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ABSTRACT 

The Inversion Algorithm is an event-driven logic simulation technique that is 
competitive with Levelized Compiled Code Simulation. Previous versions of the 
Inversion Algorithm have been limited to purely binary simulation.  The algorithm 
presented here extends the Inversion Algorithm to three-valued simulation while 
preserving the desirable properties of the two-valued algorithm.  Because of the richer 
transformation structure used in three-valued simulation, the scheduling technique is 
significantly more complex than that of the two-valued algorithm.  The procedure for 
collapsing simultaneous events is also significantly more complex.  Once a three-valued 
net achieves a stable binary value, it is possible to replace the three-valued simulation 
with a more efficient two-valued simulation.  Experimental data shows that the three-
valued algorithm is also competitive with levelized compiled code simulation.
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1. Introduction 

The Inversion Algorithm[1] is an event-driven simulation technique that rivals, and 
sometimes exceeds the speed of levelized compiled code simulation[2-14].  The 
fundamental concept behind the Inversion Algorithm is that no gate will be simulated 
unless its output is guaranteed to change value.  This condition is enforced my various 
means, the most important of which is a counting technique[15-17] that keeps track of the 
number of inputs carrying dominant values.  The fact that no gate will be simulated 
unless its output changes value allows for several 
significant optimizations in the simulation 
process.  If nets are assumed to carry only binary 
values, then the effect of a change in the net can 
be predicted without examining its value.  Except 
for primary inputs and monitored nets, the 
Inversion Algorithm uses no permanent net 
values, and propagates neither values nor 
changes through the circuit.  Instead, simulation consists of a wave-front of activity that 
proceeds from the primary inputs to the monitored nets.  When this wave hits a monitored 
net, the value of the net toggles.  An important consequence of this form of simulation is 
that several types of gates can be eliminated from the circuit without affecting the 
correctness of the simulation, and several other types of gates can be combined, 
significantly reducing simulation time. 

Despite its efficiency, the all previous implementations of the Inversion Algorithm 
use a two-valued logic model.  There may be situations in which a two-valued logic 
model will not give sufficient information to debug a circuit.  The purpose of this paper is 
to show how the unknown value can be incorporated into the Inversion Algorithm with 
minimal impact on the advantageous features of the two-valued algorithm. 

2. Three-Valued Simulation. 

In three-valued simulation, it is assumed that each net can take the values 0, 1, or U 
(unknown).  In most cases, the initial value of each net will be set to U, to allow the 
circuit to be properly initialized by the first input vector.  The three-valued truth tables for 
the standard Boolean functions are illustrated in Figure 1. 
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AND U 0 1  OR U 0 1  XOR U 0 1  NOT - 
U U 0 U  U U U 1  U U U U  U U 
0 0 0 0  0 U 0 1  0 U 0 1  0 1 
1 U 0 1  1 1 1 1  1 U 1 0  1 0 

Figure 1. Three-Valued Truth tables. 

The tables illustrated in Figure 1 illustrate the differences between two and three-
valued simulation.  For AND and OR gates, the single-level dominance that occurs in 
two-valued simulation is replaced by a two-level dominance.  For AND gates, the value 0 
dominates both U and 1, while the value U dominates the value 1.  The XOR gate, which 
transmits all changes in two-valued simulation, is now dominated by the value U.  The 
NOT gate propagates all changes. 

One advantage of the two-valued inversion algorithm is that state changes are 
computed based on a change in a single gate input.  It is not necessary to compute an 
n-ary operation on the gate inputs.  This feature has a significant impact on the 
performance of the Inversion Algorithm.  Furthermore, in two-valued simulation, it is not 
necessary to determine the type of change occurring in a net, because any change can be 
predicted from the current value of the net.  Thus it is not necessary to propagate 
information regarding changes through the network. In three-valued simulation, two 
different changes may occur depending on the value of the net, so the type of change 
must be communicated between from one net to another. 

Despite the added complexity of three-valued simulation, it is possible to use the 
internal state of a gate to determine whether an output change will occur.  In two-valued 
simulation, it is sufficient to keep a count of the number of inputs having the dominant 
value.  In three-valued simulation, it is also necessary to keep track of the number of 
inputs which have the unknown value.  By using these two counts, it is possible to 
compute the output change of an AND or an OR gate without examining all inputs.  
Figure 2 summarizes the actions that must be taken in response to each type of input 
change.  The variable “DC” contains the dominant count for the gate, while the variable 
“UC” contains the unknown count.  The variable “OC” appearing in the XOR column is 
the ones-count which is explained in Section 4. 
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Change AND OR XOR NOT 
0-1 DC = DC -1 

if DC = 0 then 
   Output = 0-1 

DC = DC + 1 
if DC = 1 then 
   Output = 0-1 

OC = OC + 1 
if UC = 0 then 
   Output = Toggle 

Output = 1-0 

0-U DC = DC -1 
UC = UC + 1 
if DC = 0 then 
   Output = 0-U 

UC = UC + 1 
if DC = 0 and 
    UC = 1 then 
   Output = 0-U 

UC = UC + 1 
if UC = 1 then 
  Output = CurrVal-U 

Output = 1-U 

1-0 DC = DC + 1 
if DC = 1 then 
   Output = 1-0 

DC = DC -1 
if DC = 0 then 
   Output = 1-0 

OC = OC - 1 
if UC = 0 then 
   Output = Toggle 

Output = 0-1 

1-U UC = UC + 1 
if DC = 0 and 
    UC = 1 then 
   Output = 1-U 

DC = DC -1 
UC = UC + 1 
if DC = 0 then 
   Output = 1-U 

OC = OC - 1 
UC = UC + 1 
if UC = 1 then 
  Output = CurrVal-U 

Output = 0-U 

U-0 UC = UC - 1 
DC = DC + 1 
if DC = 1 then 
   Output = U-0 

UC = UC - 1 
if UC = 0 and 
    DC = 0 then 
   Output = U-0 

UC = UC - 1 
if UC = 0 then 
  if OC mod 2 = 1 then 
     Output = U-1 
  else 
     Output = U-0 

Output = U-1 

U-1 UC = UC - 1 
if UC = 0 and 
    DC = 0 then 
   Output = U-1 

UC = UC - 1 
DC = DC + 1 
if DC = 1 then 
   Output = U-1 

OC = OC + 1 
UC = UC -1 
if UC = 0 then 
  if OC mod 2 = 1 then 
     Output = U-1 
  else 
     Output = U-0 

Output = U-0 

Figure 2. Counter Actions for Input Changes. 

3. AND OR gates. 

In two-valued simulation, it was sufficient to provide a single event-handler for each 
net, and a single type of event called Toggle.  When an event occurs, the current event 
handler is replaced with the correct event handler for the next event that will occur on the 
net.  Because there are two different events that may occur for each net in three-valued 
simulation, it is necessary to provide two event-handlers for each net.  When an event 
occurs, both event handlers are replaced.  There are six types of events that may occur for 
any net,  each of which requires its own event handler.  For the sake of brevity, these 
events and event handlers will be denoted as DtoN, NtoD, UtoD, UtoN, DtoU, and 
NtoU, where D, N and U stand for Dominant, Non-dominant, and Unknown.  These 
events must be paired in the following way (DtoN,DtoU), (NtoD,NtoU), (UtoD,UtoN).  
Since each net is initialized to U, each event structure will be initialized with the pair 
(UtoD,UtoN).  When this pair is replaced, it will be with one of the other two pairs listed. 

As in the two-valued algorithm, each event in the three-valued algorithm represents 
one fanout-branch of a net.  This is necessary because a DtoN event on one fanout branch 
may be an NtoD event on another.  When an event is queued, it is necessary to specify 
which event-handler of the pair will be used to process the event.  For simplicity, the first 
event handler in each of the pairs listed above will be termed the upper event handler, 
and the second will be termed the lower event handler. DtoN and NtoD events always 
queue the upper event handler, while DtoU and NtoU events always queue the lower 
event handler. 
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This procedure presents some problems when processing UtoD and UtoN events.  
Consider the situation illustrated in Figure 3. 

U

U 0
U

U

Changes from U to 0
(UtoD)

U U

Resultant Change
UtoD

Resultant Change
UtoN

 

Figure 3. Conflicting Changes in Fanout Branches. 

In Figure 3, the UtoD event occurring at the input of the first AND gate must 
schedule a UtoN event at the input of the OR gate, and a UtoD event at the input of the 
second AND gate.  If it is necessary to dynamically compute the type of event-handler at 
run time, simulation performance could be severely impaired.  This problem is solved by 
providing two sets of upper/lower pairs, (UtoD,UtoN) and (UtoN,UtoD).  Appropriate 
use of these two pairs will allow the UtoD event to always queue the upper event handler, 
and the UtoN event to always queue the lower event handler.  The assignment of the 
event pairs depends on whether a connection is a homogeneous or a heterogeneous 
connection. 

Reference [1] defines homogeneous and heterogeneous connections in terms of the 
way changes to the dominant counts propagate from one gate to another.  Homogeneous 
and heterogeneous connections are connections between two gates of the types AND, 
OR, NAND, or NOR, possibly with some intervening NOT gates.  Suppose G1 and G2 
are gates taken from these four gate-types, and that the output of G1 is the input of G2.  If 
a change in the input of G1 is propagated to the input of G2, it is necessary to compute a 
new dominant count for both gates.  If the dominant counts move in the same direction 
(i.e., both are incremented or both are decremented) then the connection is homogeneous.  
If the counts move in opposite directions, the connection is heterogeneous.  The 
homo/heterogeneous property is a property of fanout branches, not of entire nets.  If a 
connection is homogeneous, then the (UtoD,UtoN) upper/lower pair is used, while if the 
connection is heterogeneous, the (UtoN,UtoD) pair is used.  For primary input 
connections, those attached to AND and NAND gates are treated as homogeneous, while 
those attached to OR and NOR gates are treated as heterogeneous.  This allows the choice 
of upper or lower event handler in the input processing routine to be independent of gate-
type. 
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The upper/lower pairs automatically load the correct 
upper/lower pair to handle the next event.  The DtoN 
event handler loads the pair (NtoD,NtoU), and the NtoD 
event handler loads the pair (DtoN,DtoU).  The event 
handlers DtoU and NtoU load the default pair, 
(UtoD,UtoN) or (UtoN,UtoD), for the connection.  The 
event handler UtoD loads the pair (DtoN,DtoU), and the 
event handler UtoN loads the pair (NtoD,NtoU). 

It is important to verify that this scheme for queuing 
events will allow consecutive events to interact properly.  
For each of the event types, it is necessary to verify that 
the event handler will select the appropriate event 
handler for any propagated events.  The following four 
lemmas establish the correctness of the event propagation procedures.  These lemmas are 
expressed in terms of AND and OR gates to simplify the terminology.  It is further 
assumed that the output of each gate is a single homogeneous connection.  Extending 
these lemmas to NAND and NOR gates and heterogeneous connections is a 
straightforward exercise which is left to the reader. 

Lemma 1. For AND and OR gates, neither an DtoU nor an NtoU event can 
propagate an event other than another NtoU or DtoU. 

Proof. Suppose a DtoU event on the input of a gate causes a change on the output 
of a gate.  The original value of the gate must be the dominant value, which will 
cause the output to be the dominant value as well.  Therefore if the DtoU causes 
an a change in the output, it must be either a DtoN event or a DtoU event.  Since 
the value U dominates the non-dominant value, the new value, U, of the input will 
prevent the output from changing to the non-dominant value.  Therefore the only 
possible output event is DtoU.  Now suppose that an NtoU event on an input 
causes a change in the output of a gate.  No other input can have the dominant 
value, otherwise no change would be possible.  Therefore, after the event, all 
inputs have the non-dominant or the U value.  Because the NtoU event causes a 
change, no other input can have the U value.  This implies that the original value 
of the gate must have been the non-dominant value, and the new value must be 
the U value.  Therefore, the only event that can be caused by an NtoU event is 
another NtoU event. 

Lemma 1 verifies the correct handling of propagated events when the lower event 
handler of the pairs (DtoN,DtoU) and (NtoD,NtoU) is executed.  If the event is 
propagated, the event-handler pair of the output must also be one of (DtoN,DtoU) and 
(NtoD,NtoU).  When propagating an event, the event handlers for DtoU and NtoU events 
always select the lower event handler.  Lemma 1 verifies that this behavior is correct.  
Lemmas 2 and 3 concert the upper half of the (DtoN,DtoU) and (NtoD,NtoU) pairs. 
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Lemma 2.  For AND and OR gates, an NtoD event can propagate only another 
NtoD or a UtoD event. 

Proof: Since the event propagates, the output of the gate cannot be the dominant 
value.  If the output is the non-dominant value, then an NtoD event is propagated, 
otherwise a UtoD event is propagated. 

When propagating an event, the NtoD 
event handler always selects the upper event 
handler for the output.  If the output value is 
U, then the upper event handler will be UtoD.  
If the output is set to the non-dominant value, 
then the upper event handler will be NtoD.  
As Lemma 2 illustrates, the NtoD event 
handler always chooses the correct event 
handler for the propagated event. 

Lemma 3.  For AND and OR gates, a DtoN event can propagate only another 
DtoN or a DtoU event. 

Proof: The output must have the dominant value before the event is processed.  If 
the event propagates, no other input can have the dominant value.  The other 
inputs must consist of non-dominant values and U’s.  If some other input has the 
value U, then a DtoU event occurs, otherwise a DtoN event occurs. 

The event handler for the DtoN event can choose either the upper or lower event 
handler based on the state of the gate.  However, as Lemma 3 shows, when an DtoN 
event propagates, the event-handler pair for the output must be (DtoN,DtoU), permitting 
a correct choice to be made for all states. 

Lemma 4. For AND and OR gates, neither a UtoD event nor an UtoN event can 
propagate an event other than another UtoD or UtoN.  

Proof:  Because the value of the input is U before the UtoD or UtoN event is 
processed, the only allowable output values are U and the dominant value.  If the 
output value is the dominant value, then some other input must be set to its 
dominant value.  For a UtoD event, this would imply no change in the output, 
preventing the event from propagating.  If the output value is the unknown value, 
then the only types of events that can propagate are UtoN and UtoD. 

When the DtoN and NtoD event handlers, they assume that they are propagating an 
identical event to the output, thus DtoN events always queue the upper event handler, and 
NtoD events always queue the lower event handler.  (If the connection is heterogeneous, 
reversing the (UtoD,UtoN) pair takes care of moving from the dominant to the non-
dominant value.)  Lemma 4 shows that this procedure is guaranteed to produce correct 
behavior. 

4. XOR and NOT gates. 

Because the XOR gate no longer propagates all events, the event handlers for XOR 
gates are no longer trivial.  The value U will dominate the XOR gate preventing any 
events on the known inputs from propagating.  Furthermore, when the inputs of the XOR 
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gate become known, the type of event propagated will depend on the number of inputs 
that have the value 1, which we will call the Ones-Count.  Although the ones-count is not 
needed when all inputs have known values, the possibility of an input becoming unknown 
requires that the ones-count be maintained at all times.  Figure 2 details the event-
handling procedure for XOR gates. 

Six event handlers are required, 1to0, 0to1, 1toU, 0toU, Uto0, and Uto1.  These 
events are paired in the expected fashion, (1to0,1toU), (0to1,0toU), and (Uto1,Uto0).  As 
with AND and OR gates, the (Uto1,Uto0) pair is actually two pairs, (Uto1,Uto0) and 
(Uto0,Uto1).  AND-XOR connections are treated as heterogeneous, while OR-XOR 
connections are treated as homogeneous.  (Since different event handlers are involved, 
the choice is a matter of taste.)  The 1to0 and 0to1 handlers always queue the upper event 
handler for propagated events, while the 0toU and 1toU handlers always queue the lower 
event handler.  The handlers Uto1 and Uto0 may queue either the upper or lower event 
handler, depending on whether the ones-count of the gate is an even number. 

The correctness of the XOR event-handling procedure can be established using 
lemmas similar to those presented in the previous section.  To avoid duplicating these 
arguments, these lemmas are left as an exercise for the interested reader. 

As in the two-valued algorithm, the handling of NOT gates is trivial.  NOT gates 
simply pass any incoming event through to the output.  It is important, however, to note 
that a NOT gate transforms a homogeneous connection to a heterogeneous connection, 
and vice versa.  Figure 4 illustrates how one determines the type of each connection for a 
chain of NOT gates.  This Figure makes it clear that NOT gates can be collapsed out of 
the simulation simply by changing connection types.  NAND, NOR and XNOR gates are 
handled by treating them as AND, OR and XOR gates followed by a collapsed NOT gate. 

Homogeneous Homogeneous

HeterogeneousHeterogeneous

Connection types alternate with one another

Output Determination is done ignoring intervening NOT gates.
 

Figure 4. A Chain of Not Gates. 

5. Collapsing Simultaneous Events. 

Another aspect of the Inversion Algorithm that leads to its high performance is the 
collapse of consecutive events.  If two consecutive simultaneous events result in no 
change in the affected net, then the two events are removed from the event queue, and 
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neither is processed.  In two-valued simulation, this procedure is simple because any two 
consecutive events cancel one another.  When an event is propagated, a new event will be 
queued if none is already queued.  If an event is already queued, the existing event will 
be removed from the queue. 

As should be expected, collapsing events in three-valued simulation is somewhat 
more complicated than in two-valued simulation.  It is important to remember that 
simultaneous events on a net are caused by simultaneous events on the inputs of a gate  
propagating to the output of the gate.  To determine how to collapse events it is necessary 
to understand the effect of simultaneous events on the state of the gate.  When an event of 
a certain type is queued, it is necessary to know what types of events can already be 
queued for the net, and how this event will combine with the new event.  It is also 
important to note that event compression will already have been performed for the events 
on the inputs of a gate, so at most one event will be processed for each input net at any 
specific time.  Figure 5 illustrates all possible event-collapsing actions.  Note that certain 
combinations of New Event, Old Event and Current Output Value can never occur. 

 
New Event Current Output Prev. Event: Actual Change Collapse Action: 
NtoD Non-Dominant DtoN D to D Delete Queued Event 
 Non-Dominant UtoN U to D Replace Lower event handler 

in queued event with Upper 
event handler. 

 U NtoU N to D Replace Lower event handler 
in queued event with Upper 
event handler. 

 U DtoU D to D Delete Queued Event. 
DtoN No prior event can be queued. 
NtoU Non-Dominant DtoN D to U Replace Upper event handler 

in queued event with Lower 
event handler 

 Non-Dominant UtoN U to U Delete Queued Event 
DtoU No prior event can be queued. 
UtoD U DtoU D to D Delete Queued Event 
UtoN U DtoU D-to-N Replace Lower event handler 

in queued event with Upper 
event handler. 

Figure 5. Event Collapsing for AND and OR Gates. 

The primary problem encountered in event collapsing is NtoD event processing when 
the output of the gate is U.  This is the only case in which it is not possible to determine 
the correct action by examining the current state of the gate.  In this case it is necessary to 
know whether the U output value was caused by a DtoU or an NtoU event.  Although it 
may be possible to determine the correct behavior by analyzing the nature of the queued 
events, a more efficient procedure is to add a “last event” field to the state of the gate, and 
modify the DtoU and NtoU event-handlers to store a “D” or an “N” in this field 
whenever they queue an event.  This code can be used by the NtoD event handler to 
determine whether to delete the currently queued event or to replace it with a toggle 
event. 
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New Event Current Output Prev. Event: Actual Change Collapse Action: 
0to1 0 or 1 0to1 None Delete Queued Event 
 0 or 1 1to0 None Delete Queued Event 
 0 or 1 Uto1 Complement of 

previous 
Swap Upper and Lower 
event 

 0 or 1 Uto0 Complement of 
previous 

Swap upper and lower 
events. 

1to0 Same as 1 to 0 
0toU 0 or 1 0to1 Previous to U. Replace upper event handler 

in queued event with lower 
event handler 

 0 or 1 1to0 Previous to U Replace upper event handler 
in queued event with lower 
event handler 

  Uto0 None Delete Queued Event 
  Uto1 None Delete Queued Event 
1toU Same as 0 to U. 
Uto1 No prior event can be queued. 
Uto0 No prior event can be queued. 

Figure 6. Event Collapsing for XOR Gates. 

Event collapsing for XOR gates requires a knowledge of the type of event that created 
the existing event.  The “last event” field must be used to record this information.  The 
0to1 events record a “T” (for toggle) in this field, while the Uto1 and Uto0 events record 
a “U”. 

6. Transformation from Three to Two Values. 

Although the Inversion Algorithm’s three-valued event processing is efficient, it is 
more complex and time consuming than two-valued processing.  It is possible to speed up 
the simulation by observing that although all nets are initialized to the value U, for most 
circuits, most nets will be permanently set to a known binary value by the first input 
vector.  Even highly sequential circuits are normally initialized with a special reset-
sequence that will cause most nets to have binary values after a few cycles.  Most nets in 
the circuit cannot be set to the U value once they have achieved a known value.  In many 
cases even though it is possible to set a net to the U value, this action should be treated as 
an error.  In these cases it is possible to replace the three-valued event handlers with their 
two-valued counterparts, thereby speeding up the simulation. 

The underlying assumption that permits three-to-two valued transformation is that 
some nets are known-to-be-binary.  When a known-to-be-binary net achieves a known 
value, the U value is no longer needed for the net.  This property is especially important 
for primary inputs and for the outputs of certain flip-flops.  When a primary input is 
known-to-be-binary, this implies that every input vector will supply a known binary 
value for the input.  If the output of a flip-flop is known-to-be-binary, the output should 
be initialized to a known value, and the internal circuitry and usage of the flip-flop should 
guarantee that, under normal operating conditions, the output never oscillates or achieves 
a metastable state.  The known-to-be-binary property can be propagated through a 
combinational network by observing that when the inputs of a combinational gate are 
known, the output is known as well. 



 10 

Because all nets are initialized to the U value, all nets 
must initially be treated as trinary nets.  Although the 
transformation from trinary to binary could be done 
simultaneously with event processing, this would 
unnecessarily complicate the processing of all three-
valued events.  A better method is to perform the 
transformation as a separate step which is isolated from 
normal event processing.  The mechanism for performing 
this transformation is to propagate a special event called a 
Meta-Event, through the network.  Conceptually, a Meta-
Event is created whenever a known-to-be-binary net is 
first assigned a known value.  Each gate has an associated 
count of untransformed input nets.  When a meta-event is 
processed for a net, the event-handler is replaced with a 
binary event-handler, and the count of each fanout gate is 
decremented.  When the count reaches zero, a new meta-
event is generated for the output net of the gate. 

Meta-Event processing will be performed between 
input vectors, and as Lemma 5 shows, it is sufficient to perform this process once after 
the processing of the first input vector. 

Lemma 5. Let C be a circuit with known-to-be-binary primary inputs.  Assume 
further that no other net has the known-to-be binary property.  The known-to-be-
binary property will not propagate to any net after the first input vector is 
processed. 

Proof. If it is possible for the known-to-be-binary property to propagate to a net, 
then it must be possible for all inputs of the gate to be assigned the known-to-be-
binary property.  These nets must either be primary inputs, or outputs of gates 
whose inputs can themselves be assigned the known-to-be-binary property.  This 
implies that any net that can be assigned the known-to-be-binary property must be 
dependent only on the primary inputs of the circuit.  This also implies that there 
can be no cyclic path between the net and the primary inputs.  If a net depends 
only on the primary inputs, and if all primary inputs have been assigned known 
values, then it is possible to compute a known value of the net using only the 
known values of the input vector.  After the first input vector is processed, the 
correctness of the simulator implies that the known value will have been 
computed for the net.  Therefore, if it is possible to propagate the known-to-be-
binary property to the net, the net will have been assigned a known value during 
the processing of the first input vector. 

Lemma 5 is also applicable to sequential circuits containing flip-flops with known-to-
be-binary outputs, as long as the outputs of these flip-flops are initialized with known 
values.  If the circuit contains flip-flops with known-to-be-binary outputs that are 
initialized to the U value, then Lemma 5 does not apply.  In this case, it may be necessary 
to perform Meta-Event processing several times. 

For sequential circuits, Lemma 5 implies that Meta-Event processing will only be 
partially successful.  This is a reflection of reality, because when a circuit contains 
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feedback loops, it is usually possible to generate unknown values, either due to “don’t 
care” conditions in the circuit, or due to design flaws.  In either case, the propagation of a 
U value to certain nets should be treated as an error.  Suppose that it is technically 
possible to propagate an unknown value to net N, but propagating such values is to be 
treated as an error.  For such nets it is possible to perform a “weak” transformation from 
trinary to binary.  The upper event handler will be replaced with a binary event-handler, 
just as if the net were assigned the known-to-be-binary property, but the lower event 
handler will be preserved and replaced with a routine which generates an error message 
alerting the designer to the error.  Since the U value is an error, the behavior of the gate in 
response to the value is unimportant, and no event will be propagated to the outputs.  
Correct behavior is no longer guaranteed once this condition occurs.  It is possible to 
transform the net back to a trinary net, and propagate this transformation as far as 
necessary, but because the circuit has ceased to function correctly this is probably wasted 
effort. 

7. Experimental Data. 

We have implemented two versions of the three-valued inversion algorithm, one 
which performs a full three-valued simulation for all vectors, and one which uses meta-
events to perform three-to-two valued conversion after the first input vector.  We have 
compared these algorithms to various other algorithms using the ISCAS85 combinational 
benchmarks[18].  Experiments were all run on the same, dedicated machine, a SUN IPC 
with 12 Megs of memory and an internal hard disk.  The results of these experiments are 
reported in Figure 7.  The same data is presented graphically in Figure 8.  The numbers 
are expressed in terms of CPU Seconds of execution time.  These numbers do not include 
the time required to read input vectors or write output vectors.  Five thousand randomly 
generated vectors were used for each simulation.  The input-activity rate (percentage of 
primary inputs that change on each vector) is approximately 50% for all vector sets.  
Each experiment was performed five times and the results were averaged to obtain the 
results illustrated in Figure 7.  In addition to comparing the Inversion Algorithm to two-
valued LCC simulation, a special three-valued oblivious LCC simulator was constructed 
to allow comparison of the three-valued algorithm with three-valued LCC simulation.  
The two-valued LCC simulation results were obtained from the FHDL LCC simulator, 
which has been used here to support both CAD tool development and VLSI research for 
several years. 
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Circuit 2-Val Inv. 3-Val Inv. 3-2 Conv. Not-Elim 2-Val LCC 3-Val LCC Activity 
c432 1.7 3.2 2.4 2.2 0.5 0.8 59.4 
c499 2.0 4.9 2.9 2.5 0.6 1.0 63.2 
c880 3.8 7.2 5.7 5.1 1.2 2.3 57.1 
c1355 6.5 10.6 8.3 7.4 1.9 3.4 56.5 
c1908 8.1 16.2 11.9 7.6 4.4 6.1 56.8 
c2670 17.7 33.2 25.9 20.0 5.3 16.2 55.7 
c3540 16.5 30.3 22.4 17.2 8.4 24.8 52.4 
c5315 36.9 61.8 47.6 35.5 21.7 38.9 63.8 
c6288 40.4 67.0 54.6 52.0 30.1 48.5 61.5 
c7552 52.6 88.0 67.1 53.4 40.7 58.6 60.7 

Figure 7. Raw Experimental Data. 
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Figure 8. Graph of Experimental Data. 

Several observations about the three-valued inversion algorithm can be made from 
this data.  First, the full three-valued Inversion Algorithm requires approximately twice as 
much simulation time as the two-valued algorithm.  This is to be expected, because the 
simulation code is roughly twice as large.  (However, as in the two-valued algorithm, the 
amount of run-time code is minuscule.)  For the three-to-two valued conversion, the 
simulation times are roughly comparable.  It must be emphasized that neither of the 
three-valued simulators included the NOT-Elimination or the Connection Collapsing 
optimizations described in reference [1].  In spite of the lack of optimizations, the three-
valued algorithm, with meta-events, has outperformed three-valued LCC simulation for 
one circuit, c3540.  Finally, it is important to note that the activity rates of these circuits 
are much larger that would probably be encountered in practice.  As activity rate declines, 
the performance of the Inversion Algorithm will improve proportionally, while the 
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performance of the LCC algorithm will remain constant.  Figure 9 illustrates how the 
performance of the three-valued Inversion Algorithm improves as activity rate decreases 
to more realistic values.  The data of Figure 9 was obtained by running circuit C7552 on 
several vector sets with differing rates of input activity.  The data of Figure 9 is presented 
graphically in Figure 10. 

 
Input Activity: 5% 10% 15% 20% 
3-Val Inv. 16.4 28.0 38.0 44.9 
3-2 Conv. 12.6 21.4 28.8 33.9 
3-Val LCC 58.5 58.5 58.5 58.5 

Figure 9. C7552 with various input activity rates. 
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Figure 10.  Graph of decreasing input activity. 

8. Conclusion. 

One important benefit of the three-valued Inversion Algorithm is its unconditional 
ability to handle asynchronous sequential circuits.  Although the two-valued algorithm is 
technically capable of handling such circuits, it requires that all nets in the circuit be 
initialized to consistent values.  For combinational and synchronous circuits, the 
initialization can be done by simulating the circuit with a zero vector at compile time.  
For asynchronous circuits, a sequence of vectors may be required to initialize the circuit 
properly, and automatically generating the correct sequence at compile time is a difficult 
task.  The three-valued algorithm will function correctly without a compile-time 
simulation, permitting asynchronous circuits to be handled as easily combinational and 
synchronous circuits.  (The implementations described in Section 7 do not include 
compile-time simulations.) 

Work is proceeding on the three-valued algorithm.  Our highest priority is to create a 
version of the algorithm that includes all optimizations described in [1].  These 
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optimizations are identical in the two and three-valued algorithms.  Work is also 
proceeding on unit and multi-delay Inversion simulators that include the three-valued 
algorithms described here. 

The Inversion Algorithm is a new, unique approach to simulation that we believe will 
be extremely important in constructing high-speed simulators for tomorrow’s large scale 
integrated circuits.  Although the early implementations of the Inversion Algorithm have 
not included every feature required for by a commercial simulator, our on-going research 
continues to show that these features can be incorporated with an acceptably small impact 
on its performance.  We believe that the existing work has shown the Inversion 
Algorithm to be a viable alternative to other more traditional simulation techniques. 
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