
ABSTRACT

The Left-De�nite Spectral Analysis of the Legendre Type Di¤erential Equation

Davut Tuncer, Ph.D.

Advisor: Lance L. Littlejohn, Ph.D.

Littlejohn and Wellman developed a general abstract left-de�nite theory for a

self-adjoint operator A that is bounded below in a Hilbert space (H; (�; �)). More

speci�cally, they construct a continuum of Hilbert spaces f(Hr; (�; �)r)gr>0 and, for

each r > 0, a self-adjoint restriction Ar of A in Hr. The Hilbert space Hr is called

the rth left-de�nite Hilbert space associated with the pair (H;A) and the operator

Ar is called the rth left-de�nite operator associated with (H;A). We apply this left-

de�nite theory to the self-adjoint Legendre type di¤erential operator generated by

the fourth-order formally symmetric Legendre type di¤erential expression

`[y](x) := ((1� x2)2y00(x))00 � ((8 + 4A(1� x2))y0(x))0 + �y(x);

where the numbers A and � are, respectively, �xed positive and non-negative para-

meters and where x 2 (�1; 1).
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CHAPTER ONE

Bochner-Krall Orthogonal Polynomials

1.1 Introduction

This chapter provides background material on some aspects of orthogonal poly-

nomials in general, and Bochner-Krall orthogonal polynomials in particular. In

1929, Bochner [7] classi�ed all orthogonal polynomial solutions (see Section 1.4) to

a second-order di¤erential equation of the form

a2 (x) y
00 (x) + a1 (x) y

0 (x) + a0 (x) y (x) = �y (x) ; (1.1.1)

where a2 (x), a1 (x), and a0 (x) are polynomials and � is a real parameter indepen-

dent of x. Up to a complex linear change of variable, we have only the classical

polynomials of Jacobi, Laguerre, Hermite, Bessel as well as the monomials fxng1n=0
(which cannot form an orthogonal sequence with respect to a positive measure).

Bochner�s result naturally leads to a question of classifying all orthogonal

polynomial solutions to higher-order di¤erential equations of the form

LN [y] (x) =
NX
i=0

ai (x) y
(i) (x) = �ny (x) ; N 2 N , and n 2 N0; (1.1.2)

where (necessarily) ai (x) =
iP
j=1

aijx
j for some real constants aij and

�n = a11n+ a22 (n� 1) + :::+ aNNn (n� 1) ::: (n�N + 1).

In Section 1.2, we will state the important classi�cation theorem given by H. L.

Krall in 1938. In Section 1.3, we will review some fundamental properties of orthog-

onal polynomials. Sections 1.4, 1.5, and 1.6 are devoted to the study of the known

Bochner-Krall orthogonal polynomial sequences, that is, sequences fpn (x)g1n=0 ; of

orthogonal polynomials which satisfy a di¤erential equation of the form (1.1.2). The

name "Bochner-Krall" for such polynomials was introduced by A. M. Krall and L.
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L. Littlejohn [41] in honor of the many contributions of S. Bochner and H. L. Krall

to the theory of orthogonal polynomials. In Section 1.7, we will focus on �ve par-

ticular examples of Bochner-Krall polynomials which we will call the Legendre(r)

polynomials for the reasons explained in the section. In the �nal section, we will

brie�y discuss the Koornwinder polynomials since they are generalizations of all

known Bochner-Krall polynomials.

1.2 Krall�s Classi�cation Theorem

In 1938, H. L. Krall proved his important classi�cation theorem:

Theorem 1.2.1. (a) Suppose, for each n 2 N0; y = pn (x) is a polynomial solution

of degree n of the equation LN [y] (x) = �ny (x). In addition, suppose f�ng1n=0 is a

sequence of real numbers satisfying the conditions

(i) �n :=

�������������

�0 �1 � � � �n

�1 �2 � � � �n+1
...

. . .
...

�n �n+1 � � � �2n

�������������
6= 0 for each n 2 N0; (�0 := �0) ; and

(ii) Sk (m) :=
Pr

i=2k+1

Pi
u=0

�
i�k�1
k

�
P (m� 2k � 1; i� 2k � 1) ai;i�u�m�u = 0

(1.2.1)

for all integers m � 2k + 1 and all integers k satisfying 2k + 1 � r; and where

P (m; i) = m (m� 1) � � � (m� i+ 1) : Then, fpng1n=0 is an orthogonal polynomial

sequence with respect to some measure � whose moments are given by f�ng1n=0 ;

that is, Z
R

xnd� = �n (n 2 N0) :

Furthermore, N is necessarily even.

(b) Conversely, suppose fpng1n=0 is an orthogonal polynomial sequence with

respect to some measure � having moment sequence f�ng1n=0 (so �n 6= 0 for all

n 2 N0). In addition, suppose there exist a positive integer N and (N+1)(N+2)
2

real
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constants ar;j (r = 0; 1; : : : ; N; j = 0; 1; : : : ; r) such that these numbers are solutions

of the above equations Sk (m) = 0 for all integers m � 2k + 1 and all integers

k satisfying 2k + 1 � r. Then, for each n 2 N0; y = pn (x) is a solution of the

di¤erential equation LN [y] (x) = �ny (x) : Furthermore, N is necessarily even.

Using his 1938 classi�cation theorem, H. L. Krall characterized all fourth-order

di¤erential equations having orthogonal polynomial solutions. In this case, there are

seven such equations (four of which are the iterations of the classical second-order

equations); the nonclassical equations have orthogonal polynomial solutions which

have been named, by A. M. Krall, as the Jacobi type, Laguerre type, and Legendre

type orthogonal polynomials. A. M. Krall [36] studied these three sets of orthogonal

polynomials in detail in 1981.

1.3 De�nition and Properties of Orthogonal Polynomials

In this section, we discuss some properties of orthogonal polynomials. The

interested reader should consult [8] and [67] for an in-depth study of this subject.

Let f�ng1n=0 be a sequence of complex numbers. A complex-valued linear

functional L de�ned on the vector space of all polynomials with complex coe¢ cients

by L [xn] = �n; n = 0; 1; 2; : : : ; is called the moment functional determined by the

moment sequence f�ng1n=0. The number �n is called the moment of order n: A

sequence fpng1n=0 of polynomials is called an orthogonal polynomial sequence with

respect to L if for all non-negative integers m and n;

(i) pn (x) is a polynomial of degree n;

(ii) L [pn (x) pm (x)] = 0 when m 6= n; and

(iii) L [p2n (x)] 6= 0:

If, in addition, we also have L [p2n (x)] = 1; n � 0; then fpn (x)g1n=0 will

be called an orthonormal polynomial sequence. Of course, not every sequence of

3



complex numbers determines a moment functional having an orthogonal polynomial

sequence. Let �n be as in (1.2.1). Then, a moment functional L is called quasi-

de�nite if �n 6= 0, for n � 0: We have the following existence theorem:

Theorem 1.3.1. Let L be a moment functional with moment sequence f�ng1n=0.

A necessary and su¢ cient condition for the existence of an orthogonal polynomial

sequence for L is �n 6= 0, n = 0; 1; 2; : : :.

A moment functional L is called positive-de�nite if L [p (x)] > 0 for every

polynomial p (x) that is not identically zero and is non-negative for all real x:When

L is positive-de�nite, we have the following important characterization of positive-

de�nite moment functionals:

Theorem 1.3.2. L is positive-de�nite if and only if all of its moments are real and

�n > 0; (n � 0) :

One of the most important characteristics of orthogonal polynomials is the fact

that any three consecutive polynomials are connected by a very simple relation that

is called a three-term recurrence formula. More speci�cally, we have the following

theorem:

Theorem 1.3.3. Let L be a quasi-de�nite moment functional with monic orthogo-

nal polynomial sequence fpn (x)g1n=0 : Then, there exist constants cn and �n 6= 0 such

that pn (x) = (x� cn) pn�1 (x)� �npn�2 (x) ; (n � 0); where we de�ne p�1 (x) = 0.

We next take up the very important converse to Theorem 1.3.3.. This was �rst

announced by J. Favard in 1935. It was apparently discovered at about the same

time independently by J. Shohat and I. Natanson. However, the result is actually

contained implicitly in earlier known results from the theory of continued fractions,

and a form of it goes back to Stieltjes. We will, however, refer to it as Favard�s

theorem.

Four years later in 1939, Boas [6] proved the following, rather surprising, rep-

resentation theorem for moment functionals:

4



Theorem 1.3.4. Let f�ng1n=0 be an arbitrary sequence of real numbers. Then,

there is a function ' of bounded variation on (�1;1) such that for n = 0; 1; 2; : : :Z 1

�1
xnd' (x) = �n:

It should be noted that the function ' in Theorem 1.3.4. is not unique since

we can always add a function of bounded variation to ' with the property that all

of its moments are zero. For example, de�ne

g (x) :=

8><>: exp
�
�x1=4

�
sin x1=4 for x � 0

0 for x < 0
;

then, Z
R

xng (x) dx = 0; n = 0; 1; 2; : : : .

Although Boas� theorem is an important theoretical result, its proof is not

constructive. In practice, it is usually a di¢ cult matter to �nd a weight function for

a given moment sequence.

We have the following theorem ([67], Section 3.1):

Theorem 1.3.5. Let � (x) be a nondecreasing function which is not constant on the

compact interval [a; b]. Assume fpn (x)g1n=0 is an orthogonal polynomial sequence

with respect to the distribution d� (x) on [a; b]. Then, fpn (x)g1n=0 is a complete

orthogonal polynomial sequence in L2� [a; b] where

L2� [a; b] =

�
f : [a; b]! C j f is ��measurable and

Z b

a

jf (x)j2 d� (x) <1
�
.

1.4 Bochner-Krall Orthogonal Polynomials of Order 2

In 1929, Bochner [7] classi�ed all orthogonal polynomial solutions to the second-

order equation of the form (1.1.1). He observed that if (1.1.1) has a polynomial

solution of degree n; n = 0; 1; 2; then a2; a1; and a0 are necessarily of degrees at

most 2; 1; and 0; respectively.

5



By considering the possible locations of the roots of a2 (x) ; Bochner concluded

that the only polynomial solutions (up to a complex linear change of variable) are:

(i)
n
P
(�;�)
n (x)

o
; the Jacobi polynomials,

(ii)
n
L
(�)
n (x)

o
; the Laguerre polynomials,

(iii) fHn (x)g ; the Hermite polynomials,

(iv)
n
Y
(�)
n (x)

o
; the Bessel polynomials, and

(v) fxng :

Although Bochner knew the existence of the Bessel orthogonal polynomial

sequence, Bessel polynomials were not o¢ cially discovered until 1949; and the poly-

nomials in (v) cannot form an orthogonal polynomial sequence with respect to any

moment functional L since then 0 6= L [x2x2] = L [xx3] = 0: Thus, the only orthogo-

nal polynomials that are solutions to a second-order di¤erential equation of the form

(1.1.1) are the classical orthogonal polynomials of Jacobi, Laguerre, and Hermite to-

gether with the Bessel polynomials. We call these four sequences of polynomials the

Bochner-Krall orthogonal polynomials of order 2.

Another important classi�cation theorem was given by Hahn [30] in 1935. He

showed that if fpn (x)g1n=0 and fqn (x)g
1
n=0 are orthogonal polynomial sequences with

respect to positive-de�nite moment functionals, then fpn (x)g1n=0 is (up to a complex

linear change of variable) one of the three classical orthogonal polynomials. It was

later observed by H. L. Krall [44] and Beale [4] that the only orthogonal polynomial

sequences whose derivatives form an orthogonal polynomial sequence with respect

to a quasi-de�nite moment functional are the classical orthogonal polynomials and

the Bessel polynomials.

A third characterization of these polynomials was suggested by Tricomi [68],

and a complete proof was given by Ebert [14] and Cryer [12]. They showed that

6



the only polynomial sequences that have Rodrigues formulas are the Jacobi, the

Laguerre, the Hermite, and the Bessel polynomials. By a Rodrigues formula, we

mean a formula of the form

pn (x) =
1

Knw (x)
� d

n

dxn
(�n (x)w (x)) ; n = 0; 1; 2; : : : ; where

(i) Kn is independent of x;

(ii) � (x) is a polynomial independent of n;

(iii) w (x) is positive and integrable over some interval (a; b) :

Several orthogonal polynomial sequences can be found through generating

functions. A generating function for fpn (x)g1n=0 is a function F of two variables

such that

F (x; t) =
1X
n=0

cnpn (x) t
n;

where convergence is in some region of the plane R2 and fcng1n=0 is a known sequence

of constants.

We conclude this section by listing formulas for and properties of the Bochner-

Krall orthogonal polynomials of order 2. The reader is referred to [2] and [62] for

further properties of these polynomials.

The Jacobi Polynomials

Notation:n
P
(�;�)
n (x)

o
; where � > �1 and � > �1:

Explicit Formula:

P (�;�)n (x) =
1

2n

nX
k=0

�
n+ �

n� k

��
n+ �

k

�
(x� 1)k (x+ 1)n�k :

Di¤erential Equation:

(1� x2) y00 (x) + (� � �� (�+ � + 2) x) y0 (x) + n (n+ �+ � + 1) y (x) = 0:

7



Orthogonality:

The Jacobi polynomials are orthogonal on [�1; 1] with respect to the weight function

w (x)= (1� x)� (1 + x)� and

1Z
�1

P (�;�)m (x)P (�;�)n (x)w (x) dx =
2�+�+1� (n+ �+ 1)� (n+ � + 1)

(2n+ �+ � + 1)� (n+ �+ � + 1)n!
�mn;

where � is the Gamma function.

Rodrigues Formula:

P (�;�)n (x) =
1

(�2)nn! (1� x)� (1 + x)�
� d

n

dxn

�
(1� x)n+� (1 + x)n+�

�
:

Generating Function:

2�+�

R (1� t+R)� (1 + t+R)�
=

1X
n=0

P (�;�)n (x) tn;

where R = (1� 2xt+ t2)
1
2 :

Recurrence Relation:

P
(�;�)
�1 (x) = 0; P

(�;�)
0 (x) = 1; and for n � 1

2n (n+ �+ �) (2n+ �+ � � 2)P (�;�)n (x)

= (2n+ �+ � � 1) ((2n+ �+ �) (2n+ �+ � � 2)x+ �2 � �2)P
(�;�)
n�1 (x)

�2 (n+ �� 1) (n+ � � 1) (2n+ �+ �)P
(�;�)
n�2 (x) :

The Laguerre Polynomials

Notation:

fL�n (x)g ; where � > �1:

Explicit Formula:

L�n (x) =
nX
k=0

�
n+ �

n� k

�
(�x)k

k!
:

Di¤erential Equation:

xy00 (x) + (�+ 1� x) y0 (x) + ny (x) = 0:

8



Orthogonality:

The Laguerre polynomials are orthogonal on [0;1) with respect to the weight func-

tion w (x) = x�e�x and

1Z
0

L�m (x)L
�
n (x)w (x) dx =

� (n+ �+ 1)

n!
�mn:

Rodrigues Formula:

L�n (x) =
ex

n!x�
� d

n

dxn
�
xn+�e�x

�
:

Generating Function:

exp
��xt
1�t
�

(1� t)�+1
=

1X
n=0

L�n (x) t
n:

Recurrence Relation:

L��1 (x) = 0; L
�
0 (x) = 1;

and

nL�n (x) = (2n+ �� 1� x)L�n�1 (x)� (n+ �� 1)L�n�2 (x) ; n � 1:

The Hermite Polynomials

Notation:

fHn (x)g :

Explicit Formula:

Hn (x) = n!

[n2 ]X
k=0

(�1)k (2x)n�2k

(n� 2k)!k! ;

where
�
n
2

�
denotes the greatest integer less than or equal to n

2
:

Di¤erential Equation:

xy00 (x)� 2xy0 (x) + 2ny (x) = 0:

9



Orthogonality:

The Hermite polynomials are orthogonal on (�1;1) with respect to the weight

function w (x) = exp (�x2) and
1Z

�1

Hm (x)Hn (x)w (x) dx = 2
nn!�1=2�mn:

Rodrigues Formula:

Hn (x) = (�1)n exp
�
x2
� dn

dxn
exp

�
�x2

�
:

Generating Function:

exp
�
2xt� t2

�
=

1X
n=0

Hn (x) t
n

n!
:

Recurrence Relation:

H�1 (x) = 0; H0 (x) = 1; and

Hn (x) = 2xHn�1 (x)� 2 (n� 1)Hn�2 (x) ; n � 1:

The Bessel Polynomials

Notation:n
Y
(�)
n (x)

o
; where � 6= �2; �3; �4; : : :.

Explicit Formula:

Y (�)
n (x) =

nX
k=0

�
n

k

�
(n+ �+ 1)k

�x
2

�k
:

Di¤erential Equation:

x2y00 (x) + ((�+ 2) x+ 2) y0 (x)� n (n+ �+ 1) y (x) = 0:

Orthogonality:

H. L. Krall and Frink [47] give the orthogonality relation

1

2�i

Z
C

Y (�)
m (z)Y (�)

n (z) �(�) (z) dz =
2 (�1)n+1 n!

(2n+ �+ 1) (�+ 1)n
�mn;

10



where

�(�) (z) =

1X
k=0

1

(1 + �)k

�
�2
z

�k
;

and integration is around the unit circle C. Morton and A. M. Krall [43] found that

the distribution

w (x) =
1X
n=0

2n+1�(n) (x)

n! (n+ 1)!

formally makes the Bessel polynomials orthogonal on (�1;1) :We refer the reader

to [29] for a detailed study of these enigmatic polynomials.

Rodrigues Formula:

Y (�)
n (x) =

e2=x

2nx�
� d

n

dxn
�
x2n+�e�2=x

�
:

Generating Function:

1p
1� 2xt

�
2

1 +
p
1� 2xt

��
exp

�
2t

1 +
p
1� 2xt

�
=

1X
n=0

Y (�)
n (x)

tn

n!
:

Recurrence Relation:

Y
(�)
0 (x) = 1; Y

(�)
1 (x) =

�
�+ 2

2

�
x+ 1; and for n � 1

2n (2n+ �+ 2)Y
(�)
n�1 (x) + (2n+ �+ 1) ((2n+ �) (2n+ �+ 2) x+ 2�)Y (�)

n (x)

= 2 (n+ �+ 1) (2n+ �)Y
(�)
n+1 (x) :

We list some of the properties of the Legendre polynomials which are the

special case of the Jacobi polynomials determined by letting the parameters � =

� = 0:

The Legendre Polynomials

Notation:

fPn (x)g = fP1;n (x)g; an explanation of the notation fP1;n (x)g is given in the �nal

section.

Explicit Formula:

Pn (x) =

[n2 ]X
k=0

(�1)k (2n� 2k)!xn�2k
2nk! (n� k)! (n� 2k)! ;

11



where
�
n
2

�
denotes the greatest integer less than or equal to n

2
:

Di¤erential Equation:

(1� x2) y00 (x)� 2xy0 (x) + n (n+ 1) y (x) = 0:

Orthogonality:

The Legendre polynomials are orthogonal on [�1; 1] with respect to the weight func-

tion w (x) = 1 and

1Z
�1

Pn (x)Pm (x)w (x) dx =
2

(2n+ 1)
�mn:

Rodrigues Formula:

Pn (x) =
(�1)n

2nn!
� d

n

dxn
�
1� x2

�n
:

Generating Function:

1p
1� 2xt+ t2

=
1X
n=0

Pn (x) t
n:

Recurrence Relation:

P�1 (x) = 0; P0 (x) = 1; and

nPn (x) = (2n� 1)xPn�1 (x)� (n� 1)Pn�2 (x) ; n � 1:

1.5 Bochner-Krall Orthogonal Polynomials of Order 4

Krall�s classi�cation theorem gives necessary and su¢ cient conditions for when

an orthogonal polynomial sequence satis�es a di¤erential equation of the form (1.1.2).

H. L. Krall, in his 1938 paper [45], included the �rst example of an orthogonal

polynomial sequence (which we will denote by fPn;A (x)g1n=0) satisfying a fourth-

order di¤erential equation; he also found an orthogonalizing weight function for

these polynomials. Because of the relationship

lim
A!1

Pn;A (x)

A
= Pn (x) ;

12



where Pn (x) is the nth Legendre polynomial, A. M. Krall [36] named these polyno-

mials the Legendre type polynomials and studied them in 1981. In 1940, H. L. Krall

completed the classi�cation of all fourth-order di¤erential equations having orthog-

onal polynomial solutions [46]; in all, he found three new fourth-order di¤erential

equations that have orthogonal polynomial solutions. Besides the Legendre type,

there are also the Laguerre type and the Jacobi type orthogonal polynomials. A. M.

Krall [36] studied these three sets of orthogonal polynomials in detail in 1981; we

will list their properties at the end of this section.

In view of the contributions made by Bochner and H. L. Krall to the theory of

orthogonal polynomials and di¤erential equations, we call a sequence of orthogonal

polynomials fpn (x)g1n=0 a Bochner-Krall orthogonal polynomial sequence of order

2n if pn (x) ; n = 0; 1; : : : ; satis�es a di¤erential equation of the form

LN [y] (x) =
NX
i=0

ai (x) y
(i) (x) = �ny (x) ; N = 2n; (1.5.1)

where (necessarily)

ai (x) =
iX
j=1

aijx
j with aij real constants and

�n = a11n+ a22 (n� 1) + :::+ aNNn (n� 1) ::: (n�N + 1) for some n � 1 [41]. In

particular, the Jacobi type, the Laguerre type, and the Legendre type polynomials

are the Bochner-Krall orthogonal polynomials of order 4.

The Bochner-Krall polynomials of order 4 were studied in detail by A. M. Krall

[36]. We will list some of their properties below.

The Legendre Type Polynomials

Notation:

fPn;A (x)g ; n = 0; 1; : : : ; and A > 0:

Explicit Formula:

Pn;A (x) =

[n2 ]X
k=0

(�1)k (2n� 2k)!
�
A+ 1

2
n (n� 1) + 2k

�
xn�2k

A2nk! (n� k)! (n� 2k)! :

13



Di¤erential Equation:

(x2 � 1)2 y(4) (x) + 8x (x2 � 1) y(3) (x) + (4A+ 12) (x2 � 1) y00 (x)

+8Axy0 (x)� n (n+ 1) (n2 + n+ 4A� 2) y (x) = 0:

Orthogonality:

The Legendre type polynomials are orthogonal on [�1; 1] with respect to the

weight function

w (x) =
1

A
� (x� 1) + 1

A
� (x+ 1) + 1;

where � is Dirac�s �� function and
1Z

�1

Pn;A (x)Pm;A (x)w (x) dx =

�
A+ 1

2
n (n� 1)

� �
A+ 1

2
(n+ 1) (n+ 2)

�
A (2n+ 1)

�mn:

(1.5.2)

Rodrigues Type Formula:

Pn;A (x) =
1

2nAn!

�
A� x

d

dx
+
1

2
n (n+ 1)

�
dn

dxn
�
x2 � 1

�n
:

Generating Function:

1

A

�
A� x

@

@x
+
1

2
t
@2

@t2
t

��
1� 2xt+ t2

�� 1
2 =

1X
n=0

Pn;A (x) t
n:

Recurrence Relation:

P0;A (x) = 1; P1;A (x) = x; and for n � 1;

Pn+1;A (x) =
(2n+ 1)

�
A+ 1

2
n (n+ 1)

�
(n+ 1)

�
A+ 1

2
n (n� 1)

� xPn;A (x)

�
n
�
A+ 1

2
(n+ 1) (n+ 2)

�
(n+ 1)

�
A+ 1

2
n (n� 1)

�Pn�1;A (x) :

14



The Laguerre Type Polynomials

Notation:

fRn;r (x)g ; n = 0; 1; : : : ; and r > 0:

Explicit Formula:

Rn;r (x) =

nX
k=0

(�1)k

(k + 1)!

�
n

k

�
(k (r + n+ 1) + r)xk:

Di¤erential Equation:

x2y(4) (x)� (2x2 � 4x) y(3) (x) + (x2 � (2r + 6) x) y00 (x)

+ ((2r + 2) x� 2r) y0 (x)� ((2r + 2)n+ n (n� 1)) y (x) = 0:

Orthogonality:

The Laguerre type polynomials are orthogonal on [0;1) with respect to the

weight

w (x) =
1

r
� (x) + e�x; and

1Z
0

Rn;r (x)Rm;r (x)w (x) dx = (r + n+ 1) (r + n) �mn:

Rodrigues Type Formula:

exp

�
�xt
1� t

�
�
�
r (1� t)2 � xt

�
(1� t)3

=
1X
n=0

Rn;r (x) t
n:

Recurrence Relation:

R0;r (x) = r; R1;r (x) = r � (r + 1) x; and for n � 1;

Rn;r (x) =
(2n� 1) r2 + n (n� 1) r + (2n� 1)n (n� 1)

n (r + n� 1)2
Rn�1;r (x)

� r + n

n (r + n� 1)xRn�1;r (x)�
(n� 1) (r + n)2

n (r + n� 1)2
Rn�2;r (x) :
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The Jacobi Type Polynomials

Notation:

fSn (A;�;x)g = fSn (x)g ; where � > �1 and A > 0:

Explicit Formula:

Sn (x) =

nX
k=0

(�1)k
�
n
k

�
(1 + �)n+k (k (n+ �) (n+ 1) + (k + 1)A)xk

(k + 1)! (1 + �)n
:

Di¤erential Equation:

(1� x2)
2
y(4) (x)� 2 (1� x2) ((�+ 4) x+ �) y(3) (x)

+ (1 + x) ((�2 � 3�� 10� 4A2�) + (�2 + 9�+ 14 + 4A2�)x) y00 (x)

+ ((2�+2�A+ 2�+3A+ 2�2 + 6�+ 4) x+ 2�+2�A+ 2�2 + 6�+ 4) y0 (x)

�((�+ 2) (2�+ 2 + 2A)n+ (�2 + 9�+ 14 + 2A)n (n� 1)

+2 (�+ 4)n (n� 1) (n� 2) + n (n� 1) (n� 2) (n� 3))y (x) = 0:

Orthogonality:

The Jacobi type polynomials are orthogonal on [0; 1] with respect to the weight

w (x) =
1

A
� (x) + (1� x)� :

Rodrigues Type Formula:

Sn (x) =

�
(1� x)

d

dx
+
�
n2 + (�+ 1)n+ A

��
(�1)n (1� x)��

dn

dxn
�
(1� x)n+� xn

�
:

Generating Function:

F (G (x; t)) =
1X
n=0

Sn (x) t
n; where F is the operator

F =

�
(1� x)

@

@x
+ t2

@2

@t2
+ (�+ 2) t

@

@t
+ A

�
;

G (x; t) = ��1
�

2

1� t+ �

��
; and

� (x; t) =
�
1� 2 (2x� 1) t+ t2

� 1
2 :
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Recurrence Relation:

Sn (x) = (An�1x+Bn�1)Sn�1 (x)� Cn�1Sn�2 (x) ; where

An�1 =
(2n+ �) (2n+ �� 1) (n2 + �n+ A)

(n+ �)n (2n+ �� 2)
�
(n� 1)2 + � (n� 1) + A

�2 ;
Bn�1 =

(2n+ �� 1)P (n)
(n+ �)n (2n+ �� 2)

�
(n� 1)2 + � (n� 1) + A

�2 ; where
P (n) = �2n6 � 6 (�+ 1)n5

+
�
�6�2 + 15�� 8� 4A

�
n4 +

�
�2�3 + 12�2 � 16�� 8�A+ 8A+ 6

�
n3

+ (3�3 � 9�2 + 9�� 4�2A+ 12�A� 4A� 2A2 � 2)n2

+
�
��3 + 3�2 � 2�+ 4�2A� 4�A� 2�A2 + 2A2

�
n+ �A2; and

Cn�1 =
(n+ �� 1) (n� 1) (2n+ �) (n2 + �n+ A)

2

(n+ �)n (2n+ �� 2)
�
(n� 1)2 + � (n� 1) + A

�2 :
The left and right Jacobi type polynomials are special cases (� = 0) of the

Jacobi polynomials. Below, we list some of the properties of these polynomials. Al-

though A. M. Krall�s Jacobi type polynomials are de�ned on [0; 1] ; we have rede�ned

the left and right Jacobi type polynomials so that they are orthogonal on [�1; 1] as

well:

The Left Jacobi Type Polynomials

Notation:

fSn (A; 0;x)g = fSLn (x)g ; where A > 0:

Explicit Formula:

SLn (x) =

nX
k=0

(�1)k (n+ k)! (n2 + n+ 2A� k)

(k!)2 (n� k)! (n2 + n+ 2A)

�
1� x

2

�k
:

Di¤erential Equation: (1� x2)
2
y(4) (x)� 8x (1� x2) y(3) (x)

+ (4 (3x2 � 1)� 2 (1� x) ((2A+ 1) x+ 2A+ 3)) y00 (x)

+ (2 ((2A+ 1) x+ 2A+ 3)� 2 (1� x) (2A+ 1)) y0 (x)

� (n4 + 2n3 + (4A+ 1)n2 + 4An) y (x) = 0:
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Orthogonality:

The left Jacobi type polynomials are orthogonal on [�1; 1] with respect to the

weight w (x) = 1
A
� (x+ 1) + 1; and

1Z
�1

SLn (x)SLm (x)w (x) dx =
2 (n2 + 2A) (n2 + 2n+ 2A+ 1)

(2n+ 1) (n2 + n+ 2A)2
�mn:

Rodrigues Type Formula:

SLn (x) =
(n+ 1) (n2 + 2A) (�1)nDn

�
(1� x)n (1 + x)n+1

�
(2n+ 1) (n2 + n+ 2A) 2nn! (1 + x)

+
n (n2 + 2n+ 2A+ 1) (�1)n�1Dn�1 �(1� x)n�1 (1 + x)n

�
(2n+ 1) (n2 + n+ 2A) 2n�1(n� 1)! (1 + x) :

Recurrence Relation:

SL0 (x) = 1; SL1 (x) =
(2A+ 1) (x+ 1)

(2A+ 2)
; and for n � 2:

SLn (x)=

�
(2n� 1) (n2 + 2A) (n2 � n+ 2A)

n (n2 + n+ 2A) (n2 � 2n+ 2A+ 1)x

�(2n� 1) (n
2 � n� 2A) (n2 � n+ 2A)

n (n2 + n+ 2A) (n2 � 2n+ 2A+ 1)2
�
SLn�1 (x)

� (n� 1) (n
2 � 3n+ 2A+ 2) (n2 + 2A)2

n (n2 + n+ 2A) (n2 � 2n+ 2A+ 1)2
SLn�2 (x) :

The Right Jacobi Type Polynomials

Notation:

fSn (B; 0;x)g = fSRn (x)g ; where B > 0:

Explicit Formula:

SRn (x) =
nX
k=0

(�1)k (n+ k)! (n2 + n+ 2B � k)

(k!)2 (n� k)! (n2 + n+ 2B)

�
1 + x

2

�k
:
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Di¤erential Equation:

(1� x2)
2
y(4) (x) + 8x (1� x2) y(3) (x)

+ (4 (3x2 � 1)� 2 (1 + x) ((�2B � 1)x+ 2B + 3)) y00 (x)

� (2 ((�2B � 1)x+ 2B + 3)� 2 (1 + x) (2B + 1)) y0 (x)

� (n4 + 2n3 + (4B + 1)n2 + 4Bn) y (x) = 0:

Orthogonality:

The right Jacobi type polynomials are orthogonal on [�1; 1] with respect to

the weight function w (x) = 1
B
� (1� x) + 1; and

1Z
�1

SRn (x)SRm (x)w (x) dx =
2 (n2 + 2B) (n2 + 2n+ 2B + 1)

(2n+ 1) (n2 + n+ 2B)2
�mn:

Rodrigues Type Formula:

SRn (x) =
(n+ 1) (n2 + 2B) (�1)nDn

�
(1 + x)n (1� x)n+1

�
(2n+ 1) (n2 + n+ 2B) 2nn! (1� x)

+
n (n2 + 2n+ 2B + 1) (�1)n�1Dn�1 �(1 + x)n�1 (1� x)n

�
(2n+ 1) (n2 + n+ 2B) 2n�1(n� 1)! (1� x)

:

Recurrence Relation:

SR0 (x) = 1; SR1 (x) =
(2B + 1) (1� x)

(2B + 2)
; and for n � 2

SRn (x) =

�
� (2n� 1) (n2 + 2B) (n2 � n+ 2B)

n (n2 + n+ 2B) (n2 � 2n+ 2B + 1)x

�(2n� 1) (n
2 � n� 2B) (n2 � n+ 2B)

n (n2 + n+ 2B) (n2 � 2n+ 2B + 1)2
�
SRn�1 (x)

� (n� 1) (n
2 � 3n+ 2B + 2) (n2 + 2B)2

n (n2 + n+ 2B) (n2 � 2n+ 2B + 1)2
SRn�2 (x) :
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1.6 Bochner-Krall Orthogonal Polynomials of Order 2n, n � 3

Notice that the weight for the Legendre type orthogonal polynomial sequence

has equal jumps at �1: It is natural to ask whether an orthogonal polynomial se-

quence exists when unequal jumps at �1 are considered. In 1981, using techniques

due to Shore [66] and H. L. Krall [46], Littlejohn found that such an orthogonal poly-

nomial sequence exists and called them the Krall polynomials. These polynomials

satisfy a sixth-order di¤erential equation. The properties of the Krall polynomials

are given in [49].

Littlejohn [50] proved the following theorem. Below, the notation h�; 'i de-

notes the action of a distribution on a test function ':

Theorem 1.6.1. Let fpn (x)g1n=0 be an orthogonal polynomial sequence which sat-

is�es an equation of the form (1.1.2). Suppose that � is a distribution that satis�es

the system*
2nX

i=2k+1

(�1)i
�
i� k � 1

k

�
(ai�)

(i�2k�1) ; '

+
= 0; k = 0; 1; : : : ; n� 1 (1.6.1)

for all polynomials '; where a1 (x) =
iP
j=0

lijx
j: Suppose further that � (x) ! 0 as

jxj ! 1: Then � is an orthogonalizing weight distribution of fpn (x)g1n=0 :

The distributional di¤erential equations (1.6.1) are called the weight equations

for fpn (x)g1n=0 : Since hL (�) ; 'i = h�; L+ (')i ; where L is any linear di¤erential

expression and L+ denotes the formal Lagrange adjoint of L; we see that the system

(1.6.1) is equivalent to the system*
�;

2nX
i=2k+1

�
i� k � 1

k

�
ai'

(i�2k�1)

+
= 0; k = 0; 1; : : : ; n� 1: (1.6.2)

If the coe¢ cients of a di¤erential equation having an orthogonal sequence

of polynomials as eigenfunctions are known, then Theorem 1.6.1. can be used to

�nd an orthogonalizing weight function. Conversely, it is possible to start with a

weight function and then use the weight equations along with symmetry properties to
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construct a di¤erential equation having orthogonal polynomial solutions. Littlejohn

[51] used this latter approach to construct the second example of a sixth-order

di¤erential equation having a sequence of orthogonal polynomials as eigenfunctions.

The orthogonal polynomials Littlejohn found by this method are the generalized

Laguerre type polynomials for � = 1: Now, we list some properties of the two

Bochner-Krall orthogonal polynomials of order 6.

Krall Polynomials

Notation:

fP3;n (A;B;C;x)g = fP3;n (x)g ; where A; B; C > 0:

Explicit formula:

fP3;n (x)g =
nX
j=0

(�1)[j=2] (2n� j)!Q (n; j)xn�j

2n+1 (n� [(j + 1) =2])! [j=2]! (n� j)! (n2 + n+ AC +BC)
;

where

Q (n; j) =
1 + (�1)j

2
(n4 + (2AC + 2BC � 1)n2 + 4ABC2)

+
1 + (�1)j

2
2j
�
n2 + n+ AC +BC

�
+
1� (�1)j

2
(4BC � 4AC)

and [x] denotes the greatest integer function.

Di¤erential Equation:

(x2 � 1)3 y(6) (x)+18x (x2 � 1)2 y(5) (x)

+ ((3AC + 3BC + 96)x4 � (6AC + 6BC + 132)x2 + (3AC + 3BC + 36)) y(4)(x)

+ ((24AC + 24BC + 168)x3 � (24AC + 24BC + 168)x) y(3) (x)

+( (12ABC2 + 42AC + 42BC + 72)x2+(12BC � 12AC)x

� (12ABC2 + 30AC + 30BC + 72) )y00 (x)

+ ((24ABC2 + 12AC + 12BC)x+ (12BC � 12AC)) y0 (x)

= �ny (x) ;
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where

�n = (24ABC
2 + 12AC + 12BC)n+ f(12ABC2 + 42AC + 42BC + 72)

+ (24AC + 24BC + 168) (n� 2) + (3AC + 3BC + 96) (n2 � 5n+ 6)

+18 (n� 2) (n� 3) (n� 4)+ (n� 2) (n� 3) (n� 4) (n� 5)g (n2 � n) :

Orthogonality:

The Krall polynomials are orthogonal on [�1; 1] with respect to the weight function

w (x) =
1

A
� (x+ 1) +

1

B
� (x� 1) + C; and

1Z
�1

P3;m (x)P3;n (x)w (x) dx = �mn �M;

where

M =
C (n4 + (2AC + 2BC � 1)n2 + 4ABC2) (2AC + 2BC � 1) (n+ 1)2

2 (2n+ 1) (n2 + n+ AC +BC)2

+
C (n4 + (2AC + 2BC � 1)n2 + 4ABC2)

�
(n+ 1)4 + 4ABC2

�
2 (2n+ 1) (n2 + n+ AC +BC)2

Rodrigues Type Formula:

P3;n (x) =

�
AC +BC

2
+
n (n+ 1)

2

�
(�1)nDn

�
(1� x2)

n�
2nn!

�
 
xD +

2 (AC �BC)2

n2 + n+ AC +BC

!
(�1)nDn

�
(1� x2)

n�
2nn!

+
(�1)n�1 (n+ 1) (BC � AC)Dn�1 �(1� x2)

n�
2n (n2 + n+ AC +BC) (n� 1)! (1� x2)

;

where D = d
dx
:
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Generating Function:

1X
n=0

�
n2 + n+ AC +BC

�
P3;n (x) t

n

=
(BC � AC) t

(1� 2xt+ t2)3=2
� (AC �BC)2

(1� 2xt+ t2)1=2
+

M1 �M2

(1� 2xt+ t2)1=2
;

where

M1 =

�
(AC +BC) + t

@2

@t2

�
; and M2 =

�
AC �BC

2
� x

@

@x
+
1

2
t
@2

@t2

�
:

Recurrence Relation:

P3;�1 (x) = 0; P3;0 (x) =
ABC2

AC +BC
; and for n � 1;

P3;n (x) =
(2n� 1)A (n)B (n� 1)x

nA (n� 1)B (n) P3;n�1 (x)

+
(2n� 1) (2BC � 2AC)C (n)B (n� 1)

n (A (n� 1))2B (n)
P3;n�1 (x)

� (n� 1) (A (n))
2B (n� 2)

n (A (n� 1))2B (n)
P3;n�2 (x) ; where

A (n) = n4 + (2AC + 2BC � 1)n2 + 4ABC2;

B (n) = n2 + n+ AC +BC; and

C (n) = �3n4 + 6n3 + (�2AC � 2BC � 3)n2 + (2AC + 2BC)n+ 4ABC2:
Generalized Laguerre Polynomials (� = 1)

Notation:

fQn (x;R)g = fQn (x)g ; where R > 0:

Explicit Formula:

Qn (x) =

nX
k=0

(�1)k (n+ 1)! ((n+ 1) (n+ 2) k + 2R (k + 2))xk
k! (n� k)! (k + 2)!

:
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Di¤erential Equation:

x3y(6) (x) + (�x3 + 12x2) y(5) (x) + (3x3 � 30x2 + 30x) y(4) (x)

+ (�x3 + 24x2 � 60x) y(3) (x) + (�6x2 + (36 + 6R)x) y00 (x)

+ ((�6� 6R)x+ 12R) y0 (x) + (n3 + 3n2 + (6R + 2)n) y (x) = 0:
Orthogonality:

The generalized Laguerre polynomials with � = 1 are orthogonal on [0;1) with

respect to the weight function

w (x) = xe�x +
1

R
� (x) ; and

1Z
0

Qm (x)Qn (x)w (x) dx =
�
n3 + 3n+ 2R + 2

� �
n2 + n+ 2R

�
(n+ 1) �mn:

Rodrigues Type Formula:

Qn (x) =
ex

n!
� d

n

dxn
(
�
n2 + n+ 2R

�
e�xxn +

�
�n3 + n2 � 2Rn+ 2n

�
e�xxn�1

+
�
�2n3 + 2n

�
e�xxn�2):

Generating Function:

1X
n=0

Qn (x) t
n =

exp
��xt
1�t
�

(1� t)6
(2Rt4 + (2x� 8R) t3 +

�
x2 + 12R

�
t2

+ (�2x� 8R) t+ 2R):

Recurrence Relation:

Q�1 (x) = 0; Q0 (x) = 2R; and for n � 1;

Qn (x) =

�
� (n2 + n+ 2R)x

n (n2 � n+ 2R)
+
2n4 + (8R� 2)n2 + 8R (R� 1)

(n2 � n+ 2R)2

�
Qn�1 (x)

�
�
n2 + n+ 2R

n2 � n+ 2R

�2
Qn�2 (x) :
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The only other orthogonal polynomial sequence known to satisfy a di¤erential

equation of the form (1.5.1) is the generalized Laguerre type orthogonal polynomial

sequence for � = 2: A. M. Krall and L. L. Littlejohn showed that these polynomials

satisfy an eight-order di¤erential equation and studied their properties in [41].

1.7 Legendre(r) Orthogonal Polynomials

Let '̂; �̂; �̂; �̂; and �̂ be monotic functions on R de�ned by

'̂ (x) :=

8>>>><>>>>:
�1

x

1

if �1 < x � �1

if � 1 < x < 1

if 1 � x <1;

�̂ (x) :=

8>>>><>>>>:
�1� 1

A

x

1

if �1 < x � �1

if � 1 < x < 1

if 1 � x <1;

�̂ (x) :=

8>>>><>>>>:
�1

x

1 + 1
B

if �1 < x � �1

if � 1 < x < 1

if 1 � x <1;

�̂ (x) :=

8>>>><>>>>:
�1� 1

A

x

1

if �1 < x � �1

if � 1 < x < 1

if 1 � x <1; and

�̂ (x) :=

8>>>><>>>>:
�1� 1

A

x

1 + 1
B

if �1 < x � �1

if � 1 < x < 1

if 1 � x <1;

where it is assumed that both A and B are positive parameters. Let '; �; �; �; and

� denote the regular Borel measures generated by '̂; �̂; �̂; �̂; and �̂ respectively.
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Notice that

(i) d' (x) = w (x) dx where w (x) is the weight for the Legendre polynomials;

(ii) d� (x) = w (x) dx where w (x) is the weight for the left Jacobi type polyno-

mials on [�1; 1] with � = 0;

(iii) d� (x) = w (x) dx where w (x) is the weight for the right Jacobi type on

[�1; 1] with � = 0;

(iv) d� (x) = w (x) dx where w (x) is the weight for the Legendre type polyno-

mials, and

(v) d� (x) = w (x) dx where w (x) is the weight for the Krall polynomials in the

case C = 1:

All of these �ve measures have the properties that all Borel sets in the com-

plement of [�1; 1] measure to zero and all Borel sets contained in the open interval

(�1; 1) are measured to Lebesque measure. Because of the similarity of these mea-

sures, we call the �ve sets of Bochner-Krall polynomials which are orthogonal with

respect to these measures the Legendre(r) polynomials.

As mentioned earlier in Section 1.3, when � = � = 0; the Jacobi type polyno-

mials,
n
P
(�;�)
n

o
; are known as the classical Legendre polynomials and are commonly

denoted by fPng : Since the Legendre polynomials satisfy a second-order di¤eren-

tial equation, we will call them the Legendre(1) polynomials and use the notation

fP1;n (x)g to emphasize their relationship to the other Legendre(r) polynomials.

The Jacobi type polynomials orthogonal with respect to the measures gener-

ated by � (x) and � (x) are given by the formulas;

PL2;n (A;x) = PL2;n (x) =
1

n2 + n+ 2A
Sn

�
2A; 0;

1 + x

2

�
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and

PR2;n (A;x) = PR2;n (x) =
1

n2 + n+ 2B
Sn

�
2B; 0;

1� x

2

�
; respectively.

We shall refer to fPL2;n (A;x)g and fPL2;n (B;x)g as, respectively, the left

and right Jacobi type sequences of orthogonal polynomials. Since they are all eigen-

functions of fourth-order di¤erential equations, the left and right Jacobi type poly-

nomials and the Legendre type polynomials will be referred as the Legendre(2)

polynomials.

The Krall polynomials, in the case C = 1; are called the Legendre(3) polyno-

mials since they satisfy a sixth-order di¤erential equation.

1.8 Koornwinder�s Orthogonal Polynomials

In 1984, Koornwinder [35] de�ned the following generalization of the Jacobi

polynomials
n
P
(�;�)
n

o
:

P
(�;�;M;N)
n (x) :=

�
(�+ � + 1)n

n!

�2�
BnM (1� x)� AnN (1 + x)

�+ � + 1

d

dx
+ AnBn

�
P (�;�)n (x) ; (1.8.1)

where

An =
(�+ 1)n n!

(� + 1)n (�+ � + 1)n
+
n (n+ �+ � + 1)M

(� + 1) (�+ � + 1)
;

Bn =
(� + 1)n n!

(�+ 1)n (�+ � + 1)n
+
n (n+ �+ � + 1)N

(�+ 1) (�+ � + 1)
; �; � > �1; and M; N � 0:

We shall call these polynomials the Koornwinder-Jacobi polynomials. These

polynomials are orthogonal on [�1; 1] with respect to the weight function

w (x) =
� (�+ � + 2)

2�+�+1� (�+ 1)� (� + 1)
(1� x)� (1 + x)� +M� (x+ 1) +N� (x� 1) :
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Each of the Legendre(r) orthogonal polynomials is a special case of Koornwinder-

Jacobi polynomials.

In particular,

P1;n (x) = P (0; 0; 0; 0)n (x) ;

PL2;n (A;x) =
2A

n2 + n+ 2A
P
(0; 0; 1

2A
; 0)

n (x) ;

PR2;n (B;x) =
1

n2 + n+ 2B
P
(0; 0; 0; 1

2B )
n (x) ;

P2;n (A;x) =
A

A+ n(n+1)
2

P
(0; 0; 1

2A
; 1
2A)

n (x) ; and

P3;n (A;B;x) =
2A

n2 + n+ 2A
P
(0; 0; 1

2A
; 1
2B )

n (x) :

In the same paper [35], Koornwinder de�ned a generalization of the Laguerre

polynomials
n
L
(�)
n (x)

o
:

L(�;N)n (x) :=

�
1 +

N (�+ 1)n
n!

�
d

dx
+

n

�+ 1

��
L(�)n (x) ; (1.8.2)

where � > �1 andN > 0:We shall call these polynomials theKoornwinder-Laguerre

polynomials. They are orthogonal on [0;1) with respect to the weight function

w (x) =
x�e�x

� (�+ 1)
+N� (x) :

Although Koornwinder�s polynomials generalize all known Bochner-Krall poly-

nomials, it is not known if they are always themselves Bochner-Krall polynomials.

That is, it is unknown whether there are di¤erential equations of the form (1.1.1)
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of �xed order having the Koornwinder-Jacobi polynomials or the Koornwinder-

Laguerre polynomials as solutions. More speci�cally, if � and � vary in (1.8.1)

or if � varies in (1.8.2), the order of the di¤erential equation seems to vary.
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CHAPTER TWO

Theory of Self-Adjoint Di¤erential Operators

2.1 Introduction

The �eld of orthogonal polynomials is a �eld that touches many areas of math-

ematics, both pure and applied. However, there is another subject that has received

surprisingly little attention in the circles of orthogonal polynomials: the spectral

theory of di¤erential operators. On the other hand, it is di¢ cult to understand why

this is the case. After all, the second-order di¤erential equations associated with the

classical orthogonal polynomials of Jacobi, Laguerre and Hermite have long earned

their niche as important models in various areas of mathematical physics and they

do serve as excellent examples to �t the theory of singular self-adjoint di¤erential op-

erators. Furthermore, the mere existence of these equations implicitly suggests that

there may be more di¤erential equations with orthogonal polynomial eigenfunctions.

On the other hand, the spectral theory of di¤erential operators is a very rich subject

with literally thousands of contributions in mathematical literature. If one wants

to learn this subject to understand the role that orthogonal polynomials will play,

where should one look? To the expert, the answer is obvious: the texts of Naimark

([55], Part II, Sections 14-18), Akhieszer and Glazman ([1], Vol. 2, Chapter 7 and

Appendix 2)

and to a certain extent, Dunford and Schwartz ([13], Part II, Chapters 12 and 13),

Weidmann ([70], Chapters 8 and 10) and, with speci�c applications to the second-

order Sturm-Liouville problem, the text of Hellwig ([32], Parts 4 and 5) are recom-

mended. Of course, herein may lie the problem for the non-expert: the amount of

recommended reading is rather signi�cant.
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In this chapter, we merely are seizing the opportunity to collect results from

several sources. In Sections from 2.2 to 2.8, we shall discuss the necessary rudimen-

tary theory of self-adjoint extensions of formally symmetric di¤erential expressions.

No proofs shall be given but exact references will be given.

In Section 2.9, we shall apply this theory to discuss some of the �ve Legendre

di¤erential expressions:

M
(1)
k [y] (x) := �

��
1� x2

�
y0 (x)

�0
+ ky (x) ; (2.1.1)

ML
(2)
k [y] (x) :=�

(1� x2)
2
y00 (x)

�00
� 2 ((1� x) ((2A+ 1) x+ 2A+ 3) y0 (x))0 + ky (x) ;

(2.1.2)

MR
(2)
k [y] (x) :=�

(1� x2)
2
y00 (x)

�00
� 2 ((1 + x) ((�2B + 1) x+ 2B + 3) y0 (x))0 + ky (x) ;

(2.1.3)

M
(2)
k [y] (x) :=

��
1� x2

�
y00 (x)

�00���4A �1� x2
�
+ 8
�
y0 (x)

�0
+ky (x) ;

(2.1.4)

M
(3)
k [y] (x) :=

�
�
(1� x2)

3
y
(3)
(x)
�(3)

+ ((1� x2) (12 + (3A+ 3B + 6) (1� x2)) y00 (x))
00

� (((�6A� 6B � 12AB)x2 + 12 (A�B)x+ 12AB + 18A+ 18B + 24) y0 (x))
0

+ky (x) ;

(2.1.5)

where x 2 (�1; 1) ; A; B are �xed positive parameters and k is a �xed non-negative

constant. Of course, expression (2.1.1) is the classical Legendre expression having

the Legendre polynomials as eigenfunctions but (2.1.2)-(2.1.5) are also called the

Legendre expressions. Indeed, these four expressions also have orthogonal poly-

nomial eigenfunctions and, in a certain asymptotic sense, they behave much like

the classical Legendre polynomials. Furthermore, there are no other di¤erential ex-

pressions of the above type that have "the Legendre type" orthogonal polynomial

eigenfunctions. We shall restrict our study of (2.1.1)-(2.1.5) to the right-de�nite
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setting; i.e., in the spaces L2 (�1; 1) and L2 (�1; 1;w) where w is an orthogonalizing

weight distribution associated with the corresponding orthogonal eigenfunctions.

For a complete study of these �ve di¤erential expressions, the reader is en-

couraged to consult the Ph.D. thesis of S. M. Loveland [54].

2.2 Singular Di¤erential Expressions

In this section, we shall assume that ak 2 Ck (I;R) ; k = 0; 1; : : : ; n with

ak (x) 6= 0 for all x 2 I and n is some positive integer. Here, we assume that

I = (a; b) is an open interval on the real line with �1 � a < b � 1:We shall study

certain linear operators in the Lebesgue space L2 (I) generated from the ordinary

di¤erential expression ` [�] of order 2n de�ned by:

` [y] :=
nX
j=0

(�1)j
�
aj (x) y

(j) (x)
�(j)

; x 2 I: (2.2.1)

We shall consider further conditions on these coe¢ cients below in De�nition 2.2.1.

Notice that expressions (2.1.1)-(2.1.5) are all of the form (2.2.1).

Two operators associated with ` [�] that we de�ne and discuss below are the

maximal and the minimal operators generated by ` [�] : With this, we shall seek to

�nd self-adjoint extensions (respectively, restrictions) of the minimal operator L0

(maximal operator L). We shall also be interested in the spectra of these extensions.

In particular, we shall study the eigenvalue problem

S [y] = �y;

where S is one of these self-adjoint operators. It is precisely this problem that is

interesting from the viewpoint of orthogonal polynomials.

The expression (2.2.1) is called a formally symmetric di¤erential expression.

At this point, we note that both Naimark [55], and Akhieszer and Glazman [1]

consider di¤erential expressions with far less smoothness conditions on the ak�s than

we have assumed here. Indeed, the less restrictive hypotheses assumed by these
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authors leads them to the important concept of quasi-derivative. However, for the

sake of simplicity, we shall keep with our above assumptions. Furthermore, in the

case of the eigenvalue problem ` [y] = �y having a sequence of orthogonal polynomial

solutions fpn (x)g1n=0 ; where pn (x) has degree exactly n; it is always the case that

aj 2 Cj (I;R) :

At this point, we distinguish between the important concepts of regular and

singular di¤erential expressions.

De�nition 2.2.1. The expression ` [�], given in (2.2.1), is called a regular di¤erential

expression if I has �nite length and the coe¢ cients 1
an
; an�1; : : : ; a0 2 L (I) : If ` [�]

is not regular, it is called a singular di¤erential expression. The right endpoint b of

I is called a regular point of ` [�] if b < +1 and if there exists an " > 0 su¢ ciently

small so that 1
an
; an�1; : : : ; a0 2 L (b� "; b) ; otherwise, the point b is a singular

point of ` [�] : There is a similar de�nition for the left endpoint a of I:

We make the assumption, for the rest of this chapter unless otherwise stated,

that ` [�] is a singular di¤erential expression. The reader can consult the texts [55]

(pages 62-67 and 77-78) and [1] (pages 166-170) for the analysis of regular di¤erential

expressions and their self-adjoint extensions. Our assumption is based on the fact

that equations (2.1.1)-(2.1.5) are singular di¤erential expressions on (�1; 1) :

De�nition 2.2.2. Let ` [�] be given as in (2.2.1). The operator L : L2 (I)! L2 (I)

de�ned by:

L [y] = ` [y]

D (L) :=
�
y : I ! C

�� y(k) 2 ACloc (I) ; k = 0; 1; : : : ; 2n� 1; y; ` [y] 2 L2 (I)	
(2.2.2)

is called the maximal operator generated by ` [�] in L2 (I) :

The name "maximal" is actually quite appropriate: the space D (L) is the

largest subspace in which L can be de�ned as an operator from L2 (I) into L2 (I) :
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2.3 Green�s Formula

For f; g 2 D (L) and [�; �] � I; the following formula can be easily veri�ed

using integration by parts:

�Z
�

(` [f ] g � ` [g] f) dx = [f; g] (x)
�

j
�

; (2.3.1)

where [f; g] (�) is sesquilinear form de�ned by:

[f; g] (x) :=

nX
j=1

jX
m=1

(�1)m+j
n�
aj (x) g

(j) (x)
�(j�m)

f (m�1) (x)�
�
aj (x) f

(j) (x)
�(j�m)

g(m�1) (x)
o

(2.3.2)

Notice that [g; f ] (x) = �[f; g] (x) for all f; g 2 D (L) and a < x < b: Observe, by

de�nition of D (L) and Hölder�s inequality, that the limits

[f; g] (b) := lim
x!b�

[f; g] (x) and [f; g] (a) := lim
x!a+

[f; g] (x)

both exist and are �nite, for all f; g 2 D (L) :

Equation (2.3.1) is known as Green�s formula for ` [�] : As we shall see, Green�s

formula is essential in the determination of all self-adjoint extensions in L2 (I) of

the minimal operator generated by ` [�] : We list Green�s formula for expressions

(2.1.1)-(2.1.5), respectively.

1Z
�1

n
M

(1)
k [f ] (x) g (x)�M

(1)
k [g] (x) f (x)

o
dx = [f; g](1) (x)

1

j
�1
; where

[f; g](1) (x) =
�
1� x2

�
(f (x) g0 (x)� f 0 (x) g (x)) ; (2.3.3)

1Z
�1

n
ML

(2)
k [f ] (x) g (x)�ML

(2)
k [g] (x) f (x)

o
dx = [f; g]L (x)

1

j
�1
; where
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[f; g]L (x) :=��
(1� x2)

2
f 00 (x)

�0
� 2 (1� x) ((2A+ 1) x+ (2A+ 3))f 0 (x)

�
g (x)

�
��
(1� x2)

2
g00 (x)

�0
� 2 (1� x) ((2A+ 1) x+ (2A+ 3))g0 (x)

�
f (x)

� (1� x2)
2
(f 00 (x) g0 (x)� g00 (x) f 0 (x)) ;

(2.3.4)
1Z

�1

n
MR

(2)
k [f ] (x) g (x)�MR

(2)
k [g] (x) f (x)

o
dx = [f; g]R (x)

1

j
�1
; where

[f; g]R (x) :=��
(1� x2)

2
f 00 (x)

�0
� 2 (1 + x) ((�2B � 1)x+ (2B + 3))f 0 (x)

�
g (x)

�
��
(1� x2)

2
g00 (x)

�0
� 2 (1 + x) ((�2B � 1)x+ (2B + 3))g0 (x)

�
f (x)

� (1� x2)
2
(f 00 (x) g0 (x)� g00 (x) f 0 (x)) ;

(2.3.5)
1Z

�1

n
M

(2)
k [f ] (x) g (x)�M

(2)
k [g] (x) f (x)

o
dx = [f; g]2 (x)

1

j
�1
; where

[f; g]2 (x) :=

��
(1� x2)

2
f 00 (x)

�0
� (8 + 4A (1� x2))f 0 (x)

�
g (x)

�
��
(1� x2)

2
g00 (x)

�0
� (8 + 4A (1� x2))g0 (x)

�
f (x)

� (1� x2)
2
(f 00 (x) g0 (x)� g00 (x) f 0 (x)) ;

(2.3.6)

1Z
�1

n
M

(3)
k [f ] (x) g (x)�M

(3)
k [g] (x) f (x)

o
dx = [f; g]3 (x)

1

j
�1
;
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where

[f; g]3 (x) :=�
�
�
(1� x2)

3
f
(3)
(x)
�00
+ ((1� x2) (12 + � (1� x2))f 00 (x))0 � � (x) f 0 (x)

�
g (x)

�
�
�
�
(1� x2)

3
g
(3)
(x)
�00
+ ((1� x2) (12 + � (1� x2))g00 (x))0 � � (x) g0 (x)

�
f (x)

�
�
�
�
(1� x2)

3
f
(3)
(x)
�0
+ (1� x2) (12 + � (1� x2))f 00 (x)

�
g0 (x)

+

�
�
�
(1� x2)

3
g
(3)
(x)
�0
+ (1� x2) (12 + � (1� x2))g00 (x)

�
f 0 (x)

�
n
f
(3)
(x) g00 (x)� g

(3)

(x) f 00 (x)
o
(1� x2)

(3)
; where

(2.3.7)

� (x) = (�6A� 6B � 12AB)x2 + (12A� 12B)x+ (12AB + 18A+ 18B + 24)

and � = 3A+ 3B + 6:

2.4 Operators in Hilbert Space

There are two basic types of linear operators in a Hilbert space H with inner

product (�; �) : bounded and unbounded. A linear unbounded operator is actually

discontinuous at every point. A di¤erential operator is invariably of the unbounded

type.

At this point, we recall a number of fundamental de�nitions and facts con-

cerning linear operators.

De�nition 2.4.1. An operator T : H ! H with domain D (T ) is said to be densely

de�ned if its domain D (T ) is dense in H:

Since a Hilbert space is isometrically isomorphic to its dual space, the concept

of a Hilbert space adjoint plays an important role.
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De�nition 2.4.2. The adjoint operator of T; denoted by T �; is the operator in H

whose domain, D (T �) ; consists of those x 2 H for which there is a unique element

x� 2 H that satis�es (Tf; x) = (f; x�) 8 f 2 D (T ) :

In this case, we de�ne T � by T �x = x�: T and its adjoint T � are related by

(Tf; g) = (f; T �g) 8 f 2 D (T ) and 8 g 2 D (T �) :

Proposition 2.4.1. See ([48], page 308). The adjoint T � of a linear operator

T : H ! H exists and is unique if and only if T is densely de�ned.

Since D (L) is clearly dense in L2 (I) ; the adjoint operator L� for the maxi-

mal operator L exists. If T is any densely de�ned linear operator in L2 (I) satisfying

T � L; then L� � T �; consequently, it is natural to call L0 := L� the minimal

operator generated by ` [�] : It is possible, in fact, to give a better description of

D (L0) (see Theorems 2.4.6. and 2.4.7. below).

De�nition 2.4.3. The restriction of the maximal operator L to the (densely de-

�ned) subspace D00 of all functions f 2 D (L) which have compact support in I will

be denoted by L00:

De�nition 2.4.4. Let H be a Hilbert space with inner product (�; �) : A linear

operator T : H ! H is symmetric in H if

(i) D (T ) is dense in H (T is densely de�ned);

(ii) (Tx; y) = (x; Ty) for all x; y 2 D (T ) :

An operator T which satis�es property (ii) above, but not necessarily property

(i); is called Hermitian. A characterization of a symmetric operator in a (complex)

Hilbert space is given in:

Proposition 2.4.2. See ([48], page 534). Let T be a densely de�ned operator

in a complex Hilbert space H: Then T is symmetric if and only if (Tx; x) 2 R 8

x 2 D (T ) :

Proposition 2.4.3. The adjoint T � of a linear operator T : H ! H exists and is

unique if and only if T is densely de�ned.
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In particular, it follows from Proposition 2.4.3. that if T is symmetric then

T � exists. Evidently, a densely de�ned operator T is symmetric in H if and only if

T � T � (see [48], page 533).

Theorem 2.4.1. The operator L00 is symmetric in L2 (I) :

Proof. See ([55]; page 61). �

De�nition 2.4.5. Let H be a Hilbert space and T : H ! H be a linear operator

with domain D (T ) : Then T is closed if whenever fxng1n=0 � D (T ) satis�es xn ! x

and Txn ! y; then x 2 D (T ) and Tx = y:

For example, it is easy to see that the adjoint T � of a densely de�ned operator

T is a closed operator. In particular, the minimal operator L0 is closed.

Proposition 2.4.4. See ([48], page 300). the Hilbert adjoint T � of a linear operator

T : H ! H is always closed.

Questions concerning extensions of a given operator will invariably arise. We

shall adhere to the following convention:

De�nition 2.4.6. Given T; S : H ! H the statement S � T (T is an extension of

S or S is a restriction of T ) is taken to mean

(i) T � T � T �;

(ii) T � =
�
T
��
; and

(iii) T = (T �)� :

Theorem 2.4.2. Suppose that T is a densely de�ned operator on a Hilbert space

H:

(i) T is symmetric if and only if T � T �.

(ii) If S is an extension of T , then

T � is an extension of S�, i.e., T � S implies S� � T �.

(iii) If T is symmetric, then

every symmetric extension S of T satis�es T � S � S� � T �:

De�nition 2.4.7. Let H be a Hilbert space and T : H ! H be a linear operator.

Then T is said to be closable if there exists a closed, linear extension S of T:
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The smallest such closed extension is called the closure of T and T is said to admit

a closure. The standard notation for the closure of an operator T is T :

Theorem 2.4.3. A symmetric operator T is closable. Moreover, its closure T is

unique, symmetric, and satis�es:

(i) T � T � T �;

(ii) T � =
�
T
��
; and

(iii) T = (T �)� :

Proposition 2.4.5. The closure T ; of a symmetric operator T; is the minimal

closed extension of T: That is to say, if T � S and S is closed then it must be the

case that T � S:

The closure of an operator T is sometimes referred to as the graph closure of

T since the process of closing a given operator T is equivalent to constructing the

topological closure of the graph of T; G (T ) ; in the Hilbert space H �H:

Theorem 2.4.4. Let H be a Hilbert space. A symmetric operator T : H ! H

admits a closure. Furthermore, this closure T is also symmetric in H:

Proof. See ([55], page 13). �

As a consequence of this theorem, L00 has a symmetric closure L00: In fact,

Theorem 2.4.5. L00 = L0; where L0 is the adjoint of the maxial operator L and

the so-called minimal operator.

Proof. See ([55], page 68). �

It is well-known (e.g., [48], page 541) that a closed, densely de�ned operator

A in H has the property that A�� = A: Hence, this fact, combined with Theorem

2.4.5., yields:

Theorem 2.4.6. L0 = L00 and L�0 = L: In particular, the minimal operator L0

and the maximal operator L are closed operators, each being the adjoint of the other.
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One of the most important type of linear operators in a Hilbert space is the

one that is self-adjoint.

De�nition 2.4.8. A densely de�ned operator T : H ! H is said to be self-adjoint

when T = T �:

Property (i) of Theorem 2.4.2. shows that every self-adjoint operator is neces-

sarily symmetric; however, not every symmetric operator is self-adjoint (in the case

of a bounded operator T : H ! H the concepts of symmetry and self-adjointness

are identical). For example, de�ne T : L2 [0; 1]! L2 [0; 1] by

Tf := if 0

D (T ) :=
�
f : [0; 1]! C

�� f 2 AC [0; 1] ; f 0 2 L2 [0; 1] ; f (0) = f (1) = 0
	
:

(2.4.1)

Then for any f; g 2 D (T ) ;

(Tf; g) =

1Z
0

if 0 (t) g (t) dt

= if (t) g (t)
1

j
0

�
1Z
0

ig0 (t) f (t) dt

= if (1) g (1)�if (0) g (0)+
1Z
0

ig0 (t) f (t) dt

=

1Z
0

ig0 (t) f (t) dt = (f; Tg) :

It follows that T is symmetric because D (T ) is dense in L2 [0; 1). However, it can

be shown that

D (T �) :=
�
f : [0; 1)! C

�� f 2 AC [0; 1] ; f 0 2 L2[0; 1)	
so that T is not self-adjoint.
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From property (iii) of Theorem 2.4.2., we see that the most general symmetric

extension in H (in particular the most general self-adjoint extension) of a symmetric

operator T is suitably chosen restriction of the adjoint T � of T:

For example, the operator S : L2[0; 1)! L2 [0; 1) de�ned by

Sf := if 0

D (S) := ff : [0; 1)! C j f 2 AC [0; 1] ; f 0 2 L2[0; 1); f (0) = f (1)g

is a self-adjoint extension of the operator T de�ned in (2.4.1).

Proposition 2.4.6. See ([48], page 524). A self-adjoint operator T is both closed

and symmetric.

Proposition 2.4.7. See ([48], page 535). A self-adjoint operator T is maximally

symmetric. That is to say, if S is a symmetric operator and T � S; then it must be

the case T = S:

The spectrum of a self-adjoint operator T is described by:

Proposition 2.4.8. The spectrum � (T ) of a self-adjoint operator T : H ! H

consists of approximate eigenvalues; that is to say, 8 � 2 � (T ) 9 fxng1n=0 � D (T )

such that

kxnk = 1 and kTxn � �xnk ! 0 as n!1:

Morever, the spectrum of T is real: � (T ) � R:

The following theorem is a very useful criterion for determining whether or not

an element f 2 D (L) is in the minimal domain D (L0) : It involves the sesquilinear

form de�ned in equation (2.3.2).

Theorem 2.4.7. The domain D (L0) of the minimal operator L0 in L2 (I) consists

of all f 2 D (L) satisfying [f; g] (x)
b

j
a

= 0; for all g 2 D (L) :

Proof. See ([55], page 70). �

We remark that if one or both of the endpoints of I are regular, then the con-

dition stated in Theorem 2.4.7. simpli�es further. For example, if the left endpoint

a is regular and the right endpoint b is singular, then the condition stated in
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Theorem 2.4.7. may be restated as: f 2 D (L) is in the minimal domain D (L0)

whenever

(i) f (k) (a) = 0; 1; 2; : : : ; 2n� 1; and

(ii) [f; g] (b) = 0; for all g 2 D (L) :

The interested reader can �nd the proof of this in ([55], page 71).

Remark 1.

Observe that if A is a symmetric extension of the minimal operator L0 in

L2 (I) ; then A � L; where L is the maximal operator. Indeed, this is an immediate

consequence of Theorem 2.4.6. : L0 � A � A� � L�0 = L:

In particular, A [y] = ` [y] for all y 2 D (A) ; i.e., A has the same form as the

expression ` [�] and A is the restriction of the maximal operator L:

Remark 2.

We note that all the theory that we present in this section can be applied

mutatis mutandis to expressions of the form

� [y] (x) =
1

f (x)

nX
j=0

(�1)j
�
aj (x) y

(j) (x)
�(j)

; x 2 I

where f (x) 2 C2n (I) and f (x) > 0 for all x 2 I: Observe that f (x) � [y] (x) is

formally symmetric; in this case, we call such a function f (x) a symmetry factor for

� [�] (see [52]). The appropriate Hilbert space setting for the self-adjoint extension

theory would be L2 (a; b; f) :

We note that the maximal operator L in L2 (a; b; f) ; generated by � [�] ; is de�ned

to be

L [y] = � [y]

D (L) =
�
y : (a; b)! C

�� y(j) 2 ACloc (a; b) ; j = 0; 1; : : : ; 2n� 1;
y; � [y] 2 L2 (a; b; f)

	
:
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2.5 Examples

1. the Jacobi expression is de�ned by

�J [y] := �
�
1� x2

�
y00 + (�� � + (�+ � + 2) x) y0 + ky; x 2 (�1; 1) ; �; � > �1:

the nth Jacobi polynomial P (�;�)n (x) satis�es

�J
�
P (�;�)n

�
= (k + n (n+ �+ � + 1))P (�;�)n :

Although this expression cannot be directly put into the form (2.2.1), multiplication

of �J by the symmetry factor f (x) = (1� x)� (1 + x)� yields:

`J [y] := (1� x)� (1 + x)� �J [y] (x)

= �
�
(1� x)� (1 + x)� y0 (x)

�0
+ k (1� x)� (1 + x)� y (x) :

(2.5.1)

Observe that when � = � = 0; then �J [�] � M
(1)
k [�] ; where M (1)

k [�] is de�ned in

(2.1.1). For the Jacobi expression, the proper right-de�nite setting is the weighted

Lebesgue space L2
�
�1; 1; (1� x)� (1 + x)�

�
(not L2 (�1; 1) unless � = � = 0) and

the maximal and minimal operators in this space are generated from

�J [�] = (1� x)�� (1 + x)�� `J [�] :

2. the Laguerre expression is de�ned by

�L [y] := �xy00 + (x� 1� �) y0 + ky; x 2 (0;1) ; � > �1:

the nth Laguerre polynomial L(�)n (x) satis�es �L
h
L
(�)
n

i
= (n+ k)L

(�)
n : In this case,

a symmetry factor for �L is f (x) = x�e�x: Indeed, we have

`L [y] := x�e�x�L [y] (x)

= �
�
x�+1e�xy0 (x)

�0
+ kx�e�xy (x) : (2.5.3)

For this expression, the maximal and minimal operators associated with the Laguerre

expression are generated by �L [�] = x�e�x`L [�] and studied in the Lebesgue space

L2 (0;1;x�e�x) :
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3. the Hermite expression is de�ned by

�H [y] := �y00 + 2xy0 + ky; x 2 (�1;1) :

the nth Hermite polynomial Hn (x) satis�es �H [Hn] = (k + 2n)Hn: In this case, a

symmetry factor for �H is f (x) = e�x
2
; when multiplied by this factor, we get

`H [y] := e�x
2
�H [y] (x)

= �
�
e�x

2
y0 (x)

�0
+ ke�x

2
y (x) : (2.5.4)

The proper Hilbert space setting is L2
�
�1;1; e�x2

�
and the correct expression

there to study in this context is �H [�] = ex
2
`H [�] :

In 1929, von Neumann considered and solved the problem of when a symmet-

ric operator in a Hilbert space H had self-adjoint extensions in H: The motivation

for this study came from his interest in several unbounded operators that appear

quite naturally in the theory of quantum mechanics. In 1939, Calkin presented his

method for determining necessary and su¢ cient conditions when such self-adjoint

extensions exist and proceeded to characterize the domains of each of these ex-

tensions interms of general "boundary conditions". A well-written account of this

elegant theory can be found in [13] (see pages 1222-1239 and 1268-1274). For our

study, this theory has particularly important applications to the subject of symmet-

ric di¤erential operators. Indeed, the Russian mathematicians M. A. Naimark and

I. M. Glazman are credited for applying and re�ning both von Neumann�s theory

and Calkin�s method to the minimal operator L0 generated by ` [�] : We now brie�y

describe von Neumann�s results and follow this by the Glazman-Naimark theory of

self-adjoint extensions of L0:

2.6 von Neumann�s Formula

De�nition 2.6.1. Let A be a symmetric operator in a Hilbert space H: Let

D+ := ff 2 D (A�) j A�f = if g and

D� := ff 2 D (A�) j A�f = �if g ;
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where i =
p
�1: The space D+ is called the positive de�ciency space of A and

D� is called the negative de�ciency space of A: The dimensions of these spaces are

called, respectively, the positive and negative de�ciency indices of A:We shall write

n� := dim (D�) : The de�ciency index of A in L2 (I) is the ordered pair (n+; n�) :

As shown in [13] (see page 1232), there is nothing special about using the

complex number i in this de�nition: If � 2 C and Im (�) > 0; then it is the case

that

dim ff 2 D (A�) j A�f = �f g = n+:

A similar result holds for n� and any � 2 C with Im (�) < 0: This result was actually

proved by Weyl in 1910 (see [32] and ([72], Chapter 13)) in the case of the classical

second-order Sturm-Liouville di¤erential expression.

If A is a symmetric operator in a Hilbert space H; we de�ne a new inner

product on D (A�) by (x; y)� := (x; y) + (A�x;A�y) : It can be shown (see [13], page

1225) that D (A�) is a Hilbert space when equipped with this inner product. At this

point, we can now state the following important theorem. Equation (2.6.1) below is

known as von Neumann�s formula.

Theorem 2.6.1. Let A be a symmetric operator in a Hilbert space H: Then D
�
A
�
;

D+; D� are closed orthogonal subspaces in

(D (A�) ; (x; y)�) ; and D (A�) = D
�
A
�
�D+ �D�:

Proof. See ([13], page 1227). �

In this case of A = L0; the minimal operator in L2 (I) generated by ` [�] ; von

Neumann�s formula becomes

D (L) = D
�
L0
�
�D+ �D�: (2.6.1)

Consequently, in view of Remark 1, it is not too surprising that the positive

and negative de�ciency spaces play a major role in the determination of self-adjoint
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extensions of L0 in L2 (I) : In fact, we state the following theorem (see [13], page

1228) to illustrate this in�uence.

Theorem 2.6.2. Let A be a symmetric operator in a Hilbert space H: Let D0 be a

closed subspace of D+ �D� and set D = D
�
A
�
� D0: The restriction of A� to D is

self-adjoint if and only if D0 is the graph of an isometry mapping D+ onto D� :

From Theorem 2.6.2., the key result follows:

Theorem 2.6.3. Let A be a symmetric operator in a Hilbert space H: Then A has

self-adjoint extensions in H if and only if its de�ciency indices n+ and n� are equal.

Furthermore, if n+ = n� = 0; then the only self-adjoint extension of A is its closure

A = A�:

Proof. See ([13], page 1230). �

Although much more can be said about the characterizations of self-adjoint

extensions of general symmetric operators in a Hilbert space, we instead return to

our discussion of �nding self-adjoint extensions of the minimal operator L0 in L2 (I) :

Since for any complex number �; the equation ` [y] = �y has a basis of 2n solutions,

the de�ciency indices of L0 in L2 (I) are both �nite. In fact, these two indices are

equal. Indeed, because the coe¢ cients ak of ` [�] are real-valued, the function f is a

solution of ` [y] = iy if and only if f is a solution of ` [y] = ��y: This same argument

shows, in fact, that if ff1; f2; : : : ; fmg is a basis for the positive de�ciency space D+;

then
�
f1; f2; : : : ; fm

	
is a basis for the negative de�ciency spaceD�: However we note

that, in general, the de�ciency indices n� need not to be equal when the coe¢ cients

of ` [�] are complex-valued. We state the following theorem:

Theorem 2.6.4. Let L0 denote the minimal operator in L2 (I) generated by ` [�] ;

where I = (a; b) : Then,

(i) If both endpoints a and b are regular endpoints, then n� = 2n:

(ii) If one of the endpoints is singular, then 0 � n+ = n� � 2n:
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In fact, it is possible to construct ` [�] so that n� = m for any integer m;

0 � m � 2n: If exactly one of the endpoints is singular, then n � n+ = n� � 2n:

Proof. For the proof of (i) ; (see [55], page 66). For the proof of (ii) ; (see [55],

pages 69 and 71). Furthermore, in [28], Glazman constructs examples to show that

m = n� can actually take on all possible integer values between 0 and 2n: �

Let c 2 I; necessarily, c is a regular point of ` [�] : Let L�0 denote the minimal

operator generated by ` [�] on (a; c) and let L+0 denote the minimal operator generated

by ` [�] on (c; b) : Let (m�;m�) and (m+;m+) denote, respectively, the de�ciency

indices of L�0 in L2 (a; c) and L+0 in L2 (c; b) : We state the following theorem:

Theorem 2.6.5. The de�ciency index of the minimal operator L0 in L2 (I) is

(m;m) where:

m = m+ +m� � 2n; (2.6.2)

and 2n is the order of the expression ` [�] : Furthermore, m is independent of the

choice of c 2 I:

Proof. See ([28], page 353). �

The importance of this theorem may need some explanation. Since the point

c is a regular point, all solutions of ` [y] = �iy will belong to L2(c � "; c] for all

0 < " < c � a: Consequently, the number m� is precisely equal to the number of

solutions of ` [y] = �iy that are in L2(a; a + �] for some su¢ ciently small � > 0:

Similarly, the number m+ is equal to the number of solutions of ` [y] = �iy that are

in L2[b� �; b) for small enough � > 0: This motivates the following de�nition:

De�nition 2.6.2. The di¤erential expression ` [�] is said to be in the limit-p case at

x=a in L2 (I) if there exist exactly p solutions of ` [y] = �iy belong to L2 (a; a+ �)

for some su¢ ciently small � > 0: Similarly, ` [�] is said to be in the limit-q case at

x=b in L2 (I) if there exist exactly q solutions of ` [y] = �iy belong to L2 (b� �; b)

for some su¢ ciently small � > 0:
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Since L [�] is of order 2n; it is clear that 0 � p and q � 2n: If the order of

` [�] is two, the limit-2 case is more commonly called the limit-circle case while the

limit-1 case is often referred to as the limit-point case. This notation goes back to

Weyl�s seminal paper [72]. His analysis of the number of Lebesgue square-integrable

solutions of the second-order Sturm-Liouville equation involved some key geometric

arguments. The terms "limit-point" and "limit-circle" re�ect the geometry used in

his solution.

Remark 3.

In the second-order case, Weyl showed that if ` [y] = �0y is limit-point (respectively,

limit-circle) at a or b for a certain complex number �0; then ` [y] = �y is limit-point

(limit-circle) at a or b for all complex numbers � 2 C:

From De�nition 2.6.2. and Theorem 2.6.5., it is clear that once we can deter-

mine the limit case for each of the endpoints, then the de�ciency index of the minimal

operator L0 in L2 (I) can be determined. Fortunately, there is a method available

for determining the limit case of an endpoint when that endpoint is a regular sin-

gular point in the sense of Frobenius. Indeed, the so-called Method of Frobenius

from ordinary di¤erential equations (see [33], pages 396-404) can sometimes be used

to determine the number of Lebesgue square-integrable solutions near this singular

endpoint.

De�nition 2.6.3. Consider the di¤erential equation

L [y] (x) =

nX
j=0

bj (x) y
(j) (x) = 0; x 2 J (2.6.3)

where J � R is some open interval, bj : J ! R; j = 0; 1; : : : ; n; bn (x) 6= 0 for all

x 2 J: Suppose a; b 2 J with a < b: If x = a > �1; then x = a is called a regular

singular point of L [�] if

(x� a)n L [y] (x)

bn (x)
=

nX
j=0

(x� a)j cj (x) y
(j) (x) ;
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where cn (x) � 1 and where each cj (x) is analytic in some neighbourhood of x = a;

j = 0; 1; : : : ; n�1: The de�nition of x = b <1 as a regular singular point is similar.

If a = �1 or (b =1) and L [�] can be put into the form
nX
j=0

tjcj (t) y
(j) (t) ;

under the transformation x = 1
t
; where again cn (t) � 1 and each cj (t) is analytic in

some neighbourhood of t = 0; then we say x =1 is a regular singular point of L [�] :

If an endpoint is not a regular singular endpoint, it is called an irregular singular

point.

Based on earlier work of Fuchs, Frobenius developed an ingenious tool for

determining a basis of n solutions of the homogeneous equation (2.6.3), where each

solution is expanded about a regular singular point. A key ingredient in this method

is the indicial equation at x = a associated with (2.6.3):

nX
j=0

P (r; j) cj = 0; (2.6.4)

where cj = cj (a) and P (r; j) = r!
(r�j)! ; j = 0; 1; : : : ; n: Evidently, this is a polynomial

of degree exactly n: For lack of space, we do not describe this method; it su¢ ces to

say that each of the n roots of the indicial equation (2.6.4) determines a solution of

(2.6.3), even in the case of roots having multiplicity greater than one. The examples

below, we hope, will help the reader in understanding this important method.

2.7 Examples

1. Consider the Legendre di¤erential expressionM (1)
k [�] de�ned in (2.1.1). The

endpoints x = �1 are both regular singular points of M (1)
k [�] : All x 2 (�1; 1) are

regular singular points in the sense of De�nition 2.2.1. The reader can check that

the indicial equation at both x = �1 is given by r2 = 0: Around x = 1; for example,

Frobenius�method yields a basis fy1; y2g of solutions of M (1)
k [y] = 0;
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where y1 and y2 have the form:

y1 (x) =
1X
j=0

aj (x� 1)j ; a0 6= 0 and

y2 (x) = ln jx� 1j
1X
j=0

aj (x� 1)j +
1X
j=0

bj (x� 1)j ; b0 6= 0

where both series converge for jx+ 1j < 2: Similarly, by replacing �1 by +1 in the

above series, we obtain a basis of solutions about x = �1; valid for jx� 1j < 2:

It is clear from these representations that all solutions of M (1)
k [y] = 0 are

Lebesgue square-integrable near the endpoints x = �1:Hence, referring to Remark 3,

we conclude that the Legendre di¤erential expression is limit-circle at both x = �1:

Consequently, from Theorem 2.6.5., the de�ciency index of the minimal operator

generated by the Legendre expression M (1)
k [�] is (2; 2) :

2. The Krall-Legendre di¤erential expression M
(2)
k [�] is de�ned by (2.1.4).

We note that the nth Krall-Legendre polynomial Pn;A (x) = P2;n (x) (Legendre type,

P2;n (x) is in the original notation of A. M. Krall, see [36]) is a solution of the equation

M
(2)
k [y] =

�
n (n+ 1)

�
n2 + n+ 4A� 2

�
+ k
�
y; n = 0; 1; : : : .

As with the Legendre expression, the endpoints x = �1 are both regular singular

endpoints and all x 2 (�1; 1) are regular points of this expression. The indicial

equation at both x = �1 associated with

M
(2)
k [y] = �iy (2.7.1)

is given by r (r � 1) (r � 2) (r + 1) = 0: If we apply the Frobenius�method to (2.7.1)

with particular attention paid to ([33], Section 16.33), we see that a basis of solutions
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about x = 1 is given by fy1; y2; y3; y4g ; where

y1 (x) =
1P
j=0

aj (x� 1)j+2 ; a0 6= 0;

y2 (x) =
1P
j=0

bj (x� 1)j+1 ; b0 6= 0;

y3 (x) =
1P
j=0

cj (x� 1)j ; c0 6= 0;

y4 (x) =
1P
j=0

dj (x� 1)j�1 ; d0 6= 0;

with each of these series converging for jx� 1j < 2: It is clear that y1; y2; y3 are

all Lebesgue square-integrable near +1 but that y4 is not. Hence, M
(2)
k [�] is in the

limit-3 case at x = 1: It can also be shown that M (2)
k [�] is in the limit-3 case at

x = �1: Hence, from Theorem 2.6.5., the de�ciency index of the minimal operator

L0 generated from M
(2)
k [�] in L2 (�1; 1) is (2; 2) :

Remark 4.

Fortunately, the endpoints x = �1 are regular singular endpoints of the Legendre

expressions (2.1.1) and (2.1.5) so that the Frobenius analysis can be carried out. We

note that if an endpoint is not a regular singular endpoint of ` [�] ; quite a di¤erent

analysis must be applied to determine the limit classi�cation of ` [�] at this point.

In the second-order case, the usual procedure that is employed is to �rst transform

the expression into its Liouville normal form (see [32], page 42) and then to try

to apply some known limit-point criteria (e.g., the Levinson criteria, see [11], pages

229-230) to the transformed equation. For example, the Laguerre expression (2.5.3)

has x = 1 as an irregular singular point but the Levinson condition readily shows

that this expression is in the limit-point case at x =1:
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We are now almost in the position to state the important Glazman-Naimark

theorem. We �rst need the following de�nition:

De�nition 2.7.1. Let X be a vector space and M1 � M2 be subspaces of X: We

say that fx1; x2; : : : ; xng �M2 is linearly independent modulo M1 if the condition

nX
j=1

�jxj 2M1

implies �j = 0; j = 1; 2; : : : ; n: If A � M2 is a maximal linearly independent set

modulo M1 and � = card (A) ; we say that the dimension of M2 is � modulo M1:

It is not di¢ cult to see that if fx1; x2; : : : ; xng �M2 is a linearly independent

set, then it is a maximal linearly independent set modulo M1 if and only if

M2 =M1 u sp fx1; x2; : : : ; xng : (2.7.2)

Of course, any set of linearly independent vectors modulo M1 is a linearly indepen-

dent set in X; but the converse of this is not necessarily true.

This concept of linear independence modulo subspace plays an important role

in characterizing all self-adjoint extensions of L0 in L2 (I) : In view of (2.7.2) and

the importance that von Neumann�s formula (2.6.1) plays, this statement is not too

surprising.

By suitably modifying Theorem 2.6.2. with the minimal operator L0; we can

obtain the Glazman-Naimark theorem. The proof of this theorem can be found in

([55], pages 75-76).

2.8 The Glazman-Naimark Theorem

Theorem 2.8.1. Suppose the de�ciency index of the minimal operator L0 in

L2 (a; b) generated by the expression ` [�] is (m;m) :

(i) Let S be a self-adjoint extension of L0 in L2 (a; b) : Then there exists a set
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fw1; w2; : : : ; wmg � D (S) that is linearly independent modulo D (L0) such that

S [y] = ` [y] ;

D (S) =
�
y 2 D (L)

���� [wj; y] bj
a

= 0; j = 1; 2; : : : ;m

�
: (2.8.1)

Here [�; �] is the sesquilinear form de�ned in (2.3.2).

(ii) Suppose fw1; w2; : : : ; wmg � D (L) is linearly independent modulo D (L0) with

[wj; wk]
b

j
a

= 0; j; k = 1; 2; : : : ;m:

De�ne an operator S in L2 (a; b) by

S [y] = ` [y] ;

D (S) :=
�
y 2 D (L) j [wj; y]

b

j
a

= 0; j = 1; 2; : : : ;m

�
:

Then S is a self-adjoint extension of L0:

Before proceeding to the next section, we note that the conditions [wj; y]
b

j
a

= 0

given in (2.8.1) are known as the Glazman-Naimark boundary conditions and the

functional

[wj; �]
b

j
a

: D (L) ! C is called a boundary value for L0: If for some j; [wj; y]
b

j
a

= 0 is

independent of a or b for all y 2 D (S) ; it is called a separated boundary condition;

otherwise it is a mixed boundary condition.

In ([13], page 1234), a boundary value for a symmetric operator A is de�ned to

be a continuous linear functional on (D (A�) ; (�; �)�) that vanishes on D (A) : As can

be seen by Theorem 2.4.7., our notion of a boundary value is in complete agreement

with that in [13].

Finally we note, for the reader�s sake, that there is a generalization of Theorem

2.8.1. for arbitrary symmetric operators; such a theorem can be found in ([13], page

1239).
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2.9 Applications to the Legendre Di¤erential Expressions

In this section, among other results, we show how the Glazman-Naimark the-

orem may be applied directly to the Legendre expression (2.1.1). We shall produce

all of the self-adjoint extensions in L2 (�1; 1) of the associated minimal operator,

including that extension having the Legendre polynomials as a complete set of eigen-

functions.

The reader will notice that in all these classical second-order cases, the symme-

try factor f for the expression is identical with the orthogonalizing weight function

for the associated orthogonal polynomials. Consequently, in each of these examples,

the Glazman-Naimark theory of self-adjoint extensions of the minimal operator L0

will yield, as a special case, that self-adjoint extension having the corresponding

orthogonal polynomials as eigenfunctions.

However, the situation is quite di¤erent for the higher-order equations hav-

ing orthogonal polynomial eigenfunctions (including (2.1.2)-(2.1.5)). In these cases,

the symmetry factor f (x) di¤ers from the associated orthogonalizing weight w (x) ;

x 2 I: As a result, while the Glazman-Naimark theory picks up all of the self-adjoint

extensions of the minimal operator in L2 (I; f) generated from each of these higher-

order equations, none of these extensions will have the associated set of orthogonal

polynomials as eigenfunctions. Indeed, because eigenfunctions of a self-adjoint op-

erator corresponding to distinct eigenvalues are necessarily orthogonal in L2 (I;w) ;

the self-adjoint operator with the set of orthogonal polynomials as eigenfunctions

must be in L2 (I;w) :

It may appear, then, that the Glazman-Naimark theory cannot be used to �nd

this particular self-adjoint operator in L2 (I;w) : However, due to a method of W. N.

Everitt [21] based on earlier work of A. M. Krall [36], the Glazman-Naimark theory

is very cleverly used to �nd this particular operator in L2 (I;w) :
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Details of the self-adjoint extension theory in L2 (�1; 1) for expressions (2.1.2)-

(2.1.5) can be found in the Loveland�s thesis [54]. We shall not discuss this in

here; instead, we concentrate on that self-adjoint extension in L2 (I;w) having the

orthogonal polynomials as eigenfunctions.

Examples

1. The �rst example that we discuss is the expressionM (1)
k [�], de�ned in (2.1.1); this

expression has been studied extensively by Everitt in [15]; (see also [54], Chapter 3).

From Section 2.5, we found that M (1)
k [�] is limit-circle at both singular endpoints

x = �1 and that the de�ciency index of the minimal operator L0 in L2 (�1; 1)

generated by M (1)
k [�] is (2; 2) : According to the Glazman-Naimark theorem, each

self-adjoint extension S of L0 in L2 (�1; 1) has the form

S [y] =M
(1)
k [y] ;

D (S) =
�
y 2 D (L) j [w1; y](1)

1

j
�1
= [w2; y](1)

1

j
�1
= 0

�
; (2.9.1)

where fw1; w2g � D (S) is linearly independent moduloD (L0) ; [�; �](1) is the sesquilin-

ear form de�ned in (2.3.2), and D (L) is the domain of the maximal operator L in

L2 (�1; 1) generated by M (1)
k [�] : We now describe a procedure for determining w1

and w2:

It is easy to see that a basis of solutions for M (1)
k [y] = ky is given by fy1; y2g

where

y1 (x) = 1; and

y2 (x) =
1

2
ln

�
1 + x

1� x

�
; � 1 < x < 1:

These solutions may be found by directly solving this equation. Alternatively, we

could have applied Frobenius�method and obtained a basis around both endpoints

x = �1; asymptotically, these solutions would behave much like y1 and y2 above.

We use these two solutions to �nd a basis for the quotient space

D (L) =D (L0)
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(this space being isomorphic toD+�D�), which according to von Neumann�s formula

(2.6.1) is of dimension 4: More speci�cally, de�ne 'i 2 C2 (�1; 1) ; i = 1; 2; 3; 4 such

that

'1 (x) =

8><>: 0

1

near x = �1

near x = 1;

'2 (x) =

8><>: 1

0

near x = �1

near x = 1;

'3 (x) =

8><>: 0

1
2
ln
�
1+x
1�x
� near x = �1

near x = 1;

'4 (x) =

8><>:
1
2
ln
�
1+x
1�x
�

0

near x = �1

near x = 1:

(2.9.2)

By this construction, it is clear that 'i 2 D (L) ; i = 1; 2; 3; 4: The reader can readily

check that

['1; '2](1) (�1) = ['1; '4](1) (�1) = 0;

['2; '3](1) (�1) = ['3; '4](1) (�1) = 0;

['1; '3](1) (1) = ['2; '4](1) (�1) = 1;

['1; '3](1) (�1) = ['2; '4](1) (1) = 0:

(2.9.3)
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It is also easy to see that the set f'1; '2; '3; '4g is linearly independent mod-

ulo D (L0) ; and hence, there exist linearly independent vectors f�1; �2; �3; �4g ;

f�1; �2; �3; �4g 2 C4 such that

w1 =

4X
j=1

�j'j and (2.9.4)

w2 =
4X
j=1

�j'j; (2.9.5)

where w1 and w2 are de�ned in (2.9.1). Of course, the requirement that w1; w2 2

D (S) forces restriction on the vectors f�1; �2; �3; �4g ; f�1; �2; �3; �4g 2 C4: That is

to say, w1 and w2 must satisfy the Glazman-Naimark symmetry conditions

[w1; w1](1)
1

j
�1
= [w1; w2](1)

1

j
�1

= [w2; w2](1)
1

j
�1
= 0:

From (2.9.3), these symmetry conditions yield the following necessary and su¢ cent

conditions on the linearly independent vectors f�1; �2; �3; �4g ; f�1; �2; �3; �4g :

�1�3 � �1�3 � �2�4 + �2�4 = 0;

�1�3 � �3�1 � �2�4 + �4�2 = 0;

�1�3 � �1�3 � �2�4 + �2�4 = 0:

(2.9.6)

In the case of separated boundary conditions, we can take �1 = �2 = �3 = �4 = 0:

In this case, the symmetry conditions are

�1�3 = �1�3;

�2�4 = �2�4:

It is easy to see, in this case, that it su¢ ces to take (�1; �3) ; (�2; �4) 2 R2 to be

both nonzero. In summary, we state the following theorem:
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Theorem 2.9.1. All self-adjoint extensions S in L2 (�1; 1) of the minimal operator

L0 generated by the Legendre expression M (1)
k [�] have the form

S [y] =M
(1)
k [y] ;

D (S) =
�
y 2 D (L) j [w1; y](1)

1

j
�1
= [w2; y](1)

1

j
�1
= 0

�
:

Here, w1; w2 are de�ned in (2.9.4) and (2.9.5), respectively, '1; '2; '3; '4 are de�ned

in (2.9.2), and the linearly independent vectors f�1; �2; �3; �4g ; f�1; �2; �3; �4g 2 C4

satisfy the symmetry conditions in (2.9.6). In the special case that S is determined

by separated boundary conditions, then S has the form

S [y] =M
(1)
k [y] ;

D (S) =
n
y 2 D (L)

��� [ŵ1; y](1) (1) = [ŵ2; y](1) (�1) = 0o ;
In this case, ŵ1 = a1 1 + a2 2 and ŵ2 = b1�1 + b2�2; where  1 := '1;  2 := �3;

�1 := '2 and �2 := '4; and (a1; a2) ; (b1; b2) 2 R2 are both nonzero vectors.

We now focus our attention on determining the self-adjoint extension(s) S

of M (1)
k [�] in L2 (�1; 1) that have the Legendre polynomials fPn (x)g1n=0 as eigen-

functions. To emphasize the relationship this sequence of orthogonal polynomials

has with the other Legendre polynomials discussed in this chapter, we shall write

Pn (x) = P1;n (x) : Notice that if S is such an extension, then necessarily we must

have

[w1; P1;0](1)

1

j
�1
= 0; i = 1; 2;

where w1; w2 are given by (2.9.4) and (2.9.5), respectively. Since P1;0 (x) = 1; these

conditions yield

�3 = �4 and �3 = �4: (2.9.7)

In addition, since P1;1 (x) = x; we must also have

[w1; x](1)
1

j
�1
= 0; i = 1; 2;
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which yields

�3 = ��4 and �3 = ��4: (2.9.8)

From (2.9.7) and (2.9.8), we �nd that �3 = �4 = �3 = �4 = 0: Consequently, we

have:

w1 = �1'1 + �2'2 =

8><>: �2 near x = �1

�1 near x = 1;

w2 = �1'1 + �2'2 =

8><>: �2 near x = �1

�1 near x = 1;

where (�1; �2) ; (�1; �2) are linearly independent vectors in C2: However, it is easy

to see that

[w1; y](1)
1

j
�1
= �1 [1; y](1) (1)� �2 [1; y](1) (�1) ;

[w2; y](1)
1

j
�1
= �1 [1; y](1) (1)� �2 [1; y](1) (�1) ;

for all y 2 D (S) : From these conditions, it is clear that [y; wi](1)
1

j
�1
= 0; i = 1; 2;

if and only if [y; 1](1) (1) = [y; 1](1) (�1) = 0: Consequently, we have the following

theorem:

Theorem 2.9.2. The self-adjoint operator S in L2 (�1; 1) which extends the min-

imal operator L0 generated by the Legendre di¤erential expression M (1)
k [�] and has

the Legendre polynomials as eigenfunctions is given by

S [y] =M
(1)
k [y] ; (2.9.9)

D (S) =
n
y 2 D (L)

��� [y; 1](1) (1) = [y; 1](1) (�1) = 0o :
Furthermore, the spectrum of S is � (S) = fn (n+ 1) + k j n = 0; 1; : : :g :

Proof. Details about the spectrum can be found in [54]. �
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2. the nth Legendre(2)-left polynomial PL2;n (x) (see [54]) is a solution of

ML
(2)
k [y] =

�
n4 + 2n3 + (4A+ 1)n2 + 4An+ k

�
y; n = 0; 1; : : : ;

where the expression ML
(2)
k [�] is given by (2.1.2). They form a complete orthogonal

set in the Hilbert space L2� [�1; 1) generated from the inner product

(f; g)� :=

Z
[�1;1)

f (x) g (x) d� (x) =
f (�1) g (�1)

A
+

1Z
�1

f (x) g (x) dx:

The endpoints x = �1 are regular singular points of ML
(2)
k [�] : At x = 1;

ML
(2)
k [�] is limit-4 in L2 (�1; 1) whileML

(2)
k [�] is limit-3 in L2 (�1; 1) at x = �1; this

can easily be veri�ed using the method of Frobenius. Hence, from Theorem 2.6.5.,

the de�ciency index of the minimal operator generated by ML
(2)
k [�] in L2 (�1; 1) is

(3; 3) : Consequently, each self-adjoint extension in L2 (�1; 1) of this minimal oper-

ator can be obtained by imposing three linearly independent boundary conditions

as required by Theorem 2.8.1.. We leave it to the reader to apply this theorem to

�nd all of these self-adjoint extensions in L2 (�1; 1) : We note, however, that none

of these self-adjoint extensions will have the set of Legendre(2)-left polynomials as

eigenfunctions. Indeed, if such a self-adjoint extension exists, the appropriate set-

ting for this operator is L2� [�1; 1) and not L2 (�1; 1) : The proof of the following

theorem can be found in ([54], Chapter 5):

Theorem 2.9.3. The self-adjoint operator S in L2� [�1; 1) which has the Legendre(2)-

left polynomials as eigenfunctions is de�ned by

S [y] (x) :=

8><>: �8Ay0 (�1) + ky (�1)

ML
(2)
k [y] (x)

if x = �1

if �1 < x < 1;
(2.9.10)

D (S) = fy 2 D (L) j [y; w1]L (1) = [y; w2]L (1) = 0g :

Here, D (L) refers to the domain of the maximal operator in L2 (�1; 1) generated by

ML
(2)
k [�] ; [�; �]L is the sesquilinear form de�ned by (2.3.4), and fw1; w2g � C4 [�1; 1]
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are de�ned by

w1 (x) =

8><>: 1

0

for x near 1

for x near �1;

w2 (x) =

8><>: 1� x

0

for x near 1

for x near �1:

Furthermore, the spectrum of S is given by

� (S) =
�
n4 + 2n3 + (4A+ 1)n2 + 4An+ k j n = 0; 1; 2; : : :

	
:

Remark 5.

In proving Theorem 2.9.3., we found that each y 2 D (S) has the property that

y00 2 L2 (�1; 1) ; consequently, by rede�ning y at x = �1; we may assume that y;

y0 2 AC [�1; 1] for all y 2 D (S) : Moreover, it is true that each y 2 D (L) has the

property that y00 2 L2 (�1; 0] ; in general, however, y00 =2 L2 (�1; 1) for y 2 D (L) :

The de�nition of the maximal domain D (L) ; given by (2.2.2), does not suggest that

functions in the maximal domain of the expression ML
(2)
k [�] enjoy this smoothness

condition at x = �1:We can attribute this remarkable property to the smoothness of

the coe¢ cients of ML
(2)
k [�] and to the discontinuity of the monotonically increasing

function �̂ at x = �1 which generates the orthogonalizing measure �: Indeed, �̂ may

be de�ned by:

�̂ (x) =

8>>>><>>>>:
�1� 1

A

x

1

if x � �1

if �1 < x < 1

if x � 1;

notice that � (f�1g) = 1=A: We shall �nd that this pattern persists with the other

higher-order Legendre expressions: whenever the measure of the endpoint �1 (re-

spectively, +1) is nonzero, we pick up a certain degree of smoothness of functions
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near x = �1 (+1) in the corresponding maximal domain in L2 (�1; 1) and possibly

even more smoothness for functions in the domain of the appropriate self-adjoint

operator having the orthogonal polynomials as eigenfunctions.

Does this same pattern hold for the classical Legendre expression? In this case,

the orthogonalizing measure is Lebesgue measure restricted to the interval [�1; 1] ;

i.e., the measure of both x = �1 is zero. In general, functions in the maximal

domain in L2 (�1; 1) associated with this expressions have no special smoothness

conditions. For example,

f (x) =
1

2
ln

�
1 + x

1� x

�
2 D (L) ; but f 0 (x) = 1

1� x2
=2 L2 (�1; 1) :

However, any function y in the domain of the self-adjoint operator S; de�ned by

(2.9.9), has the property that y0 2 L2 (�1; 1) ; this result is due to Everitt and Maríc

[23]. Consequently, each y 2 D (S) is absolutely continuous on [�1; 1] :

As we noted earlier, each self-adjoint extension of ML
(2)
k [�] in L2 (�1; 1) is

determined by three linearly independent boundary conditions. In the special case

of separated conditions, two appropriately chosen boundary conditions would have

to be prescribed at x = 1 and one boundary condition would have to be assigned at

x = �1; this is due to the limit cases at x = �1: It is interesting to note that S in

L2� [�1; 1) ; given in (2.9.10), is de�ned using two separated boundary conditions at

x = 1 and no boundary conditions at x = �1: This is due, in part, to the continuity

of the function �̂ at x = 1 and the discontinuity of �̂ at x = �1: As we shall

see with all of the Legendre expressions, whenever an endpoint has nonzero measure

(the measure being the orthogonalizing measure), we need one less boundary condition

than the Glazman-Naimark theorem requires to de�ne the self-adjoint operator having

the corresponding orthogonal polynomials as eigenfunctions while the same number of

boundary conditions would be needed at an endpoint which measures to zero through

the orthogonalizing measure.
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3. Through the transformation (x;A) ! (�x;B) ; the expression (2.1.2)

changes to expressionMR
(2)
k [�] given by (2.1.3); this later expression has the Legendre(2)-

right polynomials as eigenfunctions. Properties of these polynomials can be found

in ([54], Chapter 6). They form a complete orthogonal set in L2� (�1; 1] ; where � is

the measure generated by the monotonically increasing function �̂ de�ned by

�̂ (x) =

8>>>><>>>>:
�1

x

1 + 1
B

if x � �1

if �1 < x < 1

if x � 1:

The following theorem is the analog of Theorem 2.9.3.:

Theorem 2.9.4. The self-adjoint operator S in L2� (�1; 1] which has the Legendre(2)-

right polynomials as eigenfunctions is de�ned by

S [y] (x) :=

8><>: MR
(2)
k [y] (x)

8By0 (1) + ky (1)

if �1 < x < 1

if x = 1;

D (S) = fy 2 D (L) j [y; w1]R (�1) = [y; w2]R (�1) = 0g :

In this case, D (L) is the domain of the maximal operator in L2 (�1; 1) generated by

MR
(2)
k [�] ; [�; �]R is the sesquilinear form de�ned by (2.3.5), and fw1; w2g � C4 [�1; 1]

are de�ned by

w1 (x) =

8><>: 0

1

for x near 1

for x near �1;

w2 (x) =

8><>: 0

1 + x

for x near 1

for x near �1:

Furthermore, the spectrum of S is given by

� (S) = fn4 + 2n3 + (4B + 1)n2 + 4Bn+ k j n = 0; 1; 2; : : :g :

Proof. See ([54], Chapter 6). �
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4. the Legendre(2) polynomials, also called the Legendre type or the Krall-Legendre

polynomials, have been extensively written up in [36], [21], [17], and [22]; we also

refer the reader to ([54], Chapter 4) where a complete account of these polynomials

and the associated self-adjoint theory is given. These polynomials are also the main

subject of this thesis.

the nth Legendre(2) polynomial P2;n (x) is a solution of

M
(2)
k [y] =

�
n
�
n+ 1)(n2 + n+ 4A� 2

�
+ k
�
y; n = 0; 1; : : :

whereM (2)
k [�] is de�ned by (2.1.4.). They form a complete orthogonal set in L2� [�1; 1]

where � is the orthogonalizing weight generated from the monotonically increasing

function �̂ de�ned by

�̂ (x) =

8>>>><>>>>:
�1� 1

A

x

1 + 1
A

if x � �1

if �1 < x < 1

if x � 1:

(2.9.11)

By the method of Frobenius, it can be shown that both endpoints x = �1 are

in the limit-3 case in L2 (�1; 1) : Hence, by Theorem 2.6.5., the de�ciency index of

the minimal operator in L2 (�1; 1) generated byM (2)
k [�] is (2; 2). Since the de�ciency

index is (2; 2) ; each of the self-adjoint extensions is determined by two appropriately

chosen boundary conditions. In the special case of separated boundary conditions,

there would be one Glazman-Naimark boundary condition needed at each endpoint

x = �1: We note, however, that none of these extensions will have the Legendre(2)

polynomials as eigenfunctions; indeed, we must look for such a self-adjoint operator

in L2� [�1; 1] : We list the following theorem which gives the appropriate self-adjoint

operator in L2� [�1; 1] :
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Theorem 2.9.5. De�ne the operator S : L2� [�1; 1]! L2� [�1; 1] by

S [y] (x) :=

8>>>><>>>>:
�8Ay0 (�1) + ky (�1)

M
(2)
k [y] (x)

8Ay0 (1) + ky (1)

if x = �1

if �1 < x < 1

if x = 1;

(2.9.12)

D (S) = D (L) ; where D (L) is the maximal domain ofM (2)
k [�] in L2 (�1; 1) : Then S

is a self-adjoint operator in L2� [�1; 1] having the Legendre(2) polynomials as eigen-

functions. The spectrum of S is given by

� (S) = f(n (n+ 1)(n2 + n+ 4A� 2) + k) j n = 0; 1; 2; : : :g :

Proof. See ([21] and [17]). �

Remark 6.

It is remarkable that D (L) is the domain of the self-adjoint operator S given by

(2.9.12). Indeed, there is no reason to believe apriori that functions f 2 D (L)

should have the property that their derivatives at x = �1 exist and are �nite (which

is required in the de�nition of S [�]). Quite surprisingly, it is true that any f 2 D (L)

has the property that f 00 2 L2 (�1; 1) ; thus, we may assume that such functions

f satisfy the condition that f; f 0 2 AC [�1; 1] : Notice that, this example �ts the

pattern alluded to in Remark 5: since the endpoints x = �1 both have nonzero

�-measure, functions in the maximal domain have certain smoothness properties at

x = �1: Furthermore, while the Glazman-Naimark theory says that one separated

boundary condition must be prescribed at each endpoint to obtain a self-adjoint

extension in L2 (�1; 1) ; there are no boundary conditions needed in the de�nition

of S above. Again, this �ts the pattern suggested in Remark 5.

5. Our last example concerns the Legendre(3) polynomials fP3;n (x)g which are so-

lutions of

M
(3)
k [y] = �ny;
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where

�n = n (n+ 1)
�
n4 + 2n3 + (3A+ 3B � 1)n2 + (3A+ 3B � 2)n+ 12AB

�
+ k;

and whereM (3)
k [�] is given by (2.1.5). These polynomials form a complete orthogonal

set in the space L2� [�1; 1]

where � is the mesaure generated from the monotonically increasing function �̂

de�ned by

�̂ (x) =

8>>>><>>>>:
�1� 1

A

x

1 + 1
B

if x � �1

if �1 < x < 1

if x � 1:

Properties of these polynomials can be found in [49] and [54]. The reader will

notice, upon comparison of �̂ and �̂ (de�ned in (2.9.11)), that P3;n (x) is a gener-

alization of the Krall-Legendre polynomial P2;n (x) : However, as we see below, the

domain of the self-adjoint operator in L2� [�1; 1] having the polynomials fP3;n (x)g

as eigenfunctions is signi�cantly di¤erent than the operator S de�ned in (2.9.12).

Both of the endpoints x = �1 are regular singular endpoints of M (3)
k [�] : By

applying the method of Frobenius, we �nd that each endpoint is in the limit-5 case

in L2 (�1; 1) : From Theorem 2.6.5., the de�ciency index of the minimal operator in

L2 (�1; 1) generated by M (3)
k [�] is (4; 4) : Consequently, every self-adjoint extension

in L2 (�1; 1) of the minimal operator generated by M (3)
k [�] is determined by four

linearly independent Glazman-Naimark boundary conditions, as described by Theo-

rem 2.8.1.. Moreover, in the case of separated boundary conditions, there would be

two separated boundary conditions required at each endpoint x = �1:

While no boundary conditions are required to de�ne the self-adjoint operator

S given by (2.9.12), we shall see that the domain of the appropriate self-adjoint oper-

ator in L2� [�1; 1] having the set fP3;n (x)g as eigenfunctions involves one boundary

condition at each endpoint x = �1:
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Notice that, this �ts the pattern mentioned at the end of Remark 5.

Theorem 2.9.6. De�ne S : L2� [�1; 1]! L2� [�1; 1] by

S [y] (x) =

8>>>><>>>>:
24Ay00 (�1) + (�24AB � 24A) y0 (�1) + ky (�1)

M
(3)
k [y] (x)

24By00 (1) + (24AB + 24B) y0 (1) + ky (1)

if x = �1

if �1 < x < 1

if x = 1;

D (S) = fy 2 D (L) j [y; w1]3 (1) = [y; w2]3 (�1) = 0g :

In this case, D (L) is the maximal domain of M (3)
k [�] in L2 (�1; 1) ; [�; �](3)

is the sesquilinear form de�ned in (2.3.7 ) and w1; w2 are de�ned by:

w1 (x) =

8><>: 0

1
2
(1� x2) + 1

8
(A+ 2) (1� x2)

2

for x near �1

for x near 1;

w2 (x) =

8><>: �1
2
(1� x2)� 1

8
(B + 2) (1� x2)

2

0

for x near �1

for x near 1:

Then S is a self-adjoint operator having the Legendre(3) polynomials

fP3;n (x)g as eigenfunctions. Moreover, the spectrum of S is given by

� (S) = fn (n+ 1)n4 + 2n3 + (3A+ 3B � 1)n2

+(3A+ 3B � 2)n+ 12AB + k j n = 0; 1; 2; : : :g:

Proof. See ([54], Chapter 7). �
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CHAPTER THREE

A General Left-De�nite Spectral Theory

3.1 Introduction

The history of left-de�nite spectral theory - as it relates to di¤erential operators

- can be traced to the work of Weyl [72] who, in his landmark analysis of second-order

Sturm-Liouville di¤erential equations, coined the term polare-Eigenwertaufgabe for

the study of second-order equations in the left-de�nite setting. The terminology

left-de�nite (actually, the German Links-de�nit) �rst appeared in the literature in

1965 in a paper by Schäfke and Schneider [65]. In his book [34], Kamke uses the

term F-de�nit in his study of the di¤erential equation Fy = �Gy (he also uses G-

de�nit for his right-de�nite study of this equation). In ([56], [57], and [58]), Niessen

and Schneider considered general left-de�nite singular systems and left-de�nite s-

hermitian problems. Pleijel ([60] and [61]) provided one of the �rst concrete examples

of such a left-de�nite setting for a self-adjoint di¤erential operator with his analysis

of the classical second-order Legendre equation. His work was followed soon after

by the work of Atkinson et al. [3] who examined left-de�nite square-integrable ho-

mogeneous solutions. Later, Everitt [15] gave a complete (�rst) left-de�nite analysis

of the classical Legendre equation and his student, Onyango-Otieno [59], extended

these results by analyzing the appropriate right-de�nite and �rst left-de�nite spec-

tral settings for the di¤erential equations having the classical orthogonal polynomials

(Jacobi, Laguerre, Hermite) as solutions. Everitt, in [16], and Bennewitz and Everitt

[5] further the general theory of left-de�nite operators associated with second-order

di¤erential equations.

During the past 22 years, there have been several additional papers dealing

with theory and speci�c examples of left-de�nite operators, all within the framework

68



of di¤erential operators. Important results related to second-order equations have

been obtained by Krall ([37], [38], [39], and [40]), Krall and Littlejohn [42], Ha-

jmirzaahmad [31]. Left-de�nite results for higher-order di¤erential equations have

been obtained by Loveland [54], Everitt and Littlejohn [21], Everitt et al. ([18], [19],

[27], and [20]), Wellman [71], Vonho¤ [69], Littlejohn and Wellman [53].

In this chapter, we attempt to provide a framework for a general left-de�nite

theory of bounded below, self-adjoint operators in a Hilbert space. In Section 3.2, we

de�ne the general concept of a left-de�nite Hilbert space and a left-de�nite operator

associated with a self-adjoint operator that is bounded below. In Section 3.3, we

shall state the necessary theorems for the theory of left-de�nite space and in the

�nal section, we recall the spectral theorem and some of its immediate consequences

that we need in our work.

3.2 An Abstract De�nition of A Left-De�nite Space and Operator

Let V be a vector space over the complex �eld C with inner product (�; �) and

norm k�k ; the resulting inner product space is denoted by (V; (�; �)) : Suppose Vr (the

subscripts will be made clear shortly) is a (vector) subspace (i.e., a linear manifold)

of V and let (�; �)r and k�kr denote, respectively, an inner product (quite possibly

di¤erent from (�; �)) and an associated norm on Vr:

De�nition 3.2.1. Let H = (V; (�; �)) be a Hilbert space. Suppose

A : D (A) � H ! H is a self-adjoint operator that is bounded below by a positive

number k > 0; i.e.,

(Ax; x) � k (x; x) ; (x 2 D (A)) :

Let H1 = (V1; (�; �)1) ; where V1 is a subspace of V and (�; �)1 is an inner product on

V1�V1: Then H1 is said to be a left-de�nite (Hilbert) space associated with the pair

(H;A) ; if each of the following conditions holds:
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(1) H1 is a Hilbert space,

(2) D (A) is a subspace of V1,

(3) D (A) is dense in H1,

(4) (x; x)1 � k (x; x) ; (x 2 V1), and

(5) (x; x)1 � (Ax; y) ; (x 2 D (A) ; y 2 V1) :

Given a self-adjoint operator A that is bounded below by a positive constant,

it is not clear that a left-de�nite spaceH1 exists for the pair (H;A) : In fact, however,

Littlejohn and Wellman proved the existence and uniqueness of this Hilbert space

in [53] (see Theorem 3.1.).

If A is a self-adjoint operator in H that is bounded below by a positive number

k; then, with assistance from the spectral theorem (see Section 3.4 and, in particular,

Theorem 3.4.3.), we see that Ar is a self-adjoint operator bounded below by krI for

each r > 0: Consequently, we can extend De�nition 3.2.1. to a continuum of left-

de�nite spaces associated with (H;A).

De�nition 3.2.2. Let H = (V; (�; �)) be a Hilbert space. Suppose

A : D (A) � H ! H is a self-adjoint operator that is bounded below by a positive

number k > 0: i.e.,

(Ax; x) � k (x; x) ; (x 2 D (A)) :

Let r > 0: If there exists a subspace Vr of V and an inner product (�; �)r on Vr such

that Hr = (Vr; (�; �)r) is a left-de�nite space associated with the pair (H;Ar) ; we

call Hr an rth left-de�nite space associated with the pair (H;A) : Speci�cally, Hr is

an rth left-de�nite space associated with the pair (H;A) ; if each of the following

conditions holds:
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(1) Hr is a Hilbert space,

(2) D (Ar) is a subspace of Vr,

(3) D (Ar) is dense in Hr,

(4) (x; x)r � kr (x; x) ; (x 2 Vr), and

(5) (x; y)r � (Arx; y) ; (x 2 D (Ar) ; y 2 Vr) :

From our discussion above, we will see below in Theorem 3.3.1. that, for each

r > 0; Hr exists and is unique. At �rst glance, it appears that the rth left-de�nite

space Hr depends on H; A; and the positive number k satisfying condition (4) in the

above de�nition. In fact, however, each of the left-de�nite spaces Hr is independent

of k:

We are now in position to de�ne a left-de�nite operator associated with A:

De�nition 3.2.3. Let H = (V; (�; �)) be a Hilbert space. Suppose

A : D (A) � H ! H is a self-adjoint operator that is bounded below by a positive

number k > 0: Let r > 0 and suppose Hr is an rth left-de�nite space associated

with the pair (H;A) : If there exists a self-adjoint operator Ar : Hr ! Hr that is a

restriction of A; that is to say,

Arx = Ax;

x 2 D (Ar) � D (A) ;
(3.2.1)

we call such an operator an rth left-de�nite operator associated with the pair (H;A) :

In Theorem 3.3.2. below, we see that if A is a self-adjoint operator that is,

bounded below by a positive number k > 0; then for all r > 0 there exists a unique

left-de�nite operator Ar in Hr associated with (H;A) :

3.3 Main Theorems

There are six main theorems that we state in this section concerning left-

de�nite Hilbert spaces and left-de�nite self-adjoint operators.
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Theorem 3.3.1. Suppose A is a self-adjoint operator in the Hilbert space

H = (V; (�; �)) that is bounded below by kI; where k > 0: Let r > 0;

de�ne Hr = (Vr; (�; �)r) with

Vr = Ar=2 and (3.3.1)

(x; y)r =
�
Ar=2x;Ar=2y

�
, (x; y 2 Vr) : (3.3.2)

Then, Hr is an rth left-de�nite space associated with the pair (H;A) in the sense of

De�nition 3.2.2. . Moreover, suppose Hr = (Vr; (�; �)r) and H 0
r =

�
V 0
r ; (�; �)

0
r

�
are rth

left-de�nite spaces associated with the pair (H;A) : Then,

Vr = V 0
r and (x; y)r = (x; y)0r for all x; y 2 Vr = V 0

r ; i.e., Hr = H 0
r: Consequently,

Hr = (Vr; (�; �)r) ; as de�ned in (3.3.1) and (3.3.2), is the unique rth left-de�nite

Hilbert space associated with the pair (H;A) :

Proof. See (Section 6 in [53]). �

Theorem 3.3.2. Suppose A is a self-adjoint operator in the Hilbert space

H = (V; (�; �)) that is bounded below by kI; for some k > 0: For r > 0; let

Hr = (Vr; (�; �)r) be rth left-de�nite space associated with the pair (H;A) : Then,

there exists a unique left-de�nite operator Ar in Hr associated with (H;A) : More

speci�cally, if there exits a self-adjoint operator ~Ar : Hr ! Hr such that

~Arx = Ax for all x 2 D
�
~Ar

�
� D (A) ; then Ar = ~Ar: Furthermore,

D (Ar) = Vr+2: (3.3.3)

and Ar is bounded below by kI in Hr:

Proof. See (Section 7 in [53]). �

The following corollary is an immediate consequence of Theorems 3.3.1. and

3.3.2.. It emphasizes the fact that, set-wise, the domain D (Ar) of the rth power of A

is given by V2r and in particular, the domain of the positive square root of A and the

domain of A: Furthermore, it describes explicitly the domain of the rth left-de�nite

operator in terms of the domain of a certain power of A: Interestingly, we note that

72



the domains of the �rst and second left-de�nite operators, A1 and A2; are given by

D
�
A3=2

�
and D (A2) ; respectively.

Corollory 3.3.1. Suppose A is a self-adjoint operator in the Hilbert space

H = (V; (�; �)) that is bounded below by kI; for some k > 0: For each r > 0; let

Hr = (Vr; (�; �)r) and Ar denote, respectively, the rth left-de�nite space and the rth

left-de�nite operator associated with the pair (H;A) : Then,

(i) D (Ar) = V2r; in particular, D
�
A1=2

�
= V1 and D (A) = V2;

(ii) D (Ar) = D
�
A(r+2)=2

�
, in particular, D (A1) = D

�
A3=2

�
and D (A2) = D (A2) :

In the next theorem, we see that when A is a bounded, self-adjoint operator

that is bounded below by a positive constant k; then the left-de�nite theory is triv-

ial. However, the situation is quite di¤erent when A is unbounded.

Theorem 3.3.3. Let H = (V; (�; �)) be a Hilbert space. Suppose

A : D (A) � H ! H is a self-adjoint operator that is bounded below by kI for some

k > 0: For each r > 0; let Hr = (Vr; (�; �)r) and Ar denote the rth left-de�nite space

and the rth left-de�nite operator, respectively, associated with the pair (H;A) :

(1) Suppose A is bounded. Then, for each r > 0;

(i) V = Vr;

(ii) the inner products (�; �) and (�; �)r are equivalent;

(iii) A = Ar:

(2) Suppose A is unbounded. Then,

(i) Vr is a proper subspace of V ;

(ii) Vs is a proper subspace of Vr whenever 0 < r < s;

(iii) the inner products (�; �) and (�; �)s are not equivalent for any s > 0;

(iv) the inner products (�; �)r and (�; �)s are not equivalent for any r; s > 0; r 6= s;

(v) D (Ar) is a proper subspace of D (A) for each r > 0;

(vi) D (As) is a proper subspace of D (Ar) whenever 0 < r < s:

Proof. See (Section 8 in [53]). �
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Since, for each m > 0; Am is a self-adjoint operator that is bounded below in

H by kmI; we see from Theorems 3.3.1. and 3.3.2. that there are continua of left-

de�nite spaces f(Hm)rgr>0 and left-de�nite operators f(Am)rgr>0 associated with the

pair (H;Am) : Furthermore, since Am is a self-adjoint operator that is bounded below

by kI in Hm; there are continua of left-de�nite spaces f(Hm)rgr>0 and left-de�nite

operators f(Am)rgr>0 associated with the pair (H;Am) : The following questions

naturally arise:

(1) What is the relationship (if any) between the three continua of the left-

de�nite spaces fHrgr>0 ; f(Hm)rgr>0 ; and f(Hm)rgr>0?

(2) Since for �xed m > 0; (Ar)
m� the mth power of the rth left-de�nite

operator Ar associated with (H;A)� is a self-adjoint restriction of Am; what is the

relationship (if any) between the continuum of the left-de�nite operators f(Am)rgr>0
associated with the pair (H;Am) and the continuum of the left-de�nite operators

f(Ar)mgr>0? In particular, is (Ar)
m a left-de�nite operator associated with (H;Am) ;

that is to say, is (Ar)
m 2 f(As)mgs>0?

(3) For �xed m > 0; what is the relationship (if any) between the continuum

of the left-de�nite operators f(Am)rgr>0 associated with the pair (Hm; Am) and the

continuum of the left-de�nite operators fArgr>0 associated with (H;A)?

Each of these questions is answered in the following theorem. In essence,

this theorem says that there are no left-de�nite spaces or left-de�nite operators

emerging from a consideration of the above questions; that is to say, the original

spaces fHrgr>0 and operators fArgr>0 encompass all of the left-de�nite spaces and

left-de�nite operators described above that are associated with the pairs (H;Am)

and (Hm; Am).

Theorem 3.3.4. Suppose A; H; fHrgr>0 and fArgr>0 are as in Theorem 3.3.1. and

3.3.2. above. Fix m > 0; and for each r > 0; let (Hm)r = ((V
m)r ; (�; �)

m
r ) and (A

m)r

denote, respectively,
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the rth left-de�nite space and the rth left-de�nite operator associated with the pair

(H;Am) : Then,

(i) (Hm)r = Hmr:

(ii) (Ar)
m = (Am)r=m with D ((Ar)

m) = V2m+r:

Equivalently, (Am)r = (Amr)
m with D ((Am)r) = V2m+mr; that is to say, the

rth left-de�nite operator associated with the pair (H;Am) is the mth power of the

(mr)th left-de�nite operator associated with the pair (H;A) :

Furthermore, let (Hm)r =
�
(Vm)r ; (�; �)m;r

�
and (Am)r denote the r

th left-

de�nite space and the rth left-de�nite operator, respectively, associated with the

pair (Hm; Am) : Then,

(iii) (Hm)r = Hm+r:

(iv) (Am)r = Am+r with D ((Am)r) = Vm+r+2; in other words, the rth left-

de�nite operator associated with the pair (Hm; Am) is the (m+ r)th left-de�nite

operator associated with (H;A) :

Proof. See (Section 9 in [53]). �

In addition, we state the following two theorems concerning the spectra of the

left-de�nite operators fArgr>0 :

Theorem 3.3.5. For each r > 0; let Ar denote the rth left-de�nite operator asso-

ciated with the self-adjoint operator A that is bounded below by kI where k > 0:

Then,

(i) The point spectra of A and Ar coincide; i.e., �p (Ar) = �p (A) :

(ii) The continuous spectra of A and Ar coincide; i.e., �c (Ar) = �c (A) :

(iii) The resolvents spectra of A and Ar coincide; i.e., � (Ar) = � (A) :

Proof. See (Section 10 in [53]). �

Finally, the last general result in this section is the following theorem:

Theorem 3.3.6. If f'ng1n=0 is complete orthogonal set of eigenfunctions of A in H;

then for each r > 0; f'ng1n=0 is complete orthogonal set of eigenfunctions of the rth
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left-de�nite operator Ar in the rth left-de�nite space Hr:

Proof. See (Section 10 in [53]). �

3.4 The Spectral Theorem

If A is a self-adjoint operator in a Hilbert space H with inner product (�; �) ;

it is well known (see [64], Chapters 12 and 13) that there exists a unique operator-

valued set function E : B ! B (H) ; where B is the �-algebra of Borel subsets of

R and B (H) is the Banach algebra of bounded linear operators on H; called the

spectral resolution of the identity, having the following properties:

(1) E (;) = 0 and E (R) = I:

(2) E (�) is idempotent; that is (E (�))2 = E (�) ; for all � 2 B:

(3) E (�) is self-adjoint in H for all � 2 B:

(4) E (�1 \�2) = E (�1)E (�2) = E (�2)E (�1) for all �1; �2 2 B:

(5) E (�1 [�2) = E (�1) + E (�2) for all �1;�2 2 B with �1 \�2 = ;:

(6) For each x; y 2 H; the mapping Ex;y : B! C de�ned by

Ex;y (�) := (E (�)x; y)

(3.4.1)

is a complex, regular Borel measure. Since E (�) is a self-adjoint projection for each

� 2 B; it follows that kE (�)k � 1:

A spectral family (see [48] or [63]) for a self-adjoint operator A is a one-

parameter family fE�g�2R of bounded operators in H satisfying:

(1) E� is self-adjoint and idempotent for each � 2 R:

(2) For � < �; E� � E� is a positive operator.

(3) lim�!1E�x = x for each � 2 H:

(4) lim�!�1E�x = 0 for each � 2 H:

(5) E�+0x := lim�!�+ E�x = E�x for each � 2 R and x 2 H:
(3.4.2)
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A connection between (3.4.1) and (3.4.2) lies in the following lemma; the proof is

straightforward.

Lemma 3.4.1. Suppose E is a spectral resolution of the identity in the sense of

(3.4.1). For � 2 R; de�ne E� = E (�1; �] : Then fE�g�2R is a spectral family in

the sense of (3.4.2).

As mentioned earlier, the Hilbert-space spectral theorem plays a key role in

proving the existence and uniqueness of the left-de�nite spaces fHrgr>0 and the left-

de�nite operators fArgr>0 associated with the pair (H;A), where A is a self-adjoint

operator in H that is bounded below by kI; for some k > 0: In our development

of these spaces and operators, we use the spectral resolution of the identity E of A

rather than the one-parameter spectral family. However, properties of the spectrum

� (Ar) and the resolvent set � (Ar) of each left-de�nite operator Ar are more easily

seen through the spectral family rather than the spectral resolution of the identity.

Indeed, the following theorem is well known (see ([48], Section 9.11) and ([63], Section

13.2)).

Theorem 3.4.1. Suppose fE�g�2R is a spectral family, satisfying the conditions of

(3.4.2), of a self-adjoint operator A: For �0 2 R; we have:
(1) �0 2 �p (A) (the point spectrum) if and only if E�0 6= E�0�0:

(2) �0 2 �c (A) (the continuous spectrum) if and only if E�0 = E�0�0 and

fE�g�2R is not constant on any neighborhood of �0 in R:

(3) �0 2 � (A) (the resolution set) if and only if there exists " > 0 such that

fE�g�2R is constant on [�0 � "; �0 + "] :

We are now in position to state the spectral theorem in a Hilbert space (see

[64], Theorems 13.24 and 13.30).

Theorem 3.4.2. (The Spectral Theorem). LetA be a self-adjoint operator (bounded

or unbounded) in a Hilbert space H = (V; (�; �)). Let E be the spectral resolution of

the identity associated with A. Then, for each r > 0; the self-adjoint operator Ar
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has (densely de�ned) domain D (Ar) given by

D (Ar) =

8<:x 2 H
������
Z
R

�2rdEx;x < 0

9=; ; (3.4.3)

and is characterized by the identities

(Arx; y) =

Z
R

�rdEx;y (x 2 D (Ar) ; y 2 H) ; (3.4.4)

and

kArxk2 =
Z
R

�2rdEx;x (x 2 D (Ar)) : (3.4.5)

Conversely, suppose F : B ! B (H) is a spectral resolution of the identity. Then,

there exists a unique self-adjoint operator ~A in H with (densely de�ned) domain

D
�
~A
�
=

8<:x 2 H
������
Z
R

�2dFx;x < 0

9=; ;

that is characterized by

�
~Ax; y

�
=

Z
R

�dFx;y

�
x 2 D

�
~A
�
; y 2 H

�
;

and 


 ~Ax


2 = Z
R

�2dFx;x

�
x 2 D

�
~A
��

:

Moreover, in this theorem, we can replace the interval R of integration in each of

the above integrals with the spectrum of the self-adjoint operator. In particular, for

a self-adjoint operator A that is bounded below by kI for k > 0; we can replace the

interval of integration R with [k;1) since, in this case, the spectrum � (A) � [k;1)

(see [64], Theorem 12.32).
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CHAPTER FOUR

The Legendre Type Di¤erential Expression: Right-De�nite Theory

4.1 Introduction

the Legendre type polynomials were discovered by H. L. Krall [45] in 1938 and

named by A. M. Krall [36] in 1981. An explicit formula for these poynomials is

Pn;A (x) =

[n2 ]X
k=0

(�1)k (2n� 2k)!
�
A+ 1

2
n (n� 1) + 2k

�
xn�2k

A2nk! (n� k)! (n� 2k)! ;

where n = 0; 1; : : : ; A > 0 and [n
2
] denotes the greatest integer less than or equal

to n
2
: These polynomials have been normalized so that Pn;A (1) = 1 for all n � 0:

Other formulas for the Legendre type polynomials can be found in Section 1.5 of

this thesis. We refer the reader to [36] for further properties of these polynomials.

the Legendre type polynomials satisfy the fourth-order di¤erential equation:

` [y] (x) = �ny (x) ;

where

` [y] :=
�
1� x2

�2
y(4)�8x

�
1� x2

�
y(3)� (4A+ 12)

�
1� x2

�
y00+8Axy0+ky (4.1.1)

and �n = n (n+ 1) (n2 + n+ 4A� 2) + k: Here, the numbers A and k are, respec-

tively, �xed positive and nonnegative parameters. Observe that ` [y] is formally

symmetric; i.e.,

` [y] (x) :=
��
1� x2

�2
y00 (x)

�00
�
��
8 + 4A

�
1� x2

��
y0 (x)

�0
+ ky (x) :

We remark that the Kralls studied the di¤erential expression ` [y] (�) in the special

case when k = 0: We shall study (4:1:1) for k � 0; this trivially amounts to a shift

in the eigenvalue parameter k:
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If we let �̂ (x) denote the monotonic increasing function de�ned by:

�̂ (x) :=

8>>>><>>>>:
�1� 1

A

x

1 + 1
A

if �1 < x � �1

if �1 < x < 1

if 1 � x <1;

Then, �̂ generates a regular positive measure � on the Borel set of the real line

(see, for example, [73], Section 11.3): the Legendre type polynomials fPn;Ag1n=0 are

orthogonal in the Hilbert space L2� [�1; 1], where

L2� [�1; 1] :=
�
f : [�1; 1]! C

����f is Lebesgue measurable and Z 1

�1
jf j2 <1

�
(4.1.2)

is the Hilbert space with inner product:

(f; g)� :=

Z 1

�1
f (x) �g (x) d� (x)

=

Z 1

�1
f (x) �g (x) dx+

f (1) �g (1)

A
+
f (�1) �g (�1)

A

and norm kfk� := (f; f)
1=2
� : Speci�cally, the orthogonality relationship isZ 1

�1
Pm;A (x)Pn;A (x) d� (x) =

�
A+ 1

2
n (n� 1)

� �
A+ 1

2
(n+ 1) (n+ 2)

�
A (2n+ 1)

�mn:

(4.1.3)

where �mn is the Kronecker delta function.

In this chapter, we will review the study of the right-de�nite boundary value

problem started by A. L. Krall [36] and completed by Everitt and Littlejohn in [21]

and Everitt, Krall and Littlejohn in [17]. That is we will summarize the properties

of the self-adjoint operator T; generated by ` in L2� [�1; 1] ; having the Legendre type

polynomials as eigenfunctions. This is the so-called right-de�nite boundary value

problem associated with the Legendre type polynomials. From this, we can study

the left-de�nite boundary value problem.
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In Section 4.2, we develop some essential properties of functions in the maximal

domain � of ` [�] in L2 (�1; 1); in this section, we also discuss Green�s formula and

Dirichlet�s formula.

In the �nal section of this chapter, we de�ne a self-adjoint operator T in

L2� [�1; 1] having the Legendre type polynomials as eigenfunctions. Remarkably, the

domain of T will be the maximal domain � of ` [�] in L2 (�1; 1) : This is, indeed,

quite remarkable. Since the Legendre type expression ` [�] is limit-3 at each endpoint

x = �1 in L2 (�1; 1) ; the Glazman-Krein-Naimark (GKN) theory says that there

must be a properly imposed boundary condition at each endpoint x = �1 in order

to generate a self-adjoint operator in L2 (�1; 1). However, the setting in our case is

the "jump space" L2� [�1; 1] and not L2 (�1; 1) : It is the case that the discontinuity

in �̂ at x = �1 has the e¤ect of eliminating a boundary condition in the domain of

the self-adjoint operator T , generated by ` [�] ; in L2� [�1; 1] :

4.2 Properties of the Maximal Domain of `

The maximal domain � of ` in L2 (�1; 1) is de�ned to be

� :=
�
f : (�1; 1)! C

��f; f 0; f 00; f 000 2 ACloc (�1; 1) ; f; ` [f ] 2 L2 (�1; 1)	 :
(4.2.1)

Here, ACloc (�1; 1) refers to the set of functions f : (�1; 1) ! C that are locally

absolutely continuous on (�1; 1) ; i.e., f is absolutely continuous on all compact

subintervals of (�1; 1) : Since C10 (�1; 1) (the space of all in�nitely di¤erentiable

functions f : (�1; 1) ! C with compact support in (�1; 1)) is contained in �; and

C10 (�1; 1) is dense in L2 (�1; 1) we see that � is dense in L2 (�1; 1) : Now, we

de�ne, the maximal operator,

Tmax : D (Tmax) � L2 (�1; 1)! L2 (�1; 1) by

Tmax (f) = ` [f ] ; f 2 D (Tmax) := �:
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It follows from the classical theory (see [55]; Chapter V) that Tmin = T ?max

is the minimal operator with de�ciency index (3; 3) in L2 (�1; 1); the GKN theory

implies that there exist self-adjoint extensions of T ?max in L
2 (�1; 1) but none of these

can have fPn;Ag1n=0 as eigenfunctions since their orthogonality lives in L2� [�1; 1] : So

we seek a self-adjoint operator T in L2� [�1; 1] generated by ` [�] that has fPn;Ag
1
n=0

as eigenfunctions. The GKN theory does not directly apply so we need to �nd

properties of f 2 �:

For f; g 2 � and [a; b] � (�1; 1) ; Green�s formula is given byZ b

a

f` [f ] (x) �g (x)� f (x) ` [�g] (x)g dx = [f; g]
b

j
a

;

where [f; g] (�) is the skew-symmetric sesquilinear form de�ned by

[f; g] (x) :=

���
1� x2

�2
f 00 (x)

�0
�
�
8 + 4A

�
1� x2

��
f 0 (x)

�
�g (x)

�
���

1� x2
�2
�g00 (x)

�0
�
�
8 + 4A

�
1� x2

��
�g0 (x)

�
f (x)

�
�
1� x2

�2
f 00 (x) �g0 (x) +

�
1� x2

�2
�g00 (x) f 0 (x) ;

where x 2 (�1; 1) ; and Dirichlet�s formula, given byZ b

a

` [f ] (x) �g (x) dx

=

Z b

a

n�
1� x2

�2
f 00 (x) �g00 (x) +

�
8 + 4A

�
1� x2

��
f 0 (x) �g0 (x) + kf (x) �g (x)

o
dx

�
�
1� x2

�2
f 00 (x) �g0 (x)

b

j
a

+
n
(
�
1� x2

�2
f 00 (x))0 �

�
8 + 4A

�
1� x2

��
f 0 (x)

o
�g (x)

b

j
a

:
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Of particular importance later will be Dirichlet�s formula when f = g :

[f; f ] (x) :=

Z b

a

` [f ] (x) �f (x) dx

=

Z b

a

n�
1� x2

�2 jf 00 (x)j2 + �8 + 4A �1� x2
��
jf 0 (x)j2 + k jf (x)j2

o
dx

�
�
1� x2

�2
f 00 (x) �f 0 (x)

b

j
a

+
n
(
�
1� x2

�2
f 00 (x))0 �

�
8 + 4A

�
1� x2

��
f 0 (x)

o
�f (x)

b

j
a

:

From the de�nition of �; we see that the limits

lim
x!�1

[f; g] (x)

exist and are �nite, for all f; g 2 �: Note also that the function 1 and for all f 2 �

[f; 1] (x) := (
�
1� x2

�2
f 00 (x))0 �

�
8 + 4A

�
1� x2

��
f 0 (x) ; x 2 (�1; 1) : (4.2.2)

The main result of this section is the following theorem, proved in [21] and [17], and

it contains a list of the properties of the maximal domain �:

Theorem 4.2.1. (Properties of f 2 �) Let f; g 2 �: Then

(i) f 0; f 00 2 L2 (�1; 1) ;

(ii) f; f 0 2 AC [�1; 1] in particular;

f (�1) := lim
x!�1

f (x) and f 0 (�1) := lim
x!�1

f 0 (x) exist and are �nite;

(iii) lim
x!�1

(1� x2)
2
f 00 (x) �g0 (x) = 0

(iv) lim
x!�1

((1� x2)
2
f 00 (x))0 = 0

(v) lim
x!�1

[f; g] (x) = 8 (f (�1) �g0 (�1)� f 0 (�1) �g (�1)) :

In particular, we note that � � L2� [�1; 1] :

In the next section, we will de�ne a self-adjoint operator T in L2� [�1; 1]

having the Legendre type polynomials as eigenfunctions.
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4.3 Self-Adjoint Legendre Type Operator in L2� [�1; 1]

We will study the operator T : D (T ) � L2� [�1; 1]! L2� [�1; 1] given by

T [f ] (x) :=

8>>>><>>>>:
�8Af 0 (�1) + kf (�1)

` [f ] (x)

8Af 0 (+1) + kf (+1)

if x = �1

if �1 < x < 1

if x = 1;

f 2 D (T ) := �:

The proof of the following theorem can be found in [21].

Theorem 4.3.1. The operator T is self-adjoint in L2� [�1; 1] :

Theorem 4.3.2. The operator T is bounded below in L2� [�1; 1] by kI; where I is

the identity operator in L2� [�1; 1] ; i.e.,

(Tf; f)� � k (f; f)� 8 f 2 D (T ) :

Proof. Let f; g 2 D (T ) : First, notice in light of (4.2.2), that Green�s formula may

be written as:Z 1

�1
` [f ] (x) �g (x) dx = lim

x!1

n
[f; 1] (x) �g (x)� [g; 1] (x) �g (x)

o

+ lim
x!1

n
�
�
1� x2

�2
f 00 (x) �g0 (x) +

�
1� x2

�2
�g00 (x) f 0 (x)

o

� lim
x!�1

n
[f; 1] (x) �g (x)� [g; 1] (x) �g (x)�

�
1� x2

�2
f 00 (x) �g0 (x)

o

� lim
x!�1

n�
1� x2

�2
�g00 (x) f 0 (x)

o
+

Z 1

�1
` [g] (x) f (x) dx;

where we have written

[�g; 1] (x) = [g; 1] (x) ;
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since the coe¢ cient of ` [�] are real-valued on (�1; 1) : By Theorem 4:2:1:; all eight

terms in the above limits have individual limits; in fact, we can infer Theorem 4:2:1:

that the above equation may be simpli�ed to:Z 1

�1
` [f ] (x) �g (x) dx = [f; 1] (1) �g (1)� [g; 1] (1) f (1)� [f; 1] (�1) �g (�1)

+ [g; 1] (�1) f (�1) +
Z 1

�1
` [g] (x) f (x) dx:

Consequently,

(T [f ] ; g)� =
T [f ] (1) �g (1)

2
+
A

2

Z 1

�1
` [f ] (x) �g (x) dx+

T [f ] (�1) �g (�1)
2

(4.3.1)

= �A [f; 1] (1) �g (1)
2

+
kf (1) �g (1)

2
+
A

2

n
[f; 1] (1) �g (1)� [g; 1] (1) f (1)

� [f; 1] (�1) �g (�1) + [g; 1] (�1) f (�1) +
Z 1

�1
` [g] (x) f (x) dx

�

+
A [f; 1] (�1) �g (�1)

2
+
kf (�1) �g (�1)

2
:

Now, from Dirichlet�s formula and Theorem 4:2:1: (iii) ; we see thatZ 1

�1
` [g] (x) f (x) dx = [g; 1] (1) f (1)� [g; 1] (�1) f (�1)

+

Z 1

�1

n�
1� x2

�2
f 00 (x) �g00 (x) +

�
8 + 4A

�
1� x2

��
f 0 (x) �g0 (x) + kf (x) �g (x)

o
dx

Combining this with equation (4.3.1) yields the identity

(T [f ] ; g)� =
A

2

Z 1

�1

n�
1� x2

�2
f 00 (x) �g00 (x) +

�
8 + 4A

�
1� x2

��
f 0 (x) �g0 (x)

o
dx

+ k (f; g)� ; valid for all f; g 2 D (T ) :
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In particular, since

�
1� x2

�2 jf 00 (x)j2 + �8 + 4A �1� x2
��
jf 0 (x)j2 � 0 on (�1; 1) ;

we have:

(T [f ] ; f)� =
A

2

Z 1

�1

n�
1� x2

�2 jf 00 (x)j2 + �8 + 4A �1� x2
��
jf 0 (x)j2

o
dx

+ k (f; f)�

� k (f; f)� :

Hence, T [�] is bounded below by kI in L2� [�1; 1] : This completes the proof. �

Note that, from Theorem 4.3.2., we see that the left-de�nite theory discussed

in Chapter 3 can be applied to T . As an immediate consequence of Theorem 4:3:1:

and Theorem 4:3:2:; it can be shown that the spectrum of T is discrete and bounded

below. In fact, the spectrum of T is known explicitly and is given in the next

theorem. The proof can be found in [21].

Theorem 4.3.3.

(i) The Legendre type polynomials fPn;Ag1n=0 form a complete set of eigenfunctions

of T in L2� [�1; 1] :

(ii) The spectrum of T in L2� [�1; 1] is simple, discrete, and bounded below. In

particular, � (T ) = fn (n+ 1) (n2 + n+ 4A� 2) + k jn = 0; 1; : : :g :
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CHAPTER FIVE

The Integral Power of the Legendre Type Di¤erential Expression

5.1 Introduction

In [53], Littlejohn and Wellman developed a general abstract left-de�nite the-

ory for a self-adjoint, bounded below operator A in a Hilbert space (H; (�; �)): More

speci�cally, they construct a continuum of unique Hilbert spaces f(Hr; (�; �)r)gr>0

and, for each r > 0; a unique self-adjoint restriction Ar of A in Hr: the Hilbert space

Hr is called the rth left-de�nite Hilbert space associated with the pair (H;A) and

the operator Ar is called the rth left-de�nite operator associated with (H;A):

We apply this left-de�nite theory to the self-adjoint Legendre type di¤erential

operator generated by the fourth-order formally symmetric Legendre type di¤erential

expression

` [y] (x) :=
�
1� x2

�2
y(4) (x)� 8x

�
1� x2

�
y(3) (x)� (4A+ 12)

�
1� x2

�
y00 (x)

+ 8Axy0 (x) + ky (x) :

Where, the numbers A and k are, respectively, �xed positive and nonnegative para-

meters with (x 2 (�1; 1)). Since ` [�] can be written as

` [y] (x) :=
��
1� x2

�
y00 (x)

�00 � ��8 + 4A �1� x2
��
y0 (x)

�0
+ ky (x) : (5.1.1)

we see that ` [�] is formally symmetric. Recently in [24], Everitt, Littlejohn and

Tuncer showed that if `[�] is Lagrange symmetric and has su¢ ciently smooth co-

e¢ cients, then composite powers `j[�] of `[�] are also Lagrange symmetric, for any

j 2 f1; 2; : : : ;mg.

Even though the theory obtained in [53] guarantees the existence of a contin-

uum of left-de�nite spaces fHrgr>0 and left-de�nite operators fArgr>0; we can only

e¤ectively determine these spaces and operators in this Legendre type situation for

87



r 2 N: The key to obtaining these explicit characterizations of fHrgr2N and fArgr2N

is in obtaining the explicit Lagrangian symmetric form for each integral power `r[�]

of the Legendre type di¤erential expression `[�] given in (5.1.1). In turn, the key

to obtaining these integral powers is a remarkable, and yet somewhat mysterious,

combinatorial identity involving a function that can be viewed as a generating func-

tion for these integral powers of `[�]: In our discussion of the combinatorics of these

integral powers of `[�]; we introduce two double sequences faj (n; k)g and fbj (n; k)g

of real numbers that we call the Legendre type-Stirling numbers.

In Section 5.2, we review and develop further properties of the Legendre type

polynomials. In Section 5.3, we determine the Lagrangian symmetric form of each

integral composite power of the fourth-order Legendre type di¤erential expression

using some new combinatorial identities. In Section 5.4, we derive the formulas for

the coe¢ cients faj (n; k)g and fbj (n; k)g: In Section 5.5, we show positivity of the

coe¢ cients faj (n; k)g: In Section 5.6, we remark on positivity of the coe¢ cients

fbj (n; k)g: In the �nal section, we demonstrate several examples of the coe¢ cients

faj (n; k)g and fbj (n; k)g:

5.2 Further Properties of the Legendre Type Polynomials

The Legendre type polynomials fPm;A (x)g ; m = 0; 1; : : : ; and A > 0; satisfy

the fourth-order di¤erential equation

` [y] = �my; (5.2.1)

where �m := m(m+1)(m2+m+4A�2)+k; and k is a �xed, non-negative constant,

and hence, they are eigenfunctions of ` [�] : An explicit formula for these polynomials

is

Pm;A (x) =

[m2 ]X
k=0

(�1)k (2m� 2k)!
�
A+ 1

2
m (m� 1) + 2k

�
xm�2k

A2mk! (m� k)! (m� 2k)! ;

where
�
m
2

�
denotes the greatest integer less than or equal to m

2
: Section 1.5 of this

thesis contains a list of other formulas for the Legendre type polynomials. They also
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satisfy the recurrence relation

Pm;A (x) =

�
A+

1

2
m (m+ 1)

�
Pm (x)� xP 0m (x) ; (5.2.2)

where fPmg1m=0 are the classical Legendre polynomials, de�ned by

Pm (x) =

[m2 ]X
k=0

(�1)k (2m� 2k)!xm�2k
2mk! (m� k)! (m� 2k)! :

Since

Pm (1) = 1; Pm (�1) = (�1)m

and �
1� x2

�
P 00m (x)� 2xP 0m (x) +m (m+ 1)Pm (x) = 0;

we see that

P 0m (1) =
m (m+ 1)

2
(5.2.3)

and

P 0m (�1) =
(�1)m+1m (m+ 1)

2
: (5.2.4)

Now, from (5.2.2), we have

Pm;A (1) =

�
A+

1

2
m (m+ 1)

�
Pm (1)� P 0m (1)

= A+
1

2
m (m+ 1)� 1

2
m (m+ 1) (5.2.5)

= A:

Similarly,

Pm;A (�1) =
�
A+

1

2
m (m+ 1)

�
Pm (�1)� P 0m (�1)

= (�1)m
�
A+

1

2
m (m+ 1)

�
� (�1)

m+1m (m+ 1)

2
(5.2.6)

= (�1)mA:
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We now calculate P (j)m;A (x) : From (5.2.2), it follows that

P
(j)
m;A (x) =

�
A+

1

2
m (m+ 1)

�
P (j)m (x)� (xP 0m (x))

(j)
;

Since

(xP 0m (x))
(j)
= xP (j+1)m (x) + jP (j)m (x) ;

we see that

P
(j)
m;A (x) =

�
A+

1

2
m (m+ 1)

�
P (j)m (x)� xP (j+1)m (x)� jP (j)m (x) ; (5.2.7)

Moreover,

P (j)m (x) =
(m+ j)!

2jm!
P
(j;j)
m�j (x) ;

where P (j;j)m (x) is the Gegenbauer polynomial of degree m; m 2 N0; de�ned by

P (j;j)m (x) =
km (j)

2m

mX
r=0

�
m+ j

m� r

��
m+ j

r

�
(x� 1)r (x+ 1)m�r ;

where

km (j) =
(2m+ 2j + 1)1=2 ((m+ 2j)!)1=2

2(2j+1)=2 (m+ j)!
(m; j 2 N0) ;

see ([62], page 263, (3)). We refer the reader to [62] for various properties of the

Legendre and the Gegenbauer polynomials. We write

P (0;0)m (x) = Pm (x) :

In particular,

P (j;j)m (1) =
(m+ j)!

m!j!
and P (j;j)m (�1) = (�1)m (m+ j)!

m!j!
;

hence,

P (j)m (1) =
(m+ j)!

2jm!
P
(j;j)
m�j (1) =

(m+ j)!

2jj! (m� j)!
and

P (j)m (�1) = (m+ j)!

2jm!
P
(j;j)
m�j (�1) =

(�1)m�j (m+ j)!

2jj! (m� j)!
:
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From (5.2.7) and the above calculations,

P
(j)
m;A (1) =

�
A+

1

2
m (m+ 1)

�
P (j)m (1)� P (j+1)m (1)� jP (j)m (1)

(5.2.8)

=

�
A+ 1

2
m (m+ 1)

�
(m+ j)!

2jj! (m� j)!
� (m+ j + 1)!

2j+1(j + 1)! (m� j � 1)! �
j (m+ j)!

2jj! (m� j)!

=
(m+ j)!

�
2 (j + 1)

�
A+ 1

2
m (m+ 1)

�
� (m� j) (m+ j + 1)� 2j(j + 1)

�
2j+1(j + 1)! (m� j)!

=
(m+ j)! (2Aj +m2j +mj + 2A� j2 � j)

2j+1(j + 1)! (m� j)!
:

Also,

P
(j)
m;A (�1) =

�
A+

1

2
m (m+ 1)

�
P (j)m (�1)+P (j+1)m (�1)�jP (j)m (�1)

(5.2.9)

= (�1)m�j
 
(m+ j)!

�
A+ 1

2
m (m+ 1)

�
� j (m+ j)!

2jj! (m� j)!
� (m+ j + 1)!

2j+1(j + 1)! (m� j � 1)!

!

=
(�1)m�j (m+ j)! (2Aj +m2j +mj + 2A� j2 � j)

2j+1(j + 1)! (m� j)!
:

Moreover, we know that

Pm;A (x) =

�
A+

1

2
m (m+ 1)

�
Pm (x)� xP 0m (x) ; and (5.2.10)

xP 0m (x) = mPm (x) +

[m�22 ]X
k=0

(2m� 4k � 3)Pm�2k�2 (x) ;

(5.2.11)
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see ([2], page 156) so that

Pm;A (x) =

�
A+

1

2
m (m+ 1)

�
Pm (x)�mPm (x)�

[m�22 ]X
k=0

(2m� 4k � 3)Pm�2k�2 (x) ;

equivalently,

Pm;A (x) =

�
A+

1

2
m (m� 1)

�
Pm (x)�

[m�22 ]X
k=0

(2m� 4k � 3)Pm�2k�2 (x) : (5.2.12)

Hence, for j = 1; 2; 3; : : : ; we see that

P
(j)
m;A (x) =

�
A+

1

2
m (m� 1)

�
P (j)m (x)�

[m�22 ]X
k=0

(2m� 4k � 3)P (j)m�2k�2 (x) : (5.2.13)

5.3 Combinatorics of the Legendre Type Di¤erential Expression

Let ` [�] be de�ned as in (5.1.1); Since `n [�] is necessarily Lagrangian symmetric

for any n 2 N; we know that `n [�] has the following form.

`n [y] (x) =
2nX
j=0

(�1)j
��
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
y(j) (x)

�(j)
:

(5.3.1)

We seek to �nd the coe¢ cients faj (n; k)g2nj=0 and fbj (n; k)g
2n
j=0 for each n 2 N:

We de�ne b0 (n; k) = 0 for each n 2 N: (In fact, as we see later in this section,

b0 (n; k) = 0 for each n 2 N:)

Recall that the Legendre type polynomials fPm;Ag1m=0 are orthogonal on [�1; 1]

with respect to

w (x) =
1

2
� (x� 1) + 1

2
� (x+ 1) +

A

2
;

where � is Dirac�s ��function and A > 0 is the parameter in the di¤erential equation

` [�] : In fact, for m; r 2 N0;Z
[�1;1]

Pm;A (x)Pr;A (x)w (x) dx =
A
�
A+ 1

2
m (m� 1)

� �
A+ 1

2
(m+ 1) (m+ 2)

�
(2m+ 1)

�mr;
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Now, on the one hand,Z
[�1;1]

`n [Pm;A (x)]Pr;A (x)w (x) dx = �nm

Z
[�1;1]

Pm;A (x)Pr;A (x)w (x) dx:

But by the previous relation, this becomes

�nmA
�
A+ 1

2
m (m� 1)

� �
A+ 1

2
(m+ 1) (m+ 2)

�
(2m+ 1)

�mr : (5.3.2)

However, on the other hand, by de�nition of w (x) ; we also have thatZ
[�1;1]

`n [Pm;A (x)]Pr;A (x)w (x) dx

=
1

2
`n [Pm;A] (1)Pr;A (1) +

1

2
`n [Pm;A] (�1)Pr;A (�1) +

A

2

1Z
�1

`n [Pm;A (x)]Pr;A (x) dx

(5.3.3)

=
1

2
�nm`

n [Pm;A] (1)Pr;A (1) +
1

2
�nm`

n [Pm;A] (�1)Pr;A (�1)

+
A

2

1Z
�1

`n [Pm;A (x)]Pr;A (x) dx:

Now, from (5.2.5) and (5.2.6), (5.3.3) becomesZ
[�1;1]

`n [Pm;A (x)]Pr;A (x)w (x) dx

=
1

2
�nmA

2 +
1

2
�nm (�1)

m+r A2 +
A

2

1Z
�1

`n [Pm;A (x)]Pr;A (x) dx

=
1

2
�nmA

2
�
(�1)m+r + 1

�
+
A

2

1Z
�1

`n [Pm;A (x)]Pr;A (x) dx:
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We now calculate

I :=

1Z
�1

`n [Pm;A (x)]Pr;A (x) dx;

by integration by parts and we may well assume without loss of generality that

r � m. First, from (5.3.1), we see that I is the following sum:

2nX
j=0

(�1)j
1Z

�1

��
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
P
(j)
m;A (x)

�(j)
Pr;A (x) dx;

Let

u = Pr;A (x) ; du = P 0r;A (x) dx and

dv =
��
aj (n; k) (1� x2)

j
+ bj (n; k) (1� x2)

j�1
�
P
(j)
m;A (x)

�(j)
dx;

v =
��
aj (n; k) (1� x2)

j
+ bj (n; k) (1� x2)

j�1
�
P
(j)
m;A (x)

�(j�1)
:

We also need to compute v j
x=�1

in order to complete this integration by parts. Recall

that

Dn
�
1� x2

�n
= (�1)n 2nn!Pn (x) (5.3.4)

where Pn (x) is the nth degree Legendre polynomial. Expanding, we see that

v =
�
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�(j�1)
P
(j)
m;A (x)

+

�
j � 1
1

��
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�(j�2)
P
(j+1)
m;A (x)

+

�
j � 1
2

��
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�(j�3)
P
(j+2)
m;A (x)

+ � � �+
�
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
P
(2j�1)
m;A (x) :
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Equivalently,

v =
�
aj (n; k)D

j�1 �1� x2
�j
+ bj (n; k)D

j�1 �1� x2
�j�1�

P
(j)
m;A (x)

+

�
j � 1
1

��
aj (n; k)D

j�2 �1� x2
�j
+ bj (n; k)D

j�2 �1� x2
�j�1�

P
(j+1)
m;A (x)

+

�
j � 1
2

��
aj (n; k)D

j�3 �1� x2
�j
+ bj (n; k)D

j�3 �1� x2
�j�1�

P
(j+2)
m;A (x)

+ � � �+
�
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
P
(2j�1)
m;A (x) :

Since Dk (1� x2)
j j
x=�1

= 0 if k < j; we see that from (5.3.4),

v = bj (n; k) (�1)j�1 2j�1 (j � 1)!Pj�1 (�1)P (j)m;A (�1) (j � 1)

=

8>>>>>>>><>>>>>>>>:

bj (n; k) (�1)j�1 2j�1 (j � 1)!Pj�1 (+1)P (j)m;A (+1) x = 1

bj (n; k) (�1)j�1 2j�1 (j � 1)!Pj�1 (�1)P (j)m;A (�1)
x = �1:

Hence, from (5.2.8) and (5.2.9),

v (1) = bj (n; k) (�1)j�1 2j�1 (j � 1)!P (j)m;A (+1)

=
(�1)j�1 2j�1 (j � 1)! (m+ j)! (2Aj +m2j +mj + 2A� j2 � j)

2j+1(j + 1)! (m� j)!
bj (n; k)

=
(�1)j�1 (m+ j)! (2Aj +m2j +mj + 2A� j2 � j)

4j(j + 1) (m� j)!
bj (n; k) ;
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while

v (�1) = bj (n; k) 2
j�1 (j � 1)!P (j)m;A (�1)

=
2j�1 (j � 1)! (�1)m�j (m+ j)! (2Aj +m2j +mj + 2A� j2 � j)

2j+1(j + 1)! (m� j)!
bj (n; k)

=
(�1)m�j (m+ j)! (2Aj +m2j +mj + 2A� j2 � j)

4j(j + 1) (m� j)!
bj (n; k) :

Hence,

I =

1Z
�1

`n [Pm;A (x)]Pr;A (x) dx

=
2nP
j=0

(�1)j
1R
�1

��
aj (n; k) (1� x2)

j
+ bj (n; k) (1� x2)

j�1
�
P
(j)
m;A (x)

�(j)
Pr;A (x) dx

=
2nP
j=0

(�1)j
8<:Pr;A (x) vj(x) 1

j
�1

�
1R
�1

��
aj (n; k) (1� x2)

j
+ bj (n; k) (1� x2)

j�1
�
P
(j)
m;A (x)

�(j�1)
P 0r;A (x) dx

�
:

We now simplify

1Z
�1

��
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
P
(j)
m;A (x)

�(j�1)
P 0r;A (x) dx

with

u = P 0r;A (x) ; du = P 00r;A (x) dx and

dv =
��
aj (n; k) (1� x2)

j
+ bj (n; k) (1� x2)

j�1
�
P
(j)
m;A (x)

�(j�1)
dx;

v =
��
aj (n; k) (1� x2)

j
+ bj (n; k) (1� x2)

j�1
�
P
(j)
m;A (x)

�(j�2)
:
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We note that v (�1) = 0 and so

1Z
�1

��
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
P
(j)
m;A (x)

�(j�1)
P 0r;A (x) dx

= �
1Z

�1

��
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
P
(j)
m;A (x)

�(j�2)
P 00r;A (x) dx:

Continuing, we see that

I =

1Z
�1

��
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
P
(j)
m;A (x)

�(j�3)
P 000r;A (x) dx

= � � � =

(�1)k+1
1Z

�1

��
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
P
(j)
m;A (x)

�(j�k)
P

(k)

r;A (x) dx:

In particular, setting k = j; we see that

1Z
�1

��
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
P
(j)
m;A (x)

�(j�1)
P 0r;A (x) dx

= (�1)j+1
1Z

�1

�
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
P
(j)
m;A (x)P

(j)

r;A (x) dx:
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Substituting this into I gives us

1Z
�1

`n [Pm;A (x)]Pr;A (x) dx

=
2nX
j=0

(�1)j Pr;A (x) v (x)
1

j
�1

+

2nX
j=0

1Z
�1

�
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
P
(j)
m;A (x)P

(j)

r;A (x) dx;

and so, we obtain that

1Z
�1

`n [Pm;A (x)]Pr;A (x) dx

=
2nX
j=0

�A (m+ j)!

4j(j + 1) (m� j)!

�
2Aj +m2j +mj + 2A� j2 � j

�
bj (n; k)

+

2nX
j=0

(�1)m+r+j A (m+ j)!

4j(j + 1) (m� j)!

�
2Aj +m2j +mj + 2A� j2 � j

�
bj (n; k)

+
2nX
j=0

1Z
�1

�
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
P
(j)
m;A (x)P

(j)

r;A (x) dx:
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Hence,

A

2

1Z
�1

`n [Pm;A (x)]Pr;A (x) dx

=
2nX
j=0

�
(�1)m+r+1 � 1

�
A2 (m+ j)! (2Aj +m2j +mj + 2A� j2 � j)

8j(j + 1) (m� j)!
bj (n; k)

+

2nX
j=0

1Z
�1

�
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
P
(j)
m;A (x)P

(j)

r;A (x) dx:

We now calculate

(i)

1Z
�1

P
(j)
m;A (x)P

(j)

r;A (x)
�
1� x2

�j
dx

and

(ii)

1Z
�1

P
(j)
m;A (x)P

(j)

r;A (x)
�
1� x2

�j�1
dx:

Regarding (i) ; we note that

P (j)m (x) =
(m+ j)!

2jm!
P
(j;j)
m�j (x)

(see [62]; page 263):

Furthermore, (see [62]; page 260);

1Z
�1

P
(j;j)
k (x)P

(j;j)

m (x)
�
1� x2

�j
dx =

22j+1 (j + k)! (j + k)!

k! (2k + 2j + 1)! (k + 2j)!
�km:

99



Hence,

1Z
�1

P
(j)
k (x)P

(j)

m (x)
�
1� x2

�j
dx =

2 (m+ j)!

(m� j)! (2m+ 1)
�km:

We now see that for 0 � r � m, from (5.2.13),

1Z
�1

P
(j)
m;A (x)P

(j)

r;A (x)
�
1� x2

�j
dx (5.3.5)

=

1Z
�1

8><>:
0B@�A+ 1

2
m (m� 1)

�
P (j)m (x)�

[m�22 ]X
k=0

(2m� 4k � 3)P (j)m�2k�2 (x)

1CA �
0B@�A+ 1

2
r (r � 1)

�
P (j)r (x)�

[ r�22 ]X
k=0

(2r � 4k � 3)P (j)r�2k�2 (x)

1CA�1� x2
�j9>=>; dx:

We now consider the following two cases:

Case 1:

when r < m;

(i) If m is even and r is odd, then

1Z
�1

P
(j)
m;A (x)P

(j)

r;A (x)
�
1� x2

�j
dx = 0:
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(ii) If m and r are both even, then

1Z
�1

P
(j)
m;A (x)P

(j)

r;A (x)
�
1� x2

�j
dx

= � (2r + 1)
�
A+

1

2
r (r � 1)

� 1Z
�1

�
P

(j)

r (x)
�2 �

1� x2
�j
dx

+

[ r�22 ]X
k=0

(2r � 4k � 3)2
1Z

�1

�
P

(j)

r�2k�2 (x)
�2 �

1� x2
�j
dx

= �
2 (2r + 1)

�
A+ 1

2
r (r � 1)

�
(r + j)!

(r � j)! (2r + 1)
+

[ r�22 ]X
k=0

2 (2r � 4k � 3)2 (r � 2k � 2 + j)!
(r � 2k � 2� j)! (2r � 4k � 3)

= �
2
�
A+ 1

2
r (r � 1)

�
(r + j)!

(r � j)!
+

[ r�22 ]X
k=0

2 (2r � 4k � 3) (r � 2k � 2 + j)!
(r � 2k � 2� j)!

:

(iii) If m is odd and r is even, then

1Z
�1

P
(j)
m;A (x)P

(j)

r;A (x)
�
1� x2

�j
dx = 0:

101



(iv) If m and r are both odd, then

1Z
�1

P
(j)
m;A (x)P

(j)

r;A (x)
�
1� x2

�j
dx

= � (2r + 1)
�
A+

1

2
r (r � 1)

� 1Z
�1

�
P

(j)

r (x)
�2 �

1� x2
�j
dx

+

[ r�22 ]X
k=0

(2r � 4k � 3)2
1Z

�1

�
P

(j)

r�2k�2 (x)
�2 �

1� x2
�j
dx

= �
2 (2r + 1)

�
A+ 1

2
r (r � 1)

�
(r + j)!

(r � j)! (2r + 1)

+

[ r�22 ]X
k=0

2 (2r � 4k � 3)2 (r � 2k � 2 + j)!
(r � 2k � 2� j)! (2r � 4k � 3)

= �
2
�
A+ 1

2
r (r � 1)

�
(r + j)!

(r � j)!

+

[ r�22 ]X
k=0

2 (2r � 4k � 3) (r � 2k � 2 + j)!
(r � 2k � 2� j)!

:
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Case 2:

when m = r; we have already calculated this; i.e.,

1Z
�1

�
P

(j)

m;A (x)
�2 �

1� x2
�j
dx

=
2
�
A+ 1

2
r (r � 1)

�2
(m+ j)!

(m� j)! (2m+ 1)

+

[m�22 ]X
k=0

2 (2m� 4k � 3) (m� 2k � 2 + j)!
(m� 2k � 2� j)!

:

So to summarize, for 0 � r � m; we see that

1Z
�1

P
(j)
m;A (x)P

(j)

r;A (x)
�
1� x2

�j
dx

=

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

2(A+ 1
2
r(r�1))

2
(m+j)!

(m�j)!(2m+1) +
[m�22 ]P
k=0

2(2m�4k�3)(m�2k�2+j)!
(m�2k�2�j)! m = r;

�2(A+ 1
2
r(r�1))(r+j)!
(r�j)! +

[ r�22 ]P
k=0

2(2r�4k�3)(r�2k�2+j)!
(r�2k�2�j)!

if r < m and m; r

either both even

or both odd,

0

if r < m and one

of m and r is even

and the other is odd .
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Regarding (ii) ; recall that

P
(j)
m;A (x) =

�
A+

1

2
m (m� 1)

� [m�12 ]X
k=0

(2m� 4k � 1)P (j�1)m�2k�1 (x)

�
[m�22 ]X
k=0

[m�2k�32 ]X
s=0

(2m� 4k � 3) (2m� 4k � 4s� 5)P (j�1)m�2k�2s�3 (x) :

Hence, for 0 � r � m; we obtain

1Z
�1

P
(j)
m;A (x)P

(j)

r;A (x)
�
1� x2

�j�1
dx (5.3.6)

=

1Z
�1

8><>:
0B@�A+ 1

2
m (m� 1)

� [m�12 ]X
k=0

(2m� 4k � 1)P (j�1)m�2k�1 (x)

�
[m�22 ]X
k=0

[m�2k�32 ]X
s=0

(2m� 4k � 3) (2m� 4k � 4s� 5)P (j�1)m�2k�2s�3 (x)

1CA �

0B@� [
r�2
2 ]X
k=0

[ r�2k�32 ]X
s=0

(2r � 4k � 3) (2r � 4k � 4s� 5)P (j�1)r�2k�2s�3 (x)

+

�
A+

1

2
r (r � 1)

� [ r�12 ]X
k=0

(2r � 4k � 1)P (j�1)r�2k�1 (x)

1CA�1� x2
�j�19>=>; dx:
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We now consider the following four cases:

Case 1: If m is even and r is odd, then

1Z
�1

P
(j)
m;A (x)P

(j)

r;A (x)
�
1� x2

�j�1
dx = 0:

Case 2: If m is odd and r is even, then

1Z
�1

P
(j)
m;A (x)P

(j)

r;A (x)
�
1� x2

�j�1
dx = 0:

Case 3: If m and r are both even, then, from (5.3.6),

1R
�1
P
(j)
m;A (x)P

(j)

r;A (x) (1� x2)
j�1

dx

=

0@�A+ 1
2
m (m� 1)

� �
A+ 1

2
r (r � 1)

� [ r�12 ]P
k=0

(2r � 4k � 1)2
1AP

�

0@�A+ 1
2
m (m� 1)

� [ r�42 ]P
k=0

(2r � 4k � 5)2 (2 (k + 1) r � (k + 1) (2k + 3))

1AQ

�

0@�A+ 1
2
r (r � 1)

� [ r�22 ]P
k=0

1
2
(2r � 4k � 1)2 (m� r + 2k) (m+ r � 2k � 1)

1AP

+

0@[ r�12 ]P
k=1

k (k + 1) (2r � 4k � 1)2 (2r � 2k � 1) (2r � 2k + 1)

1AP ;
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where

P =

1Z
�1

�
P

(j�1)

r�2k�1 (x)
�2 �

1� x2
�j�1

dx

and

Q =

1Z
�1

�
P

(j�1)

r�2k�3 (x)
�2 �

1� x2
�j�1

dx:

Since
1Z

�1

P
(j)

k (x)P
(j)

m (x)
�
1� x2

�j
dx =

2 (m+ j)!

(m� j)! (2m+ 1)
�km

we �nd that

P =

1Z
�1

�
P

(j�1)

r�2k�1 (x)
�2 �

1� x2
�j�1

dx =
2 (r + j � 2k � 2)!

(r � j � 2k)! (2r � 4k � 1)

and

Q =

1Z
�1

�
P

(j�1)

r�2k�3 (x)
�2 �

1� x2
�j�1

dx =
2 (r + j � 2k � 2)!

(r � j � 2k � 2)! (2r � 4k � 5) :

We now use the values of P and Q to simplify

1Z
�1

P
(j)
m;A (x)P

(j)

r;A (x)
�
1� x2

�j�1
dx:
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After substituting P and Q in the previous integral, we see that

1Z
�1

P
(j)
m;A (x)P

(j)

r;A (x)
�
1� x2

�j�1
dx

=

[ r�12 ]X
k=0

2
�
A+ 1

2
m (m� 1)

� �
A+ 1

2
r (r � 1)

�
(2r � 4k � 1)2 (r + j � 2k � 2)!

(r � j � 2k)! (2r � 4k � 1)

�
[ r�42 ]X
k=0

2
�
A+ 1

2
m (m� 1)

�
(2r � 4k � 5)2 (k + 1) (2r � 2k � 3) (r + j � 2k � 2)!
(r � j � 2k)! (2r � 4k � 5)

�
[ r�22 ]X
k=0

�
A+ 1

2
r (r � 1)

�
(2r � 4k � 1)2 (m� r + 2k) (m+ r � 2k � 1) (r + j � 2k � 2)!

(r � j � 2k)! (2r � 4k � 1)

+

[ r�12 ]X
k=1

2k (k + 1) (2r � 4k � 1)2 (2r � 2k � 1) (2r � 2k + 1) (r + j � 2k � 2)!
(r � j � 2k)! (2r � 4k � 1) :

After some cancellation, the integral

1Z
�1

P
(j)
m;A (x)P

(j)

r;A (x)
�
1� x2

�j�1
dx

simpli�es further.
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Eventually, we get

1Z
�1

P
(j)
m;A (x)P

(j)

r;A (x)
�
1� x2

�j�1
dx

=

[ r�12 ]X
k=0

2
�
A+ 1

2
m (m� 1)

� �
A+ 1

2
r (r � 1)

�
(2r � 4k � 1) (r + j � 2k � 2)!

(r � j � 2k)!

�
[ r�42 ]X
k=0

2
�
A+ 1

2
m (m� 1)

�
(k + 1) (2r � 2k � 3) (2r � 4k � 3) (r + j � 2k � 4)!

(r � j � 2k)!

�
[ r�22 ]X
k=0

�
A+ 1

2
r (r � 1)

�
(2r � 4k � 1) (m� r + 2k) (m+ r � 2k � 1) (r + j � 2k � 2)!

(r � j � 2k)!

+

[ r�12 ]X
k=1

2k (k + 1) (2r � 4k � 1) (2r � 2k � 1) (2r � 2k + 1) (r + j � 2k � 2)!
(r � j � 2k)! :

Case 4 : If m and r are both odd and 0 � r � m; then

1Z
�1

P
(j)
m;A (x)P

(j)

r;A (x)
�
1� x2

�j�1
dx = 0 for j > r:
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Now, from (5.3.6), we have

1Z
�1

P
(j)
m;A (x)P

(j)

r;A (x)
�
1� x2

�j�1
dx

=

1Z
�1

8><>:
0B@�A+ 1

2
m (m� 1)

� [m�12 ]X
k=0

(2m� 4k � 1)P (j�1)m�2k�1 (x)

�
[m�22 ]X
k=0

[m�2k�32 ]X
s=0

(2m� 4k � 3) (2m� 4k � 4s� 5)P (j�1)m�2k�2s�3 (x)

1CA �

0B@� [
r�2
2 ]X
k=0

[ r�2k�32 ]X
s=0

(2r � 4k � 3) (2r � 4k � 4s� 5)P (j�1)r�2k�2s�3 (x)

+

�
A+

1

2
r (r � 1)

� [ r�12 ]X
k=0

(2r � 4k � 1)P (j�1)r�2k�1 (x)

1CA�1� x2
�j�19>=>; dx:
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Equivalently,

1R
�1
P
(j)
m;A (x)P

(j)

r;A (x) (1� x2)
j�1

dx

=
�
A+ 1

2
m (m� 1)

� �
A+ 1

2
r (r � 1)

� [ r�12 ]P
k=0

(2r � 4k � 1)2M

�
�
A+ 1

2
m (m� 1)

� [ r�12 ]P
k=1

(2r � 4k � 1)2 (2kr � 2k2 � k)M

�
�
A+ 1

2
r (r � 1)

� [ r+12 ]P
k=1

1
2
(2r � 4k + 3)2 (m� r + 2k � 2) (m+ r � 2k � 1)N

+
[ r�12 ]P
k=1

1
2
(2r � 4k � 1)2 (2kr � 2k2 � k) (m� r + 2k) (m+ r � 2k � 1)M :

Where

M =

1Z
�1

�
P

(j�1)

r�2k�1 (x)
�2 �

1� x2
�j�1

dx

and

N =

1Z
�1

�
P

(j�1)

r�2k+1 (x)
�2 �

1� x2
�j�1

dx:

In the third sum,

let u = k � 1 so k = u+ 1 and when k = 1; u = 0

and

if k =
�
r + 1

2

�
; then u =

�
r + 1

2

�
� 1 =

�
r � 1
2

�
:
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Hence,

�
�
A+

1

2
r (r � 1)

� [ r+12 ]X
k=1

1

2
(2r � 4k + 3)2 (m� r + 2k � 2) (m+ r � 2k � 1)N

= �

0B@[
r+1
2 ]X
k=1

1

2
(2r � 4k + 3)2 (m� r + 2k � 2) (m+ r � 2k � 1) �

�
A+

1

2
r (r � 1)

� 1Z
�1

�
P

(j�1)

r�2k+1 (x)
�2 �

1� x2
�j�1

dx

1A

= �

0B@[
r�1
2 ]X

u=0

1

2
(2r � 4u� 1)2 (m� r + 2u) (m+ r � 2u� 1) �

�
A+

1

2
r (r � 1)

� 1Z
�1

�
P

(j�1)

r�2u�1 (x)
�2 �

1� x2
�j�1

dx

1A

= �

0B@[
r�1
2 ]X
k=0

1

2
(2r � 4k � 1)2 (m� r + 2k) (m+ r � 2k � 1) �

�
A+

1

2
r (r � 1)

� 1Z
�1

�
P

(j�1)

r�2k�1 (x)
�2 �

1� x2
�j�1

dx

1A :

111



Hence, when m and r are both odd and 0 � r � m;

1R
�1
P
(j)
m;A (x)P

(j)

r;A (x) (1� x2)
j�1

dx

=
�
A+ 1

2
m (m� 1)

� �
A+ 1

2
r (r � 1)

� [ r�12 ]P
k=0

(2r � 4k � 1)2M

�
�
A+ 1

2
m (m� 1)

� [ r�12 ]P
k=1

(2r � 4k � 1)2 (2kr � 2k2 � k)M

�
�
A+ 1

2
r (r � 1)

� [ r�12 ]P
k=0

1
2
(2r � 4k � 1)2 (m� r + 2k) (m+ r � 2k � 1)M

+
[ r�12 ]P
k=1

1
2
(2r � 4k � 1)2 (2kr � 2k2 � k) (m� r + 2k) (m+ r � 2k � 1)M :

Now suppose that m = r; then the third term in the last integral

�
�
A+

1

2
r (r � 1)

� [ r�12 ]X
k=0

1

2
(2r � 4k � 1)2 (m� r + 2k) (m+ r � 2k � 1)M

becomes

�
�
A+ 1

2
m (m� 1)

� [ r�12 ]P
k=1

(2r � 4k � 1)2 (2kr � 2k2 � k)M :

Which is the second term in the last integral and the fourth term in the last integral

[ r�12 ]X
k=1

1

2
(2r � 4k � 1)2

�
2kr � 2k2 � k

�
(m� r + 2k) (m+ r � 2k � 1)M

simpli�es

[m�12 ]X
k=1

(2m� 4k � 1)2
�
2km� 2k2 � k

� �
2km� 2k2 � k

�
M :
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Furthermore, if m is even i.e., m = 2p; then�
m� 1
2

�
=

�
2p� 1
2

�
= p� 1 = m

2
� 1 = m� 2

2
:

Since
1Z

�1

�
P

(j�1)

r�2k�1 (x)
�2 �

1� x2
�j�1

dx =
2 (r + j � 2k � 2)!

(r � j � 2k)! (2r � 4k � 1) ;

we see that when both m and r are odd and 0 � r � m:

1Z
�1

P
(j)
m;A (x)P

(j)

r;A (x)
�
1� x2

�j�1
dx

=

[ r�12 ]X
k=0

2
�
A+ 1

2
m (m� 1)

� �
A+ 1

2
r (r � 1)

�
(2r � 4k � 1) (r + j � 2k � 2)!

(r � j � 2k)!

�
[ r�12 ]X
k=1

2
�
A+ 1

2
m (m� 1)

�
(2r � 4k � 1) (2kr � 2k2 � k) (r + j � 2k � 2)!

(r � j � 2k)!

�
[ r�12 ]X
k=0

�
A+ 1

2
r (r � 1)

�
(2r � 4k � 1) (m� r + 2k) (m+ r � 2k � 1) (r + j � 2k � 2)!

(r � j � 2k)!

+

[ r�12 ]X
k=1

(2r � 4k � 1) (2kr � 2k2 � k) (m� r + 2k) (m+ r � 2k � 1) (r + j � 2k � 2)!
(r � j � 2k)! :
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Summarizing, we see that for 0 � r � m;

�nmA
�
A+ 1

2
m (m� 1)

� �
A+ 1

2
(m+ 1) (m+ 2)

�
(2m+ 1)

�mr (?)

becomes

1

2

�
m (m+ 1)

�
m2 +m+ 4A� 2

�
+ k
�n
A2
�
(�1)m+r + 1

�

+

2nX
j=1

�
(�1)m+r+1 � 1

�
A2 (m+ j)! (2Aj +m2j +mj + 2A� j2 � j)

8j(j + 1) (m� j)!
b

+
A

2

2nX
j=1

a

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

0 if m+ r

is odd,

2(A+ 1
2
m(m�1))

2
(m+j)!

(2m+1)(m�j)! +
[m�22 ]P
k=0

2(2m�4k�3)(m�2k+j�2)!
(m�2k�j�2)! if m = r;

�2(A+ 1
2
r(r�1))(r+j)!
(r�j)! +

[ r�22 ]P
k=0

2(2r�4k�3)(r�2k+j�2)!
(r�2k�j�2)! if 0 � r < m;

m+ r is even

+
A

2

2nX
j=1

b

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

0 if m+ r

is odd,

if

[ r�12 ]P
k=0

2(A+ 1
2
m(m�1))(A+ 1

2
r(r�1))(2r�4k�1)(r+j�2k�2)!
(r�j�2k)! 0 � r < m

�
[ r�12 ]P
k=0

2(A+ 1
2
m(m�1))(2r�4k�1)(2kr�2k2�k)(r+j�2k�2)!

(r�j�2k)! and

�
[ r�12 ]P
k=0

(A+ 1
2
r(r�1))(2r�4k�1)(m�r+2k)(m+r�2k�1)(r+j�2k�2)!

(r�j�2k)! m+ r

+
[ r�12 ]P
k=1

(2r�4k�1)(2kr�2k2�k)(m�r+2k)(m+r�2k�1)(r+j�2k�2)!
(r�j�2k)! is even,
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where a = aj (n; k) and b = bj (n; k) :

We now simplify the last term in the last sum:

(2r � 4k � 1) (r + j � 2k � 2)!
(r � j � 2k)!

�
2

�
A+

1

2
m (m� 1)

��
A+

1

2
r (r � 1)

�

�2
�
A+

1

2
m (m� 1)

��
2kr � 2k2 � k

�

�
�
A+

1

2
r (r � 1)

�
(m� r + 2k) (m+ r � 2k � 1)

+
�
2kr � 2k2 � k

�
(m� r + 2k) (m+ r � 2k � 1)

	
=
(2r � 4k � 1) (r + j � 2k � 2)!

�
A+ 1

2
r (r � 1)� 2kr + 2k2 + k

�
(r � j � 2k)! C ;

where

C =

��
A+

1

2
m (m� 1)

�
� (m� r + 2k) (m+ r � 2k � 1)

�
:

In particular, when m = r; the above term is:

2 (2m� 4k � 1) (m+ j � 2k � 2)!
�
A+ 1

2
m (m� 1)� 2km+ 2k2 + k

�2
(m� j � 2k)! :

Also,

�nm
�
A+ 1

2
m (m� 1)

� �
A+ 1

2
(m+ 1) (m+ 2)

�
(2m+ 1)

� �nmA

=
�nm
��
A+ 1

2
m (m� 1)

� �
A+ 1

2
(m+ 1) (m+ 2)

�
� (2m+ 1)A

�
(2m+ 1)

:

Now notice that if 0 � r � m and m + r is odd (so m 6= r), the identity (?)

on page 114 yields only 0 = 0:
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Consequently, we consider 0 � r � m and m + r is even. We now look at the

following two cases:

.Case 1 : When m = r; the identity (?)

�nmA
�
A+ 1

2
m (m� 1)

� �
A+ 1

2
(m+ 1) (m+ 2)

�
(2m+ 1)

�mr

on page 114 yields

�nm
�
A+ 1

2
m (m� 1)

� �
A+ 1

2
(m+ 1) (m+ 2)

�
(2m+ 1)

= �nmA+
2nX
j=0

�
A+ 1

2
m (m� 1)

�2
(m+ j)!

(m� j)! (2m+ 1)
a

�
2nX
j=1

A (m+ j)! (2Aj +m2j +mj + 2A� j2 � j)

4j(j + 1) (m� j)!
b

+
2nX
j=1

[m�22 ]X
k=0

(2m� 4k � 3) (m� 2k + j � 2)!
(m� 2k � j � 2)! a

+
2nX
j=1

[m�12 ]X
k=0

(2m� 4k � 1) (m+ j � 2k � 2)!
�
A+ 1

2
m (m� 1)� 2km+ 2k2 + k

�
(m� j � 2k)! b:
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Equivalently,

(m (m+ 1) (m2 +m+ 4A� 2) + k)n (A2 +m (m� 1)A)
(2m+ 1)

+
(m (m+ 1) (m2 +m+ 4A� 2) + k)nm (m� 1) (m+ 1) (m+ 2)

4 (2m+ 1)

= �
2nX
j=1

A (m+ j)! (2Aj +m2j +mj + 2A� j2 � j)

4j(j + 1) (m� j)!
b

+
2nX
j=1

[m�12 ]X
k=0

(2m� 4k � 1) (m+ j � 2k � 2)!
�
A+ 1

2
m (m� 1)� 2km+ 2k2 + k

�2
(m� j � 2k)! b

+
2nX
j=1

[m�22 ]X
k=0

(2m� 4k � 3) (m� 2k + j � 2)!
(m� 2k � j � 2)! a

+
2nX
j=0

�
A+ 1

2
m (m� 1)

�2
(m+ j)!

(m� j)! (2m+ 1)
a;

where a = aj (n; k) and b = bj (n; k) :
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Case 2 : 0 � m < r; the identity (?) on page 114 yields

0 =

�
m (m+ 1)

�
m2 +m+ 4A� 2

�
+ k
�n
A2

�
2nX
j=1

A2 (m+ j)! (2Aj +m2j +mj + 2A� j2 � j)

4j(j + 1) (m� j)!
b

� A
2nX
j=0

�
A+ 1

2
r (r � 1)

�
(r + j)!

(r � j)!
a

+ A
2nX
j=1

[m�22 ]X
k=0

(2r � 4k � 3) (r � 2k + j � 2)!
(r � 2k � j � 2)! a

+
A

2

2nX
j=1

[ r�12 ]X
k=0

(
(2r � 4k � 1) (r + j � 2k � 2)!

�
A+ 1

2
r (r � 1)� 2kr + 2k2 + k

�
(r � j � 2k)! �

(2A+m (m� 1)� (m� r + 2k) (m+ r � 2k � 1))g b

= 0;
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Equivalently,

�nmA =

2nX
j=1

A2 (m+ j)! (2Aj +m2j +mj + 2A� j2 � j)

4j(j + 1) (m� j)!
b

+

2nX
j=0

�
A+ 1

2
r (r � 1)

�
(r + j)!

(r � j)!
a �

2nX
j=1

[ r�22 ]X
k=0

(2r � 4k � 3) (r � 2k + j � 2)!
(r � 2k � j � 2)! a

�
2nX
j=1

[ r�12 ]X
k=0

(
(2r � 4k � 1) (r + j � 2k � 2)!

�
A+ 1

2
r (r � 1)� 2kr + 2k2 + k

�
2 (r � j � 2k)! �

(2A+m (m� 1)� (m� r + 2k) (m+ r � 2k � 1))g b:

Summarizing, we see that we get two sets of equations if 0 � r � m and m + r is

even.

The �rst set of equation: when m = r;

�nm
�
A2 +m (m� 1)A+ 1

4
m (m� 1) (m+ 1) (m+ 2)

�
(2m+ 1)

+
2nX
j=1

[m�12 ]X
k=0

(2m� 4k � 1) (m+ j � 2k � 2)!
�
A+ 1

2
m (m� 1)� 2km+ 2k2 + k

�2
(m� j � 2k)! b

= �
2nX
j=1

A (m+ j)! (2Aj +m2j +mj + 2A� j2 � j)

4j(j + 1) (m� j)!
b (5.3.7)

+

2nX
j=1

[m�22 ]X
k=0

(2m� 4k � 3) (m� 2k + j � 2)!
(m� 2k � j � 2)! a +

2nX
j=0

�
A+ 1

2
m (m� 1)

�2
(m+ j)!

(m� j)! (2m+ 1)
a:
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The second set of equation: when 0 � r � m;

�
m (m+ 1)

�
m2 +m+ 4A� 2

�
+ k
�n
A

=

2nX
j=1

A2 (m+ j)! (2Aj +m2j +mj + 2A� j2 � j)

4j(j + 1) (m� j)!
b

+
2nX
j=0

�
A+ 1

2
r (r � 1)

�
(r + j)!

(r � j)!
a

�
2nX
j=1

[ r�22 ]X
k=0

(2r � 4k � 3) (r � 2k + j � 2)!
(r � 2k � j � 2)! a (5.3.8)

�
2nX
j=1

[ r�12 ]X
k=0

(
(2r � 4k � 1) (r + j � 2k � 2)!

�
A+ 1

2
r (r � 1)� 2kr + 2k2 + k

�
2 (r � j � 2k)! �

(2A+m (m� 1)� (m� r + 2k) (m+ r � 2k � 1))g b:

We now consider the following two cases:

Case 1 : When m is even and r = 0; (5.3.8) becomes

�
m (m+ 1)

�
m2 +m+ 4A� 2

�
+ k
�n

=
2nX
j=1

(m+ j)! (2Aj +m2j +mj + 2A� j2 � j)

4j(j + 1) (m� j)!
bj (n; k) + a0 (n; k)
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but a0 (n; k) = kn: Hence, we obtain the following identity:�
m (m+ 1)

�
m2 +m+ 4A� 2

�
+ k
�n � kn

=
2nX
j=1

(m+ j)! (2Aj +m2j +mj + 2A� j2 � j)

4j(j + 1) (m� j)!
bj (n; k) :

Case 2 : When m is odd and r = 1; (5.3.8) becomes�
m (m+ 1)

�
m2 +m+ 4A� 2

�
+ k
�n

=

2nX
j=1

(m+ j)! (2Aj +m2j +mj + 2A� j2 � j)

4j(j + 1) (m� j)!
bj (n; k)

+ a0 (n; k) + 2a1 (n; k)� Ab1 (n; k) :

But

a0 (n; k) = kn; a1 (n; k) = 2
3n�1An and b1 (n; k) = 23nAn�1

so that 2a1 (n; k)� Ab1 (n; k) = 0:

Consequently, for all m 2 N0;

2nX
j=1

(m+ j)! (2Aj +m2j +mj + 2A� j2 � j)

4j(j + 1) (m� j)!
bj (n; k)

(5.3.9)

=
�
m (m+ 1)

�
m2 +m+ 4A� 2

�
+ k
�n � kn:

Now, let r = m in (5.3.8). Since

2A+m (m� 1)� (m� r + 2k) (m+ r � 2k � 1) j
r=m

= 2A+m (m� 1)� 2k (2m� 2k � 1)

= 2A+m (m� 1)� 4km+ 4k2 + 2k

= 2

�
A+

m (m� 1)
2

� 2km+ 2k2 + k

�
;
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we see that

�
2nX
j=1

[ r�12 ]X
k=0

 
(2r � 4k � 1) (r + j � 2k � 2)!

�
A+ 1

2
r (r � 1)� 2kr + 2k2 + k

�
2 (r � j � 2k)! �

(2A+m (m� 1)� (m� r + 2k) (m+ r � 2k � 1))) b

= �
2nX
j=1

[m�12 ]X
k=0

(2m� 4k � 1) (m+ j � 2k � 2)!
�
A+ 1

2
m (m� 1)� 2km+ 2k2 + k

�2
b

2 (r � j � 2k)! :

Furthermore, from (5.3.9), we also have

(�nm � kn)A =
2nX
j=1

A (m+ j)! (2Aj +m2j +mj + 2A� j2 � j)

4j(j + 1) (m� j)!
b:

Hence, when r = m; (5.3.8) yields the following identity�
A+

1

2
m (m� 1)

� 2nX
j=1

(m+ j)

(m� j)!
a

=
2nX
j=1

[m�22 ]X
k=0

(2m� 4k � 3) (m� 2k + j � 2)!
(m� 2k � j � 2)! a

+
2nX
j=1

[m�12 ]X
k=0

(2m� 4k � 1) (m+ j � 2k � 2)!
�
A+ 1

2
m (m� 1)� 2km+ 2k2 + k

�2
b

(m� j � 2k)!

= �nmA+ �nm

�
A2 + (m2 �m)A+ 1

4
m (m+ 2) (m2 � 1)

�
(2m+ 1)

�
2nX
j=1

�
A+ 1

2
m (m� 1)

�2
(m+ j)!

(m� j)! (2m+ 1)
a:
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Therefore, simplifying the above identity using (5.3.7), we obtain �
A+

1

2
m (m� 1)

�
+

�
A+ 1

2
m (m� 1)

�2
(2m+ 1)

!
2nX
j=1

(m+ j)

(m� j)!
a (5.3.10)

=
�nm
�
A2 +m (m� 1)A+ 1

4
m (m� 1) (m+ 1) (m+ 2)

�
(2m+ 1)

:

On the other hand,�
A+

1

2
m (m� 1)

�
+

�
A+ 1

2
m (m� 1)

�2
(2m+ 1)

=
(2m+ 1)

�
A+ 1

2
m (m� 1)

�
+
�
A+ 1

2
m (m� 1)

�2
(2m+ 1)

=
A (2m+ 1) + 1

2
m (m� 1) (2m+ 1) + A2 +m (m� 1)A+ 1

4
m2 (m� 1)2

(2m+ 1)

=
A2 +m (m� 1)A+ 1

4
m (m� 1) [m (m� 1) + 2 (2m+ 1)] + A (2m+ 1)

(2m+ 1)

=
A2 +m (m� 1)A+ 1

4
(m� 1)m (m+ 1) (m+ 2) + A (2m+ 1)

(2m+ 1)
:

Hence, (5.3.10) becomes�
A2 +m (m� 1)A+ 1

4
(m� 1)m (m+ 1) (m+ 2) + A (2m+ 1)

(2m+ 1)

� 2nX
j=1

(m+ j)

(m� j)!
a

=

�
A2 +m (m� 1)A+ 1

4
(m� 1)m (m+ 1) (m+ 2) + A (2m+ 1)

(2m+ 1)

�
�nm

so that
2nX
j=1

(m+ j)

(m� j)!
aj (n; k) =

�
m (m+ 1)

�
m2 +m+ 4A� 2

�
+ k
�n
: (5.3.11)

We will see in the following section that the identities in (5.3.9) and (5.3.11) will

play key role �nding the coe¢ cients aj (n; k) and bj (n; k) :
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5.4 Formulas for the Coe¢ cients aj (n; k) and bj (n; k)

Theorem 5.4.1. Suppose A > 0; k � 0 and n 2 N. For each m 2 N0; the

recurrence relations

2nX
j=1

(m+ j)

(m� j)!
aj (n; k) =

�
m (m+ 1)

�
m2 +m+ 4A� 2

�
+ k
�n

(5.4.1)

have unique, non-negative solutions aj(n; k) (j = 0; 1; : : : ; 2n); independent of m;

given explicitly by

a0(n; k) =

8><>: 0 if k = 0

kn if k > 0;
(5.4.2)

and

aj(n; k) :=

8><>: an;j if k = 0Pn�1
r=0

�
n
r

�
an�r;jk

r if k > 0
(j 2 f1; : : : ; 2ng); (5.4.3)

where each an;j is positive and given by

an;j =

jX
k=1

(�1)k+j (2k + 1)(k
2 + k)n(k2 + k + 4A� 2)n

(j + k + 1)!(j � k)!
: (5.4.4)

For the positivity of fan;jg; see the next section.

Proof . From the de�nition of aj(n; k) in (5.4.1), we see that

a0(n; k) = kn;

a1(n; k) =
(k + 8A)n � kn

2!
;

a2(n; k) =
(k + 24A+ 24)n � 3(k + 8A)n + 2kn

4!
; etc;
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in general, it is not di¢ cult to see that aj(n; k) is unique and given by

jX
l=0

(�1)l
(2j)!

��
2j

l

�
�
�
2j

l � 1

��
(k + (j � l)(j � l + 1) ((j � l)(j � l + 1) + 4A� 2))n

=

jX
l=0

(�1)l+j
(2j)!

��
2j

j � l

�
�
�

2j

j � l � 1

��
(k + l(l + 1) (l(l + 1) + 4A� 2))n

=

jX
l=0

nX
r=0

(�1)l+j
(2j)!

��
2j

j � l

�
�
�

2j

j � l � 1

���
n

r

��
(l2 + l)(l2 + l + 4A� 2)

�n�r
kr

This proves (5.4.2), (5.4.3), and (5.4.4). �

Theorem 5.4.2. Suppose A > 0; k � 0 and n 2 N. For eachm 2 N0; the recurrence

relations

2nX
j=1

(m+ j)! (2Aj +m2j +mj + 2A� j2 � j) bj (n; k)

4j(j + 1) (m� j)!

(5.4.5)

=
��
m2 +m

� �
m2 +m+ 4A� 2

�
+ k
�n�kn:

have unique, non-negative solutions bj(n; k) (j = 0; 1; : : : ; 2n); independent of m;

given explicitly by

b0(n; k) =

8><>: 0 if k = 0

0 if k > 0;
(5.4.6)

and

bj(n; k) :=

8><>: bn;j if k = 0Pn�1
r=0

�
n
r

�
bn�r;jk

r if k > 0
(j 2 f1; : : : ; 2ng); (5.4.7)

where each bn;j is positive and given by

bn;j =

jX
k=1

(�1)k+j(2k + 1)(k2 + k)n(k2 + k � 2 + 4A)n (2Aj + (j + 1) (j + k2 + k))

(j + k + 1)!(j � k)! (2A+ (k � 1) k) (2A+ (k + 1) (k + 2)) :

(5.4.8)
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Proof . From the de�nition of bj(n; k) in (5.4.5), we see that

b0(n; k) = 0;

b1(n; k) =
(8A+ k)n � kn

A
;

b2(n; k) =
(24A+ 24 + k)n � kn

6 (A+ 1)
� (8A+ k)n � kn

2A
;

b3(n; k) =
(48A+ 120 + k)n

120 (A+ 3)
+
((8A+ k)n � kn) (3A+ 10)

40A (A+ 3)
� (24A+ 24 + k)n � kn

24 (A+ 1)
;

etc; in general, it is not di¢ cult to see that bj(n; k) is unique and given by

Pj
l=0(�1)l

��
2j
l

�
�
�
2j
l�1
�� 4(k+(j�l)(j�l+1)((j�l)(j�l+1)�2+4A))n(2Aj+(j+1)(j+(j�l)(j�l+1)))

(2j)!(2A+(j�l�1)(j�l))(2A+(j�l+1)(j�l+2))

=
Pj

l=0 (�1)
j+l
��

2j
j�l
�
�
�

2j
j�l�1

�� 4(k+l(l+1)(l(l+1)�2+4A))n(2Aj+(j+1)(j+l(l+1)))
(2j)!(2A+(l�1)l)(2A+(l+1)(l+2))

=
Pj

l=0

Pn
r=0(�1)l+j

��
2j
j�l
�
�
�

2j
j�l�1

�� �
n
r

�4(2Aj+(j+1)(j+l(l+1)))((l2+l)(l2+l�2+4A))n�r
(2j)!(2A+(l�1)l)(2A+(l+1)(l+2)) kr

=
Pn

r=0

Pj
l=0(�1)l+j

��
2j
j�l
�
�
�

2j
j�l�1

�� 4((l2+l)(l2+l�2+4A))
n�r

(2Aj+(j+1)(j+l(l+1)))

(2j)!(2A+(l�1)l)(2A+(l+1)(l+2))
�
n
r

�
kr

=
Pn

r=0

Pj
l=0

(�1)l+j
(2j)!

��
(2j)!(2l+1)

(j�l)!(j+l+1)!

��
4((l2+l)(l2+l�2+4A))

n�r
(2Aj+(j+1)(j+l(l+1)))

(2j)!(2A+(l�1)l)(2A+(l+1)(l+2))
�
n
r

�
kr

=
Pn

r=0

�
n
r

�Pj
l=0

(�1)l+j(2l+1)((l2+l)(l2+l�2+4A))
n�r

(2Aj+(j+1)(j+l(l+1)))

(j�l)!(j+l+1)!(2A+(l�1)l)(2A+(l+1)(l+2)) kr:

This proves (5.4.6), (5.4.7), and (5.4.8). �
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We cannot, at this time, prove that bj(n; k) > 0 for j 2 N; see section 5.7 below

for further information. The evidence is very strong indeed that each bj(n; k) > 0

for j 2 N:

5.5 Positivity of the Coe¢ cients aj(n; k)

Recall that the coe¢ cients faj(n; k)g are de�ned by

aj(n; k) :=

8><>: an;j if k = 0Pn�1
r=0

�
n
r

�
an�r;jk

r if k > 0
(j 2 f1; : : : ; 2ng);

where

an;j :=

jX
k=0

(�1)k+j (2k + 1)(k
2 + k)n(k2 + k + 4A� 2)n

(j � k)!(j + k + 1)!

=

jX
k=0

(�1)k+j (2k + 1)(k
2 + k)n

(j � k)!(j + k + 1)!

nX
r=0

�
n

r

�
(4A)n�r(k2 + k � 2)r

=
nX
r=0

�
n

r

�
(4A)n�r

jX
k=0

(�1)k+j (2k + 1)(k
2 + k)n(k2 + k � 2)r

(j � k)!(j + k + 1)!
:

From this, it is easy to see that each aj(n; k) > 0 if an;j > 0 and this happens if

ean;j;r := jX
k=0

(�1)k+j (2k + 1)(k
2 + k)n(k2 + k � 2)r

(j � k)!(j + k + 1)!
> 0 (r = 0; 1; : : : ; n):

By expanding (k2 + k � 2)r; we see that

ean;j;r = rX
m=0

�
r

m

�
(�2)m

 
jX
k=0

(�1)k+j (2k + 1)(k
2 + k)n+r�m

(j � k)!(j + k + 1)!

!
(5.5.1)

=

rX
m=0

�
r

m

�
(�2)mPS(j)n+r�m:
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Recall that the forward di¤erence of a sequence of numbers fxng1n=0 is the sequence

f�xng1n=0 given by

�xn = xn+1 � xn (n 2 N0):

Higher order forward di¤erences are de�ned recursively by

�rxn = �(�
r�1xn) =

rX
m=0

�
r

m

�
(�1)mxn+r�m:

With this notation, we see that

2n+r�r

 
PS

(j)
n

2n

!
=

rX
m=0

�
r

m

�
(�1)m2n+rPS

(j)
n+r�m

2n+r�m

=
rX

m=0

�
r

m

�
(�1)mPS

(j)
n+r�m
2�m

=
rX

m=0

�
r

m

�
(�2)mPS(j)n+r�m

= ean;j;r by (5.5.1);
consequently, in order to show an;j > 0; it su¢ ces to prove the following result.

Theorem 5.5.1. For r 2 N0; we have

�r

 
PS

(j)
n

2n

!
� 0 (n � j):

In particular, we see that for n � j;

PS
(j)
n+1 � 2PS(j)n � 0

PS
(j)
n+2 � 4PS

(j)
n+1 + 4PS

(j)
n � 0

PS
(j)
n+3 � 6PS

(j)
n+2 + 12PS

(j)
n+1 � 8PS(j)n � 0; etc.
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Proof . Fix j 2 N; from the rational generating function

jY
r=1

1

1� r(r + 1)t
=

1X
n=0

PS(j)n tn�j
�
jtj < 1

j(j + 1)

�
;

for the Legendre-Stirling numbers, replace t by t=2 to obtain

1X
n=j

PS
(j)
n

2n
tn =

tj

2j
 j(t)

�
jtj < 2

j(j + 1)

�
; (5.5.2)

where

 j(t) :=
1

(1� t)(1� 3t) � � � (1� j(j+1)
2

t)
:

Now
1X
n=j

PS
(j)
n

2n
tn =

1X
n=j�1

PS
(j)
n+1

2n+1
tn+1 =

tj

2j
+

1X
n=j

PS
(j)
n+1

2n+1
tn+1

since PS(j)j = 1: Hence, from (5.5.2); we see that

1X
n=j

PS
(j)
n+1

2n+1
tn =

tj�1

2j
 j(t)�

tj�1

2j
; (5.5.3)

and consequently

1X
n=j

�

 
PS

(j)
n

2n

!
tn =

tj�1

2j
 j(t)�

tj�1

2j
� tj

2j
 j(t) (5.5.4)

=
tj�1

2j
[ j(t)� t j(t)� 1]

=
tj�1

2j
[(1� t) j(t)� 1]:

By comparing powers of t on both sides of (5.5.4); we see that

(1� t) j(t)� 1 =
1X
n=1

an(1)t
n;

where each of the coe¢ cients an(1) are non-negative as can easily be seen from the

Taylor expansion of

(1� t) j(t)� 1:
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Indeed, the coe¢ cients in this Taylor series are the Cauchy product of the coe¢ cients

obtained from the products of the geometric series for

1

1� t
;

1

1� 3t ; � � � ;
1

1� j(j+1)
2

t
;

each of which have positive coe¢ cients. It follows, then, from comparing coe¢ cients

on both sides of (5.5.4) that

�

 
PS

(j)
n

2n

!
� 0 (n � j):

To see that

�2

 
PS

(j)
n

2n

!
� 0 (n � j); (5.5.5)

we �rst notice that

tj j(t)

2j
=

1X
n=j

PS
(j)
n

2n
tn =

1X
n=j�2

PS
(j)
n+2

2n+2
tn+2

=
tj

2j
+
PS

(j)
j+1

2j+1
tj+1 +

1X
n=j

PS
(j)
n+2

2n+2
tn+2:

Thus
1X
n=j

PS
(j)
n+2

2n+2
tn =

tj�2

2j
 j(t)�

tj�2

2j
�
PS

(j)
j+1

2j+1
tj�1: (5.5.6)
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Consequently, from (5:5:2); (5:5:3); and (5:5:6); we see that

1X
n=j

�2

 
PS

(j)
n

2n

!
tn (5.5.7)

=

1X
n=j

 
PS

(j)
n+2

2n+2
� 2PS

(j)
n+1

2n+1
+
PS

(j)
n

2n

!
tn

=
tj�2

2j
 j(t)�

tj�2

2j
�
PS

(j)
j+1

2j+1
tj�1 � 2t

j�1

2j
 j(t) +

2tj�1

2j
+
tj

2j
 j(t)

=
tj�2

2j

"
(1� t)2 j(t) +

 
2�

PS
(j)
j+1

2

!
t� 1

#
:

Again, by comparing both sides of this identity, we see that

(1� t)2 j(t) +

 
2�

PS
(j)
j+1

2

!
t� 1 =

1X
n=2

an(2)t
n;

where each an(2) is non-negative, as can easily be seen from the Taylor series expan-

sion of (1� t)2 j(t): The inequality in (5.5.5) now follows. From (5.5.4) and (5.5.7);

we can generalize to see that, for each r 2 N,
1X
n=j

�r

 
PS

(j)
n

2n

!
tn =

tj�r

2j
[(1� t)r j(t) + pr�1(t)] ; (5.5.8)

where pr�1(t) is a polynomial of degree � r� 1: Moreover, by comparing both sides

of (5.5.8); we see that

(1� t)r j(t) + pr�1(t) =
1X
n=r

an(r)t
n

where each an(r) � 0 since the coe¢ cients in the Taylor expansion of (1 � t)r j(t)

are all non-negative. Consequently, it follows that

�r

 
PS

(j)
n

2n

!
� 0 (n � j):

This completes the proof of the theorem. �
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5.6 Positivity of the Coe¢ cients bj(n; k)

We will see from several examples of bj(n; k) below that bj(n; k) is non-negative

for each j 2 N. For its proof, work still goes on.

5.7 Examples of the coe¢ cients aj(n; k) and bj(n; k)

A list of the coe¢ cients aj(n; k)

a0(1; k) = k

a1(1; k) = 4A

a2(1; k) = 1

a0(2; k) = k2

a1(2; k) = 32A
2 + 8Ak

a2(2; k) = 16A
2 + 48A+ 2k + 24

a3(2; k) = 8A+ 16

a4(2; k) = 1

a0(3; k) = k3

a1(3; k) = 256A
3 + 96A2k + 12Ak2

a2(3; k) = 512A
3 + 1728A2 + 48A2k + 1728A+ 144Ak + 3k2 + 576

a3(3; k) = 64A
3 + 864A2 + 2592A+ 24Ak + 48k + 2304

a4(3; k) = 48A
2 + 432A+ 3k + 864

a5(3; k) = 12A+ 64

a6(3; k) = 1
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A List of the coe¢ cients bj(n; k)

b0(1; k) = 0

b1(1; k) = 8

b2(1; k) = 0

b0(2; k) = 0

b1(2; k) = 64A+ 16k

b2(2; k) = 64A+ 96

b3(2; k) = 16

b4(2; k) = 0

b0(3; k) = 0

b1(3; k) = 512A
2 + 192Ak + 24k2

b2(3; k) = 2048A
2 + 4608A+ 192Ak + 288k + 2304

b3(3; k) = 384A
2 + 3008A+ 48k + 4224

b4(3; k) = 192A+ 800

b5(3; k) = 24

b6(3; k) = 0
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CHAPTER SIX

The Legendre Type Left-De�nite Theory

6.1 Introduction

In this chapter, we will study the Legendre type left-de�nite theory. In Section

6.2, we de�ne, for each n 2 N, a vector space of functions Vn and the inner product

(�; �)n on Vn�Vn. This inner product is called the nth left-de�nite inner product. We

denote the resulting inner product space Hn = (Vn; (�; �)n) and list several examples

of this space:

In Section 6.3, we make use of the CHEL (Chisholm, Everitt, and Littlejohn)

inequality to simplify the vector space Vn:

In Section 6.4, we will show that Hn = (Vn; (�; �)n) is a Hilbert space in the

inner product (�; �)n :

In Section 6.5., we prove that the set of complex-valued polynomials P in the

real variable x is dense in each Hn: Of course, this will immediately imply that the

Legendre type polynomials fPm;Ag form a complete orthogonal set in Hn: These

facts will prove useful later in this chapter when we show that Hn is, in fact, the nth

left-de�nite space associated with the pair (T; L2�[�1; 1]):

In the �nal section of this chapter, we establish the left-de�nite theory associ-

ated with the pair (T; L2�[�1; 1]): Speci�cally, we determine explicitly

(a) the sequence fHng1n=1 of left-de�nite spaces associated with the pair (T; L2�[�1; 1]);

(b) the sequence of left-de�nite self-adjoint operators fTng1n=1 ; and their speci�c

domains fD (Tn)g1n=1 associated with the pair (T; L2�[�1; 1]); and

(c) the domains D (T n) of each integral power T n of T:

These results culminate in Theorem 6.6.1.
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6.2 De�nition of Vn; (�; �)n ; and Hn = (Vn; (�; �)n)

De�nition 6.2.1. For each n 2 N; de�ne

Vn := ff : [�1; 1]! C
��f 2 AC[�1; 1]; f 0; f 00; : : : ; f (2n�1) 2 ACloc(�1; 1) ;

(1� x2)(j�1)=2f (j) 2 L2(�1; 1) (j = 1; 2; : : : ; 2n� 1); (1� x2)nf (2n) 2 L2(�1; 1)g:
(6.2.1)

We will see in Section 6.3 that the space Vn simpli�es into

Vn := ff : [�1; 1]! C
��f 2 AC[�1; 1]; f 0; f 00; : : : ; f (2n�1) 2 ACloc(�1; 1) ;

(1� x2)nf (2n) 2 L2(�1; 1)g:
(6.2.2)

Let (�; �)n and k�kn denote, respectively, the inner product

(f; g)n :=
A

2

2nX
j=1

1Z
�1

�
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
f (j) (x) �g(j) (x) dx

(6.2.3)

+ kn (f; g)� ;

for f; g 2 Vn and

(f; g)� :=
A

2

1Z
�1

f (x) �g (x) dx+
1

2
f (1) �g (1) +

1

2
f (�1) �g (�1) ; (6.2.4)

and the norm

kfkn = (f; f)
1=2
n ;

here the numbers aj (n; k) and bj (n; k) are de�ned in (5:4:3) and (5:4:7) respectively.

Finally, let Hn = (Vn; (�; �)n) :

The inner product (�; �)n ; de�ned in (6:2:3) ; is a Sobolev inner product and

is more commonly called the Dirichlet inner product associated with the symmetric

di¤erential expression `n [�] given in (5:3:1) :
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We now list some examples of Hn:

1. H1 = (V1; (�; �)1) ; where

V1 =
�
f : [�1; 1]! C

��f 2 AC[�1; 1]; f 0 2 ACloc(�1; 1) ; (1� x2)f 00 2 L2(�1; 1)
	
;

and

(f; g)1 =
A

2

1Z
�1

n�
1� x2

�2
f 00 (x) �g00 (x) +

�
8 + 4A

�
1� x2

��
f 0 (x) �g0 (x)

o
dx

+ k (f; g)� :

2. H2 = (V2; (�; �)2) ; where

V2 := ff : [�1; 1]! C jf 2 AC[�1; 1]; f 0; f 00; f 000 2 ACloc(�1; 1) ;

(1� x2)2f (4) 2 L2(�1; 1)g;

and

(f; g)2 =
A

2

1Z
�1

f
�
1� x2

�4
f (4) (x) �g(4) (x)

+
�
(8A+ 16)

�
1� x2

�3
+ 16

�
1� x2

�2�
f 000 (x) �g000 (x)

+
��
16A2 + 48A+ 24 + 2k

� �
1� x2

�2
+ (64A+ 96)

�
1� x2

��
f 00 (x) �g00 (x)

+
��
32A2 + 8Ak

� �
1� x2

�
+ 64A+ 16k

�
f 0 (x) �g0 (x)gdx+ k2 (f; g)� :

3. H3 = (V3; (�; �)3) ; where

V3 := ff : [�1; 1]! C
��f 2 AC[�1; 1]; f 0; f 00; : : : ; f (5) 2 ACloc(�1; 1) ;

(1� x2)3f (6) 2 L2(�1; 1)g;
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and

(f; g)3 =
A

2

1Z
�1

f
�
1� x2

�6
f (6) (x) �g(6) (x)

+
�
(12A+ 64)

�
1� x2

�5
+ 24

�
1� x2

�4�
f (5) (x) �g(5) (x)

+
��
48A2 + 432A+ 3k + 864

� �
1� x2

�4
+ (192A+ 800)

�
1� x2

�3�
f (4) (x) �g(4) (x)

+ (
�
64A3 + 864A2 + 2592A+ 24Ak + 48k + 2304

� �
1� x2

�3

+ (384A2 + 3008A+ 48k + 4224)
�
1� x2

�2
)f (3) (x) �g(3) (x)

+ (
�
512A3 + 1728A2 + 48A2k + 1728A+ 144Ak + 3k2 + 576

� �
1� x2

�2

+
�
2048A2 + 4608A+ 192Ak + 288k + 2304

� �
1� x2

�
)f 00 (x) �g00 (x)

+ (
�
256A3 + 96A2k + 12Ak2

� �
1� x2

�
+
�
512A2 + 192Ak + 24k2

�
)f 0 (x) �g0 (x)gdx

+ k3 (f; g)� :

We now arrive at one of the main results of this section.

Theorem 6.2.1.

(`n [f ] ; g)� = (f; g)n (6.2.5)

for all f; g 2 C2n[�1; 1] of all 2n-times continuously di¤erentiable complex-valued

functions on [�1; 1].
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Proof. Let `n [�], (�; �)n, and (�; �)� be de�ned as in (5.3.1), (6.2.3), and (6.2.4)

respectively. Then, we want to compute the left-hand side of (6.2.5). From (5.3.1)

and (6.2.4), we have

(`n [f ] (x) ; g (x))�

=

 
2nX
j=0

(�1)j
��
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
f (j) (x)

�(j)
; g (x)

!
�

=

 
2nX
j=1

(�1)j
��
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
f (j) (x)

�(j)
; g (x)

!
�

+ (a0 (n; k) f; g (x))�

=

 
2nX
j=1

(�1)j
��
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
f (j) (x)

�(j)
; g (x)

!
�

+ (knf (x) ; g (x))�

=

 
2nX
j=1

(�1)j
��
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
f (j) (x)

�(j)
; g (x)

!
�

(6.2.6)

+ kn (f (x) ; g (x))� :
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We now calculate (6.2.6): From the de�nition of (�; �)� , (6.2.6) becomes

A

2

1Z
�1

2nX
j=1

(�1)j
��
a
�
1� x2

�j
+ b

�
1� x2

�j�1�
f (j) (x)

�(j)
�g (x) dx (�)

+

1Z
�1

2nX
j=1

(�1)j

2

��
a
�
1� x2

�j
+ b

�
1� x2

�j�1�
f (j) (x)

�(j)
j
x=1

�g (1) (�)

+

1Z
�1

2nX
j=1

(�1)j

2

��
a
�
1� x2

�j
+ b

�
1� x2

�j�1�
f (j) (x)

�(j)
(x) j

x=�1
�g (�1) : (
)

Where a = aj (n; k) and b = bj (n; k) :

So, to compute (6.2.6), we need to compute �, �, and 
 respectively. Regard-

ing �, we do so through integration by parts, Let

u = �g (x) ; dv =
��
a
�
1� x2

�j
+ b

�
1� x2

�j�1�
f (j) (x)

�(j)
dx

and

du = �g0 (x) dx; v =
��
a
�
1� x2

�j
+ b

�
1� x2

�j�1�
f (j) (x)

�(j�1)
:

We also need to compute v j
x=�1

in order to complete integration by parts. Recall

that

Dn
�
1� x2

�n
= (�1)n 2nn!Pn (x) ; (6.2.7)

where Pn (x) is the nth degree Legendre polynomial.
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Hence,

v =
�
a
�
1� x2

�j
+ b

�
1� x2

�j�1�(j�1)
f (j) (x)

+

�
j � 1
1

��
a
�
1� x2

�j
+ b

�
1� x2

�j�1�(j�2)
f (j+1) (x)

+

�
j � 1
2

��
a
�
1� x2

�j
+ b

�
1� x2

�j�1�(j�3)
f (j+2) (x)

+ � � �+
�
a
�
1� x2

�j
+ b

�
1� x2

�j�1�
f (2j�1) (x) ;

Equivalently,

v =
�
aDj�1 �1� x2

�j
+ bDj�1 �1� x2

�j�1�
f (j) (x)

+

�
j � 1
1

��
aDj�2 �1� x2

�j
+ bDj�2 �1� x2

�j�1�
f (j+1) (x)

+

�
j � 1
2

��
aDj�3 �1� x2

�j
+ bDj�3 �1� x2

�j�1�
f (j+2) (x)

+ � � �+
�
a
�
1� x2

�j
+ b

�
1� x2

�j�1�
f (2j�1) (x) :

Since Dk (1� x2)
j j
x=�1

= 0 if k < j; we see that from (6.2.7),

v = b (�1)j�1 2j�1 (j � 1)!Pj�1 (�1) f (j) (�1) (j � 1)

=

8>>>><>>>>:
b (�1)j�1 2j�1 (j � 1)!Pj�1 (+1) f (j) (+1) x = 1

b (�1)j�1 2j�1 (j � 1)!Pj�1 (�1) f (j) (�1) x = �1:

Since

Pn (1) = 1 and Pn (�1) = (�1)n ;
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we see that

v =

8>>>><>>>>:
b (�1)j�1 2j�1 (j � 1)!f (j) (+1) x = 1

b2j�1 (j � 1)!f (j) (�1) x = �1:

Hence, � becomes

A

2

2nX
j=1

(�1)j
1Z

�1

��
a
�
1� x2

�j
+ b

�
1� x2

�j�1�
f (j) (x)

�(j)
�g (x) dx

=
A

2

2nX
j=1

(�1)j
8<:�g (x) v (x) 1

j
�1

�
1Z

�1

��
a
�
1� x2

�j
+ b

�
1� x2

�j�1�
f (j) (x)

�(j�1)
�g0 (x) dx

9=; :

We now simplify

1Z
�1

��
a
�
1� x2

�j
+ b

�
1� x2

�j�1�
f (j) (x)

�(j�1)
�g0 (x) dx

with

u = �g0 (x) ; dv =
��
a (1� x2)

j
+ b (1� x2)

j�1
�
f (j) (x)

�(j�1)
dx

and

du = �g00 (x) dx; v =
��
a (1� x2)

j
+ b (1� x2)

j�1
�
f (j) (x)

�(j�2)
;
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we note that v (�1) = 0 so that

1Z
�1

��
a
�
1� x2

�j
+ b

�
1� x2

�j�1�
f (j) (x)

�(j�1)
�g0 (x) dx

= �
1Z

�1

��
a
�
1� x2

�j
+ b

�
1� x2

�j�1�
f (j) (x)

�(j�2)
�g00 (x) dx

=

1Z
�1

��
a
�
1� x2

�j
+ b

�
1� x2

�j�1�
f (j) (x)

�(j�3)
�g000 (x) dx

= � � � =

(�1)k+1
1Z

�1

��
a
�
1� x2

�j
+ b

�
1� x2

�j�1�
f (j) (x)

�(j�k)
�g(k) (x) dx:

In particular, setting k = j; we see that

1Z
�1

��
a
�
1� x2

�j
+ b

�
1� x2

�j�1�
f (j) (x)

�(j�1)
�g0 (x) dx

= (�1)j+1
1Z

�1

�
a
�
1� x2

�j
+ b

�
1� x2

�j�1�
f (j) (x) �g(j) (x) dx:
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Substituting this into � gives us

� =
A

2

2nX
j=1

(�1)j
1Z

�1

��
a
�
1� x2

�j
+ b

�
1� x2

�j�1�
f (j) (x)

�(j)
�g (x) dx

=
A

2

2nX
j=1

(�1)j
8<:�g (x) v (x) 1

j
�1

� (�1)j+1
1Z

�1

�
a
�
1� x2

�j
+ b

�
1� x2

�j�1�
f (j) (x) �g(j) (x) dx

9=; ;
Equivalently,

� =
A

2

2nX
j=1

1Z
�1

�
a
�
1� x2

�j
+ b

�
1� x2

�j�1�
f (j) (x) �g(j) (x) dx

+
A

2

2nX
j=1

(�1)j �g (x) v (x)
1

j
�1

=
A

2

2nX
j=1

1Z
�1

�
a
�
1� x2

�j
+ b

�
1� x2

�j�1�
f (j) (x) �g(j) (x) dx

� A

2

2nX
j=1

b2j�1 (j � 1)!f (j) (+1) �g (+1)

� A

2

2nX
j=1

b (�1)j 2j�1 (j � 1)!f (j) (�1) �g (�1) :

Now to calculate �; we �rst need to calculate

��
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
f (j) (x)

�(j)
: (�)
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So,

� :=
��
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
f (j) (x)

�(j)

=
�
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�(j)
f (j) (x)

+

�
j

1

��
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�(j�1)
f (j+1) (x)

+

�
j

2

��
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�(j�2)
f (j+2) (x)

+ � � �+
�
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
f (2j) (x) ;

Equivalently,

� =
�
aj (n; k)D

j
�
1� x2

�j
+ bj (n; k)D

j
�
1� x2

�j�1�
f (j) (x)

+

�
j

1

��
aj (n; k)D

j�1 �1� x2
�j
+ bj (n; k)D

j�1 �1� x2
�j�1�

f (j+1) (x)

+

�
j

2

��
aj (n; k)D

j�2 �1� x2
�j
+ bj (n; k)D

j�2 �1� x2
�j�1�

f (j+2) (x)

+ � � �+
�
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
f (2j) (x) :
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Since Dk (1� x2)
j j
x=�1

= 0 if k < j; we see that from (6.2.7),

� (�1) =
�
a (�1)j 2jj!Pj (�1) + b (�1)j�1 2j�1 (j � 1)!P 0j�1 (�1)

�
f (j) (�)

+ jb (�1)j�1 2j�1 (j � 1)!Pj�1 (�1) f (j+1) (�1) (6.2.8)

and since

Pn (1) = 1; Pn (�1) = (�1)n ; P 0n (1) =
n (n+ 1)

2
;

and

P 0n (�1) =
(�1)n+1 n (n+ 1)

2
;

so that

� =
1

2

2nX
j=1

�
aj (n; k) 2

jj!� bj (n; k) 2
j�1 (j � 1)!(j � 1) j

2

�
f (j) (1) �g (1)

� 1
2

2nX
j=1

jbj (n; k) 2
j�1 (j � 1)!f (j+1) (1) �g (1) :

Likewise, from (6.2.8), we have


 =
1

2

2nX
j=1

(�1)j
�
a2jj!� b2j�1 (j � 1)!(j � 1) j

2

�
f (j) (�1) �g (�1)

+
1

2

2nX
j=1

jb2j�1 (j � 1)!f (j+1) (�1) �g (�1) :
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Putting �, �, and 
 together, we see that (6.2.6) becomes

A

2

2nX
j=1

1Z
�1

�
a
�
1� x2

�j
+ b

�
1� x2

�j�1�
f (j) (x) �g(j) (x) dx

+
1

2

2nX
j=1

��
2ja � (j � 1) j

2
b

�
2j�1 (j � 1)!f (j) (1) �g (1)

� Ab2j�1 (j � 1)!f (j) (1) �g (1)� j2j�1 (j � 1)!bf (j+1) (1) �g (1)g (�)

+
1

2

2nX
j=1

(�1)j
��
2ja � (j � 1) j

2
b

�
2j�1 (j � 1)!f (j) (�1) �g (�1)

� Ab2j�1 (j � 1)!f (j) (�1) �g (�1) + j2j�1 (j � 1)!bf (j+1) (�1) �g (�1)g: (#)

We now show that the terms in � and # are both zero. Hence, (6.2.6) simplifes to

A

2

2nX
j=1

1Z
�1

�
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
f (j) (x) �g(j) (x) dx;

and therefore,

(`n [f ] (x) ; g (x))� =

A

2

2nX
j=1

1Z
�1

�
aj (n; k)

�
1� x2

�j
+ bj (n; k)

�
1� x2

�j�1�
f (j) (x) �g(j) (x) dx

+ kn (f (x) ; g (x))� = (f (x) ; g (x))n for all f; g 2 C2n [�1; 1] : �
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Claim: The terms in � and # are both zero.

Proof. Since b0 (n; k) = b2n (n; k) = 0, � and # become

2nX
j=1

(4ja � (j2 � j + 2A)b � bj�1 (n; k))2
j�3 (j � 1)!f (j) (1) �g (1) (�)

and

2nX
j=1

(4ja � (j2 � j + 2A)b � bj�1 (n; k)) (�1)j 2j�3 (j � 1)!f (j) (�1) �g (�1) : (#)

Now, we show that the term 4jaj (n; k) � (j2 � j + 2A)bj (n; k) � bj�1 (n; k) in (�)

and (#) is zero. For simplicity, we let �nk = (k
2+ k)n(k2+ k� 2+ 4A)n and k = 0 in

both aj (n; k) and bj (n; k) so that aj (n; k) = an;j, bj (n; k) = bn;j and by de�nition

of an;j and bn;j; we get

4jaj (n; k)� (j2 � j + 2A)bj (n; k)� bj�1 (n; k)

= 4jan;j � (j2 � j + 2A)bn;j � bn;j�1

=

jX
k=1

(�1)k+j4j(2k + 1)�nk
(j � k)!(j + k + 1)!

+

jX
k=1

(�1)k+j+1(j2 � j + 2A)(2k + 1) (2Aj + (j + 1) (j + k2 + k))�nk
(j + k + 1)!(j � k)! (2A+ (k � 1) k) (2A+ (k + 1) (k + 2))

+

j�1X
k=1

(�1)k+j4(2k + 1) (2Aj + (j + 1) (j + k2 + k))�nk
(j + k + 1)!(j � k)! (2A+ (k � 1) k) (2A+ (k + 1) (k + 2)) :
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When k = j, the above sum is

4j(2j + 1)(j2 + j)n(j2 + j � 2 + 4A)n
(2j + 1)!

� (2j + 1)(j
2 � j + 2A)(j2 + j)n(j2 + j � 2 + 4A)n (2Aj + (j + 1) (2j + j2))

(2j + 1)! (2A+ (j � 1) j) (2A+ (j + 1) (j + 2))

=
4j(2j + 1)(j2 + j)n(j2 + j � 2 + 4A)n

(2j + 1)!

� 4(2j + 1)(j
2 + j)n(j2 + j � 2 + 4A)n(j2 � j + 2A) (2Aj + (j + 1) (2j + j2))

(2j + 1)! (2A+ (j � 1) j) (2A+ (j + 1) (j + 2))

=
4(2j + 1)(j2 + j)n(j2 + j � 2 + 4A)n

(2j + 1)!
(j � j)

= 0:

Hence,

4jan;j � (j2 � j + 2A)bn;j � bn;j�1

=

j�1X
k=1

(�1)k+j4j(2k + 1)�nk
(j � k)!(j + k + 1)!

+

j�1X
k=1

(�1)k+j+1(2k + 1)(j2 � j + 2A) (2Aj + (j + 1) (j + k2 + k))�nk
(j + k + 1)!(j � k)! (2A+ (k � 1) k) (2A+ (k + 1) (k + 2))

+

j�1X
k=1

(�1)k+j4(2k + 1) (2Aj + (j + 1) (j + k2 + k))�nk
(j + k + 1)!(j � k)! (2A+ (k � 1) k) (2A+ (k + 1) (k + 2)) ;
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and this is same as,

j�1X
k=1

(�1)k+j4j(2k + 1)�nk
(j � k)!(j + k + 1)!

�
j

(j � k) (j + k + 1)

� (j2 � j + 2A) (2Aj + (j + 1) (j + k2 + k))

(j � k)(j + k + 1) (2A+ (k � 1) k) (2A+ (k + 1) (k + 2))

+
2A(j � 1) + j (j � 1 + k2 + k)

(2A+ (k � 1) k) (2A+ (k + 1) (k + 2))

�
:

But

j

(j � k) (j + k + 1)
� (j2 � j + 2A) (2Aj + (j + 1) (j + k2 + k))

(j � k)(j + k + 1) (2A+ (k � 1) k) (2A+ (k + 1) (k + 2))

2A(j � 1) + j (j � 1 + k2 + k)

(2A+ (k � 1) k) (2A+ (k + 1) (k + 2))

� 0:

This completes the proof of claim. �

6.3 The CHEL Inequality and a Simpli�cation of Vn

In 1970, W. N. Everitt and R. S. Chisholm [9] published a remarkable L2� in-

equality that has proven very useful in obtaining smoothness properties of functions

in the domains of certain self-adjoint di¤erential operators. In 1999, these authors

together with L. L. Littlejohn [10] generalized this result to the Banach spaces Lp

and Lq where p and q are conjugate indices. Speci�cally, these authors proved the

following theorem:

Theorem 6.3.1 (The CHEL inequality) Suppose (a; b) is an interval, bounded or

unbounded, of the real line R and w is a real-valued, Lebesgue measurable function

with w(x) � 0 for all x 2 (a; b): Suppose p and q are conjugate indices (1
p
+
1

q
= 1)
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satisfying p; q 2 (1;1). In addition, suppose ' and  are complex-valued functions

de�ned on (a; b) that satisfy the conditions

(i) ' 2 Lploc((a; b);w);  2 L
q
loc((a; b);w);

(ii) for some c 2 (a; b) (and hence all c 2 (a; b)); we have ' 2 Lp((a; c];w) and

 2 Lq([c; b);w);

(iii) for all [�; �] � (a; b);
R �
a
j'jpwdx > 0 and

R b
�
j jq wdx > 0:

De�ne the linear operators A and B on Lp((a; b);w) and Lq((a; b);w); respec-

tively, by

(Ag)(x) := '(x)

Z b

x

g(t) (t)w(t)dt (x 2 (a; b); g 2 Lp((a; b);w));

and

(Bg)(x) :=  (x)

Z x

a

g(t)'(t)w(t)dt (x 2 (a; b); g 2 Lp((a; b);w));

so that

A : Lp((a; b);w)! Lploc((a; b);w) and

B : Lq((a; b);w)! Lqloc((a; b);w):

De�ne K : (a; b)! (0;1) by

K(x) :=

�Z x

a

j'(t)jpw(t)dt
�1=p

�
�Z b

x

j (t)jq w(t)dt
�1=q

(x 2 (a; b));

and the number K 2 (0;1] by

K := supfK(x) j x 2 (a; b)g:

Then a necessary and su¢ cient condition that A; respectively B; is a bounded linear

operator on Lp((a; b);w); respectively on Lq((a; b);w); into Lp((a; b);w); respectively

into Lq((a; b);w); is that the number K is �nite; i.e.,

K 2 (0;1):
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This theorem has proved to be remarkably useful in several areas of mathemat-

ics, including the spectral theory of di¤erential operators for the past twenty years.

For example, in [10], the authors give a new proof of the classical Hardy inequalityZ +1

0

1

xq

����Z x

0

g(t) dt

����q � � q

q � 1

�q Z +1

0

jg(x)jq dx ( g 2 Lq(0;1))

using the CHEL inequality. In [23], the authors apply Theorem 6.3.1 to show that,

in the case of the Legendre di¤erential operator A in L2(�1; 1), generated by the

classical second-order Legendre di¤erential expression

`[y](x) = �
�
(1� x2)y0(x)

�0
(x 2 (�1; 1))

and having the Legendre polynomials fPng1n=0 as eigenfunctions, every function

f 2 D(A) has the property that f 0 2 L2(�1; 1) so, in particular, f 2 AC[�1; 1]:

This is a newly found property of this classical domain. A special case of this theorem

is the following theorem.

Theorem 6.3.2. Let ' (x) and  (x) be complex-valued Lebesgue measurable

functions with ' 2 L2[0; 1) and  2 L2loc[0; 1): Let the operators T; S : L2loc[0; 1) !

L2loc[0; 1) be de�ned by

T [f ] (x) := ' (x)

Z x

0

 (t) f (t) dt

and

S [f ] (x) := ' (x)

Z 1

x

' (t) f (t) dt ,

where f 2 L2[0; 1): A necessary and su¢ cient condition for both T and S to be

bounded operators on L2[0; 1) into L2[0; 1) is that there exists a positive number K

such that �Z x

0

j (t)j2 f (t) dt
��Z 1

x

j' (t)j2 dt
�

� K;

for x 2 [0; 1] :
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In this section, we apply Theorem 6.3.1 to have a simpler characterization

of the function space Vn: Recall that, for each n 2 N;

Vn = ff : [�1; 1]! C jf 2 AC[�1; 1]; f (j) 2 ACloc(�1; 1) (j = 1; 2; : : : ; 2n� 1);

(1� x2)(j�1)=2f (j) 2 L2(�1; 1) (j = 1; 2; : : : ; 2n� 1);

(1� x2)nf (2n) 2 L2(�1; 1)g:

We now prove

Theorem 6.3.3 For each n 2 N;

Vn = ff : [�1; 1]! C j f 2 AC[�1; 1]; f (j) 2 ACloc(�1; 1) (j = 1; 2; : : : ; 2n� 1);

(1� x2)nf (2n) 2 L2(�1; 1)g: (6.3.1)

Proof. To prove this theorem, it su¢ ces to show

(1� x2)nf (2n) 2 L2[0; 1)) (1� x2)(j�1)=2f (j) 2 L2[0; 1) (j = 1; 2; : : : ; 2n� 1);

a similar application of the CHEL inequality will establish these results for L2(�1; 0]:

Step 1: We �rst show that

(1� x2)nf (2n) 2 L2(0; 1)) (1� x2)n�1f (2n�1) 2 L2[0; 1):

Note that, since f (2n�1) 2 ACloc(�1; 1); we have

f (2n�1)(x) = f (2n�1)(0) +

Z x

0

f (2n)(t)dt

= f (2n�1)(0) +

Z x

0

1

(1� t2)n
(1� t2)2nf (2n)(t)dt;

so that

(1� x2)n�1f (2n�1) = f (2n�1)(0)(1� x2)n�1

+ (1� x2)n�1
Z x

0

1

(1� t2)n
(1� t2)nf (2n)(t)dt:
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Since f (2n�1)(0)(1� x2)n�1 2 L2[0; 1); it su¢ ces to show that

(1� x2)n�1
Z x

0

1

(1� t2)n
(1� t2)nf (2n)(t)dt 2 L2[0; 1);

we use the CHEL inequality with

g(t) = (1� t2)nf (2n)(t) 2 L2[0; 1); '(t) = 1

(1� t2)n
;

and

 (t) = (1� t2)n�1:

Since
1

(1 + x)2n
� 1 and (1 + x)2n�2 � 22n�2;

we see that

K2(x) =

�Z x

0

'2(t)dt

�
�
�Z 1

x

 2(t)dt

�

=

�Z x

0

1

(1� t2)2n
dt

�
�
�Z 1

x

(1� t2)2n�2dt

�

� 22n�2
�Z x

0

1

(1� t)2n
dt

�
�
�Z 1

x

(1� t)2n�2dt

�

= 22n�2
�

1

(2n� 1)(1� x)2n�1
� 1

2n� 1

�
�
�
(1� x)2n�1

2n� 1

�

=
22n�1

(2n� 1)2
�
1� (1� x)2n�1

�
� 1:

Consequently, from Theorem 6.3.1, we see that

(1� x2)n�1
Z x

0

1

(1� t2)n
(1� t2)nf (2n)(t)dt 2 L2[0; 1)

and hence that (1� x2)n�1f (2n�1) 2 L2(0; 1) as required.
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Step 2: We now assume that for k = 2n� 1; 2n� 2; : : : ; j

(1� x2)(k�1)=2f (k) 2 L2[0; 1)) (1� x2)(k�2)=2f (k�1) 2 L2[0; 1)

where j � 2: We now show that

(1� x2)(j�1)=2f (j) 2 L2[0; 1)) (1� x2)(j�2)=2f (j�1) 2 L2[0; 1):

The proof is similar, with some minor di¤erences, to the proof given in Step 1.

Since f (j�1) 2 ACloc(�1; 1); we see that

f (j�1)(x) = f (j�1)(0) +

Z x

0

f (j)(t)dt;

so

(1� x2)(j�2)=2f (j�1) = f (j�1)(0)(1� x2)(j�2)=2 + (1� x2)(j�2)=2
Z x

0

f (j)(t)dt

= f (j�1)(0)(1� x2)(j�2)=2

+ (1� x2)(j�2)=2
Z x

0

1

(1� t2)(j�1)=2
(1� t2)(j�1)=2f (j)(t)dt:

Similar to our argument in Step 1, it su¢ ces to prove that

(1� x2)(j�2)=2
Z x

0

1

(1� t2)(j�1)=2
(1� t2)(j�1)=2f (j)(t)dt 2 L2[0; 1):

Again, with

g(t) = (1� t2)(j�1)=2f (j)(t)dt 2 L2[0; 1); '(t) = 1

(1� t2)(j�1)=2
,

and

 (t) = (1� t2)(j�2)=2;
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we see that

K2(x) =

�Z x

0

'2(t)dt

�
�
�Z 1

x

 2(t)dt

�

=

�Z x

0

1

(1� t2)j�1
dt

�
�
�Z 1

x

(1� t2)j�2dt

�

� 2j�2
�Z x

0

1

(1� t)j�1
dt

�
�
�Z 1

x

(1� t)j�2dt

�

=

8><>:
2j�2

(2� j)(1� j)
[1� x� (1� x)j�1] if j = 2

(x� 1) ln(1� x) if j 6= 2:

It is evident that K2(x) is bounded on [0; 1] and this proves the theorem.

6.4 The Completeness of Hn = (Vn; (�; �)n)

Theorem 6.4.1. For each n 2 N; Hn = (Vn; (�; �)n) is a Hilbert space.

Proof. Let n 2 N; Suppose ffmg1m=1 is Cauchy sequence in Hn: Since each of the

numbers aj (n; k) and bj (n; k) is positive for each j = 1; 2; : : : ; 2n� 1, we see that

aj (n; k)
�
1� x2

�
+ bj (n; k)

is bounded away from 0 on (�1; 1) for each j = 1; 2; : : : ; 2n� 1: From the de�nition

of (�; �)n, it follows that ��
1� x2

�n
f (2n)m

	1
m=1

is Cauchy in L2 (�1; 1). Since L2 (�1; 1) is complete, it follows that��
1� x2

�n
f (2n)m

	1
m=1

converges to a function in L2 (�1; 1) which can be written in the form (1� x2)
n
f2n.

In other words,

lim
m!1

Z 1

�1

�
1� x2

�n ��f (2n)m (x)� f2n (x)
��2 dx = 0 (6.4.1)
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and �
1� x2

�n
f2n 2 L2 (�1; 1) : (6.4.2)

Let [a; b] be an arbitrary compact subinterval of (�1; 1). Since

��
1� x2

�n
f (2n)m

	1
m=1

also converges to �
1� x2

�n
f2n in L

2 [a; b]

and 1
(1�x2)n is bounded in [a; b], it follows that�

f (2n)m

	1
m=1

converges to f2n in L
2 [a; b]

(see [73], p.144). By Hölder�s inequality,

lim
m!1

Z b

a

f (2n)m (x) dx =

Z b

a

f2n (x) dx:

Returning to the de�nition of (�; �)n, we see thatn�
1� x2

� 2n�2
2 f (2n�1)m

o1
m=1

is also Cauchy in L2 (�1; 1); hence, there exists a function

�
1� x2

� 2n�2
2 g2n�1 2 L2 (�1; 1) (6.4.3)

such that

lim
m!1

Z 1

�1

�
1� x2

�2n�2 ��f (2n�1)m (x)� g2n�1 (x)
��2 dx = 0. (6.4.4)

Furthermore, we can �nd a subsequence

n�
1� x2

� 2n�2
2 f (2n�1)mk

o1
k=1

of
n�
1� x2

� 2n�2
2 f (2n�1)m

o1
m=1

such that for almost all x 2 (�1; 1),

lim
k!1

Z b

a

f (2n�1)mk
(x) dx = g2n�1 (x) (6.4.5)
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(see [73], p.85).

Choose c 2 (�1; 1) so that

�
f (2n�1)mk

(c)
	1
k=1

converges. De�ne a function f2n�1 by

f2n�1 (c) := lim
k!1

f (2n�1)mk
(c)

and for every x 2 (�1; 1), x 6= c;

f2n�1 (x) :=

Z x

c

f2n (t) dt+ f2n�1 (c)

= lim
k!1

Z x

c

f (2n)mk
(x) dx+ f2n�1 (c)

= lim
k!1

f (2n�1)mk
(x) . (6.4.6)

Notice, by de�nition, that

f2n�1 2 ACloc (�1; 1) . (6.4.7)

From (6.4.6), it follows that

f 02n�1 (x) = f2n (x)

for almost all x 2 (�1; 1). Therefore, from (6.4.1) and (6.4.2), we have

�
1� x2

�2n
f 02n�1 (x) 2 L2 (�1; 1) (6.4.8)

and

lim
m!1

Z 1

�1

�
1� x2

�2n ��f (2n)m (x)� f 02n�1 (x)
��2 dx = 0. (6.4.9)

Comparing (6.4.5) and (6.4.6), we see that

f2n�1 (x) = g2n�1 (x)
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almost everywhere in (�1; 1). Hence, from (6.4.3),

�
1� x2

� 2n�2
2 f2n�1 2 L2 (�1; 1) (6.4.10)

and from (6.4.4) with c2n�1 = a2n�1 (n; k) (1� x2) + b2n�1 (n; k),

lim
m!1

Z 1

�1
f
�
1� x2

�2n�2
c2n�1

��f (2n�1)m (x)� f2n�1 (x)
��2 dx = 0. (6.4.11)

Since n�
1� x2

� 2n�2
2 f (2n�1)m

o1
m=1

also converges to �
1� x2

� 2n�2
2 f2n�1 in L2 [a; b] ;

where [a; b] is any compact subinterval of (�1; 1) ; and

1

(1� x2)
2n�2
2

is bounded on [a; b] ; it follows that

�
f (2n�1)m

	1
m=1

converges to f2n�1 in L
2 [a; b] .

By Hölder�s inequality,

lim
m!1

Z b

a

f (2n�1)m (x) dx =

Z b

a

f2n�1 (x) dx: (6.4.12)

Returning to the de�nition of (�; �)n, we see thatn�
1� x2

� 2n�3
2 f (2n�2)m

o1
m=1

is also a Cauchy sequence in L2 (�1; 1); hence, there exists a function

�
1� x2

� 2n�3
2 g2n�2 2 L2 (�1; 1) (6.4.13)

such that

lim
m!1

Z 1

�1

�
1� x2

�2n�3 ��f (2n�2)m (x)� g2n�2 (x)
��2 dx = 0. (6.4.14)
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Furthermore, we can �nd a subsequencen�
1� x2

� 2n�3
2 f (2n�2)mk

o1
k=1

of
n�
1� x2

� 2n�3
2 f (2n�2)m

o1
m=1

such that for almost all x 2 (�1; 1),

lim
k!1

Z b

a

f (2n�2)mk
(x) dx = g2n�2 (x) (6.4.15)

(see [73], p.85).

Choose c 2 (�1; 1) so that

�
f (2n�2)mk

(c)
	1
k=1

converges. De�ne a function f2n�2 by

f2n�2 (c) := lim
k!1

f (2n�2)mk
(c)

and for every x 2 (�1; 1), x 6= c;

f2n�2 (x) :=

Z x

c

f2n�1 (t) dt+ f2n�2 (c)

= lim
k!1

Z x

c

f (2n�1)mk
(x) dx+ f2n�2 (c)

= lim
k!1

f (2n�2)mk
(x) . (6.4.16)

Notice, by de�nition, that

f2n�2 2 ACloc (�1; 1) . (6.4.17)

From (6.4.16), it follows that

f 02n�2 (x) = f2n�1 (x)

for almost all x 2 (�1; 1). Therefore, from (6.4.7) and (6.4.8), we have

f 02n�2 2 ACloc (�1; 1) ; (6.4.18)

159



and �
1� x2

�2n
f 002n�2 (x) 2 L2 (�1; 1) (6.4.19)

and from (6.4.9),

lim
m!1

Z 1

�1

�
1� x2

�2n ��f (2n)m (x)� f 002n�2 (x)
��2 dx = 0. (6.4.20)

From (6.4.10), �
1� x2

� 2n�2
2 f 02n�2 2 L2 (�1; 1) (6.4.21)

and from (6.4.11),

lim
m!1

Z 1

�1

�
1� x2

�2n�2
c2n�1

��f (2n�1)m (x)� f 02n�2 (x)
��2 dx = 0. (6.4.22)

Comparing (6.4.15) and (6.4.16), we see that

f2n�2 (x) = g2n�2 (x)

almost everywhere in (�1; 1). Hence, from (6.4.13),

�
1� x2

� 2n�3
2 f2n�2 2 L2 (�1; 1) (6.4.23)

and from (6.4.14) with c2n�2 = (a2n�2 (n; k) (1� x2) + b2n�2 (n; k)),

lim
m!1

Z 1

�1

�
1� x2

�2n�3
c2n�2

��f (2n�2)m (x)� f2n�2 (x)
��2 dx = 0. (6.4.24)

Repeating above argument for each j; j = 0; 1; : : : ; 2n� 3; we remark that

ffmg1m=1

is a Cauchy sequence in L2� [�1; 1]. Since L2� [�1; 1] is complete, there exists a func-

tion g0 2 L2� [�1; 1] so that

lim
m!1

fm (1) = g0 (1)

(6.4.25)

lim
m!1

fm (�1) = g0 (�1)
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and

lim
m!1

Z 1

�1
jfm (x)� g0 (x)j2 dx = 0. (6.4.26)

As before, we can �nd a subsequence

ffmk
g1k=1 of ffmg

1
m=1

such that for almost all x 2 (�1; 1)

lim
m!1

fmk
(x) = g0 (x) . (6.4.27)

De�ne a function f0 by

f0 (x) :=

Z x

�1
f1 (t) dt+ g0 (�1)

= lim
k!1

Z x

�1
f 1mk

(x) dx+ g0 (�1)

= lim
k!1

fmk
(x) (6.4.28)

for every x 2 [�1; 1]. By de�nition,

f0 2 AC [�1; 1] .

From (6.4.28),

f 00 (x) = f1 (x)

for almost all x 2 (�1; 1).

Comparing (6.4.25) and (6.4.27), we see that

f0 (1) = g0 (1) ;

f0 (�1) = g0 (�1) and

f0 (x) = g0 (x) for every x 2 (�1; 1) :
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Consequently, we obtain two sets of functions ffjg2nj=0 and fgjg
2n�1
j=0 such that

(i)

f
(j)
m ! fj in L2j�1 (�1; 1) (j = 1; : : : ; 2n� 1) ;

fj = f
(j�k)
k (k = 1; 2; : : : ; j) and (j = 0; 1; : : : ; 2n) ;

f
(2n)
m ! f2n in L22n (�1; 1) , fm ! g0 in L2� [�1; 1] and f0 2 L2 (�1; 1) ;

f
(j)
m ! gj in L2j�1 (�1; 1) (j = 1; 2; : : : ; 2n� 1) where

L2j�1 (�1; 1) = ff : (�1; 1)! C jf is Lebesgue measurable andR 1
�1 (1� x2)

j�1 jf (x)j2 dx <1g:

(ii)

fj = gj a.e. x 2 (�1; 1) (j = 0; 1; : : : ; 2n� 1) ;

f0 (1) = g0 (1) and f0 (�1) = g0 (�1) and

fj (c) = lim
k!1

f
(j)
mk (c) for c 2 (�1; 1) :

(iii)

fj�1 (x) :=

Z x

c

fj (t) dt+fj�1 (c) x 2 (�1; 1) ; x 6= c (j = 1; 2; : : : ; 2n) .

(iv)

fj 2 AC2n�j�1loc (�1; 1) (j = 0; 1; : : : ; 2n� 1) where

AC2n�j�1loc (�1; 1) =
�
f : (�1; 1)! C

��f ; f 0; : : : ; f (2n�j�1) 2 ACloc (�1; 1)	 ;
f0 2 ACloc [�1; 1] :

(v)

f 0j (x) = fj+1 (x) a.e. x 2 (�1; 1) (j = 0; 1; : : : ; 2n� 1) :

(vi)

f
(j)
0 = fj (j = 0; 1; : : : ; 2n) :
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In particular,

(i) f (j)m ! f
(j)
0 in L2j�1 (�1; 1) (j = 1; 2; : : : ; 2n� 1) ;

(ii) f (2n)m ! f
(2n)
0 in L22n (�1; 1) ;

(iii) fm ! f0 in L2� [�1; 1] ; and f0 2 Vn:

Hence, we see that

kfm � f0k2n ! 0 as m!1:

Thus, Hn is complete and, consequently, so is the proof of the theorem. �

6.5 The Density of Polynomials in Hn

In this section, we prove that the set of complex-valued polynomials P in the

real variable x is dense in each Hn: Of course, this will immediately imply that the

Legendre type polynomials fPm;Ag form a complete orthogonal set in Hn: These

facts will prove useful later in this chapter when we show that Hn is, in fact, the nth

left-de�nite space associated with the pair (T; L2�[�1; 1]):

The proofs given in this section mimic the arguments given by Everitt, Little-

john, and Williams in [26] in the case n = 1; indeed, in [26], the authors prove that

the set P is dense in H1: We begin with establishing the following basic lemma:
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Lemma 6.5.1. If f 2 Hn; there exists g 2 L2(�1; 1) such that

(i)
R 1
�1 g(t)dt = 0;

(ii) f (2n�1)(x) =

R x
�1 g(t)dt

(1� x2)n
= �

R 1
x
g(t)dt

(1� x2)n
(x 2 (�1; 1));

(iii) f (2n)(x) =
2nx

1� x2
f (2n�1)(x) +

g(x)

(1� x2)n
(a.e:x 2 (�1; 1));

(iv)

f(x) =P2n�1
j=0

f (j)(x0)(x� x0)
j

j!
+
R x
xo

R y2n�2
x0

R y2n�1
x0

� � �
Z y1

x0

R t
�1 g(u)du

(1�t2)n dtdy1 : : : dy2n�2

=P2n�1
j=0

f (j)(x0)(x� x0)
j

j!
�
R x
xo

R y2n�2
x0

R y2n�1
x0

� � �
Z y1

x0

R 1
t g(u)du

(1�t2)n dtdy1 : : : dy2n�2:

Proof. Since (1 � x2)n�1f (2n�1) and (1 � x2)nf (2n) both belong to L2(�1; 1) and

the function x! x is bounded, we see that

g(x) := (1� x2)nf (2n)(x)� 2nx(1� x2)n�1f (2n�1) 2 L2(�1; 1):

Moreover, since L2(�1; 1) � L1(�1; 1); we note thatZ 1

�1
(1� x2)n�1f (2n�1)(x)dx <1: (6.5.1)

Now

(1� x2)nf (2n)(x)� 2nx(1� x2)n�1f (2n�1)(x) =
�
(1� x2)nf (2n�1)(x)

�0
(6.5.2)

(a.e. x 2 (�1; 1)); so

g(x) =
�
(1� x2)nf (2n�1)(x)

�0 2 L2(�1; 1): (6.5.3)

Since f (2n�1) 2 ACloc(�1; 1); we see that for any x0 2 (�1; 1);

(1� x2)nf (2n�1)(x) = A+

Z x

x0

g(t)dt (x 2 (�1; 1)); (6.5.4)

for some A = A(x0) 2 C. From (6.5.4) and the fact that g 2 L2(�1; 1); we see that

the limits

lim
x!�1

(1� x2)nf (2n�1)(x)
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exist and are �nite. We claim that each of these limits is zero. It su¢ ces to show

that

lim
x!1
(1� x2)nf (2n�1)(x) = 0:

By way of contradiction, suppose without loss of generality that

lim
x!1
(1� x2)nf (2n�1)(x) = c > 0;

where we assume that f is real-valued. Then, for x su¢ ciently close to 1�; say all

x 2 (x�; 1); we have

(1� x2)nf (2n�1)(x) � c

2
;

so that

(1� x2)n�1f (2n�1)(x) � c

2(1� x2)
(x 2 (x�; 1)):

However, this implies thatZ 1

�1
(1� x2)n�1f (2n�1)(x)dx �

Z 1

x�
(1� x2)n�1f (2n�1)(x)dx � c

2

Z 1

x�

dx

1� x2
=1;

contradicting (6.5.1): Hence

lim
x!�1

(1� x2)nf (2n�1)(x) = 0: (6.5.5)

Returning to (6.5.4); we now see that

A = �
Z 1

x0

g(t)dt =

Z x0

�1
g(t)dt: (6.5.6)

Consequently,

0 = A� A =

Z x0

�1
g(t)dt+

Z 1

x0

g(t)dt =

Z 1

�1
g(t)dt;

proving part (i) of the Lemma. Moreover, we see from (6.5.6) and (6.5.4) that

(1� x2)nf (2n�1)(x) =

Z x0

�1
g(t)dt+

Z x

x0

g(t)dt =

Z x

�1
g(t)dt

and, hence,

f (2n�1)(x) =
1

(1� x2)n

Z x

�1
g(t)dt (x 2 (�1; 1)): (6.5.7)
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Similarly, from (6.5.6); we see that

(1� x2)nf (2n�1)(x) =

Z x0

1

g(t)dt+

Z x

x0

g(t)dt = �
Z 1

x

g(t)dt

so that

f (2n�1)(x) =
�1

(1� x2)n

Z 1

x

g(t)dt (x 2 (�1; 1)): (6.5.8)

The identities in (6.5.7) and (6.5.8) establish (ii) in the Lemma. Furthermore, from

(6.5.2) and (6.5.3); we see that

f (2n)(x) =
2nx(1� x2)n�1f (2n�1)(x) + g(x)

(1� x2)n
(a.e. x 2 (�1; 1));

establishing (iii). From (ii), we see that

f (2n�2)(x) = f (2n�2)(x0) +

Z x

x0

R t
�1 g(u)du

(1� t2)n
dt

= f (2n�2)(x0)�
Z x

x0

R 1
t
g(u)du

(1� t2)n
dt:

Repeated integration of this identity establishes (iv) and completes the proof of the

Lemma 6.5.1. �

De�nition 6.5.1. For an f 2 Hn and a g 2 L2(�1; 1), we write f � g if each of

the following conditions are satis�ed:

(i)
R 1
�1 g(t)dt = 0;

(ii) f (2n�1)(x) =

R x
�1 g(t)dt

(1� x2)n
= �

R 1
x
g(t)dt

(1� x2)n
(x 2 (�1; 1));

(iii) f (2n)(x) =
2nx

1� x2
f (2n�1)(x) +

g(x)

(1� x2)n
(a.e: x 2 (�1; 1));

(iv)

f(x) =P2n�1
j=0 f (j)(x0)

(x� x0)
j

j!
+
R x
xo

R y2n�2
x0

R y2n�1
x0

� � �
Z y1

x0

R t
�1 g(u)du

(1�t2)n dtdy1 : : : dy2n�2

=P2n�1
j=0 f (j)(x0)

(x� x0)
j

j!
�
R x
xo

R y2n�2
x0

R y2n�1
x0

� � �
Z y1

x0

R 1
t g(u)du

(1�t2)n dtdy1 : : : dy2n�2:
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By Lemma 6.5.1., for each f 2 Hn there exists g 2 L2(�1; 1) such that f � g:

We now prove an important partial converse of Lemma 6.5.1.:

Lemma 6.5.2. Suppose g 2 L2(�1; 1) is such that

(i)
R 1
�1 g(t)dt = 0 and

(ii) supp g = [�1 + "; 1 � "] for some " > 0: Then, for any x0 2 (�1; 1); and

any polynomial p2n�2(x) of degree � 2n � 2; the following formula de�nes

an f 2 Hn :

f(x) = p2n�2(x) +

Z x

xo

Z y2n�2

x0

Z y2n�1

x0

� � �
Z y1

x0

R t
�1 g(u)du

(1� t2)n
dtdy1 : : : dy2n�2

(6.5.9)

= p2n�2(x)�
Z x

xo

Z y2n�2

x0

Z y2n�1

x0

� � �
Z y1

x0

R 1
t
g(u)du

(1� t2)n
dtdy1 : : : dy2n�2;

(6.5.10)

with the understanding that, when n = 1;

f(x) = A+

Z x

x0

R t
�1 g(u)du

(1� t2)
dt = A�

Z x

x0

R 1
t
g(u)du

(1� t2)
dt

where A 2 C is arbitrary.

Proof. Since
R 1
�1 g(t)dt = 0; we see thatZ t

�1
g(u)du = �

Z 1

t

g(u)du

for all t 2 (�1; 1): De�ne

h(t) :=

R t
�1 g(u)du

(1� t2)n
= �

R 1
t
g(u)du

(1� t2)n
(t 2 (�1; 1)): (6.5.11)

Clearly h is continuous on (�1; 1); furthermore, since g(s) = 0 for jsj � 1�";

we see that h(s) = 0 for jsj � 1 � " so, in fact, h 2 C[�1; 1] and hence
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h 2 L2(�1; 1): Thus, the function f(x); de�ned in (6.5.9) and (6.5.10); is

well-de�ned; in fact

f 2 AC[�1; 1]: (6.5.12)

Moreover, it is clear from (6.5.9) and (6.5.10) that

f (j) 2 AC[�1; 1] (j = 0; 1; : : : ; 2n� 2); (6.5.13)

indeed, for j = 1; 2; : : : ; 2n� 2;

f j(x)

= p
(j)
2n�2(x) +

Z x

x0

Z y2n�j�2

x0

Z y2n�j�3

x0

: : :

Z y1

x0

R t
�1 g(u)du

(1� t2)n
dtdy1 : : : dy2n�j�2

= p
(j)
2n�2(x)�

Z x

x0

Z y2n�j�2

x0

Z y2n�j�3

x0

: : :

Z y1

x0

R 1
t
g(u)du

(1� t2)n
dtdy1 : : : dy2n�j�2:

Furthermore, from

f (2n�2)(x) = p
(2n�2)
2n�2 (x) +

Z x

x0

R t
�1 g(u)du

(1� t2)n
dt = p

(2n�2)
2n�2 (x)�

Z x

x0

R 1
t
g(u)du

(1� t2)n
dt;

we see that

f (2n�1)(x) =

R x
�1 g(u)du

(1� x2)n
= �

R 1
x
g(u)du

(1� x2)n
2 ACloc(�1; 1): (6.5.14)

Di¤erentiating (6.5.14); we see that

f (2n)(x) =
(1� x2)ng(x) + 2nx(1� x2)n�1

R x
�1 g(u)du

(1� x2)2n

=
g(x)

(1� x2)n
+
2nxh(x)

1� x2

so that

(1� x2)nf (2n)(x) = g(x) + 2nx(1� x2)n�1h(x) 2 L2(�1; 1): (6.5.15)

From the CHEL inequality and (6.5.15); it now follows that

(1� x2)(j�1)=2f (j) 2 L2(�1; 1) (j = 1; 2; : : : ; 2n� 1): (6.5.16)

Hence, from (6.5.12) - (6.5.16); we see that f 2 Hn as required. This com-

pletes the proof of this Lemma. �
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The following result will prove useful near the end of this section.

Lemma 6.5.3. In addition to the hypotheses in Lemma 6.5.2., suppose g 2

C(�1; 1): Then f; given in (6.5.9) or (6.5.10); belongs to C2n[�1; 1] for any choice

of polynomial p2n�2:

Proof. From (6.5.15); we see that

f (2n)(x) =
g(x)

(1� x2)n
+
2nxh(x)

1� x2
2 C(�1; 1):

However, g(x) = h(x) = 0 for jxj � 1 � " so f (2n) 2 C[�1; 1]: This implies that

f 2 C2n[�1; 1]:�

Recall that the nth left-de�nite inner product (�; �)n is de�ned by

(f; g)n :=
A

2

2nX
j=1

Z 1

�1

�
aj (n; k) (1� x2)j + bj (n; k) (1� x2)j�1

�
f (j)(x)g(j)(x)dx

(6.5.17)

+ kn(f; g)�:

Let

(f; g)n;�1 :=
kn

2
(f(1)g(1) + f(�1)g(�1))

(f; g)n;0 := kn
Z 1

�1
f(t)g(t)dt

(f; g)n;j :=
A

2

Z 1

�1

�
aj (n; k) (1� x2)j + bj (n; k) (1� x2)j�1

�
f (j)(x)g(j)(x)dx

where j = 1; 2; : : : ; 2n; so that

(f; g)n =
2nX
j=�1

(f; g)n;j:

Furthermore, let

kfkn;j := (f; f)
1=2
n;j (j = �1; 0; 1; : : : ; 2n)

and let kfk denote the usual L2 norm of f 2 L2(�1; 1): In our next result,

we estimate

kfkn;j (j = �1; 0; 1; : : : ; 2n)
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for a certain class of functions f 2 Hn: Speci�cally, we prove

Lemma 6.5.4. Suppose f 2 Hn and suppose that there exists x0 2 (�1; 1) such

that

f(x0) = f 0(x0) = : : : = f (2n�2)(x0) = 0:

Choose g 2 L2(�1; 1) such that f � g (using Lemma 6.5.1.). Then there exists

Cn > 0, independent of f and g, such that

kfkn � Cnmax
�

f (2n�1)

 ; kgk	 : (6.5.18)

Moreover, if g is supported on [�1+"; 1�"] for some " > 0; then there exists C" > 0

such that

kfkn � C" kgk : (6.5.19)

Proof. We begin by making a few estimates. First, since f(x0) = 0 we have for any

x 2 (�1; 1)

jf(x)j2 =
����Z x

x0

f 0(t)dt

����2 � �Z x

x0

jf 0(t)j dt
�2

�
�Z 1

�1
jf 0(t)j dt

�2
� 2

�Z 1

�1
jf 0(t)j2 dt

�
= 2 kf 0k2 ; (6.5.20)

where the last inequality follows from Hölder�s inequality. In particular,

jf(�1)j2 � 2 kf 0k2 : (6.5.21)

Integrating both sides of (6.5.20); we obtain

kfk2 =
Z 1

�1
jf(x)j2 dx � 4 kf 0k2

so that

kfk � 2 kf 0k : (6.5.22)
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Since f 0(x0) = 0; we see that for any x 2 (�1; 1) that

jf 0(x)j2 =
����Z x

x0

f 00(t)dt

����2 � �Z x

x0

jf 00(t)j dt
�2

�
�Z 1

�1
jf 00(t)j dt

�2
� 2

�Z 1

�1
jf 00(t)j2 dt

�
= 2 kf 00k2 ;

from which it follows that

kf 0k � 2 kf 00k :

More generally, since f (j)(x0) = 0 (j = 0; 1; : : : ; 2n� 2); we see that



f (j)

 � 2

f (j+1)

 (j = 0; 1; : : : ; 2n� 2); (6.5.23)

and, after iterating, we �nd that



f (j)

 � 22n�1�j 

f (2n�1)

 (j = 0; 1; : : : ; 2n� 2): (6.5.24)

In particular, from (6.5.21); we see that

jf(�1)j2 � 22n�1


f (2n�1)

2

and hence that

kfkn;�1 � 2(2n�1)=2kn=2


f (2n�1)

 : (6.5.25)

Furthermore, from (6.5.24); we see that

kfkn;0 = kn=2 kfk � 22n�1kn=2


f (2n�1)

 : (6.5.26)

For 1 � j � 2n� 1; we see from (6.5.24) that

kfkn;j =
r
A

2

�Z 1

�1

�
aj (n; k) (1� x2)j + bj (n; k) (1� x2)j�1

� ��f (j)(x)��2 dx�1=2
(6.5.27)

�Mj



f (j)

 � 22n�1�jMj



f (2n�1)

 ;
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where

Mj :=

r
A

2
max
x2[�1;1]

(aj (n; k) (1� x2)j + bj (n; k) (1� x2)j�1):

Moreover,

kfkn;2n =
r
A

2

�Z 1

�1
[(1� x2)n

��f (2n)(x)��]2dx�1=2
=

r
A

2

�Z 1

�1

��2nx(1� x2)n�1f (2n�1)(x) + g(x)
��2 dx�1=2

=

r
A

2



2nx(1� x2)n�1f (2n�1) + g




�
r
A

2

�

2nx(1� x2)n�1f (2n�1)


+ kgk� ;

and hence

kfkn;2n �M2nmaxf


f (2n�1)

 ; kgkg: (6.5.28)

Combining (6.5.25) - (6.5.28); we obtain statement (6.5.18) in the Lemma. If, in

addition, we have supp g � [�1+ "; 1� "]; then by part (ii) of Lemma 6.5.1., we see

that

��f (2n�1)(x)�� = �����
R x
�1 g(t)dt

(1� x2)n

����� �M";n

Z 1

�1
jg(t)j dt

�M";n

�Z 1

�1
jg(t)j2 dt

�1=2�Z 1

�1
12dt

�1=2
=
p
2M";n kgk ;

where

M";n := max
x2[�1+";1�"]

1

(1� x2)n
;

consequently 

f (2n�1)

 � p2M";n kgk : (6.5.29)

Substituting (6.5.29) into (6.5.28); we obtain (6.5.19) and this completes the proof

of the Lemma 6.5.4. �
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We prove one more fundamental lemma before the main results of this section.

Lemma 6.5.5. Let f 2 Hn: Choose g 2 L2(�1; 1) such that f � g: Then there

exists sequences ffmg � Hn; fgmg � L2(�1; 1) such that

(i) fm ! f in Hn and gm ! g in L2 (�1; 1) ;

(ii) fm � gm;

(iii) gm has support in (�1; 1):

Proof. We �rst note that

lim inf
x!1�

���R 1x g(t)dt���
(1� x2)1=2

= 0: (6.5.30)

For if

lim inf
x!1�

���R 1x g(t)dt���
(1� x2)1=2

= 
 > 0;

then, by de�nition of f � g; it follows that

(1� x2)2n�2
��f (2n�1)(x)��2 =

���R 1x g(t)dt���2
(1� x2)2

� 
2

4(1� x)
(x 2 (x�; 1));

where x� is su¢ ciently close to 1: However, integrating this last inequality over (x�; 1)

implies that (1 � x2)n�1f (2n�1) =2 L2(�1; 1); contradicting the fact that f 2 Hn:

Similarly, we see that

lim inf
x!�1+

���R x�1 g(t)dt���
(1� x2)1=2

= 0:

Hence, it follows that there exists in�nite sequences famg; fbmg such that

a1 < a2 < : : : < am < : : : ; b1 > b2 > : : : bm > : : :

with am ! 1 and bm ! �1 satisfying���R bm�1 g(t)dt���
(1� b2m)

1=2
! 0 (m!1);
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and ���R 1am g(t)dt���
(1� a2m)

1=2
! 0 (m!1):

De�ne

�m :=

����Z 1

am

g(t)dt

���� ; �m := sgn

Z 1

am

g(t)dt

�m :=

����Z bm

�1
g(t)dt

���� ; �m := sgn

Z bm

�1
g(t)dt

so that �m�m =
R 1
am
g(t)dt and �m�m =

R bm
�1 g(t)dt:

Since
R 1
am
g(t)dt! 0 and

R bm
�1 g(t)dt! 0 as m!1; we may assume that

�m � am and �m � bm for all m 2 N: (6.5.31)

De�ne, for each m 2 N;

gm := g�[bm;am] + �m�[0;�m] + �m�[�m;0];

here �S denotes the characteristic function of the set S. It is clear that the support

of gm is contained in [bm; am]: Furthermore,Z 1

�1
gm(t)dt =

Z am

bm

g(t)dt+ �m�m � �m�m

=

Z 1

am

g(t)dt+

Z bm

�1
g(t)dt+

Z am

bm

g(t)dt

=

Z 1

�1
g(t)dt = 0:

Consequently, by Lemma 6.5.2., there exists fm 2 Hn such that fm � gm: Choose

x0 = 0 and choose

p2n�2(x) =
2n�2X
j=0

f (j)(0)xj

j!

in Lemma 6.5.2. so that

fm(x) =

2n�2X
j=0

f (j)(0)xj

j!
+

Z x

0

Z y2n�2

0

Z y2n�3

0

� � �
Z y1

0

R t
�1 g(u)du

(1� t2)n
dtdy1 : : : dy2n�2

=
2n�2X
j=0

f (j)(0)xj

j!
�
Z x

0

Z y2n�2

0

Z y2n�3

0

� � �
Z y1

0

R 1
t
g(u)du

(1� t2)n
dtdy1 : : : dy2n�2:
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With this choice, we see that f (j)m (0) = f (j)(0) (j = 0; 1; : : : ; 2n � 2) so, by Lemma

6.5.4., there exists Cn > 0 such that

kf � fmkn � Cnmax
�

f (2n�1) � f (2n�1)m



 ; kg � gmk
	
:

Now

kg � gmk =


g � g�[bm;am] � �m�[0;�m] � �m�[�m;0]




�


g � g�[bm;am]



+ 

�m�[0;�m]

+ 

�m�[�m;0]


=


g � g�[bm;am]



+ �m + �m

=


g�[�1;bm) + g�(am;1]



+ �m + �m

! 0 as m!1 since bm ! �1; am ! 1; �m ! 0 and �m ! 0:

We now show that



f (2n�1) � f

(2n�1)
m




! 0 as m!1: Since

lim sup
m!1



f (2n�1) � f (2n�1)m



2 �
lim sup

m!1

Z bm

�1

��f (2n�1)(t)� f (2n�1)m (t)
��2 dt+ lim sup

m!1

Z 0

bm

��f (2n�1)(t)� f (2n�1)m (t)
��2 dt

+ lim sup
m!1

Z am

0

��f (2n�1)(t)� f (2n�1)m (t)
��2 dt

+ lim sup
m!1

Z 1

am

��f (2n�1)(t)� f (2n�1)m (t)
��2 dt; (6.5.32)

it su¢ ces to show that each of the four terms on the right-hand side of (6.5.32) tend

to zero as m!1: By Lemma 6.5.2.,

lim sup
m!1

Z bm

�1

��f (2n�1)(t)� f (2n�1)m (t)
��2 dt

= lim sup
m!1

Z bm

�1

�����f (2n�1)(t)�
R t
�1 gm(u)du

(1� t2)n

�����
2

dt

= lim sup
m!1

Z bm

�1

��f (2n�1)(t)��2 dt since gm(t) = 0 for t 2 (�1; bm)
= 0 since bm ! �1:
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Similarly, we see that

lim sup
m!1

Z 1

am

��f (2n�1)(t)� f (2n�1)m (t)
��2 dt = 0:

Now

lim sup
m!1

Z 0

bm

��f (2n�1)(t)� f (2n�1)m (t)
��2 dt

= lim sup
m!1

Z 0

bm

�����
R t
�1 g(u)du

(1� t2)n
�
R t
�1 gm(u)du

(1� t2)n

�����
2

dt

= lim sup
m!1

Z 0

bm

�����
R t
�1(g(u)� gm(u))du

(1� t2)n

�����
2

dt

= lim sup
m!1

Z 0

bm

�����
R t
�1(g(u)�[�1;bm) + g(u)�(am;1] � �m�[0;�m] � �m�[�m;0])

(1� t2)n

�����
2

dt

= lim sup
m!1

Z 0

bm

�����
R t
�1(g(u)�[�1;bm) � �m�[�m;0])

(1� t2)n

�����
2

dt

�
since �(am;1](t) = �[0;�m](t) = 0 for t 2 [bm; 0]

�
lim sup

m!1

Z 0

bm

��f (2n�1)(t)� f (2n�1)m (t)
��2 dt

= lim sup
m!1

Z 0

bm

�����
R bm
�1 g(u)du� �m

R t
�1 �[�m;0](u)du

(1� t2)n

�����
2

dt:

Since j�mj � 1 and
R t
�1 �[�m;0](u)du � ��m for t < 0; we see that����Z bm

�1
g(u)du� �m

Z t

�1
�[�m;0](u)du

����2
�
�����Z bm

�1
g(u)du

����+ �m

�2
= 4

����Z bm

�1
g(u)du

����2 by de�nition of �m:
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Hence,

lim sup
m!1

Z 0

bm

��f (2n�1)(t)� f (2n�1)m (t)
��2 dt

� 4 lim sup
m!1

����Z bm

�1
g(u)du

����2 � Z 0

bm

dt

(1� t2)2n

� 4 lim sup
m!1

����Z bm

�1
g(u)du

����2 � Z 0

bm

dt

(1 + t)2n

� 4 lim sup
m!1

����Z bm

�1
g(u)du

����2 � Z 0

bm

dt

(1 + t)2
since (1 + t)2n � (1 + t)2 for � 1 < t � 0

� 4 lim sup
m!1

����Z bm

�1
g(u)du

����2 � ��1 + 1

1 + bm

�

� 4 lim sup
m!1

���R bm�1 g(u)du���2
1 + bm

� 8 lim sup
m!1

���R bm�1 g(u)du���2
1� b2m

since
2

1� bm
� 1

= 0 by (6.5.30):

Similarly,

lim sup
m!1

Z 1

am

��f (2n�1)(t)� f (2n�1)m (t)
��2 dt = 0

and this completes the proof of the Lemma 6.5.5. �

We now arrive at one of the main results of this section.

Theorem 6.5.1. For each n 2 N; the space C2n[�1; 1] of all 2n-times continuously

di¤erentiable complex-valued functions on [�1; 1] is dense in Hn:

Proof. Let f 2 Hn: Choose g 2 L2(�1; 1) such that f � g: By Lemma 6.5.5., there

exist sequences ffmg � Hn; fegmg � L2(�1; 1) such that

(i) fm ! f in Hn and egm ! g in L2(�1; 1);

(ii) fm � egm;
(iii) supp egm � (�1; 1):

Without loss of generality, we assume supp g = [�1 + "; 1� "] for some 0 < " < 1:

Since C[�1; 1] is dense in L2(�1; 1); there exists a sequence fgmg � L2(�1; 1) such
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that

kgm � gk ! 0 as m!1:

Choose f�mg such that �1 > �2 > : : : > �m > : : : ; �m ! 0; and " + �m � 1 for all

m 2 N: De�ne

Km(x) =

8>>>>>>><>>>>>>>:

0 if jxj � 1� "

1 if jxj � 1� "� �m

x+1�"
�m

if � 1 + " < x � �1 + "+ �m

1�"�x
�m

if 1� "� �m � x � 1� ":

Then,

kg �Kmgk2

=

Z �1+"

�1
jg(x)�Km(x)g(x)j2 dx+

Z �1+"+�m

�1+"
jg(x)�Km(x)g(x)j2 dx

+

Z 1�"��m

�1+"+�m
jg(x)�Km(x)g(x)j2 dx+

Z 1�"

1�"��m
jg(x)�Km(x)g(x)j2 dx

+

Z 1

1�"
jg(x)�Km(x)g(x)j2 dx

=

Z �1+"+�m

�1+"
jg(x)�Km(x)g(x)j2 dx+

Z 1�"

1�"��m
jg(x)�Km(x)g(x)j2 dx;

where we use the facts that g(x) = 0 for jxj � 1� " and g(x)�Km(x)g(x) = 0 for

jxj � 1� "� �m: Moreover, since 0 � Km(x) � 1; we see thatZ �1+"+�m

�1+"
jg(x)�Km(x)g(x)j2 dx �

Z �1+"+�m

�1+"
jg(x)j2 dx! 0

as m!1 since �m ! 0; similarly,Z 1�"

1�"��m
jg(x)�Km(x)g(x)j2 dx �

Z 1�"

1�"��m
jg(x)j2 dx! 0 as m!1:

Hence we see that

kg �Kmgk2 ! 0 as m!1: (6.5.33)

Moreover, since

kKm(g � gm)k2 � kg � gmk2 ! 0 as m!1;
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we see that

kg �Kmgmk � kg �Kmgk+ kKmg �Kmgmk

! 0 as m!1:

Consequently, it follows that Kmgm ! g in L1(�1; 1) as m!1 andZ 1

�1
Km(x)gm(x)dx!

Z 1

�1
g(x)dx = 0 (m!1): (6.5.34)

Let

"m := min

�
";

����Z 1

�1
Km(x)gm(x)dx

����+ 1

m

�
;

clearly "m ! 0 as m!1: For each m 2 N; de�ne

bgm(x) = Km(x)gm(x)�
�Z 1

�1
Km(x)gm(x)dx

�
hm(x);

where

hm(x) =

8>>>><>>>>:
0 if jxj � "m

x+"m
"2m

if � "m � x � 0
"m�x
"2m

if 0 � x � "m:

It is straightforward to check that

khmk =
r
2"m
3

(m 2 N); (6.5.35)

and since Z 1

�1
hm(x)dx = 1;

we see that Z 1

�1
bgm(x)dx = 1 (m 2 N):

Furthermore, from (6.5.33); (6.5.34); and (6.5.35); we see that

kbgm � gk � kbgm �Kmgmk+ kKmgm � gk

�
����Z 1

�1
Km(x)gm(x)dx

���� khmk+ kKmgm � gk (6.5.36)

! 0 as m!1:
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Since bgm is continuous and supp bgm � [�1 + "; 1 � "] for su¢ ciently large m; we

see from Lemmas 6.5.2. and 6.5.3. that there exists fm 2 C2n[�1; 1] such that, for

su¢ ciently large m; we have

bgm � fm:

In fact, from Lemmas 6.5.2. and 6.5.3., we can choose

fm(x)

=
2n�2X
j=0

f (j)(0)xj

j!
+

Z x

0

Z y2n�2

0

Z y2n�3

0

� � �
Z y1

0

R t
�1 bgm(u)du
(1� t2)n

dtdy1 : : : dy2n�2

=
2n�2X
j=0

f (j)(0)xj

j!
�
Z x

0

Z y2n�2

0

Z y2n�3

0

� � �
Z y1

0

R 1
t
bgm(u)du
(1� t2)n

dtdy1 : : : dy2n�2:

Since f (j)m (0) = f (j)(0) for j = 0; 1; : : : ; 2n� 2; we see from Lemma 6.5.4. that there

exists C" > 0 such that

kfm � fkn � C" kbgm � gk

! 0 as m!1 by (6.5.36):

This completes the proof of the theorem. �

In [25], Everitt, Littlejohn, and William showed that in certain Sobolev spaces,

polynomials are dense. More speci�cally, if [a; b] is a compact interval of the real

line R; suppose �j is a positive, �nite measure on the Borel subsets of [a; b] for each

j = 0; 1; : : : ; N; where N 2 N: De�ne, for f; g 2 CN [a; b]; the inner product

(f; g)N :=

NX
j=0

Z b

a

f (j)(x)g(j)(x)d�j: (6.5.37)

Observe that (�; �)N induces the norm

kfkN :=
 

NX
j=0

Z b

a

��f (j)(x)��2 d�j!1=2 (f 2 CN [a; b]):

De�ne the space HN [a; b] to be the completion of CN [a; b] in the topology generated

by the norm kfkN : In [25], the authors prove the following theorem:
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Theorem 6.5.2. The space P of all complex-valued polynomials in the real variable

x are dense in HN [a; b]:

In our situation, the left-de�nite Legendre type inner product (�; �)n is a special

case of the inner product in (6.5.37): And since Theorem 6.5.1. shows that the space

Hn is the completion of C2n[a; b]; we can apply Theorem 6.5.2. and conclude:

Theorem 6.5.3. For each n 2 N; the set of polynomials P forms a dense subset

of Hn: Equivalently, the Legendre type polynomials fPm;Ag1m=0 form a complete

orthogonal set in each Hn:

This theorem will be important in establishing that Hn is the nth left-de�nite

space associated with the pair (T; L2�[�1; 1]) which we prove in the next section.

6.6 Hn is the nth Left-De�nite Space

Recall the self-adjoint operator T in L2�[�1; 1] discussed in Chapter 2 de�ned

by

T [f ] (x) =

8>>>><>>>>:
�8Af 0 (�1) + kf (�1)

` [f ] (x)

8Af 0 (1) + kf (1)

if x = �1

if �1 < x < 1

if x = 1;

f 2 D (T ) = ff : (�1; 1)! C j f (j) 2 ACloc(�1; 1) (j = 0; 1; ; : : : ; 2n� 1);

f; ` [f ] 2 L2(�1; 1)g;

where ` [�] is the Legendre type di¤erential expression, de�ned in (5.1.1).

We are now in position to prove the main result of this thesis.

Theorem 6.6.1. For each n 2 N; let Vn be given as in (6.2.1) or (6.2.2) and let (�; �)n
denote the inner product de�ned in (6.2.3). Then, Hn = (Vn; (�; �)n) is the nth left-

de�nite space for the pair (T; L2�[�1; 1]) . Moreover, the Legendre type polynomials

fPm;Ag1m=0 form a complete orthogonal set inHn satisfying the orthogonality relation
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(1.5.2). Furthermore, de�ne Tn : D (Tn) � Hn ! Hn by

Tn [f ] = ` [f ] ;

f 2 D (Tn) := Vn+2;

where ` [�] is the Legendre type di¤erential expression de�ned in (5.1.1). Then Tn

is the nth left-de�nite operator associated with the pair (T; L2�[�1; 1]) . Also, the

Legendre type polynomials fPm;Ag1m=0 are eigenfunctions of Tn and the spectrum of

Tn is given by

� (Tn) =
�
m (m+ 1)

�
m2 +m+ 4A� 2

�
+ k jm 2 N0

	
:

Proof. To show that Hn = (Vn; (�; �)n) is the nth left-de�nite space associated with

the pair (T; L2�[�1; 1]), we must show that the �ve conditions in De�nition 3.2.2 are

satis�ed.

(i) Hn = (Vn; (�; �)n) is a Hilbert space:

The proof of (i) is given in Theorems 6.3.3. and 6.4.1.

(ii) D (T n) � Vn � L2�[�1; 1]:

Let f 2 D (T n) : Since the Legendre type polynomials fPm;Ag1m=0 form a complete

orthonormal set in L2�[�1; 1], we see that

pj =

jX
m=0

cm (A)Pm;A ! f in L2�[�1; 1] as (j !1) ; (6.6.1)

where fcm (A)g1m=0 are the Fourier coe¢ cients of f in L2�[�1; 1] de�ned by

cm (A) = (f; Pm;A)� =

Z 1

�1
fPm;Ad� (m 2 N0) :

Since T nf 2 L2�[�1; 1], we see that

jX
m=0

~cm (A)Pm;A ! T nf in L2�[�1; 1] as (j !1) ;
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where

~cm (A) = (T
nf ; Pm;A)�

= (f ; T nPm;A)�

= knm (f ; Pm;A)�

= knmcm (A)

= ((m2 +m)(m2 +m+ 4A� 2) + k)ncm (A) ;

that is to say,

T npj =
1X
m=0

knmcm (A)Pm;A ! T nf in L2�[�1; 1] as (j !1) :

Moreover, from Theorem 6.2.1., we see that

kpj � prk2n = (pj � pr; pj � pr)n

= (T n [pj � pr] ; pj � pr)� ! 0 as j, r !1;

that is to say, fpjg1m=0 is Cauchy in Hn: Since Hn is complete (see Theorem 6.4.1.),

we see that there exists

g 2 Hn such that pj ! g in Hn as (j !1) :

Furthermore, by de�nition of (�; �)n and the fact that

a0 (n; k) = kn for k > 0;

we see that

kpj � prk2n � kn kpj � prk2� ;

hence,

pj ! g in L2�[�1; 1] as (j !1) : (6.6.2)

Comparing (6.6.1) and (6.6.2), we see that f = g 2 Hn.
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That is to say, f 2 Vn; this completes the proof of (ii).

(iii) D (T n) is dense in Hn:

Since polynomials are contained in D (T n) and are dense in Hn;we see that D (T n)

is dense in Hn. Furthermore, from Theorem 6.5.3., we see that the Legendre type

polynomials fPm;Ag1m=0 form a complete orthogonal set in each Hn:

(iv) (f; f)n � kn (f; f)� for all f 2 Vn:

This is clear from the de�nition of (�; �)n, the positivity of the coe¢ cients aj (n; k)

and bj (n; k), and the fact that a0 (n; k) = kn and b0 (n; k) = 0:

(v) (f; g)n = (T
nf; g)� for f 2 D (T n) and g 2 Vn:

Observe that this identity is true for all f; g 2 P. Let f 2 D (T n) and g 2 Vn; since

polynomials are dense in both Hn and L2�[�1; 1] and convergence in Hn implies con-

vergence in L2�[�1; 1], there exist sequences of polynomials fpjg
1
m=0 and fqjg

1
m=0 in

polynomials P such that, as j !1;

pj ! f in Hn, T npj ! T nf in L2�[�1; 1] as (j !1) ,

(see the proof of (ii) of this theorem), and

qj ! g in Hn and L2�[�1; 1].

Hence, from Theorem 6.2.1.,

(T nf ; g)� = lim
j!1

(T npj ; qj)�

= lim
j!1

(pj ; qj)n

= (f; g)n :

This proves (v). The rest of the proof follows immediately from Theorems 3.3.1.,

3.3.2., and 3.3.5. �

The next corollary follows immediately from Theorems 3.3.1., 6.3.3., and 6.6.1.

Remarkably, it characterizes the domain of each of the integral powers of T .
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Corollary 6.6.1. For each n 2 N, the domain D (T n) of the nth power T n of

the self-adjoint Legendre type operator T; de�ned in (6.6.2.), is given by

D (T n) = V2n = ff : [�1; 1]! C j f 2 AC[�1; 1]; f (j) 2 ACloc(�1; 1)

(j = 1; 2; : : : ; 4n� 1); (1� x2)2nf (4n) 2 L2(�1; 1)g:

In particular,

D (T ) = V2 = ff : [�1; 1]! C j f 2 AC[�1; 1]; f 0; f 00; f 000 2 ACloc(�1; 1) ;

(1� x2)2f (4) 2 L2(�1; 1)g:

This is a new characterization of D (T ) and does not include any boundary con-

ditions. From Theorems 3.3.2. and 6.6.1., it follows that the domain of the �rst

left-de�nite operator T1 is given by

D (T1) = V3 = ff : [�1; 1]! C j f 2 AC[�1; 1]; f 0; f 00; : : : ; f (5) 2 ACloc(�1; 1) ;

(1� x2)3f (6) 2 L2(�1; 1)g:
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