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Testing Theories of Gravity by Gravitational Wave Observations
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Advisor: Anzhong Wang, Ph.D.

In this dissertation, Einstein-æther theory is studied. As a candidate of modi-

fied theories to general relativity, Einstein-æther theory shows some different features

compared to Einstein’s theory. The studies of these features can serve for the test

and development of gravitational theories. In this dissertation, the study of Einstein-

æther theory is closely related to the gravitational wave observations. In fact, those

observations can potentially provide a variety of ways to test general relativity and

put severe constraints on Einstein-æther theory. This thesis will mainly focus on the

gravitational waves emitted by compact celestial bodies in the universe, and calcu-

late the gravitational waveforms, innermost stable circular orbits, universal horizons,

quasi-normal modes, etc. in the framework of Einstein-æther theory. With the con-

tinuous improvement of the accuracy of detectors around the world, as well as the

accumulation of gravitational wave events, these investigations will become more and

more important for understanding the nature of gravity and the dynamics of the

universe.
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CHAPTER ONE

Introduction to Einstein-Æther Theory

1.1 A Succinct History of Gravity

As human beings, we always have some natural feelings about this living cos-

mos. However, the essence of gravity, universe, space and time remains an enigma

for quite a long time. People have been pursuing the answers since more than 4,000

years ago. Actually, those ancient philosophers left some interesting records and com-

ments about the universe and the spacetime. For instance, the Roman philosopher

St. Augustine (354 - 430 AD) once mentioned that the time does not exist before the

creation of universe [1]. Similarly, the Chinese philosopher An Liu (179 - 122 BC)

also said that space and time were born from absolute vacancy [2]. Their statements

implicitly revealed the connections between space and time, which is close to some

modern ideas.

The systematic study of gravity could probably be dated to more than three

hundred years ago, i.e., to Isaac Newton’s era [3]. After that, the birth of general

relativity (GR) marks a new era for the study of gravity [4]. As we know, Albert

Einstein unified time and space in a creative way and brought us a new way of

thinking about the cosmos. His serendipity provides a powerful tool to study gravity

and understand the dynamics of the universe. It’s true that GR is quite successful in

many aspects. For instance, during the past decades, GR passed all the experimental

tests with flying colors (See, e.g., [5, 6].). One of the blockbusters is the observation

of the eclipse by Eddington in 1919 [7].
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Some mysterious phenomena are happening in this cosmos according to GR.

The most famous one is probably the black hole (BH). By using Einstein’s field

equations, Karl Schwarzschild was able to obtain an exact solution of the Einstein

field equations for static spherically symmetric spacetimes in 1916 [8]. Due to the

peculiar properties of such a spacetime, it is referred as “black hole”. There are plenty

of theoretical works around the BHs. For instance, for spinning BHs we have the Kerr

solution [9], for charged BHs we have the Reissner-Nordström solution [10,11], etc. In

addition, people are also trying to find experimental proofs of the existence of BHs.

Actually, this is quite successful so far, including the recent observation of the M87

center BH (See, e.g., [12].).

In fact, the detection of gravitational waves (GWs) provides one of the strongest

evidence to the existence of BHs. The concept of GW was first introduced by Ein-

stein about one century ago [13]. It could be simply described as the ripples of the

spacetime. As before, the theoretical studies are generally prior to those experimental

works. It was the detection of GW150914 [14, 15], which is emitted from the coales-

cence of a binary black hole (BBH) system, that initiated the era of GW physics.

Soon after that, the 2017 Nobel Prize in Physics was given to K. Thorne, B. Bar-

ish and R. Weiss for their contributions to GW physics. Later, several other GWs

were identified by the LIGO/Virgo Scientific Collaboration [16] and more are still

on the way. Specially, among them there is a binary neutron star (BNS) detection,

GW170817 [21].

The physics behind GWs is quite rich. For instance, GWs provide a new way

to test the theory of GR as well as those modified theories. There are some clues

imply that GR is not the end of the story of gravity. Because of this, different kinds
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of modified theories are developed (See, e.g., [22].). While expecting the discrepancy

from GR in the GW observations (which implies brand new physics and may ignite

a big progress), people are also trying to put more and more stringent constraints

on modified theories. By using the data from the GW observations, many modified

theories have already been ruled out. Einstein-æther theory (æ-theory) is one of

the modified theories that still survive. It has successfully passed all the tests by

adjusting several built-in coefficients of this theory (Of course, more constraints were

added as time goes on.). That is the main goal of this dissertation to study æ-theory

systematically in the framework of GW physics.

1.2 ABC of Æ-theory

This dissertation will focus on the study of GWs in the framework of æ-

theory [23]. This theory locally breaks Lorentz symmetry (Lorentz invariance) [24]

by the presence of a globally timelike unit vector field - the aether (æ-) field (or simply

referred as aether). The Lorentz invariance is considered to be one of the pillars of

modern physics in general. However, breaking it may bring us the dawn of quantum

gravity [25]. This is one of the reasons for us to study this kind of theories.

In æ-theory, the fundamental variables of the gravitational sector are [23],

(gµν , u
µ, λ) , (1.1)

with the Greek indices µ, ν = 0, 1, 2, 3. Here, gµν is the four dimensional metric of

the spacetime while uµ represents the aether four-velocity (or æ-field), and λ is a

Lagrangian multiplier [26], which guarantees that the æ-field is always timelike and

unit.
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The general action of the theory is given by [27],

S = Sæ + Sm, (1.2)

where Sm denotes the action [24] of matter, and Sæ the gravitational action of the

æ-theory, given, respectively, by

Sæ =
1

16πGæ

∫ √
−g d4x

[
Læ (gµν , u

α, ci) + Lλ (gµν , u
α, λ)

]
,

Sm =

∫ √
−g d4x

[
Lm (gµν , u

α;ψ)
]
. (1.3)

Here ψ collectively denotes the matter fields, R and g are, respectively, the Ricci

scalar [28] and determinant [29] of gµν , and

Lλ ≡ λ
(
gαβu

αuβ + 1
)
,

Læ ≡ R(gµν)−Mαβ
µν (Dαu

µ) (Dβu
ν) , (1.4)

where Dµ denotes the covariant derivative [30] with respect to gµν , and Mαβ
µν is

defined as

Mαβ
µν ≡ c1g

αβgµν + c2δ
α
µδ

β
ν + c3δ

α
ν δ

β
µ − c4u

αuβgµν , (1.5)

where δβν stands for the Kronecker delta [31]. Note that here we need to assume that

matter fields couple not only to gµν but also to the aether field uµ, in order to model

effectively the radiation of a compact object [32, 33], such as a neutron star [34].

However, in order to satisfy the severe observational constraints, such a coupling in

general is assumed to be absent [27].

The four coupling constants ci’s are all dimensionless (and here i=1, 2, 3, 4),

and Gæ is related to the Newtonian constant GN [35] via the relation [36],

GN =
Gæ

1− 1
2
c14

, (1.6)

where cij ≡ ci + cj.
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The variations of the total action with respect to gµν , u
µ and λ, lead to the

field equations (Details will be provided in the following sections.). Different from

GR, æ-theory allows three different kinds of modes [37], namely, the scalar (spin-0),

vector (spin-1) and tensor (spin-2) modes. Their corresponding speeds are given,

respectively, by [32]

c2
S =

c123(2− c14)

c14(1− c13)(2 + c13 + 3c2)
,

c2
V =

2c1 − c13(2c1 − c13)

2c14(1− c13)
,

c2
T =

1

1− c13

, (1.7)

where cijk ≡ ci + cj + ck. One should note that we have cI & 1, where I = S, V, T to

avoid the vacuum gravi-Čerenkov radiation by matter such as cosmic rays [38].

1.3 Some Achievements in Æ-theory

Here I would like to summarize some of the achievements of æ-theory in recent

years. The work of this thesis benefits a lot from these pioneers.

Under the parameterized post-Newtonian (PPN) framework [6], Foster and

Jacobson calculated the ten post-Newtonian parameters in [39]. In the same treatise,

some constraints to the four ci’s are also given. It’s worth mentioning here that there

are only two PPN parameters that deviate from GR, viz., α1 and α2. They are given

by

α1 = −8 (c1c14 − c−c13)

2c1 − c−c13

,

α2 =
1

2
α1 +

(c14 − 2c13) (3c2 + c13 + c14)

c123(2− c14)
, (1.8)

where we have defined c− ≡ c1 − c3. They characterize the local Lorentz invariance

(LLI) for the gravitational interactions [40].

5



Then, Foster calculated the energy loss rate [41]. Based on the previous work,

Foster and Yagi et al. derived the metric and the equations of motion to the first

post-Newtonian (PN) [22] order for a N-body system [32,42].

As a special case of N-body systems, 3-body problems also attracted a lot of

attentions in the past three centuries. To the theoretical level, only a limited number

of such systems were found [43]. When one of the three bodies being a test mass,

it reduces to the restricted 3-body problem, and a collinear solution was found by

Euler [44]. In 1772 Lagrange found a second class of periodic orbits for an equilateral

triangle configuration [45] (A historic review of this subject can be found in [46].). In

GR, neither analytical nor numerical solutions of 3-body problem of the full theory

have been found, and most of the studies were restricted to PN approximations, see,

for example, [47–53] and references therein. Lately, the existence and uniqueness

of the 1PN collinear solution in the scalar-tensor theory were studied in [54, 55].

Will extended the work of æ-theory to study 3-body systems [56]. He obtained the

accelerations of a 2-body system in the presence of the third body at the quasi-

Newtonian order. Note that in [42] the influence of sensitivities are also taken into

account (Nonetheless, those results need to be updated due to the latest constraints

on ci’s.).

With all of these in hand, the GW in æ-theory was studied in [57]. Besides,

the waveforms and angular momentum losses were also calculated [58,59]. After that,

by using the latest constraints on c′is [60], we calculated the waveforms (also referred

as GW forms or polarizations), response functions, energy losses, etc. in detail for

some triple configurations [61] and plotted the main results. Additionally, we also

discussed the detectability of GWs of triple systems. What’s more, based on the
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Figure 1.1: The physically viable (c2, c14) in the intermediate interval (ii) as shown
in [60]. Note that here we have assumed c13 = 0 since it is extremely small.

work of [62], we focused on a specific observed triple system, PSR J0337+1715 [63]

[In there we also studied the Brans-Dicke (BD) theory of gravity (See, e.g., [64]).].

For later convenience, I would like to quickly review the constraints on ci’s

given in [60]. The constraint of c13 is quite simple, which is |c13| < 10−15. The

constraints on {c2, c14} are a little bit more sophisticated. The c2 − c14 plane is

divided into three regions, i.e., (i) 0 . c14 ≤ 2× 10−7; (ii) 2× 10−7 < c14 . 2× 10−6;

and (iii) 2× 10−6 . c14 . 2.5× 10−5. In the first and last intervals, one finds

(i) 0 . c14 ≤ 2× 10−7, c14 . c2 . 0.095, (1.9)

(iii) 2× 10−6 . c14 . 2.5× 10−5, 0 . c2 − c14 . 2× 10−7. (1.10)

The results in the intermediate interval (ii) were shown explicitly by Fig. 1 in [60].

It is also exhibited here in Fig. 1.1 (Note that a small typo in the original graph is

corrected.). Interested readers may check this reference to find out more details.
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The study of binary systems in æ-theory was carried out in detail in the past

years. There are a lot of works covering the different stages of the coalescence of a

binary system (Generally, such a coalescence is characterized by three different stages,

viz., inspiral, merger and ringdown [65, 66].). For instance, the motion of two stars

and the corresponding gravitational radiation during the process of circularization

was calculated in [67]. Additionally, the response function in the time and frequency

domain for a compact binary during its quasicircular inspiral was studied in [58].

Nevertheless, many of these results need to be updated due to the new constraints on

ci’s [60]. At the same time, one should notice that there are some misconceptions and

typos in the literature. For these reasons, we repeated some of the previous work [68]

with some amendments and improvements. What’s more, in there the parametrized

post-Einsteinian (ppE) framework [69] is extended to allow for different propagation

speeds among different polarization modes [70].

The investigatons mentioned above mainly focus on the inspiral stage of a

binary (or other multi-body) system. For theoretical purposes, we are also interested

in the ringdown stage. This interest provokes the topic of the quasi-normal modes.

From the classical point of view, quasi-normal modes (QNMs or QNM frequencies)

are eigenmodes of dissipative systems. The detection of QNMs of a black hole will

provide us a new way to measure its spin and mass as well as test GR. According

to the no-hair theorem, the quasi-normal frequencies and damping times will depend

only on the mass and angular momentum of the final BH. Therefore, to extract the

physics from the ringdown phase, at least two QNMs are needed. This will require

the signal-to-noise ratio (SNR) to be of the order 100. It is certain that they will be

detected by the space-based detectors, such as LISA, TianQin [71] and Taiji in the
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near future. This also spurs one’s enthusiasm on QNMs. As a novice, one may find

a whole picture of the related concepts of QNMs in [72].

QNMs in GR have been studied extensively in the past decades. In æ-theory,

some attempts can also be found in the literature (See, e.g., [73, 74].). Actually, we

are also focusing on this topic recently. We have made some progress in this direction,

as to be shown. However, a deeper study is still needed.

As a preparation to the study of QNMs, we first focus on the solutions for the

background metric of a BH. To be specific, we systematically studied the spher-

ically symmetric static spacetimes in the framework of æ-theory. This area has

been exploited in the past couple of years both analytically [62, 75–85] and numer-

ically [86–92]. Besides, it was shown that this kind of BHs can be formed from

gravitational collapse [93, 94]. We reviewed some of the previous work and added

more calculations to several physically observable quantities like the radius of the

spin-0 horizon (denoted by rS0H), the location of the innermost stable circular orbits

(denoted by rISCO), the radii of the universal horizons (denoted by rUH), etc. [95].

More importantly, the latest constraints on ci’s are considered in there and we have

improved the techniques of solving the metric numerically.

1.4 Other Modified Theories

Outside the regime of æ-theory, I also participated in the investigations of

other modified theories of gravity, although not intensively. Here I’d like to briefly

review the related works.

As has been mentioned, in [63] we calculated the waveforms and response

functions of PSR J0337+1715 in Brans-Dicke theory.
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On the other hand, we calculated in detail the waveforms, gravitational wave

polarizations, response functions, and energy losses due to gravitational radiation in

screened modified gravity (SMG) [96–98] to the leading PN order, with which we then

considered projected constraints from the third generation detectors.

Finally, in [99] we studied the Einstein-complex-scalar-Gauss-Bonnet gravity.

To be specific, We found that static regular BH solutions with complex scalar hairs

do not exist.

1.5 Structure of the Dissertation

This rest of this dissertation is organized as follows.

Chapter Two will mainly pay attention to the inspiral stage during the coa-

lescence of a binary system. In there, binary systems with quasicircular orbits are

studied in æ-theory. Some results of this part are published in [68]. In this chapter,

the waveforms (GW forms) and energy loss rate for a binary with a changing orbit are

calculated. Besides, the response functions for different kinds of detectors are derived

and the ppE parameters are explored. During this procedure, some errors and typos

in the literature are corrected.

To study the ringdown stage of the coalescence for, e.g., a BBH system, Chap-

ter Three digs into the study of the spherically symmetric static spacetimes systemat-

ically in the framework of æ-theory. A part of the results presented in this chapter are

published in [95]. In this chapter, I will clarify several subtle points in the literature.

With them being crystal clear, I am able to obtain more useful results compared to

those previous works. The quantities obtained, such as the metric, rS0H , rUH , etc.

will be exhibited with some comments.
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After that, in Chapter Four I will show some attempts to the QNMs in æ-

theory. The shooting method will be used and some of the current results will be

shown. Specially, I will show how the resutls in æ-theory deviate from GR. Besides,

as mentioned above, this is actually a huge topic. A deeper study in this direction is

still needed.

Chapter Five consists of some concluding remarks and outlooks to the future

work.

1.6 Conventions

In this dissertation, I will adopt the following conventions:

First of all, the units are chosen so that the speed of light equals 1 (c = 1).

For certain parts of this dissertation, more unit choices may be introduced. They will

all be indicated when it is necessary.

All the Greek indices will run from 0 to 3. Generally, Romanian (or Latin)

letters i, j, k and l run from 1 to 3. Besides, repeated i, j, k, l and Greek indices

represent the Einstein’s convention of summations [100], regardless of whether the

indices are subscripts or superscripts. It will be indicated clearly for exceptions when

it is necessary. The usage of other kinds of indices will be described at suitable places.

As mentioned earlier, some coefficients in æ-theory are defined by

cij ≡ ci + cj, cijk ≡ ci + cj + ck, c± ≡ c1 ± c3. (1.11)

As a result, we will have c+ = c13. For historical reasons, both of them will be used

in this dissertation. Note that in Eq. (1.11) we have i, j, k = 1, 2, 3, 4.

Finally, the signature (-, +, +, +) [37,41,93] will be used here.
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It is worth mentioning here that the demonstration of the following topics

requires tons of different notations. As a result, those normal Greek and Latin letters

are far from being sufficient. So, in several places, the same symbol may represent

different quantities. In this dissertation, the author shall try his best to keep such

cases to minimum.
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CHAPTER TWO

Gravitational Waves from the Quasicircular Inspiral of Compact Binaries in
Einstein-Aether Theory

This chapter is published in [68]: C. Zhang, X. Zhao, A. Wang, B. Wang, K. Yagi,
N. Yunes, W. Zhao and T. Zhu, Gravitational waves from the quasicircular inspiral

of compact binaries in Einstein-aether theory, Phys. Rev. D101, 044002 (2020).

In this chapter, we study gravitational waves emitted by a binary system of

non-spinning bodies in a quasi-circular inspiral within the framework of Einstein-

aether theory. In particular, I compute explicitly and analytically the expressions

for the time- and frequency-domain waveforms, gravitational wave polarizations, and

response functions for both ground- and space-based detectors in the post-Newtonian

approximation. I find that, when going beyond leading-order in the post-Newtonian

approximation, the non-Einsteinian polarization modes contain terms that depend on

both the first and the second harmonics of the orbital phase. I also calculate analyt-

ically the corresponding parameterized post-Einsteinian parameters, generalizing the

existing framework to allow for different propagation speeds among scalar, vector and

tensor modes, without assumptions about the magnitude of its coupling parameters,

and meanwhile allowing the binary system to have relative motions with respect to

the aether field. Such results allow us for the easy construction of Einstein-aether

templates that could be used in Bayesian tests of general relativity in the future.

Note that several typos in the original work [68] are corrected here.

13



2.1 Introduction

As has been mentioned in Chapter One, the detection of the first GW event

from the coalescence of two massive BHs by advanced LIGO marked the beginning

of the GW era [14]. Following this observation, a few tens of GW candidates were

identified by the LIGO/Virgo scientific collaboration [16–20]1. The LIGO and Virgo

detectors are sensitive to GWs with frequencies between 20 and 2000Hz [102], since at

frequencies lower than 20Hz they are limited by the Newtonian seismic noise on the

earth. As a consequence, LIGO and Virgo are only able to observe GWs produced in

the late inspiral and merger of low-mass compact binaries, such as binary black holes

(BBHs), binary neutron stars (BNSs) and BH-NSs.

One of the remarkable observational results obtained so far is the discovery that

the BBHs can be composed of objects with individual masses much larger than what

was previously expected, both theoretically and observationally [103–105], leading to

the proposal and refinement of various formation scenarios [106,107]. A consequence

of this discovery is that the early inspiral phase may also be detectable by space-based

observatories, such as LISA, TianQin, Taiji and DECIGO, for several years prior to

their coalescence [108,109]. The analysis of the BBHs’ population observed by LIGO

and Virgo has shown that such space-based detectors may be able to see many such

systems, with a variety of profound scientific consequences.

In particular, multiple observations with different detectors at different fre-

quencies of signals from the same source can provide excellent opportunities to study

1 Recently, various GWs have been detected after LIGO/Virgo resumed operations on April
1, 2019, possibly including the coalescence of a neutron-star (NS)/BH binary. As far as I can tell,
the details of these detections have not yet been released [101] so far.
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the evolution of the binary in detail. Since different detectors observe at disjoint fre-

quency bands, together they cover different evolutionary stages (i.e., inspiral, merger

and ringdown) of the same binary system. Each stage of the evolution carries infor-

mation about different physical aspects of the source. Technically, it also provides

early warnings for an upcoming coalescence, so that ground-based detectors could

know the sky localization of the source and its time to coalescence well in advance.

Combining high- and low-frequency GW detections of the same source can also

help us identify the astrophysical channel responsible to BBH formations. Different

scenarios in fact result in different masses, mass ratios, spins and eccentricity distri-

butions of the detected sources [110–115]. Because of the GW circularization, BBHs

may have small eccentricity in the LIGO/Virgo band, regardless of their formation

channels. However, space-based detectors will be able to observe GW signals from

BBHs that did not have enough time to fully circularize, allowing for measurements

of eccentricities in excess of 10−3 [111]. In addition, stellar-mass BBHs observed in

the space-based detector bands provide a very promising class of standard sirens (See,

e.g., [116].). In the absence of a distinctive electromagnetic counterpart, it was es-

timated [117] that LISA might measure the Hubble constant within a few percent

error, thus helping in the resolution of the discrepancy between the local measure-

ment of this quantity [118] and that obtained from the cosmic microwave background

(CMB) [119, 120] (Note that using ground-based detectors, e.g., aLIGO, the Hub-

ble constant could also be measured with good precisions even if we do not identify

electromagnetic counterparts [121,122].).
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In addition, multi-band GW detections will enhance the potential to test

gravitational theories in the strong, dynamical field regime of merging compact ob-

jects [123–128]. Massive systems will be observed by ground-based detectors with

high signal-to-noise ratios, after being tracked for years by space-based detectors in

their inspiral phase. The two portions of signals can be combined to make precise

tests for different theories of gravity. In particular, joint observations of BBHs with a

total mass larger than about 60 solar masses by LIGO/Virgo and space-based detec-

tors can potentially improve current bounds on dipole emission from BBHs by more

than six orders of magnitude [123], which will impose severe constraints on various

theories of gravity [129].

All the above work, however, depends crucially on the accurate description

of GWs in order to track the signal during the early inspiral phase all the way to

the merger phase. During the inspiral phase, GWs can be modeled using the post-

Newtonian (PN) formalism [130]. Within general relativity (GR), waveforms at low

PN orders (i.e., at or below the 2PN order) are sufficiently accurate for an unbiased

recovery of the source parameters [131]. As the signal-to-noise ratio increases, how-

ever, our ability to test GR will be systematically limited by the accuracy of our

waveform models.

In recent work, I and my colleagues generalized the PN formalism to certain

modified theories of gravity and applied it to the quasi-circular inspiral of compact

binaries. In particular, we calculated in detail the waveforms, gravitational wave

polarizations, response functions and energy losses due to gravitational radiation

in Brans-Dicke (BD) theory [64] and screened modified gravity (SMG) [96–98] to

the leading PN order, with which we then considered projected constraints from
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the third-generation detectors. Such studies have been further generalized to triple

systems in Einstein-aether theory [62, 63]. When applying such formulas to the first

relativistic triple system discovered in 2014 [132,133], we studied the radiation power,

and found that quadrupole emission has almost the same amplitude as that in GR,

but the dipole emission can be as big as the quadrupole emission. This can provide

a promising window to place severe constraints on Einstein-aether theory with multi-

band gravitational wave observations [123,126].

In this chapter, we study the gravitational waves emitted by a compact binary

during its quasi-circular inspiral within Einstein-aether theory. This is, of course,

not the first time gravitational waves that have been studied in this theory. The

first studies were carried out by Foster in the mid 2000s [32, 41], who computed the

gravitational waves and the radiative losses of a generic binary through a multipolar

decomposition. Using these results, Yagi, et al. [42, 67] calculated the effects of such

waves on the rate of change of the orbital period of binary pulsars, placing stringent

constraints on a sector of the theory. Following this work, Hansen, et al. [58] calculated

the GW polarizations and response functions in the time- and frequency-domain for

a compact binary during its quasi-circular inspiral, but again in a restricted sector

of the theory. More recently, more severe constraints were placed on Einstein-aether

theory [57, 60], using the recent binary NS observation by LIGO, which constrained

the speed of gravity to better than one part in 1015 [58].

We here revisit some of these calculations without imposing any restrictions

on the parameter space. First, I compute, once more, the gravitational waves emitted

by a binary system and its associated radiative energy loss for a generic binary system

in the PN approximation without assumptions about the magnitude of its coupling
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parameters. I then specialize this calculation to a compact binary in a quasi-circular

inspiral and compute the time-domain response function both for ground- and space-

based detectors. In doing so, we will discover that previous expressions for the GW

polarizations that compose the time-domain response function [70] are not applicable

to Einstein-aether theory due to the different speeds of propagation of its scalar and

vector modes. This implies that the results of [58] are corrected by terms that depend

on these different speeds; in particular, this generates terms in the non-Einsteinian

polarizations that depend explicitly on the speed of the center of mass of the binary

with respect to the aether field. With these waveforms computed, I then calculate

their Fourier transform in the stationary phase approximation (SPA) [69, 70, 134],

and map the results to the parameterized post-Einsteinian (ppE) framework [69] that

was extended to allow for different propagation speeds among different polarization

modes [70]. Our results, therefore, allow for the straightforward construction of wave-

form templates with which to carry out tests of Einstein-aether theory using Bayesian

theory and matched filtering in the future.

The remainder of this chapter presents the results summarized above. In par-

ticular, in Sec.2.2 I give a brief introduction to Einstein-aether theory, and in Sec.2.3

I calculate the GW polarizations and energy loss rate, and correct some typos in

the literature. In Sec.2.4, I study the GW polarizations and response function for

an inspiraling binary. In Sec.2.5, I calculate the response function and its Fourier

transform for both ground- and space-based detectors using the SPA [69,70,134]. In

Sec.2.6, I map the results of the last section to the parametrized post-Einsteinian

(ppE) framework [69, 70, 134], while in Sec.2.7, I summarize the main results and

present discussions as well as concluding remarks. Besides, in Appendix A, I present
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a brief review on the SPA, while in Appendices B, C and D I provide some addi-

tional mathematical formulas. We follow here the conventions of Misner, Thorne and

Wheeler [24] and use units in which c = 1.

2.2 Einstein-æther Theory

A brief introduction to the æ-theory has been given in Sec.1.2. As mentioned

in there, the aether field (æ-field) is always timelike and unit,

uλuλ = −1. (2.1)

Recall that, all repeated Latin letters represent spatial indices that are to be summed

over from 1 to 3, while repeated Greek letters represent spacetime indices to be

summed over from 0 to 3, regardless of whether they are superscripts or subscripts.

It has been mentioned in Sec.1.3, the current theoretical and observational

constraints on the four dimensionless coupling constants ci’s were given explicitly

in [60]. It was found that

0 ≤ c14 ≤ 2.5× 10−5, |c13| ≤ 10−15. (2.2)

More details can be found in Sec.1.3 (See also [135], in which it also shows that

æ-theory is a well-posed theory.).

Strong field effects can be important in the vicinity of a compact body, such

as a neutron star or a black hole, and need to be taken into account. This is what I

am going to do in this chapter. Following Eardley [34], these effects can be included

by considering the test-particle action [32],

SA = −
∫
dτAm̃A[γA]

= −m̃A

∫
dτA

[
1 + σA(1− γA) +

1

2
(σA + σ2

A + σ̄A)(1− γA)2 + ...

]
, (2.3)
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where γA ≡ −uµvAµ , and vAµ is the four-velocity of the body, defined as viA ≡ dxiA/dτA.

The index A labels the Ath body, and τA is its proper time. We also note that m̃A

in (2.3) has the dimension of mass, σA and σ̄A are defined as

σA ≡ −
d ln m̃A[γA]

d ln γA

∣∣∣∣
γA=1

, σ̄A ≡
d2 ln m̃A[γA]

d(ln γA)2

∣∣∣∣
γA=1

, (2.4)

which can be determined by considering asymptotic properties of perturbations of

static stellar configurations [42]. Here, ln denotes the natural log [31].

The variations of the total action with respect to gµν and uµ yield, respectively,

the field equations [62],

Rµν − 1

2
gµνR− Sµν = 8πGæT

µν , (2.5)

Æµ = 8πGæTµ, (2.6)

with the constraint of Eq. (2.1). Note that we can recognize the Rµν − 1
2
gµνR =

Gµν [28, 35,136] from Eq. (2.5), where Rµν is the Ricci tensor. Here we have [32],

Sαβ ≡ Dµ

[
Jµ(αuβ) + J(αβ)u

µ − u(βJα)
µ
]

+c1

[
(Dαuµ) (Dβu

µ)− (Dµuα) (Dµuβ)
]

+c4aαaβ + λuαuβ −
1

2
gαβJ

δ
σDδu

σ,

Æµ ≡ DαJ
α
µ + c4aαDµu

α + λuµ,

T µν ≡ 2√
−g

δ (
√
−gLm)

δgµν

=
∑
A

m̃Aδ̃A[A1
Av

µ
Av

ν
A + 2A2

Au
(µv

ν)
A ],

Tµ ≡ − 1√
−g

δ (
√
−gLm)

δuµ
=
∑
A

m̃Aδ̃AA
2
Av

A
µ , (2.7)

with parentheses in index pairs denoting index symmetrization and

Jαµ ≡Mαβ
µνDβu

ν , aµ ≡ uαDαu
µ, (2.8)
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and

A1
A ≡ 1 + σA +

(σA + σ2
A + σ̄A)

2
[(uµv

µ
A)2 − 1],

A2
A ≡ −σA − (σA + σ2

A + σ̄A)(uµv
µ
A + 1),

δ̃A ≡ δ3(~x− ~xA)

v0
A

√
|g|

. (2.9)

Here the vector ~x describes the position of the system that we are looking at while ~xA

describes the position of the Ath body (We will come back to this point later.). Note

that we don’t have (A1
A)2 = A2

A. From Eq. (2.6) and the normalization condition, we

also find that

λ = uβDαJ
αβ + c4a

2 − 8πGæTαu
α, (2.10)

where a2 ≡ aλa
λ.

2.3 Gravitational Wave Polarizations and Energy Loss of Binary Systems in

Einstein-æther Theory

The linear perturbations of Einstein-aether theory over a Minkowski back-

ground were studied by several authors [23,41,42,63]. For the sake of convenience, in

this section I first give a brief review of the relevant materials, following mostly [62].

For more details on the PN approximations for many bodies in Einstein-aether the-

ory, I refer the reader to [23,41,42,62]. Readers familiar with æ-theory may skip the

first two subsections and go directly to the third part of this section if they wish, in

which I apply previous results to binary systems.

Let us first note that

gµν = ηµν , uµ = δµt , (2.11)
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satisfies the Einstein-aether field equations in Eqs. (2.5) and (2.6) in the coordinates

xµ = (t, x, y, z), where ηµν = diag(−1, 1, 1, 1) is the Minkowski metric [35]. Clearly,

Eq. (2.11) shows that the aether field uµ is at rest in this Minkowski background 2, so

any motion with respect to this coordinate system also represents motion with respect

to the aether field. In addition, as far as the aether field is concerned, the time-like

vector uµ is invariant under the general spatial diffeomorphism x′j = x′j (xi) , (i, j =

1, 2, 3). Later, without loss of generality, we will use this gauge freedom to choose the

plane of the binary system to coincide with the (x, y)-plane.

Now, we consider the linear perturbations,

hµν = gµν − ηµν , w0 = u0 − 1, wi = ui, (2.12)

where hµν , w
0 and wi are decomposed into the forms [41],

h0i = γi + γ,i, wi = νi + ν,i,

hij = φ,ij +
1

2
Pij[f ] + 2φ(i,j) + φij, (2.13)

with Pij ≡ δij∆− ∂i∂j, where ∆ ≡ δij∂i∂j and the “,” in the subscript stands for the

derivative respect to the xi. Note that the γi here has nothing to do with the γA in

Eq. (2.3). In addition, the vector and tensor fields satisfy the conditions,

∂iγi = ∂iνi = ∂iφi = 0, ∂jφij = 0, φ i
i = 0. (2.14)

To the linear order in perturbation theory, it is convenient to define a non-symmetric

tensor,

τµν ≡ T µν − T µδν0 , (τµν 6= τ νµ), (2.15)

2 In cosmology, the aether field is often chosen to be comoving with the CMB [27]. Thus,
it is consistent here to choose the aether to be comoving with the Minkowski coordinate system
xµ = (t, x, y, z).
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which satisfies the conservation law

∂ντµν = 0. (2.16)

Defining the center-of-mass (COM) coordinate and its velocity as

X i ≡

∑
A

mAx
i
A∑

A

mA

, (2.17)

V i ≡ dX i

dt
, (2.18)

we find that conservation of momentum requires

dV i

dt
= 0, ⇒ V i = Constant. (2.19)

2.3.1 Linearized Einstein-Æther Field Equations

Substituting the above expressions into the linearized Einstein-aether field

equations, one finds that the tensor, vector and scalar parts can be written as fol-

lows [62]. For the tensor part, we have

1

c2
T

φ̈ij −∆φij = 16πGæτ
TT
ij , (2.20)

where “TT” stands for the transverse-traceless operator [137] acting on the tensor.

Besides, a dot above represents the time derivative with respect to time t.

For the vector part, we have 3

1

c2
V

(ν̈i + γ̈i)−∆(νi + γi) =
16πGæ

2c1 − c13c−

[
c13τi0 − (1− c13)T i

]T
, (2.21)

∆ (c13νi + γi) = −16πGæτ
T
i0, (2.22)

with the T above stands for the transverse operator [137] acting on the vector.

3 Notice that the last term of Eq. (2.21) corrects a sign error in Eq. (44) of [41].
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For the scalar part, we have

1

c2
S

F̈ −∆F =
16πGæc14

2− c14

(
τkk +

2

c14

τ00 −
2 + 3c2 + c13

c123

τLkk

)
, (2.23)

∆ (F − c14h00) = −16πGæτ00, (2.24)[
(1 + c2)Ḟ + c123∆φ̇

]
,i

= −16πGæτ
L
i0, (2.25)

where F ≡ ∆f . Here the L above stands for the longitudinal operator [137] acting

on the vector. In addition, the constraint in Eq. (2.1) gives

h00 = 2w0. (2.26)

Recall that cT , cV and cS have already been provided in Sec.1.2. Also recall that we

have cI & 1, where I = S, V, T to avoid vacuum gravi-Čerenkov radiation [138] by

matter. From these equations, we can easily infer that the tensor, vector and scalar

modes propagate with speeds cT , cV and cS, respectively.

2.3.2 Gravitational Wave Polarizations and Energy Loss

To consider the polarizations of gravitational waves in Einstein-aether theory,

let us consider the time-like geodesic deviation equation. In the spacetime described

by the metric, gµν = ηµν + hµν , the spatial deviation vector, ζi satisfies

ζ̈i = −R0i0jζ
j ≡ 1

2
P̈ijζj, (2.27)

where ζµ describes the four-dimensional deviation vector between two nearby trajec-

tories of test particles, and

R0i0j '
1

2
(h0j,0i + h0i,0j − hij,00 − h00,ij)

= −1

2
φ̈ij + Ψ̇II

(i,j) + ΦIV
,ij −

1

2
δijΦ̈

II, (2.28)

with Rαβµν denotes the Reimann tensor [28]. Here, ΨII
i , ΦIV and ΦII are the gauge-

invariant quantities defined in [62]. In particular, we have ΦII ≡ F/2.
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In the wave zone, |~x| � d, where d denotes the size of the source and ~x is the

vector pointing to the observer from the COM, we have

ΦIV =
c14 − 2c13

2c14(c13 − 1)
ΦII, ΨII

i = − c13

1− c13

ΨI
i, (2.29)

and

ΨI
i,j = − 1

cV
Ψ̇I
iNj, ΦII

,i = − 1

cS
Φ̇IINi, (2.30)

where Nk denotes the unit vector along the direction between the source (the COM)

and the observer, and ΨI
i is another gauge-invariant quantity defined in [62] via

the relation (More details about the gauge invariants mentioned here can be found

in [62,63].),

ΨI
i ≡ γi + νi. (2.31)

Then, inserting the above expressions into (2.27) and (2.28) we obtain

Pij = φij −
2c13

(1− c13)cV
ΨI

(iNj) −
c14 − 2c13

c14(c13 − 1)c2
S

ΦIINiNj + δijΦ
II. (2.32)

Assuming that (eX , eY , eZ) are three unit vectors that form a set of right-

hand orthogonal basis [139] with eZ ≡ N (Nk), so that (eX , eY ) lay on the plane

orthogonal to the propagation direction N of the gravitational wave, we find that, in

the coordinates xµ = (t, xi), these three vectors can be specified by two angles, ϑ and

ϕ, via the relations [22],

eX = (cosϑ cosϕ, cosϑ sinϕ,− sinϑ) ,

eY = (− sinϕ, cosϕ, 0) ,

eZ = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) . (2.33)
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Then, we can define the six GW polarizations hN ’s by

h+ ≡ 1

2
(PXX − PY Y ) , h× ≡

1

2
(PXY + PY X) ,

hb ≡
1

2
(PXX + PY Y ) , hL ≡ PZZ ,

hX ≡ 1

2
(PXZ + PZX) , hY ≡

1

2
(PY Z + PZY ) , (2.34)

where PAB ≡ PijeiAe
j
B, with A,B = {X, Y, Z}. However, in Einstein-aether theory,

only five GW polarizations are independent. With the help of Eq. (2.28) and some

related equations, we find that the above expressions can be written explicitly in the

form

h+ =
1

2
φije

ij
+, h× =

1

2
φije

ij
×,

hb =
1

2
F, hL = (1 + 2β2)hb,

hX =
1

2
β1ν

ieiX , hY =
1

2
β1ν

ieiY , (2.35)

where ekl+ ≡ ekXe
l
X − ekY elY and ekl× ≡ ekXe

l
Y + ekY e

l
X , and

β1 ≡ −
2c+

cV
, β2 ≡ +

c14 − 2c+

2c14(1− c+)c2
S

. (2.36)

Notice that a typo in [68] has been corrected here for β2.

Observe that these equations for the GW polarizations are quite similar to

those found for generic modified gravity theories in Chatziioannou, et al. [70] (See,

e.g., Eq. 8 in [70].). The main difference here is that Chatziioannou, et al., follow-

ing Poisson and Will [22], made the implicit assumption that all GW modes travel

at the same speed, and this speed is equal to the speed of light. As seen in the

previous section, this is not the case in Einstein-aether theory, with some speeds

already stringently constrained but others essentially unconstrained: −3 × 10−15 <

cT − 1 < 7 × 10−16 due to GW170817 [60], which leads to |c13| = |c+| . 10−15, but
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cV ∼ (c1/c14)1/2 > 1 and cS ∼ (c2/c14)1/2 > 1 and are essentially unconstrained.

Therefore, the results of Chatziioannou, et al. [70] cannot be straightforwardly ap-

plied to Einstein-aether theory, but rather they would have to be extended to allow

for modes with different and arbitrary speeds.

In order to calculate the waveforms, let us first assume that the observers (or

detectors) are located in a region far away from the source, R ≡ |~x| � d (Of course,

this R is not the Ricci scalar anymore.), where d is the typical size of the system. In

this region, we have a useful mathematical method to solve the wave equations. That

is, for equations in the form

1

v2
s

ψ̈ −∆ψ = 16πτ, (2.37)

where ψ, vs and τ are expediently used to denote the field we are going to solve for,

the speed for the corresponding field, and a source term, respectively, we have the

following asymptotic solution [6],

ψ(t, ~x) =
4

R

[
∞∑
n=0

1

n!vns

∂n

∂tn

∫
τ(t−R/vs, |~x

′ |)
(
x
′i · x

i

R

)n
d3x

′

]
+O

(
R−2

)
.

(2.38)

Then, in the gauge [41],

φi = 0, ν = γ = 0, (2.39)

27



we find that the wave equations given in the last subsection have the solutions

φij =
2Gæ

R
(Q̈ij)

TT , (2.40)

νi = − 2Gæ

(2c1 − c13c−)R

[
1

cV

(
c13

1− c13

Q̈ij − Q̈ij − Vij
)
N j+2Σi

]T
,

γi = −c13νi, (2.41)

F =
Gæ

R

c14

2− c14

[
6(Z − 1)Q̈ijN

iN j + 2ZÏ− 4

c14c2
S

ÏijN iN j − 8

c14cS
ΣiN i

]
,

h00 = 2ω0 =
1

c14

F, φ = −1 + c2

c123

f, (2.42)

where

Iij ≡
∑
A

mAx
i
Ax

j
A, I ≡ Ikk,

Qij ≡ Iij −
1

3
δijI,

Iij ≡
∑
A

σAm̃x
i
Ax

j
A, I ≡ Iii,

Qij ≡ Iij −
1

3
δijI,

Σi ≡ −
∑
A

σAm̃Av
i
A,

Vij ≡ 2
∑
A

σAm̃Av̇
[i
Ax

j]
A, (2.43)

and

Z ≡ (α1 − 2α2)(1− c+)

3(2c+ − c14)
. (2.44)

α1 and α2 can be found in Eq. (1.8).

Finally, we note that for any symmetric tensor Sij [I borrowed this notation

temporarily from Eq. (2.7)], we will have STTij = Λij,klSkl and STi = PijSj, where Λij,kl

and Pij are the projection operators defined, respectively, by Eqs. (1.35) and (1.39)

in [137].
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Inserting Eqs. (2.40) - (2.42) into (2.35) and using the above equations, we

find that

h+ =
Gæ

R
Q̈kle

kl
+ , h× =

Gæ

R
Q̈kle

kl
× ,

hb =
c14Gæ

R(2− c14)

[
3(Z − 1)Q̈ije

i
Ze

j
Z+ZÏ − 4

c14cS
Σie

i
Z−

2

c14c2
S

ÏijN iN j

]
,

hL =

[
1− c14 − 2c13

c14(c13 − 1)c2
S

]
hb,

hX =
2c13Gæ

(2c1 − c13c−)cVR

[
eiZ
cV

(
c13

1− c13

Q̈ij − Q̈ij − Vij
)
− 2Σj

]
ejX ,

hY =
2c13Gæ

(2c1 − c13c−)cVR

[
eiZ
cV

(
c13

1− c13

Q̈ij − Q̈ij − Vij
)
− 2Σj

]
ejY . (2.45)

The above expressions differ from the work of Hansen, et al. [58] because the

latter built on the work of Chatziioannou, et al. [70], which as already explained,

cannot be applied to Einstein-aether theory. Note, however, that although some of

the dependence of the modes on the coupling constants ci are different, the general

structure of the solution found by Hansen, et al. [58] remains correct. For example, as

found in that paper, and shown again by the above equations, the scalar longitudinal

mode hL is proportional to the scalar (breathing) mode hb, which then means that

out of the six possible GW polarizations, only five are independent. Moreover, as

shown again in Hansen, et al. [58] and also in the equations above, the breathing and

longitudinal modes are suppressed by a factor c14 . O (10−5) [60] with respect to

the transverse-traceless modes h+ and h×
4, while the vectorial modes hX and hY are

suppressed by a factor c13 . O (10−15) [60].

4 The overall c14 cancels with 1/c14 in the last two terms inside the square brackets of hb
in Eq. (2.45). However, Σi and Ïij in these terms are proportional to σ ∼ s. The sensitivity s scales
with α1 and α2 [see Eq. (2.53)], which scale with c14 when c13 ' 0.
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With the GW polarizations at hand, we can now move to the calculation of

the energy flux. Using the Noether current method described in [32, 140], we find

that the energy loss rate is given by

Ėb = − 1

16πGæ

〈∫
dΩR2

[
1

2cT
φ̇ijφ̇ij +

(2c1 − c13c−)(1− c13)

cV
ν̇iν̇i

+
2− c14

4cSc14

Ḟ Ḟ

]〉
+ Ȯ, (2.46)

where an overhead dot stands for a time derivative, Ω is the solid angle, and the

angular brackets stand for an average over one period, defined by

〈H(t)〉 ≡ 1

Pb

∫ Pb

0

H(t)dt, (2.47)

with Pb the orbital period [141]. The last term Ȯ will be omitted from now on, since

its purpose is just to cancel secular terms that arise from the other terms in this

equation, as discussed in detail in [32, 42]. Using the mathematical tricks presented

in [137], we find that Eq. (2.46) becomes

Ėb = −Gæ

〈
A1

5

...
Qij

...
Qij +

A2

5

...
Qij

...
Qij +

A3

5

...
Qij

...
Qij + B1

...
I

...
I + B2

...
I

...
I + B3

...
I

...
I

+ CΣ̇iΣ̇i +DV̇ijV̇ij
〉
, (2.48)

where

A1 ≡
1

cT
+

2c14c
2
13

(2c1 − c13c−)2cV
+

3c14(Z − 1)2

2(2− c14)cS
,

A2 ≡ −
2c13

(2c1 − c13c−)c3
V

− 2(Z − 1)

(2− c14)c3
S

, A3 ≡
1

2c14c5
V

+
2

3c14(2− c14)c5
S

,

B1 ≡
c14Z

2

4(2− c14)cS
,

B2 ≡ −
Z

3(2− c14)c3
S

, B3 ≡
1

9c14(2− c14)c5
S

,

C ≡ 4

3c14c3
V

+
4

3c14(2− c14)c3
S

, D ≡ 1

6c14c5
V

. (2.49)
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Note that in the above expressions, we corrected a simple typo (minus signs in A2) in

previous work [42], which originates from the sign error in [32], and which has been

corrected in Eq. (2.21) as already mentioned.

2.3.3 Binary Systems

In this part, we apply the general formula developed in the last two sections

to a binary system. Before doing so, let us first note that such a problem has already

been considered in Hansen, et al. [58], as discussed earlier. The work here differs from

that of Hansen, et al. in that (i) I include in the calculation of the GW polarization

modes by considering the fact that the different fields of Einstein-aether theory travel

at different velocities, and (ii) I allow for the COM to not be comoving with the

aether, i.e., I allow V i 6= 0. The latter condition is more general than that adopted

previously in the literature, thus allowing for the possibility that the aether flow may

be in a different direction as compared to the motion of the COM.

With the above in mind, we first assume that the binary components are in

a quasi-circular orbit. By “quasi-circular” we mean that the two celestial bodies are

rotating in a fixed plane and the orbit for its one-body effective model is almost a

circle within one period [142]. In addition, we also assume that ω̇s � ω2
s , where

ωs = 2π/Pb denotes the orbital angular frequency of the orbit [137]. Then, to leading

(Newtonian) order in the PN theory, we have

v̇i ≡ r̈i ' −Gm
r2

r̂i
[
1 +O

(
Gm
r

)]
, (2.50)

v2 ≡ vivi ' Gm
r

[
1 +O

(
Gm
r

)]
, (2.51)
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where r = |xi1−xi2| is the distance between the two bodies and r̂i ≡ ri/r ≡ (xi1 − xi2)/r

and m is the total mass. Here, the relation between G and GN is given by

G ≡ GN(1− s1)(1− s2), (2.52)

where sA is related to σA via the relation, sA ≡ σA/(1 + σA). In [42], the sensitivi-

ties for neutron stars were calculated numerically for various choices of the coupling

constants ci’s. Unfortunately, all of those choices are out of the current physically

viable region defined in Eq. (1.9). In [32], an analytical expression in the weak-field

approximations was given,

sA =

(
α1 −

2

3
α2

)
ΩA

mA

+O
(
GNm

d

)2

, (2.53)

where ΩA is the binding energy of the A-th body 5 and we recall d represents the

characteristic size of the system. This expression is only valid for weakly-gravitating

bodies, and thus, strictly speaking, it does not apply to neutron stars or to black holes

when considering strong-field effects; for neutron stars, the sensitivities are about an

order of magnitude larger and they depend on the equation of state, while for black

holes, they may be identically zero, as in the case of khronometric gravity within a

parameter space that is of physical interest [131].

Since the choice of coordinates xµ comoving with the æ-field [cf. Eq. (2.11)]

is fixed only up to the spatial diffeomorphism x′i = x′i
(
xk
)
, as mentioned earlier,

we can use this remaining gauge freedom to choose the spatial coordinates so that

the binary system is always on the (x, y)-plane. This then implies that r̂ (r̂i) can be

5 Note that there is an extra factor c14 appearing in Eq. (70) of [32] in the published version,
which has been corrected in the arXiv version.
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parameterized via

r̂ = cos Φ̂i + sin Φ̂j, (2.54)

where Φ(t) ≡
∫ t
ws(t

′)dt′ is the orbital phase of the binary system, and î, ĵ, k̂ are

unit vectors along the x, y and z directions respectively, with k̂ = î× ĵ.

Substituting the above expressions into Eq. (2.45) and only keeping terms up

to relative O(v2), where V i is assumed to be of O(v), we find,

h+ = −2Gæ

R
MU2(1 + cos2 ϑ) cos(2Θ) +

2Gæ

R
mV kV lekl+︸ ︷︷ ︸, (2.55)

h× =
4Gæ

R
MU2 cosϑ sin(2Θ) +

2Gæ

R
mV kV lekl×︸ ︷︷ ︸, (2.56)

hb =
2Gæ

R

c14

2− c14

×

[
2∆s

c14cS
η1/5MU sinϑ sin Θ +

2S − 3c14(Z − 1)c2
S

c14c2
S

MU2 sin2 ϑ cos(2Θ)

− 4∆s

c14c2
S

η1/5MU(V iN i) sinϑ sin Θ

+
3c14c

2
S(Z − 1)− 2S ′

c14c2
S

mV iV jN iN j︸ ︷︷ ︸+
2S ′

c14cS
mV iN i +mV iV i︸ ︷︷ ︸

]
,

(2.57)

hL =

[
1 +

c14 − 2c13

c14(1− c13)c2
S

]
hb, (2.58)

hX = −β1Gæ

R

1

2c1 − c13c−

×
[
− 2∆sη1/5MU cosϑ sin Θ +

1

cV

(
S − c13

1− c13

)
MU2 sin(2ϑ) cos(2Θ)

− 2∆s

cV
η1/5MU

(
sinϑeiX + cosϑN i

)
V i sin Θ

− 2m

cV

(
S ′ − c+

1− c+

)
V iV jeiXN

j︸ ︷︷ ︸− 2S ′meiXV i︸ ︷︷ ︸
]
, (2.59)
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hY = −β1Gæ

R

1

2c1 − c13c−

×

[
− 2∆sη1/5MU cos Θ− 2

cV

(
S − c13

1− c13

)
MU2 sin(ϑ) sin(2Θ)

− 2∆s

cV
η1/5MU

(
sinϑ sin ΘeiY + cos ΘN i

)
V i

− 2m

cV

(
S ′ − c+

1− c+

)
V iV jeiYN

j︸ ︷︷ ︸− 2S ′meiY V i︸ ︷︷ ︸
]
, (2.60)

where

m ≡ m1 +m2, µA ≡
mA

m
, µ ≡ µ1µ2m,

η ≡ µ

m
, M≡ mη3/5, U ≡ (GMωs)

1/3, (2.61)

and

∆s ≡ s1 − s2, S ≡ s1µ2 + s2µ1,

Θ ≡ ϕ− Φ, S ′ ≡ s1µ1 + s2µ2. (2.62)

Now several comments are in order. First, the above expressions for the plus

and cross polarization modes [Eqs. (2.55) and (2.56)] reduce to those of GR 6 [58,70],

when ci’s and si’s are set to be zero. The quantity ϕ determines the coalescence phase,

the value of which can be chosen arbitrarily. References [58, 70] use the convention

ϕ = 0, which will be adopted in this chapter. Second, these expressions are also

similar to those found in Hansen, et al. [58] to leading order in the PN expansion.

However, since Hansen, et al. [58] used a formalism that implicitly assumed the speed

of all modes is the speed of light, which is not the case in Einstein-aether theory, there

are factors of (cT , cV , cS) missing in that work, which I correct here. Third, the under-

braced terms have not appeared in the literature previously. That’s because they will

6 There is a simple transcription typo in [58], which accidentally dropped factor of η1/5 in
these modes.
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be safely neglected for our current studies, since they are time-independent, and lead

to no contributions to the geodesic deviation equation [Eq. (2.27)], as can be seen

from Eqs. (2.27)-(2.32). Fourth, the above expressions contain terms that are sub-

leading in the PN approximation [i.e. they are of O(v) smaller than the leading-order

modifications], and these have also never appeared in the literature. This is not just

because they are sub-leading in the PN approximation, but also because they depend

on the COM velocity V i, which is typically assumed to be of order 10−3 with respect

to the CMB rest frame [32], and thus is much smaller than the relative velocity of

binary constituents before coalescences. These terms, however, cannot be neglected

as they are time-dependent, and proportional to cos Θ, sin Θ. Fifth, strictly speaking,

Eqs. (2.55)-(2.60) should be evaluated at the retarded time tr, where tr ≡ t− R/cN ,

with cN being any of (cT , cV , cS), depending on the mode under consideration.

With the above in mind, substituting (2.50), (2.51), (2.43) and (2.54) into

Eq. (2.48), we find that

Ėb = −GæG2µ2m2

r4

×

〈
8

15
(A1 + SA2 + S2A3)(12v2 − 11ṙ2) + 4(B1 + SB2 + S2B3)ṙ2

+
1

5
∆s[8(A2 + 2SA3)(3ṙj − 2ṙir̂ir̂j) + 60(B2 + 2SB3)ṙir̂ir̂j]V j

+ ∆s2

[(
6

5
A3 + 36B3 − 2D

)
(r̂iV i)2 +

(
18

5
A3 + 2D

)
V iV i + C

]〉
.

(2.63)

It is interesting to note that this result reduces identically to that found by Yagi, et

al. [42], since in that work, no assumption was made on the speed of the propagating

modes.
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Equation (2.63) includes Einstein-æther corrections both at −1PN (Ėb ∝ v8)

and 0PN (Ėb ∝ v10) orders. When deriving this equation, I only considered the

Newtonian contribution in the conservative sector in Eqs. (2.50) and (2.51). Formerly,

the 1PN correction to the conservative dynamics can affect Ėb at 0PN order. This

is because such 1PN effect can couple to the −1PN dipole radiation in Eq. (2.48) to

give rise to a 0PN effect in Eq. (2.63). This section does not include such corrections

since they can never become a dominant correction (as they are 1PN correction to the

−1PN effect). On the other hand, the 0PN effect included in Eq. (2.63) can dominate

the −1PN effect when, e.g., s1 ∼ s2 and the dipole radiation is suppressed.

2.4 Evolution of the Orbital Angular Frequency

The emission of gravitational waves causes the separation of the two bodies in

a binary system to shrink, which thus leads the orbital frequency to grow, until coales-

cence occurs. In this section, we find the evolution of the orbital angular frequency ωs

through the use of the energy loss rate. Note that there is a different, yet equivalent,

way to get the same result through the Virial theorem (See, e.g., [137,143].).

The evaluation of the time-domain waveform requires that one solves the equa-

tions of motion in Einstein-aether theory. As explained in the previous section, these

equations take on a Newtonian-like form, and their solution can be described effec-

tively by Eq. (2.54). All one needs to prescribe now is the evolution of the orbital

angular frequency, which we study here to the leading PN order. This equation can

be obtained through the Einstein-aether version of Kepler’s law [137],

ω2
s '

Gm
r3

, (2.64)
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which yields

ω̇s
ωs

=
3

2

Ėb
Eb
, (2.65)

where Eb in the denominator is the binding energy [42], namely

Eb = −Gµm
2r

. (2.66)

Substitution of Eqs. (2.66), (2.63), (2.64) and (2.54) into Eq. (2.65) leads to

(Gm)2ω̇s = (Gm)2dωs
dt

= κ1(Gmωs)11/3
[
1 + εx (Gmωs)−2/3

]
, (2.67)

where

κ1 ≡
48η(2− c14)

5(1− s1)(1− s2)

(
A1 + SA2 + S2A3

)
, (2.68)

εx ≡
∆s2

32(A1 + SA2 + S2A3)

×
[
(21A3 + 90B3 + 5D)V iV i − (3A3 + 90B3 − 5D)(V 3)2 + 5C

]
. (2.69)

Also note that we have used the quasi-circular condition.

Solving Eq. (2.67) exactly is not possible, but a good approximation to the

solution can be obtained when εx is small enough, i.e., when εx � 1. Since A1 is O(1)

and S, as well as S2, are suppressed by the sensitivities according to the definition

in Eq. (2.62), the contribution of the denominator of Eq. (2.69) is O(1). Moreover,

by using Eq. (2.49), we see that the coefficients of the V i-related terms are all of

O(c−1
14 c
−5
V,S), while C is of O(c−1

14 c
−3
V + c−1

14 c
−3
S ). Now recall that for |c13| . 10−15 we

have cS ' O(c2/c14)1/2 and cV ' O(c1/c14)1/2, as one can see from Eq. (1.7). Thus,

because V i is assumed to be of O(v) or smaller (see [32]), the contribution from the

numerator is of O(∆s2C). Putting everything together and using the expressions for

C, we first find that

εx ≤
5

24
∆s2c

1/2
14

(
c
−3/2
1 + c

−3/2
2

)
. (2.70)
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Observe that if ∆s2 � 1, either because s1 = 0 = s2 (as may be the case in black

hole binaries) or because s1 = s2 (equal-mass neutron star binaries), then εx is always

small and the approximation is automatically well-justified. Moreover, if we insert

the weak-field limit for the sensitivities in Eq. (2.53), the above expression could be

further written as

εx ≤
605

216
c

5/2
14

(
Ω1

m1

− Ω2

m2

)2 (
c
−3/2
1 + c

−3/2
2

)
≤ 7× 10−5, (2.71)

where we have used that c14 . 2.5 × 10−5 and c1,2 & c14 from Eq. (1.9), and that

ΩA ≤ mA. Clearly then, the above analysis justifies the search for a perturbative

solution to Eq. (2.67) in εx � 1.

Even though the requirement that εx � 1 is satisfied when one saturates cur-

rent constraints on the theory, a perturbative solution to Eq. (2.67) actually requires

εx � (Gmωs)2/3, (2.72)

which may be more severe when the binary’s orbital velocity is small enough. Notice,

however, that this implies that v & 0.05, which is true in the regime of interest of

the second-generation ground-based gravitational wave detectors. In such a region,

we can perturbatively expand the solution to find

ωs(t) ' κ
−3/8
2 (Gm)−5/8(tc − t)−3/8

[
1− 3

10
εxκ

1/4
2

(
tc − t
Gm

)1/4
]
, (2.73)

where

κ2 ≡
128η(2− c14)

5(1− s1)(1− s2)

(
A1 + SA2 + S2A3

)
, (2.74)

and tc is the moment of coalescence. Clearly, the above results reduce to the well-

known expression [137] in GR limit:

ωGRs (t) =
1

8

(η
5

)−3/8

(GNm)−5/8(tGRc − t)−3/8. (2.75)
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Figure 2.1: Evolution of the orbital angular frequency ωs(t) of the inner binary in
the hierarchy triple system J0337 starting at January-04-2012 to the binary’s final
stage [132], as given by Eqs. (2.73) and (2.75) for æ-theory and GR, respectively.
It is clear that the orbital angular frequency grows and becomes unbounded at the
coalescence time. Note, however, that the coalescence time for the two theories is
different (tc ∼ 9 × 1018 s and tGRc ∼ 2 × 1019 s), because the additional polarization
modes of Einstein-aether theory cause the binary to lose binding energy faster than
in GR, thus forcing the binary to merge earlier.

Fig. 2.1 shows the difference between the GR and æ-theory evolution of the

orbital angular frequency 7 for the inner binary in the hierarchy triple system PSR

J0337+1715 (denoted J0337 henceforth) [132,147]. Specifically, we setm1 = 1.4378M�,

m2 = 0.19751M�, and ωs(t = 0) ≈ 0.0000446 Hz , where t = 0 stands for the time

that J0337 was first observed and M� denotes the solar mass. Moreover, we choose

the coupling constants to be c1 = 4×10−5, c2 = 9×10−5, c4 = −2×10−5 and c3 = −c1

as in [62]. These choices won’t strictly satisfy all constraints in [60], although they

are quite close to the physical viable region (this point is accidentally overlooked in

the published version). Nonetheless, they are currently sufficient for an illustrative

7 In plotting Fig. 2.1 we just used the time coordinate t, instead of the retarded time,
tAr ≡ t − R/cA [144–146]. Since ωs is a function of (tc − t), there is no difference, as tc − t =
(tc −R/cA)− (t−R/cA) = tAr,c − tAr (the subscript “A” here is to distinguish the different kinds of
propagation modes: scalar, vector and tensor).

39



purpose. Actually, I also investigated the results with the latest physical viable ci’s.

It turns out that the quantitative results are just slightly changed while our conclu-

sions addressed from these present results are not influenced at all qualitatively. For

the COM velocity, we randomly choose ~V = (0.002, 0.01, 0.03), which satisfies the

constraints given in [32]. The sensitivities of neutron stars are not known in this re-

gion of parameter space, so for illustrative purposes only, we use there the weak-field

expression of Eq. (2.53), with ΩA/mA = GNmA/RA and (R1, R2) = (12.7, 6.33× 104)

km. These parameter choices satisfy the perturbative condition εx(Gmωs)−2/3 � 1 for

about 1/1000 of its life time, viz., the duration from the date J0337 was first observed

in 2012 to its future merger. Because the time interval before merger is so long, the

parameter choices satisfy the perturbative condition εx(Gmωs)−2/3 � 1 during a time

much longer than the designed observing window of LISA-like detectors.

Once ωs is known, one can insert it into Eqs. (2.55) - (2.60) to find the GW

polarizations. Given the large number of cycles present in these time-domain wave-

forms, however, it is impractical to plot them straightly as functions of time. A better

alternative is to decompose the signals into an amplitude and a phase, via

h+ ≡ A+ cos(2Θ),

h× ≡ A× sin(2Θ),

hb ≡ Ab2 cos(2Θ) + Ab1 sin(Θ),

hL ≡ AL2 cos(2Θ) + AL1 sin(Θ). (2.76)

Recall that the phase Θ here is defined from the orbital phase Φ through Eq. (2.62).

Figures 2.2 and 2.3 show the time-domain amplitudes and orbital phase for a binary
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Figure 2.2: Temporal evolution of the amplitudes of the GW polarizations for the
inner binary in the hierarchy triple system J0337 [132]. The upper panel shows
the + and × modes in GR and in æ-theory. The lower panel shows the breathing
and longitudinal modes in æ-theory, where the subscript 1 and 2 correspond to the
harmonic sequence number. Observe that the second harmonic is rescaled by a factor
of 103 relative to the first harmonic, which implies the latter is much larger. Observe
also that the amplitudes in æ-theory diverge faster than in GR because the binary
inspirals more rapidly.
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with the same parameters as those chosen for Fig. 2.1. In addition, we have here cho-

sen ϑ = 39.254 degrees, according to [132], and ϕ = 70 degrees as a heuristic example.

To more clearly see the difference between the GR and the æ-theory evolution, we

also plot the amplitudes in the GR limit (see also Eq. (4.29) of [137]).
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Figure 2.3: Temporal evolution of the phases of the GW polarizations for the inner
binary in the hierarchy triple system J0337 [132] in GR and in æ-theory. Note that the
phases here are different from the orbital phases in Eq. (2.62), although the differences
are trivial.

These figures deserve several comments. First, notice that with the choice of

parameters we have made to make these figures (specifically with c13 = 0), the hX,Y

modes vanish identically. Even if we had saturated current constraints by setting

c13 = 10−15, the amplitudes of these vector modes would be suppressed by at least

15 orders of magnitude relative to the plus and cross modes. The implication then is

clear: GW interferometers will never be able to detect these modes directly. Second,

observe that the scalar modes hb,L are suppressed relative to the tensor modes h+,× by

a factor of 103. This then implies that it will be extremely difficult for GW detectors

to measure these modes directly (This is one of the crucial motivations for us to move
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to the realm of ringdown stage, although we are also caring about the inspiral stage.).

However, we observe from the figures that the amplitude and the phase of the tensor

mode is clearly modified, and this is a feature that could be constrained with GW

instruments. This is true especially for BNSs since the approximation in Eq. (2.53) is

better in that case, as discussed previously. Therefore, in the case of Einstein-aether

theory, it is clear that constraints on the temporal (or frequency) evolution of the

tensor modes are much more stringent than any polarization test that proves that

GW signals only contain + and × modes.

2.5 Response Function

Gravitational waves emitted by massive binary systems have attracted a lot

of attention recently, as they could be ideal sources for both ground- and space-

based detectors, such as LIGO, Virgo, KAGRA [148], LISA, TianQin [71], Taiji and

DECIGO [108]. Therefore, in this section we consider the response function for both

kinds of detectors.

2.5.1 Ground-Based L-Shape Detectors

With the expressions for the GW polarization modes in the coordinate space

in hand, we are ready to calculate the response function h(t) and its Fourier trans-

form h̃(f) [of course, this f is different from the one in Eq. (2.42)]. In this subsec-

tion, we shall focus on L-shape detectors, such as LIGO, Virgo and KAGRA [149].

From [22,70], we find

h(t) =
∑
N

FN(θ, φ, ψ) hN(t), (2.77)
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where

F+ ≡
1

2
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ,

F× ≡
1

2
(1 + cos2 θ) cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ,

Fb ≡ −
1

2
sin2 θ cos 2φ, FL ≡

1

2
sin2 θ cos 2φ,

FX ≡ − sin θ(cos θ cos 2φ cosψ − sin 2φ sinψ),

FY ≡ − sin θ(cos θ cos 2φ sinψ + sin 2φ cosψ). (2.78)

Here {θ, φ, ψ} are the three angles that specify the relative orientations of the detector

with respect to the source [note that the angle φ here is not the same as the metric

perturbation φ used in Eq. (2.13)]. Their definitions can be found in [22] (see, for

example, Fig. 11.5 in that reference). To calculate the Fourier transform (FT) of the

response function h(t), we shall adopt the SPA [70,96,134]. In Appendix A, I present

a brief summary of this method. For more details, I refer readers to [70, 96, 134] and

references therein.

Let us first write Eq. (2.77) in the form,

h(t) ≡
∑
N

HN(t), (2.79)

where HN(t) ≡ FNhN(t), and the subscript N ranges over all the polarization modes,

i.e., N ∈ {+,×, b, L,X, Y }. We can then define the Fourier transform h̃(f) as

h̃(f) ≡
∫
h(t)ei2πftdt =

∑
N

H̃N(f), (2.80)

where H̃N(f) is the Fourier transform of HN(t). Note that the above definition is

slightly different from the one used in [62,63] (actually, the definitions of FT will vary

in different references [29, 150]). For computational convenience, let us also rewrite
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HN(t) as

HN(t) =
[
qN(1) cos(2Φ) + qN(2) sin(2Φ)

]
ω2/3
s +

[
qN(3) cos Φ + qN(4) sin Φ

]
ω1/3
s ,

(2.81)

where ωs and Φ are all functions of time, and qN(n) are time-independent 8, and given

explicitly in Appendix B.

To apply the SPA to our problem, we need to find t and ω̇s as functions of ωs.

Inverting Eq. (2.73) perturbatively in εx � 1, we find

t− tc = −3

8

1

κ1ωs
(Gmωs)−5/3

{
1− 4

5
εx(Gmωs)−2/3 +O[(Gmωs)2/3, εx]

}
. (2.82)

But note very importantly that the time-domain waveform is to be evaluated at

retarded time, thus t→ t−R/cN when evaluating the orbital phase in the integrand

of the Fourier integral. Typically, the factor of R/cN is re-absorbed in the time of

coalescence tc because it is a constant, but in æ-theory, this constant will be different

for each of the modes present in the response function, and thus, more care must be

taken.

With the results given in Eqs. (2.67) and (2.82), we are now able to apply

the SPA to Eq. (2.81) by following the procedure outlined in Appendix A. However,

note that there are several tiny differences between the example in Appendix A and

the problem here. For instance, the speed term in Appendix A is absorbed into the

phase. Of course, this will not bother us since the final result could be easily modified

8 For detectors, such as LIGO, Virgo and KAGRA, one can treat qN(l) as time-independent,
since their observation windows are very short [65]. However, for detectors like LISA, this approxi-
mation needs to be relaxed, as we will discuss in the next subsection.
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to get the desired form in this section. After simple but tedious calculations, we find

h̃(f) =
∑
N

{√
π

2
(Gm)1/3 κ

−1/2
1 (qN(1) + iqN(2))(Gπmf)−7/6

×
[
1− 1

2
(Gπmf)−2/3εx

]
e−i2πfR(1−c−1

N )eiΨ(2)

+

√
π

4
(Gm)2/3 κ

−1/2
1 (qN(3) + iqN(4))(Gπmf)−3/2

×
[
1− 1

2
(2Gπmf)−2/3εx

]
e−i2πfR(1−c−1

N )eiΨ(1)

}
, (2.83)

where N ∈ {+,×, b, L,X, Y } and c+ = c× = cT , cb = cL = cS, cX = cY = cV

9. Note that a typo of Eq. (2.83) in the published version is corrected here. The

e−i2πfR(1−c−1
N ) term exists because of the retarded time argument discussed above (see

also Appendix A for a more detailed discussion). The Fourier phases Ψ(1) and Ψ(2),

corresponding to the first and second harmonics of the orbital period respectively, are

given by

Ψ(2) ≡
9

20
κ−1

1 (Gπmf)−5/3

[
1− 4

7
(Gπmf)−2/3εx

]
+ 2πf t̄c − 2Φ(tc)−

π

4
,

Ψ(1) ≡
9

40
κ−1

1 (2Gπmf)−5/3

[
1− 4

7
(2Gπmf)−2/3εx

]
+ 2πf t̄c − Φ(tc)−

π

4
, (2.84)

where we have redefined the coalescence time via t̄c ≡ tc +R.

Note that the above expressions are different from the ones given in Eqs. (66) -

(74) in [58] because here we do not assume the different polarization modes travel all

at the speed of light. Moreover, in my calculation of the Fourier amplitudes, I have

included Einstein-aether corrections of O(v) relative to the leading-order correction.

Therefore, while in [58] the non-tensor modes are all proportional to the first har-

monic, here we also have contributions that are proportional to the second harmonic,

i.e. qb,L,X,Y (1) 6= 0 6= qb,L,X,Y (2). Finally, Eq. (2.83) contains a term proportional to

9 Note that the c+ here is the speed of plus mode instead of the constant c13 as in (1.11).
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exp[−2πifR(1 − 1/cN)], which was absent from previous studies because all modes

were assumed to travel at the speed of light.

We would also like to note that in the present case since now the breathing

and longitudinal modes are degenerate [cf. Eq. (2.35)], the qb(i) and qL(i) terms in

Eq. (2.83) can be combined together to simplify the results,

qS(i) ≡ qb(i) + qL(i) = qb(i)(1− abL), (2.85)

where Eqs. (B.1), (B.3) and (2.78) had been used and abL is given by (B.5).

2.5.2 Space-Based Equilateral-Shape Detectors

In this subsection we calculate the response function for a space-based equilateral-

shape detector, such as LISA, TianQin, Taiji and DECIGO [151–156]. Because all

such detectors share many similarities in their construction, we will mainly focus on

calculations for LISA; similar work applicable to TianQin can be found in [153, 157]

for GR.

Following [158], we can cast the response function of LISA in the following

form, which is similar to Eq. (2.79),

h′(t) =

√
3

2

∑
N

H ′N(t), (2.86)

where N ∈ {+,×, b, L,X, Y }, and where H ′N(t) is given by

H ′N(t) =
[
q′N(1) cos(2Φ + ΦDN(2)) + q′N(2) sin(2Φ + ΦDN(2))

]
ω2/3
s

+
[
q′N(3) cos(Φ + ΦDN(1)) + q′N(4) sin(Φ + ΦDN(1))

]
ω1/3
s , (2.87)

and the q′N(l) expressions are explicitly given in Appendix C. Note that the latter

are now functions of time, unlike for ground-based L-shape detectors, as mentioned

47



previously. This is due to the fact that the observational windows of LISA is relatively

long and sometimes comparable to the orbital period of the detector.

The quantities ΦDN(2) and ΦDN(1) are the corresponding Doppler phases due

to the motion of the detector around the sun; gravitational waves reach LISA and

the Solar System barycenter at different times [158]. Using the geometry of LISA,

we can show that to first order of rso/λN , where λN is the wavelength of the N -th

mode [158] and rso is the radius of the center of mass of LISA which is equal to 1AU,

we have 10,

ΦDN(2) =
2ωs
cN

rso sin θ̄ cos[Φ̄(t)− φ̄],

ΦDN(1) =
ωs
cN
rso sin θ̄ cos[Φ̄(t)− φ̄]. (2.88)

The quantities θ̄ and φ̄ are generated in the same way as in Fig. 11.5 of [22]

(See also [158]). The quantity Φ̄(t) is the orbital phase of the center of mass of LISA

in its orbit around the sun, which is given by

Φ̄(t) = Φ̄0 +
2πt

T0

, (2.89)

where Φ̄0 is a constant and T0 is the period of LISA around the sun, which is equal

to the sidereal period of Earth [159].

Since detector-related quantities should be evaluated at the current time t,

and source-related quantities should be evaluated at the retarded time, one finds that

10 For the basic construction of LISA, readers are referred to Figs. 1 and 2 of [158].
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Eq. (2.87) needs to be modified to

H ′N(t) = QN(1)|t · [ω2/3
s cos(2Φ)]|trN +QN(2)|t · [ω2/3

s sin(2Φ)]|trN

+QN(3)|t · [ω1/3
s cos Φ]|trN +QN(4)|t · [ω1/3

s sin Φ]|trN , (2.90)

where

QN(1) ≡
[
q′N(1) cos ΦDN(2) + q′N(2) sin ΦDN(2)

]
,

QN(2) ≡ −
[
q′N(1) sin ΦDN(2) − q′N(2) cos ΦDN(2)

]
,

QN(3) ≡
[
q′N(3) cos ΦDN(1) + q′N(4) sin ΦDN(1)

]
,

QN(4) ≡ −
[
q′N(3) sin ΦDN(1) − q′N(4) cos ΦDN(1)

]
,

(2.91)

with trN ≡ t−R/cN being the retarded time for each mode.

With the above expressions, we can now calculate the Fourier transform for

LISA by using SPA technique. The final result is

h̃′(f) =

√
3

2

∑
N

{√
π

2
(Gm)1/3 κ

−1/2
1

[
QN(1)|ta2+R/cN + iQN(2)|ta2+R/cN

]
(Gπmf)−7/6

×
[
1− 1

2
(Gπmf)−2/3εx

]
e−i2πfR(1−c−1

N )eiΨ(2)

+

√
π

4
(Gm)2/3 κ

−1/2
1

[
QN(3)|ta1+R/cN + iQN(4)|ta1+R/cN

]
(Gπmf)−3/2

×
[
1− 1

2
(2Gπmf)−2/3εx

]
e−i2πfR(1−c−1

N )eiΨ(1)

}
, (2.92)

where Ψ(i) are given by Eq. (2.84), and ta1 and ta2 are the stationary points [cf.

Appendix A]. From Eqs. (2.82) and (2.67) we find

ta1,2 − tc = −3

8

1

κ1ωs(ta1,2)
(Gmωs(ta1,2))−5/3

[
1− 4

5
εx (Gmωs(ta1,2))−2/3

]
, (2.93)

where ωs(ta2) = πf and ωs(ta1) = 2πf .

49



Just like in Eq. (2.83), the Qb(i) and QL(i) terms in Eq. (2.92) could be

combined together, too, since the breathing and longitudinal modes are degenerate

[cf. Eq. (2.35)],

QS(i) ≡ Qb(i) +QL(i) = Qb(i)(1− abL), (2.94)

where Eqs. (C.1), (B.3) and (2.78) have been used and abL is given by (B.5).

2.6 Parameterized Post-Einsteinian Parameters

By using the results given in the previous section, we are ready to calculate the

ppE parameters of æ-theory [58,69,70]. Since the calculations for LISA-like detectors

are too complicated, we will just focus here on the ground-based response functions.

What is more, since the LIGO constraint on the speed of tensor modes cT is so

stringent, in this section we will set cT = c.

Before we move to the following calculations, I want to first share some com-

ments to ppE parameters. Actually, by extracting physical information from the

observational data and then compare to that predicted in the calculated waveforms,

we are able to check our theory. The reason for us to further calculate these ppE

parameters is because they are basically just some numbers. By using them, it will

be easier for us to compare them with the observational data to judge our theoretical

predictions. Hopefully, they will be useful in the future.
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2.6.1 Generalized ppE Scheme

One of the generalization of the simplest ppE waveforms to theories with

multiple polarizations can be written in the form [70] 11,

h̃(f) = h̃GR(f)
(

1 + cppEβppEU
bppE+5
2

)
ei2βppEU

bppE
2

+
M2

R
U−7/2

2 eiΨ
(2)
GRei2βppEU

bppE
2

(
1− κ1/2

3 cppEβppEU
bppE+5
2

)
×
[
α+F+(1 + cos2 ϑ) + α×F× cosϑ

]
+
M2

R
U−7/2

2 eiΨ
(2)
GRei2βppEU

bppE
2

(
1 + κ3cppEβppEU

bppE+5
2

)
×
{
ei2πfR(1−c−1

S )
[
αbFb sin2 ϑ+ αLFL sin2 ϑ

]
+ ei2πfR(1−c−1

V ) [αXFX sin(2ϑ) + αY FY sinϑ]
}

+η1/5M2

R
U−9/2

1 eiΨ
(1)
GReiβppEU

bppE
1

(
1 + κ3cppEβppEU

bppE+5
1

)
×
{
ei2πfR(1−c−1

S )
[
γbFb sinϑ+ γLFL sinϑ

]
+ ei2πfR(1−c−1

V )

× [γX1FX cosϑ+ γX2FX sinϑ+ γY 1FY + γY 2FY sinϑ]
}
,

(2.95)

where [70]

h̃GR(f) = −
√

5π

96
G2
N

[
F+(1 + cos2 ϑ) + 2iF× cosϑ

]M2

R
U−7/2

2 eiΨ
(2)
GR , (2.96)

and

Ψ
(2)
GR =

3

128
(GNπMf)−5/3 + 2πf t̄c − 2Φ(tc)−

π

4
,

Ψ
(1)
GR =

3

256
(2GNπMf)−5/3 + 2πf t̄c − Φ(tc)−

π

4
, (2.97)

11 This is different from its original form in [70], in order to accommodate different propa-
gation speeds, as mentioned above.
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with Ul ≡ (2πGNMf/l)1/3 and l ∈ Z+. Note that the angle ϕ in (2.96) has been set

to zero to agree with those in [58, 70]. This result could be directly compared with

its counterpart in [137] to confirm the correctness. Also note that the (1) and (2) in

the superscripts do not stand for derivatives.

Comparing Eq. (2.83) with Eq. (2.95) we see immediately that there is a

mismatch. This is because the gravitational constants in æ-theory that control binary

motion are G and Gæ, and thus, these constants appear in Eq. (2.83), while the ppE

formalism is parameterized in terms of the gravitational constant observed on Earth

GN , which is why this constant appears in U` in Eq. (2.95). The relation between

G and GN is given explicitly in Eq. (2.52), where we see that G = GN + O(s1, s2).

Similarly, from Eq. (1.6) we see that Gæ = GN+O(c14). The ppE formalism, however,

is defined only in the limit of small deformations away from GR, and since s1,2 → 0

and c14 → 0 in the GR limit, one should really insert Eqs. (2.52) and (1.6) into

Eq. (2.83), then re-expand in small deformations, and then compare to Eq. (2.95),

keeping only terms of leading-order in the coupling parameters and to leading-order

in the PN approximation. To be specific, in the procedure of finding ppE parameters,

we are going to apply the following approximations so that we can match Eqs. (2.83)

and (2.95):

(1− c14)n1 [(1− s1)(1− s2)]n2 = [1 +O(s1, s2)] [1 +O(c14)] w 1, (2.98)

where n1 and n2 are arbitrary real numbers and the neglected contribution ofO(s1, s2)

and O(c14) enters at higher order in terms of the small coupling constants in the

waveform.
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The resulting Fourier transform of the response function in æ-theory is still

different from that in [70] because the former contains the factors of exp[−2πifR(1−

1/cN)] discussed earlier. Therefore, in theories which contain additional polarization

modes with different propagation speeds, we must generalize the results of [70] by

replacing every appearance of FN in Eq. (2.95) with FN exp[−2πifR(1− 1/cN)].

If we can re-cast Eq. (2.80) into the form of Eq. (2.95), then we can read off

the set of ppE parameters {cppE, bppE, βppE, α+, α×, αb, αL, αX , αY , γb, γL, γX1, γX2,

γY 1, γY 2 }. First, we observe that

Ψ(2) = Ψ
(2)
GR + U−7

2 φ1, Ψ(1) = Ψ
(1)
GR +

1

2
U−7

1 φ1, (2.99)

where

φ1 ≡ −
3

224
η2/5κ−1

3 εx, (2.100)

with

κ3 ≡ A1 + SA2 + S2A3. (2.101)

Note that Eq. (2.98) has been used above and the f -dependent terms in φ1

are omitted to keep only the leading PN correction. With Eqs. (2.98) and (2.99) at

hand, we could write Eq. (2.80) as the desired form, i.e., Eq. (2.95). Here, I will omit

the devilishly tedious expression for h̃(f). Instead, I will first find the full expression

of h̃(f) and then read off the ppE parameters. The results are

cppE =
224

3
,

bppE = −7,

βppE =
1

2
φ1 = − 3

448
κ−1

3 η2/5εx,

α+ =

√
5π

8
√

6
G2
Ne

i2ϕ
(
κ
−1/2
3 − 1

)
g+,
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α× = −i
√

5π

8
√

6
G2
Ne

i2ϕ
(
κ
−1/2
3 − 1

)
g×,

αb =

√
5π

8
√

6
κ
−1/2
3 G2

Ne
i2ϕgb1,

αL =

√
5π

8
√

6
κ
−1/2
3 G2

Ne
i2ϕgL1,

αX =

√
5π

8
√

6
κ
−1/2
3 G2

Ne
i2ϕgX1,

αY = −i
√

5π

8
√

6
κ
−1/2
3 G2

Ne
i2ϕgY 1,

γb = −i
√

5π

8
√

3
κ
−1/2
3 η−1/5G2

Ne
iϕ(gb2 + gb4),

γL = −i
√

5π

8
√

3
κ
−1/2
3 η−1/5G2

Ne
iϕ(gL2 + gL4),

γX1 = −i
√

5π

8
√

3
κ
−1/2
3 η−1/5G2

Ne
iϕ(gX2 + gX4),

γX2 = −i
√

5π

8
√

3
κ
−1/2
3 η−1/5G2

Ne
iϕgX3,

γY 1 =

√
5π

8
√

3
κ
−1/2
3 η−1/5G2

Ne
iϕ(gY 2 + gY 4),

γY 2 = −i
√

5π

8
√

3
κ
−1/2
3 η−1/5G2

Ne
iϕgY 3, (2.102)

where {g+, g×, gb1,2,4, gL1,2,4, gX1,2,3,4, gY 1,2,3,4} are functions given in Appendix D.

Note that gb2,4, gL2,4, gX2,3,4 and gY 2,3,4 ∝ η1/5. In other words, the η terms in αN

and γN (or γNl) actually have the same power, namely, 0. Also note that g+ and g×

are actually simply -2 and 4 respectively. One may notice that gN ’s are not defined

in the most economic manner. As briefly reviewed in Appendix D, this is a historical

problem with our notation system. Another thing is that cppE, which corresponds to

the ratio between the amplitude and phase ppE corrections, agrees with that given

in [70,160].
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Additionally, due to the degeneracy of breathing and longitudinal modes, in

Eq. (2.95) we can put these terms together by introducing the quantities,

αS ≡ αb(1− abL), (2.103)

where Eqs. (D.2), (2.102) and (2.78) had been used and abL is given by (B.5).

2.6.2 Fully Restricted ppE Approximation

Now, we move to the regime of the fully restricted ppE approximation by

mainly following [58]. We generalize [58,70] to allow for different propagation speeds

of scalar, vector and tensor modes. This time, Eq. (2.80) is written in the form of

h̃(f) =
∑

N=S,V,T

∞∑
l=1

A
(l,N)
ppE (f)eiΨ

(l,N)
ppE (f), (2.104)

where

A
(l,N)
ppE (f) = A

(l)
GR(f)

[
1 + U ā

(l)
ppE

l

∞∑
k=0

ᾱ
(l,N)
ppE,k(Ul)

k

]
, (2.105)

Ψ
(l,N)
ppE (f) = Ψ

(l)
GR(f) + U b̄

(l)
ppE

l

∞∑
k=0

β̄
(l)
ppE,k(Ul)

k − 2πfR
(
1− c−1

N

)
. (2.106)

Here l stands for the l-th harmonics and quantities with a GR subscript referring

to expressions in the GR limits as in Sec.2.6.1. We also note that ᾱ
(l,N)
ppE,0 6= 0 and

β̄
(l)
ppE,0 6= 0, which means that the terms proportional to U ā

(l)
ppE

l and U b̄
(l)
ppE

l correspond

to the term that enters at leading (lowest) PN order. We can choose cT = 1 since

this effect has been absorbed by the redefinition of the coalescence time. Notice that

when cS = cV = cT = 1, the phase is common to all of the scalar, vector and tensor

modes, and the above formulation agrees with that in [70].

The restricted ppE waveform consists of amplitude corrections truncated to the

leading PN order (which corresponds to −1 PN in our case) while phase corrections
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are kept to higher PN orders. In this subsection, we consider the fully restricted ppE

waveform, in which we only consider the dominant l = 2 harmonic mode. Then, the

above expressions can be reduced to

h̃(f) '
∑

N=S,V,T

A
(2,N)
ppE (f)eiΨ

(2,N)
ppE (f), (2.107)

with

A
(2,N)
ppE (f) = A

(2)
GR(f)

[
1 + U ā

(2)
ppE

2 ᾱ
(2,N)
ppE,0

]
, (2.108)

Ψ
(2,N)
ppE (f) = Ψ

(2)
GR(f) + U b̄

(2)
ppE

2

∞∑
k=0

β̄
(2)
ppE,k(U2)k − 2πfR(1− c−1

N ). (2.109)

Here Ψ
(2)
GR is given by Eq. (2.97) while A

(2)
GR is given by

A
(2)
GR = −

√
5π

96

M2

R
(GNπMf)−7/6G2

N

[
F+

(
1 + cos2 ϑ

)
+ i2F× cosϑ

]
. (2.110)

Let us now determine the ppE parameters in æ-theory. Rewriting the wave-

form in Eq. (2.83) for the l=2 terms in a form given by Eq. (2.107), the ppE phase

parameters can be extracted as

b̄
(2)
ppE = −7,

β̄
(2)
ppE,0 = φ1 = − 3

224
κ−1

3 η2/5εx,

β̄
(2)
ppE,1 = 0,

β̄
(2)
ppE,2 = − 3

128

[
−2

3
(s1 + s2)− 1

2
c14 + (κ3 − 1)

]
. (2.111)

Notice that β̄
(2)
ppE,0 is different from β

(2)
ppE in Eq. (2.102) by a factor of 2 due to a

prefactor 2 in front of β
(2)
ppE in Eq. (2.95). When deriving β̄

(2)
ppE,2, we kept O(s1, s2, c14)

contribution in Eq. (2.98) for consistency. Next, the ppE amplitude parameters are
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extracted as

ā
(2)
ppE = −2,

ᾱ
(2,T )
ppE,0 = −1

2
κ
−1/2
3 η2/5εx,

ᾱ
(2,S)
ppE,0 = ᾱ

(2,T )
ppE,0

gb1Fb sin2 ϑ+ gL1FL sin2 ϑ

g+F+

(
1 + cos2 ϑ

)
− ig×F× cosϑ

= ᾱ
(2,T )
ppE,0

gb1Fb sin2 ϑ(1− abL)

g+F+

(
1 + cos2 ϑ

)
− ig×F× cosϑ

,

ᾱ
(2,V )
ppE,0 = ᾱ

(2,T )
ppE,0

gX1FX sin(2ϑ)− igY 1FY sinϑ

g+F+

(
1 + cos2 ϑ

)
− ig×F× cosϑ

. (2.112)

The above FN and ϑ dependence in the ppE amplitude parameters for the scalar and

vector modes seem to be a generic feature, as predicted in [70]. We note that even

if the denominator g+F+

(
1 + cos2 ϑ

)
− ig×F× cosϑ in ᾱ

(2,S)
ppE,0 and ᾱ

(2,V )
ppE,0 becomes 0,

the scalar and vector mode corrections to the waveform amplitude do not diverge

since the ppE parameters are multiplied by A
(2)
GR, which contains the same factor that

cancels the denominator of ᾱ
(2,S)
ppE,0 and ᾱ

(2,V )
ppE,0.

Let us now compare the results presented here against those in [58,160]. First,

b̄
(2)
ppE agrees with that in [58, 160], while ā

(2)
ppE agrees with that in [160], which cor-

rected [58]. Second, in [58], the aether field is assumed to be aligned with the CMB

frame and V ∼ 10−3, which is much slower than the relative velocity of the binary con-

stituents before coalescence. In this case, the dominant contribution in εx in Eq. (2.69)

arises from the term proportional to C. Moreover, the denominator A1 +SA2 +S2A3

originates from factoring out the 0PN contribution in ω̇s in Eq. (2.67). If we ne-

glect the Einstein-aether correction at 0PN order, this factor can be simply set to

the GR value of 1 (and one can take the similar limit in κ3). Then, the leading ppE

phase β̄
(2)
ppE,0 in Eq. (2.111) agrees with that in [58, 160] within the approximation in

Eq. (2.98). Similarly, ᾱ
(2)
ppE,0 reduces to the leading ppE amplitude correction in [160]
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under the small coupling approximation. On the other hand, β̄
(2)
ppE,2 in Eq. (2.111)

corrects that in [58].

2.7 Summary

In this chapter, we studied the waveforms and polarizations of GWs emitted by

a binary system in Einstein-æther theory, which contains four dimensionless coupling

parameters ci’s. We focused on the inspiral phase, adopted the PN approximations

and assumed that the Einstein-aether coupling constants are small. In æ-theory,

all the six polarization modes of GWs, referred to as hN(N = +,×, b, L,X, Y ), are

present, although only five of them are independent, as the breathing and longitudinal

modes (hb and hL) are proportional to each other. In the GR limit of ci → 0 (i =

1, 2, 3, 4), only the “+” and “×” modes remain and they reduce to those of GR as

expected.

Gravitational waveforms and GW polarizations emitted by a binary system in

the inspiral phase in æ-theory were already studied in [58]. In the current dissertation,

I have first re-derived these formulas, and corrected some typos, by keeping all the

terms to O(v2). In particular, I have shown explicitly that the non-relativistic GW

modes hb,L,X,Y contain not only the first harmonic terms of the orbital phase, as

shown in [58], but also the second harmonic ones when one includes higher PN order

terms.

Note also that in deriving the expressions of the GW polarization modes hN ’s

[cf. (2.55)-(2.60)], we have not assumed that COM of the binary system is always

comoving with the aether field. In fact, in cosmology the aether field is normally

assumed to be comoving with CMB [27]. As a result, individual compact objects
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in the universe, such as galaxies and massive stars, are in general expected to have

peculiar velocities with respect to the CMB. A typical velocity of compact objects in

our own galaxy in this frame is about V 2 ' 10−6, for which Foster had shown that

the PN approximations adopted here are valid [32].

Using the SPA method [70,96,134], I have also calculated the response function

and its Fourier transform for both ground- and space-based GW detectors. We then

generalized the ppE framework to allow for different propagation speeds among scalar,

vector and tensor modes. The ppE parameters within this new framework is given by

Eqs. (2.102), (2.111) and (2.112), which depend on all six polarization modes. The

leading ppE phase correction at −1PN order agrees with that in [58, 160] under the

small coupling approximation and within the CMB frame. Similarly, the leading ppE

amplitude correction agrees with that in [160] under the same approximation. On the

other hand, the next-to-leading ppE correction in the phase at 0PN order corrects

the corresponding expression in [58].

Additionally, it should be mentioned here that some typos and minor mistakes

were found in reviewing the original treatise [68] (Some of them have already been

pointed out explicitly in the previous article.). To a certain degree, it is sound to

have them since the derivations and calculations within this chapter are extremely

tedious. Fortunately, most of the flaws have quite limited influence on the results and

the framework of [68] is concrete. Even though, it is worth suspecting and repeating

some parts of [68] in the future to remove all the harmful flaws. Hopefully, this future

task could improve the reliability of our results.
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CHAPTER THREE

Spherically Symmetric Static Black Holes in Einstein-Aether Theory

This chapter is published in [95]: C. Zhang, X. Zhao, K. Lin, S.-J. Zhang, W. Zhao
and A.-Z. Wang, Spherically symmetric static black holes in Einstein-aether theory,

Phys. Rev. D102, 064043 (2020).

In this chapter, we systematically study spherically symmetric static space-

times in the framework of Einstein-aether theory, and pay particular attention to

the existence of black holes. As has been mentioned, in this theory two additional

gravitational modes (one scalar and one vector) appear. To avoid the vacuum gravi-

Čerenkov radiation, they must all propagate with speeds greater than or at least

equal to the speed of light. However, in the spherical case, only the scalar mode

is relevant, so BH horizons are defined by this mode, which are always inside or at

most coincide with the metric (Killing) horizons. In the present studies I first clarify

several subtle issues. In particular, we will find that, out of the five non-trivial field

equations, only three are independent, so the problem is well-posed, as now generi-

cally there are only three unknown functions, F (r), B(r), A(r), where F and B are

metric coefficients, and A describes the aether field. In addition, the two nonlin-

ear homogeneous second-order ordinary differential equations (ODEs) for A and F

are independent of B, and once they are found, B is given simply by an algebraic

expression of F, A and their derivatives. To simplify the problem further, we will

explore the symmetry of field redefinitions, and work first with the redefined metric

and aether field, and then obtain the physical ones by the inverse transformations.

These clarifications significantly simplify the computational labor, which is pivotal,
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as the problem is highly involved mathematically. In fact, it is exactly because of

these, we can find various numerical BH solutions with an accuracy that is at least

two orders higher than previous ones. More importantly, these BH solutions are the

only ones that satisfy the self-consistent conditions and meantime are consistent with

all the observational constraints obtained so far. The locations of universal horizons

are also identified, together with several other observationally interesting quantities,

such as the innermost stable circular orbits (ISCO), the ISCO frequency, and the

maximum redshift zmax of a photon emitted by a source orbiting the ISCO. All of

these quantities are found to be quite close to their relativistic limits.

3.1 Introduction

We have seen the detection of the first GW from the coalescence of two mas-

sive BHs by the advanced LIGO marked the beginning of a new era, the GW astron-

omy [14]. Following this observation, soon more than ten GWs were detected by the

LIGO/Virgo scientific collaboration [16, 161, 162]. More recently, about 50 GW can-

didates have been identified after LIGO/Virgo resumed operations on April 1, 2019,

possibly including the coalescence of a neutron star (NS)/BH binary. However, the

details of these detections have not yet been released [101]. The outbreak of interest

on GWs and BHs has further gained momentum after the detection of the shadow of

the M87 BH [163–168].

One of the remarkable observational results is the discovery that the mass of

an individual BH in these binary systems can be much larger than what was pre-

viously expected, both theoretically and observationally [103–105], leading to the

proposal and refinement of various formation scenarios [106, 107]. A consequence of
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this discovery is that the early inspiral phase may also be detectable by space-based

observatories, such as as the Laser Interferometer Space Antenna (LISA) [169], Tian-

Qin [170,171], Taiji [172,173], and the Deci-Hertz Interferometer Gravitational wave

Observatory (DECIGO) [174], for several years prior to their coalescence [108, 109].

Such space-based detectors may be able to see many such systems, which will result

in a variety of profound scientific consequences. In particular, multiple observations

with different detectors at different frequencies of signals from the same source can

provide excellent opportunities to study the evolution of the binary in detail. Since

different detectors observe at disjoint frequency bands, together they cover different

evolutionary stages of the same binary system. Each stage of the evolution carries

information about different physical aspects of the source.

As a result, multi-band GW detections will provide an unprecedented oppor-

tunity to test different theories of gravity in the strong field regime [123–128]. Massive

systems will be observed by ground-based detectors with high signal-to-noise ratios,

after being tracked for years by space-based detectors in their inspiral phase. The

two portions of signals can be combined to make precise tests for different theories of

gravity. In particular, joint observations of binary black holes (BBHs) with a total

mass larger than about 60 solar masses by LIGO/Virgo and space-based detectors

can potentially improve current bounds on dipole emission from BBHs by more than

six orders of magnitude [123], which will impose severe constraints on various theories

of gravity [129].
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In recent works, some authors, including myself, generalized the post-Newtonian

(PN) formalism to certain modified theories of gravity and applied it to the quasi-

circular inspiral of compact binaries. In particular, we calculated in detail the wave-

forms, GW polarizations, response functions and energy losses due to gravitational ra-

diation in Brans-Dicke (BD) theory [64], and screened modified gravity (SMG) [96–98]

to the leading PN order, with which we then considered projected constraints from

the third-generation detectors. Such studies have been further generalized to triple

systems in æ-theory [62, 63]. When applying such formulas to the first relativistic

triple system discovered in 2014 [132], we studied the radiation power, and found

that quadrupole emission has almost the same amplitude as that in GR, but the

dipole emission can be as large as the quadrupole emission. This can provide a

promising window to place severe constraints on æ-theory with multi-band GW ob-

servations [123,126]. More details could be found in previous chapters and the corre-

sponding references.

More recently, we revisited the problem of a binary system of non-spinning

bodies in a quasi-circular inspiral within the framework of æ-theory [32,41,42,57,58,67],

and provided the explicit expressions for the time-domain and frequency-domain

waveforms, GW polarizations, and response functions for both ground- and space-

based detectors in the PN approximation [95]. In particular, we found that, when

going beyond the leading order in the PN approximation, the non-Einsteinian polar-

ization modes contain terms that depend on both the first and second harmonics of

the orbital phase. With this in mind, we calculated analytically the corresponding

parameterized post-Einsteinian parameters, generalizing the existing framework to
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allow for different propagation speeds among scalar, vector and tensor modes, with-

out assuming the magnitude of its coupling parameters, and meanwhile allowing the

binary system to have relative motions with respect to the aether field. Such results

will particularly allow for the easy construction of Einstein-aether templates that

could be used in Bayesian tests of GR in the future. This is just the work shown in

Chapter Two.

In this chapter, we shall continue to work on GWs and BHs in the framework

of æ-theory, but move to the ringdown phase, which consists of the relaxation of the

highly perturbed, newly formed merger remnant to its equilibrium state through the

shedding of any perturbations in GWs as well as in matter waves. Such a remnant

will typically be a Kerr BH, provided that the binary system is massive enough and

GR provides the correct description. This phase can be well described as a sum of

damped exponentials with unique frequencies and damping times - the quasi-normal

modes (QNMs) [66].

The information contained in QNMs provide the keys in revealing whether

BHs are ubiquitous in our universe, and more important whether GR is the correct

theory to describe the event even in the strong field regime. In fact, in GR accord-

ing to the no-hair theorem [175–182], an isolated and stationary BH is completely

characterized by only three quantities, mass, spin angular momentum and electric

charge. Astrophysically, we expect BHs to be neutral, so it must be described by the

Kerr solution [9]. Then, the quasi-normal frequencies and damping times will depend

only on the mass and angular momentum of the final BH. Therefore, to extract the

physics from the ringdown phase, at least two QNMs are needed. This will require

the signal-to-noise ratio (SNR) to be of the order 100 [183]. Although such high SNRs
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are not achievable right now, it was shown that [184] they may be achievable once the

advanced LIGO and Virgo reach their design sensitivities. In any case, it is certain

that they will be detected by the ground-based third-generation detectors, such as

Cosmic Explorer [185,186] or the Einstein Telescope [187], as well as the space-based

detectors, including LISA [169], TianQin [170], Taiji [172], and DECIGO [174], as

just mentioned above.

In the framework of æ-theory, BHs with rotations have not been found yet,

while spherically symmetric BHs have been extensively studied in the past couple of

years both analytically [33, 75–85] and numerically [86–92]. It was shown that they

can also be formed from gravitational collapse [93]. Unfortunately, in these studies,

the parameter space has all been ruled out by current observations [60]. Therefore, as

a first step to the study of the ringdown phase of a coalescing massive binary system,

in this chapter we shall focus ourselves mainly on spherically symmetric static BHs

in the parameter space that satisfies the self-consistent conditions and the current

observations [60]. As shown explicitly in [94], spherically symmetric BHs in the new

physically viable phase space can be still formed from the gravitational collapse of

realistic matter.

It should be noted that the definition of BHs in æ-theory is different from

that given in GR. As has been mentioned, in æ-theory there are three gravitational

modes, the scalar, vector and tensor, which will be referred to as the spin-0, spin-1

and spin-2 gravitons, respectively. Each of them moves in principle with a different

speed, given, respectively, by Eq. (1.7). What’s more, in order to avoid the existence

of the vacuum gravi-Čerenkov radiation by matter such as cosmic rays [38], we must
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require

cS, cV , cT ≥ c, (3.1)

where c denotes the speed of light. Therefore, as far as the gravitational sector is

concerned, the horizon of a BH should be defined by the largest speed of the three

different species of gravitons. However, in the spherically symmetric spacetimes, the

spin-1 and spin-2 gravitons are not excited, and only the spin-0 graviton is relevant.

Thus, the BH horizons in spherically symmetric spacetimes are defined by the met-

ric [27],

g(S)
µν ≡ gµν −

(
c2
S − 1

)
uµuν , (3.2)

where S in the indices represents a certain mode. Recall that uµ denotes the four-

velocity of the aether field, which is always timelike and unity, uµu
µ = −1.

Because of the presence of the æ-field in the whole spacetime, it uniquely

determines a preferred direction at each point of the spacetime. As a result, the

Lorentz symmetry is locally violated in æ-theory [188,189] 1. It must be emphasized

that the breaking of Lorentz symmetry can have significant effects on the low-energy

physics through the interactions between gravity and matter, no matter how high the

scale of symmetry breaking is [198], unless supersymmetry is invoked [199]. In this

1 It should be noted that the invariance under the Lorentz symmetry group is a cornerstone
of modern physics and strongly supported by experiments and observations [190]. Nevertheless,
there are various reasons to construct gravitational theories with broken Lorentz invariance (LI). For
example, if space and/or time at the Planck scale are/is discrete, as currently understood [191,192],
Lorentz symmetry is absent at short distance/time scales and must be an emergent low energy
symmetry. A concrete example of gravitational theories with broken LI is the Hořava theory of
quantum gravity [193, 194], in which the LI is broken via the anisotropic scaling between time and
space in the ultraviolet (UV), t→ b−zt, xi → b−1xi, (i = 1, 2, ..., d), where z denotes the dynamical
critical exponent, and d the spatial dimensions. Power-counting renormalizability [195,196] requires
z ≥ d at short distances, while LI demands z = 1. Of course, the usages of b, d and z in this footnote
won’t be extended to other parts of this dissertation. For more details about Hořava gravity, see,
for example, the review article [197], and references therein.
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chapter, we shall not be concerned with this question. First, we consider æ-theory

as a low-energy effective theory, and second the constraints on the breaking of the

Lorentz symmetry in the gravitational sector is much weaker than that in the matter

sector [188,189]. So, to avoid this problem, in this chapter we simply assume that the

matter sector still satisfies the Lorentz symmetry. Then, all the particles from the

matter sector will travel with speeds less or equal to the speed of light. Therefore, for

these particles, the Killing (or metric) horizons still serve as the boundaries. Once

inside them, they will be trapped inside the metric horizons (MHs) forever, and never

be able to escape to spatial infinities.

With the above in mind, in this chapter we shall carry out a systematical study

of spherically symmetric spacetimes in æ-theory, clarify several subtle points, and

then present numerically new BH solutions that satisfy all the current observational

constraints [60]. In particular, we shall show that, among the five non-trivial field

equations (three evolution equations and two constraints), only three of them are

independent. As a result, the system is well defined, since in the current case there

are only three unknown functions: two describe the spacetime, denoted by F (r) and

B(r) in Eq. (3.35), and one describes the aether field, denoted by A(r) in Eq. (3.36).

An important result, born out of the above observations, is that the three

independent equations can be divided into two groups, which decouple one from the

other, that is, the equations for the two functions A(r) and F (r) [cf. Eqs. (3.39)

and (3.40)] are independent of the function B(r). Therefore, to solve these three field

equations, one can first solve Eqs. (3.39) and (3.40) for A(r) and F (r). Once they are

found, one can obtain B(r) from the third equation. It is even more remarkable, if the

third equation is chosen to be the constraint Cv = 0 , given by Eq. (3.44), from which
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one finds that B(r) is then directly given by the algebraic equation (3.45) without the

need of any further integration. Considering the fact that the field equations are in

general highly involved mathematically, as it can be seen from Eqs. (3.39)-(3.44) and

Eqs. (E.1)-(E.4), this is important, as it shall significantly simplify the computational

labor, when we try to solve these field equations.

Another important step of solving the field equations is Foster’s discovery of

the symmetry of the action, the so-called field redefinitions [200]: the action remains

invariant under the replacements,

(gµν , u
µ, ci)→ (ĝµν , û

µ, ĉi) , (3.3)

where ĝµν , û
µ and ĉi are given by Eqs. (3.11) and (3.12) through the introduction of

a free parameter σ. Taking the advantage of the arbitrariness of σ, we can choose it

as σ = c2
S, where c2

S is given by Eq. (1.7). Then, the spin-0 and metric horizons for

the metric ĝµν coincide [86, 88, 90]. Thus, instead of solving the field equations for

(gµν , u
µ), we first solve the ones for (ĝµν , û

µ), as in the latter the corresponding initial

value problem can be easily imposed at horizons. Once (ĝµν , û
µ) is found, using the

inverse transformations, we can easily obtain (gµν , u
µ), as well be seen later.

With the above observations, we are able to solve numerically the field equa-

tions with very high accuracy, as to be shown below [cf. Table 3.1]. In fact, the

accuracy is significantly improved and in general at least two orders higher than that

of the previous works.

In theories with breaking Lorentz symmetry, another important quantity is

the universal horizon (UH) [89, 90], which is the causal boundary even for particles

with infinitely large speeds. The thermodynamics of UHs and relevant physics have
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been extensively studied (see, for example, Section III of the review article [197], and

references therein). In particular, it was shown that such horizons can be formed

from gravitational collapse of a massless scalar field [94]. In this chapter, we shall

also identify the locations of the UHs of our numerical new BH solutions.

The rest of this chapter is organized as follows: Sec.3.2 provides a brief review

to æ-theory (more details have been shown in Chapter One), in which the introduction

of the field redefinitions and the definition of the spin-0 horizons (S0Hs) are given.

In Sec.3.3, we systematically study spherically symmetric static spacetimes,

and show explicitly that among the five non-trivial field equations, only three of

them are independent, so the corresponding problem is well defined: three indepen-

dent equations for three unknown functions. Then, from these three independent

equations we are able to obtain a three-parameter family of exact solutions for the

special case c13 = c14 = 0, which depends in general on the coupling constant c2.

However, requiring that the solutions be asymptotically flat makes the solutions in-

dependent of c2, and the metric reduces precisely to the Schwarzschild BH solution

with a non-trivially coupling aether field [cf. Eq. (3.68)], which is timelike over the

whole spacetime, including the region inside the BH. To further simplify the prob-

lem, in this section we also explore the advantage of the field redefinitions [200]. In

particular, we show step by step how to choose the initial values of the differential

equations Eqs. (3.97) and (3.98) on S0Hs, and how to reduce the phase space from

four dimensions, spanned by (F̃H , F̃
′
H , ÃH , Ã

′
H), to one dimension, spanned only

by ÃH . So, finally the problem reduces to finding the values of ÃH that lead to

asymptotically flat solutions of the form (3.113) [86,90].
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In Sec.3.4, we spell out in detail the steps to carry out our numerical analysis.

In particular, as to be shown explicitly, Eq. (3.99) is not independent from other three

differential equations. Taking this advantage, we treat it as a conservative quantity

and use it to monitor our numerical errors [cf. Eq. (3.123)]. To check our numerical

code further, we reproduce the BH solutions obtained in [86,90], but with an accuracy

two orders higher than those obtained in [90] [cf. Table 3.1]. Unfortunately, all these

BH solutions have been ruled out by the current observations [60]. So, in this section, I

fruther consider cases that satisfy all the observational constraints and obtain various

new static BH solutions.

Then, in Sec.3.5, I present the physical metric and æ-field for these viable

new BH solutions, by using the inverse transformations from the effective fields to

the physical ones. In this section, I also show explicitly that the physical fields, gµν

and uµ, are also asymptotically flat, provided that the effective fields g̃µν and ũµ

are, which are related to ĝµν and ûµ via the coordinate transformations given by Eq.

(3.76). Then, I calculate explicitly the locations of the metric, spin-0 and universal

horizons, as well as the locations of the innermost stable circular orbits (ISCO), the

Lorentz gamma factor, the gravitational radius, the orbital frequency of the ISCO,

the maximum redshift of a photon emitted by a source orbiting the ISCO (measured

at the infinity), the radii of the circular photon orbit, and the impact parameter of the

circular photon orbit. All of them are given in Tables 3.4-3.5. In Table 3.6 I also show

the differences of these quantities obtained in æ-theory and GR. From these results,

we will find that the differences are very small, and it is very hard to distinguish GR

and æ-theory through these quantities, as far as the cases considered in this thesis

are concerned.
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Finally, in Sec.3.6 I summarize our main results and present some concluding

remarks. There is also an appendix (App. E), in which the coefficients of the field

equations for both (gµν , u
µ) and (g̃µν , ũ

µ) are given.

3.2 Æ-theory

The fundamental variables of the gravitational sector are shown in Eq. (1.1) [23].

Again, we are using the signature (−,+,+,+) [41,93]. Note that here we assume that

matter fields couple not only to gµν but also to the aether field uµ. Then, the varia-

tions of the total action [cf. Eq. (1.2)] with respect to the three variables gµν , u
µ and

λ yield the the field equations in (2.5) and (2.6).

It is easy to show that the Minkowski spacetime is a solution of æ-theory,

in which the aether is aligned along the time direction, ūµ = δ0
µ. Then, the linear

perturbations around the Minkowski background show that the theory in general

possess three types of excitations, scalar (spin-0), vector (spin-1) and tensor (spin-2)

modes [37], with their squared speeds given by Eq. (1.7).

In addition, among the ten parameterized post-Newtonian (PPN) parame-

ters [6, 25], in æ-theory the only two parameters that deviate from GR are α1 and

α2 [cf. Eq. (1.8)], which measure the preferred frame effects. In the weak-field

regime, using lunar laser ranging and solar alignment with the ecliptic, Solar System

observations constrain these parameters to very small values [25],

|α1| ≤ 10−4, |α2| ≤ 10−7. (3.4)

Recently, the combination of the GW event GW170817 [201], observed by the

LIGO/Virgo collaboration, and the event of the gamma-ray burst GRB 170817A [202]

provides a remarkably stringent constraint on the speed of the spin-2 mode, −3 ×
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10−15 < cT − 1 < 7× 10−16, which, together with Eq. (1.7), implies that

|c13| < 10−15. (3.5)

Requiring that the theory: (a) is self-consistent, such as free of ghosts and

instability; and (b) satisfies all the observational constraints obtained so far, it was

found that the parameter space of the theory is considerably restricted [60]. In par-

ticular, c14 and c2 are restricted to

0 . c14 . 2.5× 10−5, (3.6)

0 . c14 . c2 . 0.095. (3.7)

The constraints on other parameters depend on the values of c14. The phase

space could be divided into three intervals: (i) 0 . c14 ≤ 2×10−7; (ii) 2×10−7 < c14 .

2× 10−6; and (iii) 2× 10−6 . c14 . 2.5× 10−5 according to c14. In the intermediate

regime (ii), the following constraints must be satisfied,

−10−7 ≤ c14 (c14 + 2c2c14 − c2)

c2 (2− c14)
≤ 10−7. (3.8)

Note that in writing Eq. (3.8), I had set c13 = 0, for which the errors are of the

order O (c13) ' 10−15, which can be safely neglected for the current and forthcoming

experiments. The results in this intermediate interval of c14 were shown explicitly by

Fig. 1.1. Note that in this figure, the physically valid region is restricted only to the

half plane c14 ≥ 0, as shown by Eq. (3.6). More details about the constraints could

be found in Eqs. (1.9) and (1.10) as well as in [60].

Since the theory possesses three different modes, and all of them are moving

with different speeds, in general these different modes define different horizons [27].
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These horizons are the null surfaces of the effective metrics,

g
(A)
αβ ≡ gαβ −

(
c2
A − 1

)
uαuβ, (3.9)

where A = S, V, T . If a BH is defined to be a region that traps all possible causal

influences, it must be bounded by a horizon corresponding to the fastest speed. As-

suming that the matter sector always satisfies the Lorentz symmetry, we can see that

in the matter sector the fastest speed will be the speed of light. Then, overall, the

fastest speed must be one of the three gravitational modes.

However, in the spherically symmetric case, the spin-1 and spin-2 modes are

not excited, so only the spin-0 gravitons are relevant. Therefore, in the present chapter

the relevant horizons for the gravitational sector are the S0Hs 2. In order to avoid the

existence of the vacuum gravi-Čerenkov radiation by matter such as cosmic rays [38],

we assume that cS ≥ 1, so that S0Hs are always inside or at most coincide with the

metric horizons, the null surfaces defined by the metric gαβ. The equality happens

only when cS = 1.

3.2.1 Field Redefinitions

Due to the specific symmetry of the theory, Foster found that the action

Sæ (gαβ, u
α, ci) given by Eqs. (1.3)-(1.5) does not change under the following field

redefinitions [200],

(gαβ, u
α, ci)→ (ĝαβ, û

α, ĉi) , (3.10)

2 If we consider Hořava gravity [193] as the UV complete theory of the hypersurface-
orthogonal æ-theory (the khronometric theory) [203–206], even in the gravitational sector, the rele-
vant boundaries will be the UHs, once such a UV complete theory is taken into account [197].
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where

ĝαβ = gαβ − (σ − 1)uαuβ, ûα =
1√
σ
uα,

ĝαβ = gαβ − (σ−1 − 1)uαuβ, ûα =
√
σuα, (3.11)

and

ĉ1 =
σ

2

[(
1 + σ−2

)
c1 +

(
1− σ−2

)
c3 −

(
1− σ−1

)2
]
,

ĉ2 = σ
(
c2 + 1− σ−1

)
,

ĉ3 =
σ

2

[(
1− σ−2

)
c1 +

(
1 + σ−2

)
c3 −

(
1− σ−2

)]
,

ĉ4 = c4 −
σ

2

[(
1− 1

σ

)2

c1 +

(
1− 1

σ2

)
c3 −

(
1− 1

σ

)2
]
, (3.12)

with σ being a positive otherwise arbitrary constant. Then, the following useful

relations between ci and ĉi hold,

ĉ2 = σ(c2 + 1)− 1, ĉ14 = c14, ĉ13 = σ(c13 − 1) + 1,

ĉ123 = σc123, ĉ− = σ−1(c− + σ − 1). (3.13)

Note that ĝαβ ĝβγ = δαγ and ûα ≡ ĝαβû
β. Then, from Eq. (3.11), we find that

ĝαβû
αûβ = −1, ĝ = σg, (3.14)

where ĝ is the determinant of ĝαβ. Thus, replacing Gæ and Lλ by Ĝæ and L̂λ in Eq.

(1.3), where

Ĝæ ≡
√
σGæ, L̂λ ≡ λ

(
ĝαβû

αûβ + 1
)
, (3.15)

we find that

Sæ (gαβ, u
α, ci, Gæ, λ) = Ŝæ

(
ĝαβ, û

α, ĉi, Ĝæ, λ
)
. (3.16)

74



As a result, when the matter field is absent, that is, Lm = 0, the Einstein-aether

vacuum field equations take the same forms for the fields (ĝαβ, û
α, ĉi, λ),

R̂µν − 1

2
ĝµνR̂ = Ŝµν , (3.17)

Æ̂µ = 0, (3.18)

ĝαβû
αûβ = −1, (3.19)

where R̂µν and R̂ are the Ricci tensor and scalar made of ĝαβ. Ŝµν and Æ̂µ are given

by Eq. (2.7) simply by replacing (gµν , u
µ, ci) by (ĝµν , û

µ, ĉi).

Therefore, for any given vacuum solution of the Einstein-aether field equations

(gµν , u
µ, ci, λ), using the above field redefinitions, we can obtain a class of the vacuum

solutions of the Einstein-aether field equations, given by (ĝµν , û
µ, ĉi, λ) 3. Certainly,

such obtained solutions may not always satisfy the physical and observational con-

straints found so far [60].

In this chapter, we shall take advantage of such field redefinitions to simplify

the corresponding mathematical problems by assuming that the fields described by

(gµν , u
µ, ci, λ) are the physical ones, while the ones described by (ĝµν , û

µ, ĉi, λ) as the

“effective” ones, although both of the two metrics are the vacuum solutions of the

Einstein-aether field equations, and can be physical, provided that the constraints

recently given in [60] are satisfied.

The gravitational sector described by (ĝµν , û
µ, ĉi, λ) has also three different

propagation modes, with their speeds ĉA given by Eq. (1.7) with the replacement

ci by ĉi. Each of these modes defines a horizon, which is now a null surface of the

3 It should be noted that this holds in general only for the vacuum case. In particular, when
matter present, the aether field will be directly coupled with matter through the metric redefinitions.
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metric,

ĝ
(A)
αβ ≡ ĝαβ −

(
ĉ2
A − 1

)
ûαûβ, (3.20)

where A = S, V, T . It is interesting to note that

ĉ2
A =

c2
A

σ
. (3.21)

Thus, choosing σ = c2
S, we have ĉS = 1, and from Eq. (3.20) we find that

ĝ
(S)
αβ = ĝαβ,

(
σ = c2

S

)
, (3.22)

that is, the S0H of the metric ĝαβ coincides with its MH. Moreover, from Eqs. (3.9)

and (3.11) we also find that

g
(S)
αβ = ĝαβ,

(
σ = c2

S

)
. (3.23)

Therefore, with the choice σ = c2
S, the MH of ĝαβ is also the S0H of the metric gαβ.

3.2.2 Hypersurface-Orthogonal Aether Fields

When the aether field uµ is hypersurface-orthogonal (HO), the Einstein-aether

field equations depend only on three combinations of the four coupling constants

ci’s. To see this clearly, let us first notice that, if the aether is HO, the twist ωµ

vanishes [27], where ωµ is defined as ωµ ≡ εµναβuνDαuβ. Since

ωµω
µ = (Dµuν) (Dνuµ)− (Dµuν) (Dµuν)− (uµDµuα) (uνDνu

α) , (3.24)

we can see that the addition of the term

∆Læ ≡ c0ωµω
µ, (3.25)

to Læ will not change the action, where c0 is an arbitrary real constant. However,

this is equivalent to replacing ci by c̄i in Læ, where

c̄1 ≡ c1 + c0, c̄2 ≡ c2, c̄3 ≡ c3 − c0, c̄4 ≡ c4 − c0. (3.26)
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Thus, by properly choosing c0, we can always eliminate one of the three parame-

ters, c1, c3 and c4, or one of their combinations. Therefore, in this case only three

combinations of ci’s appear in the field equations. Since

c̄13 = c13, c̄14 = c14, c̄2 = c2, (3.27)

without loss of the generality, we can always choose these three combinations as

c13, c14 and c2.

To understand the above further, and also see the physical meaning of these

combinations, following Jacobson [206], we first decompose Dβuα into the form,

Dβuα =
1

3
θhαβ + σαβ + ωαβ − aαuβ, (3.28)

where θ [which is different from the one in (2.78)] denotes the expansion of the aether

field, hαβ [which is different from the one in (2.12)] the spatial projection operator,

σαβ the shear, which is the symmetric trace-free part of the spatial projection of

Dβuα, while ωαβ denotes the antisymmetric part of the spatial projection of Dβuα,

defined, respectively, by

hαβ ≡ gαβ + uαuβ, θ ≡ Dλu
λ,

σαβ ≡ D(βuα) + a(αuβ) −
1

3
θhαβ, ωαβ ≡ D[βuα] + a[αuβ], (3.29)

with (A,B) ≡ (AB + BA)/2 and [A,B] ≡ (AB − BA)/2 for the subscripts [35].

Recall that aµ is the acceleration of the aether field, given by Eq. (2.8).

In terms of these quantities, Jacobson found∫
d4x
√
−gLæ =

∫
d4x
√
−g

[
R− 1

3
cθθ

2+caa
2 − cσσ2 − cωω2

]
, (3.30)

where

cθ ≡ c13 + 3c2, cσ ≡ c13, cω ≡ c1 − c3, ca ≡ c14, (3.31)
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and

σ2 = −1

3
θ2 + (Dµuν)(D

µuν) + a2. (3.32)

Note that in the above action, there are no crossing terms of {θ, σαβ, ωαβ, aα}.

This is because the four terms on the right-hand side of Eq. (3.28) are orthogonal to

each other, and when forming quadratic combinations of these quantities, only their

“squares” contribute [206].

From Eq. (3.31) we can see clearly that c14 is related to the acceleration of the

aether field, c13 to its shear, while its expansion is related to both c2 and c13. More

interesting, the coefficient of the twist is proportional to c−. When uµ is hypersurface-

orthogonal, we have ω2 = 0, so the last term in the above action vanishes identically,

and only the three free parameters cθ, cσ and ca remain.

It is also interesting to note that the twist vanishes if and only if the four-

velocity of the aether satisfies the conditions [207],

u[µDνuα] = 0. (3.33)

When the aether is HO, it can be shown that Eq. (3.33) is satisfied. In addition, in

the spherically symmetric case, Eq. (3.33) holds identically.

Moreover, it can be also shown [207] that Eq. (3.33) is the necessary and

sufficient condition to write the four-velocity uµ in terms the gradient of a timelike

scalar field φ [which has a different meaning comparing to the one in (2.13)],

uµ =
φ,µ√
−φ,αφ,α

. (3.34)
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Substituting it into the action (3.30), one obtains the action of the infrared limit of

the healthy extension [203,204] of the Hořava theory [193], which is often referred to

as the khronometric theory 4, where φ is called the khronon field.

It should be noted that the khronometric theory and the HO æ-theory are

equivalent only in the action level. In particular, in addition to the scalar mode, the

khronometric theory has also an instantaneous mode [89,208], a mode that propagates

with an infinitely large speed. This is mainly due to the fact that the field equations

of the khronometric theory are the four-order differential equations of φ. It is the

presence of those high-order terms that lead to the existence of the instantaneous

mode 5. On the other hand, in æ-theory, including the case with the HO symmetry,

the field equations are of the second order for both the metric gµν and the aether field

uµ. As a result, this instantaneous mode is absent. For more details, we refer readers

to [197] and references therein.

3.3 Spherically Symmetric Vacuum Spacetimes

3.3.1 Field Equations for gµν and uµ

As shown in the last section, to be consistent with observations, we must

assume cS ≥ 1. As a result, S0Hs must be inside MHs. Since now S0Hs define the

boundaries of spherically symmetric BHs, in order to cover spacetimes both inside and

outside the MHs, one way is to adopt the Eddington-Finkelstein (EF) coordinates,

ds2 ≡ gµνdx
µdxν = −F (r)dv2 + 2B(r)dvdr + r2dΩ2, (3.35)

4 In [205,206], it was also referred to as T-theory.

5 In the Degenerate Higher-Order Scalar-Tensor (DHOST) theories, this mode is also re-
ferred to as the “shadowy” mode [209].
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where dΩ2 ≡ dθ2 +sin2 θdφ2 and xµ = (v, r, θ, φ) [recall that in last chapter xµ always

refers to (t, x, y, z)], while the aether field takes the general form,

uα∂α = A(r)∂v −
1− F (r)A2(r)

2B(r)A(r)
∂r, (3.36)

which is respect to the spherical symmetry, and satisfies the constraint uαu
α =

−1. Obviously, the θ and φ apperaing here are just the polar and azimuthal an-

gles [26, 29, 142]. Therefore, in the current case, we have three unknown functions,

F (r), A(r) and B(r).

The vacuum field equations Eµν ≡ Gµν − Sµν = 0 and Æµ = 0 contain no

more than 2nd-order derivatives, which guarantees the stability of our dynamic sys-

tem [210]. They can be divided into two groups [86,90]: one represents the evolution

equations, given by

Evv = Eθθ = Æv = 0, (3.37)

and the other represents the constraint equation, given by

Cv = 0, (3.38)

where Cα ≡ Erα+urÆα = 0, and Gµν [≡ Rµν −Rgµν/2] denotes the Einstein tensor.

Note that in Eq. (35) of [90] two constraint equations Cv = Cr = 0 were considered.

However, Cr and Cv are not independent. Instead, they are related to each other

by the relation Cr = (F/B)Cv. Thus, Cv = 0 implies Cr = 0, so there is only one

independent constraint. On the other hand, the three evolution equations can be cast
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in the forms 6,

F ′′ = F (A,A′, F, F ′, r, ci)

=
1

2r2A4D

(
f0 + f1F + f2F

2 + f3F
3 + f4F

4
)
, (3.39)

A′′ = A (A,A′, F, F ′, r, ci)

=
1

2r2A2D

(
a0 + a1F + a2F

2 + a3F
3
)
, (3.40)

B′

B
= B (A,A′, F, F ′, r, ci)

=
1

2rA2D

(
b0 + b1F + b2F

2
)
, (3.41)

where a prime stands for the derivative with respect to r, and

D ≡ d−
(
J2 + 1

)
+ 2d+J, (3.42)

with J ≡ FA2 and

d± ≡ (c2
S ± 1)c14(1− c13)(2 + c13 + 3c2). (3.43)

The coefficients fn, an and bn are independent of F (r) and B(r) but depend on F ′(r),

A(r) and A′(r), and are given explicitly by Eqs. (E.1), (E.2) and (E.3) in Appendix

E. The constraint equation (3.38) now can be cast in the form,

n0 + n1F + n2F
2 = 0, (3.44)

where nn’s are given explicitly by Eq. (E.4) in Appendix E.

Thus, we have three dynamical equations and one constraint for the three

unknown functions, F,A and B. As a result, the system seems over determined.

However, a closer examination shows that not all of them are independent. For

6 It should be noted that in [90] the second-order differential equation for F [cf. Eq. (36)
given there] also depends on B. But, since from the constraint Cv = 0, given by Eq. (3.44), one can
express B in terms of A,F and their derivatives, as shown explicitly by Eq. (3.45), so there are no
essential differences here, and it should only reflect the facts that different combinations of the field
equations are used.
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example, Eq. (3.41) can be obtained by manipulating and assembling Eqs. (3.39),

(3.40), and (3.44). In fact, from Eq. (3.44), we find that the function B can be

written in the form

B(r) = ± 1

2
√

2A2

{
2A2

[
4J(1 + 2c2 + c13)− (2c2 + c13)

(
J + 1

)2
]

+ 4rA
[
2AJ ′ − 4JA′ + c2

(
J − 1

)(
JA′ − A′ − AJ ′

)]
+ r2

[
c14

(
JA′ + A′ − AJ ′

)2 − (c2 + c13)
(
JA′ − A′ − AJ ′

)2
]}1/2

. (3.45)

Recall that J = FA2. Note that there are two branches of solutions for B(r) with

opposite signs, since Eq. (3.44) is a quadratic equation of B. However, only the

“+” sign will give us B = 1 at the spatial infinity, while the “-” sign will yield

B(r →∞) = −1. Therefore, in the rest of this chapter, we shall choose the “+” sign

in Eq. (3.45). Then, first taking the derivative of Eq. (3.45) with respective to r,

and then combining the obtained result with Eqs. (3.39) and (3.40), one can obtain

Eq. (3.41) 7.

To solve these equations, in this dissertation we shall adopt the following

strategy: choosing Eqs. (3.39), (3.40) and (3.45) as the three independent equations

for the three unknown functions, F , A, and B. The advantage of this choice is that

Eqs. (3.39) and (3.40) are independent of the function B. Therefore, we can first

solve these two equations to find F and A, and then obtain the function B finally

and directly from Eq. (3.45). In this approach, we only need to solve two ODEs,

which will significantly save the computation labor, although we do use Eq. (3.41) to

monitor our numerical errors.

7 From this proof it can be seen that obtaining Eq. (3.41) from Eq. (3.45) the operation
of taking the first-order derivatives was involved. Therefore, in principle these two equations are
equivalent modulated an integration constant.
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To solve Eqs. (3.39) and (3.40), we can consider them as the “initial” value

problem at a given “moment”, say, r = r0 [86, 90]. Since they are second-order

differential equations, the initial data will consist of the four initial values,{
A(r0), A′(r0), F (r0), F ′(r0)

}
. (3.46)

In principle, r0 can be chosen as any given (finite) “moment”. However, in the

following we shall show that the most convenient choice will be the locations of the

S0Hs. It should be noted that a S0H does not always exist for any given initial data.

However, since in this chapter we are mainly interested in the case in which a S0H

exists, so whenever we choose r0 = rS0H , it always means that we only consider the

case in which such a S0H is present.

To determine the location of the S0H for a given spherical solution of the

metric (3.35), let us first consider the out-pointing normal vector, Nµ [of course, it is

different from the one in, e.g., (2.42)], of a hypersurface r = Constant, say, r0, which

is given by Nµ ≡ ∂(r− r0)/∂xµ = δrµ. Then, the metric and spin-0 horizons of gµν are

given, respectively, by

gαβN
αNβ = 0, (3.47)

g
(S)
αβ N

αNβ = 0, (3.48)

where Nµ ≡ gµνNν , and g
(S)
αβ is defined by Eq. (3.2). For the metric and aether given

in the form of Eqs. (3.35) and (3.36), they become

F (rMH) = 0, (3.49)(
c2
S − 1

) (
J(rS0H)2 + 1

)
+ 2

(
c2
S + 1

)
J(rS0H) = 0, (3.50)
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where r = rMH and r = rS0H are the locations of the metric and spin-0 horizons,

respectively. Note that Eqs. (3.49) and (3.50) may have multiple roots, say, riMH and

rjS0H . In these cases, the location of the metric (spin-0) horizon is always taken to be

the largest root of riMH (rjS0H).

Depending on the value of cS, the solutions of Eq. (3.48) are given, respectively,

by

J(r±S0H) =
1∓ cS
1± cS

≡ J±, cS 6= 1, (3.51)

and

J(rS0H) = 0, cS = 1. (3.52)

It is interesting to note that on S0Hs, we have

D(rS0H) = 0, (3.53)

as it can be seen from Eqs. (3.42), (3.43) and (3.50).

As mentioned above, for some choices of ci, Eq. (3.48) does not always admit

a solution, hence a S0H does not exist in this case. A particular choice was considered

in [86], in which we have c1 = 0.051, c2 = 0.116, c3 = −c1 and c4 = 0 (note that

these choices have been ruled out by observations). For this choice, we find that

cS ' 1.37404, J+ ' −0.157556 and J− ' −6.34696. As shown in Fig. 3.1, the

function J(r) is always greater than J±, so no S0H is formed, as first noticed in [86].

Up to the numerical errors, Fig. 3.1 is the same as that given in [86], which provides

another way to check our general expressions of the field equations given above.

In addition, we also find that the two exact solutions obtained in [77] satisfy

these equations identically, as it is expected.
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Figure 3.1: The solution for c1 = 0.051, c2 = 0.116, c3 = −c1 and c4 = 0, first
considered numerically in [86]. There are outer and inner MHs, at which F vanishes.
However, J does not cross the constant line of J+, so that a S0H is absent. This
graph is the same as the one given in [86] (up to the numerical errors).

3.3.2 Exact Solutions with c14 = c13 = 0

From Eqs. (3.5) - (3.8) we can see that the choice c14 = c13 = 0 satisfies these

constraints, provided that c2 satisfies the condition 8,

0 . c2 . 0.095. (3.54)

Then, we find that Eqs. (3.39)-(3.40) now reduce to

F ′′ = −2

r
F ′ +

c2F̂(r)

4r2A4
, (3.55)

A′′ =
2

r2(A+ A3F )

[
r2(A′)2 − rAA′ − A2 − rA3A′(F + rF ′) + A4F

]
− c2F̂(r)

4r2(A+ A3F )
, (3.56)

where

F̂(r) ≡
[
rA′ − 2A+ rA2A′F + A3 (2F + rF ′)

]2
. (3.57)

8 When c14 = c13 = 0, the speeds of the spin-0 and spin-1 modes can be infinitely large, as
it can be seen from Eq. (1.7). Some unexpected problems may occur in such a case. Then, cautions
must be taken, including the calculations of the PPN parameters [39].
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Combining Eqs. (3.55) and (3.56), we find the following equation,

W ′′ +W ′2 +
2

r
W ′ − 2

r2
= 0, (3.58)

where

W ≡ ln

(
1− FA2

A

)
. (3.59)

Eq. (3.58) has the general solution,

W = lnw2 + ln

(
1 + w1r

3

r2

)
, (3.60)

where w1 and w2 are two integration constants. Then, the combination of Eqs. (3.59)

and (3.60) yield

F (r) =
1

A2
− w2

A

(
1

r2
+ w1r

)
. (3.61)

Substituting Eq. (3.61) into Eq. (3.55), we find

F ′′ = −2

r
F ′ + F0, (3.62)

where F0 ≡ 9c2w
2
1w

2
2/4. Integrating Eq. (3.62), we find

F (r) = F2

(
1− 2m

r

)
+
F0

6
r2, (3.63)

where m and F2 are temporarily used as two other integration constants. On the

other hand, from Eq. (3.61), we find that

A(r) = −w2

2F

[(
1

r2
+ w1r

)
±

√
4F

w2
2

+

(
1

r2
+ w1r

)2
]
. (3.64)

Substituting the above expressions for A and F into the constraint (3.45), we find

that

B =
√
F2. (3.65)
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Note that the above solution is asymptotically flat only when w1 = 0, for

which we have

F (r) = F2

(
1− 2m

r

)
, B(r) =

√
F2, A(r) = −w2

2F

(
1

r2
±

√
4F

w2
2

+
1

r4

)
. (3.66)

Using the gauge residual v′ = C0v + C1 (note that a prime above v does not stand

for a derivative) of the metric (3.35), without loss of the generality, we can always

set F2 = 1, so the corresponding metric takes the precise form of the Schwarzschild

solution,

ds2 = −
(

1− 2m

r

)
dv2 + 2dvdr + r2dΩ2, (3.67)

while the aether field is given by

A(r) = −w2 ±
√
w2

2 + 4r3(r − 2m)

2r(r − 2m)
. (3.68)

Interestingly, the analytic solutions here are actually consistent with the ones in [211],

where the Schwarzschild solution for {F,B} was assumed a priori. It is remarkable

to note that now the aether field has no contribution to the spacetime geometry,

although it does feel the gravitational field, as it can be seen from Eq. (3.68).

It should be also noted that Eqs. (3.67) and (3.68) were a particular case

of the solutions first found in [77] for the case c14 = 0 by further setting c13 = 0.

But, ignoring the potentially unphysical features, the general solutions given by Eqs.

(3.63) - (3.65) are new, as far as I know.

3.3.3 Field Equations for g̃µν and ũµ

Note that, instead of solving the three independent equations directly for A,

B and F , we shall first solve the corresponding three equations for Ã, B̃ and F̃ , by

taking the advantage of the field redefinitions introduced in the last section, and then
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obtain the functions A, B and F by the inverse transformations of Eqs. (3.73) and

(3.75) to be given below. This will considerably simplify mathematically the problem

of solving such complicated equations. A byproduct of this is the improvement to the

accuracy of our solutions.

To this goal, let us first note that, with the filed redefinitions (3.11), the line

element corresponding to ĝµν in the EF coordinates (v, r, θ, φ), takes the form,

dŝ2 ≡ ĝµνdx
µdxν

= −

[
F +

(σ − 1) (A2F + 1)
2

4A2

]
dv2 + 2

[
B +

1

2
(σ − 1)B

(
A2F + 1

)]
dvdr

−(σ − 1)A2B2dr2 + r2dΩ2. (3.69)

To bring the above expression into the standard EF form, we first make the coordinate

transformation,

ṽ = C0v − C(r), (3.70)

where C0 is an arbitrary real constant, and C(r) is a function of r. Then, choosing

C(r) so that

dC(r)

dr
=

2C0A
2B (
√
σ − 1)

J (
√
σ − 1) + (

√
σ + 1)

, (3.71)

we find that in the coordinates x̃µ = (ṽ, r, θ, φ) the line element (3.69) takes the form,

dŝ2 ≡ ĝµνdx
µdxν = g̃µνdx̃

µdx̃ν = −F̃ (r)dṽ2 + 2B̃(r)dṽdr + r2dΩ2, (3.72)

where

F̃ =
J2(σ − 1) + 2J(σ + 1) + (σ − 1)

4C2
0A

2
, B̃ =

√
σB

C0

. (3.73)
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On the other hand, in terms of the coordinates x̃µ, the aether four-velocity is

given by

ûα
∂

∂xα
= ũα

∂

∂x̃α
= Ã(r)∂ṽ −

1− F̃ (r)Ã2(r)

2B̃(r)Ã(r)
∂r, (3.74)

where

Ã =
2C0A

J (
√
σ − 1) + (

√
σ + 1)

, (3.75)

which satisfies the constraint ũαũβ g̃αβ = −1, with

g̃µν ≡
∂xα

∂x̃µ
∂xβ

∂x̃ν
ĝαβ, ũµ ≡

∂xα

∂x̃µ
ûα. (3.76)

It should be noted that the metric (3.72) still has the gauge residual,

˜̃v = C1ṽ + C2, (3.77)

where C1 and C2 are two arbitrary constants, which will keep the line element in the

same form, after an apt rescaling,

˜̃F =
F̃

C2
1

, ˜̃B =
B̃

C1

. (3.78)

Later we shall use this gauge freedom to fix one of the initial conditions. I want to

emphasize that the coefficients C0, C1 and C2 we used here are not the covariant Cv

in (3.38).

In the rest of this chapter, we always refer (g̃µν , ũ
α) as the field obtained by

the field redefinitions. The latter is related to (ĝµν , û
α) via the inverse coordinate

transformations of Eq. (3.76). Then, the Einstein-aether field equations for (g̃µν , ũ
α)

will take the same forms as those given by Eqs. (3.17) - (3.19), but now in terms of

(g̃µν , ũ
α, c̃i) in the coordinates x̃µ, where c̃i ≡ ĉi.

On the other hand, since the metric (3.72) for g̃µν takes the same form as the

metric (3.35) for gµν , and so does the aether field (3.74) for ũµ as the one (3.36) for
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uµ, it is not difficult to see that the field equations for F̃ (r), Ã(r) and B̃(r) will be

given precisely by Eqs. (3.39) - (3.44), if we simply make the following replacement,

(F,A,B, ci)→
(
F̃ , Ã, B̃, c̃i

)
. (3.79)

As a result, we have

F̃ ′′ = F̃
(
Ã, Ã′, F̃ , F̃ ′, r, c̃i

)
=

1

2r2Ã4D̃

[
f̃0 + f̃1F̃ + f̃2F̃

2 + f̃3F̃
3 + f̃4F̃

4
]
, (3.80)

Ã′′ = Ã
(
Ã, Ã′, F̃ , F̃ ′, r, c̃i

)
=

1

2r2Ã2D̃

[
ã0 + ã1F̃ + ã2F̃

2 + ã3F̃
3
]
, (3.81)

B̃′

B̃
= B̃

(
Ã, Ã′, F̃ , F̃ ′, r, c̃i

)
=

1

2rÃ2D̃

[
b̃0 + b̃1F̃ + b̃2F̃

2
]
, (3.82)

and

C̃ ṽ ≡ ñ0 + ñ1F̃ + ñ2F̃
2 = 0, (3.83)

where

D̃(r) ≡ d̃−

(
J̃2(r) + 1

)
+ 2d̃+J̃(r),

J̃(r) ≡ F̃ (r)Ã2(r),

d̃± ≡ (c̃2
S ± 1)c̃14(1− c̃13)(2 + c̃13 + 3c̃2). (3.84)

The coefficients f̃n, ãn, b̃n and ñn are given by fn, an, bn and nn after the replacement

(3.79) is executed.

Then, the metric and spin-0 horizons for g̃µν are given, respectively, by

g̃αβÑ
αÑβ = 0, (3.85)

g̃
(S)
αβ Ñ

αÑβ = 0, (3.86)
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where Ñα = (∂xµ/∂x̃α)Nµ = δrα̃ = δrα and

g̃
(S)
αβ ≡ g̃αβ −

(
c̃2
S − 1

)
ũαũβ. (3.87)

In terms of F̃ and Ã, Eqs. (3.85) and (3.86) become

F̃ (r̃MH) = 0, (3.88)(
c̃2
S − 1

) (
J̃(r̃S0H)2 + 1

)
+ 2

(
c̃2
S + 1

)
J̃(r̃S0H) = 0, (3.89)

where r = r̃MH and r = r̃S0H are respectively the locations of the metric and spin-0

horizons for the metric g̃µν . Similarly, at r = r̃S0H we have

D̃(r̃S0H) = 0. (3.90)

Comparing the field equations given in this subsection with the corresponding

ones given in the previous subsections, we see that we can get one set from the other

simply by the replacement (3.79).

In addition, in terms of ĝαβ and Nα, Eqs. (3.85) and (3.86) reduce, respectively,

to

ĝαβN
αNβ = 0, (3.91)

ĝ
(S)
αβ N

αNβ = 0. (3.92)

Since r̃ = r, we find that

r̃MH = r̂MH , r̃S0H = r̂S0H , (3.93)

where r̃MH and r̃S0H (r̂MH , r̂S0H) are the locations of the metric and spin-0 horizons

of the metric g̃αβ (ĝαβ). The above analysis shows that these horizons determined by

g̃αβ are precisely equal to those determined by ĝαβ.
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3.3.4 σ = c2
S

To solve Eqs. (3.80) - (3.83), we take the advantage of the choice σ = c2
S, so

that the speed of the spin-0 mode of the metric ĝµν becomes unity, i.e., ĉS = 1. Since

c̃i = ĉi, we also have c̃S = ĉS = 1. Then, from Eq. (1.7) we find that this leads to,

c̃2 =
2c̃14 − 2c̃13 − c̃2

13c̃14

2− 4c̃14 + 3c̃13c̃14

. (3.94)

For such a choice, from Eq. (3.84) we find that d̃− = 0, and

D̃(r) = 2d̃+J̃(r) = 2d̃+Ã
2(r)F̃ (r). (3.95)

Then, Eq. (3.90) yields F̃ (r̃S0H) = 0, since Ã 6= 0, which also represents the location

of the MH, defined by Eq. (3.88). Therefore, for the choice σ = c2
S the MH coincides

with the S0H for the effective metric g̃µν , that is,

r̃MH = r̃S0H ,
(
σ = c2

S

)
. (3.96)

As shown below, this will significantly reduce our computational labor. In particular,

if we choose this surface as our initial moment, it will reduce the phase space of initial

data from four dimensions to one dimension only.

For c̃S = 1, Eqs. (3.80)-(3.83) reduce to,

F̃ ′′ =
1

4d̃+r2Ã6

(
f̃0

F̃
+ f̃1 + f̃2F̃ + f̃3F̃

2.+ f̃4F̃
3

)
, (3.97)

Ã′′ =
1

4d̃+r2Ã4

(
ã0

F̃
+ ã1 + ã2F̃ + ã3F̃

2

)
, (3.98)

B̃′

B̃
=

1

4d̃+rÃ4

(
b̃0

F̃
+ b̃1 + b̃2F̃

)
, (3.99)

ñ0 + ñ1F̃ + ñ2F̃
2 = 0. (3.100)

As shown previously, among these four equations, only three of them are inde-

pendent, and our strategy in this chapter is to take Eqs. (3.97), (3.98) and (3.100) as
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the three independent equations. The advantage of this approach is that Eqs. (3.97),

(3.98) are independent of B̃(r), and Eq. (3.100) is a quadratic polynomial of B̃(r).

So, we can solve Eqs. (3.97), (3.98) as the initial value problem first to find F̃ (r)

and Ã(r), and then insert them into Eq. (3.100) to obtain directly B̃(r), as explicitly

given by Eq. (3.45), after taking the replacement (3.79) and the choice of c̃2 of Eq.

(3.94) into account.

From Eqs. (3.97) and (3.98) we can see that they become singular at r = r̃S0H

[recall F̃ (r̃S0H) = 0], unless f̃0(r̃S0H) = ã0(r̃S0H) = 0. As can be seen from the

expressions of f0(r), a0(r) given in Appendix E, f̃0(r̃S0H) = ã0(r̃S0H) = 0 imply

b̃0(r̃S0H) = 0. Therefore, to have the field equations regular across the S0H, we must

require b̃0(r̃S0H) = 0. It is interesting that this is also the condition for Eq. (3.99) to

be non-singular across the S0H. In addition, using the gauge residual (3.77), we shall

set B̃H = 1, so Eq. (3.100) [which can be written in the form of Eq. (3.45), after the

replacement (3.79)] will provide a constraint among the initial values of F̃ ′H , ÃH and

Ã′H , where F̃ ′H ≡ F̃ ′(r̃S0H) and so on. In summary, on the S0H we have the following

F̃H = 0, (3.101)

b̃0

(
ÃH , Ã

′
H , F̃

′
H , r̃S0H

)
= 0, (3.102)

B̃H = 1. (3.103)

From the expression for b̃0 given in Appendix E, we can see that Eq. (3.102) is

quadratic in Ã′H , and solving it on the S0H, in general we obtain two solutions,

Ã′
±
H = Ã′

±
H

(
ÃH , F̃

′
H , r̃S0H

)
. (3.104)

Then, inserting it, together with Eqs. (3.101) and (3.103), into Eq. (3.44), we get

ñ±0

(
ÃH , F̃

′
H , r̃S0H

)
= 0, (3.105)
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where the “±” signs correspond to the choices of Ã′H = Ã′
±
H . In general, Eq. (3.105)

is a 4th-order polynomial of F̃ ′H , so it normally has four roots, denoted as

F̃ ′
(±,n)

H = F̃ ′
(±,n)

H

(
ÃH , r̃S0H

)
, (3.106)

where n = 1, 2, 3, 4. For each given F̃ ′
(±,n)

H , substituting it into Eq. (3.104) we find a

corresponding Ã′
(±,n)

H , given by

Ã′
(±,n)

H = Ã′
(±,n)

H

(
ÃH , r̃S0H

)
. (3.107)

Thus, once ÃH and r̃S0H are given, the quantities F̃ ′
(±,n)

H and Ã′
(±,n)

H are uniquely

determined from Eqs. (3.106) and (3.107). For each set of (ÃH , r̃S0H), in general

there are eight (viz., 2× 4) sets of
(
Ã′H , F̃

′
H

)
.

If we choose r = r̃S0H as the initial moment, such obtained
(
Ã′H , F̃

′
H

)
, together

with F̃H = 0, and a proper choice of ÃH , can be considered as the initial conditions

for the differential equations (3.97) and (3.98).

However, it is unclear which one(s) of these eight sets of initial conditions will

lead to asymptotically flat solutions, except that the one with F̃ ′H < 0, which can be

discarded immediately, as it would lead to F̃ = 0 at some radius r > r̃S0H , which is

inconsistent with our assumption that r = r̃S0H is the location of the S0H [90]. So, in

general what one needs to do is to try all the possibilities [Although we cannot show

why, in practice we found that there is always only one branch of (ÃH , r̃S0H) that will

work both physically and engineeringly.].

Therefore, if we choose r = r̃S0H as the initial moment, the four-dimensional

phase space of the initial conditions,
(
F̃H , F̃

′
H , ÃH , Ã

′
H

)
, reduces to one-dimensional,

spanned by ÃH only, as promised previously.
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In the following, I shall show further that r̃S0H can be chosen arbitrarily. In

fact, introducing the dimensionless quantity, ξ ≡ r̃S0H/r, we find that Eqs. (3.97) -

(3.99) and (3.83) can be written in the forms

d2F̃ (ξ)

dξ2
= G1 (ξ, c̃i) , (3.108)

d2Ã(ξ)

dξ2
= G2 (ξ, c̃i) , (3.109)

1

B̃(ξ)

dB̃(ξ)

dξ
= G3 (ξ, c̃i) , (3.110)

C ṽ
(
Ã(ξ), Ã′(ξ), F̃ (ξ), F̃ ′(ξ), B̃(ξ), ξ, c̃i

)
= 0, (3.111)

where Gi’s are all independent of r̃S0H , C ṽ ≡ r2
S0HC̃

ṽ, and the primes in the last

equation now stand for the derivatives respect to ξ. Therefore, Eqs. (3.108)-(3.111),

or equivalently, Eqs. (3.80)-(3.83), are scaling-invariant and independent of r̃S0H .

Thus, without loss of the generality, we can always set

r̃S0H = 1, (3.112)

which does not affect Eqs. (3.108) - (3.111), and also explains the reason why in [86,90]

the authors set r̃S0H = 1 directly. At the same time, it should be noted that once

r̃S0H = 1 is taken, it implies that the unit of length is fixed. For instance, if we have

a BH with r̃S0H = 1 km, then setting r̃S0H = 1 means the unit of length is in km.

Once ÃH is chosen, we can integrate Eqs. (3.108) and (3.109) in both directions

to find F̃ (ξ) and Ã(ξ), one is toward the center, ξ = r̃S0H/r = ∞, in which we have

ξ ∈ [1,∞), and the other is toward infinity, ξ = r̃S0H/r = 0, in which we have

ξ ∈ (0, 1]. Then, from Eq. (3.45) we can find B̃(ξ) uniquely, after the replacement of

Eq. (3.79). Again, to have a proper asymptotic behavior of B̃(r), the “+” sign will

be chosen.
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At the spatial infinity ξ = r̃S0H/r → 0, we require that the spacetime be

asymptotically flat, that is [86,90] 9,

F̃ (ξ) = 1 + F̃1ξ +
1

48
c̃14F̃

3
1 ξ

3 + · · · ,

Ã(ξ) = 1− 1

2
F̃1ξ +

1

2
Ã2ξ

2 −

(
1

96
c̃14F̃

3
1 −

1

16
F̃ 3

1 +
1

2
F̃1Ã2

)
ξ3 + · · · ,

B̃(ξ) = 1 +
1

16
c̃14F̃

2
1 ξ

2 − 1

12
c̃14F̃

3
1 ξ

3 + · · · , (3.113)

where F̃1 ≡ F̃ ′(ξ = 0) and Ã2 ≡ Ã′′(ξ = 0).

It should be noted that the Minkowski spacetime is given by

F̃ = F̃M , Ã =
1√
F̃M

, B̃ =

√
F̃M , (3.114)

where F̃M is a positive otherwise arbitrary constant. Therefore, in the asymptotic

expansions of Eq. (3.113), we had set F̃M = 1 at the zeroth order of ξ. However, the

initial conditions imposed at r = r̃S0H given above usually leads to F̃M 6= 1, even for

spacetimes that are asymptotically flat (As can be seen later, this is not urgent at

all since the vital thing is to normalize the physical {F,A,B}.). Therefore, we need

first to use the gauge residual (3.77) to bring F̃ (ξ = 0) = Ã(ξ = 0) = B̃(ξ = 0) = 1,

before using Eq. (3.113) to calculate the constants Ã2 and F̃1.

From the above analysis we can see that finding spherically symmetric solutions

of æ-theory now reduces to finding the initial condition ÃH that leads to the asymptotic

behavior (3.113), for a given set of ci’s.

Before proceeding to the next section, we would like to recall that when σ = c2
S,

we have g
(S)
αβ = ĝαβ, as shown by Eq. (3.23). That is, the S0H for the metric gαβ now

coincides with the MH of ĝαβ. With this same very choice, σ = c2
S, the MH for ĝαβ

9 Note that in [86,90] a factor 1/2 is missing in front of A2 in the expression of A(x).
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also coincides with its S0H. Thus, we have

rS0H = r̂S0H = r̂MH = r̃S0H = r̃MH ≡ rH ,
(
σ = c2

S

)
. (3.115)

It must be noted that rH defined in the last step denotes the location of the S0H of

gαβ, which is usually different from its MH, defined by

gαβN
αNβ

∣∣
r=rMH

= 0, (3.116)

since in general we have cS 6= 1, so g
(S)
αβ ≡ gαβ − (c2

S − 1)uαuβ 6= gαβ. As a result, we

have rMH 6= rS0H for cS 6= 1.

However, it is worth emphasizing again that, for the choice σ = c2
S we have

c̃S = ĉS = 1, so the metric and spin-0 horizons of both ĝαβ and g̃αβ all coincide, and

are given by the same rH , as explicitly shown by Eq. (3.115). More importantly, it

is also the location of the S0Hs of the metric gαβ.

3.4 Numerical Setup and Results

3.4.1 General Steps

It is difficult to find analytical solutions to Eqs. (3.108)-(3.111). Thus, in this

section we are going to solve them numerically, using the shooting method, with the

asymptotic conditions (3.113). In particular, our strategy is the following:

(i) Choose a set of physical ci’s satisfying all the currently known physical

constraints (see the previous chapters for more details), and then calculate the cor-

responding c̃i’s with σ = c2
S.

(ii) Assume that for such chosen ci’s the corresponding solution possesses a

S0H located at r = rH [cf. (3.115)], and then follow the analysis given in the last

section to impose the conditions F̃H = 0 and B̃H = 1.
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(iii) Choose a test value for ÃH (again, this is the only test quantity to trigger

our iterations for searching the unique solutions), and then solve Eq. (3.102) for Ã′H

in terms of F̃ ′H and ÃH , i.e., Ã′H = Ã′H(F̃ ′H , ÃH).

(iv) Substitute Ã′H into Eq. (3.105) to obtain a quartic equation for F̃ ′H and

then solve it to find F̃ ′H .

(v) With the initial conditions {F̃H , ÃH , F̃ ′H , Ã′H}, integrate Eqs. (3.108) and

(3.109) from ξ = 1 to ξ = 0 (the integration here means the numerical strategies

for solving ODEs [212, 213] and it will be done by Mathematica with some built-in

techniques).

However, since the field equations are singular at ξ = 1, we will actually

integrate these equations from ξ = 1− ε to ξ ' 0, where ε is a very small quantity, to

avoid engineering troubles. To obtain the values of z(ξ) at ξ = 1− ε, we first Taylor

expand [214,215] them in the form,

z(1− ε) =
2∑

k=0

z(k)|ξ=1

k!
(−1)kεk +O

(
ε3
)
, (3.117)

where z ≡
{
Ã, Ã′, F̃ , F̃ ′

}
and z(k) ≡ dkz/dξk (Of course, although it is not neces-

sary, we can expand to any high orders as we wish, given enough time.). For each z,

we shall expand it to the second order of ε, so the errors are of the order ε3. Thus,

if we choose ε = 10−14, the errors in the initial conditions z(1 − ε) are of the order

10−42. For z = Ã, F̃ , we already obtained z(1) and z′(1) from the initial condi-

tions. In these cases, to get Ã′′(1) and F̃ ′′(1), we use the field equations (3.108) and

(3.109) and L’Hospital’s rule [216]. On the other hand, for z = Ã′, expanding it to

the second order of ε, we have

Ã′(1− ε) = Ã′(1)− Ã′′(1)ε+
1

2
Ã(3)(1)ε2 +O

(
ε3
)
, (3.118)
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where Ã(3)(1) ≡ d3Ã(ξ)/dξ3
∣∣∣
ξ=1

can be obtained by first taking the derivative of Eq.

(3.109) and then taking the limit ξ → 1, as now we have already known Ã(1), Ã′(1),

Ã′′(1), F̃ (1), F̃ ′(1) and F̃ ′′(1). Similarly, for z = F̃ ′, from Eq. (3.108) we can find

F̃ (3)(1).

(vi) Repeat (iii)-(v) until a numerical solution matched to Eq. (3.113) is

obtained, by logically choosing different values of ÃH with a bisectional search (this

could be done manually or automatically by Mathematica). Clearly, once such a value

of ÃH is found, it means that we obtain numerically an asymptotically flat solution

of the Einstein-aether field equations outside the S0H. Note that, to guarantee that

Eq. (3.113) is satisfied, the normalization of {F̃ , Ã, B̃} needs to be done according to

Eq. (3.114), by using the remaining gauge residual of Eq. (3.77).

(vii) To obtain the solution in the internal region ξ ∈ (1,∞), we simply inte-

grate Eqs. (3.108) and (3.109) from ξ = 1 to ξ →∞ with the same value of ÃH found

in the last step. As in the region ξ ∈ (0, 1), we can’t really set the “initial” conditions

precisely at ξ = 1. Instead, we will integrate them from ξ = 1 + ε to ξ = ξ∞ � 1.

The initial values at ξ = 1 + ε can be obtained by following what we did in Step (v),

that is, Taylor expand z(ξ) at ξ = 1 + ε, and then use the field equations to get all

the quantities up to the third order of ε.

(viii) Sewing the results obtained from steps (vi) and (vii) together, we finally

obtain a solution of {F̃ (ξ), Ã(ξ)} on the whole spacetime ξ ∈ (0,∞) [or equivalently

r ∈ (0,∞)].

(ix) Once F̃ and Ã are known, from Eq. (3.45), we can calculate B̃, so that

an asymptotically flat black hole solution for {Ã, B̃, F̃} is finally obtained over the

whole space r ∈ (0,∞).
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Before proceeding to the next subsection to consider the physically allowed

region of the parameter space of ci’s, let us pause here to reproduce the results

presented in Table I of [90], in order to check our numerical code, although all these

choices have been ruled out currently by observations [60]. To see this explicitly, let

us first note that the parameters chosen in [86,90] correspond to

ĉ2 = − ĉ3
1

3ĉ2
1 − 4ĉ1 + 2

, ĉ3 = 0 = ĉ4 = 0, (3.119)

so that now only ĉ1 is a free parameter. With this choice of ĉi’s, the corresponding

ci’s can be obtained from Eqs. (3.13) with σ = c2
S, which are given by,

c14 = ĉ1, c2 =
−2c13 + 2ĉ1 + 2c13ĉ1 − 2ĉ2

1 − c13ĉ
2
1

2− 4ĉ1 + 3ĉ2
1

, (3.120)

where c13 is arbitrary. This implies that Eqs. (3.13) are degenerate for the choices

of Eqs. (4.45). It can be seen from Eq. (3.120), in all the cases considered in [90],

we have c14 > 2.5× 10−5. Hence all the cases considered in [86,90] do not satisfy the

current constraints [60].

With the above in mind, we reproduce all the cases considered in [86, 90],

including the ones with c̃1 > 0.8. Our results are presented in Table 3.1, where

γ̃ff ≡ ũαuobs
α , (3.121)

r̃g ≡ −rH × lim
ξ→0

dF̃ (ξ)

dξ
= 2GæMADM. (3.122)

Here, uobs
α is the tangent (unit) vector to a radial free-fall trajectory that starts at

rest at spatial infinity, and MADM denotes the Komar mass, which is equal to the

Arnowitt-Deser-Misner (ADM) mass in the spherically symmetric case for the metric

g̃αβ [77].
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Table 3.1: The cases considered in [86,90] for various ĉ1 with the choice of the
parameters ĉ2, ĉ3 and ĉ4 given by Eq. (4.45). Note that for each physical quantity,

we have added two more significant digits, due to the improved accuracy of our
numerical code.

ĉ1 r̃g/rH F̃ ′HÃ
2
H γ̃ff

0.1 0.98948936 2.0961175 1.6028048
0.2 0.97802140 2.0716798 1.5769479
0.3 0.96522924 2.0391972 1.5476848
0.4 0.95054650 1.9965155 1.5140905
0.5 0.93304411 1.9405578 1.4748439
0.6 0.91106847 1.8666845 1.4279611
0.7 0.88131278 1.7673168 1.3702427
0.8 0.83583029 1.6283356 1.2959142
0.9 0.74751927 1.4155736 1.1921231
0.91 0.73301185 1.3870211 1.1790400
0.92 0.71650458 1.3563710 1.1652344
0.93 0.69745439 1.3232418 1.1506047
0.94 0.67507450 1.2871125 1.1350208
0.95 0.64816499 1.2472379 1.1183101
0.96 0.61476429 1.2024805 1.1002331
0.97 0.57133058 1.1509356 1.0804355
0.98 0.51038168 1.0889067 1.0583387
0.99 0.41063001 1.0068873 1.0328120

From Table 3.1 we can see that our results are exactly the same as those given

in [90] up to the same accuracy. But, due to the improved accuracy of our numerical

code, for each of the physical quantity, we provided two more significant digits.

Additionally, in Fig. 3.2 we plotted the functions F̃ , B̃, Ã and C̃ for four

representative cases listed in Table 3.1 (ĉ1 = 0.1, 0.3, 0.6, 0.99). Here, the quantity C̃

is defined as

C̃ ≡

∣∣∣∣∣d ln B̃

dξ
− G3

∣∣∣∣∣ , (3.123)
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Figure 3.2: In the above graphs, we use a, b, c and d to represent Ã, B̃, F̃ and
C̃. Note that they are functions of ξ. In each row, ĉ1 is chosen, respectively, as
ĉ1 = 0.1, 0.3, 0.6, 0.99, as listed in Table 3.1. The horizontal axis is rH/r.
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Figure 3.3: The solution for c14 = 2× 10−7, c2 = 9× 10−7, and c3 = −c1. Here, Ã,
B̃, J̃ , F̃ and F̃GR are represented by the red line (labeled by a), green line (labeled
by b), orange line (labeled by c), blue line (labeled by 1) and cyan line (labeled by 2)
respectively.

which vanishes identically for the solutions of the field equations, as it can be seen

from Eq. (3.110). In the rest of this chapter, we shall use it to check the accuracy of

our numerical code.

From Fig. 3.2, we note that the properties of {F̃ , Ã, B̃} depend on the choice

of ĉ1. The quantity C̃ is approximately zero within the whole integration range, which

means that our numerical solutions are quite reliable.

3.4.2 Physically Viable Solutions with S0Hs

With the above verification of our numerical code, we turn to the physically

viable solutions of the Einstein-aether field equations, in which a S0H always exists.

Since c13 is very small, without loss of the generality, in this subsection we only

consider the cases with c13 = 0.

As the first example, let us consider the case c14 = 2 × 10−7, c2 = 9 × 10−7,

and c3 = −c1, which satisfies the constraints (1.9). Fig. 3.3 shows the functions
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F̃ , Ã, B̃, in which we also plot J̃ ≡ F̃ Ã2 and the GR limit of F̃ , denoted by F̃GR with

F̃GR ≡ 1− rH/r.

In plotting Fig. 3.3, we chose ε = 10−14. With the shooting method, ÃH

is determined to be ÃH ' 2.4558992 10. In our calculations, we stop repeating the

bisection search for ÃH , when the value ÃH giving an asymptotically flat solution is

determined to within 10−23. Technically, this accuracy could be further improved.

However, for our current purposes, it has already been sufficient.

As I have already mentioned, theoretically Eq. (3.110) will be automatically

satisfied once Eqs. (3.108), (3.109) and (3.111) hold. However, due to numerical

errors, in practice, it can never be zero numerically. Thus, to monitor our numerical

errors, we always plot out the quantity C̃ defined by Eq. (3.123), from which we can

see clearly the numerical errors in our calculations. So, in the right-hand panels of

Fig. 3.4, we plot out the curves of C̃, denoted by d, in each case.

Clearly, outside the S0H, C̃ . 10−17, while inside the S0H we have C̃ . 10−10.

Thus, the solutions inside the horizon are not as accurate as the ones given outside

of the horizon. However, since in this chapter we are mainly concerned with the

spacetime outside of the S0H, we shall not consider further improvements of our

numerical code inside the horizon. The other quantities, such as c2
S and r̃g, are all

given by the first row of Table 3.2.

Following the same steps, we also consider other cases, and some of them are

presented in Tables 3.2-3.3. In particular, in Table 3.2, we fix the ratio of c2/c14 to be

10 During the numerical calculations, we find that the asymptotic behavior (3.113) of the

metric coefficients at ξ ≡ rH/r ' 0 sensitively depends on the value of ÃH . To make our results
reliable, among all the steps in our codes, the precision is chosen to be not less than 37 (Note that
“accuracy” 6= “precision”).
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Table 3.2: c2
S, ÃH and r̃g/rH calculated from different {c2, c14} with c13 = 0 and a

fixed ratio of c2/c14.

c2 c14 c2
S ÃH r̃g/rH

9× 10−7 2× 10−7 4.4999935 2.4558992 1.1450729

9× 10−8 2× 10−8 4.4999994 2.4559003 1.1450730

9× 10−9 2× 10−9 4.4999999 2.4559004 1.1450730

Table 3.3: c2
S, ÃH and r̃g/rH calculated from different {c2, c14} with c13 = 0 and

changing c2/c14.

c2 c14 c2
S ÃH r̃g/rH

2.01× 10−5 2× 10−5 1.0049596 1.4562430 1.0005850

7× 10−7 5× 10−7 1.3999982 1.6196457 1.0381205

9× 10−7 2× 10−8 44.999939 6.4676346 1.2629671

9× 10−5 2× 10−7 449.93921 19.053220 1.3091657

9/2. In addition, the values of {c2, c14} are chosen so that they satisfy the constraints

of Eq. (1.9). In Table 3.3, the ratio c2/c14 is changing and the values of {c2, c14} are

chosen so that they are spreading over the whole viable range of c14, given by Eqs.

(3.6)-(3.8).

From these tables we can see that quantities like ÃH and r̃g are sensitive only

to the ratio of c2/c14, instead of their individual values. This is understandable, as

for c13 = 0 and c14 . 2.5 × 10−5, Eq. (1.7) shows that cS ' cS(c2/c14). Therefore,

the same ratio of c2/c14 implies the same velocity of the spin-0 graviton. Since S0H

is defined by the speed of this massless particle, it is quite reasonable to expect that

the related quantities are sensitive only to the value of cS.

The resulting F̃ , Ã, B̃ and C̃ for the cases listed in Tables 3.2 and 3.3 are

plotted in Figs. 3.4 and 3.5, respectively.
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Figure 3.4: Ã, B̃ and F̃ for different combinations of {c2, c14} listed in Table 3.2
and their corresponding C̃’s. Here the horizontal axis is rH/r. Ã, B̃, F̃ and C̃ are
represented by the red solid line (labeled by a), green dotted line (labeled by b), blue
dash-dotted line (labeled by c) and orange solid line (labeled by d) respectively. To
be specific, (a) and (b) are for the case {9× 10−7, 2× 10−7}, (c) and (d) are for the
case {9 × 10−8, 2 × 10−8}, (e) and (f) are for the case {9 × 10−9, 2 × 10−9}. Note
that the small graphs inserted in (b), (d) and (f) show the amplifications of C̃’s near
r = rH .
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Figure 3.5: Ã, B̃ and F̃ for different combinations of {c2, c14} listed in Table 3.3
and their corresponding C̃’s. Here the horizontal axis is rH/r. Ã, B̃, F̃ and C̃ are
represented by the red solid line (labeled by a), green dotted line (labeled by b), blue
dash-dotted line (labeled by c) and orange solid line (labeled by d) respectively. To
be specific, (a) and (b) are for the case {2.01 × 10−5, 2 × 10−5}, (c) and (d) are for
the case {7 × 10−7, 5 × 10−7}, (e) and (f) are for the case {9 × 10−7, 2 × 10−8}, (g)
and (h) are for the case {9× 10−5, 2× 10−7}. Note that the small graphs inserted in
(b), (d), (f) and (h) show the amplifications of C̃ near r = rH .
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3.5 Physical Solutions (gαβ, u
µ)

The above steps reveal how we find the solutions of the effective metric g̃µν

and aether field ũµ. To find the corresponding physical quantities gµν and uµ, we

shall follow two steps: (a) Reverse Eqs. (3.73) and (3.75) to find a set of the physical

quantities {F (ξ), A(ξ), B(ξ)} (note that we have ξ = r̃S0H/r = rS0H/r). (b) Apply

the rescaling v → C0v to make the set of {F (ξ), A(ξ), B(ξ)} take the standard form

at spatial infinity r =∞.

To these purposes, let us first note that, near the spatial infinity, Eqs. (3.113),

(3.73) and (3.75) lead to

F (ξ) =
C2

0

σ

(
1 + F1ξ +

1

48
c14F

3
1 ξ

3

)
+O

(
ξ4
)
,

B(ξ) =
C0√
σ

(
1 +

1

16
c14F

2
1 ξ

2 − 1

12
c14F

3
1 ξ

3

)
+O

(
ξ4
)
,

A(ξ) =

√
σ

C0

[
1− 1

2
F1ξ +

1

2
A2ξ

2 −
(

1

2
A2F1 −

1

16
F 3

1 +
1

96
c14F

3
1

)
ξ3

]
+O

(
ξ4
)
,

(3.124)

where

F1 = F̃1, c14 = c̃14, A2 =
√
σÃ2 −

3

4
(
√
σ − 1)F̃ 2

1 . (3.125)

The above expressions show clearly that the spacetimes described by (gµν , u
µ) are

asymptotically flat, provided that the effective fields (g̃µν , ũ
µ) are. In particular, setting

C0 =
√
σ, a condition that will be assumed in the rest of this chapter, the functions

F, A and B will take their standard asymptotically-flat forms.

It is remarkable to note that the asymptotic behavior of the functions F, A

and B depends only on c14 up to the third-order of ξ, but c2 will show up starting

from the four-order, ξ4. Besides, one may notice that we won’t have F (r →∞) = 1
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Figure 3.6: The evolutions of the physical quantities F , A, B and J for the case
c13 = 0, c2 = 9 × 10−7 and c14 = 2 × 10−7. Here, A, B, J and F are represented by
the red solid line, green dotted line, orange dashed line, and blue dash-dotted line,
respectively. The positions of r = rMH ∩ F and r = rS0H ∩ J are marked by a small
full solid circle and a pentagram, respectively. Note that we have rMH > rS0H . The
values J+ and J− are given respectively by the brown and purple solid lines with
J+ > J−. The left panel shows the main behaviors of the functions outside the S0H
in the range rS0H/r ∈ (0, 1.105), while the right panel shows their main behaviors
inside the S0H in the range r/rS0H ∈ (0, 1.2).

and F̃ (r →∞) = 1 simultaneously once C0 is chosen (although our calculations show

that they could both be close to 1 at the spatial infinity at the same time). Of course,

this doesn’t matter since F̃ , Ã and B̃ are just some expedient quantities for deriving

physical observables, with later are more crucial for this dissertation.

3.5.1 Metric and Spin-0 Horizons

Again, we take the case of c14 = 2× 10−7, c2 = 9× 10−7, and c3 = −c1 as the

first example. The results for the normalized F , A, B and J in this case are plotted in

Fig. 3.6. To see the whole picture of these functions on r ∈ (0,∞), they are plotted

as functions of r/rH inside the horizon, while outside the horizon they are plotted as

functions of (r/rH)−1. This explains why in the left-hand panel of Fig. 3.6, the MH

(r = rMH) stays in the left-hand side of the S0H, while in the right-hand panel, they

just reverse the order. In this figure, I didn’t plot the GR limits for B and F since
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they are almost overlapped with their counterparts. From the analysis of this case,

we find the following:

(a) The values of F and B are almost equal to their GR limits all the time.

This is true even when r is approaching the center r = 0, at which a spacetime

curvature singularity is expected to be located.

(b) Inside the S0H, the oscillations of A and J become visible, which was also

noted in [86] 11. Such oscillations continue, and become more violent as the curvature

singularity at the center is approaching.

The functions of {F,A,B, J} for the other cases listed in Tables 3.2-3.3 are

plotted in Fig. 3.7. In this figure, the plots are ordered according to the magnitude

of c2
S. Besides, some amplified figures are inserted in (a)-(d) near the region around

the point of F = 0. Similarly, in (e)-(f), some amplified figures are inserted near the

region around the point of J = J+. The position of r = rMH , at which we have

F (rMH) = 0, is marked by a full solid circle, while the position of r = rS0H , at which

we have J(rS0H) = J+ [cf., Eq. (3.51)], is marked by a pentagram, and in all these

cases we always have rMH > rS0H . The values of J+ and J− are given by the brown

and purple solid lines, respectively. Note we always have J+ > J− for cS > 1. By

using these two lines, we can easily observe that there is only one rS0H in each case,

i.e., r+
S0H in Eq. (3.51).

From the studies of these representative cases, we find the following: (i) As

I have already mentioned, in all these cases the functions B and F are very close

to their GR limits. (ii) Changing c2
S won’t influence the maximum of A much. In

11 In [86], the author just considered the oscillational behavior of Ã. The physical quantities
F , A, and B were not considered.
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Figure 3.7: Solutions for different combinations of {c2, c14} listed in Tables 3.2-3.3.
Here, A, B, J and F are represented by the red solid line, green dotted line, orange
dashed line, and blue dash-dotted line, respectively. These figures are ordered ac-
cording to the magnitude of c2

S. In each of the figure, the values J+ and J− are given
respectively by the brown and purple solid lines with J+ > J−, while the positions of
r = rMH∩F and r = rS0H∩J are marked by a small full solid circle and a pentagram,
respectively. Additionally, the value of rMH/rS0H is also given in each case.
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contrast, the maximum of |J | inside the S0H is sensitive to c2
S. (iii) The oscillation of

A(r) gets more violent as c2
S is increasing. (iv) The value of |rMH − rS0H | is getting

bigger as c2
S deviating from 1. (v) In all these cases, we have only one rS0H , i.e., only

one intersection between J(r) and J±, in each case. (vi) Just like what we saw in

Tables 3.2-3.3, in the cases with the same cS (but different values of c14 and c2), the

corresponding functions {F,A,B, J} are quite similar.

From Tables 3.2-3.3 and Fig. 3.7, we would like also to note that the value of

rMH is always close to the corresponding r̃g. To understand this, let us consider Eq.

(3.124), from which we find that

F (ξ) = 1 + F1ξ +
1

48
c14F

3
1 ξ

3 +O
(
ξ4, c14, c2

)
, (3.126)

after normalization. Recall ξ ≡ rH/r and rH ≡ rS0H . Then, from Eqs. (3.122),

(3.113), (3.125) and (3.126), we also find that

r̃g
rS0H

= −F̃1 = −F1. (3.127)

On the other hand, from Eq. (3.49), we have

F (ξ)|r=rMH
= 1 + F1

rS0H

rMH

+
1

48
c14F

3
1

(
rS0H

rMH

)3

+O
(
ξ4, c14, c2

)
= 0, (3.128)

from which we obtain,

rMH

rS0H

= −F1 −
1

48
c14F

3
1

(
rS0H

rMH

)2

+O
(
rS0H

rMH

)3

=
r̃g
rS0H

+
1

48
c14

(
r̃g
rS0H

)3(
rS0H

rMH

)2

+O
(
ξ3, c14, c2

)
, (3.129)

where Eq. (3.127) was used. For the expansion of F to be finite, we must assume

O
(
ξ3, c14, c2

)
. O

[
1

48
c14

(
r̃g
rS0H

)3(
rS0H

rMH

)2
]
. (3.130)
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Figure 3.8: ∆F and ∆B for c2 = 9 × 10−7, c14 = 2 × 10−7 and c13 = 0. The panels
(a) and (c) show the region outside the S0H, while the panels (b) and (d) show the
region inside the S0H.

At the same time, recall that we have c14 . 2.5× 10−5 and rS0H 6 rMH . Besides, we

also have r̃g/rS0H ' O(1). Thus, from Eq. (3.129) we find∣∣∣∣ rMH

rS0H

− r̃g
rS0H

∣∣∣∣ . O(c14). (3.131)

This result reveals why the values of rMH/rS0H and r̃g/rS0H are very close to each

other, although not necessarily the same exactly.

Finally, let us take a closer look at the difference between GR and æ-theory,

although in the above we already mentioned that the results from these two theories

are quite similar. To see these more clearly, we first note that the GR counterparts
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of F and B are given by [35]

FGR = 1− rMH

r
, BGR = 1. (3.132)

Thus, the relative differences can be defined as

∆F ≡ F − FGR

FGR
, ∆B ≡ B −BGR

BGR
. (3.133)

Again, considering the representative case c2 = 9× 10−7, c14 = 2× 10−7 and c13 = 0,

we plot out the differences ∆F and ∆B in Fig. 3.8, from which we find that in

the range ξ ∈ (10−12, 1) we have O(∆F ) . 10−9. On the other hand, in the range

ξ ∈ (1, 1012), we have O(∆F ) . 10−5. Similarly, in the range ξ ∈ (10−12, 1), we have

O(∆B) . 10−8. In addition, in the range ξ ∈ (1, 107) we have O(∆B) . 10−3. Thus,

we confirm that F and B are indeed quite close to their GR limits.

3.5.2 Universal Horizons

In theories with the broken LI, the dispersion relation of a massive particle

contains generically high-order momentum terms [197],

E2 = m2 + c2
kk

2

1 +

2(z−1)∑
n=1

an

(
k

M∗

)n , (3.134)

from which we can see that both of the group and phase velocities become unbounded

as k →∞, where E and k are the energy and momentum of the particle considered,

and ck and an’s are expediently borrowed here denoting some coefficients and they

depend on the species of the particle, while M∗ is the suppression energy scale of the

higher-dimensional operators. Note that there must be no confusion between ck here

and the four coupling constants ci’s of the theory. As an immediate result, the causal

structure of the spacetimes in such theories is quite different from that given in GR,

where the light cone at a given point p plays a fundamental role in determining the
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Figure 3.9: Illustration of the bending of the φ = constant surfaces, and the existence
of the UH in a spherically symmetric static spacetime, where φ denotes the globally
timelike scalar field, and t is the Painlevé-Gullstrand-like coordinates, which covers
the whole spacetime [219]. Particles move always along the increasing direction of φ.
The Killing vector ζµ = δµv always points upward at each point of the plane. The
vertical dashed line is the location of the metric (Killing) horizon, r = rMH . The UH,
denoted by the vertical solid line, is located at r = rUH , which is always inside the
MH.

causal relationship of p to other events [217]. In a UV complete theory, the above

relationship is expected even in the gravitational sector. One of such examples is the

healthy extension [203, 204] of Hořava gravity [193, 197], a possible UV extension of

the khronometric theory (the HO æ-theory [205,206]).

However, once LI is broken, the causal structure will be dramatically changed.

For example, in the Newtonian theory, time is absolute and the speeds of signals are

not limited. Then, the causal structure of a given point p is uniquely determined by

the time difference, ∆t ≡ tp − tq, between the two events. In particular, if ∆t > 0,

the event q is to the past of p; if ∆t < 0, it is to the future; and if ∆t = 0, the two

events are simultaneous. In theories with breaking LI, a similar situation occurs.

115



To provide a proper description of BHs in such a theory, the concepts of UHs

were proposed [89, 90], which represent the absolute causal boundaries. Tachypneic

particles even with infinitely large speeds would just move on these boundaries and

cannot escape to infinity. The main idea is as follows. In a given spacetime, a

globally timelike scalar field (in this subsection, we may call it φ without confusions)

may exist [218]. In the spherically symmetric case, this globally timelike scalar field

can be identified to the HO aether field uµ via the relation (3.27). Then, similar to

the Newtonian theory, this field defines globally an absolute time, and all particles

are assumed to move along the increasing direction of the timelike scalar field, so the

causality is well defined. In such a spacetime, there may exist a surface at which the

HO aether field uµ is orthogonal to the timelike Killing vector, ζ (≡ ∂v) [of course,

this ζ is different from the one in Eq. (2.27)]. Given that all particles move along the

increasing direction of the HO aether field, it is clear that a particle must cross this

surface and move inward, once it arrives at it, no matter how large its speed is. This

is a one-way membrane, and particles even with infinitely large speeds cannot escape

from it, once they are inside it (cf. Fig. 3.9). So, it acts as an absolute horizon to all

particles (with any speed), which is often called the UH [89,90,197]. At the horizon,

as can be seen from Fig. 3.9, we have [211],

ζ · u|r=rUH = − 1

2A
(1 + J)

∣∣∣∣
r=rUH

= 0, (3.135)

where J ≡ FA2. Therefore, the location of an UH is exactly the crossing point

between the curve of J(r) and the horizontal constant line J = −1, as one can see

from Figs. 3.6 and 3.7. From these figures we can also see that they are always

located inside S0Hs, as expected. In addition, the curve J(r) is oscillating rapidly,
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Table 3.4: rUH−i’s for different cases listed in Tables 3.2 and 3.3. Note that here we
just show first several UHs.

c2
S rMH/rUH−1 rMH/rUH−2 rMH/rUH−3 rMH/rUH−4

1.0049596 1.40913534 9.12519836 68.6766490 524.111256

1.3999982 1.39634652 6.27835216 33.1700700 178.825436

4.4999935 1.36429738 2.74101697 6.42094860 15.6447753

4.4999994 1.36429738 2.74101595 6.42094387 15.6447581

4.4999999 1.36429738 2.74101584 6.42094340 15.6447564

44.999939 1.33939835 1.56980254 1.91857535 2.41278107

449.93921 1.33429146 1.39226716 1.46010811 1.53855402

and crosses the horizontal line J = −1 back and forth infinite times. Therefore, in

each case we have infinite number of rUH−i (i = 1, 2, ...). In this case, the UH is

defined as the largest value of rUH−i (i = 1, 2, ...). In Table 3.4, we show the locations

of the first several UHs for each case, listed in Tables 3.2 and 3.3. It is interesting

to note that the formation of multi-roots of UHs was first noticed in [90], and later

observed in gravitational collapse [94].

3.5.3 Other Observational Quantities

Another observationally interesting quantity is the ISCO, which is the root of

the equation,

2rF ′(r)
2 − F [3F ′(r) + rF ′′(r)] = 0. (3.136)

Note that in GR we have rISCO/rH = 3 [220]. Due to the tiny differences between

the Schwarzschild solutions and the ones considered here, as shown in Fig. 3.8, it

is expected that rISCO’s in these cases are also quite close to its GR limit. As a

matter of fact, we find that this is indeed the case, and the differences in all the
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Table 3.5: The quantities γff , rISCO, ωISCO, zmax and bph for different cases listed in
Tables 3.2 and 3.3 .

c2
S γff rISCO/rMH rgωISCO zmax bph/rg

1.0049596 1.62614814 3.00000083 0.13608278 1.12132046 2.59807604
1.3999982 1.63971715 3.00000002 0.13608276 1.12132035 2.59807621
4.4999935 1.67376648 3.00000000 0.13608276 1.12132034 2.59807621
4.4999994 1.67376647 3.00000000 0.13608276 1.12132034 2.59807621
4.4999999 1.67376647 3.00000000 0.13608276 1.12132034 2.59807621
44.999939 1.69777578 3.00000000 0.13608276 1.12132034 2.59807621
449.93921 1.70149318 3.00000000 0.13608276 1.12132034 2.59807621

cases considered above appear only after six digits, that is,
∣∣rISCO − rGRISCO∣∣ ≤ 10−6,

as shown explicitly in Tables 3.5 and 3.6.

In Table 3.5, I also show several other physical quantities. These include the

Lorentz gamma factor γff , the gravitational radius rg, the orbital frequency of the

ISCO ωISCO, the maximum redshift zmax of a photon emitted by a source orbiting

the ISCO (measured at the infinity), and the impact parameter bph of the circular

photon orbit (CPO), which are defined, respectively, by [90],

γff =

(
A+

1

4A

)∣∣∣∣
r=rMH

, (3.137)

rg = −rS0H
dF

dξ

∣∣∣∣
ξ→0

, (3.138)

ωISCO =

√
dF/dr

2r

∣∣∣∣∣
r=rISCO

, (3.139)

zmax =
1 + ωISCOrF

−1/2√
F − ω2

ISCOr
2

∣∣∣∣∣
r=rISCO

− 1, (3.140)

bph =
r√
F

∣∣∣∣
r=rph

, (3.141)

where the radius rph of the CPO is defined as(
2F − rdF

dr

)∣∣∣∣
r=rph

= 0. (3.142)
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As pointed out previously, these quantities are quite close to their relativistic

limits, since they depend only on the spacetimes described by F and B. As shown

in Fig. 3.8, the differences of these spacetimes between æ-theory and GR are very

small. To see this more clearly, let us introduce the quantities,

∆rISCO ≡ rISCO
rMH

−
(
rISCO
rMH

)GR
,

∆ωISCO ≡ rgωISCO − (rgωISCO)GR ,

∆zmax ≡ zmax − (zmax)
GR ,

∆bph ≡
bph
rg
−
(
bph
rg

)GR
, (3.143)

where the GR limits of rISCO/rMH , rgωISCO, zmax and bph/rg are, respectively, 3, 2×

6−3/2, 3/
√

2 − 1 and 3
√

3/2. As can be seen from Table 3.6, all of these quantities

are fairly close to their GR limits.

Therefore, we conclude that it is quite difficult to distinguish GR and æ-theory

through the considerations of the physical quantities rISCO, ωISCO, zmax or bph, as

far as the cases considered in this thesis are concerned. Thus, it would be very

interesting to look for other choices of {c2, c13, c14} (if there exist), which could result

in distinguishable values in these observational quantities.

3.6 Summary

In this chapter, we have systematically studied static spherically symmetric

spacetimes in the framework of Einstein-aether theory, by paying particular attention

to black holes that have regular S0Hs. In æ-theory, a timelike vector - the aether

(field), exists over the whole spacetime. As a result, in contrast to GR, now there are

three gravitational modes, referred to as, respectively, the spin-0, spin-1 and spin-2

gravitons.
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Table 3.6: ∆rISCO, ∆ωISCO, ∆zmax and ∆bph for different cases listed in Tables 3.2
and 3.3 .

c2
S ∆rISCO ∆ωISCO ∆zmax ∆bph

1.0049596 8.3× 10−7 1.3× 10−8 1.2× 10−7 −1.7× 10−7

1.3999982 1.8× 10−8 2.2× 10−10 2.0× 10−9 −3.2× 10−9

4.4999935 4.0× 10−9 1.5× 10−12 4.9× 10−11 −4.2× 10−10

4.4999994 4.0× 10−10 1.5× 10−11 −7.2× 10−11 −3.2× 10−10

4.4999999 4.0× 10−11 2.3× 10−11 −1.2× 10−10 −4.5× 10−10

44.999939 1.5× 10−10 9.6× 10−11 −5.6× 10−10 −1.9× 10−9

449.93921 1.1× 10−9 1.1× 10−11 −4.5× 10−10 −1.1× 10−9

To avoid the vacuum gravi-Čerenkov radiation, all these modes must propagate

with speeds greater than or at least equal to the speed of light [38]. However, in the

spherically symmetric spacetimes, only the spin-0 mode is relevant in the gravitational

sector [27], and the boundaries of BHs are defined by this mode, which are the null

surfaces with respect to the metric g
(S)
µν defined in Eq. (3.2), the so-called S0Hs. Since

now cS ≥ c, where cS is the speed of the spin-0 mode, the S0Hs are always inside or at

most coincide with the metric (Killing) horizons. Then, in order to cover spacetimes

both inside and outside the MHs, working in the Eddington-Finkelstein coordinates

(3.35) is one of the natural choices.

In the process of gravitational radiations of compact objects, all of these three

fundamental modes will be emitted, and the GW forms and energy loss rate should

be different from that of GR (see last chapter). In particular, to the leading or-

der, both monopole and dipole emissions will co-exist with the quadrupole emis-

sion [32, 42, 58, 62, 63, 67, 68]. Despite of all these, it is remarkable that the theory

still remains as a viable theory, and satisfies all the constraints, both theoretical and
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observational [60], including the recent detection of the GW, GW170817, observed

by the LIGO/Virgo collaboration [201], which imposed the severe constraint on the

speed of the spin-2 gravitational mode, −3 × 10−15 < cT − 1 < 7 × 10−16. Conse-

quently, it is one of few theories that violate Lorentz symmetry and meantime is still

consistent with all the observations carried out so far [60,65].

Spherically symmetric static BHs in æ-theory have been extensively studied

both analytically [33,75–84] and numerically [86–92], and various solutions have been

obtained. Unfortunately, all these solutions have been ruled out by current observa-

tions [60].

Therefore, as a first step, this chapter has investigated spherically symmetric

static BHs in æ-theory that satisfy all the observational constraints found lately in [60]

in detail, and presented various numerical new BH solutions. In particular, it has first

shown explicitly that among the five non-trivial field equations, only three of them

are independent. More importantly, the two second-order ODEs given by Eqs. (3.39)

and (3.40) for the two functions F (r) and A(r) are independent of the function B(r),

where F (r) and B(r) are the metric coefficients of the Eddington-Finkelstein metric

(3.35), and A(r) describes the aether field, as shown by Eq. (3.36). Thus, one can

first solve Eqs. (3.39) and (3.40) to find F (r) and A(r), and then from the third

independent equation to find B(r). Another remarkable feature is that the function

B(r) can be obtained from the constraint (3.44), and is given simply by the algebraic

expression of F, A and their derivatives, as shown explicitly by Eq. (3.45). This not

only saves the computational labor, but also makes the calculations more accurate,

as pointed out explicitly in [90], solving the first-order differential equation (3.41) for
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B(r) can “potentially be affected by numerical inaccuracies when evaluated very close

to the horizon”.

Now solving the (vacuum) field equations of spherically symmetric static space-

times in æ-theory simply reduces to solving the two second-order differential equations

(3.39) and (3.40). This will considerably simplify the mathematical computations,

which is very important, especially considering the fact that the field equations in-

volved are extremely intricate, as one can see from Eqs. (3.39)-(3.44) and (E.1) -

(E.4). Then, in the case c13 = c14 = 0 we have been able to solve these equations

explicitly, and obtained a three-parameter family of exact solutions, which in gen-

eral depends on the coupling constant c2. However, requiring that the solutions be

asymptotically flat, we have found that the solutions become independent of c2, and

the corresponding metric reduces precisely to the Schwarzschild BH solution with a

non-trivially coupling aether field given by Eq. (3.68), which is always timelike even

in the region inside the BH.

To simplify the problem further, we have also taken the advantage of the field

redefinitions that are allowed by the internal symmetry of æ-theory, first discovered by

Foster in [200], and later were used frequently, including the works of [86,88,90]. The

advantage of the field redefinitions is that it allows us to choose the free parameter

σ involved in the field redefinitions, so that the S0H of the redefined metric g̃µν

will coincide with its MH. This will reduce the four-dimensional space of the initial

conditions, spanned by {F̃H , F̃ ′H , ÃH , Ã′H}, to one-dimension, spanned only by ÃH ,

if the initial conditions are imposed on the S0H. In Sec.3.4.1, we have shown step by

step how one can do it. In addition, in this same subsection we have also shown that

the field equations are invariant under the rescaling r → Cr (C denotes an arbitrary
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non-zero number). In fact, introducing the dimensionless coordinate ξ ≡ rS0H/r, the

relevant four field equations take the scaling-invariant forms of Eqs. (3.108) - (3.111),

which are all independent of rS0H . Thus, when integrating these equations, without

loss of generality, one can assign any value to rS0H .

We would like also to note that in Section 3.3 we worked out the relations in

detail among the fields (gµν , u
µ, ci), (ĝµν , û

µ, ĉi) and (g̃µν , ũ
µ, c̃i), and clarified several

subtle points. In particular, the redefined metric ĝµν through Eqs. (3.11) and (3.12)

does not take the standard form in the Eddington-Finkelstein coordinates, as shown

explicitly by Eq. (3.69). Instead, only after a proper coordinate transformation given

by Eqs. (3.70) and (3.71), the resulting metric g̃µν takes the standard form, as given

by Eq. (3.72). Then, the field equations for (g̃µν , ũ
µ, c̃i) take the same forms as the

ones for (gµν , u
µ, ci). Therefore, when we solved the field equations in terms of the

redefined fields, they are the ones of (g̃µν , ũ
µ), not the ones for (ĝµν , û

µ).

After clarifying all these subtle points, in Sec.3.4, we have worked out the

detail of how to explicitly carry out our numerical analysis. In particular, to monitor

the numerical errors of our code, we have introduced the quantity C̃ through Eq.

(3.123), which is essentially Eq. (3.99). Theoretically, it vanishes identically. But,

due to numerical errors, it is expected that C̃ has non-zero values, and the amplitude

of it will provide a good indication on the numerical errors that our numerical code

could produce.

To show further the accuracy of our numerical code, we have first reproduced

the BH solutions obtained in [86, 90], but with an accuracy that are at least two

orders higher (cf. Table 3.1). It should be noted that all these BH solutions have

been ruled out by the current observations [60]. So, after checking our numerical code,
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in Sec.3.4.2, we considered various new BH solutions that satisfy all the observational

constraints [60], and presented them in Tables 3.2 and 3.3, as well as in Figs. 3.3-3.5.

Then, in Sec.3.5, we have presented the physical metric gµν and æ-field uµ for

these viable new BH solutions obtained in the previous section. Before presenting the

results, we have first shown that the physical fields, gµν and uµ, are also asymptotically

flat, provided that the effective fields g̃µν and ũµ are [cf. Eqs. (3.124) and (3.125)].

Then, the physical BH solutions were plotted out in Figs. 3.6 and 3.7. Among

several interesting features, we would like to point out the different locations of the

metric and spin-0 horizons for the physical metric gµν , denoted by full solid circles

and pentagrams, respectively.

Another interesting point is that all these physical BH solutions are quite

similar to the Schwarzschild one. In Fig. 3.8 we have shown the differences for the

case c2 = 9 × 10−7, c14 = 2 × 10−7 and c13 = 0, but similar results also hold for the

other cases, exhibited in Tables 3.2 and 3.3.

In this section, we have also identified the locations of the UHs of these solu-

tions and several other observationally interesting quantities, which include the ISCO

rISCO, the Lorentz gamma factor γff , the gravitational radius rg, the orbital fre-

quency ωISCO of the ISCO, the maximum redshift zmax of a photon emitted by a

source orbiting the ISCO (measured at the infinity), the radii rph of the CPO, and

the impact parameter bph of the CPO. All of them are given in Table 3.4-3.5. In

Table 3.6 we also calculated the differences of these quantities obtained in æ-theory

and GR. Looking at these results, we conclude that it’s very hard to distinguish GR

and æ-theory through these quantities, as far as the cases considered in this paper are

concerned. We would also like to note that for each BH solution, there are infinite
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number of UHs, r = rUH−i, (i ∈ Z+), which was also observed in [90]. In Table

3.4 I have listed the first eight of them, and the largest one is usually defined as the

UH of the BH. In contrast, there are only one S0H and one MH for each solution.

These features are also found in the gravitational collapse of a massless scalar field in

æ-theory [94].

An immediate implication of the above results is that the QNMs of these BHs

for a test field, scalar, vector or tensor [73], will be quite similar to these given in GR.

Our preliminary results on such studies indicate that this is indeed the case at least

for particles with finite speeds. However, we expect that there should be significant

differences from GR, when we consider the metric perturbations of these BH solutions

- the gravitational spectra of perturbations [74], as now the BH boundaries are the

locations of the S0Hs, not the locations of the MHs. This should be specially true

for the cases with large speeds cS of the spin-0 modes, as in these cases the S0Hs are

significantly different from the MHs, and located deeply inside them. Thus, imposing

the non-out-going radiation on the S0Hs will be quite different from imposing the

non-out-going radiation on the corresponding MHs. Some of our premature attempts

indicate that this conjecture is probably true. However, much more efforts are still

needed to obtain some concrete evidences. We wish to report our results along this

direction soon in another occasion.
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CHAPTER FOUR

Quasi-normal Modes of Black Holes in Einstein-Aether Theory

4.1 Introduction to Quasi-normal Modes

In this chapter, we shall focus on the calculations of quasi-normal mode (QNM)

frequencies (or simply referred as QNMs) in Einstein-aether theory (æ-theory). Spe-

cially, we will calculate within the circumstance of spherically symmetric static space-

times. It should be noticed that this task has not been fully accomplished yet and

we are still working on that. In this chapter we will only show some current results.

From the classical point of view, QNMs are eigenmodes of dissipative systems.

The information contained in QNMs provide the keys in revealing whether black holes

(BHs) are ubiquitous in our universe, and more important whether general relativity

(GR) is the correct theory to describe the event even in the strong field regime.

Readers may find a whole picture of the related concepts in [72]. Basically, the QNM

frequency ω contains two parts. Its real part gives the frequency of vibration while

its imaginary part provides the damping time. In other words, the ω we are going to

calculate is a complex number (although it could be purely imaginary).

QNMs in GR have been studied extensively. Some relative studies have been

done for scalar, vector and gravitational perturbations [221]. Besides, the calculation

has been extended from Schwarzschild BHs [222] to other more general cases, e.g.,

Kerr BHs [223,224]. In this procedure, several different techniques of calculations were

developed. For instance, the Wentzel-Kramers-Brillouin (WKB) approach [225–228],

the continued fraction method [229], etc. [230–232]. Some of these methods are also
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effective in different modified theories of gravity [233,234]. Additionally, some special

scenarios, e.g., the eikonal limit, are studied [235].

As has been mentioned in previous chapters, the detection of the first grav-

itational wave (GW) from the coalescence of two massive black holes by advanced

LIGO marked the beginning of a new era, the GW astronomy [14]. Following this

observation, soon more than ten GWs were detected by the LIGO/Virgo scientific

collaboration [16, 161, 162]. In the future, more ground- and space-based GW detec-

tors will be armed for us [109,148,171], which enable us to probe more weak signals.

This triggered the interests on the QNM signals from GWs, especially those from the

late-merger and ringdown stages [66].

In fact, in GR according to the no-hair theorem, an isolated and stationary BH

is completely characterized by only three quantities, mass, spin angular momentum

and electric charge. Astrophysically, we expect BHs to be neutral, so it must be

described by the Kerr solution. Then, the quasi-normal frequencies and damping

times will depend only on the mass and angular momentum of the final BH. Therefore,

to extract the physical information from the ringdown phase, at least two QNMs

are needed. This will require the signal-to-noise ratio (SNR) to be of the order

100. Although such high SNRs are not achievable right now, it has been shown

that they may be achievable once the advanced LIGO and Virgo reach their design

sensitivities. In any case, it is certain that they will be detected by the ground-based

third-generation detectors, such as Cosmic Explorer or the Einstein Telescope, as well

as the space-based detectors, including LISA, TianQin [71], Taiji, and DECIGO [109].

In GR, the boundary of a test particle is at the metric horizon (MH) of a BH. In

other words, a MH is the boundary of a test particle with the speed of light (referred
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as c). However, we will have a different story in æ-theory, which breaks the Lorentz

invariance (LI). Such a theory allows tachyonic particles to exist. Immediately, some

other horizons arise besides the MH, e.g., the spin-0 horizon (S0H), spin-1 horizon

(S1H), etc.. These horizons correspond to different types of gravitons with different

speeds [in æ-theory, we mean cS, cV and cT , cf. (1.7)]. Some attempts to the QNMs

in æ-theory have been done by Konoplya [73, 74]. However, for a certain type of

graviton, we need to set the boundary at one of these non-relativistic horizons. A

consequence is that some steps introduced in [73] are not valid any more. Therefore,

we need to include some additional techniques to generalize the existing techniques

in the literature.

Some solutions to the background metric and æ-field (the æ-field is a unit and

timelike 4-vector in æ-theory) for specific spherically symmetric static spacetimes

have been obtained in [95]. Specially, we got a set of analytic solutions for an ad hoc

case, namely, c13 = c14 = 0 (see Chapter Three for more details). By using these

analytic solutions, the QNMs from our field equations become much more accessible

(although there are still many tough barriers). To be more specific, some QNMs

could be solved from the field equations by introducing the shooting method and

other related techniques. More details are provided in the following article.

The rest of this chapter is organized as follows: In Sec.4.2, we briefly review

some important things provided in the previous chapters. Sec.4.3 shows the main

steps for achieving the field equations we need. Note that we will focus on the

odd-parity gravitational perturbations. Sec.4.4 shows the current attempts for the

calculations of QNMs in æ-theory by using the shooting method. Following from the

calculations, some comments are given.
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4.2 A Quick Review

4.2.1 Particle and Universal Horizons

Since æ-theory possesses three different modes, and all of them are moving in

different speeds, in general these different modes define different horizons [27]. These

horizons are the null surfaces of the effective metrics,

g
(A)
αβ ≡ gαβ −

(
c2
A − 1

)
uαuβ, (4.1)

where A = S, V, T . The null surfaces for A = S, V, T are called spin-0 horizon (S0H),

spin-1 horizon (S1H) and spin-2 horizon (S2H), respectively. These three different

horizons will be also referred as particle horizons for the corresponding gravitons,

and are given by

g
(A)
αβ N

αNβ
∣∣∣
r=rS

= 0, (4.2)

where Nµ = δrµ, S stands for S0H, S1H, S2H, and rS refers to the position of the

corresponding horizon.

In contrast, the metric horizon is the null surface of metric gαβ, or a particle

horizon of g
(A)
αβ with cA = 1, given by

gαβN
αNβ

∣∣
r=rMH

= 0, (4.3)

where rMH is the position of MH.

If a BH is defined to be a region that traps all possible causal influences, it

must be bounded by a horizon corresponding to the fastest speed. In theories with the

broken LI, the dispersion relation of a massive particle contains generically high-order

momentum terms [197],

E2 = m2 + p2
kk

2

1 +

2(z−1)∑
n=1

qn

(
k

M∗

)n , (4.4)
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from which we can see that both of the group and phase velocities become unbounded

as k →∞, where E and k are the energy and momentum of the particle considered,

and pk and qn’s are coefficients, depending on the species of the particle, while M∗

is the suppression energy scale of the higher-dimensional operators. Therefore, in

theories with the broken LI, a BH should be defined to be a region that traps all

possible causal influences, including particles with arbitrarily large velocities (cA →

∞). Does such a region exist?

To answer the above question, let us first note that the causal structure of

spacetimes in such theories is quite different from that given in GR, where the light

cone at a given point p plays a fundamental role in determining the causal relationship

of p to other events [217]. In a UV complete theory, the above dispersion relationship

is expected even in the gravitational sector. In such theories, the causal structure is

dramatically changed. For example, in the Newtonian theory, time is absolute and

the speeds of signals are not limited. Then, the causal structure of a given point p is

uniquely determined by the time difference, ∆t ≡ tp− tq, between the two events (cf.

Fig. 4.1). In particular, if ∆t > 0, the event q is to the past of p; if ∆t < 0, it is to

the future; and if ∆t = 0, the two events are simultaneous.

In theories with breaking LI, a similar situation occurs. Thus, to build the

causal structure of spacetimes in such theories, a globally time-like “coordinate”

should be first introduced [89, 90]. In particular, for a given spacetime, we first

introduce a globally timelike scalar field φ [218]. In the spherically symmetric case,

this globally timelike scalar field can be identified as the aether field uµ via the re-

lation (3.34). Then, similar to the Newtonian theory, this field defines globally an

absolute time, and all particles are assumed to move along the increasing direction
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p

t

Figure 4.1: Illustration of causal structures of spacetimes in different theories of
gravity [217]: (a) The light cone of the event p in special relativity. (b) The causal
structure of the event p in Newtonian theory.

of the timelike scalar field, so the causality is well defined (cf. Fig. 3.9). In such a

spacetime, there may exist a surface at which the aether field uµ is orthogonal to the

timelike Killing vector, ζ (≡ ∂v), where v denotes the ingoing Eddington-Finkelstein

(EF) coordinate [See Eq. (3.135) and related context for more information.].

4.2.2 A Particular Background Metric

When c13 = c14 = 0, we have shown a particular class of solutions of the

Einstein-aether field equations [95],

F (r) = 1− rs
r
, B(r) = 1, A(r) = −w2 ±

√
w2

2 + 4r3(r − rs)
2r(r − rs)

, (4.5)

where rMH = rs ≡ 2m is the Schwarzschild radius. As r → ∞, we find that

limr→∞A(r) = ∓1. Thus, without loss of the generality, we shall choose the “-”

sign in the above expression for A(r), so that limr→∞A(r) = +1, which is also con-

sistent with the asymptotic flatness conditions adopted in [95]. Then, to have a UH

exist, we must set w2 = 3
√

3r2
s/8 [211], for which the UH is located at

rUH =
3

4
rs. (4.6)
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Note that in the current case we have cS = cV =∞ and cT = 1, as can be seen from

Eq. (1.7), which impies that in the current case the S0H and S1H coincide with the

UH, while the S2H coincides with the MH.

It is interesting to note that in this particular case, the aether field has no

influence on the spacetime geometry, as it is still the Schwarzschild. However, the

aether field is non-trivial, and quite different from the one given in the Minkowski

spacetime.

4.3 Linear Perturbations and Master Equations

Now, let us consider the perturbations to the background solutions given by

Eq. (4.5) with w2 = 3
√

3r2
s/8. To distinguish them from the perturbed ones, we

denote them by ḡµν and ūµ, respectively, so the total metric and aether field are given

by

gµν = ḡµν + εhµν , uµ = ūµ + εwµ, (4.7)

where ε is a book-marker (which is different from the one appearing in Chapter Three),

and we expand the perturbations only to its first-order. Later, we can safely set it to

one. To write out explicitly the forms of the perturbations, we first note that in the

literature they are usually written in the Schwarzschild coordinates, xµ = {t, r, θ, ϕ},

where t is related to the EF ingoing coordinate v by v = t+ f(r) with df/dr = B/F ,

for which the background metric and aether field take the forms of

ds2 = −F (r)dt2 +
B2(r)

F (r)
dr2 + r2dΩ2, (4.8)

ūα∂α =
FA2 + 1

2AF
∂t +

FA2 − 1

2AB
∂r. (4.9)
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Clearly, this metric becomes singular at the MH, F (rs) = 0, so that the coordinates

cannot cover the whole region r ∈ (0,∞). However, we can first write down the

perturbations in these “canonical” coordinates, and once this is done, we transfer

them back to the EF coordinates, as in the latter both the background and its linear

perturbations are valid in the whole range of r ∈ (0,∞). This is crucial, as now the

inner boundary is not at the MH, r = rs, but rather at the UH, r = rUH = 3rs/4,

which is inside the MH. Therefore, to impose the two boundary conditions at r =

rUH, ∞ simutananeously, working out the linear perturbations in the EF coordinates

is needed.

With the above in mind, and working with only the the odd-parity part, we

find that hµν and wµ in spherical coordinate can be cast in the forms [236],

hµν = −1

2

∞∑
l=0

l∑
m=−l

r

B



0 0 −2Clm csc θ∂ϕ 2Clm sin θ∂θ

0 0 2Jlm csc θ∂ϕ −2Jlm sin θ∂θ

sym sym G1 sym

sym sym G3 G2


Ylm(θ, ϕ),

(4.10)

wµ =
∞∑
l=0

l∑
m=−l

1

r



0

0

−alm csc θ∂ϕ

alm csc θ∂θ


Ylm(θ, ϕ), (4.11)

with the three operators given by

G1 ≡ −2rGlm csc θ
(

cot θ∂ϕ − ∂θ∂ϕ
)
,

G2 ≡ 2rGlm

(
cos θ∂θ − sin θ∂θ∂ϕ

)
,

G3 ≡ rGlm

(
csc θ∂2

ϕ + cos θ∂θ − sin θ∂2
θ

)
, (4.12)
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where Ylm(θ, ϕ) stands for the spherical harmonics, and Clm, Glm, Jlm and alm are

functions of t and r only. Note that when calculating the field equations we will

employ the trick by setting m = 0 in the above expressions so that ∂ϕYlm(θ, ϕ) = 0,

as now the background has the spherical symmetry, and the corresponding linear

perturbations do not depend on m [236,237].

4.3.1 Gauge Transformation

For later convenience, we first investigate the infinitesimal gauge transforma-

tion (Recall that we only consider the odd-parity part and the m = 0 case.)

xα → x′α = xα + εξα, (4.13)

where

ξα =

{
0, 0, 0,

csc θ∂θYlm(θ, φ)

rB
Q(t, r)

}
. (4.14)

Under the transformation of Eq. (4.13), we have (See, e.g., [28].)

∆wµ ≡ (wµ)new − (wµ)old = −Lξūµ,

∆hab ≡ (hab)new − (hab)old = −Lξḡab, (4.15)

where L stands for the Lie derivative [35]. From Eq. (4.15) we find

∆Clm ≡ (Clm)old − (Clm)new = −Q̇,

∆Glm ≡ (Glm)old − (Glm)new =
2

r
Q,

∆Jlm ≡ (Jlm)old − (Jlm)new = Q′ −Q
(

1

r
+
B′

B

)
,

∆alm ≡ (alm)old − (alm)new =
W (B + rB′)

rB2
Q− W

B
Q′ − K

B
Q̇, (4.16)

where K ≡ ūt, W ≡ ūr [this W does not equal to the one in (3.58)], and a prime and

a dot stand for the derivatives with respect to r and t, respectively. With the above
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gauge transformations, we can construct the gauge-invariant quantities, and due to

the presence of the aether field, three such independent quantities can be constructed,

in contrast to relativistic case, in which only two such quantities can be constructed.

These three gauge invariants can be defined as

Xlm(t, r) ≡ Ġlm +
2

r
Clm,

Ylm(t, r) ≡ J̇lm −
(

1

r
+
B′

B

)
Clm + C ′lm,

Zlm(t, r) ≡ rB′WGlm +B (2KClm − rWG′lm)− 2B2alm. (4.17)

Of course, any combination of these quantities is also gauge-invariant. By properly

fixing the gauge, the resultant field equations will be simplified considerably. In the

current case, we find that one of the most convenient gauges is to set (Clm)new = 0.

4.3.2 Linearized Field Equations

When the spacetimes are vacuum, we have Tµν = 0, Tµ = 0, and then the field

equations (2.5) and (2.6) reduce to

Eµν ≡ Gµν − Sµν = 0, (4.18)

Æµ = 0, (4.19)

where Gµν ≡ Rµν − gµνR/2. To the first-order of ε and with the gauge Clm = 0, we

find that there are only four non-trivial equations, which are given by Eφt = Eφr =

Eφθ = Æφ = 0, and can be cast in the forms of

α101alm + α102Jlm + α103a
′
lm + α104J

′
lm + α105a

′′
lm + α106J

′′
lm + α107ȧlm + α108J̇lm

+ α109ȧ
′
lm + α110J̇

′
lm + α111älm + α112J̈lm + α113Ġlm = 0, (4.20)

α201alm + α202Jlm + α203a
′
lm + α204J

′
lm + α205a

′′
lm + α206J

′′
lm + α207ȧlm + α208J̇lm

+ α209ȧ
′
lm + α210J̇

′
lm + α211älm + α212J̈lm + α213G

′
lm = 0, (4.21)
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α301Jlm + α302J
′
lm + α303G

′
lm + α304G

′′
lm + α305G̈lm = 0, (4.22)

α401alm + α402Jlm + α403a
′
lm + α404J

′
lm + α405a

′′
lm + α406J

′′
lm + α407ȧlm + α408J̇lm

+ α409ȧ
′
lm + α410J̇

′
lm + α411älm + α412J̈lm = 0. (4.23)

It is interesting to note that the coefficients αabc are functions of r, c1 and l only,

and are given explicitly in Appendix F. However, there are only three independent

unknowns, Glm, Jlm and alm. Therefore, one of the above equations must depend on

the other three. As to be shown below, this is indeed the case.

4.3.3 Master Equation

Combining Eqs. (4.20), (4.21) and (4.23), we obtain the following master

equation, (
− ∂2

∂t2
+ η1

∂2

∂r2
+ η2

∂

∂r
+ η3

)
Ylm(t, r) = 0, (4.24)

where Ylm = J̇lm for our current gauge choice Clm = 0, and

η1(r) ≡ (r − rs)2

r2
, η2(r) ≡ (r − rs)(4r − 3rs)

r3
,

η3(r) ≡ −(r − rs)[(l + 2)(l − 1)r − 3rs]

r4
. (4.25)

It should be noted that the above equation is quite different from the one obtained

in GR [236, 237], due to the presence of the aether field, although the background

spacetime is still Schwarzschild. In addition, the above equation is scaling-invariant

under (t, r)→ (t/rs, r/rs). In fact, this is a general feature of Einstein-aether theory

with spherical symmetry, as shown explicitly in [95]. Therefore, without loss of the

generality, in the rest of this chapter we shall set rs = 1.

As mentioned above, the (t, r)-coordinates cover the black hole spacetime only

to the outside region r > rs, and so does Eq. (4.24). To extend it to cover also inside
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region r < rs of the black hole spacetime, we can simply transfer this master equation

back to the (v, r)-coordinates. This kind of coordinate transformations could be done

either in the final step or at the very beginning. I actually tested both ways and

the results are identical (The details are omitted here.). In (v, r, θ, φ) coordinate (EF

coordinate), we have(
4F

r

∂

∂v
+ 2F

∂2

∂v∂r
+ η1

∂2

∂r2
+ η2

∂

∂r
+ η3

)
Ylm = 0, (4.26)

where F = 1−rs/r. Note that in writing the above expression we had also set B = 1.

4.3.4 Equations for Glm and alm

On the other hand, for the gauge choice Clm = 0, from Eq. (4.17) one finds

that Xlm = Ġlm. Then, properly assembling Eqs. (4.20), (4.21) and (4.23), we get

Xlm =
2(r − 1)

(l + 2)(l − 1)r

(
3 + r

∂

∂r

)
Ylm. (4.27)

Therefore, once the master equation (4.24) is solved for Ylm, the above expression

will directly give Xlm, for which we find that

Glm(t, r) =

∫
Xlm(t, r)dt+ Ĝlm(r), (4.28)

where Ĝlm(r) is an arbitrary function of r only. However, using a gauge residual led

by Q(t, r), we can always set it to zero. Note that, with this choice the gauge residual

is completely fixed.

Substituting Eqs. (4.27) and (4.28) into Eq. (4.22), we find it is satisfied

automatically. Therefore, we conclude that Eq. (4.22) is not independent, and can

be derived from Eqs. (4.20), (4.21) and (4.23). This confirms one of the previous

statements.
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Finding the equation for alm is more elaborated. First, from Eq. (4.23) we

find (
∂2

∂t2
+ η4

∂

∂t
+ η5

∂2

∂t∂r
+ η6

∂2

∂r2
+ η7

∂

∂r
+ η8

)
alm = S(Jlm, r, l), (4.29)

where

η4(r) ≡ +
2r[4r(4r − 1)− 3] + 9

3
√

3r2
√

8r(2r + 1) + 3
,

η5(r) ≡ −
2
√

3(4r − 3)(r − 1)
√

8r(1 + 2r) + 3

9r
,

η6(r) ≡ +
(4r − 3)2(r − 1)2[8r(2r + 1) + 3]

27r2
,

η7(r) ≡ +
2(4r − 3)(r − 1)2[4r(4r(4r + 1) + 3) + 9]

27r3
,

η8(r) ≡ − 2(r − 1)2

27r4[8r(2r + 1) + 3]

×
[
8r
(
128

(
l2 + l − 4

)
r4 + 48

(
l2 + l − 4

)
r3

+256l(l + 1)r5 + 486r + 243
)

+ 729
]
. (4.30)

and

S(Jlm, r, l) =
3
√

3

16r2
J̈lm −

(r − 1)(4r − 3)
√

8r(2r + 1) + 3

8r3
J̇ ′lm

+
2r(8r + 1)(4r(4r − 5) + 3) + 45

16r4
√

8r(2r + 1) + 3
J̇lm

+
(3− 4r)2(r − 1)2(8r(2r + 1) + 3)

48
√

3r4
J ′′lm

−(r − 1)2(4r − 3)(4r(4r(4r − 3)− 9)− 27)

24
√

3r5
J ′lm

− (r − 1)2

6
√

3r6 (16r2 + 8r + 3)

×
[
512

(
l2 + l − 2

)
r6 + 256

(
l2 + l + 2

)
r5 + 32

(
3l2 + 3l + 14

)
r4

+ 384r3 + 432r2 + 216r + 81
]
Jlm. (4.31)

In Fig. 4.2, we plot the coefficients η4 - η8 so that we could see their ranges.
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Figure 4.2: Behaviors of the coefficients η4 - η8 as functions of r. The upper panel
shows the functions of η4 - η7. The lower panel shows η8 for several different l’s. In
both panels, the positions of rUH and rMH are marked by magenta and brown vertical
lines, respectively.

Next, introducing a tortoise-like coordinate

r̃? ≡
∫

dr
√
η6

=
3
√

3

4
√

2
sinh−1

[
16r + 6√
2|4r − 3|

]
− sinh−1

[
20r + 7

4
√

2|r − 1|

]
, (4.32)

we find that Eq. (4.29) takes the form(
∂2

∂u2
+ η4

∂

∂u
+ η8

)
alm = S(Jlm, u, r), (4.33)

where u ≡ t−r̃?. Clearly, S(Jlm, u, r) represents the source for the aether perturbation

alm, and once the master equation (4.24) is solved, we can obtain alm from Eq. (4.33).

It is remarkable to note that, in contrast to the master equation (4.24), Eq.

(4.33) is not singular across the metric horizon r = rs. Therefore, for any given Jlm,

we can simply replace t by

t = v −
∫
B

F
dr = v − r − ln(r − 1)

≡ v − r∗, (4.34)

in the expression of u, that is, u = t − r̃? = v − r∗ − r̃?, and then integrating Eq.

(4.33) to find alm. Clearly, such obtained alm should be valid over the whole range

of r ∈ (0,∞). With the above in mind, a general solution to Eq. (4.33) is given by
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(See, e.g., [214].)

alm(u, r) = C1e
κ+u + C2e

κ−u

+
eκ+u

κ+ − κ−

∫
e−κ+uS(Jlm, u, r)du

− eκ−u

κ+ − κ−

∫
e−κ−uS(Jlm, u, r)du, (4.35)

where C1 and C2 are two arbitrary functions of r (Don’t confuse them with the ones

in Chapter Three.), and κ± are given by

κ±(r) =
−η4 ±

√
η2

4 − 4η8

2
. (4.36)

4.4 QNMs of BHs in Æ-heory

From the last section, we can see that solving the linearized Einstein-aether

field equations now reduce to solving the master equation (4.26). For physical bound-

ary conditions, at the UH (r = rUH) we require pure in-going waves while at the

spatial infinity (r =∞) we require pure out-going waves. Now, with an ODE (4.26)

and known boundary conditions, we have a complete system so this problem could

in principle be solved. As in GR, Eq. (4.26) has solutions only for some particular

choices of ω, which form the spectrum of the QNMs of the corresponding BH. Due

to the differences on master equations as well as boundary conditions, it is expected

that the corresponding spectrum of the QNMs is different from GR.

Note that the coefficients of the master equation do not depend on v, so the

general solution takes the form,

Ylm(v, r) = e−iωv(r − 1)2iωΨlm(r), (4.37)

from which Eq. (4.26) becomes,(
α1

d2

dr2
+ α2

d

dr
+ α3

)
Ψ(r) = 0, (4.38)

140



where

α1(r) ≡ (r − 1)2

r2
,

α2(r, ω) ≡ (r − 1)[4r − 2i(r − 2)rω − 3]

r3
,

α3(r, ω, l) ≡ (r − 1)

r4
{3 + r[2− l(l + 1) + 4rω(ω − i) + 6iω]}. (4.39)

Note that when writing down Eq. (4.38), for the sake of simplicity, we had omitted

the subscript lm (Here, l stands for the orbital angular momentum quantum number

while m is the magnetic quantum number [238]. Note that here is also a principal

quantum number, viz., n.) for Ψ without causing any confusion.

In this section, we are going to solve Eq. (4.38) to find out the spectrum of

ω. It is worth mentioning here that we have many different candidate methods to

choose, just like in GR and some other modified theories. However, here we will try

to mimic Chandrasekhar’s method [222] only since all the other methods we know

just failed. This also implies how cranky our problem is (That is mainly due to the

existence of the singularity at r = 1. We have different ways to tackle it to a certain

degree, but we can never absolutely get rid of it.).

4.4.1 “Initial” Value Problem and Boundary Conditions

For later usage, I want to generate some boundary conditions (which should

be consistent the physical ones mentioned previously) at r =3/4, 1 and ∞.

First of all, by introducing

ψ(r) ≡ r2e−irω(r − 1)iωΨ, (4.40)

we find that Eq. (4.38) can be cast in the form,(
ω2 +

d2

dr2
∗
− Vg

)
ψ = 0, (4.41)
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where

Vg(r, l) ≡
(r − 1)[l(l + 1)r − 3]

r4
, (4.42)

and r∗ is the tortoise coordinate defined in Eq. (4.34). Note that Vg is the same as

the one in GR [230]. Clearly, as r → +∞ Eq. (4.41) has the general solutions,

ψ|r→∞ = ψ̂+e
iωr∗ + ψ̂−e

−iωr∗ , (4.43)

where ψ̂± are two integration constants. But considering the physical requirements,

we must set ψ̂− = 0. Thus, when r is very large but finite, we expect ψ(r) to take

the form,

ψ = eiωr∗
∞∑
n=0

an
rn
, (4.44)

where an are constants. Inserting it together with Eq. (4.40) into Eq. (4.37), we find

that

Y(t, r) = e−iω(t−r)

[
(r − 1)iω

r2

∞∑
n=0

an
rn

]
, (4.45)

which indeed represents a pure out-going wave. On the other hand, substituting it

into Eq. (4.41), we find that an’s satisfy the following recursion relation,

0 = −2inωan +
[
(n− 1)(n+ 2iω)− l2 − l

]
an−1

+
(
l2 + l − 2n2 + 5n+ 1

)
an−2 + (n− 4)nan−3, (4.46)

from which we can write all an’s (n ≥ 1) in terms of a0. Without loss of the generality,

we can always set a0 = 1, as to be shown below.

In principle, once the boundary conditions are given, we can solve Eq. (4.38)

to find out the spectrum of ω for any given l. However, noticing that Eq. (4.38) is

singular at the MH (r = rs), we have to solve Eq. (4.38) on r ∈ [rUH , r−] ∪ [r+,∞),

with r∓ ≡ rs∓ ε and ε� rs (In reality, we can not get a solution that covers r →∞.
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Instead, we will select a sufficiently large rmax to represent the spatial infinity.). To

fulfill this, we need the solution of Eq. (4.38) in the neighborhood of r = 1. Let us

utilize the Frobenius method [150]. That is, suppose

Ψ =
∞∑
n=0

dn (r − 1)n+s , (4.47)

where dn’s are constants and the factor s is to be determined. Naturally, we will

in general obtain two branches of s when solving dn’s [239]. The solution of Ψ in

this area should be the linear combination of these two branches and their ratio is

unknown (We may call this ratio ℵ [240]). However, just like what we have done in

Eq. (4.43), one of these branches will be abandoned due to physical requirements.

To be specific, we can find s = 0 and therefore ℵ will be absorbed into d0. The rest

of work for solving the coefficients in Eq. (4.47) will be quite similar to that for Eq.

(4.44). I will omit the details here.

Following the similar procedures and ideas like above, a solution of Ψ around

the r = 3/4 could also be found in a polynomial form. Of course, the in-going wave

requirement must be considered. Besides, mathematically, there will again be two

branches. We denote their ratio as α. We will come back to this α later.

Anyway, in principle, we should be able to obtain some polynomials as the

solutions of Ψ in the neighborhood of r=1, 3/4 and ∞. By using them, we could

generate the boundary conditions we need for later usages. Besides, given enough

time, they could be expanded to any high orders so that the desired accuracy could

be met.
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4.4.2 Chandrasekhar’s Method

To to solve Eq. (4.38), following [222] we introduce the mode function Φ(r)

by

Ψ(r) = Exp

(
i

∫ r

Φ(r)dr

)
, (4.48)

or equivalently

Φ(r) = −id ln Ψ

dr
. (4.49)

Then, Eq. (4.38) reduces to

iΦ′ − Φ2 + β1Φ + β2 = 0, (4.50)

where

β1(r, ω) ≡ 2r[(r − 2)ω + 2i]− 3i

(r − 1)r
,

β2(r, ω, l) ≡ 3 + r[2− l(l + 1) + 4rω(ω − i) + 6iω]

(r − 1)r2
. (4.51)

It is remarkable to note that such introduced Φ(r) does not depend on the amplitudes

of Ψ(r) at any of the points r = (r±, rUH, rmax). Using Φ actually implicitly explains

why we could set a0 = 1 in Eq. (4.44) (Similar things will occur in the other two

polynomial solutions mentioned above.).

For our convenience, we further introduce a new variable x by x ≡ 2r/(r+3/4)

in the Eq. (4.50). Note that r ∈ [3/4, 1)∪(1,∞) corresponds to x ∈ [1, 8/7)∪(8/7, 2).

Therefore, Eq. (4.50) becomes

2i

3
(2− x)2dΦ

dx
− Φ2 + γ1Φ + γ2 = 0, (4.52)

where

γ1(x, ω) ≡ 2x(11x− 16)ω − 32i(x− 2)(x− 1)

x(7x− 8)
,
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γ2(x, ω, l) ≡ 16(2− x)

3x2(7x− 8)

×
{
x2
[
l2 + l + 3ω(ω − 3i) + 2

]
− 2x

(
l2 + l − 6iω + 6

)
+ 16

}
.

(4.53)

In this way, we obtain a complex ODE of the first order, which will be much

easier to solve than Eq. (4.38). To solve Eq. (4.52) we use the shooting method.

Here are some designed steps according to our experience. Specifically, for any given

l, we integrate Eq. (4.52) as follows:

(a) With a good guess, we first choose a (complex) value of ω, and then from

Eqs. (4.47) with s = 0 we create the “initial values” Ψ±(ω) ≡ Ψ(r = r±, ω), where

r± = rs ± ε, and ε is a small quantity. Then, we calculate Φ±(ω) ≡ Φ(x = x±, ω)

using Eq. (4.49), with x± = 2r±/(r± + 3/4).

(b) With the initial value Φ−(ω), integrate Eq. (4.52) from x− to xUH =

rUH/(rUH + 3/4) to obtain ΦUH ≡ Φ(xUH).

(c) Compare this value of ΦUH with the one given by the polynomial solution

of Ψ around r = 3/4 (Of course, we need to choose an α.) and (4.49), to be denoted

by Φmin, and if δΦmin ≤ εmin, we say that such chosen ω satisfies the in-going wave

boundary condition, where εmin is a given small value, and δΦmin ≡ |ΦUH − Φmin|.

Otherwise, we need to choose a different value of ω and repeat steps (b) to (c), until

the condition δΦmin ≤ εmin is fulfilled (In Mathematica these iterations are executed

automatically.).

(d) With such determined ω we find the “initial value” Φ+(ω) by Eqs. (4.47)

and (4.49), with which we integrate Eq. (4.52) from x+ to x = xmax (for a properly

chosen xmax), and obtain a value Φ∞ ≡ Φ(xmax).
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(e) Compare such obtained Φ∞ with the one obtained from Eqs. (4.44), (4.46)

and (4.49), which will be denoted as Φmax. If δΦmax ≡ |Φ∞ − Φmax| ≤ εmax, we say

that such obtained ω satisfies both boundary conditions, and it is exactly this value

of ω that we are looking for, where εmax is another small quantity. In this chapter,

we shall choose εmin = εmax = 10−21. Otherwise, we say that this value of ω does not

satisfy the boundary conditions, and should be excluded from the spectrum of the

corresponding QNMs.

It needs to be mentioned that, in reality, we observed that the results are quite

sensitive to the selections of initial test ω’s. This does not only mean different initial

ω’s will lead to different resulting ω’s, but also mean a terrible initial ω may destroy

the iterations so that no physically viable resulting ω could be found. Fortunately,

we are able to find at least two suitable initial test ω’s so far.

4.4.3 Numerical Results

Before carrying out the analysis outlined above, we pause here for a while and

first reproduce the results obtained in GR. In GR we will obtain a complex ODE

just like Eq. (4.50) with the variable r∗. The integration now starts at r∗ = r0 ± ε

and ends at r∗ = r0, where ε and r0 are two real numbers (This ε does not need

to be a tiny quantity.). We will choose them properly in practice (Note that there

are many suitable choices for these two.). By checking the values of ΦGR(r∗ = r0)

[ΦGR is defined in the same manner as in Eq. (4.50)] gained from the two branches

of integrations, we are able to determine ω’s for each l (More details could be found

in [222].).
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Table 4.1: Some results of ω in GR by using the method given by
Chandrasekhar [222]. Note that we are not able to distinguish its n for each ω purely
by [222]. Thus, the results from the 6-th order WKB method are also provided here

for matching (we can’t confirm if the ω’s in the same row share the same n).

l 6-th order WKB Chandrasekha Our results

l = 2 0.74724− 0.17778i (n = 0) 0.74734− 0.17792i 0.74733− 0.17789i
0.69259− 0.54696i (n = 1) 0.69687− 0.54938i 0.69789− 0.55170i

l = 3 1.19889− 0.18540i (n = 0) 1.19889− 0.18541i 1.19889− 0.18541i
1.16528− 0.56258i (n = 1) 1.16402− 0.56231i 1.16540− 0.56263i
1.10319− 0.95809i (n = 2) 0.85257− 0.74546i 1.13340− 0.94717i

l = 4 1.61836− 0.18833i (n = 0) 1.61835− 0.18832i 1.61836− 0.18833i
1.59326− 0.56867i (n = 1) 1.59313− 0.56877i 1.59327− 0.56866i
1.54539− 0.95980i (n = 2) 1.12019− 0.84658i 1.54808− 0.95194i

The main results we got are shown in Table 4.1. In there we provided both

the results from [222] and our results by repeating Chandrasekhar’s work. What’s

more, since we cannot distinguish its corresponding n number for each ω by using

Chandrasekhar’s method (This is one of the shortages of this method.), those results

from the 6-th order WKB method [227] are also exhibited. Please be aware that

those results from the 6-th order WKB method are believed to be more accurate

since the numerical errors within such a method are more tractable, we conclude that

our results are more credible for most of the cases comparing to Chandrasekhar’s

by using Table 4.1. Besides, we observe that our results are closer to their WKB

counterparts for a larger l and smaller n.

On the other hand, note that the non-trivial field equation (4.22) has not

been used in deriving the master equation (4.52). Therefore, we could use it as an

independent indicator or a surveillance for our numerical integration of the master
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equation. Inserting Eqs. (4.17), (4.27), (4.37) and (4.49) into Eq. (4.22), we find that

C(x) ≡ ρ1
d2Φ

dx2
+ ρ2Φ

dΦ

dx
+ ρ3

dΦ

dx
+ ρ4Φ + ρ5Φ2 + ρ6Φ3 + ρ7, (4.54)

where

ρ1(x) ≡ −4(8− 7x)2(x− 2)4x3ω,

ρ2(x) ≡ −18i(8− 7x)2(x− 2)2x3ω,

ρ3(x) ≡ −2(x− 2)2x2(7x− 8)ω

×
[
28x3 + x2(−236− 99iω) + 8x(61 + 18iω)− 256

]
,

ρ4(x) ≡ −6xω
[
x4
(
−56l2 − 56l − 531ω2 + 1556iω + 304

)
+ 8x3

(
36l2 + 36l + 198ω2 − 843iω − 136

)
− 96x2

(
5l2 + 5l + 12ω2 − 97iω − 2

)
+ 256x

(
l2 + l − 16iω + 10

)
− 2048

]
,

ρ5(x) ≡ −3x2(7x− 8)ω
[
x2(99ω − 148i)− 8x(18ω − 53i)− 256i

]
,

ρ6(x) ≡ 9(8− 7x)2x3ω,

ρ7(x) ≡ −16(x− 2)ω

×
{
x4
[
3l2(11ω − 4i) + 3l(11ω − 4i) + 99ω3 − 417iω2 − 126ω + 88i

]
− 2x3

[
3l2(19ω − 8i) + 3l(19ω − 8i) + 72ω3 − 582iω2 − 66ω + 304i

]
+ 48x2

[
l2(2ω − i) + l(2ω − i)− 16iω2 + 13ω + 34i

]
− 256x(3ω + 8i) + 1024i

}
. (4.55)

We will use C to monitor our numerical errors. Clearly, C is defined in the same

manner as the C̃ in Eq. (3.123).
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Table 4.2: Some results of ω in æ-theory for the l = 2 case with different α’s.

α ω α ω

−40 0.73210− 0.60667i 40 0.23060− 0.90273i
−38 0.73480− 0.59948i 38 0.23791− 0.89574i
−36 0.73770− 0.59195i 36 0.24559− 0.88850i
−34 0.74084− 0.58404i 34 0.25370− 0.88098i
−32 0.74427− 0.57569i 32 0.26229− 0.87318i
−30 0.74802− 0.56686i 30 0.27143− 0.86507i
−28 0.75215− 0.55747i 28 0.28122− 0.85665i
−26 0.75675− 0.54743i 26 0.29175− 0.84789i
−24 0.76190− 0.53662i 24 0.30317− 0.83880i
−22 0.76774− 0.52490i 22 0.31564− 0.82937i
−20 0.77441− 0.51207i 20 0.32937− 0.81964i
−18 0.78215− 0.49785i 18 0.34462− 0.80968i
−16 0.79125− 0.48186i 16 0.36173− 0.79961i
−14 0.80213− 0.46355i 14 0.38111− 0.78972i
−12 0.81540− 0.44207i 12 0.40325− 0.78047i
−10 0.65847− 0.89756i 10 0.42859− 0.77270i
−8 0.64858− 0.87874i 8 0.45730− 0.76775i
−6 0.63629− 0.85913i 6 0.48878− 0.76732i
−4 0.62103− 0.83906i 4 0.52119− 0.77284i
−2 0.60219− 0.81914i 2 0.55199− 0.78433i
−0.05 0.57986− 0.80083i 0.05 0.57860− 0.79995i

Now, we are ready to turn to the QNMs of BHs in Einstein-aether theory. Let

us consider the l = 2 case. We choose ε = 0.00001 and rmax = 3xmax/(8−4xmax) = 50.

In addition, Eqs. (4.44) and (4.47) are expanded to the orders of (1/r)39 and (r−1)39,

respectively. This guarantees the accuracy of Ψ(r = r±) and Ψ(r = rmax). With the

help of Mathematica and by using the shooting method, we could find different

solutions of ω for different values of α.

As an example, we show the solutions of ω by choosing the initial test ω as

0.69259 − 0.54696i in Table 4.2. Note that the maximum of |C| on x ∈ [xUH, xmax]

for each solved ω are not equal. Nonetheless, we always have |C| . 10−7, which
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guarantees the accuracy of our calculations. Also note that the results here are quite

different from GR values.

4.5 Summary

As we have seen in Chapter Three, it is very hard to distinguish æ-theory

from GR by using those commonly used physical observables. This fact initiated

our interests on the study of QNMs. In fact, QNMs in different modified theories

have been attracting a lot of attentions in recent years. We can find many different

works in this area. More importantly, some discrepancies from GR are observed.

On the other hand, as mentioned above, the proposed advanced GW detectors such

as LISA, Taiji, TianQin, etc. will dramatically improve our detectability to QNM

signals within twenty years. Therefore, it is expected that we will be able to confirm

a non-relativistic theory or put more severer constraints on some of the modified

theories with QNM detection in the near future. Because of this, it is quite necessary

to calculate QNMs carefully in æ-theory.

Nonetheless, the calcualtion for QNMs in æ-theory is quite sophisticated. Cur-

rently, we can only deal with a simple case. Additionally, many techniques in the

literature just failed. In this chapter, the calculation to QNMs is carried out as the

following. By considering a set of special analytic solutions of {F,A,B} [cf. Eq. (4.5)]

and the odd-parity gravitational perturbations [cf. Eqs. (4.10) and (4.11)], we are

able to obtain a master equation (4.38). After that, by mimicking Chandrasekhar’s

shooting method, a series of ω’s are found.

Our current results in Table 4.2 imply the possibility of finding QNMs that

deviate a lot from the GR results. If this is the case, that will be a remarkable
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discovery since it could help us get a deeper understanding to æ-theory. What’s

more, supposing the future observations keep supporting the GR results, that may

help us further confine æ-theory to another level. Of course, more investigations

about this problem are still needed and we are still working on that.
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CHAPTER FIVE

Conclusion and Outlook

5.1 Conclusion

In this dissertation we have reviewed some aspects about Einstein-æther the-

ory. As a low-energy effective theory [188], æ-theory breaks the Lorentz invariance by

introducing an ubiquitous time-like unit vector, the aether field uµ [cf. Eq. (1.1)]. As

a result, three different species of gravitons, spin-0, spin-1 and spin-2, appear in this

theory [62] [They could travel faster than the speed of light. See Eq. (1.7).]. Since

the LI is one of the pillars of modern physics, this feature immediately provoked our

interests. Exploiting this direction may help us uncover the dawn of quantum grav-

ity [25] and may bring us new physics beyond Einstein’s framework, which is quite

exciting to conceive. Another crucial fact about æ-theory is that it passed all the

current tests with flying colors by properly adjusting the ci’s [cf. Eq. (1.5)]. Con-

sidering the fact that many modified theories have been ruled out by gravitational

wave observations or other experiments, the survival of Einstein-aether theory sheds

important light on the role that the Lorentz invariance can play in the construction

of theories of gravity and the consistency of such theories with observations. It may

stimulate more understandings to the extension of GR in the future.

On the other hand, in this dissertation we focus a lot on GWs. Obviously,

the detection of GWs [101] marks a brand new era of astrophysics as well as cosmol-

ogy both to the experimental level and for the theoretical researches. Actually, in

recent years, a lot of work have been devoted to the study of gravitational waves both
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experimentally and theoretically. People have shown a great passion in this area.

We currently have detectors like the Laser Interferometer Gravitational-Wave Ob-

servatory (LIGO), Virgo, International Pulsar Timing Array (IPTA), Gravitational

wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM), etc. dis-

tributing in different places of the world. In the future, more of them, e.g., the

Cosmic Explorer, DECi-hertz Interferometer Gravitational wave Observatory (DE-

CIGO), Kamioka Gravitational Wave Detector (KAGRA) [148], Laser Interferometer

Space Antenna (LISA), Taiji [156] and TianQin [71] will be constructed [109]. These

detectors will focus on different frequency bands of GW signals and will provide us a

more complete spectrum. One may witness a golden period of the gravitational wave

physics in next two decades or so.

Thus, within the circumstance of æ-theory, here I introduce some specific

works. Beginning from Foster [32, 39, 41], the linear perturbations of æ-theory was

studied extensively in the past years. An important contribution is from Yagi et al.,

who derived the metric and the equations of motion to the 1PN order for a N-body

system [42]. In [42], the sensitivities were also calculated numerically. Nevertheless,

the results are out of date as mentioned above. Later, these results were applied to

binary [58] and triple [56] systems by different authors.

Therefore, we first studied the triple systems in æ-theory. In [62] we calcu-

lated the gravitational waveforms, polarizations, response functions and energy losses

in details. The configurations we used there are from the [61]. Besides, the latest

constraints on ci’s [60] are also taken into account. In there we found several in-

teresting things. For instance, the GW form, the response function and its Fourier

transform of a triple system depend not only on their configuration of orbits but also
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on their orientation with respect to the detector and binding energies of the three

compact bodies. After that, we moved to a realistic hierarchy triple system, namely,

PSR J0337+1715 [132]. Due to the small eccentricities of this system, we were able to

study it with quasi-circular approximations in [63]. Similar calculations were carried

out like in [62]. In particular, we found that the dipole emission can be as big as the

quadrupole emission in Einstein-aether theory. This may provide us a a promising

window to place severe constraints on the æ-theory with triple systems in the future.

After that, we went back to the study of binary systems (BBHs, BNs, etc.)

with slowly changing orbits. In [68] we first studied the gravitational waveforms

and GW polarizations emitted by a binary system in the inspiral phase [cf. Eqs.

(2.55) - (2.60)]. During this procedure, we corrected some typos and mistakes in the

literature [58]. At the same time, we also provided the explicit expressions for the

time-domain and frequency-domain response functions for both ground- (e.g., LIGO,

Virgo, KAGRA) and space-based (e.g., LISA, TianQin, Taiji, DECIGO) detectors [cf.

Eqs. (2.83), (2.92), etc.]. Again, the latest constraints on ci’s were taken into account.

What’s more, the influence from sensitivities were also considered. A vital discovery

is that we extended the existing ppE framework to allow for different propagation

speeds among scalar (spin-0), vector (spin-1) and tensor (spin-2) modes, without

assuming the magnitude of the coupling parameters ci’s, and meanwhile allowing the

binary system to have relative motions with respect to the aether field. At the same

time, the ppE parameters were also derived in there [cf. Eqs. (2.102), (2.111) and

(2.112)]. Such results will particularly allow for the easy construction of Einstein-

aether templates that could be used in Bayesian tests of GR in the future. Besides,

when applying our results to J0337, we observed some discrepancies between GR and

154



æ-theory. For example, the coalescence times are quite different in these two theories

(cf. Fig. 2.1). This suggests another potential method to distinguish them. On the

other hand, note that some flaws are found in [68]. Fortunately, the framework and

the major conclusions of that paper are not influenced.

The above works are mainly focusing on the inspiral and early merger [65]

stages of coalescence. More recently, we paid attention to the merger and ring-

down [66] stages. As a first step to dig into this area, we studied the spherically

symmetric static natural black holes in [95]. Under the æ-theory, this topic has been

visited by several authors [75,86,87,90] before us. Nonetheless, many of their results

are out of time due to the latest constraints on coupling constants [60]. What’s more,

we also analyzed several subtle points of this problem and increased the precision of

our Mathematica code so that the accuracy of the results were much more guaranteed.

Thus, more credible results were found. In this dissertation, we have first reviewed the

technique called metric (or field) redefinition [cf. Eq. (3.10) and the context around

it]. Secondly, I demonstrated clearly how to reduce the number of ODEs from these

original field equations. Specially, I showed that the function B(r) could be given by

an algebraic equation [cf. (3.45)]. This is a crucial step for improving our accuracy.

After that, I made it clearly on how to retrieve physical {F,A,B} [cf. (3.35) and

(3.36)] from the redefined {F̃ , Ã, B̃} [cf. Eqs. (3.73) and (3.75)]. Finally, many useful

physical quantities were calculated and exhibited with the choices of physical viable

ci’s [60], including the metric (cf. Fig. 3.7), universal horizons (cf. Table 3.4), γff ,

rISCO, ωISCO, zmax, bph (cf. Table 3.5), etc.. According to these results, we obtain

several concluding remarks. For instance, we find that the background spacetimes for

spherically symmetric static natural black holes in æ-theory mainly depend on the
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value of c2/c14 in lieu of the individual values of c2 and c14. I also investigated the dif-

ferences of these physical quantities ( rISCO, ωISCO, zmax, etc.) obtained in æ-theory

and GR. Looking at these results, we conclude that it’s very hard to distinguish GR

and æ-theory through these quantities, as far as the cases considered in this paper

are concerned. Anyway, the results in [95] will enable us to continue our studies of

ringdown stage in the æ-theory.

Based on the work of [95], we continued our study in the area of QNMs. As

can be seen from Chapter Four, we have reviewed many works from the pioneers

and have already got some results. Specially, in there I focus on the odd-parity

gravitational perturbations with the analytic background metric and aether field [cf.

Eq. (4.5)], with which we have c13 = c14 = 0 and cS → ∞. Note that the scalar

and electromagnetic perturbations are not considered in there since the results in

these cases are almost equal to the GR results, even for c2
S ≈ 450 (See Chapter Three

for more details about this case.). Although QNMs from scalar and electromagnetic

perturbations are easy to be obtained even for some general backgrounds, it is not

worth exhibiting the results since they seem to be useless for observations. Using Eq.

(4.5) enables us to find the master equation (4.24) (which is different from the one in

GR). After that, we are able to obtain those ω’s in Table 4.2 by solving Eq. (4.24)

with Chandrasekhar’s method [222]. We notice that the results in æ-theory deviate a

lot from that of GR. This may help us put more severe constraints on æ-theory once

QNMs are observed. Actually, there are still some puzzles to solve. Fortunately, we

have gained a lot of experience. We are expecting to come back with more good news

in deriving QNMs in the near future.
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5.2 Outlook

Although Einstein-æther theory has been studied extensively in past years

there is still lots of work need to be done to enhance our understandings to this

theory and to extend the applications of it. Additionally, there are many branches

in the research of æ-theory. We could also choose to exploit more directions in the

future.

5.2.1 Ringdown Phase and Quasi-normal Modes

As mentioned earlier, one of the main goals for next step is to get a deeper

study to the quasi-normal modes in æ-theory. The information contained in QNMs

provide the keys in revealing whether BHs are ubiquitous in our universe, and more

important whether GR is the correct theory to describe the event even in the strong

field regime.

QNMs in GR have been studied extensively. Some relative studies have been

done for scalar, vector [241] and gravitational perturbations [221]. In this proce-

dure, several different techniques of calculations were developed. For instance, the

Wentzel-Kramers-Brillouin (WKB) approach [225–228, 242], the continued fraction

method [229], etc.. We have investigated many of them when working on Chapter

Four.

As has been pointed out, different GW detectors are located all over the world.

According to the current proposals, more ground- and space-based GW detectors will

be armed for us in the future [109, 148, 171], which enables us to probe more weak

signals. Besides, the n = 0 mode (the fundamental mode) is more likely to be observed

since this mode has longer damping time [71, 243, 244]. The detectabiity of different
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detectors are analyzed by different authors. For instance, [245] provides a preliminary

analysis to the resolution of certain detectors as well as certain modes. [246] calculates

the signal-to-noise (SNR) ratio of certain ground-based detectors with a technique

called ”stacking”. Using certain models, [184] compares the detectability of ground-

and space-based detectors. [247] talks about the influence of other overtones (n ≥ 1

modes). This triggered the interests on the QNM signals from GWs, especially those

from the late-merger and ringdown stages [66].

From the experiment point of view, it is certain that the desired QNMs sig-

nals will be detected by the ground-based third-generation detectors, such as Cosmic

Explorer [248] or the Einstein Telescope [249], as well as the space-based detectors,

including LISA, TianQin [71], Taiji [156], and DECIGO [109] and so on.

Some attempts to the QNMs in æ-theory have been done by Konoplya [73,74].

However, for a certain type of tachyonic test particle, we need to set the boundary

at one of these non-relativistic horizons. A consequence is that some steps intro-

duced in [73] are not valid any more. Therefore, we need to include some additional

techniques to generalize the existing techniques in the literature. Actually, we have

already put a lot of efforts on this topic, as could be seen in Chapter Four. The odd-

parity perturbations [236,250,251] were studied in there. As expected, there are a lot

of barricades. For instance, we need to deal with the singularity at r = rMH , which is

quite a delicate and annoying problem mathematically [252]. We have already made

some progress (See Chapter Four for more details.) but more investigations are still

needed.

Since we have gained a lot of experience with QNMs and the relative tech-

niques, our next step to solve for QNMs in æ-theory will be more clear than ever
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before. Actually, we have several different plans to do. For instance, we can improve

our polynomial solutions, strengthen our Mathematica code, etc.. Hopefully, we will

get more valuable results after all the plans have been carried out. If we are lucky

enough, that will bring us a deeper understanding to the puzzles of æ-theory. What’s

more, we are also considering the extension of our current work to more general cases

of ci’s. Of course, we anticipate that this work will be more difficult.

5.2.2 Other Projects

Besides the study of QNMs, of course there are many other possible projects

in æ-theory.

For instance, another direction could be the calculations of sensitivities for

compact bodies. Sensitivities in Einstein-aether theory have already been calculated

in [42]. Nonetheless, with the latest constraints on the free parameters of the the-

ory [60], the phase space in which those results are valid has been completely ruled

out. As can be seen from [68], the values of sensitivities will become significant with

the improvement of detectors’ resolutions. Thus, it is important to calculate them in

the viable region of the phase space found recently.

An analytical expression of sensitivity in the weak-field approximations was

found [68]. However, it does not apply to neutron stars or black holes when considering

the strong-field effects. Qualitatively, we know that for neutron stars the sensitivities

are about an order of magnitude larger and they depend on the equation of state.

For black holes, they are expected to be very small, as in the case of khronometric

gravity [131]. Of course, a detailed analysis is still absent in both cases.
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Apart from that, since the gravitational waveforms have been calculated to

a very high post-Newtonian order in GR, we may try to do the similar calculations

within Einstein-aether theory. On the other hand, we may keep monitoring the data

from the gravitational wave observations and try to provide more severe constraints

to Einstein-aether theory, just like what has been done in [60] with the increasing

resolution of our detectors.

In addition, it is also our plan to study rotating black holes in Einstein-aether

theory. With our experience on spherically symmetric black holes [95], we have great

confidence that we are able to do it, although the problem is definitely very challeng-

ing.

Once we carry out the studies of the problems mentioned above in Einstein-

aether theory, I could also extend such studies to other modified theories of gravity,

including general parity-violating gravity, the Einstein-Gauss-Bonnet gravity non-

minimally coupled with a real or a complex scalar field, and Dynamical Chern–Simons

gravity and so on.
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APPENDIX A

The Stationary Phase Approximation

SPA is a useful method for dealing with the Fourier transform (FT) of the

response functions. The details of this method can be found in [70,96,134]. Here we

will provide a brief introduction to this technique.

For real g0(t), ψ0(t), a0, b0 and y0 (These notations are temporarily used in this

appendix), we have the following approximation to g0(t)’s Fourier integral [253,254],

lim
y0→∞

I0(y0) ≡ lim
y0→∞

∫ b0

a0

g0(t)eiy0ψ0(t)dt

≈ lim
y0→∞

g0(ta)e
iy0ψ0(ta)± iπ

2l

[
l!

y0|ψ(l)
0 (ta)|

]1/l
Γ(1/l)

l
, (A.1)

where ψ
(l)
0 (t) denotes the l-th derivative to ψ0 with respect to t. Γ(x) denotes the

Gamma function [255]. ta refers to the stationary point that is determined by the

conditions

ψ
(1)
0 (ta) = ψ

(2)
0 (ta) = ... = ψ

(l−1)
0 (ta) = 0,

ψ
(l)
0 (ta) 6= 0, (A.2)

and we will choose “+” for (A.1) when ψ
(l)
0 (ta) > 0, and “-” for (A.1) when ψ

(l)
0 (ta) <

0. Besides, the validity of this approximation requires∣∣∣∣∫ b0

a0

g0(t)dt

∣∣∣∣ <∞, (A.3)

and ψ0(t) is not a constant on any interval U0 ∈ [a0, b0]. As an example, we will use

SPA to calculate the FT for the response function,

Hn(t) = qnω
2/3
s (tr) cos(2Φ(tr)), (A.4)
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where tr = t−R/vs is the retarded time with vs denoting the speed of the wave.

To make sure that the approximation (A.1) is valid for the calculation of the FT

of (A.4), we need to assume that d[ln(qnω
2/3
s )]/dt� dΦ/dt and d2Φ/dt2 � (dΦ/dt)2.

Then, using (2.80) and Euler’s formula, we find

H̃n(f) =
1

2
qne

i2πfR/vs

∫
ω2/3
s

[
ei(−2Φ+2πft) + ei(2Φ+2πft)

]
dt. (A.5)

Since d(2Φ + 2πft)/dt = 0, we find Φ̇(ta) = −πf , which leads to a non-physical

frequency f and thus can be discarded. Conversely, from the first term in (A.5), we

find Φ̇(ta) = πf by d(−2Φ + 2πft)/dt|ta = 0. Thus, we obtain ωs(ta) = Φ̇(ta) = πf

and l = 2 for (A.1). Now we write H̃n(f) as

H̃n(f) =
1

2
qne

i2πfR/vsIn(f), (A.6)

where

In(f) ≡
∫
ω2/3
s

[
ei(−2Φ+2πft)

]
dt. (A.7)

Note that there is no summation in (A.6) with respect to n. At the same time, from

(2.67) we find that d2(−2Φ + 2πft)/dt2|ta = −2Φ̈(ta) = −2ω̇(ta) ∼ −ω11/3(ta) < 0,

which helps us to determine the sign in (A.1). With all of these in hand, we can apply

the approximation (A.1) to (A.7), and find that

In(f) ' 1

2
ω2/3
s (ta)

√
π

ω̇s(ta)
× 2eifψn−

iπ
4 , (A.8)

where

ψn(t) ≡ −2Φ(t)

f
+ 2πt. (A.9)

Note that in the above expression there is an additional factor of 2, which originates

from the analysis of [134]. Substituting (A.8) into (A.6), we find

H̃n(f) =

√
π

2
qn
[
ω2/3
s (ta)ω̇

−1/2
s (ta)

]
eiΨn , (A.10)
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where

Ψn ≡ −2Φ(ta) + 2πfta + 2πf
R

vs
− π

4
. (A.11)

Next, using the relation

[−2Φ(t) + 2πft]|tatc =

∫ ta

tc

d[−2Φ(t) + 2πft]

dt
dt, (A.12)

and the fact that ωs(tc) → ∞, we can carry out the integral on the right-hand side

of (A.12) approximately, and finally obtain

Ψn =
9

20
κ−1

1 (Gπmf)−5/3

[
1− 4

7
(Gπmf)−2/3εx

]
+ 2πf

(
tc +

R

vs

)
− 2Φ(tc)−

π

4
,

(A.13)

where the asymptotical form of the ω̇s and ω̈s had been used.

Similarly, using the relation

[ω2/3
s (t)ω̇−1/2

s (t)]|tatc =

∫ ta

tc

d[ω
2/3
s (t)ω̇

−1/2
s (t)]

dt
dt, (A.14)

and ωs(tc)→∞, we can also carry out the integral on the right-hand side of (A.14).

Finally, we find

H̃n(f) =

√
π

2
(Gm)1/3qnκ

−1/2
1 (Gπmf)−7/6

[
1− 1

2
(Gπmf)−2/3εx

]
eiΨn , (A.15)

where Ψn is given by (A.13). The calculations for (2.81) can be obtained by following

the same steps1.

1 Of course, there is a difference between the demonstration here and the calculations in
Sec.2.5. That is, in there, the phase (A.13) is fixed for the 1st and 2nd harmonic terms. At the
same time, the term that related to vs is absorbed into the amplitude part. Logically, this seems to
be a big change. Nevertheless, mathematically, this modification is actually quite trivial.
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APPENDIX B

The Expressions of qN(l)

In (2.81) we introduced qN(l), which are given explicitly by

q+(1) ≡ d+ cos(2ϕ)F+, q+(2) ≡ d+ sin(2ϕ)F+,

q+(3) = q+(4) = 0,

q×(1) ≡ d× sin(2ϕ)F×, q×(2) ≡ −d× cos(2ϕ)F×,

q×(3) = q×(4) = 0,

qb(1) ≡ db1 cos(2ϕ)Fb, qb(2) ≡ db1 sin(2ϕ)Fb,

qb(3) ≡ (db2 + db4) sinϕFb, qb(4) ≡ −(db2 + db4) cosϕFb,

qL(1) ≡ dL1 cos(2ϕ)FL, qL(2) ≡ dL1 sin(2ϕ)FL,

qL(3) ≡ (dL2 + dL4) sinϕFL, qL(4) ≡ −(dL2 + dL4) cosϕFL,

qX(1) ≡ dX1 cos(2ϕ)FX , qX(2) ≡ dX1 sin(2ϕ)FX ,

qX(3) ≡ (dX2 + dX4) sinϕFX , qX(4) ≡ −(dX2 + dX4) cosϕFX ,

qY (1) ≡ dY 1 sin(2ϕ)FY , qY (2) ≡ −dY 1 cos(2ϕ)FY ,

qY (3) ≡ [(dY 2 + dY 4) cosϕ+ dY 5 sinϕ]FY ,

qY (4) ≡ [(dY 2 + dY 4) sinϕ− dY 5 cosϕ]FY , (B.1)

where

d+ ≡ −
2Gæ

R
G2/3M5/3(1 + cos2 ϑ), d× ≡

4Gæ

R
G2/3M5/3 cosϑ, (B.2)

db1 ≡
2Gæ

R

c14

2− c14

−3c14(Z − 1)c2
S + 2S

c14c2
S

165



×G2/3M5/3 sin2 ϑ,

db2 ≡
2Gæ

R

c14

2− c14

2∆s

c14cS
η1/5G1/3M4/3 sinϑ,

db4 ≡ −2Gæ

R

c14

2− c14

4∆s

c14c2
S

η1/5G1/3M4/3 sinϑN iV i,

dL1 ≡ abLdb1,

dL2 ≡ abLdb2,

dL4 ≡ abLdb4, (B.3)

dX1 ≡ −β1Gæ

R

1

2c1 − c13c−

1

cV

(
S − c13

1− c13

)
G2/3M5/3 sin(2ϑ),

dX2 ≡ 2
β1Gæ

R

1

2c1 − c13c−
∆sη1/5G1/3M4/3 cosϑ,

dX4 ≡
β1Gæ

R

1

2c1 − c13c−

2∆s

cV
η1/5G1/3M4/3(sinϑeiX + cosϑN i)V i,

dY 1 ≡
β1Gæ

R

1

2c1 − c13c−

2

cV

(
S − c13

1− c13

)
G2/3M5/3 sinϑ,

dY 2 ≡ 2
β1Gæ

R

1

2c1 − c13c−
∆sη1/5G1/3M4/3,

dY 4 ≡
β1Gæ

R

1

2c1 − c13c−

2∆s

cV
η1/5G1/3M4/3N iV i,

dY 5 ≡
β1Gæ

R

1

2c1 − c13c−

2∆s

cV
η1/5G1/3M4/3 sinϑeiY V

i, (B.4)

and

abL ≡ 1 + 2β2. (B.5)

Note that the all dX ’s and dY ’s are proportional to β1, and therefore proportional to

c13.
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APPENDIX C

The Expressions of q′N(l)

In (2.87) we introduced q′N(l)’s, which are given by

q′+(1) ≡ d+ cos(2ϕ)F ′+(t), q′+(2) ≡ d+ sin(2ϕ)F ′+(t),

q′+(3) = q′+(4) = 0,

q′×(1) ≡ d× sin(2ϕ)F ′×(t), q′×(2) ≡ −d× cos(2ϕ)F ′×(t),

q′×(3) = q′×(4) = 0,

q′b(1) ≡ db1 cos(2ϕ)F ′b(t), q′b(2) ≡ db1 sin(2ϕ)F ′b(t),

q′b(3) ≡ (db2 + db4) sinϕF ′b(t), q′b(4) ≡ −(db2 + db4) cosϕF ′b(t),

q′L(1) ≡ dL1 cos(2ϕ)F ′L(t), q′L(2) ≡ dL1 sin(2ϕ)F ′L(t),

q′L(3) ≡ (dL2 + dL4) sinϕF ′L(t), q′L(4) ≡ −(dL2 + dL4) cosϕF ′L(t),

q′X(1) ≡ dX1 cos(2ϕ)F ′X(t), q′X(2) ≡ dX1 sin(2ϕ)F ′X(t),

q′X(3) ≡ (dX2 + dX4) sinϕF ′X(t), q′X(4) ≡ −(dX2 + dX4) cosϕF ′X(t),

q′Y (1) ≡ dY 1 sin(2ϕ)F ′Y (t), q′Y (2) ≡ −dY 1 cos(2ϕ)F ′Y (t),

q′Y (3) ≡ [(dY 2 + dY 4) cosϕ+ dY 5 sinϕ]F ′Y (t),

q′Y (4) ≡ [(dY 2 + dY 4) sinϕ− dY 5 cosϕ]F ′Y (t), (C.1)

where dN or dNl are given by (B.2-B.4) and,

F ′+(t) ≡ 1

2
[1 + cos2 θ(t)] sin[2φ(t)] cos[2ψ(t)] + cos[θ(t)] cos[2φ(t)] sin[2ψ(t)],

F ′×(t) ≡ 1

2
[1 + cos2 θ(t)] sin[2φ(t)] sin[2ψ(t)]− cos[θ(t)] cos[2φ(t)] cos[2ψ(t)],

F ′b(t) ≡ −1

2
sin2[θ(t)] sin[2φ(t)],
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F ′L(t) ≡ 1

2
sin2[θ(t)] sin[2φ(t)],

F ′X(t) ≡ − sin[θ(t)]{cos[θ(t)] sin[2φ(t)] cos[ψ(t)] + cos[2φ(t)] sin[ψ(t)},

F ′Y (t) ≡ sin[θ(t)]{− cos[θ(t)] sin[2φ(t)] sin[ψ(t)] + cos[2φ(t)] cos[ψ(t)]}. (C.2)

The angles θ(t), φ(t) and ψ(t) are given by

θ(t) = cos−1

{
1

2

[
cos θ̄ −

√
3 cos(φ̄− Φ̄) sin θ̄

]}
,

φ(t) = − tan−1

{
1

2
csc θ̄ csc(φ̄− Φ̄)

[√
3 cos θ̄ + cos(φ̄− Φ̄) sin θ̄

]}
+ Λ,

ψ(t) = − tan−1

{[√
3 cos φ̄(cos ψ̄ sin Φ̄− cos θ sin ψ̄ cos Φ̄)

− sin ψ̄(sin θ̄ +
√

3 cos θ̄ sin φ̄ sin Φ̄)−
√

3 sin φ̄ cos ψ̄ cos Φ̄
]

×
[√

3(cos θ̄ cos φ̄ cos ψ̄ − sin φ̄ sin ψ̄) cos Φ̄

+ cos ψ̄(sin θ̄ +
√

3 cos θ̄ sin φ̄ sin Φ̄) +
√

3 cos φ̄ sin ψ̄ sin Φ̄
]−1
}
,

(C.3)

where [158]

Λ = Λ0 +
2πt

T0

, (C.4)

which is the phase for the rotation of the three satellites around the COM of LISA

with Λ0 being a constant, and Φ̄ is provided in (2.89). Just like in (2.89), T0 here is

equal to the sidereal period of the Earth. Here θ̄, φ̄ and ψ̄ are the three angles related

to the center of the binary with respect to the sun (note that their definitions are

different from the general Euler angles [256]), defined explicitly in [158] and Sec.11.5

of [22], and can be treated as constants. Note that once the detector is specified,

e.g. LISA, ϕ and ϑ in q′N(l) will be determined by {θ̄, φ̄, ψ̄}, i.e. {θ̄, φ̄, ψ̄, ϑ, ϕ} are not

independent.
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APPENDIX D

The Expressions of gN

In (2.102) we use the factors gN (gN ∈ {g+, g×, gb1,2,4, gL1,2,4, gX1,2,3,4, gY 1,2,3,4

}), which are given as follows:

g+ ≡ −2, g× ≡ 4, (D.1)

gb1 ≡
2c14

2− c14

−3c14(Z − 1)c2
S + 2S

c14c2
S

,

gb2 ≡
2c14

2− c14

2∆s

c14cS
η1/5,

gb4 ≡ − 2c14

2− c14

4∆s

c14c2
S

η1/5N iV i,

gL1 ≡ abLgb1,

gL2 ≡ abLgb2,

gL4 ≡ abLgb4, (D.2)

gX1 ≡ − β1

2c1 − c13c−

1

cV

(
S − c13

1− c13

)
,

gX2 ≡
2β1

2c1 − c13c−
∆sη1/5,

gX3 ≡
β1

2c1 − c13c−

2∆s

cV
η1/5eiXV

i,

gX4 ≡
β1

2c1 − c13c−

2∆s

cV
η1/5N iV i,

gY 1 ≡
β1

2c1 − c13c−

2

cV

(
S − c13

1− c13

)
,

gY 2 ≡
2β1

2c1 − c13c−
∆sη1/5,

gY 3 ≡
β1

2c1 − c13c−

2∆s

cV
η1/5eiY V

i,
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gY 4 ≡
β1

2c1 − c13c−

2∆s

cV
η1/5N iV i. (D.3)

Here is a comment. Obviously, the definitions in Eq.(D.1) ans ome other parts

are quite redundant. This is actually a histrionic problem. For the sake of convenience

when editing Sec.2.6.1, the Appendix B was composed at the very beginning. Nearly

all the other notations in Appendices C and D were built by following the same logic

of Appendix B to keep a consistency with our notation system. Thus, the economic

purpose was sacrificed before I realized that. Clearly, remove Eq.(D.1) will introduce

a kind of asymmetry to our notation system, although it will save some space. In

the future, I may try to reconsider the whole section and reduce some redundant

definitions. However, for now, let’s just keep this notation system.
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APPENDIX E

The Coefficients of fn, an, bn and nn

In this appendix, we shall provide the explicit expressions of the coefficients of

fn, an, bn and nn, encountered in the Einstein-aether field equations in the spherically

symmetric spacetimes, for which the metric is written in the Eddington-Finkelstein

coordinates (3.35), with the aether field taking the form of Eq.(3.36). In particular,

the coefficients of fn, an and bn appearing in Eqs.(3.39) - (3.41) are given by,

f0 = −4 (c2 + c13) (c2 + c13 − (c2 + 1) c14) rA(r)A′(r)

−
(
c14c

2
2 − c2

2 + c2
13 + (c2 + 1) c2

14 − (c2 + 2) c13c14

)
r2A′(r)2

−4
(

(c14 + 1) c2
13 + 2 (c2 + 1) c13 + (c2 − 2) c14c13 + c2 (c2 + 2)

− 2
(
c2

2 + 3c2 + 1
)
c14

)
rA(r)4F ′(r)

+2
(
c2

2 + (2− 3c2) c14c2 − 9c13c14c2 + (c2 + 1) c2
14

− c2
13 (4c14 + 1)

)
r2A(r)3A′(r)F ′(r)

−
(
5c14c

2
2 − c2

2 + (c2 + 1) c2
14 + (7c2 − 2) c13c14

+ c2
13 (4c14 + 1)

)
r2A(r)6F ′(r)2

−2 (c2 + c13) c14 (−c2 + c13 + c14 − 4) r3A(r)5A′(r)F ′(r)2

+ (c2 + c13) c14 (c2 − c13 + c14) r3A(r)8F ′(r)3

− (c2 + c13)A(r)2
(
− c14 (c2 − c13 + c14) r3A′(r)2F ′(r) + 4c2 (c14 − 1)

+ 2c13c14

)
,

f1 = −8 (c2 + c13) (c14c2 + c2 + c13 + c14) rA(r)3A′(r)
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+4
(
c2

2 − 3c13c14c2 + 2c14c2 + (c2 + 1) c2
14 − c2

13 (c14 + 1)
)
r2A(r)2A′(r)2

−4
(

(1− 2c14) c2
13 + (−c14c2 + 2c2 + c14 + 4) c13 + c2 (c2 + 4)

+
(
5c2

2 + 9c2 + 4
)
c14

)
rA(r)6F ′(r)

+2
(
c14c

2
2 + 3c2

2 − 3 (c2 + 1) c2
14 + (11c2 + 6) c13c14

+ c2
13 (4c14 − 3)

)
r2A(r)5A′(r)F ′(r)

+2
(
c2

2 + (3c2 + 2) c14c2 + 3c13c14c2 + (c2 + 1) c2
14

+ c2
13 (2c14 − 1)

)
r2A(r)8F ′(r)2

+2 (c2 + c13) c14 (c2 − c13 + c14) r3A(r)7A′(r)F ′(r)2

−2 (c2 + c13) c14A(r)4
(

(−c2 + c13 + c14 − 4) r3A′(r)2F ′(r)

− 4 (2c2 + c13 + 1)
)
,

f2 = 2
(
c14c

2
2 + 3c2

2 − 3 (c2 + 1) c2
14 + (11c2 + 6) c13c14

+ c2
13 (4c14 − 3)

)
r2A(r)4A′(r)2

+4
(
− (c14 − 1) c2

13 + 2 (c2 − 1) c13 + (c2 + 4) c14c13 + (c2 − 2) c2

+
(
4c2

2 + 8c2 + 2
)
c14

)
rA(r)8F ′(r)

+6
(
(c14 + 1) c2

2 + c14 (−c13 + c14 + 2) c2 − c2
13 + c2

14

)
r2A(r)7A′(r)F ′(r)

+
(
− (c14 − 1) c2

2 + (c13 − c14) c14c2 − (c13 − c14) 2
)
r2A(r)10F ′(r)2

+ (−c2 − c13)A(r)6

×
(
−c14 (c2 − c13 + c14) r3A′(r)2F ′(r) + 8c2 + 4 (6c2 + 3c13 + 4) c14

)
,

f3 = 8 (c2 + c13) (c14c2 + c2 + c13 + c14) rA(r)7A′(r)

+8
(
2c2

2 + 3c13c2 + c2 + c2
13 + c13

)
c14A(r)8

+4
(
c2

2 − 3c13c14c2 + 2c14c2 + (c2 + 1) c2
14 − c2

13 (c14 + 1)
)
r2A(r)6A′(r)2
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+4 (c2 + c13) (c2 + c13 − (c2 + 1) c14) rA(r)10F ′(r)

+2 (c2 − c13 + c14) (c2 + c13 − (c2 + 1) c14) r2A(r)9A′(r)F ′(r),

f4 = 4 (c2 + c13) (c2 + c13 − (c2 + 1) c14) rA(r)9A′(r)

−2 (c2 + c13) (2c2 (c14 − 1) + c13c14)A(r)10

+
(
−c14c

2
2 + c2

2 − c2
13 − (c2 + 1) c2

14 + (c2 + 2) c13c14

)
r2A(r)8A′(r)2, (E.1)

a0 = 4
(
− (c14 − 1) c2

13 + (−c14c2 + 2c2 + 2c14 − 2) c13 + (c2 − 2) c2

+ 2
(
c2

2 + 3c2 + 1
)
c14

)
rA(r)2A′(r)

+
(
c2

13 + (5c2c14 + 8) c13 − (c2 + 1) c2
14 − (c2 − 8) c2

−
(
5c2

2 + 18c2 + 8
)
c14

)
r2A(r)A′(r)2

+ (c2 + c13) c14 (c2 − c13 + c14) r3A′(r)3

+4 (c2 + c13) (c14c2 + c2 + c13 + c14) rA(r)5F ′(r)

−2
(

(2c14 − 1) c2
13 + ((3c2 − 2) c14 + 4) c13 − (c2 + 1) c2

14 + c2 (c2 + 4)

+
(
3c2

2 + 4c2 + 4
)
c14

)
r2A(r)4A′(r)F ′(r)

+
(
−c2

2 − (c2 + 2) c14c2 + c13c14c2 + c2
13 − (c2 + 1) c2

14

)
r2A(r)7F ′(r)2

+ (c2 + c13) c14 (c2 − c13 + c14) r3A(r)6A′(r)F ′(r)2

−2 (c2 + c13)A(r)3
(
c14 (−c2 + c13 + c14 − 4) r3A′(r)2F ′(r)

+ 2c2 + 2c2c14 + c13c14 + 4
)
,

a1 = 4
(

(2c14 + 1) c2
13 + (3c14c2 + 2c2 + c14 − 4) c13 + (c2 − 4) c2

−
(
3c2

2 + 7c2 + 4
)
c14

)
rA(r)4A′(r)

+
(
− (8c14 − 3) c2

13 − ((23c2 + 14) c14 − 8) c13 + 3 (c2 + 1) c2
14

− c2 (3c2 − 8)−
(
c2

2 − 8c2 − 8
)
c14

)
r2A(r)3A′(r)2
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−2 (c2 + c13) c14 (−c2 + c13 + c14 − 4) r3A(r)2A′(r)3

−8 (c2 + 1) (c2 + c13) c14rA(r)7F ′(r)

+4
(

(c14 + 1) c2
13 + 2 (c2c14 − 1) c13 − (c2 + 1) c2

14 − c2 (c2 + 2)

+
(
c2

2 + 2c2 + 2
)
c14

)
r2A(r)6A′(r)F ′(r)

+
(
c14c

2
2 − c2

2 + c2
13 + (c2 + 1) c2

14 − (c2 + 2) c13c14

)
r2A(r)9F ′(r)2

−2 (c2 + c13)A(r)5

×
(
−c14 (c2 − c13 + c14) r3A′(r)2F ′(r)− 2c2 − (6c2 + 3c13 + 4) c14

)
,

a2 = −2 (c2 + c13) ((6c2 + 3c13 + 4) c14 − 2 (c2 + 2))A(r)7

−4
(

(c14 + 1) c2
13 + (c2 (3c14 + 2) + 2) c13 + c2 (c2 + 2)

− 2 (2c2 + 1) c14

)
rA(r)6A′(r)

+
(
− 3c2

2 + (5c2 − 6) c14c2 + 19c13c14c2 − 3 (c2 + 1) c2
14

+ c2
13 (8c14 + 3)

)
r2A(r)5A′(r)2

+ (c2 + c13) c14 (c2 − c13 + c14) r3A(r)4A′(r)3

−4 (c2 + c13) (c2 + c13 − (c2 + 1) c14) rA(r)9F ′(r)

−2 (c2 − c13 + c14) (c2 + c13 − (c2 + 1) c14) r2A(r)8A′(r)F ′(r),

a3 = 2 (c2 + c13) (2c2 (c14 − 1) + c13c14)A(r)9

−4 (c2 + c13) (c2 + c13 − (c2 + 1) c14) rA(r)8A′(r)

+
(
c14c

2
2 − c2

2 + c2
13 + (c2 + 1) c2

14 − (c2 + 2) c13c14

)
r2A(r)7A′(r)2, (E.2)

and

b0 = 4 (c2 + 1) (c2 + c13) c14A(r)2 − 4 (c2 + c13) 2c14rA(r)A′(r)

+ (c2 + c13) c14 (c2 − c13 + c14) r2A′(r)2 − 4 (c2 + c13) 2c14rA(r)4F ′(r)
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−2 (c2 + c13) c14 (−c2 + c13 + c14 − 4) r2A(r)3A′(r)F ′(r)

+ (c2 + c13) c14 (c2 − c13 + c14) r2A(r)6F ′(r)2,

b1 = −2 (c2 + c13) c14 (−c2 + c13 + c14 − 4) r2A(r)2A′(r)2 −

8 (c2 + 1) (c2 + c13) c14A(r)4

+2 (c2 + c13) c14 (c2 − c13 + c14) r2A(r)5A′(r)F ′(r)

+4 (c2 + c13) 2c14rA(r)6F ′(r),

b2 = 4 (c2 + c13) 2c14rA(r)5A′(r) + 4 (c2 + 1) (c2 + c13) c14A(r)6

+ (c2 + c13) c14 (c2 − c13 + c14) r2A(r)4A′(r)2. (E.3)

On the other hand, the coefficients nn’s appearing in Eq.(3.44) are given by

n0 =
c2A

′(r)

2rA(r)3B(r)3
− c2

2r2A(r)2B(r)3
− c13

4r2A(r)2B(r)3
− 1

r2B(r)

−(c2 + c13 + c14)A′(r)F ′(r)

4A(r)B(r)3
− (c2 + c13 − c14)A′(r)2

8A(r)4B(r)3

+
(c2 + 2)F ′(r)

2rB(r)3
− (c2 + c13 − c14)A(r)2F ′(r)2

8B(r)3
,

n1 =
(−c2 − c13 − c14)A′(r)2

4A(r)2B(r)3
− c2A(r)2F ′(r)

2rB(r)3
+

2c2 + c13 + 2

2r2B(r)3

+
(−c2 − c13 + c14)A(r)A′(r)F ′(r)

4B(r)3
,

n2 = −c2A(r)A′(r)

2rB(r)3
+

(−c2 − c13 + c14)A′(r)2

8B(r)3
+

(−2c2 − c13)A(r)2

4r2B(r)3
. (E.4)

When cS = 1, i.e. c2 = (−2c13 + 2c14 − c2
13c14) / (2− 4c14 + 3c13c14), the coefficients

f0, a0, b0 and n0 reduce to

f0 =

[
rA(r)2F ′(r) +

c14c13 + 2c13 − 2c14

2 (c13 − 1) c14

]
b0,

a0 =
2 (c13 − 1) c14rA

′(r) + (c13 − 2) (c14 − 2)A(r)

c13 (c14 (2rA(r)2F ′(r) + 1) + 2)− 2c14 (rA(r)2F ′(r) + 1)
f0,

b0 =
1

((3c13 − 4) c14 + 2) 2

×
{

2 (1− c13) 2c2
14

(
4c14c

2
13 +

(
−3c2

14 − 4c14 + 4
)
c13 + 4 (c14 − 1) c14

)
r2A′

2
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− 4 (c13 − 1) 2c2
14rA(r)A′(r)

×
[(

4c14c
2
13 +

(
3c2

14 − 16c14 + 4
)
c13 − 4

(
c2

14 − 4c14 + 2
))
rA(r)2F ′(r)

+ 4 (c13 − 1) 2c14

]
− 2 (c13 − 1) 2c2

14A(r)2

×
[ (

4c14c
2
13 +

(
−3c2

14 − 4c14 + 4
)
c13 + 4 (c14 − 1) c14

)
r2A(r)4F ′(r)2

+ +8 (c13 − 1) 2c14rA(r)2F ′(r) + 4 (c13 − 1) ((c13 − 2) c14 + 2)
]}
,

(E.5)

and

n0 =
c14 (−2c2

13 + (3c14 + 4) c13 − 4c14)A(r)2F ′(r)2

8 ((3c13 − 4) c14 + 2)B(r)3

+F ′(r)
[
c14

(
−2c2

13 − 3c14c13 + 4c13 + 4c14 − 4
)
rA′(r)

− 2
(
c14c

2
13 + (2− 6c14) c13 + 6c14 − 4

)
A(r)

]
×
[
4 ((3c13 − 4) c14 + 2) rA(r)B(r)3

]−1

+
[
8 ((3c13 − 4) c14 + 2) r2A(r)4B(r)3

]−1

×
[
c14

(
−2c2

13 + (3c14 + 4) c13 − 4c14

)
r2A′(r)2

− 4
(
c14c

2
13 + 2c13 − 2c14

)
rA(r)A′(r)

− 8 ((3c13 − 4) c14 + 2)A(r)4B(r)2

+
(
−2c14c

2
13 + (8c14 + 4) c13 − 8c14

)
A(r)2

]
. (E.6)

It should be noted that, due to the complexities of the expressions given in

Eqs.(E.1) - (E.6), we extract these coefficients directly from our Mathematica code

to avoid typos. In addition, they are further tested by the exact solutions presented

in [75, 77], as well as by the numerical solutions presented in [86, 90]. In the latter,
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we find that there are no differences between our numerical solutions and the ones

presented in [86,90], within the errors allowed by the numerical codes.
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APPENDIX F

The Coefficients of α101-α412

α101 ≡ 32c1(3− 4r)2(r − 1)2r2
(
8r
(
128

(
l2 + l − 4

)
r4 + 48

(
l2 + l − 4

)
r3

+256l(l + 1)r5 + 486r + 243
)

+ 729
)
,

α102 ≡ −24
√

3c1

(
4r2 − 7r + 3

)2

×
(
512

(
l2 + l − 2

)
r6 + 256

(
l2 + l + 2

)
r5 + 32

(
3l2 + 3l + 14

)
r4

+ 384r3 + 432r2 + 216r + 81
)
,

α103 ≡ −32c1(r − 1)2r3(4r − 3)3

×
(
1024r5 + 768r4 + 512r3 + 288r2 + 108r + 27

)
,

α104 ≡ −6
√

3c1(r − 1)2r(4r − 3)3

×
(
1024r5 − 256r4 − 768r3 − 864r2 − 324r − 81

)
,

α105 ≡ −16c1(3− 4r)4r4
(
−16r3 + 8r2 + 5r + 3

)2
,

α106 ≡ 3
√

3c1(3− 4r)4r2
(
−16r3 + 8r2 + 5r + 3

)2
,

α107 ≡ −48c1r
4
√

768(r − 1)r3 + 81
(
128r4 − 128r3 + 54r − 27

)
,

α108 ≡ 3r2
√

256(r − 1)r3 + 27

×
(
9c1

(
1024r5 − 1920r4 + 896r3 + 162r − 135

)
− 32768(r − 1)3r6

)
,

α109 ≡ 96c1(3− 4r)2r5
(
16r3 − 8r2 − 5r − 3

)√
768(r − 1)r3 + 81,

α110 ≡ −2(r − 1)r3
√

256(r − 1)r3 + 27

×
(
27c1

(
256r4 − 256r3 + 27

)
+ 16384(r − 1)2r6

)
,
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α111 ≡ −432c1r
6
(
256r4 − 256r3 + 27

)
,

α112 ≡ 81
√

3c1r
4
(
256r4 − 256r3 + 27

)
,

α113 ≡ 16384
(
l2 + l − 2

)
(r − 1)2r9

√
256(r − 1)r3 + 27. (F.1)

α201 ≡ −96c1(r − 1)2r2
√

768(r − 1)r3 + 81,

×
(
1024

(
l2 + l − 4

)
r5 + 384

(
l2 + l − 4

)
r4 + 2048l(l + 1)r6

+ 3888r2 + 1944r + 729
)
,

α202 ≡ 8(r − 1)2
√

256(r − 1)r3 + 27

×
(
27c1

(
512

(
l2 + l − 2

)
r6 + 256

(
l2 + l + 2

)
r5 + 32

(
3l2 + 3l + 14

)
r4

+ 384r3 + 432r2 + 216r + 81
)

+4096
(
l2 + l − 2

) (
16r3 − 8r2 − 5r − 3

)
r7
)
,

α203 ≡ 96c1(r − 1)2r3
√

768(r − 1)r3 + 81

×
(
4096r6 − 256r4 − 384r3 − 432r2 − 216r − 81

)
,

α204 ≡ 54c1(r − 1)2r
√

256(r − 1)r3 + 27

×
(
4096r6 − 4096r5 − 2304r4 − 1152r3 + 1296r2 + 648r + 243

)
,

α205 ≡ 48c1r
4
√

768(r − 1)r3 + 81
(
64r4 − 80r3 + 4r2 + 3r + 9

)2
,

α206 ≡ −27c1r
2
√

256(r − 1)r3 + 27
(
64r4 − 80r3 + 4r2 + 3r + 9

)2
,

α207 ≡ 432c1r
4
(
2048r6 − 1024r5 − 640r4 + 480r3 − 54r − 81

)
,

α208 ≡ −81
√

3c1r
2

×
(
16384r7 − 22528r6 + 2048r5 + 1408r4 + 5280r3 − 864r2

− 594r − 405
)
,

α209 ≡ −864c1(r − 1)r5
(
−64r3 + 16r2 + 12r + 9

)2
,
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α210 ≡ 162
√

3c1(r − 1)r3
(
−64r3 + 16r2 + 12r + 9

)2
,

α211 ≡ 1296c1r
6
(
16r2 + 8r + 3

)√
768(r − 1)r3 + 81,

α212 ≡ r4
(
16r2 + 8r + 3

)√
256(r − 1)r3 + 27

(
32768(r − 1)2r6 − 729c1

)
,

α213 ≡ −16384
(
l2 + l − 2

)
(r − 1)3r8

(
16r2 + 8r + 3

)√
256(r − 1)r3 + 27. (F.2)

α301 ≡ 2− 2r,

α302 ≡ −2(r − 1)2,

α303 ≡ 2r2 − 3r + 1,

α304 ≡ (r − 1)2r,

α305 ≡ −r3. (F.3)

α401 ≡ −32(r − 1)2r2
√

256(r − 1)r3 + 27

×
(
1024

(
l2 + l − 4

)
r5 + 384

(
l2 + l − 4

)
r4 + 2048l(l + 1)r6

+ 3888r2 + 1944r + 729
)
,

α402 ≡ 24(r − 1)2
√

768(r − 1)r3 + 81

×
(
512

(
l2 + l − 2

)
r6 + 256

(
l2 + l + 2

)
r5 + 32

(
3l2 + 3l + 14

)
r4

+ 384r3 + 432r2 + 216r + 81
)
,

α403 ≡ 32(r − 1)2r3
√

256(r − 1)r3 + 27

×
(
4096r6 − 256r4 − 384r3 − 432r2 − 216r − 81

)
,
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α404 ≡ 6(r − 1)2r
√

768(r − 1)r3 + 81

×
(
4096r6 − 4096r5 − 2304r4 − 1152r3 + 1296r2 + 648r + 243

)
,

α405 ≡ 16r4
√

256(r − 1)r3 + 27
(
64r4 − 80r3 + 4r2 + 3r + 9

)2
,

α406 ≡ −3r2
√

768(r − 1)r3 + 81
(
64r4 − 80r3 + 4r2 + 3r + 9

)2
,

α407 ≡ 48
√

3r4
(
2048r6 − 1024r5 − 640r4 + 480r3 − 54r − 81

)
,

α408 ≡ −27r2
(
16384r7 − 22528r6 + 2048r5 + 1408r4 + 5280r3

− 864r2 − 594r − 405
)
,

α409 ≡ −96
√

3(r − 1)r5
(
−64r3 + 16r2 + 12r + 9

)2
,

α410 ≡ 54(r − 1)r3
(
−64r3 + 16r2 + 12r + 9

)2
,

α411 ≡ 432r6
(
16r2 + 8r + 3

)√
256(r − 1)r3 + 27,

α412 ≡ −81r4
(
16r2 + 8r + 3

)√
768(r − 1)r3 + 81. (F.4)
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Phys. Rev. Lett. 104, 181302 (2010).

[204] D. Blas, O. Pujolas, and S. Sibiryakov, Models of non-relativistic quantum
gravity: the good, the bad and the healthy, JHEP 04 (2011) 018.

194
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