
ABSTRACT

A Beta Regression Approach to Nonparametric Longitudinal Data Classification in
Clinical Trials

Roberto Sergio Hernandez, Ph.D.

Chairperson: Jack D. Tubbs, Ph.D.

Classification is an important topic in statistical analysis. For example, in ap-

plications involving clinical trials, an often seen objective is to determine whether

or not novel medicines and treatments differ from existing standards of care. There

are numerous methods and approaches in the literature for this problem when the

endpoint of interest is normally distributed or can be approximated by an asymptotic

Normal distribution, yet, the approaches when using a non-normally distributed end-

point are limited. This is especially true when these endpoints are correlated across

time. In this dissertation, we investigated several techniques for use with longitudi-

nal, repeated measures data where there is a special interest in adapting some recent

results found in the literature on Beta regression. The proposed methods provided

a nonparametric, with regard to the design endpoint, model that can be used in the

repeated measures problem.
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CHAPTER ONE

Introduction and Literary Review

1.1 Introduction and Motivation

The statistical literature contains many procedures for modeling repeated data

in the presence of time dependent covariates when the dependent response variable

is normally distributed. More recently, the likelihood methods have allowed one to

consider dependent variables with distributions only limited to the exponential family

(Agresti, 2013).

The first objective of this dissertation is to investigate an approach for mod-

eling proportions in the situation as described above. Our approach will be to con-

sider Generalized Estimating Equations (GEE) and Generalized Linear Mixed Models

(GLMM) when the distribution of the dependent variable has a Beta distribution.

The second objective of this dissertation is to use some recent results found in

the Receiver Operating Characteristic (ROC) curve literature when one has multiple

groups for which the repeated measurement model is appropriate. This approach will

allow one to relax any distributional assumptions on the dependent response variable.

1.2 Dissertation Plan and Aims

In this chapter, we review the literature for repeated measures models while

mainly focusing on the methods considered in (Hein, 2019). In addition, we introduce

several motivating examples that will be used in the remainder of the dissertation. In

Chapter Two, we provide a brief introduction for the concepts used in our research.

These include: the Beta distribution, longitudinal data, and placement values as used

in conjunction with the ROC. We present the methods and applications that were

the focus of this dissertation in Chapter Three. These include: Beta regression, Beta
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reconstruction, and ROC curve classification. In Chapter Four, we present the results

of our methods for our three repeated measures datasets and how they compare and

contrast. In Chapter Five, we extend our methods to the multiple active treatment

model. Finally, Chapter Six contains a summary and discussion of possible future

work.

1.3 Literary Review

The genesis for this dissertation were the ideas presented in an unpublished dis-

sertation, (Hein, 2019), which investigated several univariate models and multivariate

approaches for modeling longitudinal data when the endpoints were proportions. He

considered the Beta distribution when modeling these endpoints. However, we de-

cided to proceed solely with the univariate approaches mentioned in the literature:

Generalized Estimating Equations (GEE), introduced by (Liang and Zeger, 1986)

with modifications by (Hu et al., 1998), (McDaniel et al., 2013), and (Wang, 2014),

and Generalized Linear Mixed Models (GLMM) (Zimprich, 2010).

The GEE and GLMM models have similarities to the Generalized Linear Model

(GLM) as introduced by (Lachenbruch et al., 1990). From there, (Ferrari and Cribari-

Neto, 2004) and (Cribari-Neto and Zeileis, 2010) expanded this model to accommo-

date data from the Beta distribution.

In this dissertation we adapted an approach considered by (Stanley, 2018),

whereby the placement values [(Cai, 2004), (Sullivan Pepe and Cai, 2004), and

(Hajian-Tilaki, 2013)] of the data can be modeled using Beta regression.

1.4 Hein Review

As mentioned above, (Hein, 2019) and his investigation in using the Beta re-

gression model when applied to longitudinal data was formative for the work found

in this dissertation. He considered two univariate and two bivariate Beta regression

models. We reproduced much of the simulation results given in his thesis and agreed
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with his conclusion that the univariate methods outperform the bivariate approaches

in the cases that he considered, such as type-I error rate and RMSE. As a result, we

restricted our attention to the GEE and GLMM models when the response variable

has a Beta distribution.

1.4.1 Vorechovsky’s Method and Nataf Transformation

Both (Liu and Der Kiureghian, 1986) and (Nataf, 1962) were used to generate

the correlation structure for our repeated measures models using a method suggested

by (Vořechovský, 2008). These methods allowed us to adjust all of the parameters

for data generation, including the strength and structure of the correlation. These

datasets were then used to compare our classification method across a variety of

situations.

1.4.1.1 Application. In order to simplify the data creation step in the fully

generated data examples, we modified and added to some of the functions in (Hein,

2019) that used these concepts. An illustration of this is shown in Appendix A.

1.4.2 Notable Outcomes

We saw in (Hein, 2019) various ways to approach longitudinal Beta data anal-

ysis. Included were two models, one-treatment and two-treatment, which we could

use and apply to our research.

Here, we show the longitudinal model for a single treatment. Starting at time 1,

we have four time periods included, with β1 as the intercept and regression parameter

for the starting point and β2 through β4 accounting for the rest of the time periods.

The single-treatment model is:

log(
µij

1− µij

) = β1 + β2 ∗ timei2 + β3 ∗ timei3 + β4 ∗ timei4

where

Yij ∼ Beta(µij, ϕ).
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A similar model can also be used for various treatments. Here, as an example,

two treatments and four time periods are included. The two-treatment model is as

follows:

log(
µij

1− µij

) = β1 + β2 ∗ timei2 + β3 ∗ timei3 + β4 ∗ timei4 + β5 ∗ trti + β6 ∗ trti ∗ timei2

+ β7 ∗ trti ∗ timei3 + β8 ∗ trti ∗ timei4

for subjects i = 1, . . . , n and measurements j = 1, . . . , 4 where n = 12, 30, 50, and

100 equally distributed across two treatment groups (trti = 0 or 1).

1.4.2.1 Takeaways. After exploring and analyzing both of these types of mod-

els, we decided the former can be applied to a two-treatment clinical-trial situation

as long as some alterations are made to the data beforehand. This kept our analysis

simpler and gave us more freedom to experiment with a number of examples.

1.5 Motivating Datasets

We decided to have three datasets in our research:

(1) a fully generated datset where we can see how well the methods perform in

a “controlled environment”.

(2) a partially generated dataset, which we attained from making some distribu-

tional modifications on real data.

(3) a real world dataset, namely, the unchanged data from the previous example,

which has been used outside of our research for repeated measures analysis.

Our completely generated data parameters were partially taken from (Hein,

2019), with some adjustments being made to fit our methods. The partially generated

and real world Treadmill datasets were found in (Walker and Shostak, 2010) and were

initally used for SAS analysis. Here, we proceeded to analyze all of the data using R.
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1.5.1 Fully Generated Data

For the fully generated data, we used the methods proposed in (Hein, 2019).

We used Vorechovsky’s method (Vořechovský, 2008) to generate beta responses from

different correlation structures and parameters. Within this method, Nataf’s trans-

formation (Nataf, 1962) was used to initially make the correlation matrix used.

We tried different correlation matrix structures (AR1, CS) to see if an “early”

or “late” jump in the data gives way to a better model fit (in terms of accuracy in

predicting the correct time a jump occurs). The data generation parameters were:

• Correlation structures: AR1, CS

• n = 15, 100 (per treatment)

• µ = 0.03, 0.5

• ρ = 0.1, 0.5

We included four examples/situations, with each varying in sample size for

comparison:

(1) We began with data generated by the parameters µ = 0.03 and ρ = 0.1, where

there was an “early” jump in the active treatment (time 2). We compared

having n = 15 to n = 100. For both of these, we generated data with an AR1

correlation structure and with an exchangeable (CS) structure.

(2) We, then, used those same parameters (µ = 0.03, ρ = 0.1) and incorporated

a “late” jump (time 4) into the data, while also comparing when n = 15 and

n = 100. Again, in both instances, we used an AR1 and an exchangeable

(CS) correlation structure for the generation of said data.

(3) Now, we went back to an “early” jump (time 2) but with µ = 0.5 and ϕ = 0.5

as our parameters. However, again, we compared with n = 15 and n = 100
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while generating data through an AR1 and exchangeable correlation struc-

ture.

(4) Lastly, we followed suit from the previous example, using µ = 0.5, ϕ =

0.5, n = 15, 100, and generating with AR1 and exchangeable correlation struc-

tures, yet we created a “late” jump (time 4).

1.5.2 Partially Generated Data

Generating the data consisted of splitting up the active and placebo treatments

of the original Treadmill data, finding the means and standard deviations of the

split data, and using a Normal distribution to create new data points. Only these

new, normally distributed responses were used for analysis and considered “partially

generated” because information from the real world dataset was used to create it.

(The standard deviations were scaled down by 0.5 for the simulation and rounded

values were used for uniformity with original data.)

The data generated is summarized in Tables 1.1, 1.2 and Figure 1.1 below.

Table 1.1. Partially Generated Treadmill Data, Means

Treatment/Time WD0 WD1 WD2 WD3 WD4
Placebo 171.94 167.83 174.56 180.89 182.72
Active 170.05 185.05 200.50 201.15 208.00

Table 1.2. Partially Generated Treadmill Data, Standard Deviations

Treatment/Time WD0 WD1 WD2 WD3 WD4
Placebo 42.52 41.25 44.16 46.28 46.51
Active 42.05 33.80 47.11 33.80 40.71
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Figure 1.1. Time Progression of Scores, Partially Generated Data

We used a sample of size n = 30 for both active and placebo, giving a total of

60 patients. We see that at time 0, both treatments are very similar, with the placebo

group with even slightly larger mean values. From there, however, we see an upward

trend with the active and placebo group throughout, but the active treatment means

increased about 300% more.

The variation trend is not a clear as the mean is. For the placebo, the standard

deviations increased and level off after time 2. For the active treatment, they oscillated

up, down, and back up slightly. Overall, variation in the active group ranged more

than the placebo.

We see the scores for both treatments start out relatively equal, with medians at

around 175, with the placebo treatment actually having larger scores than the active

treatment. As time progresses, the placebo treatment stays hovering at around the

same value, 165 for times 1 and 2, 185 and 175 for times 3 and 4. The active treatment

scores, however, increase relatively quickly for the first two times, up to 215 by time

2, with it leveling off after that. We see the most separation between the treatments

at time 2, with the medians differing by a value of about 50.
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1.5.3 Real World Data

Our motivating dataset came from Common Statistical Methods for Clinical

Research with SAS Examples (Walker and Shostak, 2010). Patients were randomly

assigned to receive either the new drug Novafylline, thought to reduce the symptoms of

intermittent claudication, or a placebo in a 4-month double-blind study. The primary

measurement of efficacy is the walking distance on a treadmill until discontinuation

due to claudication pain. A total of 38 patients underwent treadmill testing at baseline

(month 0) and at each of 4 monthly, follow-up visits. The treadmill walking distances

(in meters) were recorded. Patients were stratified by sex. The experiment was

conducted to see if there was any distinction in exercise tolerance profiles.

Scores for the real world data are seen in Figure 1.2 below.

Figure 1.2. Time Progression of Scores, Real World Data

We see the scores for both treatments start out relatively equal, with medians

at around 175, with the placebo treatment having larger scores than the active treat-

ment, again, but its spread much more similar to the active treatment than in the

partially generated data. As time progresses, the placebo treatment stays hovering

at around the same value. The active treatment scores, differing from the previous

example, increase more slowly and with less magnitude for the first two times, up to

only 190 by time 2, with it leveling off to slightly over 200 after that. We see the most
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separation between the treatments at time 2 and 4, it appears, but the spread shows

more separation at time 4, with the active treatment having a much more compact

distribution than the placebo.

1.5.4 Conclusion

Ultimately, we had completely controlled Beta distributed data, partially con-

trolled normally distributed data, and uncontrolled non-distributional (in the sense

that we did not know or care to know the distribution) data. These datasets had

sufficient variety amongst them for our methods to be applied, information to be

gathered, and meaningful conclusions to be given for multiple scenarios.
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CHAPTER TWO

Research Concepts

2.1 Introduction and Discussion of Notation

In this chapter, we introduce the concepts we needed for our research methods.

These will include an overview of the Beta distribution and its utility when considering

longitudinal, repeated measures data. In addition, we present how the concept of

placement values in conjunction with ROC curves and the AUC can be utilized in a

clinical trial setting.

2.2 Beta Distribution

The Beta distribution is derived from a pair of independent Gamma random

variables. Specifically, let X1 and X2 be two independent Gamma random variables

having the joint PDF

h(x1, x2) =
1

Γ(a)Γ(b)
xa−1
1 xb−1

2 e−x1−x2 , 0 < x1 <∞, 0 < x2 <∞,

zero elsewhere, where a > 0 and b > 0.

Let Y1 = X1 +X2 and Y2 = X1/(X1 +X2) when X1 and X2 are independent it

follows that the marginal PDF of Y2 is

g2(y2) =
Γ(a+ b)

Γ(a)Γ(b)
ya−1
2 (1− y2)

b−1,

which is the PDF of the Beta distribution with parameters a and b when y2 ∈ (0, 1)

(Hogg et al., 2013).

The Beta function is

B(a, b) =

∫ 1

0

xa−1(1− x)b−1dx
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and is related to the Gamma function as

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

The Beta distribution, X ∼ B(a, b), nth moments are simplified to

E(Xn) =
B(a+ n, b)

B(a, b)
=

Γ(a+ n)Γ(a+ b)

Γ(a+ b+ n)Γ(a)
,

therefore, the mean and variance are

E(X) =
a

a+ b
, V ar(X) =

ab

(a+ b)2(a+ b+ 1)
.

A brief introduction to the Beta generalized linear model given in (Ferrari and

Cribari-Neto, 2004) is presented here. By letting µ = a
a+b

and ϕ = a + b, we obtain

the reparameterized Beta distribution with mean and variance

E(Y ) = µ, and V ar(Y ) =
µ(1− µ)

1 + ϕ
.

Let y1, . . . , yn be independent random variables from a Beta density with mean

µt, t = 1, . . . , n and scale parameter ϕ. Then the Beta regression model can be written

as

g(µt) =
k∑

i=1

xtiβi = ηt,

where β is a vector of regression parameters, xt1, . . . , xtk are observations on k covari-

ates, and g is a monotonic link function. Using the logit link, we have µt =
1

1 + e−x′
tβ
.

Estimates of the original parameters a and b are then

â =
ϕ̂

1 + e−x′
tβ̂

and b̂ = ϕ̂

(
1− 1

1 + e−x′
tβ̂

)
.

This type of model is part of the foundation of what we proceeded to use for modeling

and the concept of Beta reconstruction.
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2.2.1 Motivation

The Beta distribution is very flexible, which is one of the reasons we were able

to use it for our research. It can take on almost any shape, allowing us to use it to

model practically any data that is encompassed by its range.

In the context of this dissertation, the Beta distribution allowed us to take a

non-traditional approach to classification, giving us the option to model non-normally

distributed endpoints. We were able to arrive at a Beta distributed response variable

and use Beta regression for further analysis. All of this to say, the flexibility of the

Beta distribution is one of the reasons all of this work could be brought together,

connected, and used for analysis of longitudinal, repeated-measures data.

2.3 Longitudinal, Repeated Measures Data

Longitudinal, repeated measures data are characteristically unique in that there

are multiple observations, in our case across time, for each subject. This phenomena

induces within subject correlation. Since clinical studies typically have a relatively

small number of repeated measures with a limited number subjects, the analysis used

for this data needs to account for subject-specific correlation.

In this dissertation, we focus on a clinical trial setting with two groups; an

active treatment and a placebo control.

2.3.1 Correlation Structures

The goal of specifying a correlation structure when modeling longitudinal data

is to be more efficient in estimating β. If done incorrectly, the efficiency of the model

parameter estimates can be affected, which is one of the complexities of analyzing

this type of data.

It is stated in (Agresti, 2013) that “a chosen model in practice is never exactly

correct, but carefully choosing a working correlation structure can help with efficiency

of the estimates”, and (Agresti, 2015) also mentions “GEE estimators of β are con-
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sistent even if the correlation structure is misspecified”. In this research setting, we

still get reasonable regression parameters and standard error estimates even if we

incorrectly specify the correlation structure.

We decided to include various correlation structures in our research, such as

independent, AR1, and CS, to have a more thorough body of work and more complete

results. However, since we are not worried about inconsistent results, we did not focus

on the differences of these correlation structures in terms of any specific measure.

More details on these structures are included in Appendix A.

2.4 ROC Curve and AUC

The ROC curve plots the True Positive rate (sensitivity) against the False

Positive rate (1 - specificity) for all possible cutpoints based on Y . This is shown as

ROC(·) = {(FPR(y), TPR(y)), y ∈ (∞,∞)}.

From here, we can represent the ROC curve in terms of survival functions as

ROC(t) = SA(S
−1
P (t)), t ∈ (0, 1),

where SA(·) is the survival function for the active treatment population (A) and

corresponding random variable YA, SP (·) is the survival function for the placebo

treatment population (P ) and corresponding random variable YP , and t is the FPR.

The most common utility of the ROC curve is comparing the area under the

curve, the AUC (Fubini, 1907). The AUC is defined as

AUC =

∫ 1

0

ROC(t)dt.

It is the probability that a randomly chosen active treatment subject has an obser-

vation higher than a randomly chosen placebo subject (Hanley and Mcneil, 1982).

Therefore, a perfect test or classification method would yield an AUC equal to 1, and

an uninformative test would give an AUC of 0.5 (the same as flipping a coin). An

illustration of this is seen in Figures 2.1 and 2.2 below.
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Figure 2.1. ROC curve with smaller AUC value

Figure 2.2. ROC curve with larger AUC value

In short, the more area under this curve, the more separation there is in the two

samples being compared. A diagonal line would mean we correctly classified all of

the samples from one population, yet we also incorrectly classified all of the samples

from the other population. Therefore, for classification purposes, we want to see as

much area under the curve as possible [(Hanley and Hajian-Tilaki, 1997), (Alonzo

and Sullivan Pepe, 2002)].

2.5 Placement Values

Placement values are standardized versions of raw measurements. They are

the proportion of the reference population with values larger than Y , and this stan-

dardizes Y to the distribution in that population, quantifying the separation between

populations.

ROC curve analysis, in general, can be seen as the analysis of standardized

measures (Hajian-Tilaki, 2013). In our research, those measures were placement

values, more specifically, the values resulting from comparing the active treatment’s

endpoints to the control treatment’s.
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The placement values of a set of data, by definition, equal 1 minus the CDF of

that data, also known as the survival curve. The notation is shown as

PVA = 1− FP (YA) = SP (YA),

where PVA are the placement values for the active treatment subjects, FP (YA) repre-

sents the CDF of the placebo treatment population relative to the active treatment

population, and SP (YA) represents the survival curve of the placebo treatment pop-

ulation relative to the active treatment population. This is the same as saying the

placement values of Y , PVY , are the proportion of placebo population with values

greater than Y . In other words,

SP (y) = P [Y ≥ y|A = 0] ⇒ PVA = P [Y ≥ YA|A = 0],

and by this definition, we see populations with a larger separation yield placement

values close to 0 and populations with less separation have placement values close to

1. An illustration of this is seen in Figures 2.3 and 2.4 below.

Figure 2.3. Placement Values with smaller AUC value

Figure 2.4. Placement Values with larger AUC value
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We now have one set of scores (in the 0-1 range) that are dependent on the

placebo treatment raw scores. Since they are in the interval (0,1), it is natural that

we model them with a Beta distribution (Sullivan Pepe and Cai, 2004).

We see the CDF of the placement values, ψPV(·), is equal to the ROC(t) as

ψPV (·) = P (PVA < t)

= P (SP (YA)) ≤ t

= P (S−1
P (t) < YA)

= SA(S
−1
P (t))

= ROC(t), t ∈ (0, 1)

where t is the FPR and PVP = SP (YP ) is distributed as U(0, 1).

We also know the expected value of a random variable is the area under its

survival function. Therefore,

E[1− FP (YA)] = AUC

and we see the mean of the placement value distribution is equal to the AUC.

We apply the non-parametric placement value methodology (Alonzo and Sulli-

van Pepe, 2002) from (Stanley, 2018), where she expands upon several ROC regression

techniques, including a parametric (Sullivan Pepe and Cai, 2004) and semi-parametric

(Cai, 2004) approach, as well [(Pepe, 1997), (Pepe, 1998), (Pepe, 2000)]. Because of

this placement value idea, we are able to convert any exponential family distributed

endpoints into Beta distributed and use Beta regression for analysis.

For our research, we found the AUC at every time period to see where the active

treatment had more separation from the placebo, which we did by using placement

values and the relationship their CDF has with the ROC curve.
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CHAPTER THREE

Methods and Applications

3.1 Introduction

In this chapter, we discuss the methods used for our research. The overall

concept of these methods is based upon a simple idea: The placement values are

treated as the dependent variable in Beta regression models that allow for correlated,

repeated measures data. The regression coefficients are then used to reconstruct a

Beta distribution whose CDF is the ROC curve of the original response data. This

ROC curve is used for the needed inference concerning the active and placebo groups

at each time period within the repeated measure study.

3.2 Beta Regression

Beta regression models, as introduced by (Ferrari and Cribari-Neto, 2004), are

a great way of modeling continuous dependent variables in the (0, 1) unit interval.

In (Meaney and Moineddin, 2014), it is stated that, if the mean and dispersion are

correctly specified, there seems to be much promise in using Beta regression instead

of a traditional linear regression technique to model (0,1) response data. Where a

possible bias can be the problem is misspecifying the dispersion, the type-1 error and

power is comparable in linear and Beta regression, where the latter has the potential

to be more powerful at detecting true non-zero differences between groups in a two-

sample design. As we are using Beta regression in a classification problem, better

detection potential was one of the reasons why we proceeded with this technique and

clear motivation for using Beta regression moving forward.

Here, we introduce the various regression techniques we explored to analyze

our data. We explain and present the “backbones” of our methods, namely, the
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Generalized Linear Model (GLM) and the Linear Mixed Model (LMM), and how

they are built upon to arrive at the the Beta regression techniques we proceeded

to do the analysis with, namely, Generalized Estimating Equations (GEE) and the

Generalized Linear Mixed Model (GLMM) (Hunger et al., 2012).

3.2.1 Generalized Linear Model (GLM)

The generalized linear model (Lachenbruch et al., 1990) is an extension of the

ordinary linear model where normality is not required of the response data. The

problem of interest is to model a function, g(·), of E(Y ) = µ as a linear function of

explanatory variables X. The GLM model consists of three components:

(1) the random component associated with the response variable.

(2) the systematic component associated with the explanatory variables.

(3) a link function that specifies the function, g(·).

Different link functions can be used to model data with various different dis-

tributional assumptions. For the purposes of our research, we used the logit link

to model Beta distributed data, however, we used a more applicable modeling tech-

nique than the GLM, seeing as correlation and dependence needed to be included and

accounted for.

3.2.2 Linear Mixed Model (LMM)

A linear mixed model is an extension of an ordinary linear model where the data

are not completely independent, introducing random effects to the already present

fixed effects. In our case, there is correlation in the response data over a fixed number

of time periods.

The standard linear mixed model is

y = Xβ + Zγ + ε,
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where the fixed-effect parameters β, known design matrixX, and normally distributed

unobserved vector of random errors ε are carried over from the ordinary linear model.

The differing components in the LMM are the unknown vector of random effects

parameters γ, the known design matrix Z, and, although the random errors ε are

present in the ordinary linear model, they are no longer required to be independent

and/or homogeneous.

This model served as a foundation as well, like the GLM explained before, for

our more appropriate modeling procedures that we used in the dissertation. However,

since we did not restrict ourselves to normally distributed response variables, this type

of model was not be used for our analysis. Now, the comparison becomes the use of

GEE vs. GLMM as the longitudinal Beta regression method of choice (Carrière and

Bouyer, 2002).

3.2.3 Generalized Estimating Equations (GEE)

Generalized Estimating Equations establish a predictive model for a dependent

variable as a function of independent variables while simultaneously allowing for cor-

relation in the repeated measures of these variables. The GEE model does not require

specification of the distribution for the response variable. Instead, only the mean and

variance of the dependent variable need be specified as long as the density function is

a member of the exponential family of density functions. The results of this regression

have a population-averaged interpretation for the regression coefficients (Hardin and

Hilbe, 2003).

This method can be seen as an extension of the GLM when the correlation in

the response variable is modeled. However, as a consequence of this difference, the

GLM uses maximum likelihood (ML), whereas the GEE uses a quasi-likelihood (QL)

method. This method allows us to not make assumptions about the distribution of

the response observations (Wedderburn, 1974). In this case, the usual model selec-
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tion techniques that rely on the likelihood function, such as, the Akaike information

criterion (AIC), Bayesian information criterion (BIC), or Likelihood-ratio test (LRT),

cannot be used (Cui and Quian, 2007). Even so, QL estimators have properties sim-

ilar to those of ML estimators: β̂ is asymptotically normal and is consistent as long

as the link function and linear predictor function are correctly specified, even if the

variance function is misspecified. Therefore, using QL instead of ML is not a huge

tradeoff to be able to analyze, with reasonable statistical and computational efforts,

correlated data that can take on any exponential family distribution. A major limi-

tation of QL is missing data. The GEE method requires a stronger assumption about

missing data than ML, in order for the QL estimates to be consistent. For GEE,

the data must be “missing completely at random” (MCAR), which means that the

probability an observation is missing is independent of that observation’s value and

the values of other variables in the entire data file. For ML, the data need only be

“missing at random” (MAR), with what caused the data to be missing not depending

on their values [(Agresti, 2015), (Hu et al., 1998), (Wang, 2014)].

In (Liang and Zeger, 1986), Generalized Estimating Equations are introduced

as a marginal model conditioned on covariates. This procedure simultaneously mod-

els each marginal distribution, but takes into account the correlation structure when

computing the standard errors for the estimating equation parameters (Agresti, 2015).

The dependence in this model is not specified, yet treated as a nuisance parameter.

GEEs were developed in order to produce regression estimates when analyzing re-

peated measures with non-normal response variables.

GEEs have a similar form to GLMs but since there is no full specification of

the joint distribution, there is no likelihood function, as mentioned earlier. The GEE

general form is

g(µit) = x′itβ + εi,

representing the marginal distribution at each t, where g(·) is the link function.
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The GEE and GLM provide identical results when the working correlation ma-

trix is the identity matrix.

3.2.4 Generalized Linear Mixed Models (GLMM)

The Generalized Linear Mixed Model (GLMM) is a subject-specific model.

Through an unobserved heterogeneity in the conditional mean, dependence is im-

posed. Basically, adding random effects to the Generalized Linear Model (GLM)

yields the GLMM [(Zimprich, 2010), (Agresti, 2015)]. In longitudinal studies, re-

peated measurements are nested within a cluster that is a person observed over time,

introducing dependence (within-subject correlation), to the data. This is where ran-

dom effects come into play (Agresti, 2013). Since we use a non-linear link function

in this model, only subject-specific interpretation of the parameters can be done.

The GLMM model is given by

g(µi) = x′iβ + z′iγ + εi

where g(·) is the link function, β is a b × 1 vector of fixed regression coefficients for

subject i, γ is a h× 1 vector of random effects for subject i, and εi is a t× 1 vector

of within-subject random errors.

In the simplest of mixed models situations, where we assume the only random

error is the between-subject variability, the model takes the form

g(µi) = x′iβ + ui + εi,

where u is a single random effect, subject-specific variability in this case, and ε are

the random errors. This is called the intercept-only GLMM.

3.3 Beta Reconstruction

By performing Beta regression with the placement values using the GEE and

GLMM models, we obtained estimates for the β‘s and ϕ parameters at each time
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period. These estimates can then be reconstructed into the usual the Beta distribution

notation (Ferrari and Cribari-Neto, 2004) given by

µ = 1/(1 + exp−β), a = ϕµ, b = ϕ(1− µ),

where the expected value of the Beta distribution is a/(a+b) and the AUC is b/(a+b).

3.4 Classification

With a reconstructed Beta distribution from the active treatment placement

values, we turned to (Sullivan Pepe and Cai, 2004) and used the fact that the cumu-

lative distribution function of the placement values is equal to the ROC curve. From

this reconstruction we have

ROCtime=t = B(a, b)

where B(·, ·) is the Beta function. The ROCtime=t is used as a measure of the sepa-

ration between the active treatment and the control groups at time t. Therefore, we

now modeled the ROC curve to classify between active and placebo treatments at

the various time periods to see where more separation is present.

This is where we used placement values to go from a two-treatment model to a

single-group model, which allowed us to see separation between treatments without

actually modeling both of them and without having to use more complex methods.

We used Beta regression and Beta reconstruction because, by definition, placement

values are in the (0,1) range. With the a and b parameter estimates we found for each

time period, we modeled a Beta distribution CDF and, using (Sullivan Pepe and Cai,

2004), compared each respective time period’s ROC curve against one another. We

used these curves to find the AUC values and saw at which time period they were

maximized, therefore finding the time with largest increase in separation between

active treatment and placebo control.

We now show how the placement values and ROC curve are used for classifi-

cation with real data as an introduction for the actual application of these methods.
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Here, we illustrate what the partially generated and real world datasets look like

in terms of both of these concepts and make conclusions in terms of some of their

summary statistics, such as medians and IQR.

3.4.1 Placement Values

3.4.1.1 Partially Generated Data Placement Values. Placement values and

their densities for the partially generated data are seen in Figures 3.1 and 3.2 below.

Figure 3.1. Time Progression of Placement Values, Partially Generated Data

Figure 3.2. Density Curves by Time, Partially Generated Data

We see the placement values at time 0 with a median at about 0.4, not showing

much separation between the two treatments. Quickly, the values decrease to under

0.2 at time 1 and to less than 0.1 by time 2 and stay at that level. The spread

also begins decreasing after time 1, with the smallest happening at time 3. Including
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outliers, it appears time 2 has the smallest spread and, overall, the smallest placement

values.

The placement value density curves confirm previous conclusions. Time 0 has

the mean closer to 0.4, showing not much separation between treatments. Then, the

curves begin having peaks of increasing heights, with these peaks between 0 and 0.2,

and the highest one appearing at time 2. Like in Figure 3.1, times 2 and 3 are very

close, but it seems outliers cause time 2 to have higher separation of the treatments.

3.4.1.2 Real World Data Placement Values. Placement values and their den-

sities for the real world data are seen in Figures 3.3 and 3.4 below.

Figure 3.3. Time Progression of Placement Values, Real World Data

Figure 3.4. Density Curves by Time, Real World Data

The placement values for this dataset begin at about 0.5 with a very large

spread. They decrease slowly from time 1 to time 3, where they bounce back up
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slightly from a value of 0.1 at time 3 to 0.15 at time 4. The spread, however, is very

clearly smaller at time 4 in comparison to the rest. This makes time 4 appear to be

the moment with largest separation between the active and placebo treatments.

The placement value density curves show time 0 with the mean at around 0.5,

showing less separation between treatments than the partially generated dataset. As

time progresses, the curves begin having peaks of increasing heights, with these peaks

between 0 and 0.2, with the highest one appearing at time 4, convincingly.

3.4.2 ROC Curve and AUC

3.4.2.1 Partially Generated Data, ROC Curve. Empirical ROC curves for the

partially generated data are seen in Figure 3.5 below.

Figure 3.5. Empirical ROC Curves by Time, Partially Generated Data

We see the ROC curves progressing from almost a diagonal line y = x at time

0 to slight separation at time 1, the largest separation at time 2, and time 3 and time

4 almost overlapping one another. Therefore, we are expecting to see our methods

catch the maximum treatment separation at time 2.
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3.4.2.2 Real World Data, ROC Curve. Empirical ROC curves for the real

world data are seen in Figure 3.6 below.

Figure 3.6. Empirical ROC Curves by Time, Real World Data

We see the ROC curves progressing from almost a diagonal line y = x at time

0, again, to a slightly higher curve at time 1, a larger separation at time 2, and

time 3 and time 4 being very similar, with time 4 appearing to be higher up, overall.

Therefore, we are expecting to see our methods have close separation conclusions for

time 3 and time 4, with the maximum treatment separation at time 4.

3.4.3 Design

The procedure for our classification experiment is as follows:

(1) Compute the placement values for the n treated subjects at time t = 0 using

the control subjects at time t = 0. Therefore, we have yi0 = pvi for subject

i, where i = 1, . . . , n. So, at time t = 0, we get the placement values y
0
=

(y10, . . . , yn0)
′.

(2) Compute the placement values for the n treated subjects at time t = 1 using

the control subjects at time t = 0, 1. We now have yi1 = pvi for subject i,

where i = 1, . . . , n. So, at time t = 1, we get the placement values y
1
=

(y11, . . . , yn1)
′.
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(3) Repeat the previous steps with time t = 2, 3, 4 using the control group at

time t = 0, 1, 2, t = 0, 1, 2, 3, and t = 0, 1, 2, 3, 4, respectively. This will yield

the placement values y
2
= (y20, . . . , yn2)

′ for time t = 2, y
3
= (y13, . . . , yn3)

′

for time t = 3, and y
4
= (y14, . . . , yn4)

′ for time t = 4.

(4) Create a data frame with variables PAT (patient number) and PV (placement

value), having 4n values per column. In our case, we used n = 30 patients,

so we have a data frame with dimensions 120× 2.

This same procedure was followed for our fully generated dataset, yet our times

were t = 1, 2, 3, 4 instead of t = 0, 1, 2, 3, 4 and the sample size varied at either n = 15

or n = 100, depending on the scenario and example.

The resulting GEE model is:

g(PV ) = α̂ + β̂1x1 + β̂2x2 + β̂3x3 + β̂4x4 + εij,

where g is the logit link and εij are the random errors.

The resulting GLMM model is:

g(PV ) = α̂ + β̂1x1 + β̂2x2 + β̂3x3 + β̂4x4 + ui + εij,

where g is the logit link, ui is the subject-specific random effect (random intercept

model), and εij are the random errors.

The same ϕ is used for all parameter estimates in their respective model for the

Beta reconstruction process. (e.g. we have one ϕ and 5 βs for each model.)

We end up with a design matrix Xβ,

X =



j′n 0′n 0′n 0′n 0′n

0′n j′n 0′n 0′n 0′n

0′n 0′n j′n 0′n 0′n

0′n 0′n 0′n j′n 0′n

0′n 0′n 0′n 0′n j′n


β =



β0

β1

β2

β3

β4


,
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where X is n× 5, β is 5× 1, and j′n = (1, 1, . . . , 1)′.

Our model becomes

z = logit(pv) = Xβ + ε,

where ε is a 5n× 1 vector containing the random Beta errors. Now, we can compute

(α̂, β̂) in the Beta regression using

E[ẑ] = e(Xβ)/(1 + e(Xβ)(1 + ϕ)).

For example, with time t = 0,

E[ẑ] = e(β̂0)/(1 + e(β̂0)(1 + ϕ)),

we can get (α0, β0) and compute the CDF at that specific time. With time t = 4,

E[ẑ] = e(β̂4)/(1 + e(β̂4)(1 + ϕ)),

we can get (α4, β4) and compute the CDF.

We used this analysis at all time periods to see where separation between treat-

ments started being more apparent. Then, we looked for the quantified departure of

the active treatment from the placebo at each time point. (We have the GEE and

the GLMM regression estimates at each of the 5 stages.)

All placebo values were kept at each respective time, yet only the new 30 active

observations were used to get placement scores. Basically, we had 30 active vs. 30

placebo observations at time 0. At time 4, we had 30 active vs. 150 placebo obser-

vations. We did this exercising the assumption that the placebo treatment endpoints

remain constant across time.
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CHAPTER FOUR

Results

4.1 Introduction

Now, after we applied our methods to all three of our dataset examples (fully

generated, partially generated, real world), we obtained these results. We describe

the Beta regression, Beta reconstruction, and Classification results separately and by

dataset.

Our overall conclusion was that our classification technique, including the inter-

mediate steps of regression and reconstruction, did what it was supposed to do. While

we saw incorrect classification in one of the situations posed with the fully generated

datasets (“early” jump, n = 100), further analysis of the data was done to investigate

this disparity. We discovered that at least a fourth of the data points were less than

or equal to 0.005, making the distribution very susceptible to incorrect estimation

from Beta regression methods. Since Beta regression is the first step after obtaining

the placement values, the rest of our method did not correctly classify between the

active and placebo treatments in this scenario.

In terms of our method being applied to real data, we arrived at an even higher

level conclusion. Our research correctly classified at time periods where separation is

seen in a “moderate” amount, yet struggled where the treatments almost completely

overlapped or did not overlap at all. How did we arrive at this? Again, Beta regression

does not work as well with values close to 0 or 1, which represent the placement

values in the scenarios mentioned where there is too much or not enough separation

between treatments. Bottom-line, we can clearly see times 0 and 1 are not where we

have maximum separation between treatments, yet it is more difficult to decide on

which time period is the one with this trait.
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4.2 Beta Regression Applications

We start with an already transformed Beta response variable, placement values

for the active treatment which take the placebo into account. From here, we applied

both the GEE and GLMMmodeling techniques. For GEE, we specified the correlation

structure as we wrote the model. For GLMM, the correlation was already included in

the random effects we are modeling. We also specified which distribution family the

response follows, which we did by inputting a custom function developed by (Hein,

2019). This allowed us to model Beta distributed dependent data. For both methods,

we set Time as the independent variable, for which we got a regression coefficient,

along with getting a scale parameter.

4.2.1 Treadmill Data (Partially Generated & Real World)

We chose to do the modeling and analysis with both the GEE and GLMM

models. Here, we specified “Beta” as the distributional assumption for the response

variable, namely, the placement values of the treadmill walking distances (in me-

ters). We also tried two of the correlation structures mentioned: auto-regressive(1)

and exchangeable/compound-symmetric (independence was not included because we

assumed, given that we have longitudinal data, there was dependence of some sort

across time). Also, a transformation was done to the placement values to be able to

deal with extremes at 0 and 1. This transformation was

(y(n− 1) + 0.5)

n
,

where y are the placement values and n is the sample size. This was introduced in

(Smithson and Verkuilen, 2006) and mentioned in (Cribari-Neto and Zeileis, 2010).

The logit link was used as default for both models and parameter estimates were

obtained for times 1 through 4, using time 0 as reference.
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4.2.2 Beta Data (Fully Generated)

For the Beta generated data, we started with Beta distributed data and found

the placement values using treatment 1 as a placebo and treatment 2 as the active

treatment. Times 2 through 4 were treated as the levels of the Time independent

variable, having time 1 as the reference. Again, the logit link was used for both

models. We varied the strength of correlation using recommendations from (Cohen,

1988) (small = 0.1, large = 0.5).

4.2.2.1 Correlation Structure Specification. When fitting the GEE models, we

focused on using the correct models for the data, meaning we fit a GEE with AR1

specified correlation structure to data generated with an AR1 correlation, and did

the same with the CS correlation structure. When fitting a GLMM model, we did

not make any correlation structure assumptions when modeling, however, the data

was generated using either an AR1 or CS correlation structure. Therefore, both of

these were modeled for comparison.

4.3 Beta Regression Results and Conclusion

While we can make clear conclusions with each of our examples in terms of the

regression coefficient behavior across time periods and models, the actual interpre-

tation of these parameters is not of much use to our applications. We can say the

odds of the placement values increase by eβt or decrease by 1− eβt (in the negative β

case) amount if the measurement of the original response variable comes from time

t. Without proper context or knowledge of where these placement values came from

or how we got them, that interpretation does not mean much. However, we used

these Beta coefficients as a step in the direction of our classification method and saw

a summary of how the data (in terms of placement values) was behaving across time

and what that meant in terms of the placebo and active treatments being analyzed.
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4.3.1 Fully Generated Data

4.3.1.1 n = 15, 100, µ = 0.03, ρ = 0.1, “early” jump (time = 2).

• n = 15: With a small sample size, everything runs accordingly: we see the

regression parameter β make the largest jump and have the largest value at

time 2, exactly when the jump is made in the data.

• n = 100: Using a larger sample size, we get surprising results: the regression

parameter keeps increasing as time goes on, showing the largest at time 3 for

the GEE models and at time 4 for GLMM. However, the “early” jump is still

present at time 2 for all models, which is when it happens in the actual data.

Table 4.1. Beta β Regression Coefficients, Fully Generated Data, Example 1 (small
parameters, “early” jump)

Time/Method GEE(AR1) GEE(CS) GLMM(AR1) GLMM(CS)
(n=15/n=100) (n=15/n=100) (n=15/n=100) (n=15/n=100)

Time 1 (Int) 0.19 / 0.37 0.19 / 0.37 0.21 / 0.43 0.20 / 0.43
Time 2 -2.64 / -2.10 -2.64 / -2.10 -1.92 / -1.76 -1.90 / -1.75
Time 3 -0.91 / -2.49 -0.89 / -2.46 -1.11 / -1.86 -1.06 / -1.85
Time 4 -1.42 / -2.38 -1.37 / -2.35 -1.48 /-1.88 -1.44 / -1.89

Table 4.1 is referenced in Figure 4.1 below.

Figure 4.1. Beta β Regression Coefficients, Fully Generated Data, Example 1 (small
parameters, “early” jump)
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4.3.1.2 n = 15, 100, µ = 0.03, ρ = 0.1, “late” jump (time = 4).

• n = 15: Again, everything works as expected using the small sample size.

We see a jump in the regression parameter as the jump happens in the data,

at time 4. The largest β is also present at time 4 for all models.

• n = 100: This time, with the large sample size, we see a correct estimation

of the data. The larger β and the largest jump is seen at time 4, when the

largest separation in the treatments happens.

Table 4.2. Beta β Regression Coefficients, Fully Generated Data, Example 2 (small
parameters, “late” jump)

Time/Method GEE(AR1) GEE(CS) GLMM(AR1) GLMM(CS)
(n=15/n=100) (n=15/n=100) (n=15/n=100) (n=15/n=100)

Time 1 (Int) 0.19 / 0.37 0.19 / 0.37 0.19 / 0.41 0.19 / 0.41
Time 2 -0.43 / 0.02 -0.43 / 0.02 -0.46 / 0.07 -0.45 / 0.07
Time 3 0.87 / 0.01 0.83 / 0.03 0.65 / 0.01 0.62 / 0.05
Time 4 -1.42 / -2.38 -1.37 / -2.35 -1.38 / -1.82 -1.35 / -1.81

Table 4.2 is referenced in Figure 4.2 below.

Figure 4.2. Beta β Regression Coefficients, Fully Generated Data, Example 2 (small
parameters, “late” jump)
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4.3.1.3 n = 15, 100, µ = 0.5, ρ = 0.5, “early” jump (time = 2).

• n = 15: With the larger parameters and small sample size, we see similar

results to the smaller parameters: largest β separation and magnitude is seen

where the largest separation exists in the data, time 2.

• n = 100: Here, similarly to the previous “early” jump using smaller parame-

ters, we see contradicting model results: the β parameters continue growing

as time progresses, peaking at time 4 for GEE and GLMM models. However,

again, we still see the largest jump in β size at time 2.

Table 4.3. Beta β Regression Coefficients, Fully Generated Data, Example 3 (large
parameters, “early” jump)

Time/Method GEE(AR1) GEE(CS) GLMM(AR1) GLMM(CS)
(n=15/n=100) (n=15/n=100) (n=15/n=100) (n=15/n=100)

Time 1 (Int) 0.19 / 0.37 0.19 / 0.37 0.24 / 0.47 0.23 / 0.46
Time 2 -3.37 / -2.50 -3.37 / -2.50 -3.16 / -1.96 -3.19 / -2.08
Time 3 -2.86 / -3.01 -2.30 / -2.90 -2.80 / -2.19 -2.47 / -2.39
Time 4 -2.03 / -3.32 -2.03 / -3.17 -2.25 / -2.40 -2.16 / -2.51

Table 4.3 is referenced in Figure 4.3 below.

Figure 4.3. Beta β Regression Coefficients, Fully Generated Data, Example 3 (large
parameters, “early” jump)
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4.3.1.4 n = 15, 100, µ = 0.5, ρ = 0.5, “late” jump (time = 4).

• n = 15: With the small sample size and late jump, the larger parameters yield

similar results to the smaller ones: a larger separation and larger magnitude

in the regression parameters at time 4 for GEE and GLMM in both the AR1

and CS models.

• n = 100: In similar fashion to the previous large sample size and late jump

example, the models estimate correctly. We see the jump and the largest

values for the β parameters at time 4.

Table 4.4. Beta β Regression Coefficients, Fully Generated Data, Example 4 (large
parameters, “late” jump)

Time/Method GEE(AR1) GEE(CS) GLMM(AR1) GLMM(CS)
(n=15/n=100) (n=15/n=100) (n=15/n=100) (n=15/n=100)

Time 1 (Int) 0.19 / 0.37 0.19 / 0.37 0.21 / 0.43 0.22 / 0.43
Time 2 -0.34 / 0.14 -0.34 / 0.14 -0.42 / 0.18 -0.45 / 0.18
Time 3 0.63 / 0.07 0.54 / 0.16 0.54 / 0.09 0.51 / 0.19
Time 4 -2.03 / -3.32 -2.03 / -3.17 -1.88 / -2.28 -1.94 / -2.33

Table 4.4 is referenced in Figure 4.4 below.

Figure 4.4. Beta β Regression Coefficients, Fully Generated Data, Example 4 (large
parameters, “late” jump)
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4.3.1.5 Scale (ϕ) Regression Coefficients, Examples 1-4. Here, we see a sum-

mary of the scale coefficients for all of the examples.

Table 4.5. Scale ϕ Regression Coefficients, Fully Generated Data, Examples 1-4

Ex/Method GEE(AR1) GEE(CS) GLMM(AR1) GLMM(CS)
(n=15/n=100) (n=15/n=100) (n=15/n=100) (n=15/n=100)

1 2.95 / 3.84 3.06 / 3.89 1.34 / 0.86 1.29 / 0.85
2 3.47 / 3.56 3.50 / 3.66 1.02 / 0.77 1.01 / 0.75
3 1.03 / 2.18 0.95 / 2.21 3.15 / 1.31 3.22 / 1.52
4 2.75 / 3.08 2.27 / 3.07 1.61 / 1.07 2.05 / 1.20

4.3.2 Partially Generated Data

For the partially generated data, we see a quickly declining β coefficient for all

of the models from time 0 to time 2, with the GEE models declining slightly more

than the GLMM. This means the largest jump in the data, as observed by GEE,

would be time 2, as opposed to time 1, as shown by GLMM. We then see a sharp

jump up for the GEE models at time 3 and a slight level off after that, making time

2 the time with the lowest (and largest in absolute value) β value. For the GLMM

model, we see a very very slight decline after time 2, with a 0.01 increase at time 4.

This makes time 3 the lowest β coefficient for GLMM.

The scale values are pretty similar across models, with GLMM having the small-

est by around a 0.06 difference from GEE scale values.

Table 4.6. Beta β Regression Coefficients, Partially Generated Data

Time/Method GEE(ind) GEE(AR1) GEE(CS) GLMM
Time 0 (Int) -0.48 -0.50 -0.51 -0.47

Time 1 -1.17 -1.17 -1.17 -1.26
Time 2 -2.00 -2.00 -2.00 -1.73
Time 3 -1.83 -1.82 -1.82 -1.76
Time 4 -1.73 -1.73 -1.73 -1.75
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Table 4.6 is referenced in Figure 4.5 below.

Figure 4.5. Beta β Regression Coefficients, Partially Generated Data

Table 4.7. Scale ϕ Regression Coefficients, Partially Generated Data

Scale/Method GEE(ind) GEE(AR1) GEE(CS) GLMM
ϕ 1.82 1.82 1.82 1.76

4.3.3 Real World Data

The real world data also presents varying conclusions across model types as

before, but here we see the opposite of what was seen in the partially generated data.

Again, we see quickly declining β regression coefficients, this time from time 0 to

time 3 for the GEE and GLMM models. This seems to show the largest jump in

the data happening at time 1 for both the GEE and GLMM models. However, the

GLMM models have a quick jump back up at time 4 whereas the GEE models decline

even further, making the lowest β values time 3 and time 4 for GLMM and GEE,

respectively.

The scale coefficients are more distinct than before, with the GLMM ϕ more

than 1.1 less than the GEE models.
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Table 4.8. Beta β Regression Coefficients, Real World Data

Time/Method GEE(ind) GEE(AR1) GEE(CS) GLMM
Time 0 (Int) -0.39 -0.28 -0.30 -0.34

Time 1 -0.82 -0.78 -0.82 -0.97
Time 2 -1.14 -1.10 -1.12 -1.08
Time 3 -1.22 -1.21 -1.20 -1.49
Time 4 -1.48 -1.46 -1.44 -1.37

Table 4.8 is referenced in Figure 4.6 below.

Figure 4.6. Beta β Regression Coefficients, Real World Data

Table 4.9. Scale ϕ Regression Coefficients, Real World Data

Scale/Method GEE(ind) GEE(AR1) GEE(CS) GLMM
ϕ 2.54 2.51 2.51 1.36

4.4 Beta Reconstruction Applications

Once we obtained the regression coefficients and scale parameter from the Beta

regression, we were able to reconstruct our Beta distribution. This distribution was

created from the sample of placement values relating the active treatment to the

placebo, which therefore allowed us to model the full distribution they came from.

With these distributions, we found their respective expected values for varying times

and methods.
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4.5 Beta Reconstruction Results and Conclusion

Again, as with our regression results, we use these as a way to proceed through

our method and not as a standalone procedure. Therefore, we make conclusions about

the reconstructed Beta parameters and expected values, but we are more concerned

with using these results as a mean to an end in the larger scale of classification.

4.5.1 Fully Generated Data

4.5.1.1 Example 1. For our first example, we see all of the expected values

quickly and drastically decreasing from time 1 to time 2, around a 0.5 decrease for both

methods in all correlation structures. From time 2 to time 3, the situations where n =

15 have an expected value rise of about 0.2 whereas the n = 100 situations decrease

even further, even if very slightly. Between time 3 and time 4, the former values

decrease by a value of 0.1, making the lowest point of the n = 15 situations be time

2. In the same time frame, the n = 100 GEE models increase, again, ever so slightly,

causing their lowest points to be at time 3. The n = 100 GLMM models, however,

continue decreasing and, by a very small margin, have their lowest points occur at

time 4. This shows the same disparity present with the β estimates: inconsistency

between GEE and GLMM in the maximum separation prediction with a larger sample

size. However, all models in both situations still consistently show the jump from no

separation to large separation at time 2.

Table 4.10. Regression Reconstruction Expected Values, Fully Generated Data,
Example 1 (small parameters, “early” jump)

Time/Method GEE(AR1) GEE(CS) GLMM(AR1) GLMM(CS)
(n=15/n=100) (n=15/n=100) (n=15/n=100) (n=15/n=100)

Time 1 (Int) 0.55 / 0.59 0.55 / 0.59 0.55 / 0.61 0.55 / 0.61
Time 2 0.07 / 0.11 0.07 / 0.11 0.13 / 0.15 0.13 / 0.15
Time 3 0.29 / 0.08 0.29 / 0.08 0.25 / 0.13 0.26 / 0.14
Time 4 0.20 / 0.08 0.20 / 0.09 0.19 / 0.13 0.19 / 0.13
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Table 4.10 is referenced in Figure 4.7 below.

Figure 4.7. Regression Reconstruction Expected Values, Fully Generated Data, Ex-
ample 1 (small parameters, “early” jump)

4.5.1.2 Example 2. In our second example, we see all methods reflect a rela-

tively small decrease from time 1 to time 2. At time 3, the n = 15 trials increase 0.3

while the n = 100 stay hovering at about the 0.5 value. Then, from time 3 to time

4, all methods and sample sizes decrease immensely to values between 0.1 and 0.2,

making time 4 the lowest point of all of the situations, as expected. This example

shows consistency across methods and sample sizes, pointing out time 4 as the time

when the largest jump and the largest separation between treatments is present.

Table 4.11. Regression Reconstruction Expected Values, Fully Generated Data,
Example 2 (small parameters, “late” jump)

Time/Method GEE(AR1) GEE(CS) GLMM(AR1) GLMM(CS)
(n=15/n=100) (n=15/n=100) (n=15/n=100) (n=15/n=100)

Time 1 (Int) 0.55 / 0.59 0.55 / 0.59 0.55 / 0.60 0.55 / 0.60
Time 2 0.39 / 0.50 0.39 / 0.50 0.39 / 0.52 0.39 / 0.52
Time 3 0.71 / 0.50 0.70 / 0.51 0.66 / 0.50 0.65 / 0.51
Time 4 0.20 / 0.08 0.20 / 0.09 0.20 / 0.14 0.21 / 0.14
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Table 4.11 is referenced in Figure 4.8 below.

Figure 4.8. Regression Reconstruction Expected Values, Fully Generated Data, Ex-
ample 2 (small parameters, “late” jump)

4.5.1.3 Example 3. In this third example, as seen in the first example with

an “early” jump, there is a huge decrease from time 1 to time 2, from values at 0.6 to

0.1 and less than 0.05 for the n = 15 situations. Then, consistently, values continue

to decrease slowly for the n = 100 situations while the n = 15 sample size situations

slowly increase from time 2 to time 4. This makes the lowest point equal to time 2

for n = 15 and time 4 for n = 100 sample sizes. Inconsistency is seen across methods

when measuring the largest separation, however, the large jump at time 2 is correctly

seen by all methods in both sample sizes.

Table 4.12. Regression Reconstruction Expected Values, Fully Generated Data,
Example 3 (large parameters, “early” jump)

Time/Method GEE(AR1) GEE(CS) GLMM(AR1) GLMM(CS)
(n=15/n=100) (n=15/n=100) (n=15/n=100) (n=15/n=100)

Time 1 (Int) 0.55 / 0.59 0.55 / 0.59 0.56 / 0.61 0.56 / 0.61
Time 2 0.03 / 0.08 0.03 / 0.08 0.04 / 0.12 0.04 / 0.11
Time 3 0.05 / 0.05 0.09 / 0.05 0.06 / 0.10 0.08 / 0.08
Time 4 0.12 / 0.04 0.12 / 0.04 0.10 / 0.08 0.10 / 0.08
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Table 4.12 is referenced in Figure 4.9 below.

Figure 4.9. Regression Reconstruction Expected Values, Fully Generated Data, Ex-
ample 3 (large parameters, “early” jump)

4.5.1.4 Example 4. In this example, we see almost the exact results as with

the second example except with slightly less variation, which the larger parameters

might explain. We see a slight decrease from time 1 to 2 with all models, with the

n = 15 models decreasing more. Then, these same models have a large jump between

time 2 and time 3, whereas the n = 100 situations hover at around the 0.5 value they

were at in time 2. Finally, we see an extremely large decrease in expected value at

time 4 for all models, making this the lowest point and the jump time for all models,

correlation structures, and sample sizes in this final example.

Table 4.13. Regression Reconstruction Expected Values, Fully Generated Data,
Example 4 (large parameters, “late” jump)

Time/Method GEE(AR1) GEE(CS) GLMM(AR1) GLMM(CS)
(n=15/n=100) (n=15/n=100) (n=15/n=100) (n=15/n=100)

Time 1 (Int) 0.55 / 0.59 0.55 / 0.59 0.55 / 0.61 0.56 / 0.61
Time 2 0.42 / 0.54 0.42 / 0.54 0.40 / 0.54 0.39 / 0.54
Time 3 0.65 / 0.52 0.63 / 0.54 0.63 / 0.52 0.63 / 0.55
Time 4 0.12 / 0.04 0.12 / 0.04 0.13 / 0.09 0.13 / 0.09
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Table 4.13 is referenced in Figure 4.10 below.

Figure 4.10. Regression Reconstruction Expected Values, Fully Generated Data, Ex-
ample 4 (large parameters, “late” jump)

4.5.2 Partially Generated Data

With the partially generated data, we see different results for the different

regression methods. Both start out the same, with a decrease in expected value of

about 0.2 between time 0 and time 2. Then, the GLMM model declines slightly more

at time 3, before coming back up at time 4, making the lowest GLMM expected value

occur at time 3. The GEE models, regardless of correlation structure, all increase

continually from time 2 to time 4, making their lowest expected values happen at

time 2, instead. Despite the inconsistency in finding the largest separation between

treatments, the largest jump in magnitude is seen at time 1 for all models.

Table 4.14. Regression Reconstruction Expected Values, Partially Generated Data

Time/Method GEE(ind) GEE(AR1) GEE(CS) GLMM
Time 0 (Int) 0.38 0.38 0.38 0.38

Time 1 0.24 0.24 0.24 0.22
Time 2 0.12 0.12 0.12 0.15
Time 3 0.14 0.14 0.14 0.15
Time 4 0.15 0.15 0.15 0.15
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Table 4.14 is referenced in Figure 4.11 below.

Figure 4.11. Regression Reconstruction Expected Values, Partially Generated Data

4.5.3 Real World Data

With our real world data, we see, again, contradicting results between the GEE

and GLMM regression techniques, but this time at different time periods. We see con-

sistent decline of the expected value from time 0 to time 3, with the GLMM method

declining more than GEE, especially between time 2 and time 3. Then, GLMM in-

creases in expected value from about 0.18 to 0.2, whereas the GEE methods decrease

from 0.22 to about 0.19. Therefore, we have the GEE models with a expected value

floor at time 4 and the GLMM model at time 3. Again, despite this inconsistency,

the largest jump is seen at time 1 for all models.

Table 4.15. Regression Reconstruction Expected Values, Real World Data

Time/Method GEE(ind) GEE(AR1) GEE(CS) GLMM
Time 0 (Int) 0.40 0.43 0.43 0.42

Time 1 0.31 0.31 0.31 0.28
Time 2 0.24 0.25 0.25 0.25
Time 3 0.23 0.23 0.23 0.18
Time 4 0.19 0.19 0.19 0.20
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Table 4.15 is referenced in Figure 4.12 below.

Figure 4.12. Regression Reconstruction Expected Values, Real World Data

4.6 Classification Applications

After we obtained our reconstructed Beta distributions for each dataset, we

proceeded with our classification application by generating an ROC curve from the

Beta parameters and calculating the AUC for each regression method and correlation

structure at each time period and for each example.

4.7 Classification Results and Conclusion

Our classification method, in all scenarios, did what it was supposed to do: it

correctly located which time period exhibited the largest jump in separation between

the active treatment and the placebo.

4.7.1 Fully Generated Data

4.7.1.1 Example 1. In this example, we observe rapidly rising AUC values in

the first time change, from time 1 to time 2, from an AUC of 0.4-0.45 to values at

0.82-0.86 for all models and sample sizes. Then, a sharp decline occurs for the n = 15

sample size situations at time 3, where a slight rise in AUC happens for the n = 100

models. At time 4, an extra slight rise in values is seen in the n = 100 GLMM models
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and the n = 15 GEE and GLMM models, whereas the n = 100 GEE models show

a tiny decrease, making the AUC peak be at time 2 for all n = 15 models, time 3

for the n = 100 GEE models, and time 4 for n = 100 GLMM models. Despite the

disparity among models when gauging separation magnitude, all of them correctly

show the jump in separation difference at time 2.

The fully generated data ROC curves by time are referenced in Figures 4.13

and 4.14 below. Each graph represents the GEE(AR1), GEE(CS), GLMM(AR1),

and GLMM(CS) models, respectively.

Figure 4.13. ROC Curves by Time, Fully Generated Data, Example 1 (n = 15)

Figure 4.14. ROC Curves by Time, Fully Generated Data, Example 1 (n = 100)
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Table 4.16. Area Under ROC Curve (AUC), Fully Generated Data, Example 1
(small parameters, “early” jump)

Time/Parameter GEE(AR1) GEE(CS) GLMM(AR1) GLMM(CS)
(n=15/n=100) (n=15/n=100) (n=15/n=100) (n=15/n=100)

Time 1 (Int) 0.45 / 0.41 0.45 / 0.41 0.45 / 0.39 0.45 / 0.39
Time 2 0.93 / 0.89 0.93 / 0.89 0.87 / 0.85 0.87 / 0.85
Time 3 0.71 / 0.92 0.71 / 0.92 0.75 / 0.87 0.74 / 0.86
Time 4 0.80 / 0.92 0.80 / 0.91 0.81 / 0.87 0.81 / 0.87

Table 4.16 is referenced in Figure 4.15 below.

Figure 4.15. Area Under ROC Curve (AUC), Fully Generated Data, Example 1 (small
parameters, “early” jump)

4.7.1.2 Example 2. This example’s results proved to be more consistent than

the previous example’s in terms of AUC. We see an increase from time 1 to time 2

for all models and sample sizes, and then a large decrease at time 3 for the n = 15

situations and a hovering at 0.5 for the n = 100 sample sizes. Then, an extremely

large increase in all methods is present at time 4, yielding the highest AUC and largest

separation between treatments to be at time 4. Here, all models are consistent with

both the separation maximum and the maximum jump time, which also occurs at

time 4.
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The fully generated data ROC curves by time are referenced in Figures 4.16

and 4.17 below. Each graph represents the GEE(AR1), GEE(CS), GLMM(AR1),

and GLMM(CS) models, respectively.

Figure 4.16. ROC Curves by Time, Fully Generated Data, Example 2 (n = 15)

Figure 4.17. ROC Curves by Time, Fully Generated Data, Example 2 (n = 100)
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Table 4.17. Area Under ROC Curve (AUC), Fully Generated Data, Example 2
(small parameters, “late” jump)

Time/Parameter GEE(AR1) GEE(CS) GLMM(AR1) GLMM(CS)
(n=15/n=100) (n=15/n=100) (n=15/n=100) (n=15/n=100)

Time 1 (Int) 0.45 / 0.41 0.45 / 0.41 0.45 / 0.40 0.45 / 0.40
Time 2 0.61 / 0.50 0.61 / 0.50 0.61 / 0.48 0.61 / 0.48
Time 3 0.29 / 0.50 0.30 / 0.49 0.34 / 0.50 0.35 / 0.49
Time 4 0.80 / 0.92 0.80 / 0.91 0.80 / 0.86 0.79 / 0.86

Table 4.17 is referenced in Figure 4.18 below.

Figure 4.18. Area Under ROC Curve (AUC), Fully Generated Data, Example 2 (small
parameters, “late” jump)

4.7.1.3 Example 3. In this example, we see a large, quick increase in AUC

values between time 1 and time 2, from AUC values of 0.4 all the way to 0.85-0.95

for all methods and models. Then, the n = 15 situations decrease continually from

time 2 to time 4, yielding the highest AUC at time 2. The n = 100 models, however,

continually increase in that same time span, and yield the highest AUC value at time

4. Again, like the previous example handling an early jump in the data, the maximum

separation between active treatment and placebo is estimated to be slightly different

by different models. However, the jump in separation is seen at the correct time, time

2, with all methods.
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The fully generated data ROC curves by time are referenced in Figures 4.19

and 4.20 below. Each graph represents the GEE(AR1), GEE(CS), GLMM(AR1),

and GLMM(CS) models, respectively.

Figure 4.19. ROC Curves by Time, Fully Generated Data, Example 3 (n = 15)

Figure 4.20. ROC Curves by Time, Fully Generated Data, Example 3 (n = 100)
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Table 4.18. Area Under ROC Curve (AUC), Fully Generated Data, Example 3 (large
parameters, “early” jump)

Time/Parameter GEE(AR1) GEE(CS) GLMM(AR1) GLMM(CS)
(n=15/n=100) (n=15/n=100) (n=15/n=100) (n=15/n=100)

Time 1 (Int) 0.45 / 0.41 0.45 / 0.41 0.44 / 0.39 0.44 / 0.39
Time 2 0.97 / 0.92 0.97 / 0.92 0.96 / 0.88 0.96 / 0.89
Time 3 0.95 / 0.95 0.91 / 0.95 0.94 / 0.90 0.92 / 0.92
Time 4 0.88 / 0.97 0.88 / 0.96 0.90 / 0.92 0.90 / 0.92

Table 4.18 is referenced in Figure 4.21 below.

Figure 4.21. Area Under ROC Curve (AUC), Fully Generated Data, Example 3 (large
parameters, “early” jump)

4.7.1.4 Example 4. In our last example of fully generated data, we see very

similar results to our second example. A slight increase in AUC is seen for all methods

from under 0.5 in the span between time 0 and time 1. Then, a large decrease to

back under 0.4 for the n = 15 sample sizes is present at time 3, where the n = 100

models stay hovering at the previous time’s value of about 0.5. Finally, we see a huge

increase in AUC values up to over 0.8 for all models and sample sizes, showing the

most separation between treatments to be at time 4. Here, the jump in treatment

difference is also at its maximum and is correctly gauged by all models.
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The fully generated data ROC curves by time are referenced in Figures 4.25

and 4.23 below. Each graph represents the GEE(AR1), GEE(CS), GLMM(AR1),

and GLMM(CS) models, respectively.

Figure 4.22. ROC Curves by Time, Fully Generated Data, Example 4 (n = 15)

Figure 4.23. ROC Curves by Time, Fully Generated Data, Example 4 (n = 100)
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Table 4.19. Area Under ROC Curve (AUC), Fully Generated Data, Example 4 (large
parameters, “late” jump)

Time/Parameter GEE(AR1) GEE(CS) GLMM(AR1) GLMM(CS)
(n=15/n=100) (n=15/n=100) (n=15/n=100) (n=15/n=100)

Time 1 (Int) 0.45 / 0.41 0.45 / 0.41 0.45 / 0.39 0.45 / 0.39
Time 2 0.59 / 0.46 0.59 / 0.46 0.60 / 0.46 0.61 / 0.46
Time 3 0.35 / 0.48 0.37 / 0.46 0.37 / 0.48 0.37 / 0.45
Time 4 0.88 / 0.97 0.88 / 0.96 0.87 / 0.91 0.87 / 0.91

Table 4.19 is referenced in Figure 4.24 below.

Figure 4.24. Area Under ROC Curve (AUC), Fully Generated Data, Example 4 (large
parameters, “late” jump)
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4.7.2 Partially Generated Data

With the partially generated data we see a contradicting result: GEE models

show the highest AUC at time 2 yet the GLMM model shows it at time 3, by a very

small margin. Initially, the AUC values start at about 0.6, with not much separation

between treatments. Then, from time 0 to time 2, there is a large increase in values,

to 0.85 for GLMM and almost 0.9 for GEE models. At time 3, the AUC increases

very slightly for GLMM where, at the same time, the AUC decreases for the GEE

models. Then, both decrease at time 4, leaving their highest AUC values at time 2

and time 3 for GEE and GLMM, respectively. This contradiction in the magnitude

of separation between active treatment and placebo is not present when analyzing

the time of largest jump in the separation. Across all models, the largest change in

treatment difference happens at time 1.

The partially generated data ROC curves by time are referenced in Figure 4.25

below. Each graph represents the GEE(AR1), GEE(CS), GEE(ind), and GLMM

models, respectively.

Figure 4.25. ROC Curves by Time, Partially Generated Data
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Table 4.20. Area Under ROC Curve (AUC), Partially Generated Data

Time/Parameter GEE(ind) GEE(AR1) GEE(CS) GLMM
Time 0 (Int) 0.62 0.62 0.62 0.62

Time 1 0.76 0.76 0.76 0.78
Time 2 0.88 0.88 0.88 0.85
Time 3 0.86 0.86 0.86 0.85
Time 4 0.85 0.85 0.85 0.85

Table 4.20 is referenced in Figure 4.26 below.

Figure 4.26. Area Under ROC Curve (AUC), Partially Generated Data

4.7.3 Real World Data

In the application of our method to the real world data, we see a very minor

difference in AUC results, particularly between GEE and GLMM models as a whole.

From time 0 up to time 2 they perform almost identically, with the GLMM model

showing an increase even higher in AUC at time 3 as opposed to the GEE models. At

time 4, we see a decrease in the GLMM model AUC value, therefore peaking at time

3. The GEE model AUCs, however, keep rising and reach around the same value

the GLMM had at the previous time, peaking at time 4. Even though the maximum

separation between treatments is not consistent across models, the largest jump in

treatment difference is seen at time 1 consistently. This result is what we see in all

fully generated and partially generated examples, as well.
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The real world data ROC curves by time are referenced in Figure 4.27 below.

Each graph represents the GEE(AR1), GEE(CS), GEE(ind), and GLMM models,

respectively.

Figure 4.27. ROC Curves by Time, Real World Data

Table 4.21. Area Under ROC Curve (AUC), Real World Data

Time/Parameter GEE(ind) GEE(AR1) GEE(CS) GLMM
Time 0 (Int) 0.60 0.57 0.57 0.58

Time 1 0.69 0.69 0.69 0.72
Time 2 0.76 0.75 0.75 0.75
Time 3 0.77 0.77 0.77 0.82
Time 4 0.81 0.81 0.81 0.80
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Table 4.21 is referenced in Figure 4.28 below.

Figure 4.28. Area Under ROC Curve (AUC), Real World Data
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CHAPTER FIVE

Multiple Active Treatment Classification

5.1 Introduction

Previously, when analyzing the data, we had a placebo and active treatment

group. From there, we were able to get down to the one-dimension case by transform-

ing the original response variable into a placement value that included information

from both treatment types. Then, we were able to perform the Beta regression, Beta

reconstruction, and classification as we would when having only one group. Now, we

considered the case when there is a placebo and more than one active treatment in

an experiment. For simplicity, we focused on the two active treatment and placebo

case.

With this approach, we can take our method a step further, not only being able

to find optimal time periods for an active treatment, but also comparing between more

than one active treatment at those periods to see if there is a significant difference

and significant separation.

5.2 Methods

5.2.1 Two-Sample Kolmogorov-Smirnov (KS) Test

The Kolmogorov-Smirnov goodness-of-fit test is a nonparametric test to com-

pare a distribution, either to a hypothesized one, or to another distribution. Here,

we use it to compare two placement value distributions to each other, namely the

distributions resulting from comparing two active treatments to the placebo control.

As opposed to similar tests like Wilcoxon and the Mann-Whitney, here we compare

full distribution functions and not just medians or means (Dodge, 2008).

The use of the KS test is advised when
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• distribution means or medians are similar but differences in variance/symme-

try are suspected.

• sample sizes are small.

• differences between distributions are suspected to affect only the upper or

lower end of distributions.

• the shift between two distributions is hypothesized to be small but systematic.

• two samples are of unequal size. (Engmann and Cousineau, 2011)

5.2.2 Two-Sample Anderson-Darling (AD) Test

The Anderson-Darling test was first introduced in (Anderson and Darling, 1952)

and generalized to a k-sample version in (Scholz and Stephens, 1987). A very similar

test to the KS, this is a “weighted” version of it.

One of the motivations for using this test instead of the KS test would be if

we have fatter tails in our placement value distributions. Another scenario where

we would include this method for our analysis would be when there are very small

differences between the distributions of the populations being compared, especially if

sample sizes are large (Engmann and Cousineau, 2011).

5.3 Applications

5.3.1 Kolmogorov-Smirnov Test

Applying the KS test is relatively straightforward: we have two samples, in this

case those would be set of placement values coming from each active treatment, which

get compared to see at which point there exists maximum separation between their

respective CDFs. This separation is quantified into the KS statistic, ∆, which is

∆m,n =

√
mn

m+ n
sup
x

|Fm(x)− Fn(x)|.
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The null hypothesis that Fm(x) and Fn(x) come from the same distribution is rejected

if ∆ is larger than the critical value ∆α at a given α.

The KS statistic, in terms of our research methods, is the “maximum distance”

the empirical CDF of the active placement values, or the observed ROC curve, is from

the diagonal line where the AUC = 0.5. This distance is also known as Youden’s J

statistic, given by J = sensitivity + specificity − 1 (Youden, 1950). An illustration

of this is seen in Figure 5.1 below, where the red line represents the empirical ROC

curve and the dashed line represents the ROC when the AUC = 0.5.

Figure 5.1. Youden’s J statistic

5.3.2 Anderson-Darling Test

The AD statistic is

AD =
1

mn

m+n∑
i=1

Mi(Z(m+n−mi))
2 1

iZ(m+n−i)

where Z(m+n) represents the combined and ordered samples X(m) and Y(n), of size

m and n respectively, and Mi represents the number of observations in X(m) that

are equal to or smaller than the ith observation in Z(m+n). The null hypothesis that

X(m) and Y(n) come from the same distribution is rejected if AD is larger than the

corresponding α-level critical value.
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5.4 Extension of Two Active Treatment Classification

There are k-sample versions of the Kolmogorov-Smirnov and the Anderson-

Darling tests, as well. If we were presented with data with more than two active

treatments being tested against a placebo, we could, potentially, use our method in

conjunction with these multiple sample tests. Ideally, we would find placement values

for all treatments in relation to the placebo control, then compare CDFs for all of the

k active treatments to see if there is any separation. If there is, we would then use

the two-sample analogous methods of these tests to see where the separation lies.

5.5 Conclusion

In conclusion, we believe our classification method can be very useful to many

different applications in placebo-controlled clinical trials. We extensively explored the

placebo-active treatment situation and developed a specific way of finding separation

between the treatments, however, we also found a way to generalize our approach to

more than one active treatment, if necessary. Depending on the specific nature of the

data and situation, various tests and specifications can be applied to carry out this

analysis.
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CHAPTER SIX

Conclusions, Limitations, and Future Research

6.1 Conclusions

This dissertation was done to connect the concepts of placement values and

ROC curves with Beta regression to create a method that can be used in clinical tri-

als when longitudinal data is present and classification is needed between treatments.

Additionally, we did not set any restrictions on the distribution of the endpoints an-

alyzed to make this classification technique flexible and applicable to more scenarios.

The usefulness of our research lies in giving a biostatistician an extra visualiza-

tion tool for their arsenal when presented with longitudinal data in a clinical trial. In

short, we provided a classification method for multiple treatments that can be applied

to a wide range of endpoints which will account for across-time correlation and help

distinguish at which time point(s) a treatment is most effective.

The results seen from our analysis were promising. Classification resulted as

expected in all fully generated dataset examples, while our real-world and partially

generated datasets gave us a chance to apply the method to more realistic data and

arrive at similar conclusions.

The method had trouble in the “early” jump, large (n = 100) scenario posed

with the fully generated data, incorrectly classifying where the maximum separation

between treatments was present with all four Beta regression methods. However,

Beta regression has certain limitations which this scenario exploited, so that result

was expected (Hunger et al., 2011). In terms of finding the correct time point at which

the jump in separation occurred, however, our method proved to correctly classify in

all scenarios.
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When applied to the real datasets, the same discrepancy was seen. In the early

time periods where the different treatment observations had more overlap with each

other, separation was relatively easy to detect. However, where more separation be-

tween the treatments started being seen, almost to the point of no overlap, our method

struggled to be consistent detecting maximum separation across models. However, in

this scenario, visually inspecting the data initially would stop us from ever using our

method given the separation between treatments is so apparent. In terms of finding

the time at which a jump in treatment separation occurs, as with the fully generated

data, our method was able to perform consistently.

This conclusion led us to believe that, if we develop a transformation of the

placement values such that they are even more separated from the (0,1) endpoints

(say, (PV + 0.5)/2, where we would limit all values to the (0.25, 0.75) range), we

can strengthen our classification method, in terms of finding the time of maximum

separation between treatments, and it can be more widely applied to longitudinal

data. That being said, we saw very promising results finding the point of largest

jump in separation between groups with our method’s present performance.

6.2 Limitations

6.2.1 Data Availability and Variability

In searching for appropriate data for our research, we found it a bit difficult

and time consuming to locate useful datasets that fit our needs. Mostly, data was

small in terms of the number of patients or it only had a couple of observations per

patient (pre and post, usually). For this reason, we decided to add patients for our

partially generated and real world data. Ideally, we would have preferred to have

more data options from where to choose, especially if we could have had “small” and

“large” real datasets for comparison of our method in both scenarios. We could have
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also varied the amount of observations per patient to see if that had an effect on the

accuracy of our method’s classification (e.g. three vs. five observations).

6.3 Future Research

6.3.1 Different Transformations on Placement Values

We saw a limitation in our research was Beta regression not being able to

adequately handle placement values at the (0,1) endpoints or near them. Therefore, a

future project would include trying various transformation techniques, either from the

literature or created by us, to see if using them creates a more accurate classification

method.

6.3.2 k-Treatment Analysis

While touched upon in this dissertation and our research, a k-treatment classifi-

cation analysis was not able to be fully done. With what we have presented, however,

it seems like a natural progression of what could be done next by building on what

we showed here. Although not as common as an active treatment vs. placebo lon-

gitudinal comparison, it would be beneficial to the advancement of clinical trials to

have more research done on the multiple active treatment vs. placebo longitudinal

study scenario (Kiefer, 1959).

6.3.3 Response Distribution Variation

In this dissertation, we applied our classification method to three different sit-

uations: Beta data (fully generated), Normal data (partially generated), and non-

specified data (real world). Ideally, given our nonparametric placement value ap-

proach, we would like to apply our method in multiple controlled scenarios where we

can test if and how it compares across all possible response distributions (Exponential

family).
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6.3.4 Classification Accuracy Comparison

After seeing our classification method in action, we can now turn to other meth-

ods to compare how “well” ours performed. Since we use both GEE and GLMM, a

quasi-likelihood and maximum likelihood method, we can conduct these comparisons

in various ways. To do this, some of the already included literature must be further

analyzed while new topics must be researched, as well.

6.3.5 Bayesian Analysis using Youden’s J statistic

Used as a way to quantify how much separation is present between two place-

ment value distributions, Youden’s J can also be used in a Bayesian setting. We can

set its probability distribution as a prior, treating it as a random variable, and create

credible intervals with this information. This can be a way to connect our research

to the Bayesian side of statistics and, possibly, use more information for classifying

between treatments.
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APPENDIX A

Additional Details

A.1 Abbreviations

• PDF: Probability density function

• CDF: Cumulative distribution function

• SE: Standard error

• LMM: Linear Mixed Model

• GLM: Generalized Linear Model

• GEE: Generalized Estimating Equations

• GLMM: Generalized Linear Mixed Model

• LNMVB: Libby and Novick Multivariate Beta

• SLMVB: Sarmanov-Lee Multivariate Beta

• AIC: Akaike Information Criterion

• BIC: Bayesian Information Criterion

• AR1: Auto-regressive(1)

• CS: Compound Symmetric; Exchangeable

• ind: Independent

• UNSTR: Unstructured

• ROC: Receiver Operating Characteristic [curve]
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• AUC: Area under the [ROC] curve

• PV: Placement Value

• Ex: Example

• Int: Intercept

• ML: Maximum Likelihood

• QL: Quasi-Likelihood

• KS: Kolmogorov-Smirnov [test]

• AD: Anderson-Darling [test]

A.2 Beta Distribution Examples

Here, we mention just some of the useful properties and shapes this distribution

can take depending on its parameter values and their magnitude, both independently

and in relation to each other.

• If α > 1 and β = 1, the pdf is strictly increasing, however, if α = 1 and

β > 1, it is now strictly decreasing.

• When α, β < 1, the pdf is U-shaped.

• When α, β > 1, the pdf is unimodal.

• Now, if α = β, the pdf is centered at 1/2, with it becoming more concentrated

about the mean as α increases. The special case α = β = 1 yields the

Uniform(0, 1) distribution.

Examples of Beta distribution flexibility are seen in Figure A.1 below, where

the following are shown:
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• α = 1, β = 3 (Strictly decreasing)

• α = β = 1 (Uniform)

• α = β = 10 (Centered with “large” parameter values)

• α = β = 2 (Centered with “small” parameter values)

• α = 3, β = 1 (Strictly increasing)

• α = 0.3, β = 0.7 (U-shaped)

• α = 3, β = 7 (Unimodal)

Figure A.1. Beta Distribution variation

A.3 Correlation Structures

We highlight some properties of the correlation structures used for our research.

A.3.1 Independence



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


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Under this structure, the estimates are identical to the ML estimates obtained

by treating all observations within and between groups as independent (Agresti, 2015).

A.3.2 Auto Regressive (AR1)



1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1


This correlation structure takes proximity into account: the closer to each other

(in time) the observations are, the more correlated. Despite its wide use, the AR1

structure often poorly gauges within-subject correlations that decay at a slower or

faster rate than required by this specific model (Simpson et al., 2010).

A.3.3 Exchangeable / Compound Symmetry (CS)



1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1


With this correlation structure, the lag is not taken into account: the same

correlation is assumed no matter how close or far from each other the observations

are. This is a useful structure for dealing with clustered data with no time ordering,

such as when using ANOVA for analysis.
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A.3.4 Untructured (UNSTR)



1 ρ12 ρ13 ρ14

ρ12 1 ρ23 ρ24

ρ13 ρ23 1 ρ34

ρ14 ρ24 ρ34 1


where ρjk = Corr(Yij, Yik) for the ith subject at times j and k.

This type of correlation structure makes sense when repeated measurements

are unequally spaced and variances differ in no recognizable pattern. Since all of

the variances and covariances are unique, this is the structure that uses up the most

degrees of freedom, so it should only be used if any other fails in fitting the data.

A.4 Nataf and Vorechovsky Example

Here we show several of the R functions from (Hein, 2019) that we used for

data creation. They were as follows:

(1) alpha.beta(): reparameterized a Beta distribution. When given µ and ϕ pa-

rameters, it outputs a and b. This function is used in p.tilda().

(2) p.tilda(): given the means and standard deviation of both Beta distributions

used, it solves the non-linear equation∫ ∞

−∞

∫ ∞

−∞

Hi − µi

σi

Hj − µj

σj
φ(H̃i, H̃j, ρ̃ij)dH̃idH̃j − ρij = 0

for ρ̃ij.

(3) make.corr(): given the correlation coefficient, the number of repeated mea-

sures, the means and standard deviation, and the correlation structure type,

this function creates the correlation matrix for the dataset we want to gener-

ate using the p.tilda() function.
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(4) Vorechovsky(): this function simulates the Beta responses using Vorechovsky’s

method, which includes using Cholesky decomposition on the correlation ma-

trix created with make.corr().

(5) long(): this function converts the data into long format and makes it easier

to analyze.

(6) data creation(): we created this function to aggregate all of the steps above

and simplify our data generation process. Given the sample size, mean of each

treatment, standard deviation, correlation coefficient, time of jump (early for

t = 2, late for t = 4), and correlation structure (AR1, CS, or Unstructured),

a dataset with active vs. placebo treatments having four repeated measures

is created.

A simple example is illustrated here. When the code data creation(n=50,

mu1=0.1, mu2=0.2, phi=0.1, sd=0.01, jump=“early”, cor str=“CS”) is used, Figure

A.2 is the output:

Figure A.2. Vorechovsky’s Method for n = 50 and CS correlation structure with a
jump at t = 2
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Now, when “late” is specified in the code for jump, Figure A.3 is the result:

Figure A.3. Vorechovsky’s Method for n = 50 and CS correlation structure with a
jump at t = 4

The complete code for these functions is included in Appendix B.
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APPENDIX B

Selected R Code

B.1 Nataf and Vorechovsky Example

library(tidyverse)

#### Generating data

#Function for data creation and analysis

data_creation <- function(n, mu1, mu2, phi, sd, jump, cor_str) {

##################################

# Functions extracted from dissertation

#################################

# Given mu and variance of beta distribution,

#parameters of beta distribution

# input: mu and variance

# output: alpha and beta

alpha.beta <- function(m, v) {

beta <- (m*(1 - m)^2 - v + v*m) / v

alpha <- beta*m / (1 - m)

return(c(alpha, beta))

}

# --------------------------------------------------------

# Support function for Vorechovsky’s method.
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#Determines correlation matrix using Nataf’s transformation

if (!require("nleqslv")) install.packages("nleqslv")

library("nleqslv")

if (!require("pracma")) install.packages("pracma")

library(pracma)

p.tilda <- function(p.target, mu1, mu2, s) {

a1 <- alpha.beta(mu1, s^2)[1]

b1 <- alpha.beta(mu1, s^2)[2]

a2 <- alpha.beta(mu2, s^2)[1]

b2 <- alpha.beta(mu2, s^2)[2]

p.tmp <- function(p) {

f <- function(u1, u2) {

tmp1 <- (qbeta(pnorm(u1), shape1 = a1, shape2 = b1) - mu1)/

s

tmp2 <- (qbeta(pnorm(u2), shape1 = a2, shape2 = b2) - mu2)/

s

tmp3 <- 1 / (2*pi*sqrt(1 - p^2))*exp(-1 / (2*(1 - p^2))*

(u1^2 - 2*p*u1*u2 + u2^2))

tmp1*tmp2*tmp3

}

integral2(f, -10, 10, -10, 10)$Q - p.target

}

nleqslv(0.5, p.tmp, method = ’Newton’)$x

}

# --------------------------------------------------------
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# Function to make correlation matrix for Vorechovsky’s method

# input: rho, number of repeated measures,

#type of correlation - CS, AR1, UNSTR

# output: t x t correlations matrix that has been

#Nataf transformed

make.corr <- function(rho, t, mu.vector, sd, type) {

mat <- diag(t)

if(toupper(type) == ’CS’) {

for (i in 1:t) {

for (j in i:t) {

if (i != j) mat[i, j] <- mat[j, i] <- rho

}

}

}

if(toupper(type) == ’AR1’) {

for (i in 1:t) {

for (j in i:t) {

if (i != j) mat[i, j] <- mat[j, i] <- rho^(abs(i - j))

}

}

}

if(toupper(type) == ’UNSTR’) {

for (i in 1:t) {

for (j in i:t) {

if (i != j) mat[i, j] <- mat[j, i] <- runif(1)
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}

}

}

for (i in 1:t) {

for (j in i:t) {

if (i != j) {

mat[i, j] <- mat[j, i] <- p.tilda(mat[i, j],

mu.vector[i], mu.vector[j], sd)

}

}

}

return(mat)

}

# --------------------------------------------------------

# Function to simulate beta responses for Vorechovsky’s method

# inputs: n - num subjects; t - num repeated measures;

#vector of means; common sd; target correlation matrix

# output: n x t matrix - rows are subjects and columns

#are repeated measures

Vorechovsky <- function(n, t, mu.vector, sd, corr.mat) {

U <- chol(corr.mat)

tmp <- matrix(rnorm(n*t), nrow = n, ncol = t)

mat <- tmp %*% U

for (i in 1:t) {
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a <- alpha.beta(mu.vector[i], sd^2)[1]

b <- alpha.beta(mu.vector[i], sd^2)[2]

mat[, i] <- qbeta(pnorm(mat[, i]), shape1 = a, shape2 = b)

}

return(mat)

}

# --------------------------------------------------------

# Function to format simulated data into long format

# inputs: matrix - where each column is a repeated measure

#(groups need to be inputed as separate matrices)

# output: data frame in long format -

#colnames <- subj, trt, time, response

if (!require("reshape2")) install.packages("reshape2")

library(reshape2)

long <- function(mat.1, mat.2) {

df <- data.frame(mat.1)

colnames(df) <- paste0(’time’, seq(1, length(mat.1[1, ]), 1))

df$subj <- seq(1, length(mat.1[, 1]), 1)

df$trt <- rep(1, length(mat.1[, 1]))

long.df <- melt(df, id.vars = c(’subj’, ’trt’),

variable.name = c(’time’),

value.name = c(’response’))

long.df <- long.df[order(long.df$subj), ]
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if(!missing(mat.2)) {

df.2 <- data.frame(mat.2)

colnames(df.2) <- paste0(’time’,

seq(1, length(mat.2[1, ]), 1))

df.2$subj <- seq(1, length(mat.2[, 1]), 1)

df.2$trt <- rep(2, length(mat.2[, 1]))

long.df.2 <- melt(df.2, id.vars = c(’subj’, ’trt’),

variable.name = c(’time’),

value.name = c(’response’))

long.df.2 <- long.df.2[order(long.df.2$subj), ]

long.df <- rbind(long.df, long.df.2)

}

long.df$trt <- factor(long.df$trt)

return(long.df)

}

#----------------------- Added for simplicity -----------------

#--------------------------------------------------------------

# making correlation matrix

cor.mat <- make.corr(phi, 4, c(mu1, mu1, mu1, mu1), sd, cor_str)

# making dataset

set.seed(12345)

if (jump == ’early’) {
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dat <- Vorechovsky(n, 4, c(mu1, mu1, mu1, mu1), sd, cor.mat)

dat2 <- Vorechovsky(n, 4, c(mu1, mu2, mu2, mu2), sd, cor.mat)

}

if (jump == ’late’) {

dat <- Vorechovsky(n, 4, c(mu1, mu1, mu1, mu1), sd, cor.mat)

dat2 <- Vorechovsky(n, 4, c(mu1, mu1, mu1, mu2), sd, cor.mat)

}

long.dat <- long(dat, dat2)

long.dat

}

# n=50, early

hein_example <- data_creation(n=50, mu1=0.1, mu2=0.2, phi=0.1,

sd=0.01, jump="early", cor_str="CS")

hein_example %>%

ggplot(aes(response, fill = trt)) +

geom_density() +

facet_wrap(~ time) +

ggtitle("Nataf and Vorechovsky data creation, early jump") +

theme(plot.title = element_text(hjust = 0.5))
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# n=50, late

hein_example <- data_creation(n=50, mu1=0.1, mu2=0.2, phi=0.1,

sd=0.01, jump="late", cor_str="CS")

hein_example %>%

ggplot(aes(response, fill = trt)) +

geom_density() +

facet_wrap(~ time) +

ggtitle("Nataf and Vorechovsky data creation, late jump") +

theme(plot.title = element_text(hjust = 0.5))
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B.2 Beta Regression

LinkFun <- function(arg) {log(arg / (1 - arg))}

InvLink <- function(arg) {exp(arg) / (1 + exp(arg))}

InvLinkDeriv <- function(arg) {exp(arg) / (1 + exp(arg))^2}

VarFun <- function(arg) {arg*(1 - arg)}

FunList <- list(LinkFun, VarFun, InvLink, InvLinkDeriv)

alpha.beta <- function(m, v) {

beta <- (m*(1 - m)^2 - v + v*m) / v

alpha <- beta*m / (1 - m)

return(c(alpha, beta))

}

beta.glmm <- function(link = ’logit’) {

stats <- make.link(link)

log_dens <- function(y, eta, mu_fun, phis, eta_zi) {

phi <- exp(phis)

mu <- mu_fun(eta)

comp.1 <- lgamma(phi) - lgamma(mu*phi) - lgamma((1 - mu)*phi)

comp.2 <- (mu*phi - 1)*log(y) + ((1 - mu)*phi - 1)*log(1 - y)

out <- comp.1 + comp.2

attr(out, "mu_y") <- mu

out

}

structure(list(family = "Beta", link = stats$name,

linkfun = stats$linkfun, linkinv = stats$linkinv,
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log_dens = log_dens), class = "family")

}

# input: parm_beta and Phi

# output: list with ROC

out_parm <- function(parm_beta, Phi, method_SE,

plot_title = "ROC") {

parm_beta <- parm_beta %>% unname()

Phi <- Phi %>% unname()

mu <- 1 /(1 + exp(-parm_beta))

a0 <- Phi*mu

b0 <- Phi * (1 - mu)

expected_value = a0 / (a0 + b0)

AUC = 1 - expected_value

SE <- method_SE

xx <- c(0:100)/100

y <- pbeta(xx,a0, b0, lower.tail = TRUE)

#plot(xx, y, "l", ylim = c(0, 1), main = plot_title)

list("Beta Parameter" = parm_beta, "Standard Error" = SE,

"Scale Parameter (phi)" = Phi, "a0" = a0, "b0" = b0,

"Expected Value" = expected_value, "AUC" = AUC)

}
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#Function for GEE and GLMM Beta regression

beta_regression <- function(data_PV, response, explanatory, id,

cor_str = "independence") {

##############

### needed to use variables in geem and mixed_model,

#creates "formula" objects

##############

nullmodel <- reformulate("1", response = response)

fullmodel <- reformulate(c("1", explanatory), response = response)

remodel <- reformulate(paste("1", id, sep="|"))

##############

### creating beta regression output for both models

##############

modALL_gee <- geem(fullmodel, id = data_PV[[id]], data = data_PV,

family = FunList, corstr = cor_str)

modALL_mix <- mixed_model(fullmodel, random = remodel, data_PV,

beta.glmm, n_phis = 1, iter_EM = 0)

summary_gee <- summary(modALL_gee)

summary_mix <- summary(modALL_mix)

##############

### Beta reconstruction for all time points,

#using both GEE and GLMM

##############

84



################# full gee output

#Test for time=time0 (Use the intercept)

parm_beta <- modALL_gee$beta[1]

Phi = modALL_gee$phi * 10

method_se <- summary_gee$se.model[1]

out_parm(parm_beta,Phi, method_se, "Time 0 ROC, GEE")

-> gee_beta_phi_0

#Test for time = time1

parm_beta <- modALL_gee$beta[1] + modALL_gee$beta[2]

Phi = modALL_gee$phi * 10

method_se <- summary_gee$se.model[2]

out_parm(parm_beta,Phi, method_se, "Time 1 ROC, GEE")

-> gee_beta_phi_1

#Test for time = time2

parm_beta <- modALL_gee$beta[1] + modALL_gee$beta[3]

Phi = modALL_gee$phi * 10

method_se <- summary_gee$se.model[3]

out_parm(parm_beta,Phi, method_se, "Time 2 ROC, GEE")

-> gee_beta_phi_2

#Test for time = time3

parm_beta <- modALL_gee$beta[1] + modALL_gee$beta[4]

Phi = modALL_gee$phi * 10

method_se <- summary_gee$se.model[4]

out_parm(parm_beta,Phi, method_se, "Time 3 ROC, GEE")
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-> gee_beta_phi_3

#Test for time = time4

parm_beta <- modALL_gee$beta[1] + modALL_gee$beta[5]

Phi = modALL_gee$phi * 10

method_se <- summary_gee$se.model[5]

out_parm(parm_beta,Phi, method_se, "Time 4 ROC, GEE")

-> gee_beta_phi_4

################# full glmm output

#Test for time = time0 (Use the intercept)

parm_beta <- modALL_mix$coefficients[1]

Phi = modALL_mix$phis

method_se <- summary_mix$coef_table[1,2]

out_parm(parm_beta,Phi, method_se, "Time 0 ROC, GLMM")

-> glmm_beta_phi_0

#Test for time = time1

parm_beta <- modALL_mix$coefficients[1] + modALL_mix$coefficients[2]

Phi = modALL_mix$phis

method_se <- summary_mix$coef_table[2,2]

out_parm(parm_beta,Phi, method_se, "Time 1 ROC, GLMM")

-> glmm_beta_phi_1

#Test for time = time2

parm_beta <- modALL_mix$coefficients[1] + modALL_mix$coefficients[3]

86



Phi = modALL_mix$phis

method_se <- summary_mix$coef_table[3,2]

out_parm(parm_beta,Phi, method_se, "Time 2 ROC, GLMM")

-> glmm_beta_phi_2

#Test for time = time3

parm_beta <- modALL_mix$coefficients[1] + modALL_mix$coefficients[4]

Phi = modALL_mix$phis

method_se <- summary_mix$coef_table[4,2]

out_parm(parm_beta,Phi, method_se, "Time 3 ROC, GLMM")

-> glmm_beta_phi_3

#Test for time = time4

parm_beta <- modALL_mix$coefficients[1] + modALL_mix$coefficients[5]

Phi = modALL_mix$phis

method_se <- summary_mix$coef_table[5,2]

out_parm(parm_beta,Phi, method_se, "Time 4 ROC, GLMM")

-> glmm_beta_phi_4

gee_results <- list("Time 0" = gee_beta_phi_0,

"Time 1" = gee_beta_phi_1,

"Time 2" = gee_beta_phi_2,

"Time 3" = gee_beta_phi_3,

"Time 4" = gee_beta_phi_4)

glmm_results <- list("Time 0" = glmm_beta_phi_0,

"Time 1" = glmm_beta_phi_1,

"Time 2" = glmm_beta_phi_2,
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"Time 3" = glmm_beta_phi_3,

"Time 4" = glmm_beta_phi_4)

list("GEE Results" = gee_results, "GLMM Results" = glmm_results)

}
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