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In baseball, home plate umpires’ perceptual-cognitive skills are tested with

each pitch as they are required to judge, with accuracy, whether the ball passed

through the imaginary region above home plate known as the strike zone. Home

plate umpires must visually track the flight of a pitched ball as it leaves the pitcher’s

hand and travels over the home plate region in order to accurately determine whether

a pitch should be called a strike or a ball.

This study applied literature related to judgment and decision making among

expert sport performers to the professional baseball umpire population. Using gener-

alized linear mixed modeling with secondary data generated by the PITCHf/x pitch

tracking system, umpires’ ball–strike decisions were measured over the course of the

2013 season. Emphasis was placed on accounting for the e↵ects of pitch location

and ball–strike count on umpires’ accuracy in making ball–strike decisions. During

the 2013 MLB season, umpires were responsible for deciding the outcome of approx-

imately 149 pitches per game on average. Results indicate umpire accuracy rates

range from 90% to 95%.



To test for the e↵ects of pitch location and ball–strike count on the probability

of umpires’ accuracy in judging pitch outcomes, a multilevel model with interactions

between fixed and random e↵ects was estimated. Results indicate predicted probabil-

ities of accurate umpire decisions for pitches located in the inner region of the strike

zone appear to be noticeably lower compared to predicted probabilities of accurate

umpire decisions for pitches located in the middle or outer regions. Specifically, pitch-

ers appear to be at a distinct disadvantage, compared to when the ball–strike count

is either neutral or favors the batter.
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CHAPTER ONE

Introduction

One of the fundamental responsibilities of a Major League Baseball (MLB)

home plate umpire is to judge the outcome of all pitches delivered during a game in

which the batter does not swing or contact. For home plate umpires, the visual and

cognitive process involved in accurately judging pitch outcomes are similar to those

utilized by batters. Home plate umpires must visually track the flight of a pitched

ball as it leaves the pitcher’s hand and travels over the home plate region in order to

accurately determine whether a pitch should be called a strike or a ball. Umpires

must also contend with pitchers’ tactics in which pitches are routinely delivered

with unpredictable movements, at varying speeds, and to areas that may be di�cult

for batters to reach.

Although researchers from several disciplines have investigated

performance-related variables among sports o�cials, a considerable portion of the

evidence focuses on competitive team participants and individual performers (see

Krane & Williams, 2010). Consequently, there exists a noticeable lack of

comprehensive application to the domain of sports o�ciating, even less to the

baseball umpire population (e.g., Bar-Eli, Plessner, & Raab, 2011; Ste-Marie, 2003).

Therefore, the purpose of the current study is to answer a set of research

questions using data generated by the PITCH/fx (Sportvision, Inc., 2013) pitch

tracking system to measure the association of pitch- and umpire-related factors on

the outcomes of umpires’ ball–strike judgment and decision making patterns during

the course of an entire Major League Baseball (MLB) season. With the advent of

real-time pitch tracking technology in MLB, researchers can now measure with
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considerable accuracy a variety of game- and situation-context variables in more

empirical, less invasive forms.

First, I introduce the literature on domain-specific perceptual-cognitive skills

among expert performers as applied to the professional baseball umpire population.

Literature examining domain-specific perceptual-cognitive skills among sport

performers is plentiful (see Mann, Williams, Ward, & Janelle, 2007; Williams, Ward,

& Smeeton, 2004; Williams, Ford, Eccles, & Ward, 2011; Williams & Ericsson, 2005

for a review). Conversely, research applied to sport o�cials—particularly baseball

umpires–is lacking, possibly because gaining access to expert-level sport o�cials is

di�cult. Since sport-performance research is often conducted in laboratory settings,

findings may lack ecological validity. For example, using a two-dimensional display

to test for the e↵ects of visual search patterns baseball batters utilize while tracking

the flight of a pitched ball may limit researchers’ full understanding of the visual

search process. Similarly, Shim, Chow, Carlton & Chae (2005) demonstrated

limitations in experimental methods typically used in laboratory settings when

measuring perceptual-cognitive skills associated with patterns of judgment and

decision making among sport performers. Instead, experiments and observations in

the field may be more reliable.

In Chapter Two, particular attention is paid to the ways in which superior

performance is demonstrated and characterized among expert sport

performers–especially sport judges, referees, and game o�cials. Each section

includes a cumulative overview of relevant research literature related to sport

performance followed by a thorough application to the sport o�cial population.

Since the particular focus of this study is devoted to a professional baseball umpire

population, all research related to this sample is addressed, and when not available,

convincing conclusions are be drawn from other sporting domains as necessary. In

Chapter Three, I outline the research questions and hypotheses of the study as well
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as provide information on the data analyzed as well an overview of procedures used

to analyze multilevel models with a categorical repeated measures outcome. In

Chapter Four, I present descriptive statistics and model summary results as well as

principle findings. In Chapter Five I discuss the implications of the results by

making connections to the current literature related to expertise in judgment and

decision making among expert sport performers.
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CHAPTER TWO

Literature Review

Expertise

The genesis of the field of expertise studies can be traced back to three

domains during the early to mid-twentieth century. Artificial intelligence,

psychology, and educational theory each played a pivotal role in the field’s

development (Feltovich, Prietula, & Ericsson, 2006). Artificial intelligence (AI)

addressed issues of human intelligence and thought by computation and the use of

computers and computer programs as formal models of human cognition (Ernst &

Newell, 1969; Feltovich et al., 2006; Newell & Simon, 1956; Samuel, 1959).

Consequently, current theories of cognitive science and the information-processing

model originated through early AI work (Feltovich et al., 2006). During the reign of

behaviorism in the early part of the twentieth century, alternatives to the pervasive

stimulus-response model began to appear with increasing regularity. Cognitive

psychology was one such alternative, which was gaining momentum among

researchers interested in exploring human information processing and problem

solving (Buss, 2012). Work related to cognitive psychology during the time by de

Groot (1965) and Chase and Simon (1973) stimulated the work of other researchers

to explore similar constructs, which necessarily led to the formation of a field of

expertise studies (Hodges, Huys, & Starkes, 2007).

Like psychology at the time, educational theory and practice were primarily

informed by traditional behavioristic models (Feltovich et al., 2006). The use of

teaching machines and programmed learning, which were designed to reinforce and

stabilize learning connections as well as identify errors, were extensively utilized in

educational settings. The programmed learning methodology bears a striking
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resemblance to a well-defined concept in expertise studies known as deliberate

practice (see Ericsson, 2003, 2006a for a review). The purpose of deliberate practice,

and programmed learning for that matter, is to provide clear goal-directed

objectives, repeated practice, and meaningful feedback. A detailed definition and

explanation of the role deliberate practice plays in expertise is provided in a later

section of this chapter.

Research related to the scientific study of expertise and expert performance

has become increasingly robust (Ericsson, 2006a). De Groot (1965), and Chase and

Simon (1973) are generally credited with pioneering the field with their respective

investigations of recall, pattern recognition, and performance among master chess

players (Ericsson, 2003; Feltovich, Prietula, & Ericsson, 2006; Ste-Marie, 2003). De

Groot (1965) examined concurrent verbalizations during move selection among

highly skilled and lesser skilled players. His results demonstrated a noticeable

di↵erence between players’ performance on a perceptual and short-term memory

task. Master chess players outperformed novice players in reconstructing a game

board arrangement after viewing the original position for only five seconds.

However, when the game board was randomly rearranged, master and novice players

performed similarly poor (Chase & Simon, 1973). This finding indicates an

important distinction between experts and novices: Experts must be more adept at

observing and perceiving familiar patterns or meaningful constellations, which are

subsequently easier and more quickly retrievable (de Groot, 1965).

Chase and Simon (1973) attempted to isolate and characterize the perceptual

structures identified by de Groot (1965). In general, findings from Chase and

Simon’s (1973) memory and perception tasks reveal insights into the sophisticated

and cognitively complex memory and chunking patterns utilized by experts

(Ste-Marie, 2003). Moreover, the most distinguishing factor consistently found

among experts, particularly in task selection or recall paradigms, was a pattern of
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systematic organization of accumulated domain-specific knowledge (Ackerman &

Beier, 2006; Chi, 2006; Ericsson, 2006c; Horn & Masunaga, 2006). Compared to

non-experts, this knowledge, combined with experience, allows for greater speed and

accuracy in pattern recognition and recall tasks (Abernethy & Russell, 1987).

A substantial number of studies related to expertise have concentrated on the

bifurcation of expert-novice di↵erences in performance and problem solving (see

Hodges et al, 2007). A number of salient, generalizable characteristics have been

found to exist among experts across multiple domains (Ericsson, 2006a). For

example, experts consistently demonstrate e�ciency in cognitive e↵ort during

domain-specific knowledge retrieval, skill execution becomes automatized (Janelle &

Hillman, 2003), and pattern detection and recognition is achieved with greater

speed and accuracy compared to non-experts (Ste-Marie, 2003). Likewise, during

problem solving tasks, experts demonstrate ability to consistently and reliably

generate strategies and solutions with greater speed and accuracy than novices, even

under time constraints (Chase et al., 1973; Ericsson, 2003). In sport performance

settings, experts demonstrate significant sensitivity to anticipatory cues (Williams,

Ward, & Smeeton, 2004), advanced knowledge of situational probabilities

(Abernethy, Maxwell, Masters, Van Der Kamp, & Jackson, 2007), and e�cient

visual search strategies (Abernethy, 1987a, 1987b).

Despite the above ways in which experts excel, they also are susceptible to

errors (Chi, 2006). For example, as was demonstrated by de Groot and Chase and

Simon, as well as others since (e.g., Mann, Williams, Ward, & Janelle, 2007), the

knowledge and skills experts demonstrate are limited significantly to the domain in

which they excel. Taken outside of his or her specific domain, experts appear to

perform on average as well as novices. This finding has been repeatedly

demonstrated in numerous studies evaluating domain-specific representative tasks

(Ericsson, 2006b). Likewise, during pattern detection and recognition tasks, for

6



example, experts are vulnerable to bias and functional fixedness whereby thinking

becomes routinized and inflexible, thus inhibiting novel problem solving skills

(Kotovsky, 2003). Bias in expert judgment and decision-making is explored in a

later section of this chapter.

That said, experts do tend to possess more domain-related knowledge (e.g.,

Williams & Ericsson, 2005), demonstrate superior speed in judgment and

decision-making (e.g., Williams & Ward, 2007), and are often more experienced

than novice performers (e.g., Abernethy, 1989). Less common are studies related to

the comprehensive investigation of relevant knowledge structures and cognitive skills

exhibited by expert performers (Krane & Williams, 2010). Studies of this kind are

believed to be valuable and necessary in order to fully capture the dynamics of

expertise as well as further develop current theoretical and methodological

understanding of expertise and expert performers (Abernethy, Farrow, & Berry,

2003).

Since the early work of de Groot and Chase and Simon, e↵orts have been

made to explore the nature of expertise and the dynamics of expert performance

from a variety of domain-related perspectives, including music and dance (e.g.,

Ericsson, 2003), the physical and biological sciences (e.g., Ericsson, 2003), sport

(e.g., Hodges, Huys, & Starkes, 2007), and more recently, sport judges, referees, and

game o�cials (e.g., Ghasemi, Momeni, Jafarzadehpur, Rezaee, & Taheri, 2011;

Helsen & Bultynck, 2003; Ste-Marie, 2003; Ward & Williams, 2003).

Expertise in Sport

Expertise in sport has been defined as the possession of specialist knowledge

and skills, which are necessarily accompanied by the accumulation of extensive

hours of intentional practice and meaningful experience (Ericsson, 2006a; Janelle &

Hillman, 2003; Moran, 2009). An important qualifier in defining and characterizing
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expertise in this regard is the presence of the ability to consistently reproduce

superior performance within a particular domain over an extended period of time

(Abernethy, 1989; Starkes, 1993). Janelle and Hillman (2003) provide three

generalizable areas representative of expertise in sport. Technical expertise involves

sensory motor coordination and the eventual automatization of refined and e�cient

movement patterns. Cognitive expertise involves tactical and strategic knowledge as

well as perceptual and decision-making skills. Emotional expertise involves the

ability to self-regulate and monitor levels of arousal and anxiety, for example.

More specifically, research literature related to expertise among sport

performers consistently identifies a number of representative complex cognitive skills

such as pattern recognition (Abernethy, 1991), superior memory and recall ability

(Chase & Simon, 1973) as well as advance cue anticipation and visual search

behavior (Ho↵man & Lintern, 2006). These skills have been widely demonstrated

across sports as diverse as baseball (Smith & Christensen, 1995), basketball

(MacMahon & Plessner, 2008), golf (Boucher & Crews, 1987; Short et al., 2002),

soccer (Ward & Williams, 2003), and tennis (McPherson & Kernodle, 2003).

Measurement and Representation of Expertise

It has been widely demonstrated that expert sport performers, compared to

novice or less experienced performers, consistently achieve superior performance

when factors such as perceptual and cognitive expertise (Mann, Williams, Ward, &

Janelle, 2007; Williams, Ward, & Smeeton, 2004;), visual search and selective

attention strategies (Abernethy, 1991; Davids & Williams, 1998; Takeuchi &

Inomata, 2009), and anticipation and decision-making (Abernethy, 1989; Houlston

& Lowes, 1993; Williams & Ward, 2007; Tenenbaum, Sar-El, & Bar-Eli, 2000;

Houlston & Lowes, 1993) are empirically assessed. Following is a brief review of
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methodologies, measures, and other materials used in previous work evaluating

domain-specific expertise.

In a recent review and evaluation of research in expert sport performance,

Abernethy (2008) classifies several forms of expression, which are key to the expert’s

performance advantage. First, expert sport performers have consistently

demonstrated superiority in pattern recognition and recall. The use of interactive

video training or scenario simulation and still frame images from game sequences

have most often been used in order to examine pattern recognition and recall. For

example, Fadde (2006) used interactive video to measure perceptual

decision-making in baseball. Others have used two-dimensional point-light displays

to measure ball location prediction in tennis (Williams & Ward, 2007), still frame

images from soccer match game film to measure players’ knowledge of situational

probabilities (Ward, Williams & Ericsson, 2003), information recognition

implemented by squash players to predict forth-coming action (Abernethy, 1989;

Abernethy, 1990), and infraction detection among basketball referees (MacMahon,

Starkes, & Deakin, 2007).

Expert sport performers have also demonstrated abilities to selectively focus

their attention, multi-task, and automatize output motor responses (e.g.,

Abernethy, 2008; Davids & Williams, 1998). In order to understand the dynamics of

attention control, researchers would assign participants tasks involving a primary

motor response such as that which is typically performed in their respective domain

coupled with a secondary task designed to compete for attentional demands (e.g.,

Abernethy, 2008). Expert performers demonstrate an ability to automatize relevant

movement and motor responses after prolonged experience and practice, freeing

attention from a primary task in order to allocate attention to concurrent demands

(Abernethy, 2001).
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Measures of visual search strategies have been widely implemented in sport

expertise literature, including eye movement and gaze fixation to measure timing

and decision making in baseball batters (Abernethy, 2008; Paull & Glencross, 1997;

Takeuchi & Inomata, 2009), proficiency in anticipation of ball landing positions

among expert and non-expert wicketkeepers in cricket (Houlston & Lowes, 1993),

selective attention in soccer (Davids & Williams, 1998), as well as other fast ball

sports (Abernethy, 1991). Tenenbaum, Sar-El, and Bar-Eli (2000) employed similar

methodology when examining developmental perspectives of ball location

anticipation among tennis players in experimental groups ranging in ages from 8–11,

11–14, 14–18, to 18 and up. Older, more experienced players demonstrated greater

ability to anticipate ball location through the use of an opponent’s postural

orientation such as racquet angle and other body parts prior to the ball-racquet

contact. Other studies have demonstrated age e↵ects in characteristics of expertise.

For example, perceptual-cognitive skills and visual search behavior are typically

developed over time, will peak, and subsequently decline with age (Abernethy, 1988;

Bradbury, 2009; Krampe & Charness, 2006).

Specifically, a number of representative skills among expert sport performers

have been assessed, leading to the e↵ective representation of domain-specific

expertise (Williams, Ward, & Smeeton, 2004). For example, Paull and Glencross

(1997) examined what visual cue information elite baseball batters use and when

such information is recognized. In the first experiment, expert and novice batters

were presented with an interactive video simulation of neutral and strategic pitches

delivered by an elite baseball pitcher. The experiment had two components. In the

first component, batters were required to demonstrate swing-timing skill while

predicting the pitch’s location within the strike zone where the batter believed the

ball would cross during pitch delivery. Bats were fitted with a strain gauge, which,

when depressed, would record time of swing decision as well as pause further video
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playback. Expert batters were not only able to decide the pitch’s trajectory through

the strike zone earlier in ball flight, but were also significantly more accurate in

their predictions than were the novice batters.

In the second component, batters were presented with a comprehensive game

scenario card depicting a random game situation, including pitch count, number of

outs, bases occupied, if any, game score, inning, and the types and locations of

pitches previously delivered. Batters were then asked to predict the most likely pitch

type and location given the game scenario. Again, expert batters demonstrated

greater speed and accuracy in predicting both pitch type and location.

These findings support Abernethy’s (2008) classifications of sport expertise

related the role domain-specific knowledge plays in perceptual-cognitive skills in

sport. Similarly, experts who recorded earlier decision times in pitch trajectory and

location observation are believed to demonstrate an ability to form alternative

decision schema on which they could rely if preparatory decisions are discovered to

be flawed (Paull & Glencross, 1997). In short, the ability to recognize cue

information faster allows expert performers more time to adapt output responses if

necessary.

As biotechnology has become cost e↵ective and more easily accessed,

researchers are incorporating these methods in evaluations of expertise in sport

(Fadde, 2006). Moran (1996) provides a thorough review of attentional measures

through the use of psychophysiological methods such as heart rate monitoring and

electroencephalogram technology; dual-task, self-report, and concurrent

verbalizations; as well as psychometrically based tests and inventories of attention

and other psychological skills. The question then of how performers acquire

specialized, domain-specific expertise is addressed in the following section.
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Acquisition of Expertise

The process of acquiring expertise in sport has been widely examined from

the perspective of a variety of domains. Expertise is developed gradually and

purposefully over the course of one’s life (de Groot, 1946; Chase & Simon, 1973;

Csikszentmihalyi, 2010; Ericsson, 2003). Ericsson (2003) conceptualizes the

acquisition of expert performance as a form of problem solving. Throughout

development, performers are faced with progressively more challenging problems

that require a number of knowledge, skills, and abilities to solve. In order to gain a

complete understanding of the characteristics and acquisition of expert

performance, evaluation should necessarily take place within the specific domain

where performance regularly occurs, involve tasks that are representative of superior

performance within the domain, and should likewise be reproducible (Ericsson,

2006b). French and McPherson (1999) argue that the initial acquisition of

perceptual skill in sport begins in conjunction with motor skill development.

Goodale and Milner (1992; 2005) have introduced a growing body of research

proposing a dual-pathway model of visual anticipation. Instead of a single,

utility-like neural mechanism responsible for regulating both perception and action,

Goodale and Miner and subsequent others (e.g., Abernethy & Mann, 2008; Mann,

Abernethy, & Farrow, 2010; Mann, Ho, De Souza, Watson, & Taylor, 2007; Milner

& Goodale, 2008; Shim et al., 2005; Van der Kamp, Rivas, Van Doorn, &

Savelsbergh, 2008) have found considerable evidence for the existence of separate

but interacting cortical pathways. According to Goodale and Milner (2005) the role

of perceptual representations is to help the organism arrive at a decision to act in a

particular way. This division of labor (vision-for-perception and vision-for-action) is

observed between the ventral visual pathway and the dorsal visual pathway located

in the occipito-temporal cortex and posterior parietal cortex of the human brain,

respectively (Goodale & Westwood, 2004).
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Although the ventral and dorsal streams process information about the

structure of objects and about their location in the environment, they appear to

transform that information for output di↵erently. For example, it is the ventral

stream, or vision-for-perception system, which provides rich and detailed contextual

representations required for cognitive actions such as recognition, identification, and

planning (Goodale & Westwood, 2004). The dorsal stream, or vision-for-action

system, on the other hand calculates absolute metrics of target objects essential for

programming and executing an action response.

Role of experience. The demands of expertise necessitate a period of

preparation during which an individual devotes years of training and deliberate

practice toward mastery of a domain (Ericsson, 2006; Weisberg, 2006). Extensive

domain-specific experience is necessary in order for performers to achieve expert

status (Chase & Simon, 1973; Ericsson, 2006). With the exception of some

prodigious children, expertise most often occurs in adulthood (Ericsson, 2006a). In

a study of the e↵ects of aging on peak performance in professional baseball,

Bradbury (2009) discovered that players’ respective skill- and task-demands were

the deciding factor in determining age at peak performance. For example, age at

peak performance among pitchers who were considered power pitchers and who

accumulated a large number of strikeouts per season was 23. Age at peak

performance among pitchers who demonstrated perhaps better control over pitch

location and who subsequently allowed opponents to score fewer runs on average

was 29.

For many performers it takes thousands of hours of accumulated experience

in order to reach expert levels (Bryan & Harter, 1899; Chase & Simon, 1963;

Ericsson, 2003; Ericsson, 2006a). It should be noted, however, that cumulative

domain-related experience acquired by proxy is not by itself su�cient for the
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attainment of expertise (Ericsson, 2006b). This view supports literature citing a

developmental trajectory from novice to expert status over the course of about ten

years (e.g., Chase & Simon, 1973; Sternberg, 1996). More than experience,

deliberate, methodological, and e�cient practice has proven to be the best predictor

of expertise (Ericsson, 2006a).

Deliberate practice is a highly structured process requiring the completion of

sequentially prescribed tasks, which are initially beyond the performers ability, but

can be mastered relatively quickly through repetition, monitored guidance, and

meaningful feedback (Ericsson, 2003; Ericsson, 2006). For example, MacMahon,

Helsen, Starkes, and Weston (2007) examined decision-making skills and

performance improvement of soccer referees through the use of deliberate practice,

finding that anticipatory cues, pattern recognition, and knowledge of situational

probabilities increased among referees who participated in focused sessions of

deliberate practice. Their findings reinforce the importance of regular and

informative feedback from a coach or training figure during practice sessions.

Among the referees, the mean number of years required to achieve expert status

within the international soccer refereeing organization was 16 years; well above the

traditional ten-year rule proposed by Csikszentmihalyi (1996). MacMahon et al.

(2007), attribute the prolonged career trajectory to the lack of formal deliberate

practice. These findings illustrate the influence deliberate practice plays compared

to experience.

Similarly, the use of imagery and the mental rehearsal of a performance or

task-related skill have been shown to be an e↵ective method of deliberate practice

(Nordin, Cumming, Vincent, & McGrory, 2006; Vealy & Greenleaf, 2010). Imagery

and mental performance rehearsal are methods often employed by coaches and sport

psychologists to train athletes or performers in sustaining prolonged concentration

(Martin & Hall, 1995; Short et al., 2002). The assumption is that using one’s senses
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to create or recreate an experience in the mind helps the brain interpret the imagery

as identical to the actual stimulus (Jeannerod, 1994; Vealy & Greenleaf, 2010;

Weinberg, 2008).

On the contrary, simply performing repetitions of an already acquired skill

serves only to maintain proficiency (Cote & Fraser-Thomas, 2008). In this regard,

deliberate practice is most e↵ective in the acquisition and development of expertise

as it allows for concentration on the continual adaptation, modification, and

implementation of performance-related goals (Ericsson, 2006a). Furthermore,

deliberate practice allows for the modification of the complex cognitive mechanisms,

which mediate and allow for increases in performance level.

Role of cognitive and associative skills. Ericsson (2003) proposed a

correlational model of experience and performance. The everyday skills people have

acquired throughout the course of their lives serve as a functional foundation for the

development of other skills. Likewise, they are relatively easily acquired and quickly

pass through an associative phase toward autonomy. Once individuals pass through

the cognitive and associative phases, performance can be generated automatically.

As new skills are eventually acquired, already existing skills are merely

changed, transformed, or modified in a way that will mediate the new demands.

Ericsson (2003) described the process of skill acquisition and performance as an

ever-changing series of cognitive mechanisms, which the individual regulates and

controls in order to facilitate increased skill level. Eventually, skills, which have

been previously acquired will become automatic and therefore require little to no

cognitive regulation during their execution. Several investigators have discussed the

potential detriment that automatization of skill execution can have on performance

development (Abernethy, 2008). During this phase, individuals adopt a particular

method or skill representation to which they become committed (Ericsson, 2003).
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Conversely, expert performers have managed to successfully avoid arrested

development, or the plateau e↵ect, and develop increasingly complex cognitive

representations in order to sustain expert performance within their domain. The

process of continual skill acquisition and performance improvement requires

conscious, deliberate action on the part of the performer (Ericsson, 2006).

Intrapersonal performance evaluation and guided practice with the help of an

objective coach or trainer are essential to stimulating growth in skill development

and performance (Ericsson, 2003). A review of psychological characteristics expert

sport performers demonstrate will follow.

Perceptual-Cognitive Skills

Thus far, a case has been made for the relative importance that experience

and goal-directed, concentrated practice play in the representation of expertise in

sport performance. Similarly, a number of perceptual-cognitive skills and complex

knowledge structures have been investigated and consistently associated with sport

expertise. Following is a comprehensive review of research literature revealing ways

in which perceptual-cognitive skills such as visual search behavior, pattern

recognition, advance cue utilization, and concentration and attention are

characterized in expert sport performance. In addition, a similar review of general

knowledge structures such as declarative knowledge, procedural knowledge, and

knowledge of situational probabilities will follow.

Perceptual-cognitive skill refers to the ability to recognize and adopt

information within a particular context, which can then be integrated with existing

knowledge to form and execute a response (Mann, Williams, Ward, & Janelle,

2007). Anticipation, perception, and decision-making are essential to the success of

competitive athletes. Research related to these topics as well as a variety of relevant

others is robust (see Mann, Williams, Ward, & Janelle, 2007; Williams, Ward, &
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Smeeton, 2004; Williams, Ford, Eccles, & Ward, 2011; Williams & Ericsson, 2005

for a review). Furthermore, a significant portion of prior research studies have been

devoted to examining individual di↵erences between and among athletes who are

considered experts and those who are considered novices (e.g., Ericsson, 2006;

Moran, 2009; Paull & Glencross, 1997). Expertise in sport has been defined as the

possession of specialist knowledge and skills, which are necessarily accompanied by

the accumulation of extensive hours of intentional practice and meaningful

experience (Ericsson, 2006; Moran, 2009).

In recent past, researchers have begun to regard perceptual and cognitive

di↵erences among elite athletes as a more precise discriminator of skill level and

successful performance—regardless of their physiological or muscular features

(Abernethy, Maxwell, Masters, van der Kamp, & Jackson, 2007; Ghasemi, Momeni,

Jafarzadehpur, Rezaee, & Taheri, 2011; Moran, 2009; Williams & Ward, 2007;

Williams, Ward, & Smeeton, 2004). This type of research is important for sport

psychologists, coaches, and other athletic personnel responsible for improving the

performance of competitive athletes. Conversely, very little research exists related

to the perceptual and cognitive skills of o�cials in fast-ball sports such as baseball

or soccer, to name a few (Ghasemi, et al., 2011).

Visual Search Behavior

Several researchers have thoroughly investigated the role visual skills play in

certain aspects of fast-ball sports like baseball batting (e.g., Paull & Glencross,

1997; Takeuchi & Inomata, 2009). In the case of baseball, even the casual fan is

familiar with the speed at which pitches are thrown and the limited amount of time

a batter has to react. Therefore, it would seem natural to assume that the scientific

study of visual skills would yield the most meaningful answers regarding how it is

possible for a player to hit a baseball traveling upwards of 90 miles per hour with a
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bat no wider than 2.75 inches in diameter (Adair, 2002). Moreover, visual skills are

perhaps better understood in terms of visual search patterns. Eye movements

among expert performers have been demonstrated to be controlled by a search

strategy, allowing the performer to use time more e�ciently while analyzing the

display (Williams, Davids, & Williams, 1999). These strategies include procedural

knowledge, advance cue utilization, pattern recall and recognition, and knowledge of

situational probabilities (Ghasemi, et al., 2011; Paull, et al., 1997; Takeuchi, et al.,

2009; Williams, et al., 2004; Williams, et al., 2009).

As Van der Kamp et al. (2008) noted, there exists a pronounced limitation in

the current body of visual anticipation research, which overlooks the contribution of

the dorsal stream. Many of the aforementioned experiments have examined

characteristics related to only the ventral stream. Shim et al. (2005), however,

stressed the importance of a perception-action coupling response, and thus the

dorsal stream, whereby highly skilled tennis players were able to obtain significantly

more information from live-hitter conditions compared to projected visual

conditions. Furthermore, much of the dual-pathway literature has focused on the

visual anticipation among sport performers who, for example, in some fast-ball

sports may be required to intercept a ball in a time-constrained context as in a

return in tennis or swing in baseball. More work is needed in this area within the

context of sport o�ciating–particularly professional baseball umpires who are

responsible to judge and evaluate the type and precise location of a pitched ball, but

are not constrained by time, as is the case for a batter.

Advance Cue Utilization

Advance cue utilization is the process of recognizing relevant domain-specific

information within a given context for use in the formation of a response to

forthcoming action. Furthermore, this skill is essential to expert performance within
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fast-ball sports as the pace of play is often enhanced and dictates the necessity for

decisions to be made in advance (Williams, Ward, & Smeeton, 2004). Studies have

incorporated visual occlusion techniques as well as point-light displays of an

opponent’s postural orientation in order to evaluate advance cue usage among

expert sport performers (Williams & Ericsson, 2005). During visual occlusion

procedures, participants are often presented with a filmed recording of a relevant,

domain-specific event. At specified times during the presentation, researchers will

remove certain visual patterns of body parts or occlude the scene entirely. The

participant’s task then is to anticipate forthcoming action at each stage of occlusion.

Compared to novices, experts have consistently demonstrated superiority in

predicting forthcoming action more accurately and with greater speed (Williams et

al., 2005).

Declarative and Procedural Knowledge

Paull and Glencross (1997) discuss the di↵erences between declarative

knowledge and procedural knowledge by applying adaptive control of thought theory

to perception and decision making in baseball. From the results they discovered that

expert batters are able to string together a group of separate task-related items to

form an e�cient output. Furthermore, over time expert batters’ units of knowledge

tend to become sophisticatedly organized in terms of particular sport-specific

domains. For example, as opposed to the novice baseball batter who tends to rely

strictly upon declarative knowledge—or factual, concrete awareness involving the

rudimentary construction of the essential components necessary for a reaction–the

expert “. . . establishes greater numbers of links between related knowledge units to

provide for reduced time to activate a node into working memory” (Paull, et al.,

1997, p. 37). In other words, procedural knowledge suggests that the more an

expert batter sees or experiences the rotation of a pitcher’s breaking-ball, for
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example, the less time he needs to process what his reaction should be and instead

concentrate on deciding if and when to swing. This is what Paull and Glencross

(1997) call anticipatory cue utilization or anticipatory processing.

So in the case of an expert baseball umpire, instead of passively waiting for a

possible play to ensue, he can anticipate any number of situations, which might

unfold given the particular game situation or scenario regardless of where they may

occur. This act of anticipatory processing thus reduces his reaction time while

allowing him more time to consider how to obtain the proper distance and angle

from which to make the call depending on the situational outcome.

Knowledge of Situational Probabilities

Knowledge of situational probabilities are essential to the success of a

baseball umpire. Many of the decisions an umpire makes during the course of a

game require flash bulb judgment. For example, if a speedy batter hits a slow

ground ball toward the shortstop’s position requiring him to charge the ball rather

than wait for it to arrive, the ensuing play at first base is likely to be close, such

that the first base umpire cannot determine which arrived first, the runner or the

ball. In this case, often times the umpire is required to listen for the distinct sounds

of the ball popping the leather of the first baseman’s mitt and the thud of the

runner’s foot landing on top of first base. In this case, an expert umpire’s knowledge

of situational probabilities would indicate the call is likely to be a close one, and as

the action unfolds, he can then begin to establish accurate expectations of likely

events (Williams, et al., 2004).

Paull and Glencross (1997) argue that expert perception is a consequence of

cognitive and knowledge structures instead of visual acuity alone. For example, an

umpire’s continuous accumulation of knowledge regarding a variety of visual cues

allows for the eventual habituation of unnecessary stimuli such as crowd noise or

20



movement of players in the umpire’s periphery. Secondly, procedural knowledge

allows for, even facilitates, the categorization of a potential outcome. In other

words, when a batter or umpire recognizes certain visual cues there is already an

output motor response available. Of course this can fail temporarily and cause the

umpire to err in his judgment.

Finally, a cognitive or conceptual network allows for the priming of

knowledge, which can allow for anticipation of forthcoming action. For example, an

umpire can anticipate a number of likely sequences by quickly surveying the

defense’s alignment, the posturing of base runners, anticipate a pitcher’s type of

pitch and subsequent location, or even a team’s o↵ensive strategy for sending base

runners to steal the next base while the batter sacrifices a bunt. Although neither a

batter nor an umpire can be consistently successful without a certain level of visual

acumen, it is their ability to store and build elaborate knowledge structures

pertaining to a variety of outcomes that separate them from novices.

Judgment and Decision Making in Sport Performers and O�cials

Accurately judging relevant visual and perceptual information is a primary

task sport performers are required to complete during competition (Bar-Eli et al.,

2011). Likewise, transforming judgments of visual and perceptual information into

an e↵ective and appropriate decision is also essential to sport performance with

consequences being either success or failure (Bar-Eli et al., 2011).

Judgment involves di↵erentiation between objects or stimuli in an

environment with particular attention paid to the characteristics of each (Bar-Eli et

al., 2011). Furthermore, judgments are primarily concerned with the appraisal of

domain-specific information and may not necessarily involve consideration of

subsequent consequences. However, judgments are often connected to decisions,

which carry a spectrum of consequences. A decision involves commitment to a
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particular action with consequences intended to be satisfying for specified

individuals, such as players, coaches, or teams (Yates & Tschirhart, 2006).

Although both judgment and decision-making are often used interchangeably

to describe the same human process (e.g., Ross, Shafer, & Klein, 2006), current

research distinguishes between the two. Judgments are believed to involve a process

of evaluating and inferring from information readily available in order to be used in

making a decision (Bar-Eli et al., 2011). Furthermore, a judgment is considered

separate from the consequences of most decisions. Conversely, decisions involve a

careful, calculated choice with frequently crucial consequences. For example, the

primary responsibility of home plate umpires is to judge, with accuracy, the

outcome of pitches. However, in certain situations, a home plate umpire may be

required to evaluate, or judge, a combination of actions.

For example, a batter, in his attempt to hit the ball, may be struck in the

hand by the pitch, causing the ball to enter the field of play. In this situation, the

play is to be ruled “dead” as a result of the ball contacting the batter. However,

since the batter swung at the pitch, the result would be a strike awarded to the

pitcher. By viewing all action during this play, a home plate umpire must judge: (a)

whether the pitch passed through the strike zone, (b) whether the batter’s swing

was deemed to be a legal attempt to make contact with the ball, and (c) whether

the pitch contacted either the player or the bat. Thus, within the judgment and

decision making framework, a home plate umpire compiles all information

accumulated during the judgment phase in order to make a proper decision as to

the play’s ruling.

A number of studies have been conducted investigating judgment and

decision-making in sport (e.g., Ford, Gallagher, Lacy, Bridwell, & Goodwin, 1999;

MacMahon, Helsen, Starkes, & Weston, 2007; Newell, 1974; Paull & Glencross,

1997). Because the application of judgment and decision-making expertise to the
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sport domain has occurred relatively recently, much of the current understanding is

gleaned from studies related to perception, knowledge, and decisions within a

particular sport domain (Bar-Eli et al., 2011). Therefore, it seems logical to

incorporate with other sections findings related to the judgment and decision

making of sport performers. Theories and current perspectives of judgment and

decision-making are provided in the next section, followed by a review of research on

biased judgment and decision-making in sport.

Bias in Judgment and Decision Making

Sport performers and judges are susceptible to bias in their judgment and

decision-making processes. From an evolutionary perspective, Buss (2012) proposes

a reconceptualization of judgment bias. Instead of adhering to traditional views of

human judgment, which suggest cognition, by its very nature, is rife with

propensities for error, Buss supports a hypothesis that errors and biases are

somewhat rare in the real world and when they occur, are related to frequency

representations and judgment under uncertainty. According to this view, people

remember the number of events occurring after a judgment or decision was made.

In addition, frequency representations allow for an on-going process of updating

long-term memory to accommodate any new information or events encountered.

Similarly, they allow a person to modify and update their cognitive database in

order to preserve memory of the event and its occurrence for future reference. This

perspective o↵ers interesting insight when considering bias in judgment and

decision-making from the perspective of sport judges, referees, and o�cials. In the

case of baseball umpires, each unhit pitch delivered to a batter during a game is, in

essence, a judgment or decision task. According to Buss (2012), if an umpire makes

a decision with some uncertainty in mind, he should either begin a frequency
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representation or add to an already existing one with the goal being avoidance of

any future errors.

Others have investigated the nature of bias in sports o�ciating (e.g., Parsons,

Sulaman, Yates, & Hamermesh, 2011; Rainey & Larsen, 1988; Rainey, Larsen, &

Stephenson, 1989; Rainey, Larsen, Stephenson, & Coursey, 1989). In a study

examining foul calls in college basketball, referees were observed to have called fouls

on the team with the fewest number, suggesting an attempt among referees to

balance team foul di↵erential. Evidence even suggests that baseball umpires will

demonstrate bias toward a defensive team during routine double plays by giving an

infielder the benefit of the doubt when his foot is not in contact with the base while

in possession of the ball (Rainey, Larsen, Stephenson, & Olson, 1993). This is

customarily known as a phantom-tag. Additionally, e↵ects of a pitcher’s reputation

on an umpire’s ball-strike ratio have been observed (Rainey et al., 1989). Some

research suggests that baseball umpires will demonstrate bias in the form of

racial/ethnic preferences (Parsons, Sulaman, Yates, & Hamermesh, 2011). In

addition to a variety of potential biases in judgments and decisions, sport

performers are also susceptible to a variety of other external distractors, which,

when left unmanaged, can have a detrimental e↵ect on performance.

Researchers have also pointed to both perceived and experienced stress

among sports o�cials as variables of distraction (e.g., Abernethy, Maxwell, Masters,

van der Kamp, & Jackson, 2007; Rainey, 1994; Stewart, Ellery, Ellery, & Maher,

2004). Participants in both studies reported experiencing mild to moderate stress

with frequent spikes in high stress. Conversely, given the number of pitches thrown

during a nine inning baseball game, all of which the home plate umpire is expected

to judge correctly, an umpire may become susceptible to various forms of judgment

bias (Larson, et al., 1991; MacMahon & Starkes, 2008).

24



Objective and Subjective Judgment and Decision Making Among Sport O�cials

Sport judges, referees, and other game o�cials are an essential element of

competition and performance in sport. Their task is to objectively judge the

application and enforcement of playing rules, recognize penalties or game

infractions, as well as manage the collective flow and progression of a game or

sporting event (Bar-Eli, Plessner, & Raab, 2011). Ste-Marie (2003) argues that the

characteristics found in expertise studies involving athletes can be extrapolated and

applied to the domain of sport judgment and o�ciating. This is important, as there

are far fewer reviews of the domain-specific expertise demonstrated by sport judges,

referees, and game o�cials.

Knowledge and Enforcement of Playing Rules

Umpires and other sport judges and referees are responsible for maintaining a

comprehensive, working knowledge of the playing rules of their domain. Utz (1989)

likens the rules of baseball to the rules of law as they both require, forbid, and

permit people from behaving in various ways. There are 10 di↵erent rules in the

O�cial Baseball Rules that outline and meticulously describe various divisions of

the game (The O�ce of the Commissioner of Baseball, 2012). Rules one through

five outline the objectives of the game including the regulation parameters of the

playing field, definition of important terms, instruction on regulations related to the

starting and ending of a game, as well as information on the concepts of a ball

which is either in play (i.e., live ball) or not in play (i.e., dead ball) as well as

instruction on how a dead ball should be put back in play.

Rules six through eight specifically address the batter, runner, and pitcher

respectively. Each rule is thoroughly detailed as to what constitutes legal or illegal

action as it relates to a game. Many of the rules and game action are definitive and

often do not require subjective judgment on the part of an umpire. For example,
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when a base runner collides with a fielder who is attempting to make a play on live

ball he is guilty of obstruction and, by rule is called out and any other members of

the o↵ensive team occupying a base are required to return to the base they occupied

at the time of the pitch immediately before the infraction occurred (Rule 7.06[a]).

This could be considered an objective ruling. Little interpretation is necessary in

order to judge the action described.

Other rules require umpires to exercise subjective judgment and incorporate

prior knowledge with game-action interpretation to form an appropriate response.

For example, Rule 6.05(k) describes the parameters of the legal width of a base

runner’s running lane. Umpires are required to subjectively judge any potential

violation of this rule during game-action, which is happening at a very fast pace.

The rule describes that a batter is out when:

In running the last half of the distance from home base to first base,
while the ball is being fielded to first base, he runs outside (to the right of) the
three-foot line, or inside (to the left of) the foul line, and in the umpire’s
judgment in so doing interferes with the fielder taking the throw at first base,
in which case the ball is dead; except that he may run outside (to the right of)
the three-foot line or inside (to the left of) the foul line to avoid a fielder
attempting to field a batted ball;

Rule 6.05(k) Comment: The lines marking the three-foot lane are a part
of that lane and a batter-runner is required to have both feet within the
three-foot lane or on the lines marking the lane. The batter-runner is
permitted to exit the three-foot lane by means of a step, stride, reach or slide
in the immediate vicinity of first base for the sole purpose of touching first
base. (The O�ce of the Commissioner of Baseball, 2012, p. 50)

Rule 9 of the O�cial Baseball Rules (The O�ce of the Commissioner of

Baseball, 2012) is devoted entirely to umpires. In this section of the rulebook, the

overall jurisdiction for the umpiring crew is described and outlines the authority

with which the umpires govern a contest. The rulebook also provides several

amusing, yet practical tips for umpires to keep in mind throughout the course of a

game. For example, Rule 9.05–General Instructions to Umpires is intended to

remind umpires to:
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Keep your eye everlastingly on the ball while it is in play. It is more
vital to know just where a fly ball fell, or a thrown ball finished up, than
whether or not a runner missed a base. Do not call the plays too quickly, or
turn away too fast when a fielder is throwing to complete a double play.
Watch out for dropped balls after you have called a man out. (The O�ce of
the Commissioner of Baseball, 2012, p. 83)

Physical and Quantitative Properties in Professional Baseball

The speed at which professional baseball is played may at times act as an

external distractor for home plate umpires whose job is to make ball-strike decisions

on pitches which can travel upwards from 90 miles per hour. For example, after

reviewing data from the 2011 MLB season, pitchers threw 5,383 fastballs at an

average starting velocity of 93.4 miles per hour. The amount of time it takes a

baseball to travel the 60.5 feet from the pitcher’s mound to the front edge of home

plate is approximately 400 milliseconds (Adair, 2002). The primary task of a home

plate umpire is to visually track the baseball as it leaves the pitcher’s hand and

travels toward home plate. If unhit by the batter, once the ball reaches the catcher’s

glove the umpire must then make a determination as to whether or not the pitch

crossed through the strike zone.

Conversely, the task of a pitcher is to combine a series of pitches ranging in

type and velocity so as to prevent a batter from either predicting which type of

pitch the pitcher will throw, or his ability to accurately time his swing with the

arrival of the pitched ball (Adair, 2002). Generally, professional pitchers use four

types of pitches. The most common is a four-seam fastball, which is designed to

reach maximum velocity while providing the pitcher with the ability to better

control the ball’s trajectory. The two-seam fastball is designed to achieve relatively

identical velocity as the four-seam, but feature slightly less predictability in its

trajectory. Depending on the grip, this pitch from a right-handed pitcher will
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approximately move one to three inches horizontally either toward or away from a

batter depending on his handedness (Adair, 2002).

A curveball travels at significantly slower speeds compared to a fastball. In

addition, the curve ball is designed to approach the batter on a plane similar to a

fastball, however as it reaches home plate it falls downward by up to 14 inches

(Adair, 2002). A changeup is another pitch typically thrown by a pitcher often

called an o↵-speed pitch. The change up is designed to be released from

approximately the same point as a fastball, on approximately the same plane, yet

travel significantly slower than an average fastball. This type of pitch can be

e↵ective when a batter predicts the pitcher will throw him a fastball and is prepared

to time his swing in conjunction with the average velocity. However, because the

changeup travels much slower, the batter, in this case, will likely initiate his swing

too early and therefore miss the ball (Adair, 2002).

When we consider the primary task of home plate umpires, the di�culty in

determining whether a pitched ball traveled through the strike zone should be

apparent. The strike zone is defined as “. . . that area over home plate the upper

limit of which is a horizontal line at the midpoint between the top of the shoulders

and the top of the uniform pants, and the lower level is a line at the hollow beneath

the kneecap. The strike zone shall be determined from the batter’s stance as the

batter is prepared to swing at a pitched ball” (The O�ce of the Commissioner of

Baseball, 2012). From this definition, we can attempt to parameterize both the

edges and upper and lower limits of the strike zone. The width of a regulation-size

home plate is 17 inches (The O�ce of the Commissioner of Baseball, 2012).

Therefore, according to baseball rules, the strike zone is uniform in its width. The

upper and lower limits, however, are less definitive.

Because the upper and lower limits of the strike zone are determined once the

player assumes his stance in the batter’s box and is prepared to swing, we can
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deduce that what constitutes the top and bottom of the strike zone will vary

significantly according to players’ height and stance mechanics. In theory, this

makes di↵erentiating between pitches inside and outside of the strike zone

considerably more complicated for the home plate umpire. Furthermore, an umpire

will observe on average 291 pitches per regulation-length nine-inning game. Of those

291, the umpire is responsible to make the sole decision on the pitch’s location on

approximately 149 of them. Adding to the di�culty in di↵erentiating between

pitches located inside and outside of the strike zone is the fact that the umpire will

typically crouch down before every pitch behind the catcher in a position where he

can view the pitched ball through the area between the batter’s body and the

catcher’s stationary position. In the pre-pitch state, umpires are surrounded by a

myriad of contextual and domain-related information, which can be used to

construct potential sequences of forthcoming action as well as any other

preparations that might need to be made such as positioning behind the catcher.

With the advent of pitch tracking technology in use by MLB in 2007,

academic and amateur researchers are able to quantitatively measure and evaluate

not only the parameters of the professional strike zone, but also the types of pitches

thrown, the subsequent location of the pitch, as well as the umpire’s decision. The

PITCHf/x technology, as it is known, is the proprietary creation of California-based

sports technology company SportVision. A series of camera and video monitoring

systems are installed in all 30 MLB stadiums, which can quantitatively represent,

within 0.5 inches, a number of variables generated with each pitch thrown (Nathan,

2008). Subsequently, MLB makes all of the data generated by the PITCHf/x system

freely available for download from an online XML directory.

Since 2007, a number of reports from baseball and sport analytics websites

have been issued from various individuals who are either employed in the

professional baseball industry or are enthusiasts with the requisite skill and
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technical aptitude to analyze statistical data (e.g., Fast, 2011a, 2011b, 2011c, 2011d;

Gassko, 2007; Goldblatt, 2011; Hale, 2007; Walsh, 2007;). Several reports have

briefly critiqued the parameters of the MLB strike zone as well as the accuracy rates

and tendencies demonstrated by umpires. For example, Fast (2011a) addressed the

topic of individual batter zones based on the variability in the top and bottom of

each player’s strike zone. He reviewed the strike zone as determined by the

frequency of calls made by home plate umpires on a number of batters whose height

represent the upper and lower maximum and minimum respectively. He concluded

that, across all batters, there may be a typical strike zone area from which to

evaluate umpire accuracy.

Similarly, Walsh (2010) analyzed the MLB strike zone given di↵erent

ball-strike counts against the batter. His findings demonstrated that in a three ball

no strike count, umpires are more likely to call a pitch a strike, even when the pitch

is normally outside of the strike zone parameters. Conversely, when a batter is faced

with a zero ball two strike count, an umpire is more likely to call a pitch a ball, even

when the pitch is marginally close to one of the four edges of the strike zone.

According to Walsh (2010), this demonstrates a tendency among umpires to display

bias toward a player when he is theoretically at a disadvantage.

In a review of MLB umpire performance between 2007 and 2010, Goldblatt

(2011) ascribed a variety of traditional baseball statistics to umpires. For example,

the R/9, BB/9, K/9, and the K/BB are all statistics most commonly associated

with pitchers to reflect the number of runs allowed per nine-innings, the number of

walks allowed per nine-innings, the number of strikeouts recorded per nine-innings,

and the ratio of strikeouts to walks, respectively. In the case of MLB umpire

number 20, according to Goldblatt’s calculation, teams scored on average 9 runs per

nine-innings, walked 6 batters per nine-innings, and struck out 13 batters per

nine-innings.
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Rationale for the Current Study

More empirical research is needed in the area of MLB umpire performance

evaluation. As previously noted, an abundance of literature related to the

acquisition of expertise among sport performers and perceptual-cognitive skills

employed by sport performers is available. However, a comparable body of

knowledge related to the baseball umpire population is needed. With the

availability of PITCHf/x data, there has been a recent trend in scholarly

contributions related to the e↵ects of MLB umpires’ ball–strike decisions (e.g.,

Marchi and Albert, 2014; Mills, 2014). Thus, the current study will add to this

growing body of literature by statistically modeling the e↵ects of pitch location and

count on MLB umpires’ ball–strike decisions.

It is clear that umpires, sport judges, and o�cials are responsible for a variety

of often intricate and subtle playing rules. In addition, these individuals are

expected to objectively and without bias maintain governance of the contest or

performance. Likewise, sport judges utilize a variety of perceptual, cognitive, and

visual skills to perform at a peak level. Similar to the research previously described

related to the development and acquisition of domain-specific expertise, umpires

and other referees typically spend many years developing the requisite skills and

knowledge base necessary for elite levels.

Research Questions

The purpose of the current study is to answer the following research questions

related to the e↵ects of pitch location and count on professional baseball umpires’

ball–strike decisions during the course of an entire MLB season. To do so, the

current study uses data generated by the PITCH/fx (Sportvision, Inc., 2013) pitch

tracking system:

(1) Do MLB umpires di↵er in their accuracy of judging pitch outcomes?
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(2) Is pitch location associated with MLB umpires’ accuracy of judging pitch

outcomes?

(3) Is the ball–strike count associated with MLB umpires’ accuracy of judging

pitch outcomes?

(4) After controlling for ball–strike count, is pitch location associated with

MLB umpires’ accuracy of judging pitch outcomes?

(5) After controlling for pitch location, is ball–strike count associated with

MLB umpires’ accuracy of judging pitch outcomes?

(6) Is umpire expertise (as measured by years of experience) associated with

MLB umpires’ accuracy of judging pitch outcomes?

(7) Does umpire expertise moderate the relationship between the accuracy of

judging pitch outcomes and either pitch location or ball–strike count?

Hypotheses

The following hypotheses were stated in conjunction with the research

questions above. The principle hypothesis directing the current study is that

umpires should not greatly e↵ect pitch outcomes, and, instead, be interchangeable.

(1) MLB umpires will not di↵er in their accuracy of judging pitch outcomes.

(2) Pitch location will be associated with MLB umpires’ accuracy of judging

pitch outcomes. Specifically, compared to pitches located within the middle

and outer regions of the strike zone, umpires will demonstrate less accurate

decisions when pitches are located within the inner region of the strike zone.

(3) Ball–strike count will be associated with MLB umpires’ accuracy of judging

pitch outcomes. Specifically, compared to neutral and batter-favored

ball–strike counts, umpires will demonstrate less accurate decisions when

the ball–strike count favors the pitcher.
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(4) After controlling for ball–strike count, pitch location will be associated with

MLB umpires’ accuracy of judging pitch outcomes. Specifically, umpires

will demonstrate greater accuracy when pitches are located either in the

middle or outer regions of the strike zone.

(5) After controlling for pitch location, ball–strike count will be associated with

MLB umpires’ accuracy of judging pitch outcomes. Specifically, umpires

will demonstrate greater accuracy when ball–strike counts are either neutral

or favor the batter.

(6) Experience in MLB will be associated with umpires’ accuracy of judging

pitch outcomes. Specifically, compared to umpires with less experience,

umpires with more experience will demonstrate less accurate decisions.

(7) Umpire experience will not moderate the association between umpire

accuracy and either pitch location or ball–strike count.
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CHAPTER THREE

Methods

Design

Secondary Data Analysis Methods

Using secondary data allows researchers to investigate a range of phenomena

within populations they may not otherwise be able to access (Andersen, Prause, &

Silver, 2011). For example, educational, health-related, and survey data collected

from a variety of large-scale federal research projects are made available for

researchers. These projects may contain relatively large, nationally-representative

samples, which are beneficial for investigators interested in the generalizability of

their research (Andersen et al., 2011; Stewart, 2012).

Despite its advantages, there are several factors to consider when utilizing

secondary data. For example, knowing the variables actually collected, how the data

were collected, and when can influence the methods with which researchers pose

questions and investigate hypotheses (Stewart, 2012). Further, when multiple

sources of related secondary data are available, e↵ort should be taken to evaluate the

consistency of the information across sources. Secondary data sets may also contain

missing data, which can be problematic for researchers (Andersen, et al., 2011).

PITCHf/x Data

Data for the current study are generated by a camera system, known as

PITCHf/x (Sportvision, Inc., 2013), installed inside each MLB team’s stadium for

the purpose of capturing and measuring the flight path of pitched baseball

trajectories (Nathan, 2008; Sievert, 2014). Cameras track the flight of each baseball

beginning with the point at which the pitcher releases the ball as he is positioned on
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the pitching rubber and ending with the point at which the pitch passes over the

front edge of home plate. The regulation distance between the front edge of the

pitching rubber and the front edge of home plate is a uniform 60 feet 6 inches

(MLB, 2014). With each pitch the PITCHf/x system tracks, it generates 50

variables containing information unique to all pitcher–batter match ups over all

ball–strike counts for both teams in all innings of play. PITCHf/x data are available

in Extensible Markup Language (XML) format from the MLB Advanced Media

(2014) Gameday application programming interface.

PITCHf/x data consist of all pitch-outcome decisions made by home plate

umpires over the course of a single season. Umpires typically are responsible for

calling pitches behind home plate every fourth game due to the rotation system

employed among the four-person umpire crews assigned to o�ciate the game.

Therefore, an umpire’s decisions may be accumulated over the course of 20 or more

games in a single season. An umpire may observe approximately 300 pitches during

the course of a 9-inning game. However, not all pitches require a decision from the

home plate umpire.

Data collection, cleaning, and classification. PITCHf/x data for the current

study were collected using the pitchRx package (Sievert, 2014) in the R statistical

computing software application (R Core Team, 2014) representing all pitches

delivered over the course of the 2013 season. No missing values were present in the

data set. pitchRx contains functions designed to access the Gameday XML data and

store it in a SQL database. XML data are structured around a set of encoding rules

which enable users to parse information according to identifiers, or variables

(Agreste, De Meo, Ferrara, & Ursino, 2014). R syntax used to construct the

PITCHf/x database to be used in the current analysis is available in Appendix B.
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A total of 754,362 pitches were delivered to batters during the course of the

2013 MLB season. Several steps were taken during the data collection phase in

order to prepare the data for the current analysis. First, all pitches not requiring

the home plate umpire to decide the outcome were removed. These include all

pitches in which the batter swung and missed, hit the ball into foul territory, hit the

ball into fair territory, or was struck by the pitch.

Second, I calculated batters’ average upper and lower strike zone limits. This

involved creating new variables for the season-mean top and season-mean bottom

parameters which were then used as reference values when determining whether a

pitch was located inside our outside of a batter’s strike zone. Much of the process

for collecting PITCHf/x data is automated by the camera system installed in each

stadium. One exception is adjusting each batter’s unique strike zone parameters. A

batter’s strike zone can be defined as an imaginary rectangular area above home

plate that varies in length given a batter’s height and batting stance. Thus, the top

and bottom parameters of each batter’s strike zone are manually adjusted by a

PITCHf/x operator at each MLB stadium.

Third, I corrected the width of the strike zone. Home plate measures 17”

wide across the front portion. However, Rule 2.00 of the MLB Rule Book defines a

strike as occurring “if any part of the ball passes through any part of the strike

zone” (The O�ce of the Commissioner of Baseball, 2012, p. 21). Since the

PITCHf/x system collects coordinates of pitches by using the center point of the

baseball as it crosses the front edge of home plate, the length of the radius of a

regulation size baseball was added to each side of home plate. This expands the

uniform width of the strike zone from 17” to 17” + (1.57”⇥2) = 20.14”. Figure 3.1

displays the transformed width of the strike zone area.

36



17.00
~1.57*2 + 17.00 = ~20.14

Figure 3.1: Strike zone width after adding the radius of a regulation size baseball to
both sides.

Variables

The current analysis includes all pitches from the 2013 MLB season in which

the home plate umpire had to judge if it was a ball or strike. All variables for the

current study are provided in Table 3.1 along with with their corresponding

definitions. During the game the home plate umpire positions himself behind the

catcher, who is positioned behind or in the vicinity of home plate, in order to view

pitches delivered by the pitcher. One of the home plate umpire’s primary

responsibilities is to judge whether an unhit ball delivered by the pitcher passed

through the batter’s strike zone or was located outside of the batter’s strike zone.

Depending on the outcome of the pitch, either a ball is awarded to the batter or a

strike is awarded to the pitcher. The accumulation of balls and strikes in a single

plate appearance is known as the ball–strike count.
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Table 3.1: Variables Used in Analysis.

Variable Name Definition Level of Analysis
Ball–strike count Specifies whether the ball–strike count Level-1

favors the batter, pitcher, or is neutral
Strike zone location Region of the zone in which pitch was Level-1

located given batter handedness
Umpire Randomly assigned umpire ID number Level-2
Umpire experience Home plate umpire’s experience in number Level-2

of seasons of full-time employment in MLB
Umpire decision Dichotomous outcome indicating whether Level-1

the home plate umpire’s decision was
correct or incorrect

Note. Level of analysis refers to the location of each variable within the multilevel, or
nested, data structure. Level-1 variables are those at the pitch level in the data, while
Level-2 variables are those at the umpire level.

Pitch-Related Variables

Two variables in the current study are related to pitches: (a) ball–strike

count and (b) pitch location. Among the pitch-related variables available in the

PITCHf/x data, ball–strike count and pitch location are hypothesized as being

related to umpire decisions. Previous research has demonstrated evidence for the

presence of e↵ects of pitch-related variables on umpire decisions (Fast, 2011).

There are a maximum of 12 ball-strike combinations that can occur in any

given batter-pitcher matchup. With each plate appearance, the batter and pitcher

start with a 0 ball 0 strike count. The maximum number of balls pitchers are

allowed to throw before a batter is awarded first base is four, while the maximum

number of strikes a batter is allowed to obtain before striking out is three. This

variable was transformed according to Marchi and Albert’s (2014) coding method.

Marchi and Albert (2014) calculated expected run values for each of the 12

ball–strike counts in order to determine which were most likely to favor batters,

which were most likely to favor pitchers, and which were most likely to be neutral.

Table 3.2 displays the ball–strike count combinations and corresponding advantage
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classification. The process of transforming the 12 ball–strike count possibilities into

one of three advantage–disadvantage scenarios (i.e., batter advantage, pitcher

advantage, neutral) is common among baseball analytics research (e.g., Tango,

Lichtman, & Dolphin, 2007; Thorn & Palmer, 1984). The ball–strike count

predictor variable was categorized for the current study as: neutral, batter-, and

pitcher-advantaged counts. Pitches delivered during neutral counts were treated as

the reference group.

Table 3.2: Ball–Strike Count by Advantage Classification.

Ball–Strike Count Advantage
Batter Pitcher Neutral
2-0 0-1 0-0
3-0 0-2 1-0
3-1 1-2 1-1
3-2 2-2 2-1

Note. Batter: pitches delivered to batters in which the ball–strike count favors the batter;
Pitcher: pitches delivered to batters in which the ball–strike count favors the pitcher; Neu-
tral: pitches delivered to batters in which the ball–strike count favors neither the batter nor
the pitcher.

The locations of pitches tracked by the PITCHf/x system are bounded within

one of several finite regions of the strike and ball zone areas around home plate.

Conceptually, bounding pitches within certain regions of the strike and ball zone

areas allows users of the PITCHf/x data to more easily classify pitch locations. For

example, researchers interested in determining a particular batter’s tendency to

swing at certain pitches within the regions of the strike zone can take advantage of

this classification system in order to model performance predictions and graphically

illustrate o↵ensive trends (Marchi and Albert, 2014).

The pitch location variable indicates the region within the batter-relative

strike zone area where each pitch crossed the front edge of home plate. The raw

PITCHf/x zone variable divides the area of each batter’s strike zone into nine
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regions. For the current study, pitch location was transformed into four regions to

indicate whether the pitch was located within either the inner, middle, outer, or ball

portions of the batter’s strike zone by comparing the batter’s handedness with the

raw PITCHf/x location data. Figure 3.2a provides an example of the nine

untransformed PITCHf/x zone regions.

Figure 3.2b provides an example of the pitch location variable transformation,

taking into account batter handedness. From the umpire’s vantage point, pitches

located in zones 1, 4, and 7 were classified as being in the inner region for right

handed batters and outer region for left handed batters. Pitches located in zones 2,

5, an 8 were classified as being in the middle region for both right and left handed

batters. Pitches located in zones 3, 6, and 9 were classified as being in the outer

region for right handed batters and inner region for left handed batters. There is no

zone labeled 10 in the PITCHf/x data. Pitches located in zones 11, 12, 13, and 14

were classified as being the ball region. The pitch location predictor variable was

categorized as: ball, inner, middle, and outer transformed regions of the strike zone.

Pitches located in the ball region were treated as the reference group.

Umpire-Related Variables

Three variables in the current study are related to umpires: (a) the home

plate umpire in each game; (b) the home plate umpire’s decision, or call, on each

pitch; and (c) the home plate umpire’s full-time experience in years. As data from

the same umpires are collected throughout the 2013 season, I assigned each umpire

a random integer between 1100 and 1175 to identify them in the dataset.

The outcome variable, umpire decision, was dichotomized to indicate whether

the home plate umpire’s decision on each pitch was correct or incorrect. In order to

determine home plate umpire accuracy, the coordinate-location and batter-relative

strike zone parameters of each pitch were compared against the each umpire’s
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(a) Untransformed PITCHf/x strike and ball regions.
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(b) Transformed PITCHf/x strike zone regions

Figure 3.2: PITCHf/x strike and ball zone regions from the umpire’s perspective.
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original call. Decisions made by home plate umpires who call a strike when a pitch

is located outside of the strike zone parameters are considered incorrect, while

decisions made by umpires who call a strike when a pitch is located inside the strike

zone parameters are considered correct. Similarly, decisions made by home plate

umpires who call a ball when a pitch is located outside of the strike zone parameters

are considered correct, while decisions made by home plate umpires who call a ball

when a pitch is located inside the strike zone parameters are considered incorrect.

Umpire experience is measured in years of full-time service in MLB prior to

the start of the 2013. Once hired, umpires traditionally are promoted to MLB after

several years of service through varying levels of Minor League Baseball (MiLB)

(Weber, 2010). Umpires can spend between 5 and 10 years employed in MiLB

before they are hired in MLB on a full-time basis. Once umpires reach the highest

level of play in MiLB, they may be added to an active MLB reserve roster and be

temporarily promoted to fill-in for full-time MLB umpires who are either injured or

on leave. Umpire experience was coded as 0 for umpires in their first full-time

season. For all other umpires, experience was treated as the number of full-time

years completed in MLB.

Umpire experience was grand-mean centered and standardized when included

in the model building process. This was done by subtracting the umpire experience

sample mean (12.02) from each umpire’s number of years experience, then dividing

by the umpire experience sample standard deviation (8.42). This results in values

which indicate the number of standard deviations an umpire’s experience is above

or below the grand-mean. For example, the grand-mean umpire experience in the

sample was approximately 12 years with a standard deviation of approximately 9

years. Thus, for an umpire with 12� 9 = 3 years experience, his grand-mean

centered and scaled experience would be �1. In terms of model estimation and

interpretation, the e↵ect of umpire experience can be interpreted as the resulting
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change in the predicted umpire accuracy after a one standard deviation change in

umpire experience.

Data Analysis

The purpose of the current study is to answer a set of research questions

related to the e↵ects of pitch location and count on professional baseball umpires’

ball–strike decisions during the course of an entire MLB season. To do so, the

current study uses data generated by the PITCHf/x (Sportvision, Inc., 2013) pitch

tracking system.

Model Specification

Data in the social and behavioral sciences frequently contain a multilevel, or

nested, structure in which observations at a lower level (level-1) are grouped within

units at a higher level (level-2) (Heck, et al. 2012; Gelman & Hill, 2007;

Raudenbush & Bryk, 2002). Common examples include students who are nested

within classrooms and employees who are nested within departments or

organizations (Heck et al., 2012). As a result, a multilevel model (MLM) can

account for the e↵ects of predictor variables present at successive levels of data

(Snijders & Bosker, 2012). Moreover, compared to traditional regression models,

MLMs allow for both fixed and random coe�cients (Raudenbush & Bryk, 2002).

With fixed coe�cients, an e↵ect is the same across all observations; with random

coe�cients, however, an e↵ect can vary across observations (Hox, 2010).

Multilevel data structures are suitable when questions of interest involve

examining separate observations on some outcome which are nested within groups,

classes, or, in the current study, umpires (Heck, et al., 2012). Data in the current

study treat umpire decisions as repeated measurements nested within the umpire

making the decision. Although time is not treated as a factor in the current study,

MLMs are still appropriate for analyzing questions from data in which observations
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are clustered within individuals (Heck, et al., 2012; Ho↵man, 2007). Pitches were

treated as the separate measurements or observations at level 1 made by individual

umpires at level 2. Umpire experience is located at level 2 in the multilevel

modeling framework.

Multilevel models with a categorical repeated measures outcome. MLMs with

continuous outcome variables assume (a) a linear relationship between regression

coe�cients, (b) that random e↵ects are normally distributed (Raudenbush & Bryk,

2002). However, MLMs are not limited to continuous outcome variables. Models

with categorical outcomes may also be estimated (Hox, 2010).

In the case of MLMs with categorical outcome variables, the assumptions of

linearity and normality are not realistic (Raudenbush & Bryk, 2002). Additionally,

observations in MLMs with categorical outcomes are assumed to be discrete. For

example, the outcomes in the current study–umpire decisions–are dichotomous (i.e.,

correct or incorrect). As a result, a nonlinear, transformation is used. For the

current study, I use the logit transformation, which is the natural logarithm (log) of

the odds that an umpire’s decisions is correct. Further specification of the logit

transformation is given below. Likewise, in models with a dichotomous outcome,

di↵erences between predicted and observed values are assumed to be non-normally

distributed and have unequal variance.

MLMs are often developed using a hierarchical sequence of models. The first

model is typically a null model, which includes no predictor variables at either level.

Subsequent models are then fit that include one or more variables at level-1 or

level-2 (Heck et al., 2012; Raudenbush & Bryk, 2010). In general, a two-level

multilevel models with a dichotomous outcome and no predictor variables takes the

following form:
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Level-1: ⌘ij = ln

✓
⇡ij

1� ⇡ij

◆
= �0j, (3.1)

where ⌘ij is the predicted logit for the outcome event i within individual j, ln is the

natural logarithm of the odds for the outcome event, ⇡ij is the probability that the

outcome event occurs, 1� ⇡ij is the probability of the outcome event not occurring,

and �0j is the model intercept term. The value inside the parentheses in Equation

3.1 is the odds, which is the probability of an event by the probability of the event

no occurring (i.e., ⇡/1� ⇡).

The level-1 equation (3.1) omits a residual, or error, variance term (�2)

because residuals from MLMs with a dichotomous outcome can only take on two

values: correct or incorrect. Thus, the residual variance is fixed (Heck et al., 2012).

A common fixed value for the level-1 residual variance is 3.29, which is

approximately the variance of the standard logistic distribution (Hox, 2002).

The level-2 equation is:

Level-2: �0j = �00 + u0j, (3.2)

where �00 is the intercept term. The variance parameter (u0j) allows the level-1

intercept (�0j) to vary between observations. When u is fixed at zero, the level-1

intercept is a fixed e↵ect (�0); when u is estimated, the level-1 intercept is a random

e↵ect (�0j).

Replacing �0j in the level-1 model with its definition in the level-2 model

produces a combined model:

Combined model: ⌘ij = �00 + u0j, (3.3)
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where ⌘ij represents the predicted logarithm of the odds (i.e., logit) resulting from

the MLM (Heck, et al., 2012).

Interpreting Multilevel Models with Dichotomous Outcomes. Estimated

coe�cients from MLMs with a dichotomous outcome can be interpreted in several

ways. Heck et al. (2012) noted that because logits are in units of log odds, they are

di�cult to interpret directly. Consequently, transforming them into an odds ratio

can aid in interpretation. Odds ratios can be obtained by exponentiating (i.e., the

inverse of the log function) the MLM coe�cients (e.g., �, �).

In the current study, odds ratios express the change in the odds of an umpire

making a correct decision associated with a unit change in the predictor X, while

controlling for any other variables in the MLM (Heck et al., 2012). The general

formula for an odds ratio (OR) is given in Equation 3.4:

OR =
⇡1/(1� ⇡1)

⇡2/(1� ⇡2)
, (3.4)

where ⇡1 is the probability of success in condition 1 (i.e., the predictor variable is

specified at one value) and ⇡2 is the probability of success in condition 2 (i.e., the

predictor variable is specified at another value). Odds ratios range from 0 to

infinity, with a value of 1 indicating equal odds of the event occurring under both

conditions. Odds ratios greater than 1 indicate that the outcome has a higher odds

of occurring in condition 1 than condition 2, while odds ratios less than 1 indicate

that the outcome has a lower odds of occurring in condition 1 than condition 2

(Szumilas, 2010).

In addition to odds ratios, MLM coe�cients can also be transformed into

probabilities. For the current study, the probability is of an umpire making a

correct decision (Grimes & Schulz, 2008). Whereas each coe�cient in the MLM can

be transformed to an OR, their is only one probability value for a given model.
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MLM coe�cients can be transformed to the probability metric using

Equation 3.5:

⇡̂ =
exp(�0)

1 + exp(�0)
, (3.5)

where ⇡̂ is the predicted probability of an accurate umpire decision, exp is the

exponential function, and �0 is the estimated intercept value from Equation 3.1. For

models with predictor variables, the predicted probabilities are calculated by

summing across all terms in the MLM. For a MLM with an intercept and a single

predictor variable, the predicted probability of a correct umpire decision can be

calculated using Equation 3.6:

⇡̂ =
exp(�0 + �X)

1 + exp(�0 + �X)
, (3.6)

where � is the MLM coe�cient associated with the predictor variable X.

Models Used in Current Study

Model 0: Null model. This model examines the overall accuracy of the

umpires’ calls across all umpires, games, and calls. No level-1 or level-2 variables are

included in the null model, so the only coe�cient estimated is a fixed level-1

intercept. The value of the null model intercept can be interpreted as the predicted

log odds that a randomly selected umpire’s decision is accurate (Heck et al., 2012).

The null model equation is specified as:

⌘ij = �0, (3.7)

where �0 is the estimated intercept.
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Model 1: Fully unconditional model. In this model, accuracy is allowed to

vary across umpires. The estimated model intercept coe�cient is interpreted as the

predicted log odds that a given umpire’s decision is correct across all games and

calls.

At level-1, the unconditional model is specified as:

⌘ij = �0j, (3.8)

where �0j is the intercept term for umpire j.

At level-2, the presence of a variance parameter (u0j) allows the level-1

intercept (�0) to vary between umpires:

�0j = �00 + u0j. (3.9)

u0j is assumed to follow a normal distribution with mean 0 and a constant variance

(⌧00). Substituting equation 3.9 into equation 3.8 produces the following combined

model:

⌘ij = �00 + u0j. (3.10)

Allowing accuracy to vary across umpires allows for an examination of how

much of the total proportion of variance in decision accuracy is explained by

di↵erences between umpires. One way to estimate this proportion is to calculate an

intraclass correlation (ICC), although Hox (2010) noted that ICC values should be

interpreted with caution in MLMs–especially those with dichotomous outcomes.

The ICC formula in this MLM framework is:

⇢ =
⌧00

⌧00 + �2
, (3.11)
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where ⌧00 is the population variance estimate for umpires and �2 is the fixed

variance estimate for level-1 units (Raudenbush & Bryk, 2002).

Model 2: E↵ects of pitch location on umpire decisions. This model examines

the association of pitch location and umpire decision accuracy. The level-1 model

includes the pitch location predictor variable, with the ball region of the strike zone

as the reference category. In this model, interpretation of the estimated coe�cient

for each pitch location variable is made in comparison to the ball region. In

addition, pitch location is treated as a fixed e↵ect while the intercept is random.

Thus, accuracy is allowed to vary by umpire, but pitch location has the same a↵ect

on accuracy for all umpires. The level-1 model is characterized as:

⌘ij = �0j

+ �1(PITCH LOCATION = INNERij)

+ �2(PITCH LOCATION = MIDDLEij)

+ �3(PITCH LOCATION = OUTERij).

(3.12)

The level-2 model is characterized as:

�0j = �00 + u0j

�1j = �10

�2j = �20

�3j = �30.

(3.13)
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Substituting Equation 3.13 into Equation 3.12 results in the following combined

model:

⌘ij = �00

+ �10(PITCH LOCATION = INNERij)

+ �20(PITCH LOCATION = MIDDLEij)

+ �30(PITCH LOCATION = OUTERij) + u0j.

(3.14)

Model 3: E↵ects of ball–strike count on umpire decisions. This model

examines the association of ball–strike count and umpire decision accuracy. The

level-1 model includes the ball–strike count predictor variable, with neutral counts

as the reference category. In this model, interpretation of the estimated coe�cient

for each level of the ball–strike count variable is made in comparison to pitches

delivered during neutral counts. In addition, pitch location is treated as a fixed

e↵ect while the intercept is random. Thus, accuracy is allowed to vary by umpire,

but ball–strike count has the same a↵ect on accuracy for all umpires. The level-1

model is characterized as:

⌘ij = �0j

+ �1(COUNT ADVANTAGE = BATTERij)

+ �2(COUNT ADVANTAGE = PITCHERij).

(3.15)

The level-2 model is characterized as:

�0 = �00 + u0j

�1 = �10

�2 = �20.

(3.16)
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Substituting Equation 3.16 into Equation 3.15 results in the following combined

model:

⌘ij = �00

+ �10(COUNT ADVANTAGE = BATTERij)

+ �20(COUNT ADVANTAGE = PITCHERij) + u0j.

(3.17)

Model 4: E↵ects of pitch location and ball–strike count on umpire decisions.

This model estimates the association of pitch location and ball–strike count on

umpire decision accuracy. The level-1 model includes two categorical pitch-related

predictor variables: pitch location and ball–strike count advantage. With two

predictor variables, interpretation is made by comparing the estimated coe�cient to

the reference category, controlling for the other variable. In Model 4, both pitch

location and ball–strike count are treated as fixed e↵ects. The level-1 model is

characterized as:

⌘ij = �0j

+ �1(PITCH LOCATION = INNERij)

+ �2(PITCH LOCATION = MIDDLEij)

+ �3(PITCH LOCATION = OUTERij)

+ �4(COUNT ADVANTAGE = BATTERij)

+ �5(COUNT ADVANTAGE = PITCHERij).

(3.18)
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The level-2 model is characterized as:

�0 = �00 + u0j

�1 = �10

�2 = �20

�3 = �30

�4 = �40

�5 = �50.

(3.19)

Substituting Equation 3.19 into Equation 3.18 results in the following combined

model:

⌘ij = �00

+ �10(PITCH LOCATION = INNERij)

+ �20(PITCH LOCATION = MIDDLEij)

+ �30(PITCH LOCATION = OUTERij)

+ �40(COUNT ADVANTAGE = BATTERij)

+ �50(COUNT ADVANTAGE = PITCHERij) + u0j.

(3.20)

Model 5: E↵ects of umpire experience on umpire decisions. This model

examines the e↵ects of umpire experience on umpire decision accuracy. As

umpire-experience is a level-2 variable, there are no level-1 predictors included in

Model 5. Thus, the level-1 equation for Model 5 is identical to the level-1 equation

of Model 1:

⌘ij = �0j. (3.21)

The level-2 model is characterized as:

�0j = �00 + �01(UMPIRE EXPERIENCEj) + u0j. (3.22)
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Substituting equation 3.22 into equation 3.21 results in the following combined

model:

⌘ij = �00 + �01(UMPIRE EXPERIENCEj) + u0j. (3.23)

Model 6: Moderation of pitch location and ball–strike count by umpire

experience on umpire decisions. This model examines if the relation between umpire

accuracy and pitch location (level-1) or ball-strike count (level-1) changes as a

function of umpire experience (level-2).

The level-1 model is:

⌘ij = �0j

+ �1(PITCH LOCATION = INNERij)

+ �2(PITCH LOCATION = MIDDLEij)

+ �3(PITCH LOCATION = OUTERij)

+ �4(COUNT ADVANTAGE = BATTERij)

+ �5(COUNT ADVANTAGE = PITCHERij).

(3.24)

The level-2 model is characterized by:

�0j = �00 + �01(UMPIRE EXPERIENCEj) + u0j

�1 = �10 + �11(UMPIRE EXPERIENCEj)

�2 = �20 + �21(UMPIRE EXPERIENCEj)

�3 = �30 + �31(UMPIRE EXPERIENCEj)

�4 = �40 + �41(UMPIRE EXPERIENCEj)

�5 = �50 + �51(UMPIRE EXPERIENCEj)

�6 = �60 + �61(UMPIRE EXPERIENCEj).

(3.25)
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Substituting Equation 3.25 into equation 3.24, the following model is obtained,

which is characterized by cross-level interactions between the level-1 pitch-related

variables and the level-2 umpire experience predictor:

⌘ij = �00 + �01(UMPIRE EXPERIENCEj) + u0j

+ �10(PITCH LOCATION = INNERij)

+ �11(UMPIRE EXPERIENCEj)(PITCH LOCATION = INNERij)

+ �20(PITCH LOCATION = MIDDLEij)

+ �21(UMPIRE EXPERIENCEj)(PITCH LOCATION = MIDDLEij)

+ �30(PITCH LOCATION = OUTERij) (3.26)

+ �31(UMPIRE EXPERIENCEj)(PITCH LOCATION = OUTERij)

+ �40(COUNT ADVANTAGE = BATTERij)

+ �41(UMPIRE EXPERIENCEj)(COUNT ADVANTAGE = BATTERij)

+ �50(COUNT ADVANTAGE = PITCHERij)

+ �51(UMPIRE EXPERIENCEj)(COUNT ADVANTAGE = PITCHERij).

(3.26)

Software Used for Analysis

All statistical models were estimated using the lme4 package (Bates,

Maechler, Bolker, & Walker, 2014) in R.

Model Evaluation

Models were evaluated using measures of model fit. In general, lower values of

model fit indices indicate a better fit to the data (Hosmer, Lemeshow, & Sturdivant,

2013). A common measure of model fit is the model deviance. The formula for

calculating deviance is given in Equation 3.27:
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Deviance = �2⇥ ln(L), (3.27)

where L is the log-likelihood of the model. The likelihood is the probability of

obtaining the collected data if the model were true. For more information about

likelihood estimation, see Enders (2005). Deviance values cannot be directly

interpreted. Instead, they are only useful when comparing multiple models.

Another measure of model fit is the Akaike information criterion (AIC).

(Hosmer, et al., 2013). The formula for calculating AIC is given in Equation 3.28:

AIC = �2⇥ ln(L) + 2k, (3.28)

where L is the log-likelihood of the model and k represents the number of predictors

included in the model. Like deviance, AIC values are only useful when comparing

multiple models. Lower values of AIC are preferred to larger values when

determining model fit between competing models. Unlike deviance, the AIC

imposes a penalty for model complexity–2k term. Thus, AIC favors models that are

parsimonious.

AIC values can be re-scaled (AIC �) to account for di↵erences between

models in sample size and arbitrary constants (Burnham, Anderson, & Huyvaert,

2011). The formula for calculating AIC � is given in Equation 3.29:

AIC�i = AICi � AICmin, (3.29)

where AICmin is the minimum of the di↵erent AIC values for the compared models.

Further, AIC � values can be re-scaled so they sum to 1, called AIC weights (wi).

The formula for calculating wi is given in Equation 3.30:
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wi =
exp(�AIC�i/2)PM
i=1 exp(�AIC�i/2)

, (3.30)

where Mi is the particular model being evaluated. Values of wi can be interpreted

as the probability that Mi is the best model (Wagenmakers & Farrell, 2004).

Another measure of model fit is the Bayesian information criterion (BIC)

estimate. The formula for calculating BIC is given in Equation 3.31:

BIC = �2ln(L) + ln(n)k, (3.31)

where ln is the natural logarithm, L is the log-likelihood of the model and k

represents the number of predictors included in the model. Lower values of BIC are

preferred to larger values when determining model fit.
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CHAPTER FOUR

Results

Descriptive Statistics

A total of 754,362 pitches were delivered to batters during the course of the

2013 regular and post-season. In addition to pitches in which the umpire was

responsible to judge, this total also includes pitches in which the batter swung and

missed, made contact with the ball, or when the batter was struck by the pitch (n =

392,210). Umpires were required to make a total of 362,152 decisions, of which

123,966 (34%) were called strikes and 238,186 (66%) were called balls. On average,

home plate umpires made decisions on approximately 149 pitches per game (SD =

5.89).

A total of 76 umpires were present in the data with experience ranging from 0

to 34 years of full-time MLB service (M = 12.02, SD = 8.42). Figure 4.1 presents a

kernel density estimation curve for umpire experience. During the regular season,

umpires are grouped in four-person umpiring crews, with umpires rotating home

plate assignments every fourth day. During the 2013 season, umpires were behind

the plate for a mean of 29 games (SD = 9.63). On average, home plate umpires

observed approximately 291 pitches per game (SD = 9.71).

Umpire Decisions by Pitch Location

Pitch locations were categorized to indicate where, in one of four regions,

pitches were delivered (See Figure 3.2b). Three of the four pitch location regions

reflect pitches that were delivered within either the inner, middle, or outer areas of

the strike zone. Pitches located outside of the strike zone were considered to be in

the fourth, or ball, region. This transformation takes into account batter
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Figure 4.1: Kernel density estimation curve of umpire experience (in seasons).
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handedness, such that what is classified as the the inner region for right handed

batters would serve as the outer region for left handed batters. Descriptive statistics

for umpire decisions by pitch location are reported in Table 4.1.

Table 4.1: Number and Proportion of Umpire Decisions by Pitch Location.

Pitch Location
Umpire Decision Ball Inner Middle Outer Total

Ball
228,806 3,453 2,216 3,711 238,186

(.85) (.15) (.07) (.09) (.66)

Strike
40,438 19,309 27,926 36,293 123,966
(.15) (.85) (.93) (.91) (.34)

Total
269,244 22,762 30,142 40,004 362,152

(.74) (.06) (.08) (.11) (1.00)

Note. Values inside parentheses are conditional proportions, except the Total columns
and rows, which are unconditional proportions. Ball: pitches located outside of batter’s
strike zone; Inner: pitches delivered within the inner-most one-third of the strike zone area
above home plate, taking into account batter handedness; Middle: pitches delivered within
middle-most one-third of the strike zone area above home plate, taking into account batter
handedness; Outer: pitches delivered within outer-most one-third of the strike zone area
above home plate, taking into account batter handedness.

Table 4.2 presents the number and proportion of correct and incorrect umpire

decisions by pitch location. Umpires made 333,412 (92%) correct decisions. For

pitches located within the strike zone (i.e., inner, middle, outer), umpires are more

accurate when pitches are delivered in either the middle (95%) our outer (93%)

regions, compared to those in the inner region (88%). For pitches located in the ball

region, umpires are approximately 92% accurate.

Umpire Decisions by Ball–Strike Count

Ball–strike count was categorized to indicate who, in the batter–pitcher

matchup, holds the advantage. During situations in which neither the batter nor the

pitcher held a distinct advantage over the other, the ball–strike count was
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Table 4.2: Number and Proportion of Correct and Incorrect Umpire Decision Outcomes by
Pitch Location.

Pitch Location
Umpire Decision Ball Inner Middle Outer Total

Incorrect
21,658 2,788 1,508 2,786 28,740
(.08) (.12) (.05) (.07) (.08)

Correct
247,586 19,974 28,634 37,218 333,412

(.92) (.88) (.95) (.93) (.92)

Total
269,244 22,762 30,142 40,004 362,152

(.74) (.06) (.08) (.11) (1.00)

Note. Values inside parentheses are conditional proportions, except the Total columns
and rows, which are unconditional proportions. Ball: pitches located outside of batter’s
strike zone; Inner: pitches delivered within the inner-most one-third of the strike zone area
above home plate, taking into account batter handedness; Middle: pitches delivered within
middle-most one-third of the strike zone area above home plate, taking into account batter
handedness; Outer: pitches delivered within outer-most one-third of the strike zone area
above home plate, taking into account batter handedness.

categorized as neutral. Descriptive statistics for umpire decisions by ball–strike

count are reported in Table 4.3.

Table 4.3: Number and Proportion of Umpire Decisions by Ball–Strike Count.

Ball–Strike Count
Umpire Decision Neutral Batter Pitcher Total

Ball
126,778 20,007 91,401 238,136

(.58) (.57) (.84) (.66)

Strike
91,442 15,025 17,499 123,966
(.42) (.43) (.16) (.34)

Total
218,220 35,032 108,900 362,152

(.60) (.10) (1.00) (.30)

Note. Values inside parentheses are conditional proportions, except the Total columns and
rows, which are unconditional proportions. Neutral: pitches delivered to batters in which
the ball–strike count favors neither the batter nor the pitcher; Batter: pitches delivered to
batters in which the ball–strike count favors the batter; Pitcher: pitches delivered to batters
in which the ball–strike count favors the pitcher.
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Table 4.4 presents the number and proportion of correct and incorrect umpire

decisions by ball–strike count. Umpire decisions were approximately equally

accurate across neutral (91%), batter- (92%), and pitcher-advantaged counts (94%).

Table 4.4: Number and Proportion of Correct and Incorrect Umpire Decision Outcomes by
Ball–Strike Count.

Ball–Strike Count
Umpire Decision Neutral Batter Pitcher Total

Incorrect
19,339 2,910 6,491 28,470
(.09) (.08) (.06) (.08)

Correct
198,881 32,122 102,409 333,412

(.91) (.92) (.94) (.92)

Total
218,220 35,032 108,900 362,152

(.60) (.10) (.30) (1.00)

Note. Values inside parentheses are conditional proportions, except the Total columns and
rows, which are unconditional proportions. Neutral: pitches delivered to batters in which
the ball–strike count favors neither the batter nor the pitcher; Batter: pitches delivered to
batters in which the ball–strike count favors the batter; Pitcher: pitches delivered to batters
in which the ball– strike count favors the pitcher.

Table 4.5 presents proportions of correct umpire decisions by both pitch

location and ball–strike count. Umpires were approximately equally accurate when

pitches are located within the strike zone and the ball–strike count is either neutral

(Inner: 89%; Middle: 96%; Outer: 94%) or favors the batter (Inner: 91%; Middle:

97%; Outer: 95%). However, umpires demonstrate somewhat lower accuracy rates

on pitches within the strike zone when the ball–strike count favors pitchers,

especially the inner region (Inner: 81%; Middle: 88%; Outer: 86%).

Model Results

A series of models were estimated in order to answer the research questions

provided in Chapter Two. A summary of model rankings is presented in Table 4.6.
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Table 4.5: Proportion of Correct Umpire Decisions by Pitch Location and Ball–Strike
Count.

Ball–Strike Count Advantage
Pitch Location Neutral Batter Pitcher
Ball .90 .90 .95
Inner .89 .91 .81
Middle .96 .97 .88
Outer .94 .95 .86

Note. Ball: pitches located outside of batter’s strike zone; Inner: pitches delivered within
the inner-most one-third of the strike zone area above home plate, taking into account batter
handedness; Middle: pitches delivered within middle-most one-third of the strike zone area
above home plate, taking into account batter handedness; Outer: pitches delivered within
outer-most one-third of the strike zone area above home plate, taking into account batter
handedness. Neutral: pitches delivered to batters in which the ball–strike count favors
neither the batter nor the pitcher; Batter: pitches delivered to batters in which the ball–
strike count favors the batter; Pitcher: pitches delivered to batters in which the ball– strike
count favors the pitcher.

Table 4.6: Summary of Model Fit Results.

BIC AIC
Models Deviance BIC Rank AIC AIC � Weight

Model 4b 196089.28 196511.68 2.00 196155.28 0.00 1.00
Model 4a 196158.45 196324.85 1.00 196184.45 29.17 0.00
Model 6 198522.51 198688.91 4.00 198548.51 2393.23 0.00
Model 5 200509.73 200548.13 8.00 200515.73 4360.44 0.00
Model 4 198530.39 198619.99 3.00 198544.39 2389.11 0.00
Model 3 199628.67 199679.87 6.00 199636.67 3481.38 0.00
Model 2 199545.95 199609.95 5.00 199555.95 3400.67 0.00
Model 1 200515.13 200540.73 7.00 200519.13 4363.85 0.00
Model 0 200777.71 200790.51 9.00 200779.71 4624.43 0.00

Note. Models 0, 1, 4, 4a, and 4b are discussed in this chapter. BIC: Bayesian Information
Criterion; BIC Rank: Ranking based on BIC value (smaller values are ranked higher); AIC:
Akaike Information Criterion; AIC �: Measure of each model relative to the best fitting
model; AIC Likelihood: Exponentiated product of AIC � ⇥ �0.5; AIC Weight: Ratio
of AIC likelihood and the sum of AIC likelihood; Cumulative AIC Weight: Cumulative
sum of AIC weight. Models 4a and 4b were fit after the original research questions were
posed in order to better account for the e↵ects of pitch location and ball–strike on umpires’
probability of decision accuracy.
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A single-level null model with no predictors or random e↵ects (Model 0) was

first estimated. Results are displayed in Table 4.7 and indicate the predicted

probability of an umpire making a correct decision is .92 (95% CI = .91, .92).

Table 4.7: Summary of Model 0 (Null Model) for Predicting Probability of Accurate
Umpire Decision, with No Random E↵ects.

Random
Predictor B SE OR 95% CI OR Variance
Intercept 2.45 .01 11.60 11.46 11.74 –

Note. B: Regression coe�cient; SE: Standard error; OR: Odds ratio; CI: Confidence inter-
val; Random Variance: Variance of random parameter.

Following estimation of the null model, Model 1 was estimated as a fully

unconditional model with a random e↵ect for umpires and no level-1 or level-2

predictors. Results of Model 1 are presented in Table 4.8 and Figure 4.2 presents

individual umpire accuracy rates, which ranged from .90 to .95. This model shows

that there is some, albeit small, variability between umpires in accuracy. By taking

the Model 1 random variance and applying it to the formula for calculating the ICC

(.016/[.016+3.290]), approximately 0.48% of the variability in pitch outcomes can

be attributed to umpire e↵ects. In terms of model fit, Model 1 was a better fit to

the data, compared to Model 0. Thus, the random umpire e↵ect is included in

subsequent models.

Associations Between Pitch Location and Ball–Strike Count

Accounting for the e↵ects of pitch location and count on umpires’ ball–strike

decisions is a major emphasis in the current study. It has been demonstrated that

home plate umpires’ decisions can be influenced by the location in which pitches are

delivered (e.g., Fast, 2011) as well as the ball–strike count (e.g., Marchi and Albert,

2014). However, I posit that modeling umpire decisions in terms of the e↵ects of
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Figure 4.2: Umpire decision accuracy by transformed ball–strike count and pitch
location.
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Table 4.8: Summary of Model 1 for Predicting Probability of Accurate Umpire Decision,
with Random Intercept.

Random
Predictor B SE OR 95% CI OR Variance
Intercept 2.45 .02 11.62 11.28 11.99 0.016

Note. B: Regression coe�cient; SE: Standard error; OR: Odds ratio; CI: Confidence in-
terval; Random Variance: Variance of random parameter. Model intraclass correlation
coe�cient (ICC) = .0048.

both factors may provide a more comprehensive understanding of umpire decision

accuracy. In the current study, three of the six models estimated (Models 2, 3, and

4) address e↵ects of pitch location and count on umpires’ ball–strike decisions.

Among these three models, Model 4 was observed to best fit the data. Model 4

examines the association of both ball–strike count and pitch location on umpire

decision accuracy. Table 4.9 presents a summary of Model 4.

Compared to pitches located outside of the strike zone (i.e., balls), umpires

are less likely to call pitches located in the inner region of the strike zone accurately

(B = �.39), controlling for ball–strike count. The odds ratio (OR) is 0.68 (95% CI

= 0.65, 0.71), which suggests the odds of umpires correctly calling pitches in the

inner region of the strike zone are about .68 that of pitches thrown in the ball region,

controlling for ball–strike count. Conversely, the odds of umpires correctly calling

pitches thrown in the ball region are 1/.68 = 1.47 times greater than the odds of

correctly calling a pitch thrown in the inner region of the strike zone, controlling for

ball-strike count. The predicted probability (⇡̂) of an umpire making an accurate

decision when pitches are delivered in the inner region of the strike zone was .87.

Compared to pitches located outside of the strike zone (i.e., balls), umpires

are more likely to call pitches located in either the middle (B = 0.61) or outer (B =

0.24) regions of the strike zone accurately, controlling for ball–strike count. For
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Table 4.9: Summary of Model 4 for Predicting Probability of Accurate Umpire Decision by
Pitch Location and Ball–Strike Count, with Random E↵ect for Umpire.

Random
Predictor B SE OR 95% CI OR Variance
Intercept 2.29 .02 9.84 9.51 10.17 .02
Pitch Location
Inner �.39 .02 .68 .65 .71 –
Middle .61 .02 1.84 1.74 1.94 –
Outer .24 .03 1.28 1.22 1.33 –

Ball–Strike Count
Batter .07 .02 1.07 1.03 1.12 –
Pitcher .47 .02 1.59 1.55 1.64 –

Note. B: Regression coe�cient; SE: Standard error; OR: Odds ratio; CI: Confidence in-
terval; Random Variance: Variance of random parameter. Pitch Location reference group:
Ball (pitches located outside of batter’s strike zone); Inner: pitches delivered within the
inner-most one-third of the strike zone area above home plate, taking into account batter
handedness; Middle: pitches delivered within middle-most one-third of the strike zone area
above home plate, taking into account batter handedness; Outer: pitches delivered within
outer-most one-third of the strike zone area above home plate, taking into account batter
handedness. Ball–Strike Count reference group: Neutral (pitches delivered to batters in
which the ball–strike count favors neither the batter nor the pitcher); Batter: pitches deliv-
ered to batters in which the ball–strike count favors the batter; Pitcher: pitches delivered
to batters in which the ball–strike count favors the pitcher.
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pitches located in the middle region of the strike zone, the OR is 1.84 (95% CI =

1.74, 1.94), which suggests the odds of umpires correctly calling pitches in the

middle region are about 1.84 that of pitches thrown in the ball region, controlling

for ball–strike count. The predicted probability of an umpire making an accurate

decision when pitches are delivered in the middle region of the strike zone was ⇡̂ =

.95. Likewise, for pitches located in the outer regions of the strike zone, the OR is

1.28 (95% CI = 1.22, 1.33), which suggests the odds of umpires correctly calling

pitches in the outer region are about 1.28 that of pitches thrown in the ball region,

controlling for ball–strike count. The predicted probability of an umpire making an

accurate decision when pitches are delivered in the outer region of the strike zone

was ⇡̂ = .93.

Regarding e↵ects of the ball–strike count in Model 4, compared to pitches

delivered during neutral counts, umpires are slightly more likely to call pitches

during batter-advantaged counts accurately (B = .07), controlling for pitch

location. The OR is 1.07 (95% CI = 1.03, 1.12), which suggests the odds of umpires

correctly calling pitches during batter-advantaged counts are about 1.07 that of

pitches thrown during neutral counts. The predicted probability of an umpire

making an accurate decision when pitches are delivered during batter-advantaged

counts was ⇡̂ = .91.

When pitchers hold the advantage over batters in the ball–strike count,

compared to pitches delivered during neutral counts, umpires are more likely to call

pitches accurately (B = .47), controlling for pitch location. The OR is 1.59 (95% CI

= 1.55, 1.64), which suggests the odds of umpires correctly calling pitches during

pitcher-advantaged counts are about 1.59 that of pitches thrown during neutral

counts. The predicted probability of an umpire making an accurate decision when

pitches are delivered during pitcher-advantaged counts was ⇡̂ = .94.
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After plotting umpire-aggregated proportions of decision accuracy by pitch

location and ball–strike count, an interaction between location and count was

observed. Specifically, umpires’ decisions appeared to be less accurate when pitchers

held the advantage in the ball–strike count and the pitch was located in either the

inner, outer, or middle region of the strike zone. Thus, following estimation of

Model 4, two subsequent models (Models 4a and 4b) were fit in order to better

account for both the main e↵ects of and interaction e↵ects between pitch location

and ball–strike on umpires’ probability of decision accuracy.

I posit that accounting for interaction e↵ects between pitch location and

ball–strike count will provide a better understanding of umpire decision accuracy as

umpires’ decisions are made during situations in which the ball–strike count may

influence where pitchers deliver the ball (Marchi and Albert, 2014). Hence, the

probability that an umpire will judge a pitch accurately depends on a pitch’s

location and corresponding ball–strike count. Models 4a and 4b are described below.

Model 4a predicts the probability of accurate umpire decisions by pitch

location, ball–strike count, and pitch location ⇥ ball–strike count interactions, with

a random e↵ect for umpires. Model 4b builds on Model 4a by adding random e↵ects

for pitch location, and ball–strike count. The umpire random e↵ect in Model 4a was

also estimated in Model 4b. AIC values indicate Models 4a and 4b were both a

better fit over Model 4 (AIC � = 2389.11). Although Models 4a (AIC = 196184.45)

and 4b (AIC = 196155.28) performed relatively similarly, Model 4b was preferred on

the basis of model fit as judged by the AIC � (29.17, see equation 3.29), which

accounts for di↵erences between models in terms of sample size and arbitrary

constants (Burnham et al., 2011).

The fixed and interaction e↵ects included in Model 4a were also included in

Model 4b. Model 4a fixed and interaction e↵ects results are similar to those

obtained in Model 4b. Thus, full description of results from Model 4a are deferred
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in order to fully explain Model 4b, as model fit estimates indicated Model 4b was a

slightly better fit to the data.

Pitch Location and Ball–Strike Count Interactions. Figure 4.3 displays a

noticeable interaction between predicted probabilities for pitch location and

ball–strike count—particularly during counts in which the pitcher holds the

advantage over the batter and pitches are located in either the middle, outer, or

inner regions. Interaction e↵ects between pitch location and ball–strike count were

estimated in Model 4b. Full summary results of Model 4b are presented in Table

4.10.
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Figure 4.3: Model 4b predicted probabilities for umpire decision accuracy by
ball–strike count and pitch location.
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Table 4.10: Summary of Model 4b for Predicting Probability of Accurate Umpire Decision
by Pitch Location, Ball–Strike Count, and Pitch Location ⇥ Ball–Strike Count

Interactions, with Random E↵ects for Umpire, Pitch Location and Ball–Strike Count.

Random
Predictor B SE OR 95% CI OR Variance
Intercept 2.21 .02 9.12 8.81 9.45 .02
Pitch Location
Inner �.14 .03 .87 .83 .92 .00
Middle .90 .04 2.47 2.29 2.68 .04
Outer .57 .04 1.77 1.65 1.91 .05

Ball–Strike Count
Batter .02 .03 1.02 .96 1.08 .02
Pitcher .80 .02 2.21 2.14 2.29 .00

Pitch Location ⇥ Ball–Strike Count
Inner ⇥ Batter .23 .08 1.26 1.09 1.47 –
Middle ⇥ Batter .33 .10 1.39 1.13 1.70 –
Outer ⇥ Batter .23 .08 1.25 1.07 1.46 –
Inner ⇥ Pitcher �1.43 .05 .24 .22 .27 –
Middle ⇥ Pitcher �1.93 .06 .15 .13 .16 –
Outer ⇥ Pitcher �1.79 .05 .17 .15 .18 –

Note. B: Regression coe�cient; SE: Standard error; OR: Odds ratio; CI: Confidence in-
terval; Random Variance: Variance of random parameter. Pitch Location reference group:
Ball (pitches located outside of batter’s strike zone); Inner: pitches delivered within the
inner-most one-third of the strike zone area above home plate, taking into account batter
handedness; Middle: pitches delivered within middle-most one-third of the strike zone area
above home plate, taking into account batter handedness; Outer: pitches delivered within
outer-most one-third of the strike zone area above home plate, taking into account batter
handedness. Ball–Strike Count reference group: Neutral (pitches delivered to batters in
which the ball–strike count favors neither the batter nor the pitcher); Batter: pitches deliv-
ered to batters in which the ball–strike count favors the batter; Pitcher: pitches delivered
to batters in which the ball–strike count favors the pitcher.
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A model covariance table is presented in Table 4.11 with random e↵ect

variances in rows 1-6 of column 3, covariances in rows 7-21 of column 3 and random

e↵ect correlations in rows 7-21 of column 4. Random e↵ect variances are presented

for each of the random e↵ects included in Model 4b. Covariance values between two

random e↵ects are restricted to be 0 in a diagonal covariance matrix (Heck, et al.,

2012).

Model 4b mean predicted logits and predicted probabilities for umpire

accuracy by pitch location and ball–strike count are presented in Table 4.12. Across

all pitch locations, predicted probabilities of accurate umpire decisions for pitches

located in the inner region of the strike zone (⇡̂ = .87) appear to be noticeably lower

compared to predicted probabilities of accurate umpire decisions for pitches located

in the middle (⇡̂ = .94) or outer regions (⇡̂ = .92). When examining predicted

probabilities of accurate umpire decisions for ball–strike counts when pitches are

located in the inner region of the strike zone, pitchers appear to be at a distinct

disadvantage (⇡̂ = .81) compared to when the count is either neutral (⇡̂ = .89) or

favors the batter (⇡̂ = .91).

Umpire accuracy appears to be similar across pitches located in either the

middle or outer regions of the strike zone. Again, when compared to ball–strike

counts with a neutral or batter advantage, umpires appear to be less accurate when

the ball–strike count favors the pitcher (⇡̂ Middle = .88; ⇡̂ Outer = .86).
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Table 4.11: Covariances and Correlations of Model 4b Random Components

Variable 1 Variable 2 VCov Cor
Intercept – 0.12 –
Inner – 0.00 –
Middle – 0.40 –
Outer – 0.05 –
Batter – 0.02 –
Pitcher – 0.00 –
Intercept Inner �0.00 �1.00
Intercept Middle �0.00 �0.09
Intercept Outer �0.01 �0.20
Intercept Batter �0.00 �0.09
Intercept Pitcher �0.00 �0.50
Inner Middle 0.00 0.09
Inner Outer 0.00 0.20
Inner Batter 0.00 0.09
Inner Pitcher 0.00 0.50
Middle Outer 0.03 0.76
Middle Batter 0.00 0.10
Middle Pitcher 0.01 0.79
Outer Batter �0.01 �0.24
Outer Pitcher 0.00 0.39
Batter Pitcher 0.00 0.40

Note. VCov: Model 4b random e↵ect variances (rows 1-6) and covariances (rows 7-21);
Cor: Model 4b random e↵ect correlations (rows 7-21). Pitch Location reference group:
Ball (pitches located outside of batter’s strike zone); Inner: pitches delivered within the
inner-most one-third of the strike zone area above home plate, taking into account batter
handedness; Middle: pitches delivered within middle-most one-third of the strike zone area
above home plate, taking into account batter handedness; Outer: pitches delivered within
outer-most one-third of the strike zone area above home plate, taking into account batter
handedness. Ball–Strike Count reference group: Neutral (pitches delivered to batters in
which the ball–strike count favors neither the batter nor the pitcher); Batter: pitches deliv-
ered to batters in which the ball–strike count favors the batter; Pitcher: pitches delivered
to batters in which the ball–strike count favors the pitcher.
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Table 4.12: Summary of Predicted Logits and Predicted Probabilities by Pitch Location and
Ball–Strike Count from Model 4b.

Ball–Strike Pitch Predicted Predicted 95% CI
Count Location Log Odds Probability LL UL
Ball Neutral 2.21 0.901 0.900 0.902
Ball Batter 2.23 0.903 0.902 0.904
Ball Pitcher 3.00 0.953 0.952 0.954
Inner Neutral 2.07 0.888 0.887 0.889
Inner Batter 2.32 0.911 0.910 0.912
Inner Pitcher 1.44 0.808 0.807 0.809
Middle Neutral 3.11 0.958 0.957 0.958
Middle Batter 3.46 0.970 0.969 0.970
Middle Pitcher 1.98 0.879 0.878 0.880
Outer Neutral 2.78 0.942 0.941 0.943
Outer Batter 3.03 0.954 0.953 0.955
Outer Pitcher 1.79 0.857 0.856 0.858

Note. Pitch Location reference group: Ball (pitches located outside of batter’s strike zone);
Inner: pitches delivered within the inner-most one-third of the strike zone area above home
plate, taking into account batter handedness; Middle: pitches delivered within middle-most
one-third of the strike zone area above home plate, taking into account batter handedness;
Outer: pitches delivered within outer-most one-third of the strike zone area above home
plate, taking into account batter handedness. Ball–Strike Count reference group: Neutral
(pitches delivered to batters in which the ball–strike count favors neither the batter nor
the pitcher); Batter: pitches delivered to batters in which the ball–strike count favors the
batter; Pitcher: pitches delivered to batters in which the ball–strike count favors the pitcher.
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CHAPTER FIVE

Discussion

A growing area of research related to expert sport performance involves

analyzing the outcomes of MLB home plate umpires’ ball–strike decisions (e.g.,

Green & Daniels, 2014; Lindbergh, 2014; Marchi & Albert, 2014; Mills, 2014;

Sievert, 2014). With the availability of PITCHf/x data, researchers can now

quantitatively model home plate umpire decisions while examining patterns in

judgment accuracy and the presence of e↵ects of pitch- and umpire-related variables.

The purpose of the current study was to examine the association of pitch-

and umpire-related factors on the accuracy of umpires’ ball–strike decisions during

the course of an entire MLB season. Umpire decisions were treated as any pitch on

which the umpire was required to call a strike or ball. The following hypotheses

were tested in the current study:

(1) MLB umpires will not di↵er in their accuracy of judging pitch outcomes.

(2) Pitch location will be associated with MLB umpires’ accuracy of judging

pitch outcomes. Specifically, compared to pitches located within the middle

and outer regions of the strike zone, umpires will demonstrate less accurate

decisions when pitches are located within the inner region of the strike zone.

(3) Ball–strike count will be associated with MLB umpires’ accuracy of judging

pitch outcomes. Specifically, compared to neutral and batter-advantaged

ball–strike counts, umpires will demonstrate less accurate decisions when

pitchers hold the advantage.

(4) After controlling for ball–strike count, pitch location will be associated with

MLB umpires’ accuracy of judging pitch outcomes. Specifically, umpires
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will demonstrate greater accuracy when pitches are located either in the

middle or outer regions of the strike zone.

(5) After controlling for pitch location, ball–strike count will be associated with

MLB umpires’ accuracy of judging pitch outcomes. Specifically, umpires

will demonstrate greater accuracy when ball–strike counts are either neutral

or favor when batters hold the advantage.

(6) Experience in MLB will be associated with umpires’ accuracy of judging

pitch outcomes. Specifically, compared to umpires with less experience,

umpires with more experience will demonstrate less accurate decisions.

(7) Umpire experience will not moderate the association between umpire

accuracy and either pitch location or ball–strike count.

The mean number of decisions made by umpires during the 2013 season was

approximately 4,357 (SD = 1,432.69). Umpires made approximately 149 decisions

per game during the 2013 season (SD = 5.89). Holding pitch location, ball–strike

count, and umpire experience constant, Major League Baseball umpires

demonstrated accuracy rates of approximately 90% to 95% (M = 92%, SD = 1%).

To put this proportion in perspective, MLB umpires can be expected to make

approximately 8–15 decision errors per game.

Results from the current study indicate umpires explain approximately 0.48%

of the variability in pitch outcomes. Both pitch location and ball–strike count were

observed to be associated with umpires’ accuracy of judging pitch outcomes. Of the

models estimated, Model 4b was observed to best fit the data. This model examined

the e↵ects of pitch location and ball–strike count on umpire decisions during the

2013 season. As predicted, umpires demonstrated greater accuracy during

ball–strike counts in which the either batter held the advantage or the count was
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neutral when pitches were located in either the middle or outer regions of the strike

zone.

E↵ects of Pitch Location and Ball–Strike Count on Umpire Decisions

Predicted probabilities of umpire decision accuracy should be interpreted in

light of the dependencies between pitch location and ball–strike count. In other

words, calculating the proportion of umpires’ accurate decisions when, for example,

pitchers hold the advantage in the ball–strike count will be misleading. Since each

pitch delivered by a pitcher during this situation is conditional on a particular

location in the strike zone, discretion should be used when interpreting results.

Hence, the probability that an umpire will judge a pitch accurately depends on that

pitch’s location and corresponding ball–strike count. As was demonstrated in Model

4b, an interaction was observed between pitch location and ball–strike count, which

suggested umpires are generally less accurate when pitchers hold the advantage in

the ball–strike count and pitches are located within the strike zone.

Minimal di↵erences were observed between the predicted probabilities of

umpires making accurate decisions when the ball–strike count was either neutral or

when batters held the advantage, and the pitch was located in either the middle or

outer region of the strike zone. In order to help layreaders grasp the larger context

of MLB umpires’ decisions, it may be of interest to examine the mean predicted

probabilities that umpires will make an accurate decision during each ball–strike

count condition across all pitch location conditions. For example, when pitchers

hold the advantage in the ball–strike count, across all pitch location conditions,

umpires have a mean predicted probability of approximately 87%, compared to 93%

and 92% when the ball–strike count is either neutral or when batters held the

advantage, respectively. The implication is that, across all pitch locations, umpires

appear to make less accurate decisions when a pitcher holds the advantage in the
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ball–strike count. This noticeable di↵erence in umpire decision accuracy likely forces

pitchers to be more cognizant of throwing the ball to precisely the area of the

intended target, lest they shift the ball–strike to the batter’s advantage.

Likewise, we can examine predicted probabilities that umpires will make an

accurate decision during each pitch location condition across all ball–strike count

conditions. When pitches are delivered to the inner region of the strike zone, across

all ball–strike count conditions, umpires have a mean predicted probability of

approximately 87%, compared to 92%, 93%, and 92% when pitches are delivered

outside, in the middle, and in the outer regions of the strike zone, respectively.

Several authors have made similar observations (e.g., Ford, Gallagher, Lacy,

Bridwell, & Goodwin, 1999; Fast, 2007).

More specifically, during ball–strike counts in which the batter held the

advantage, umpires were predicted to be 97% accurate when pitches were located in

the middle region of the strike zone. During neutral counts, umpires were predicted

to be approximately 96% accurate when pitches were located in the middle region of

the strike zone. When batters held the advantage in the count and pitches were

located in the outer region of the strike zone, umpires were predicted to be

approximately 95% accurate. Likewise, umpires were predicted to be 94% accurate

during neutral counts when pitches were located in outer region of the strike zone.

Overall, umpires demonstrated relatively lower accuracy rates on pitches located in

the inner region of the strike zone. In this condition, umpires were predicted to be

90% and 89% accurate when either batters held the advantage in the ball–strike

count or when the count was neutral, respectively.

Conversely, umpires demonstrated noticeably lower accuracy rates across all

pitch location conditions when pitchers held the advantage in the ball–strike count.

Specifically, umpire accuracy rates were predicted to be 88% and 86% when pitches

were located in the middle and outer regions of the strike zone, respectively.
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Umpires were predicted to be approximately 81% accurate when pitches were

located in the inner region of the strike zone. This suggests umpires may be more

inclined to shrink, or tighten the strike zone when pitchers hold the advantage over

batters in the ball–strike count.

In terms of pitch location, during the game pitchers may be more apt to try

and deliver the ball away from the middle region of the plate as batters typically

prefer to hit pitches located in this region. Thus, pitchers may concentrate on

delivering the ball as as close to the inner and outer regions of the strike zone while

also ensuring the pitch remains within the strike zone area. For example, during the

2013 season, pitchers threw to the inner and outer regions of the strike zone 68% of

the time (n = 62,766) and only 32% to the middle region (n = 30,142).

As a result, umpires’ decisions may be a↵ected by pitchers’ strategies. As

pitchers concentrate on locating their pitches near the inner and outer edges of the

strike zone, away from the middle, umpires’ decisions become more critical. An

expert umpire should, regardless of a pitch’s location, demonstrate mastery of the

strike zone by accurately distinguishing balls from strikes. Results obtained in the

current study demonstrate that, during the 2013 season, MLB umpires exhibit

expertise when making ball–strike decisions, even to the inner and outer regions.

Umpire Expertise

When making decisions, expert umpires appear to demonstrate an ability to

utilize knowledge of situational probabilities when making decisions. For example,

Millslagle, Hines, and Smith (2013) examined the visual search behavior of expert

and near-expert baseball umpires, noting di↵erences in quiet eye gaze behavior.

Millslagle et al. (2013) define quiet eye gaze behavior as the period of visual or

tracking fixation on a specified location or target. Their results indicated that, as

pitchers released the ball, the quiet eye gaze of expert umpires, occurred earlier and
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was longer in duration, compared to near-expert umpires. This suggests that expert

umpires appear to demonstrate an ability to gather more information about a pitch

and its eventual location while tracking the ball, thus improving umpire decision

accuracy. Similarly, eye movements among expert sport performers have been

demonstrated to be controlled by a search strategy, allowing the performer to use

time more e�ciently while analyzing the display (Williams, Davids, & Williams,

1999). These strategies include procedural knowledge, advance cue utilization,

pattern recall and recognition, and knowledge of situational probabilities (Ghasemi,

et al., 2011; Paull, et al., 1997; Takeuchi, et al., 2009; Williams, et al., 2004;

Williams, et al., 2009).

In a recent study evaluating contextual influences on ball–strike decisions in

umpires, players, and control group participants, MacMahon and Starkes (2008)

found that both umpires and players were significantly more accurate in their

ball–strike judgments compared to the control group participants. In a direct

information task MacMahon and Starkes (2008), pitches located on the periphery of

the strike zone were presented through the use of interactive video followed by

pitches of definite balls and definite strikes. After viewing a definite ball,

participants were more likely to call subsequent pitches strikes than they were after

viewing an obvious strike. Participants also demonstrated bias toward calling strikes

when presented with scenarios of di↵ering pitch counts. For example, when a batter

was faced with a three-ball count (i.e., 3-0, 3-1, or 3-2), participants were more

likely to call the subsequent pitch a strike. These findings suggest that standards for

ball–strike decisions will fluctuate based on the context in which they were

presented.

Relatedly, Marchi and Albert (2014) demonstrated that the size of the strike

zone is observed to change noticeably during 0-2 (pitcher-advantaged), and 3-0

(batter-advantaged) ball–strike counts, compared to 0-0 counts. Walsh (2010)
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suggested a tendency in umpires to purposefully make a wrong decision may be

related to an attempt to maintain competitive balance. In this case, an umpire may

make decisions which favor a batter who is behind in the ball–strike count when a

pitch is marginally close to the strike zone. This tendency may be more reflective of

umpires’ desire to refrain from being the deciding factor in a game. Green and

Daniels (2014) found evidence for umpires making so-called strategic errors during

ball–strike situations in which umpires consciously avoid making pivotal decisions.

Relatedly, Bill Klem, one of only two umpires elected to the Baseball Hall of Fame,

once quipped, “The best umpired game is the game in which the fans cannot recall

the umpires who worked it” (Baseball Reference, 2012). While there appears to be

empirical evidence which suggests that umpires may purposefully make wrong

decisions in order to avoid unnecessary scrutiny, there may also be unwritten rules

among umpires to remain as anonymous as possible during competition, which may

compel them to make decisions resulting in less contention from players and

managers.

Strike Zone Conceptualization

The MLB Rule Book (2014) definition of the strike zone was employed in

order to determine umpire decision accuracy at the pitch-level. The strike zone is

conceptualized as an imaginary, rectangular area with a standard width and upper

and lower boundaries dependent upon the height and stance of a batter. Several

specifications are noted.

First, the upper and lower limits of each batter’s strike zone parameters were

mean-aggregated across the 2013 season. This allowed each individual batter in the

data to have a uniform upper and lower strike zone limit, while controlling for any

di↵erences between PITCHf/x operators’ estimations of batters’ strike zone

parameters. Furthermore, since batters’ height and stance are assumed to remain
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constant across all plate appearances, taking the mean of individual batter’s upper

and lower strike zone limits is reasonable.

Second, the standard width of the strike zone was determined to be

approximately 20.14 inches. This value was obtained by adding the length of the

radius of a regulation-size baseball (1.57 inches) to both sides of the 17 inch home

plate. Per the MLB Rulebook (2014), a strike occurs when any part of the ball

passes through any part of the strike zone. Readers are reminded that the x- and

y-coordinates of pitches in the PITCHf/x data represent the center point of the ball.

Thus, adding the length of the radius of a regulation-size baseball reconceptualizes

the width of the strike to be 20.14 inches, not 17 inches. I posit that this allows for

a more realistic and accurate estimation of umpire decision accuracy.

Umpire Positioning

Current umpire training curriculum and instruction materials recommend

home plate umpires position themselves directly behind the inner region of home

plate in order to view the area between the catcher’s shoulder and the batter’s

hands (Moore, 2013). From the umpire’s perspective this area would be the left side

of home plate for right handed batters. For left handed batters, umpires would be

positioned over the right side of home plate. It is possible that as batters try and

position themselves to better reach pitches delivered to the outside region of home

plate they obstruct the umpire’s view of the inner region, thus preventing him from

making an accurate decision.

Ford, Gallagher, Lacy, Bridwell, and Goodwin (1999) found that when

umpires are repositioned from viewing pitches over the inner region to viewing

pitches over the outer region, their accuracy rates are improved. Repositioning the

umpire in this way may o↵er a better angle at which to view inside pitches. One

limitation of this study is that Ford, et al. (1999) did not account for e↵ects of
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ball–strike count on umpire decisions, nor did they account for the e↵ect of visual

search behavior among the umpire sample. Although I hypothesize that the visual

search behavior of expert sport performers is similar among expert sport o�cials,

more research in this area is needed. As noted in Chapter Two, numerous studies

have been conducted in order to understand the visual search patterns of expert

sport performers (e.g., Abernethy, 1991; Davids & Williams, 1998; Ghasemi,

Momeni, Jafarzadehpur, Rezaee, & Taheri, 2011; Shim, Carlton, & Chow, & Chae,

2005). However, fewer studies have been designed in order to test the visual search

patterns of baseball umpires.

I posit cognitive processes involved in umpire decision making can be

observed by examining the di↵erences between umpire accuracy rates during

pitcher- and batter-advantaged ball–strike counts. In general, across all ball–strike

count combinations, umpires’ decisions are less accurate when pitches are located in

the inner region of the strike zone. One explanation for this tendency may be related

to the location in which an umpire positions himself when viewing pitches. However,

more experimental trials are needed in order to better understand this trend.

General Conclusions

Over the course of an entire season, professional baseball umpires

demonstrate accurate ball–strike judgment and decision making expertise. Before

umpires earn a full-time job in MLB, they typically spend a number of years

umpiring in the minor leagues (Weber, 2010). Furthermore, umpires typically are

required to accrue a minimum of 300 MLB games before becoming eligible for

full-time employment at the Major League level. Thus, given the scrutiny with

which they are evaluated, umpires who reach MLB on a full-time basis can be

assumed to possess domain-specific expertise.
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Although noticeable di↵erences were observed during certain ball–strike count

and pitch location conditions, umpires appear to be able to accurately distinguish

when a pitch is located inside our outside of the imaginary strike zone area.

Moreover, umpires are required to make these decisions in a relatively rapid

sequence of judgment and decision making, even in spite of the ways in which the

strike zone parameters change from batter to batter. Umpires may also be forced to

adjust to the varying conditions in which pitches are delivered. For example,

pitchers routinely vary the speed, trajectory, and location of pitches, which may

combine to make it di�cult for umpires to accurately view and judge the pitch

outcome.

Limitations

Data from a Single Season

The current study examined the e↵ects of pitch location and count on

professional baseball umpires’ ball–strike decisions over the course of a single season.

The assumption for analyzing data for a single season was based on the fact that

that home plate umpires’ performances are regularly reviewed and critiqued by

MLB performance evaluators (Lindbergh, 2014). As a result, umpires receive

post-game reports and feedback on all decisions made. Therefore, given the regular

pattern of performance evaluation, I hypothesized that home plate umpires’

performance would remain fairly consistent over the course of a single season. Thus,

between-season e↵ects were omitted.

Longitudinal E↵ects

Ignoring potential e↵ects for time, or more specifically, season, could be a

potential limitation of the current study. Umpires who, in one season, may have

performed at a lower rate may, in the next season, improve. Accounting for growth

83



over time may result in more accurate estimations of home plate umpire decision

making expertise. Since data generated by the PITCHf/x system dates back to

2008, including a season-level e↵ect may be beneficial for future studies. One such

study supports this view. Analyzing PITCHf/x data for the 2008–2013 seasons,

Mills (2014) observed reductions in MLB umpire performance variability, suggesting

this improvement is related in part to increased umpire performance monitoring.

PITCHf/x Data Accuracy

Data from the PITCHf/x system are assumed to be accurate. Nathan (2008)

demonstrated that the PITCH/fx system is calibrated to be accurate within 0.5

inches. Thus, pitches within this margin of error when calculating the parameters of

the strike zone used to determine umpire accuracy may have been incorrectly coded

as either correct or incorrect, depending on the location. Similarly, because the top

and bottom parameters of each batter’s strike zone are manually adjusted by a

PITCHf/x operator at each MLB stadium, di↵erences between stadium operator’s

strike zone settings may a↵ect the strike zone parameters used in order to determine

umpire decision accuracy. Future studies should account for potential stadium

operator e↵ects by measuring the di↵erences in batter’s top and bottom strike zone

limits between stadiums.

Outcome Variable Categorization

For the current study, the outcome variable, umpire decision, was

dichotomized to indicate whether the umpire’s decision was either correct or

incorrect. In terms of the research questions posed and hypotheses tested,

dichotomizing the outcome variable was important in order to determine initially

how accurate umpires are given the pitch-related predictor variables examined.

Knowing more about the e↵ects of pitch-related factors on umpire decision accuracy

may lay the foundation for further investigating umpire decisions. However,
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dichotomizing the outcome variable may decrease understanding of the degree to

which an umpire is accurate or inaccurate. For example, future studies should

examine the e↵ects of a pitch’s proximity to the strike zone in order to determine

degrees of error in umpire decisions. In other words, distance from the strike zone

should be included in the outcome variable. A possible solution may involve

weighting the di�culty in judging a pitch’s outcome from a reference point, such as

the center of the strike zone.
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APPENDIX B

Database Construction

In order to prepare and arrange the data for multilevel analysis, two file

structures with a common identification variable were created. The presence of two

file structures allows for the arrangement of data at Level-2 to be joined or merged

with data at Level-1. Level-2 data consist of umpire-specific variables including

umpire names and number of years experience in MLB. Using the R function

join() from the dplyr library (Wickham, 2011), both file structures were combined

by matching umpire names. In this case, the umpire names act as an ID variable

when the join() function is called in R. R code used to construct the

PITCHf/x database used in the current analysis is available below.

# ==============================================================

# PITCHf/x Database Construction

# ==============================================================

# --- Load package libraries (if necessary) --- #

library(pitchRx)

library(RSQLite)

library(RSQLite.extfuns)

library(devtools)

library(dplyr)

# --- Initialize SQLite database --- #

# *src_sqlite* creates a local database called *pfx_13.sqlite3*

pfx_13 <- src_sqlite("pfx_13.sqlite3", create = TRUE)

# --- Set XML files to collect --- #

# *inning_all.xml*, *players.xml*, and *miniscoreboard.xml* contain

# pitch/game variables, player IDs, and umpire IDs, respectively

# NOTE: Player IDs and umpire IDs are used for joining purposes

files <- c("inning/inning_all.xml", "players.xml", "miniscoreboard.xml")

# --- Collect 2013 PITCHf/x data --- #

scrape(start = "2013-01-01", end = "2013-12-31",

suffix = files, connect = pfx_13$con)
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# --- Verify *pfx_13* tables --- #

pfx_13

# --- Load SQLite table --- #

pfx_13_all <- src_sqlite("~/pfx_13.sqlite3")

# --- Convert *atbat*, *pitch*, and *umpire* to standalone tables --- #

atbat <- tbl(pfx_13_all, "atbat")

pitch <- tbl(pfx_13_all, "pitch")

umpire <- tbl(pfx_13_all, "umpire")

# --- Select, group, and collect variables from tables above --- #

# *num*: Variable for pitch sequence number

# *stand*: Batter handedness

# *gameday_link*: ID variable specifying teams and game start time

atbats <- atbat %>%

select(num, stand, b_height, gameday_link) %>%

group_by(gameday_link)

atbats <- collect(atbats)

# *call*: Renamed umpire desision variable (*des*)

# *sz_top*: Specifies top parameter of batter’s strike zone

# *sz_bot*: Specifies bottom parameter of batter’s strike zone

# *px*: X coordinate of pitch location

# *pz*: Y coordinate of pitch location

# *zone*: Specifies which region of the strike zone the pitch was located

# *num*: Variable for pitch sequence number

# *count*: Specifies ball-strike count at time of pitch

# *gameday_link*: ID variable specifying teams and game start time

pitches <- pitch %>%

select(call = des, sz_top, sz_bot, px, pz, zone, num,

count, gameday_link) %>%

#filter(call == "Called Strike" | call == "Ball") %>%

group_by(gameday_link)

pitches <- collect(pitches)

# *umpire*: Renamed umpire ID variable (*name*)

# *gameday_link*: ID variable specifying teams and game start time

# *position == home*: Selects only home plate umpires

umpires <- umpire %>%

select(umpire = name, gameday_link) %>%

filter(position == home) %>%

group_by(gameday_link)

umpires <- collect(umpires)

# --- Join *atbat*, *pitch*, and *umpire* tables by *gameday_link* --- #

# Joins *pitches* and *atbats* data frames by *num* and *gameday_link*
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ps_abs <- left_join(pitches, atbats, by = c("num", "gameday_link"))

# Joins *ps_abs* data frame with *umpires* data frame by *gameday_link*

ps_abs_us <- left_join(ps_abs, umpires, by = "gameday_link", copy = TRUE)

# Rename ps_abs to pfx_13 and collect all rows

# *dplyr* package uses *n = -1* to collect all rows

pfx_13 <- tbl_df(as.data.frame(ps_abs_us, n = -1))

# --- Exclude pitches with missing X and Y pitch coordinates --- #

pfx_13 <- na.omit(pfx_13)

# --- Add player sz limits by *b_height* --- #

# *player_sz_bot*: New variable that adds mean bottom parameter of

# batter’s strike zone accross all pitches

# *player_sz_top*: New variable that adds mean top parameter of

# batter’s strike zone accross all pitches

pfx_13 <- pfx_13 %>%

group_by(b_height) %>%

mutate(player_sz_bot = mean(sz_bot)) %>%

mutate(player_sz_top = mean(sz_top))

# --- Create *u_test* variable for umpire’s decision [1 = correct] --- #

# If pitch coordinates are located inside strike zone and umpire

# called pitch a strike, *u_test* = 1

# If pitch coordinates are located outside strike zone and umpire

# called pitch a strike, *u_test* = 0

# If pitch coordinates are located inside strike zone and umpire

# called pitch a ball, *u_test* = 0

# If pitch coordinates are located outside strike zone and umpire

# called pitch a ball, *u_test* = 1

# px limits account for addition of ball radius to strike zone width

# Ball radius = ((1.57^2 + 17) / 12) / 2

pfx_13$u_test <- with(pfx_13,

ifelse(call == "Ball" & px < -0.8110375 | px > 0.8110375 |

pz < player_sz_bot | pz > player_sz_top, 1,

ifelse(call == "Called Strike" & pz > player_sz_bot &

pz < player_sz_top &

px >= -0.8110375 & px <= 0.8110375, 1,

ifelse(call == "Ball" & pz > player_sz_bot &

pz < player_sz_top &

px > -0.8110375 & px < 0.8110375, 0,

ifelse(call == "Called Strike" & px < -0.8110375 | px > 0.8110375 |

pz < player_sz_bot | pz > player_sz_top, 0, 99)))))

# --- Rearrange variables in preferred order --- #

pfx_13 <- pfx_13 %>%

select(c(count, sz_top, sz_bot, player_sz_top, player_sz_bot,
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px, pz, zone, b_height, stand, call, umpire, u_test))

# Ensure all *u_test* outcomes are either 1 or 0

with(pfx_13, mean(as.numeric(u_test)))

table(pfx_13$u_test)

# --- Specify *count* advantages --- #

# 1. Add *bs_count* variable to indicate who has the advantage (p vs. b)

# Based on Marchi & Albert, 2014

pfx_13$bs_count <- with(pfx_13,

# 1.1 Neutral

ifelse(count == "0-0" | count == "1-0" |

count == "1-1" | count == "2-1", "neutral",

# 1.2 Batter

ifelse(count == "2-0" | count == "3-0" |

count == "3-1" | count == "3-2", "batter",

# 1.3 Pitcher

ifelse(count == "0-1" | count == "0-2" |

count == "1-2" | count == "2-2", "pitcher", 99)

)))

# 2. Convert *count* to factor

pfx_13$bs_count <- as.factor(pfx_13$bs_count)

# --- Respecify *zone* regions --- #

pfx_13$zone_reg <- with(pfx_13,

# 1. RHBs

ifelse(stand == "R" & zone == "1" |

stand == "R" & zone == "4" |

stand == "R" & zone == "7", "inner",

ifelse(stand == "R" & zone == "2" |

stand == "R" & zone == "5" |

stand == "R" & zone == "8", "middle",

ifelse(stand == "R" & zone == "3" |

stand == "R" & zone == "6" |

stand == "R" & zone == "9", "outer",

# 2. LHBs

ifelse(stand == "L" & zone == "1" |

stand == "L" & zone == "4" |

stand == "L" & zone == "7", "outer",
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ifelse(stand == "L" & zone == "2" |

stand == "L" & zone == "5" |

stand == "L" & zone == "8", "middle",

ifelse(stand == "L" & zone == "3" |

stand == "L" & zone == "6" |

stand == "L" & zone == "9", "inner", "ball")))))))

# 3. Convert *zone* to factor

pfx_13$zone_reg <- as.factor(pfx_13$zone_reg)

# --- Relevel *zone_reg* to make "ball" reference group --- #

pfx_13$zone_reg <- relevel(pfx_13 $zone_reg, ref = "ball")

# --- Relevel *bs_count* to make "neutral" reference group --- #

pfx_13 $bs_count <- relevel(pfx_13 $bs_count, ref = "neutral")

# --- Rearrange variables --- #

pfx_13 <- pfx_13 %>%

select(c(count, bs_count, sz_top, sz_bot, player_sz_top, player_sz_bot,

px, pz, zone, zone_reg, b_height, stand, call, umpire, u_test))

# --- Read in umpire-level --- #

ump_df <- read.csv("umpire_level_data.csv", header = TRUE)

ump_df$umpire <- as.character(ump_df$umpire)

# --- Join pfx_13 with ump_df by *umpire* --- #

pfx_13 <- left_join(pfx_13, ump_df, by = "umpire", copy = TRUE)
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APPENDIX C

R Scripts for Data Analyses

# --- Load pacakges (if necessary) --- #

library(lme4, quietly = TRUE)

library(dplyr, warn.conflicts = FALSE)

library(ggplot2)

library(xtable)

library(VGAM)

library(descr)

# ==============================================================

# Model Descriptive Statistics

# ==============================================================

# --- Load SQLite table --- #

pfx_13_all <- src_sqlite("~/pfx_13.sqlite3")

# --- Total number of pitches thrown during each game in 2013 --- #

pfx_13_all %>%

group_by(gameday_link) %>%

summarize(N = length(call))

pfx_13_all %>%

group_by(gameday_link) %>%

summarize(N = length(call)) %>%

summarize(min = min(N), max = max(N), mean = mean(N), sd = sd(N))

# --- Mean/SD number of pitches per game in 2013 --- #

msd_pitches <- pfx_13_all %>%

group_by(gameday_link) %>%

summarize(N = length(call)) %>%

summarize(mean = mean(N), sd = sd(N))

# --- Mean/SD number of decisions per game in 2013 --- #

msd_decisions <- pfx_13_all %>%

group_by(gameday_link) %>%

filter(call == "Called Strike" | call == "Ball") %>%

summarize(N = length(call)) %>%

summarize(min = min(N), max = max(N), mean = mean(N), sd = sd(N))

# --- Create data frame for pitches and decisions --- #

names <- c("Total Pitches", "Umpire Decisions")
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N <- c(n_pitches, n_decisions)

M <- c(msd_pitches[, 1], msd_decisions[, 1])

SD <- c(msd_pitches[, 2], msd_decisions[, 2])

pitches_tbl <- data.frame(N, M, SD, row.names = names)

xtable(pitches_tbl)

# --- Umpire decisions by pitch location --- #

zones <- CrossTable(pfx_13$call, pfx_13$zone_reg, prop.r = FALSE,

prop.c = FALSE, prop.t = TRUE, prop.chisq = FALSE)

# XTABLE

xtable(zones, caption = "Number and proportion of umpire

decisions by pitch location", digits = 2)

# --- Umpire decision outcomes by pitch location --- #

zones.acc <- CrossTable(pfx_13$u_test, pfx_13$zone_reg, prop.r = FALSE,

prop.c = FALSE, prop.t = TRUE, prop.chisq = FALSE)

# XTABLE

xtable(zones.acc, caption = "Number and proportion of umpire

decision outcomes by pitch location", digits = 2)

# --- Umpire decisions by ball-strike count --- #

counts <- CrossTable(pfx_13$call, pfx_13$bs_count, prop.r = FALSE,

prop.c = FALSE, prop.t = TRUE, prop.chisq = FALSE)

# XTABLE

xtable(counts, caption = "Number and proportion of umpire

decisions by ball--strike count", digits = 2)

# --- Umpire decision outcomes by ball-strike count --- #

counts.acc <- CrossTable(pfx_13$u_test, pfx_13$bs_count, prop.r = FALSE,

prop.c = FALSE, prop.t = TRUE, prop.chisq = FALSE)

# XTABLE

xtable(counts.acc, caption = "Number and proportion of umpire

decision outcomes by ball--strike count", digits = 2)

# --- Proportion of correct decisions by location and count --- ##

ump_dd <- pfx_13 %>%

group_by(zone_reg, bs_count) %>%

summarize(u_test = mean(u_test))
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# ==============================================================

# Multilevel Model Summary Code

# ==============================================================

# --- Read in multilevel data frame *pfx_13* --- #

load("pfx_13.rda")

# --- Relevel "zone_reg" to make "ball" reference group --- #

pfx_13$zone_reg <- relevel(pfx_13$zone_reg, ref = "ball")

# --- Relevel "bs_count" to make "neutral" reference group --- #

pfx_13$bs_count <- relevel(pfx_13$bs_count, ref = "neutral")

# --- Inverse Logit Function --- #

inv.logit <- function(x){
1 / (1 + exp(-x))

}

# --- Standard error function --- #

se <- function(var, length){
sqrt(var) / sqrt(length)

}

# ==============================================================

# Model 0

#

# Empty logistic regression model for predicting probability of

# accurate umpire decision

# ==============================================================

m0 <- glm(u_test ~ 1, data = pfx_13, family = binomial)

# Print model output

summary(m0)

# Extract Model 0 coefficients

coef <- m0$coefficients

# Calculate odds ratio for Model 0

exp_coef <- exp(coef)

# Obtain 95% CI for odds ratio

exp_ci <- exp(confint(m0))

# Calculate inverse logit of exponentiated coefficient

ll <- exp_ci[1] / (1 + exp_ci[1])

ul <- exp_ci[2] / (1 + exp_ci[2])
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# ==============================================================

# Model 1

#

# Predcits probability of accurate umpire decision with

# random effect for umpire

# ==============================================================

m1 <- glmer(u_test ~ 1 + (1 | umpire), data = pfx_13,

family = binomial, nAGQ = 0)

# Extract umpire variance

m1_vc <- VarCorr(m1)

print(m1_vc, comp = c("Variance", "Std.Dev"), digits = 3)

# Transform m1 fixed effects

# 1. Extract fixed effects

(m1_fe <- fixef(m1))

# 2. Obtain odds ratios

(m1_odds <- exp(m1_fe))

# 3. Obtain probability

(m1_prob <- inv.logit(m1_fe))

# 4 Extract residual variance

m1_var <- summary(m1)$varcor$umpire[1, 1]

# 4.1 Calculate m1 ICC

(ump_icc <- m1_var / (m1_var + (pi^2) / 3))

# 5. m1 fixed effect CIs

m1_se <- sqrt(diag(vcov(m1)))

(m1_cis <- data.frame(Est = fixef(m1),

LL = fixef(m1) - 1.96 * m1_se,

UL = fixef(m1) + 1.96 * m1_se))

(m1_cis_exp <- exp(m1_cis))

# 6. m1 random effect CIs

m1_s2 <- m1@theta

m1_n <- nrow(ranef(m1)$umpire)

(m1_sd_cis <- data.frame(Est = m1_s2,

LL = (m1_n - 1) * m1_s2 / qchisq(0.975, df = m1_n - 1),

UL = (m1_n - 1) * m1_s2 / qchisq(0.025, df = m1_n - 1)))
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# ==============================================================

# Model 2

#

# Predicts probability of accurate umpire decision with fixed

# effects for pitch location (*zone_reg*), with random effects

# for umpire

# ==============================================================

m2 <- glmer(u_test ~ factor(zone_reg) + (1 | umpire),

data = pfx_13, family = binomial, nAGQ = 0)

# ==============================================================

# Model 3

#

# Predicts probability of accurate umpire decision with fixed

# effects for ball-strike count (*bs_count*), with random effects

# for umpire

# ==============================================================

m3 <- glmer(u_test ~ factor(bs_count) + (1 | umpire),

data = pfx_13, family = binomial, nAGQ = 0)

# ==============================================================

# Model 4

#

# Predicts probability of accurate umpire decision with fixed

# effects for pitch location (*zone_reg*) and ball-strike count

# (*bs_count*), with random effects for umpire

# ==============================================================

m4 <- glmer(u_test ~ factor(zone_reg) + factor(bs_count) + (1 | umpire),

data = pfx_13, family = binomial, nAGQ = 0)

# ==============================================================

# Model 4a

#

# Predicts probability of accurate umpire decision with fixed

# effects and interactions for pitch location (*zone_reg*)

# and ball-strike count (*bs_count*), with random effects for

# umpire

# ==============================================================

m4a <- glmer(u_test ~ factor(zone_reg)*factor(bs_count) +

(1 | umpire), data = pfx_13,

family = binomial, nAGQ = 0)
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# ==============================================================

# Model 4b

#

# Predicts probability of accurate umpire decision with fixed

# effects and interactions for pitch location (*zone_reg*)

# and ball-strike count (*bs_count*), with random effects for

# pitch location, ball-strike count, and umpire

# ==============================================================

m4b <- glmer(u_test ~ factor(zone_reg)*factor(bs_count) +

(factor(zone_reg) + factor(bs_count) | umpire),

data = pfx_13, family = binomial, nAGQ = 0)

# Extract random components for variance/covariance table

m4b_vc <- as.data.frame(VarCorr(m4b))

names(m4b_vc) <- c("Group", "V1", "V2", "VCov", "SD/Cor")

xtable(m4b_vc[, -1])

# Model 3d predicted probabilities table

pfx_13.pred <- pfx_13

X <- model.matrix(terms(m4b), data = pfx_13.pred)

b <- fixef(m4b)

pred.logit <- X %*% b

pred.prob <- logit(pred.logit, inverse = TRUE)

pfx_13.pred2 <- data.frame(cbind("pred.logit" = pred.logit,

"pred.prob" = pred.prob, zone = pfx_13.pred$zone_reg,

count = pfx_13.pred$bs_count))

pfx_13.pred2$zone <- as.factor(pfx_13.pred2$zone)

levels(pfx_13.pred2$zone) <- c("Ball", "Inner", "Middle", "Outer")

pfx_13.pred2$count <- as.factor(pfx_13.pred2$count)

levels(pfx_13.pred2$count) <- c("Neutral", "Batter", "Pitcher")

colnames(pfx_13.pred2)[1:2] <- c("pred.logit","pred.prob")

(pred_prob_table <- unique(pfx_13.pred2[order(pfx_13.pred2$zone,

pfx_13.pred2$count), ])

)
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# ==============================================================

# Model 5

#

# Predicts probability of accurate umpire decision with grand-mean

# centered fixed effect for umpire experience and random effect

# for umpire

# ==============================================================

m5 <- glmer(u_test ~ scale(yr_exp) + (1 | umpire), data = pfx_13,

family = binomial, nAGQ = 0)

# ==============================================================

# Model 6

#

# Predicts probability of accurate umpire decision with fixed

# effects for pitch location (*zone_reg*) and ball-strike count

# (*bs_count*), with interactions between pitch location, ball-

# strike count and umpire experience (*yr_exp*) with random

# effect for umpire

# ==============================================================

m6 <- glmer(u_test ~ factor(zone_reg)*scale(yr_exp) +

factor(bs_count)*scale(yr_exp) +

(1 | umpire), data = pfx_13, family = binomial, nAGQ = 0)

# ==============================================================

# Model Rankings

#

# Calculates model fit indices for each model estimated, stores

# results in new data frame, *results*, and ranks each model

# by AIC index

# ==============================================================

# Create lists of model summary output for each model

pfx_models <- list( )

pfx_models[[1]] <- m0

pfx_models[[2]] <- m1

pfx_models[[3]] <- m2

pfx_models[[4]] <- m3

pfx_models[[5]] <- m3a

pfx_models[[6]] <- m3b

pfx_models[[7]] <- m3c

pfx_models[[8]] <- m3d

pfx_models[[9]] <- m4

pfx_models[[10]] <- m5

pfx_models[[11]] <- m6
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# Vector of model names for *pfx_models*

model.names <- c("Model 0", "Model 1", "Model 2", "Model 3",

"Model 3a", "Model 3b", "Model 3c", "Model 3d", "Model 4",

"Model 5", "Model 6")

# Add *model.names* to *pfx_models* list

names(pfx_models) <- model.names

# Create new data frame, *results* to contain output from

# model fit indices

results <- data.frame(models = model.names)

results$bic.val <- unlist(lapply(pfx_models, BIC))

results$bic.rank <- rank(results$bic.val)

results$aic.val <- unlist(lapply(pfx_models, AIC))

results$aic.delta <- results$aic.val-min(results$aic.val)

results$aic.likelihood <- exp(-0.5* results$aic.delta)

results$aic.weight <- results$aic.likelihood/sum(results$aic.likelihood)

results <- results[rev(order(results[, "aic.weight"])), ]

results$cum.aic.weight <- cumsum(results[, "aic.weight"])

xtable(results)
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