, ¢ —1-1,
2¢'-1)

g/_la q/_l+1> q/_l+1> q/_l+27 q/_l+27"'>q/_17 q/_la qla
2

q/_'_]-? q,+1+an—q’7”‘7p/+q/_l7 p/+q/_l+an—j+"'+an—q’7

2/ 1)

Prqd —l+14a, j 1+ g, Gt s+t Qg

N

~
q—q'—p'+l

Since supp(w) = {Qp—p/—g/ 41425 Opp/—g/+1435 - - - s Opipirq'—i—2 }, We have
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(+paf)==1,0,-1,...,0, =1, =1, 0, =1, 0,...,—1, 0, —1, —1,

2(¢’'—1)—1 2(;:1)

0, -1, 0,...,—1, 0, —1

fori=p—p' —q¢+1+2,....p+p +q¢ —-1-2.

4.1.2.2 Subcase 2: ¢ —1 > p—p andp’'—1 > qg—q'. Here the entries containing

a;’s are entirely contained within the constant entries:

/’L+p:(97 17"'7p/+q,_l_p_]1-7

p+q —i—p
d—l—(p=p)—ay——ap1, p+qd—=l—p....¢d-l—-1-ay ¢—-1-1,
2(1:10’)

g/_l7 q/_l+17 q/_l+17 q/_l+27 q/_l+27”‘7q,_17 q/_]-7 qj?

2l

q/+17 q,+1+anfq’a"'7qa q_‘_&p+1+"'+&nfq/7 g+1a q+2aap/+q/_D

N

-~

~
2(q—q") p'+q'—l—q

By the hypothesis of this subcase, p’+¢'—I1 > p and p’+¢'—1 > ¢ so the subdiagram is

actually the full Young diagram for SU(p, q). That is supp(w) = {aq, a2, ...,an 1}

Thus (u+pal)=(-1,...,—1,0, -1, 0,...,—1, 0, —1,
p’+q’v—l—p 2(1:10’)
~1,0, =1, 0,...,—-1, 0, =1, —1,
20
07 _17 07 . '7_17 07 17 17 7_1)
2((1:1’) P’+q’:7—q—1
fori=1,....,n—1.

4.2 Type D: gr = 50*(2m)
Recall that for this type, the Weyl group includes action by an even number
of sign changes. This will cause some inconvience in determining u + p for the
@ = SU(1, q) cases. However, for Q = SO*(2p), A + p always contains a zero term,

allowing us to negate entries with impunity.
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4.2.1 Case 1: Q =S0"(2p),3<p<m—2

From Table 2.2 we have
)\:(}—(m—p+l),...,1—(m—p+l),

p
—(m—p+1)—ay. . —(m—p+l)—ay— 1)
m—p

and since p is the same as for Type A, it follows that

Atp=(p—IL p—1-1p—1-2...1-1,

p

—l—1—ay, ——2—a,—api1,...,—(Mm—p+1)—a,— - —am_1).

g

-~
m—p

For Type D the relevant entries of the Young diagram are the first row, that is for

6:‘51_‘_627 61+€37"'761+6n:

2p—=20-1,2p =20 -2, --- , p=20+1, p—20—1—a, p—20—2—a, — ap;1,
...72p_2l_m_a/p_..._a/m_1
and the first entry of the second row: 2p — 2] — 3 (for 8 = €3 + €3). We follow cases

similar to those of Type A.

4.2.1.1 Subcase 1: a, > p—2l—1 ORp—2l -1 < 0. In this case by

antidominance we have

,u+p=(—(m—p+l)—ap—~-~—am_l,...,—l—2—ap—ap+1, —l—1-a,,
e
\_(p_l)7 _(p_l_1)7a_la
p—20+1
—l+1, =l+1, =l+2, =l+2,...,—-1, =1, 0)
2(1-1)

By hypothesis, we have p—1 positive entries in the above first row. Also, since [ < [£],

2p — 21 — 3 > 0. Hence supp(w) = {m—pt1; QGm—pt2,-- s Um—2, Om_1, Qp} and so
(u+p,af)y=-1,...,-1, 0, =1, 0,...,—1, 0, =1, =1 fori=m—p+1,...,m.
p—21+1 2(1-1)

23



4.2.1.2 Subcase 2: all a;’s 0 and 2p — 2l — 1 < m. Here

M+p:(:(m—p—'—l)—ap—"'—am_l,...,_]_—(p_l)_ap_"'_GQp—Qb
m75;+21
:(p_l)_ap_"'_GQp—Ql—la _(p_l)77_l_1/7
2(1:21)
— 1, —l+1, =l+1, =1 +2, =1+2,...,—1, =1, 0)
2(1-1)

Assuming that p — 2l — 1 > 0 (otherwise we have the same situation as Subcase 1),

there are 2p — 2] — 2 positive entries in the first row. Thus
Supp(w) = {am72p+2l+2a am72p+21+37 s aamprrl; Oémfp+27 ceey Qp2, Op_1, Oém}-

It follows that

(h+paf)=-1,0-1,...,0, =1, =1, 0, =1, 0,...,—1, 0, =1, —1

2(p—21) 2(;:1)

fori=m-—2p+20+2,...,m.

4.2.1.3 Subcase 3: all a;’s 0 and 2p — 2l — 1 > m. In this case

ptp=(=(p—-0), =(p—1—-1),....—(m—p+1+1),
2p—\2;—m
—(m—-p+l)—a,—-—am1, —(m—p+10),....—l—1—aqa, —l—1,
2(7:1:1?)
-, =41, =l+1, =1+2, =l+2,...,—1, =1, 0).
2(1-1)

Moreover, the entire first row above is positive, i.e.

Supp(w> - {a17 Qg,...,0m—2, Qn_1, am}'
Therefore
(M"‘Pa%v):\—l;---a_l/a 97 _17 07"'7_17 07 _1/7 _17
2p7\2?fm 2(n::p)
0, -1, 0,...,—1, 0, =1, —1
2(l‘:1)
fori=1,...,m.
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4.2.2 Case 2: Q =S0"(2p), p=m —1

By 2.4 we have that A = (—[,...,—l, =1 =l —a,,_1). Thus
—— —

m—1

At p=m—-Il-1,m—-1-2,....,2—=1, 1 =1, =1 —=1—apn_1)
and so the entries in the first row are
2m —2l—3, 2m =2l —4, --- , m—=2l+1, m—=2l, m — 2l — 2 — a,,_1
with 2m — 2] — 5 in the first entry of the second row.

4.2.2.1 Subcase 1: a1 >m —2l—2 ORm — 2l —2 <0. Here we have

Supp(w> = {Oég, A3,y Om2, Qp1, am} and
pt+p=(—-1—-l—ap, —-(m—-101-1), —-(m—101-2),...,—,
mt2l
—1+1, =l+1, =l+2, —l+2,...,—-1, —1, 0).
2(1-1)
Hence (u+p,0f)=—-1,...,-1,0, =1, 0,...,-1, 0, =1, —1
m—2l 2(1-1)
fort=2,...,m.

4.2.2.2 Subcase 2: apm—1 = 0 and m — 2] —2 > 0. In this case supp(w) =

{ala Qg,...,0pn 2, Qm_1, am} and
m—‘Q,l—Q
—1—=l—am, —1—1, =, =l+1, =l+1, =1+2, =l +2,...,—1, =1, 0).
2(121)
Therefore (1 + p, o)) =-1,...,—1, 0, =1, =1, 0, =1, 0,...,—1, 0, —1, —1
N—— . ~ s
m—21—2 2(1-1)
fori=1,...,m.
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4.2.3 Case 3: Q =S0*(2p), p=m

Observe that by 2.4 we have A = (=l +1,..., =]+ 1) and so
Atp=m—-1l,m—-1—-1,...,—1+2, —1+1)
giving us a first row in the diagram of
2m —2l—1,2m—-2l—-2, --- , m—=2l+2, m—2l+1

and 2m — 2] — 3 as the first entry in the second row. Thus

supp(w) = {1, ag,...,Qm_2, Qy_1, oy} and
(u+pal)=—1,...,—-1,0, -1, 0,...,—1, 0, -1, —1
m—2041 2(1-1)
fori=1,...,m.

4.2.4 Case 4: Q=8SU(1,q),q=1

By 2.4
A= (2 +1 2 1 1 )
=(2—m+-=a —m——=a —m——=a1—0g,...,1l—m——=a1—ay—+ - —Qy_1).
217 217 21 2 ) 21 2 1
Thus
A+ —(1+1 L 2 L 3 L
pP= 2@1, 2&17 2&1 az, 2&1 as ag, ...,
l—m—=a;—as— — ay,_
m— 51— a A1)
yielding a first row of
1, =1 —a9, —2—a9—as, -+, 3—m—ay— -+ —GQmo, 2—M— Ay — *+* — Qp_1

and first entry in the second row of —2 —a; — ay. Clearly supp(w) = {a,,,}. Now in

this case

M+,0:(1—m—§a1—a2—~-~—am—1, 2—m—§a1—a2—-~-—am_2,---,

1 1
—9_ Zqy — —1-= Z
2a1 a2, 2a1, 2a1)

so (u+p, ) = —1 for i = m.
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4.2.5 Case 5: Q=SU(1,q),2<qg<m-—3

By 2.4
1 1 1 1 1 1
A= (2— = —ay, 1— —q— =ay,...,1— —q — =ay,
( m+2q+2a1\ m+2q 501 m+2q 501
M
1 1 1 1
:m+§q—§a1—aq+1,...,—m+§q—5&1—%“—~-~—am,1)
m—v—l
and so
A+ (1+1 —1—1 1—1—1 L 2+1 ! ! !
= = —ay, — —q— =ay, — —q— =a1,...,—=q — =a
P N 2q 2 1 2(] 9 1, 2q 9 1 ) 2(] 9 1,
g+1
1 1 1 1
:2—§q—5(11—aq+1,...,—m+§q—§a1—aq+1—---—am_l).
mfvfl
Thus the first row and first entry of the second row are
q, q_17 q_27 ) ]-7 _1_aq+17 _2_aq+1_aq+27 R}

l—m+q—ag1 — " — Qn1
and ¢ — 3 — ay, respectively.

4.2.5.1 Subcase 1: ay > q¢—3 OR g =2. For this case supp(w) = {ay,—q,

Qm—gt1s - - - ¥m—2, Qy,}. By antidominance
ptp=
1 1 1 1
(—m+§q—§a1—aq+1—"'—am—1a 1—m+§q—§a1—aq+1—"'—am—%
1 5 1 1 1 1 1 1 1 L 1
ey —=q—2—=a; —a —q—-1—=ay, ——q— —a;, —— - —ai,...,
) 2q 50 a+1s 2q 50 261 50 261 50
2+1 ! ! +1+1 )
2q 2&17 2q 2@1-
Therefore (u+ p,af) =—1,...,—1fori=m—gq,...,m —2, m.
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4.2.5.2 Subcase 2: a; =0 and g > 2. Here supp(w) = {@m—qg» Wm—qg+1,-

‘e

Qm—2, Qm_1, Q4 }, however u+ p depends on the parity of g. If ¢ is even we have

ptp=
1 1 1 1
(_m+§q_§a1_aq—i—l_"'_am—lu 1—m+§q—§a1—aq+1—"'—am—%
1 1 1 1 1 1 1 1
"'7_§q_2_§al_aq+1> _iq_l_ial’ _éq_éala _§Q+1_§a1’
1 1 1 1 1 1 1
gt 14 ay, —aqt2—=ay,...,—1—zaj, —1+ a1, ~ay).
29‘1‘ +2a1, 29‘1‘ SRR 5 +2@1, 2a1)
If ¢ is odd then
ptp=
1 1 1 1
(_m+§q_§al_anrl_"'_&mfla 1_m+§q_§a1_aq+1_"'_&m72a
1 1 1 1 1 1 1 1
"'7_§q_2_§a1_aq+17 _iq_l_ial’ 54~ 3% —§Q+1—§CL17
1 +1+1 1 49 1 3 1 3+1 1 1
— = —ay, —= — =1y, —= — =1, —— + =@, —= — =ay,
21 2" ot 2T TRt Ty Tt Ty T ™
1 1
L(Z_
)

where the sign on the last entry depends on the parity of k£, ¢ = 2k + 1. Hence
(u+p,af)=-1, =1, 0, =1,...,0, =1, —lor (pu+p, /) =—-1, =1, 0, —1,...,
0, —1, —1, 0 (with the last two entries switched for the negative final entry) for

i=m—q, m—q+1,....m—1, m.

4.2.6 Case 6: Q@ =8SU(1,q), g =m — 2

From 2.4
1 1 1 1 1 1 1 1 1
A: (1—§m+§a1, —§m—§a1, —§m—§a1,...,—§m—§a1, —1—§m—§a1—am_1)
and
1 1 1 1 1 1 1 1
)\+p=(§m+§&1, §m— —5&1, §m—3—§a1,...,1—§m—§a1,
1 1
—-1- SMm = 50— Am—1)-
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Thus we have m—2, m—3, m—4, ---, 1, —1—a,,_1 as the first row and m—5—a,

as the first entry in the second row.

4.2.6.1 Subcase 1: ay > m —5 OR m <5. Here supp(w) = {an, as,...,
Qm—2, Q) and

1 1 1 1

H+p:(_§m_1_§al_am—la _§m_§a1, —§m+1—§a1,...,
! 3 L ! +2+1 )
-m—3——-a;, ——m —ay).
2 271 2 2™
It follows that (u+ p,a)f) =—1,...,—1fori=2, 3,..., m—2, m.

4.2.6.2 Subcase 2: a; =0 and m > 5. For this case supp(w) = {2, as, ...,

Qm—2, Qm_1, Qp}, however p+ p depends on the parity of m. If m is even we have

1 1 1 1 1 1
prp=(=gm=1-gca —an1, —gm=—ga, —gm+1—ca,
! +2 ! = +2+1 1 ! 1+1 1)
2m 2@1, 2m 2@1,..., 2@1, 2@1, 2@1 .
If m is odd then
1 1 1 1 1 1
M+P:(—§m—1—§a1—am71> —5™Mm = 50, —§m+1—§a1,
1 49 1 1 Log 1 3 1 3 N 1
2m 2@1, 2m 2&1,..., 9 2@1, 5 2@1,
1 1 1 1
- _Z +(Z - =
3~ g —5a)

where the sign on the last entry depends on the parity of the number of entries in A\+p
with positive constant term. Therefore (u+p, ) = -1, =1, 0, —1,...,0, —1, —1
or (u+p,f)=-1, =1, 0, —1,...,0, —1, —1, 0 (where the last two entries are

switched for the negative final entry) fori =2, 3,...,m—1, m.

4.2.7 Case 7: Q@ =SU(1,q), g=m —1

For this case, by 2.4



At ( +1+1 1 3 1 1 5 1 3 1 1
= (zm ap, =m - —a m— = — =a ———-m-— =a
p=lgmagmodn oty =50 9= — oy m i = 50
1 1 1 )
——-m— =a
2 2 2!
resulting in a first row of m — 1, m —2, m—3, ---, 2, 1 and m — 4 — a; as the

first entry in the second row.

4.2.7.1 Subcase 1: a3 > m—4 OR m = 4. In this case supp(w) = {aq, ao,...,

Qm—2, Qm}. Now

n ( 1 1 1 1 +1 1 1 +3 1
=(—=m—=—=ay, —Mm+ - ——a;, —m—+— — —aq,...
w-rp 9 5 21, 5 5 21, 5 5 217 )
1 5 1 1 +3+ )
-m—-—=——ay, —m+ -+ —a
2 2 27 2 2 2!
and so (u+p, ) =—1,...,—1fori=1, 2,....m—2, m.

4.2.7.2 Subcase 2: a; =0 and m > 4. Here supp(w) = {aq, ag,...,Qy 2,

Qm-1, Qm}, and again g+ p depends on the parity of m. If m is odd we have

. (1 1 1 1oLl 13 131
=(—-z—m—=-—=za;, ——m+—-—-a;, ——m+—=-—=a;, ——m+ =+ —a
prp oMt T o T M TR TR TR T o4, T G T o
1,5 ] 1 ] 1)
——m+=-—=ay,...,—1—=ay, =14+ =a1, =a1).
2 2 2 1 ) 2 1s 2 1s 2 1
If m is even then
. (1 1 1 11l R N
=(—-zm—=-—=za;, ——m+—-—-a;, ——m+—=—=a;, ——m+ =+ —a
prp D A D A T D T A T R
1,51 31 3 1 1 1 i& 1 )
——m+-—=ay,...,—— — =Gy, —— + —a1, —— — =G ———a
2 9 b9 gt Ty Tt Ty gt g o™

where again the sign on the last entry depends on the parity of the number of entries
in A 4+ p with positive constant term. Therefore (1 + p, ) = -1, =1, 0, —1,...,
0, =1, =lor (u+p,))=-1, =1, 0, —=1,...,0, =1, —1, 0 (where the last two

entries are switched for the negative final entry) for: =1, 2,....,m —1, m.
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4.8 Type D: gg = s0(2m — 2,2)

For this case supp(w) depends on the parity of m because the longest element
in the Weyl group for D,, ; changes the sign of m —1 for m odd but not for m even.
See Table 1 of [1]. However, this will only be an issue for @ = SU(1,m — 1). In
the remaining cases «,,_1 and «,, are either both included or both excluded from
supp(w). Thus we ignore the distinction and, without loss of generality, only write

the row of the Young diagram for m even when ¢ < m — 1.

4.8.1 Case 1: Q@ =SU(1,q), ¢g=m —1 with A\, = —(m — 1)wy + w1

By 2.4 we have \ = (% —m— %am_l, % + %am_l, e % + %am_l, —% — %am_l)
and so A+ p = (% — %am_l, m — % + %am_l, e % + %am_l, —% — %am_l).

4.3.1.1 Subcase 1: m even. Then pu+ p = (% —-—m — %am_l, cee —% — %am_l,
— % — %am_l, % — %am_l). Though the Young diagram is different, as in the previous
section the relevant entries are the first row: m — 1, m —2,...,2, 1 and the first
entry of the second row: —a,,—;. Thus supp(w) = {aq,...,an_1} and we have
(u+p,af)y=—-1,...,—1fori=1,....,m—1.

4.3.1.2 Subcase 2: m is odd. Here the first entry of the second row and last
entry of the first row are interchanged so that supp(w) = {aq, ..., am_2, am}. Also
w+p = (% - m — %am,l,...,—% — %am,l, —% — %am,l, —% + %am,l) so that
(u+p,af)=—-1,...,—1, =1fori=1,...,m—2, m.

4.8.2 Case 2: @ =SU(1,q), g=m —1 with A\, = —(m — 1)w;1 + wy,
In this case A = (% —m — %am, % + %am, cee % + %am). Then

_ (1 1 3 1 1 1
)\+p—(§—§&m, m—§—|—§am,,§+§am)

4.3.2.1 Subcase 1: m is even. Here we have a first row of m —1, m —2, ...,

2, —a,, with 1 in the first entry of the second row. Thus
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supp(w) = {aq, ..., m_2, @y}. Since m is even we have

p+p=03E-—m—ziam, 2—m=—1ian,...,—5 — 3am, —% + 3a,). Therefore
(u+p,af)y=—-1,...,—1, =1fori=1,...,m—2, m.

4.3.2.2 Subcase 2: m is odd. Again the last entry of the first row and first entry

of the second row are interchanged so that supp(w) = {a1,...,a;,u_1}. Moreover,
p+p=03—m—3an, 2—m=—1an,...,—5 — 3am, 3 — 50,,) and so
(u+p,af)=—-1,...,—1fori=1,....,m—1.

4.8.3 Case 3: Q =SU(1,q),qg=m — 2

In this case we have

A= ( L L 1+ ! + ! 1+ ! + ! ! + ! )
=(—m—=ap_1— =0, U1+ =y -+ —Up1 + =y — =1+ =)
2 "9 2 "t g 2 "t g 2 "t g

Therefore

1 1 1 1 1 1

/\+p:(—1—§am_1—§am, m—1—|—§am_1+§am, cee 2+§am_1+§am,
1 1
- éam—l + iam)
giving a first row of m —2, m—-3,...,1, —1—a,, with —1 — a,,_1 as the first entry
of the second row. Hence supp(w) = {ay,...,a,_2}. By antidominance
+p=(1 2 bl 91 !
1% pP= m 2@m71a m 9 2am> R 2am71 2@ma
1 1 1 1 1 n 1 )
— 1L 7 S%Wm-1 — SWUm, —aUm— Sam
pm=1 7 5 gtm=171 5

where the sign on the final entry depends on the parity of m. Thus we have

(u+p,af)=—1,...,—1fori=1,....,m—2.

4.8.4 Case 4: Q=SU(l,p), 1<p<m-—3

Here by 2.4 we have
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1 1

)‘:(p+2_2m_&p+l_"'_&m72_§am71_§am>
1 1 1 1
1+@p+1+"'+am72+§@m—1+§am,---,1+&p+1+"'+&m,2+§&m,1+§am,
»
1 1 1 1 1 1

ap+2+"'+am—2+§am—1+§amw”7§am—l+§ama _§am—1+§am)
and so

1 1
)\—l—p:(p+1—m—ap+1—---—am,g—ﬁam,l—iam,

1
m_1+ap+1+"'+@m72+§am71+§&m>---a

m—p—i—ap+1+---+am_g+—am_1—i——am,

2 2
2+ appo+ o+ TEP. L
m—p— a co o gy — Oy — Qs v v v s — — Uy,
p p+2 2 5 1 5 5 1 5
1 n 1 )
2am,1 2&m .
Here we have
b, p_17"'717 _1_ap+17‘”72+p_m_ap+1_"'_am—27
Il+p—m—api1 — = Qp-2 — O
in the first row and 1 +p —m — ap11 — - -+ — a,,—1 as the first entry of the second
row. Thus supp(w) = {aq,...,a,}. Now
1 1
,u+p:(1—m—ap+1—-~-—am,2—§am,1—iam, e
1 1
p—m—apy1 — Ay —2 2am—1 2Gm,
1 1
L+p—m—api1 = — Qo 5 0m—1 = 5 0m,
1 1
24+ p—m—app2— - — Ap2 5 m=-1 = 5 0m, ;
] 1 1 4 1 n 1 )
- 5 am— 5 m, Ay — 30m)),
2 2 ")

where the sign on the last entry depends on the parity of m. Therefore

(u+p,f)=—-1,...,—1fori=1,...,p.
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4.8.5 Case 5: Q =SO(2m — 2,2) with A, = —(m — 2)w,

Here we have A+ p=(1, m—2, m—3,...,1, 0) and so pu+ p = (2 — m,

3—m,...,—2, —1, —1, 0). Now the first row is m — 1, m — 2,...,1 with 1
in the first box of the second row. Thus supp(w) = {aq,...,a,} and we have
(u+p,af)y=-1,...,—-1, 0, =1, =1 fori=1,...,m.

4-4  Type B: gr = evy
For Type E much of the work was already done by Enright and Hunziker in
[8]. Namely, the highest weight A is given in terms of the fundamental weights and
the numbers (A + p,a¥) > 0 are arranged in the poset diagram. By inspection, wy

is the following map:

a1 — —Qq
Ay — —Q5
a3 — —Q3
Oy — —Qy
a5 — —Q9

ag — 0 = oy + 209 + 23 + 3aq + 2005 + 6.
Thus we can write wy as a matrix in the A basis:

-1 0 0 0 0 1
0o 0 0 0 -1 2
0O 0 -1 0 0 2
0o 0 0 -1 0 3
0 -1 0 0 0 2
0O 0 0 0 0 1

Writing A as a column vector in the w basis, we may evaluate wiA via ¢ (wy)a ¢! (N,
where ¢ is the Cartan matrix. Retrieving w € "W from the poset in [8], we then

calculate (u + p, a) directly for each case in Table 2.3.
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4.4.1 Case 1: Q =SU(1,1)

Here the highest weight is given by

A = aywy + asws + azws + agwy + asws + (—a; — 2ay — 2a3 — a4 — 2a5 — 10)wg,

where az > 1 and a; > 0 for i # 2. Then supp(w) = {ag} and (u+ p, ) = —1 as

desired.

4.4.2 Case 2: @ =SU(1,2)
Observe that A = aw; + bws + cwy + dws + (—a — 2b — 3¢ — 2d — 9)we with ¢ > 1

and a,b,d > 0, and supp(w) = {as, ag}. Hence (u+ p,af) = —1, —1 for i =5, 6.

4.4.3 Case 3: Q = SU(1,3)
In this case A = aw; + bws + cws + (—a — 2b — 2a — 8)wg where b, ¢ > 1 and

a > 0. Thus supp(w) = {ay, a5, ag} and (u+p,a)) =—1, —1, —1fori =4, 5, 6.

4.4.4 Case 4: Q = SU(1,4) with A\, = w3 — 9ws

Here A\ = aw; + bws + (—a — 2b — T)wg with b > 1 and @ > 0. In this case,
supp(w) depends on b. If b > 1, then supp(w) = {ag, a4, as, ag} and (u+p,a)) =
-1, =1, =1, =1 fori=2, 4, 5, 6. If b =1, then supp(w) = {ag, a3, a4, as, ag}

and (u+p, ) =-1, 0, =1, =1, —1fori =2, 3, 4, 5, 6.

4.4.5 Case 5: Q = SU(1,4) with A\, = w1 + ws — 10ws

We have A = aw; + bws + (—a — 2b — T)wg where a, b > 1. If b > 1, then
supp(w) = {as, a4, as, ag} and (u+p, o)) = -1, =1, —1, —1fori =3, 4, 5, 6. If
b =1, then supp(w) = {ag, as, a4, as, agt andso (u+p,’) =0, —1,-1, =1, —1
fort =2, 3, 4, 5, 6.

4.4.6 Case 6: Q = SU(1,5)
Here A = aws + (—2a — 6)wg with a > 1. If @ > 2, then supp(w) =
{a1, az, a4, as, ag} and (u+p, ) =—-1, =1, =1, =1, —=1fori=1, 3, 4, 5, 6.
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If @ < 2, then supp(w) = {ai,...,a6}. When a = 2 we have (u + p,q;) =
-1,0, =1, =1, =1,—1fori=1,...,6. Whena =1, (u+p,a)) = -1, =1, —1, 0,

—1, ~1fori=1,...,6.

4.4.7 Case 7: Q@ = SO(2,8) with A\, = w1 — bws
Note that A = aw; + (—a — T)wg, @ > 1. Then supp(w) = {aa, ..., a4}, and

(u+p,af)=-1, =1, 0, =1, =1 fori =2,...,6.

4.4.8 Case 8: QQ = SO(2,8) with A\, = w1 — 8ws

For this case, A = aw; + (—a — 4)wg where a > 1. If a > 3, then supp(w) =
{ag,...,a6} and (u+p, o)) = -1, =1, =1, =1, =1 fori=2,...,6. If a < 3, then
supp(w) = {a1,...,a6}. When a = 3, (u+ p,af) =0, =1, =1, =1, =1, —1 for
i=1,...,6. Fora=2, (u+p,’)=-1, =1, 0, =1, =1, —1fori=1,...,6. And

when a =1, (u+p, ) =-1, =1, =1, 0, =1, =1 fori=1,...,6.

4.4.9 Case 9: () = Eg
Here we have A = —3ws and supp(w) = {aa,...,as}. Thus (¢ + p, o)) =

~1, -1, =1, 0, =1, —1fori=1,...,6.

Y

4.5 Type E: gr = eypr
We follow the same procedure as in 4.4. Here w; does the following:

a1 = —0Op
Ay — —(Qp
Q3 = —O5
Qg — —Qy
a5 — —Q3
g — —Q1

oy = 0 =201 + 200 + 3az + 4oy + 3as + 205 + g
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4.5.1 Case 1: Q =SU(1,1)

By [8] we have

A =ajw; + -+ agws + (—2a; — 2a — 3az — 4ay — 3as — 2a — 16)wr,
where a; > 1 and a; > 0 for i # 1. Then supp(w) = {a7} and (u+ p, o) = —1.

4.5.2 Case 2: @ =SU(1,2)

In this case A = agws + - - - + agwg + (—2as — 3az — 4day — 3as — 2a6 — 16)wy
with a3 > 1 and a; > 0 for i # 3. Now supp(w) = {ag, ar} and (u+p, ;) =0, —1
fort =26, 7.

4.5.3 Case 3: Q = SU(1,3)

Here A\ = aws + bwy + cws + dwg + (—2a — 4b — 3¢ — 2d — 14)wy7, b > 1 and
a,c,d > 0. Then supp(w) = {as, ag, a7} and we have (u+ p, ) = —1, —1, —1
forv =25, 6, 7.

4.5.4 Case 4: Q = SU(1,4)
We have A = aws + bws + cwg + (—2a — 3b — 2¢ — 13)w; where a,b > 1 and
¢ > 0. Tt follows that supp(w) = {ay,...,a7} and (u+ p, ) = =1, =1, =1, —1

fort=4,...,7.

4.5.5 Case 5: Q = SU(1,5) with Ay = wy + we — 16wr

Observe that A = aws + bwg + (—2a — 2b — 12)wz, a,b > 1. If a > 1, then
supp(w) ={as,...,a7} and (u+p, ) = -1, =1, =1, =1, —1fori=3,...,7. If
a = 1, then supp(w) = {as,...,a7} and (u + p, ) =0, =1, —1, —1, =1, —1 for
i=2,...,T.

4.5.6 Case 6: Q = SU(1,5) with A\, = ws — 15wy
Here we have A\ = aws + bwg + (—3a — 2b — 12)w; with @ > 1 and b > 0. If
a > 1, then supp(w) = {ag, ay,...,a7} and (p+ p, ) = =1, =1, =1, -1, —1
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for i = 2, 4,...,7. If a = 1, then supp(w) = {ag,...,a7} and (u + p,)) =

-1, 0, =1, =1, =1, —1fori=2,...,7.

4.5.7 Case 7: @ = SU(1,6)

For this case A = awsy + (—2a — 11)w; where @ > 1. When a > 2 we have
supp(w) = {1, asz,...,a7} and (u + p,f) = =1, =1, =1, =1, =1, —1 for
i=1,3,...,7. If a < 2, supp(w) = {ay,...,ar}. When a = 2, (u+ p,)) =
~1, 0, -1, =1, =1, =1, —1fori = 1,....7. When a = 1, (u + p,a)) =

~1, =1, =1, 0, =1, =1, —lfori=1,...,7.

4.5.8 Case 8: @ = SO(2,10) with A\, = wg — 14wy
Note that A = aws + (—2a — 12)wz, a > 1, and supp(w) = {ag, ..., a7}. Then

(u+pa))=—1,-1,0, =1, =1, =1 fori=2,...,7.

4.5.9 Case 9: Q = SO(2,10) with A\, = wg — 10w

We have A = awg + (—2a — 8)w; with a > 1. If a > 4, then supp(w) =

{ag,...,ar7} and (u+p, ) =—1,...,—1fori=2,...,7. If a <4, then supp(w) =
{a1,...,;a7}. When a = 4, (u+ p,af) =0, —=1,...,—1 fori = 1,...,7. When
a =3, (un+pae)=-1, -1, 0, =1,...,—1 fori = 1,...,7. When a = 2,

(u+po) =-1, =1, =1, 0, =1, =1, =1 fori = 1,...,7. And when a = 1,

(u+paf)=—1,0, -1, =1, 0, =1, —1fori=1,...,7.

4.5.10 Case 10: Q = E; withl =3
In this case A = —8wrz, supp(w) = {a, ..., a7}, and (p+p, o) = -1, —1, —1,
0, =1, 0, ~1fori=1,...,7.

4.5.11 Case 11: Q = E; with | = 2
Here A = —4wy, supp(w) = {ay,...,ar}, and we have (u+ p, o)) = =1, —1,

~1,0, -1, =1, —1fori=1,....7. O
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CHAPTER FIVE

Conclusion

We have in fact demonstrated more than strictly necessary to prove the result,
showing specifically for which « € supp(w) we have (u + p,a¥) = 0 in each case.
This is a benefit of writing the proof in this manner. It would of course be desirable
to have a proof free of coordinates. Such a proof is not immediately apparent.
This new property, namely the difference between the highest weights of consecutive
parabolic Verma modules in the BGG resolution for L(\) being a sum of roots, can
be defined for nonunitary modules. The original motivation behind this work was to
find a sufficient condition for a Kostant module to be unitary. Unfortunately, there
are Kostant modules with this new property that are not unitary. Thus our result
implies there is a class of modules nestled between the unitary modules and Kostant
modules which satsify this condition on the BGG resolution. For future work, it
would be interesting to determine when the result is true for Types B and C. We

would also like to write out the BGG resolutions for rank 2 explicitly.

39



BIBLIOGRAPHY

Georgia Benkart, Seok-Jin Kang, Se-Jin Oh, and Euiyong Park, Construction of
wrreducible representations over Khovanov-Lauda-Rouquier algebras of finite
classical type, to appear in International Mathematics Research Notices.

I. N. Bernstein, I. M. Gel'fand, and S. I. Gel'fand, Differential operators on the
base affine space and a study of g-modules, Lie groups and their represen-
tations (Proc. Summer School, Bolyai Janos Math. Soc., Budapest, 1971),
Halsted, New York, 1975, pp. 21-64.

Brian D. Boe and Markus Hunziker, Kostant modules in blocks of category Og,
Comm. Algebra 37 (2009), no. 1, 323-356.

N. Bourbaki, Eléments de mathématique. Fasc. XXXIV. Groupes et algébres
de Lie. Chapitre IV: Groupes de Coxeter et systemes de Tits. Chapitre V:
Groupes engendrés par des réflevions. Chapitre VI: systemes de racines, Ac-
tualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968.

Mark G. Davidson, Thomas J. Enright, and Ronald J. Stanke, Differential oper-
ators and highest weight representations, Mem. Amer. Math. Soc. 94 (1991),
no. 455, iv+102.

Thomas Enright, Roger Howe, and Nolan Wallach, A classification of unitary
highest weight modules, Representation theory of reductive groups (Park City,
Utah, 1982), Progr. Math., vol. 40, Birkhduser Boston, Boston, MA, 1983,
pp- 97-143.

Thomas J. Enright, Analogues of Kostant’s u-cohomology formulas for unitary
highest weight modules, J. Reine Angew. Math. 392 (1988), 27-36.

Thomas J. Enright and Markus Hunziker, Resolutions and Hilbert series of the
unitary highest weight modules of the exceptional groups, Represent. Theory
8 (2004), 15-51 (electronic).

Thomas J. Enright, Markus Hunziker, and W. Andrew Pruett, Diagrams of Her-
matian type, highest weight modules, and syzygies of determinantel varieties,
in preparation.

[10] Thomas J. Enright and Brad Shelton, Categories of highest weight modules: ap-

[11]

plications to classical Hermitian symmetric pairs, Mem. Amer. Math. Soc. 67
(1987), no. 367, iv+94.

, Highest weight modules for Hermitian symmetric pairs of exceptional
type, Proc. Amer. Math. Soc. 106 (1989), no. 3, 807-819.

40



[12] Hans Plesner Jakobsen, Hermitian symmetric spaces and their unitary highest
weight modules, J. Funct. Anal. 52 (1983), no. 3, 385—412.

[13] Bertram Kostant, Lie algebra cohomology and the generalized Borel-Weil theo-
rem, Ann. of Math. (2) 74 (1961), 329-387.

[14] J. Lepowsky, A generalization of the Bernstein-Gelfand-Gelfand resolution, J.
Algebra 49 (1977), no. 2, 496-511.

41



