
 

 

 

 

 

 

 

 

ABSTRACT 

 

An Evaluation of Error Masking Techniques for Digital Wireless Audio Systems 

 

Renée J. Michaud, M.S.E.C.E. 

 

Mentor: Michael W. Thompson, Ph.D. 

 

 

This thesis investigates the tradeoffs associated with typical communication 

system designs for packetized wireless transmission systems.  Communication system 

design requires judicious selection of source data rate, data compression technique, error 

correction method, modulation scheme, and latency.  In particular, we investigate a 

wireless system for live music, focusing on masking methods to mitigate the affect of 

dropped data packets.  Three different masking methods were developed and tested in 

combination with three packet sizes, creating nine unique test environments.  The 

efficacy of the masking methods was then evaluated.  The packet error rate threshold is 

defined as the lowest packet error rate for which the subject can hear noise interference.  

A Matlab graphical user interface was used to automate a human subject protocol, which 

was designed to investigate the packet error rate threshold for each condition.  A 

comparison of the results and statistical analysis of the effectiveness of the masking 

methods are presented.



Page bearing signatures is kept on file in the Graduate School. 

 

An Evaluation of Error Masking Techniques for Digital Wireless Audio Systems 

 

by 

 

Renée J. Michaud, B.S.E.C.E. 

 

A Thesis 

 

Approved by the Department of Electrical and Computer Engineering 

 

___________________________________ 

Kwang Lee, Ph.D., Chairperson 

 

Submitted to the Graduate Faculty of  

Baylor University in Partial Fulfillment of the  

Requirements for the Degree 

of 

Master of Science 

 

 

 

 

 

Approved by the Thesis Committee 

 

___________________________________ 

Michael W. Thompson, Ph.D., Chairperson 

 

___________________________________ 

Russell W. Duren, Ph.D. 

 

___________________________________ 

Jack D. Tubbs, Ph.D. 

 

 

 

 

 

 

Accepted by the Graduate School 

May 2011 

 

___________________________________ 

J. Larry Lyon, Ph.D., Dean            



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2011 by Renée J. Michaud 

All rights reserved



iv 

 

TABLE OF CONTENTS 

LIST OF FIGURES ............................................................................................................ 7 

LIST OF TABLES .............................................................................................................. 8 

ACKNOWLEDGMENTS .................................................................................................. 9 

CHAPTER ONE ................................................................................................................. 1 

Introduction ...................................................................................................................... 1 

Development of Technology .......................................................................................... 1 

Human Perception and Natural Masking of the Ear .................................................... 1 

Analog Wireless Live-Audio Products .......................................................................... 3 

Digital Wireless Live-Audio Products .......................................................................... 4 

Packetized Data ............................................................................................................ 6 

CHAPTER TWO ................................................................................................................ 8 

Digital Communication Systems ..................................................................................... 8 

General Framework ...................................................................................................... 8 

Source Coding ............................................................................................................... 8 

Channel Coding ............................................................................................................ 9 

Modulation .................................................................................................................. 11 

Channel ....................................................................................................................... 12



v 

Receiver ....................................................................................................................... 12 

CHAPTER THREE .......................................................................................................... 15 

Particular Constraints of Digital Live-Audio Systems .................................................. 15 

Audio Quality .............................................................................................................. 15 

Dynamic Range ........................................................................................................... 15 

Frequency Response ................................................................................................... 16 

Total Harmonic Distortion ......................................................................................... 16 

Latency ........................................................................................................................ 17 

Connectivity and Range .............................................................................................. 18 

CHAPTER FOUR ............................................................................................................. 19 

Hardware Platform Design and Implications ................................................................. 19 

Advances in Technology ............................................................................................. 19 

Performance Requirements ......................................................................................... 19 

Radio Specifications .................................................................................................... 21 

Important Considerations ........................................................................................... 22 

CHAPTER FIVE .............................................................................................................. 23 

Error Masking Methods Employed ................................................................................ 23 

Forward Error Correction .......................................................................................... 23 

Choosing the Masking Methods .................................................................................. 26 

Blanking Masking Method .......................................................................................... 27



vi 

Repeat Masking Method ............................................................................................. 28 

Low-Pass Blend Masking Method .............................................................................. 29 

CHAPTER SIX ................................................................................................................. 33 

Designing the Human Subject Tests .............................................................................. 33 

Distinct Specifications ................................................................................................ 33 

Packet Sizes ................................................................................................................. 33 

Error Rates.................................................................................................................. 34 

Sound Samples ............................................................................................................ 35 

CHAPTER SEVEN .......................................................................................................... 36 

Matlab Graphical User Interface .................................................................................... 36 

Purpose ....................................................................................................................... 36 

Implementation in Matlab ........................................................................................... 37 

Format......................................................................................................................... 47 

Using the GUI ............................................................................................................. 47 

Test Ordering Technique ............................................................................................ 48 

CHAPTER EIGHT ........................................................................................................... 51 

Results and Analysis ...................................................................................................... 51 

Expected Results ......................................................................................................... 51 

Analysis of Results ...................................................................................................... 52 

 



vii 

 

LIST OF FIGURES 

Figure 1: Digital Communication System Block Diagram ................................................. 8 

Figure 2: Decoding Schematic for a Hamming (7, 4) Code ............................................. 24 

Figure 3: Blanking Masking Method Used to Mask a Single Dropped Packet ................ 27 

Figure 4: Repeat Making Method Used to Mask a Single Dropped Packet ..................... 29 

Figure 5: Repeat of a Single Packet for Low-Pass Blend Masking Method .................... 30 

Figure 6: Low-Pass Blend Masking Method Used to Mask a Single Dropped Packet .... 31 

Figure 7: Graphical User Interface for Human Subject Testing ....................................... 37 

Figure 8: Blanking Masking Method for a Single Dropped Packet.................................. 40 

Figure 9: A Single Dropped Packet .................................................................................. 42 

Figure 10: Repeat of Last Successfully Sent Packet ......................................................... 43 

Figure 11: Repeat Making Method and Smoothing .......................................................... 44 

Figure 12: A Blanked Dropped Packet ............................................................................. 45 

Figure 13: Blanking Masking Method and Smoothing..................................................... 46 

Figure 14: Histogram of the Response Data by Method Distribution .............................. 57 

Figure 15: Histogram of the Response Data by Packet Distribution ................................ 59 

Figure 16: Plot of the Response Data for Methods and Packet Lengths .......................... 60 

 

 

 



viii 

 

LIST OF TABLES 

Table 1: Combination Order for Each Subject ................................................................. 50 

Table 2: Evaluation for Blanking Masking Method ......................................................... 53 

Table 3: Evaluation for Repeat Masking Method ............................................................. 53 

Table 4: Evaluation for Low-Pass Blend Masking Method .............................................. 53 

 

 



ix 

 

ACKNOWLEDGMENTS 

This thesis would not have been possible without the leadership and 

encouragement of my loving, God-fearing parents, Sean and Shelly Michaud.  The 

instruction of my father was an important part of my learning growth from the initial to 

the final steps of my graduate studies.  My mother‟s reassurance and confidence in me 

was a staple in my pursuit of this project, during both the good and hard times.  Their 

roles in my life will continue to give me the inspiration I need to follow the path that God 

has set for me.  I owe my deepest gratitude to them both and am blessed to continue the 

electrical engineering legacy of our family. 

I would like to show my gratitude to Dr. Thompson, who gave me understanding 

during the many phases of conducting my research.  He was an important factor in my 

graduate life at Baylor University and a great advisor. 

I extend my regards to all those who have supported me, from forming the 

definition of my research to completing the finishing touches of this thesis.  May God be 

glorified on account of this thesis, which I have completed through Him. 

 

 

 

 

 

 



 

1 

 

 

 

 

CHAPTER ONE 

 

Introduction 
 

 

Development of Technology 

 

The development and commoditization of low-power, low-cost digital radio 

systems has led to increased interest in using digital wireless audio systems for live 

performances.  Unlike streamed audio applications such as in-home entertainment 

systems, the real-time constraints on live audio performances limit the ability to 

retransmit dropped data packets.  Furthermore, the latency restrictions of real-time audio 

limit the use of source encoding and error correction techniques.  However, since low-

power digital radio systems do experience loss of data, exhibited as bit errors and/or 

dropped packets, there is a need for a fast, efficient method to mask the effects of lost 

data in live audio applications.  For these reasons, an investigation was conducted on the 

way in which humans perceive dropped packets, and the effectiveness of several masking 

methods. 

 

Human Perception and Natural Masking of the Ear 

Temporal Masking 

Temporal masking is a psychoacoustics phenomenon, which occurs when the 

signal and the masker take place at different times.  The signal is generally defined as a 

tone or target word that we want the listener to hear, where the definition of the masker is 

an audible signal designed to make it difficult to hear the original signal.  There are three 

different time locations for the masker in relation to the signal, as defined in [1]. 



 

2 

 

When the masking occurs slightly before the signal is turned on, it is known as 

forward masking.  In this case, the masking can be at most 100ms before the signal, and 

the effect of the masking essentially occurs forward in time.  Similarly, backward 

masking occurs when the masking begins after the signal has already started.  This effect 

of masking backward in time occurs when the masker starts up to 50ms after the signal.  

When the masking occurs neither before nor after the signal, but rather at the same time, 

the term is simultaneous masking.  As explained by [1], these temporal masking 

outcomes “involve interactions between the representations of the signal and the masker 

within the auditory nervous system.  However, there may be some overlapping of the 

excitation patterns within the cochlea when the intervals between the signal and masker 

are very brief.”   

 

Cochlear Filters 
 

 The natural, cochlear filters of the ear are powerful and important.  These filters 

of the cochlea can be categorized into two distinct groups.  These two groups are defined 

as the single point which defines the position on the basilar membrane and its individual 

filter, and a particular neuron with a unique filter. 

In the first type of cochlear filters, “any point on the basilar membrane functions 

as a filter, attenuating frequencies that are both higher and lower than its optimal 

frequency,” as [2] describes.   The movement of the basilar membrane in its entirety 

defines the range for which the human ear can detect signals.  This being said, only a 

single point of the basilar membrane needs to continue to function.  Any noise entering 

the ear would be filtered by the particular frequency response curve of the basilar 



 

3 

 

membrane at that single point, and would be a function of the properties of the masking 

noise. 

 The second type of cochlear filter requires only a single neuron to continue to 

function, where each of the functioning neurons would act as a unique filter.  As 

explained by [2], a neuron acts as a filter due to the fact that it fires more strongly in 

conjunction with particular frequencies, and where the surrounding neurons fire less in 

comparison.  To visualize this more clearly, consider the neural response for a specific 

frequency to be associated with a given amplitude.  All surrounding neurons produce 

responses with amplitudes of much smaller magnitudes.  As with the first type of filter, 

this second type also depends on the properties of the band-limited masker.  This 

combination of many cochlear filters naturally placed in the ear supports a filter model 

for the cumulative effect of the natural masking of the ear. 

This model of perceptual masking explains the somewhat surprising observation 

that entire segments of an audio signal can be occasionally dropped without a noticeable 

loss in sound quality.  By choosing appropriate masking signals, we are interested in 

exploring the duration for which the segments can be dropped without noise interference. 

 

Analog Wireless Live-Audio Products 

Wireless audio systems have traditionally been implemented using analog radio 

transmission.  The benefits of an all-analog design include simplicity, low component 

count and cost, and the ability to maintain an analog signal throughout the system, 

avoiding the inherent challenges in maintaining signal quality while translating audio 

data from analog to digital and vice versa. 



 

4 

 

One consequence of implementing wireless audio transmission as an analog 

signal is that the over the air signal must be continuous.  That is, the injected audio signal 

must be modulated to a high frequency radio signal in order to be transmitted wirelessly, 

and then sent and received as a continuous stream of data, occupying a given frequency 

channel for one hundred percent of the time, and preventing any Radio Frequency (RF) 

channel media sharing or frequency management.  This is true for various radio 

frequencies and technologies, and for products ranging from high-end professional 

equipment to low-cost consumer products. 

There are also audio quality issues with an analog radio design that are inherent 

with any analog transmission over a noisy medium.  Since the analog radio signal 

received is directly down-converted to audio, any noise injected into the analog radio 

signal will directly affect the audio signal, and will result in audible distortion, and even 

cross-coupling with other signals.  This type of audio degradation is familiar to anyone 

who has listened to AM or FM radio, and has heard static, pops or channel bleeding as 

the station reception gets weaker or in the presence of interference. 

 

Digital Wireless Live-Audio Products 

By contrast, a digital signal will be completely resistant to noise, up to the 

threshold point where the digital data is no longer recognized as a „1‟ or „0‟.  This means 

that the audio system has noise immunity in the presence of noise and other interfering 

signals.  In a wireless transmission system, loss of signal inevitably occurs not only when 

the signal is significantly attenuated, but also typically happens intermittently when the 

limits of range are approached, resulting in brief periods of lost data.  We will refer to 

this as „dropped packets‟ and deal with the solution to this phenomenon extensively in 



 

5 

 

this thesis.  Digital radio transmission also allows for efficient use of available radio 

channel bandwidth, enabling multiple systems to share a common channel or group of 

channels.  Digital systems can take advantage of a higher over the air data rate, multiplex 

signals over a given channel, and can also switch channels during transmission.  This 

allows a mechanism to handle interferers, which may appear intermittently over time. 

Additionally, since digital radios allow for data to be sent in bursts, when the over 

the air data rate is higher than the actual audio data rate, significant power can be saved 

since the radio is not transmitting one hundred percent of the time.  Power savings can be 

a critical factor in battery powered systems such as wireless audio systems for 

microphones and instruments.  And finally, digitizing the audio signal allows for audio 

processing to be handled in a DSP microprocessor chip, which enables a host of features 

to be implemented in the wireless system, for additional integration and value. 

Other motivations for transitioning to a digital wireless audio system include cost, 

efficiency, and a big factor: availability of wireless frequency channels.  Note that we are 

talking about FCC and worldwide channels which are licensed for Instrumentation, 

Scientific and Measurement use (ISM).  Audio systems have used „TV channels‟ for live 

theater, which requires a qualified tech to set up who knows the local stations and how to 

avoid conflict.  FCC is now opening up traditionally used analog channels for use by new 

equipment (ref „white space‟ given to Google, Microsoft), motivating a change in the 

industry.  

Meanwhile low-cost, battery-operated wireless radios have proliferated through 

seemingly every industry, calling for a revolution in the live music industry, and a pent-



 

6 

 

up demand which can be quickly enabled by meeting the above challenges and matching 

a digital delivery system to the needs of human ear‟s perception of audio data. 

 

Packetized Data 

The advancement of digital communications has ushered in the development of 

packetized data transmission.  Data is sectioned into small blocks called payload units, 

which are embedded in a format along with a packet header.  The packet header typically 

contains source and destination address, checksum, and in-band data.  While the use of 

packets requires the overhead of the packet header, other efficiencies are enabled which 

outweigh the additional bandwidth required. 

By packetizing data, a single source can send to multiple destinations, and vice 

versa.  This is done over the same network port by using destination addressing.  Since 

the network channel may be higher bandwidth than is needed, the channel can be shared 

with other connections.  Also, packetized data allows for more sophisticated protocols 

which make use of handshaking schemes and retransmissions, providing for guaranteed 

service and Quality of Service (QoS) links. 

An example of a communication system which takes advantage of the use of a 

packet data scheme to carry audio data is the modern telephone network.  Begun as an 

analog system, the telephone network now implements digital voice data, and has 

transitioned to packetized voice data over time.  The use of this technology has resulted 

in lower costs and higher availability of service.  In this day and age, much of the long 

distance voice traffic is carried over the internet, which is extremely cost efficient. 

The application of a packetized data connection in a real-time, high fidelity audio 

channel presents some technical difficulties, specifically with regard to latency, QoS and 



 

7 

 

the handling of errors and dropped packets.  However, there is strong motivation to find 

workable solutions to these challenges.  A solution which works well and delivers high 

audio quality with low latency over a packetized, digital data channel will enable lower 

cost, higher performance, longer range, longer battery life, and more versatility.  It will 

also allow designers and manufacturers to take advantage of the latest and greatest digital 

radio technology solutions.  

  



 

8 

 

 

 

CHAPTER TWO 

 

Digital Communication Systems 

 

 

General Framework 

 

In this thesis we consider first the general framework of digital communication 

systems.  Figure 1 below shows a block diagram of such a system.  The input on the top 

of the diagram is the transmitter, where the data we wish to transmit is referred to as the 

message.  The receiver is shown in the last three blocks.  Each of these operations will 

create a delay, or latency, between the original signal, as injected into the system, and the 

received message.  In the following sections, the components of the digital 

communication system block diagram are described and summarized. 

 

 

Figure 1: Digital Communication System Block Diagram 

Source Coding 

 Source coding is the process of efficiently representing digitally, the analog 

source information.  Examples of sources include music, speech, video, images and data.  

Redundancy in the message to be transmitted is significantly reduced by transforming the 

original message into a more condensed state.  This process is also commonly known as 



 

9 

 

data compression.  Examples of data compression include the MP3 and AAC formats for 

music, and the MPEG and WMV formats for video.  A more extensive list of such 

formats can be found by viewing [3].  Both of these formats effectively compress the 

original data, while still keeping the important information needed to reconstruct the 

original signal during playback. 

 

Channel Coding 

 After source coding, the transmitted message reaches the channel coding block.  

A common name for this step is error correction coding.  It is anticipated that many errors 

will occur during transmission.  Thus, through the use of error correction coding, the 

system can combat this phenomenon and reliably send an information sequence over the 

channel.  The importance of error correction coding was stated in [4]: “like good 

equalization and proper synchronization, coding is an essential part of the operation of 

digital receivers.”  Further explanation of the code types such as those described below 

can be found in [5]. 

 

Block Codes 

 Block Codes, one of the two most common types of channel coding, are used for 

error detection and correction.  This family of channel codes takes k-symbol source 

words and outputs n-symbol codewords, where n is defined as a larger value than k.  In 

this process, redundancy is added before transmission of the message.  The inserted 

redundancy makes it possible to greatly reduce the number of codeword errors after 

channel decoding.  The efficiency of the code is most generally defined by the code rate.  



 

10 

 

This value is calculated by dividing the number of input bits, k, by the number of output 

bits, n. 

 

Convolutional Codes 

 The other most common type of channel coding is Convolutional Codes.  This 

type of channel code differs from Block Codes, in that it is not memoryless.  Like Block 

Codes, it takes k-symbol source words and outputs n-symbol codewords.  However, these 

codewords are computed with the use of m-memory registers (previously sent source 

words), not the current source word alone.  Therefore, Convolutional Codes are defined 

by three parameters.  This third parameter is usually defined not as m, but rather L, the 

constraint length.  This can be found by multiplying the number of input bits by the 

subtraction of one from the number of memory registers. 

Convolutional encoders are finite state machines, and thus can be described as an 

encoder with n binary cells and    states.  A Trellis Diagram is a common type of state 

diagram for this type of encoder which clearly illustrates the change that each possible 

input of the encoder makes not only to the output, but also the state transitions. 

  

Turbo Codes  

 Advancement upon Convolutional Codes, Turbo Codes closely approach the 

limits defined by Shannon‟s Theorem.  The design of a Turbo Code is the parallel 

concatenation of two codes, with an interleaver between, whose purpose is to read the 

bits in a pseudo-random order.  These codes were the first of their kind to nearly reach 

the limit termed as the channel capacity, which is further explained in the Channel 

section below.  Turbo Codes are termed short Convolutional Codes.  Note the fact that 



 

11 

 

this type of code, when designed to produce results meeting the same nearness to channel 

capacity as previous Convolutional Codes, requires much more complex decoding 

practices.  When choosing a channel code, the tradeoff between energy bandwidth 

efficiency and energy efficiency is considered.  The reliability of the decoding process of 

a Turbo Code along with its great efficiency towards reaching the channel capacity 

proves the Turbo Code to be a significant improvement upon Convolutional Codes 

previously used.  However, the cost of this type of coding is computational intensity, to 

the point where it is not practical with live-audio communication technology. 

 

Modulation 

 In this step, the modulation block, the signal is converted to analog, and thus 

prepared to be sent through a medium for an extended range.  A typical modulation 

scheme for live audio applications, specifically 2.4 GHz digital communication radios, is 

Gaussian Frequency Shift Key (GFSK) modulation.  The Gaussian aspect of this 

modulation is an improvement on the typical FSK.  In FSK modulation, the use of a 

discrete carrier frequency change represents the digital data.  Typically, one carrier 

frequency is chosen to represent a „0‟ and another to represent a „1‟, although more can 

be used in order to increase the transmission rate. 

When a GFSK modulation scheme is implemented, the digital signal is sent 

through a Gaussian filter before going through the FSK modulator.  This limits the 

spectral width of the signal and creates a smoother pulse by filtering the frequency 

deviations, unlike when simple FSK modulator is used.  The GFSK modulation scheme is 

standard in today‟s market, being used in systems such as Wifi and Bluetooth for its 

spectral efficiency. 



 

12 

 

Channel 

The most important property of the channel is the channel capacity.  The channel 

capacity is a concept from information theory developed Claude Shannon, which 

establishes the performance capability for a given communications system.  The channel 

capacity result describes the performance bound on error free communications as a 

function of the bandwidth of the channel and signal-to-noise power ratio [3].  For a real-

time transmission system, the Nyquist rule of thumb is where the bit rate is roughly equal 

to the bandwidth. 

The difference between the ideal system and what is achieved in practice can be 

attributed to two factors.  The first of these is the redundancy in the message to be sent 

through the channel.  Secondly, errors due to channel noise can occur and coding 

methods are required to mitigate the effects.  Problems in achieving the desired channel 

capacity prove to be bounds on how well the system will perform.  Achieving 

performance close to the channel capacity bound results in additional complexity thereby 

leading to an increase in delay time.   

 

Receiver 

Overview  

The receiver performs Demodulation of the radio RF signal, Channel Decode of 

the digital data, and Source Decode of the digital signal to be converted back to analog 

audio data.   In a digital wireless audio system, these functions will typically be 

performed by three sub-systems; the radio, a digital signal processor, and a digital-to-

analog converter. 

 



 

13 

 

Demodulation 

The radio sub-system must receive and demodulate the RF signal, which is the 

process of extracting the intended digital data from the carrier.  In the case of a GFSK 

modulation scheme, this demodulation essentially consists of recognizing the carrier 

frequency, syncing with the modulation baud rate, and translating each frequency shift in 

the carrier into the corresponding ones and zeros encoded in that RF signal.  The 

translation from analog RF to digital ones and zeros is done in the „front end‟ section of 

the radio, known as the Physical Layer (PHY).  The radio PHY layer in a modern digital 

radio is a combination of analog and digital circuitry, often using significant DSP 

processing power to interpret the received analog signal and perform the GPSK 

demodulation. 

The radio then processes that stream of digital data, to determine if a valid 

message is received, and if that message is intended for this particular receiver.  This is 

referred to as the Media Access Layer (MAC).  The output of the MAC is a valid data 

packet, including any packet header information such as source and destination address, 

and the CRC checksum, as well as the data payload itself. 

 

Channel Decode and Source Decode 

The radio then passes this data packet to the digital signal processor, which 

performs the Channel Decode function.  Here the data payload is examined, and 

processed to derive the actual digital audio data to be converted back to analog.  In a 

digital wireless audio system, such channel decode processing might be very minimal, 

and consist of simply translating a digital packet stream into a number of sequential 

digital audio words to be forwarded to the Digital to Analog converter.  However, if there 



 

14 

 

is any Forward Error Correction (FEC) implemented in the Channel Encoding section on 

the Transmitter, the reverse operation must be performed on the Receiver side by the 

Channel Decoder DSP.  Also, there exists an opportunity to massage the received data on 

the Receiver side, which is implemented in order to reduce the effects of any dropped 

packets or bit errors encountered in the channel, independent of any FEC encoding.  This 

opportunity is the basis for the work in this thesis. 

Finally, the Channel Decoder delivers a digital stream to the Source Decoder, 

which converts that data to an analog audio stream, to be output from the digital wireless 

audio system. 

 

  



 

15 

 

 

 

CHAPTER THREE 

 

Particular Constraints of Digital Live-Audio Systems 

 

 

Audio Quality 

 

Digital audio is delivered in a variety of formats designed to meet trade-offs 

between data size, and audio quality and usability.  For the purposes of this thesis we will 

focus on CD quality digital audio, which is broadly used, well understood and considered 

to deliver good quality audio.  Setting aside compressed formats such as MP3, which 

produce a smaller data stream at the cost of some loss of audio data, along with a rather 

large computational delay due to compression, CD format is by far the most common 

audio format.  Although professional recording equipment may record, mix, and process 

at a higher quality, the final audio is nominally mixed down to CD quality output.  CD 

quality digital audio is defined as 16-bits per sample, and 44.1k samples per second.  

 

Dynamic Range 

 

The number of bits per sample drives the audio dynamic range, which limits the 

difference between the loudest and the quietest signal which can be recorded, as well as 

the ability to separate the audio signal from the background noise inherent in any audio 

recording or reproduction.  By definition, each bit in a sample doubles the number of 

possible audio levels, and therefore each bit represents 6dB of dynamic range.  Audio that 

is 16-bit then delivers a maximum dynamic range of 96dB.  This is assuming that the 

input signal is called properly for the full dynamic range of the quantizer. 

 



 

16 

 

Frequency Response 

 

The number of samples per second determines the frequency response of the 

delivered audio.  The Nyquist limit determines the maximum frequency which can be 

represented in any digital signal is one half of the number of bits per second (bps).  

Therefore a 44.1kbps digital audio signal can produce no more than half of 44.1k, or 

22.05 kHz audio.  The goal of CD quality audio is to represent up to 20 kHz signals; the 

maximum frequency which a young healthy ear can typically hear in the best of 

circumstances.  The reason that a higher sampling rate was chosen, rather than simply 

double the 20kHz target, is that when the audio signal is digitized through the Analog to 

Digital Converter (ADC), the exact phase of that signal, and the ability to sharply cut off 

higher frequencies which may produce aliasing, requires some headroom above the target 

maximum desired frequency, and therefore 44.1k samples per second was chosen. 

 

Total Harmonic Distortion 

 

Because the audio signal must be digitized, transmitted through the radio channel, 

and recreated on the receiving side, there are specific audio quality parameters which 

must be measured and kept to within boundaries, in be able to carry high quality audio 

through the signal chain.  Among these is Total Harmonic Distortion (THD) which 

measures the harmonics of a given (single frequency) signal which are unintentionally 

added to a signal.  This type of distortion occurs in the audio sections of the hardware and 

can be seen and measured with a spectrum analyzer.  As this thesis focuses on the 

handling and masking of audio anomalies due to lost data, we will not focus on THD, but 

simply note that this is a key parameter measured and controlled in high quality audio 

systems, especially those in which the volume is expected to be quite loud. 



 

17 

 

Latency 

 

Latency is defined as the delay in delivering the audio signal through the entire 

system.  This is a negative byproduct of a digital system, and is directly affected by the 

audio processing methods considered for this study.  The latency budget for a live 

wireless audio system is much stricter than, for example, streaming music.  This is 

because for streaming music, the delay between starting the music and hearing it through 

the speakers is not seen as a critical problem, whereas immediate response is expected 

during a live concert. 

In the case of wireless audio transmission for a vocal microphone, or an 

instrument such as a guitar, the total latency needs to be well below 20ms, and a typical 

goal is to be between 5ms and 10ms total.  Of this budget, at least 1-2ms will be taken up 

by the ADC and Digital to Analog Converter (DAC), and by the radio transmission, and 

another 1-3ms for audio buffering on both sides of the radio.  This leaves approximately 

1ms to 8ms for any additional audio processing. 

Note that for the current processing speeds under consideration this precludes 

using such methods as Reed Solomon Encoding, used in audio CDs, to correct bit errors, 

since these methods use block encoding.  Block encoding requires a large block of audio 

data to be encoded, sent over the channel, then decoded on the receive side, adding 

latency which is acceptable for CD play, but is not acceptable for live audio systems.  

Similarly, masking methods chosen to handle lost data should be designed to work well 

without requiring large blocks of data, or large amounts of CPU time to process. 

 

 

 



 

18 

 

Connectivity and Range 

 

Finally, a wireless audio system will have been designed and specified to meet a 

given range, and to maintain connectivity over distances and circumstances that make it 

usable in the target application.  While range is hard to guarantee, and depends greatly on 

the environment, the measurement of range is assumed to be based on the distance at 

which the connectivity is very high, and at which the audio signal quality is very high.  

Therefore, the ability to mask dropped data can boost the effective range of a digital 

wireless audio system, since it can allow the perceived connectivity to be much higher 

than without such masking, and allow the use of the system in conditions and at a range 

which is greater than without masking implemented. 

  



 

19 

 

 

 

CHAPTER FOUR 

 

Hardware Platform Design and Implications 

 

 

Advances in Technology 

 

Advances in microprocessor and radio system designs have made real-time 

transmission of digital audio data feasible.  Modern radios have adequate bandwidth and 

power capabilities.  Silicon integration and miniaturization have reduced the power 

requirements to the point where solutions can be small, battery powered, and cost 

effective.   

There are, however, a number of radio integrated circuits (IC‟s) available from 

companies such as Texas Instruments and RF Micro Devices.  These are capable of 

transmitting digital data at a data rate of up to 1Mbps, using a clear channel which is not 

burdened with the overhead and latency of protocols such as Wi-Fi or Bluetooth. 

 

Performance Requirements 

In order to meet the audio quality requirements described above, components 

must be selected which meet the audio sampling rate and bit depth.  Also, a radio system 

must be selected which can support the required data rate, operate within the selected 

band, and meet the range requirements.  In addition, any audio processing used, including 

masking of dropped packetized data, must be handled by a processor which meets the 

required processing speed, memory size, and in/out (I/O) peripherals. 

Assuming a CD-quality audio is specified, the effective audio payload data rate 

which must be supported through the channel is 24 bits per sample multiplied by 44.1k 



 

20 

 

samples per second.  The resulting audio payload data rate is calculated to be 1058.4kbps.  

This audio payload data rate, along with any overhead, in-band signaling, and frequency 

band management scheme, drives the total radio throughput.   

In addition to audio payload data rate, the latency of the system, defined as the 

end to end delay, needs to be very low for any live audio system.  The latency through the 

system is the sum of the delay through the ADC, the DAC, and the radio, in addition to 

any radio protocol layers and audio processing.  Common radio protocol layers, such as 

Wi-Fi and Bluetooth, are generally large and indeterminate.  For these reasons, they are 

considered inappropriate for real-time digital wireless audio data delivery.  However, 

there are QoS protocols that exist, which if applied carefully can limit the latency for the 

radio protocol. 

If a clear channel radio transmission scheme is used, then no radio networking 

protocol exists, by definition.  The latency can then be determined by careful design and 

implementation.  In this particular case, the largest contribution to system latency is the 

audio processing.  This contribution to the system latency, along with the limitations of 

such audio processing, are described further in this thesis.  

 

ADC and DAC Specifications 

The hardware design of a digital audio system includes the selection and design of 

the ADC and DAC which meet the audio performance requirements.  As described 

above, this includes the sampling rate and bit depth. 

Other important specifications in selecting the ADC and DAC include the digital 

audio interface, the number of channels (e.g. stereo vs mono), the hardware/software 

control interface, and the power requirements.  Furthermore, the hardware design of this 



 

21 

 

section is critical since the analog section is susceptible to digital noise from the 

microprocessor and radio sections.  This should be handled in the Printed Circuit Board 

(PCB), which is the physical placement of the system and affects the performance of the 

analog section.  If the digital noise problem is not handled properly in the PCB design, 

the audio quality of the system will be degraded.   

 

Radio Specifications 

The selection of a radio is driven by the data rate, the radio modulation technique, 

the power requirements, the transmitter output power, the receiver sensitivity, and 

parameters such as blocking immunity and co-channel rejection.  In addition, the support 

or lack thereof for streaming data, and the ability to quickly change radio frequency 

channels, drives the decision as whether to use packetized data versus streaming data.  

This also aids in the decision for how to manage the RF radio channels. 

For the purposes of this thesis, we will assume that the hardware platform dictates 

a packet data radio channel, with roughly twenty percent overhead dedicated to packet 

headers, inter-packet gaps, and radio channel management. 

Typical radio data rates are in integral multiples of 128kbps.  For example, a 

500kbit, 1Mbps, and even 2Mbps radios are available.  Notice these amounts are even 

numbers, not odd, for example a 1.5Mbps radio.  Furthermore, the cost of a higher data 

rate includes power consumption and range, since the effective receiver sensitivity is 

generally lower for higher data rate modes.  Hence, the lowest data rate which supports 

the requirements of the system should be chosen. 

These practical considerations, alongside the actual audio data rate for CD quality 

audio, lead to the selection of a 1Mbps, packetized audio data radio solution.  The 



 

22 

 

maximum packet size is then determined by the radio specifications, and the available 

buffer space.  A typical maximum packet size is 127 data bytes, which is driven by the 

specifications for ZigBee radios. 

 

Important Considerations 

Beyond these tradeoffs, the hardware design must consider power, cost, size, and 

availability of components.  In a battery powered system, the current requirements for the 

system are critical, and each component must be selected to help meet the total power 

budget.  Also, in order to be cost effective, components should be selected which can run 

on the same voltage, or on as few voltage rails as possible. 

Another very critical area is the radio antenna section.  A variety of antenna types 

are available, with associated tradeoffs between size, performance, cost, and also antenna 

radiation pattern.  If a system is to be fixed (not moving) then a directional antenna may 

be appropriate, and an increase in gain can be achieved by directing the transmission 

power and reception pattern toward each other.  In a system which is handheld, or 

intended to be used or mounted, in any configuration, an antenna pattern should be 

chosen which is non-directional.  This will help to avoid a null, which could reduce 

effective range. 



 

23 

 

 

 

 

CHAPTER FIVE 

 

Error Masking Methods Employed 

 

 

Forward Error Correction 

 

Hamming (7, 4) Code 

 The first method attempted in order to correct the dropped packets in the sound 

samples by way of FEC was the widely used Hamming (7, 4) Code.  The use of the three 

check bits added to the word with the use of the Hamming (7, 4) Code allows the system 

to correct any 1-bit error.  It can also detect the 1-bit and 2-bit errors that arise.  One of 

the advantages of this type of FEC is that you “do not have to decide in advance whether 

to use [the Hamming Code] in error detection or error correction mode,” as explained by 

[6].  Further understanding of the Hamming (7, 4) Code can be found by reviewing both 

[6] and [7]. 

When a binary 4-bit word is encoded with a binary Hamming (7, 4) Code, it is 

transformed into a binary 7-bit word by adding three parity bits.  The method for adding 

these three check bits is aptly described in [6].  In short, the decision whether to assign a 

one or zero to each of these three check bits is done by looking at the ones and zeros in 

the 4-bit word.  Certain combinations of the bits in the given 4-bit word and a particular 

parity bit must give an even number of ones. 

In order to decode a transmitted 7-bit word that has been encoded using the binary 

Hamming (7, 4) Code, parity checking must be employed.  Simply put, it must be found 

whether an even or odd number of ones can be found in each of the unique combinations 



 

24 

 

previously defined in the received word.  With this information, it can be determined how 

many errors have occurred and correct one, remembering that this particular method can 

detect all 1-bit and 2-bit errors, and correct a 1-bit error.  A schematic of this decoding 

process is shown in Figure 2 below.  Examination of the schematic further explains the 

method for which decoding using the Hamming (7, 4) Code is completed. 

 

 

Figure 2: Decoding Schematic for a Hamming (7, 4) Code 

This type of encoding and decoding, the Hamming (7, 4) Code, was implemented 

in Matlab.  The Matlab code for the encoder can be found in Appendix G, with the 

Matlab code for the decoder in Appendix H.  It was found that although the binary 

Hamming (7, 4) Code works well for single-bit errors, it was not suitable for dropped 

packets which would occur in a typical digital wireless communication system.  It was 



 

25 

 

also determined that with the strict delay constraint of the system, implementing a 

scheme that requests retransmission of dropped packets was not feasible. 

 

Protecting the Nonzero Bit Positions (NBP) with Parity Bits 

 Another type of FEC attempted took advantage of the use of parity bits.  A string 

of data words was fed into a function, which can be found in Appendix I, which would 

then calculate the parity bits for each of the words.  Many data samples, when using 24 

bit quantization, are sufficiently small in value that several of the upper bits of the word 

are effectively zero (with sign extension in the case of negative numbers).  The benefit of 

this approach is that parity bits can be used to protect upper four NBPs of the codewords.  

Errors that occur in the lower bit positions do not affect the signal-to-quantization noise 

ratio as much as the upper four NBPs.  The Matlab code for implementing this can be 

found in Appendix J. 

The desired improvement using this type of compression FEC is just like any 

other when compression is used: improved bandwidth.  This can be done while keeping 

the efficiency of transmitting the entire words due to the fact that most of the information 

being sent through a codeword is contained in upper four bits of the NZBs.  The FEC was 

executed by grouping several codewords together and sending them as a string of 

codewords.  Then, the space saved by throwing away the zero-valued bit positions was 

used to send the parity bits.  The encoding was done by taking a 24-bit sample and using 

a running estimate of the signal scale, and hence the NZB locations, to determine the 

most significant 16-bit portion of the codeword to apply the FEC.  Therefore, the 

bandwidth is conserved and, by sending the MSB along with the corresponding parity 



 

26 

 

bits, data can be sent with parity bits used for error correction without significantly 

delaying the signal. 

The data compression and FEC of this method proved to be efficient at small error 

rates.  At the bit error rate level where a difference could be heard, it became apparent 

that at this noise level, packets would be dropped.  However, this method cannot be 

modified to account for dropped packets.  When packets are dropped, the method for 

which the NSB‟s are kept with the parity bits simply cannot correct such a loss in data.  

Furthermore, requesting that packets be retransmitted was also determined not to be 

practical because of the time-delay constraints.  Instead, we determined that masking 

techniques would be studied and created in order to better fulfill the delay requirements 

of the system while resolving the problem of dropped packets. 

 

Choosing the Masking Methods 

 

The most complex part of creating the sound samples to be used in the human 

subject testing is the method of masking used when a simulated dropped packet occurs.  

The purpose of creating the masking methods is to deliver sound samples with better 

sound quality under the constraint of a prescribed packet error rate.  Although it is 

believed that allowing a certain level of complexity in the computation of the masking 

methods would produce improved sound quality, it also generates a delay in the system.  

As explained previously, the delay constraint of a live-audio digital communication 

system is a major consideration whilst crafting the three masking methods.  

Three masking methods were chosen to implement: blanking, repeat, and low-

pass blend.  These three masking methods were selected for their tradeoffs in complexity 

and potential usefulness when masking dropped packets. 



 

27 

 

Blanking Masking Method 

The first masking method features the simplest computations.  In this method a 

dropped packet is “blanked out” by replacing the entire dropped packet length with zeros.  

The blanking masking method will be used in conjunction with the three packet lengths 

chosen, simulating a single dropped packet along with a small and long burst of dropped 

packets. An example of this masking method is shown in Figure 3 below.  In this figure, 

the blanking masking method is used to mask a single dropped packet.   

 

 

Figure 3: Blanking Masking Method Used to Mask a Single Dropped Packet 

 The blanking of the entire dropped packet can be seen as highlighted in red in the 

Figure 3 above, along with short ramped (linearly interpolated) edges on either side.  



 

28 

 

These ramps are effectively a smoothing technique, used to decrease the consequence of 

noise and increase the sound quality of the sound sample.  This smoothing technique is 

indicated by the arrows in Figure 3, and will be further described in later section. 

 

Repeat Masking Method 

The second method developed is the repeat masking method.  The procedure for 

this masking method keeps track of the last successfully sent packet, and places it 

wherever a packet is dropped.  This masking method involves more computation than the 

blanking masking method.  The computation involved in this repeat masking method is 

not so great as to exclude this method from consideration for a digital wireless 

communication system where a strict delay constraint is a priority.  Further motivation 

for repeating a dropped packet is that for many portions of an audio signal,  the spectral 

content is relatively unchanged between adjacent packets.  

In Figure 4 below, the repeat masking method is demonstrated.  The previous 

packet, which had been repeated, is enclosed in the box shown in Figure 4 below.  The 

smoothing technique applied to both edges of the replaced packet is indicated with 

arrows, and will be explained further in a later section.  This masking is shown for a 

single dropped packet, as with Figure 3 for the blanking masking method above.  In 

addition, the masked dropped packet shown here has the same location as the dropped 

packet masked with the blanking masking method, so as to better compare the success of 

the masking methods. 

 



 

29 

 

 

Figure 4: Repeat Making Method Used to Mask a Single Dropped Packet 

Low-Pass Blend Masking Method 

The most complex of the three proposed masking methods is the low-pass blend 

masking method.  The unique property of this masking method, in contrast to the others, 

is the increased computation requirement.  This was initially conjectured to yield a sound 

sample of sound quality above the rest.  When a packet is to be simulated as a dropped 

packet, it is first replaced with the last successfully sent packet.  This can be seen in the 

Figure 5 below. 

 



 

30 

 

 

Figure 5: Repeat of a Single Packet for Low-Pass Blend Masking Method 

After replacing the dropped packet with the last successfully sent packet, it is then 

passed, along with the last packet, to another Matlab function.  This function implements 

a blending procedure that effectively interpolates a “low-pass” blend between adjacent 

packets.  Once these two packets are given to the function, the same two packets, now 

with their connecting edges blended, are the outputs of the function.  Because this 

function blends the current packet only with the last packet, the current packet must 

logically be passed to this blend function again, this time with the next packet to be sent.  

Figure 6 shows the low-pass blend masking method employed.  As before, the masking is 

done for a single dropped packet in the same location as the others, for ease of 

comparison between the masking methods. 



 

31 

 

 

Figure 6: Low-Pass Blend Masking Method Used to Mask a Single Dropped Packet 

The blend function is the heart of the low-pass blend masking method, and can be 

reviewed in Appendix D.  As initializations, he number of samples of the dropped packet 

to be blended with the adjacent packet is defined, along with how many sub-points each 

point of the dropped packet will be divided into.  Using these definitions, the portion of 

the two packets which are to be blended can be identified as the end of the previous 

packet combined with the front of the current packet.  The low-pass blend masking is 

then accomplished by decimating the end portion (the portion to be used in the blend) of 

the previous packet by a given downsample factor, M.  A DFT based interpolation 

method is then implemented which takes the DFT of the decimated samples and then zero 

pads in the frequency domain in order to preserve the original sampling rate.  The inverse 



 

32 

 

DFT is then taken to produce the low-pass blend.  Note that this blending method 

effective produces an interpolated blended signal that has a maximum frequency of 

./ Mf s  
 The back end of the previous packet and the front end of the current packet are 

then swapped for this blended, low-pass filtered portion of the two packets. 

This process is repeated for the dropped packet and the packet to follow, thus 

using the low-pass blend technique on both sides of the simulated dropped packet.  This 

low-pass blending technique is indicated by the arrows in Figure 6 above, where the 

previously dropped packet is highlighted in red.  This method of replacing the dropped 

packet for the last successfully sent packet, and then implementing a low-pass filter blend 

boasts a smooth transition both from the previous packet and to the next one. 



 

33 

 

 

 

 

CHAPTER SIX 

 

Designing the Human Subject Tests 

 

 

Distinct Specifications 

Each of the human subject tests is created with a different combination of a packet 

size and masking method.  With three packet sizes selected and three masking methods 

created, the combinations of each specify nine unique tests.  Twelve sound samples were 

created for each of these nine tests.  A vertical bubble list was then used to listen to the 

twelve sound samples created.  The order in which the subject would take the nine tests 

was also varied, determined by their subject number using the Circular Order Technique.  

This is to prevent skewing the data and is further described in chapter seven. 

 

Packet Sizes 

Packet size, which is defined as a function of delay parameters, is one of the 

fundamental attributes used to create the sound samples.  Three different packet sizes 

were chosen, with use of information about current wireless music systems, to represent 

lost data in a typical wireless live-audio communication system.  The sizes of these three 

lost data sets (LDS) of dropped packets were defined as 180, 540, and 1620 audio words.  

Errors in a wireless channel are bursty in nature, and a period of poor connectivity is 

likely to affect not just one or a few bits, but rather one or a few packets in a row.  

Therefore, the LDS size is chosen to represent one, three, or nine blocks of (180 audio 

words) lost due to interference or poor connectivity before the channel recovers.  Note 



 

34 

 

that even one block of 180 audio words may represent multiple data packets, depending 

on the size of the packet chosen, and that the selection of the radio data packet size 

involves tradeoffs between packet header size, efficiency of the channel, latency and 

radio buffer sizes  However, this thesis focuses on the aggregate effects of LDS of 

varying sizes, and the ability to hear the effects and to mask the effects to the hearer, not 

on selecting optimum packet sizes for efficient data transmission. 

 

Error Rates 

A set of five error rates was fine tuned to correspond to five of the twelve sound 

samples used in the tests.  To select these error rates, a wide range was first selected 

according to the calculation which showed how many packets would be dropped on 

average for the particular sound clip being used.  A sub group of participants was used to 

evaluate the typical packet error rate threshold for the current set of error rates.  After a 

few rounds of testing, the final set of error rates was determined to be the probability 

static error rate set of [.3e-2 1e-3 .3e-3 1e-4 .3e-4].  This set represents the typical error 

rates found in a digital wireless live-audio communication system for which the subjects 

could detect during evaluation.  For this reason, the chosen error rates increase 

logarithmically, as that is the way in which the human ear can detect noise. 

The top bubble indicates the most number of dropped packets in the sound clip, 

likewise having the least number of dropped packets, chosen as none, at the bottom of the 

bubble list.  The placement of the static set of five error rates was shifted at random for 

each test so that the packet error rate threshold could not be intuitively found.  Those 

sound samples above the static set of five error rates were created using the maximum 

error rate, whereas those below the static set were left with no errors. 



 

35 

 

Sound Samples 

Due to the way a person compares sound samples, they are limited to seven 

seconds each.  In this way, the sound sample is long enough for the user to listen for 

noise, yet short enough where if the randomly generated dropped packet positions are at 

the end, they will still hear them.  The type of music is important for this type of testing.  

Wanting to test a case where the noise will not naturally be masked by the music, I chose 

a steadily mellow instrumental piece.  In this way, the music is loud enough so that noise 

will be heard, yet not so loud that it will naturally mask too much of the dropped packet 

noise.   

 

  



 

36 

 

 

 

CHAPTER SEVEN 

 

Matlab Graphical User Interface 

 

 

Purpose 

 

The Graphical User Interface (GUI) was created in order to find the packet error 

rate threshold for several sound clips with different attributes.  In this way, it can be 

determined which combination of these attributes has the highest packet error rate 

threshold, and therefore is the best candidate for increasing the range and sound quality 

of a digital wireless live-music system.  The purpose of the GUI is to provide a method 

for presenting, comparing and recording results for each of the twelve different sound 

samples in the nine separate tests. 

The GUI can be used to generate all of the permutations of the test conditions.  

Each specific condition is determined by packet size and method for masking the 

perceptual effects of dropped packets.  A screen shot of the interface is shown in Figure 7 

below.  Each subject will be asked to select the radio button in the lowest position for 

which dropped packets are audible. 

 

Implementation in Matlab 

Dropped Packets 

For each of the nine combinations of masking method and packet size, twelve 

sound samples needed to be created for the test.  The Matlab m-file for automatically 

creating all nine tests can be found in Appendix B.  To create these sound samples for the 

blanking and repeat masking methods, the corresponding packet error rate 



 

37 

 

 

Figure 7: Graphical User Interface for Human Subject Testing 

was used in conjunction with the Matlab m-file titled makeclip.m.  The Matlab m-file 

makeblend.m was used in the same way for the low-pass blend masking method.  These 

files can be found in Appendices C and D, respectively. 

The code for corrupting the sound samples with dropped packets can be found in 

these files.  It was found that although the sound sample chosen was evenly mellow, the 

random placements of the dropped packets still made a difference when listening for the 



 

38 

 

corruption noise.  To solve this problem, random locations were selected for the dropped 

packets to be simulated.  This list of locations was then shuffled and saved.  The Matlab 

code for creating this list of locations is titled droparray.m and can be found in Appendix 

F.  For each error rate, dropped packets were simulated in the corresponding number of 

locations, which were previously calculated.  In this way, a sound sample with a large 

error rate had dropped packets in the same locations as that of a sound sample with a 

smaller error rate, including extra locations.  This method for placement of the simulated 

dropped packets effectively kept the potential variance in placement from being an issue. 

 

Masking Methods 

The three masking methods previously described were each used in conjunction 

with all three of the defined packet lengths.  The Matlab file titled make_clip_params in 

Appendix B would identify the current masking method to use.  Here the unique 

parameters to create the tests were also defined before being passed to the function which 

would create the individual sound samples for testing in the GUI. 

In order to implement the blanking masking method and the repeat masking 

method, the Matlab file make_clip in Appendix C was created.  After the properties are 

passed to this function from the higher-level code in the make_clip_params file, this 

function will have everything that it needs to create a unique sound sample, including 

which masking method to implement. 

As a simple overview, definitions and initializations are first created.  Then, 

according to which masking method is assigned, the „replacements‟ is defined as either 

zero or the last packet successfully sent.  With the error locations previously calculated 

using the particular packet as described in the previous section, the placement for a 



 

39 

 

dropped packet can simply be found by checking the current indexing with the array of 

error locations.  When it is found that the current packet should be simulated as dropped, 

it is replaced with the contents of „replacements‟ and smoothing is done on both sides of 

the new packet. 

For the third masking method, low-pass blend, the overall process is the same as 

the previous two.  The definitions and initializations are done in the same manner.  

However, while examining the Matlab code in Appendix D, titled make_blend, it can be 

seen that there are distinct differences in the calculations. 

As described in a previous chapter, the low-pass blend masking method is 

somewhat the combination of the repeat masking method and complex blending 

techniques.  The implementation of the blend for this technique can be found in the 

function titled blend, which can be found in Appendix E.  Here the complex blending is 

implemented as already described in a previous chapter. 

In order to blend both sides of the current packet successfully, there must be an 

added delay.  The location for the next packet must first be checked against the error 

locations.  If it is to be dropped, then the replacement of the last packet must be done 

before blending with the previous packet.  To keep track of when two packets are 

dropped in sequence, flags are used.  This can be seen in the make_blend code, as seen in 

Appendix D.  When this is finished implementing the low-pass blend masking method, 

each simulated dropped packet will have been replaced with the last successfully sent 

packet, and its edges blended with both the last and the next packets. 

 



 

40 

 

Smoothing 

Although the masking methods created made dramatic differences in the sound 

quality of the sound samples, graphs of the masked dropped packets showed that the 

sides of the dropped packet still created sharp edges.  Figure 8 below shows an instance 

where the blanking masking method was used to mask the dropped packet.  However, it 

can be seen that the sharp edges are left on either side of the masked dropped packet, 

creating a pop to the human ear.  This problem occurred both when using blanking 

masking, as shown, and likewise with the repeat masking method.  The other masking 

method, low-pass blend, did not require smoothing on its edges, for it already used a 

complex blending method in its implementation. 

 

 

Figure 8: Blanking Masking Method for a Single Dropped Packet 

The first method used to get rid of these sharp edges was cross fading.  To apply 

this to the front end of the packet, a piece of the end of the last packet is flipped.  It is 



 

41 

 

then weighted and added to the front of the masked dropped packet of the same size, with 

opposite weights.  This method creates a fade from the last packet into the current one.  

The same steps were taken to cross fade the end of the current packet.  However, after 

examination, it was found that cross fading in conjunction with both blanking and repeat 

methods did not smooth the current packet with its surrounding ones as expected.  With 

the edges being strong for both ends, a method was needed which would further blend the 

edges of the packets together. 

After experimentation, a successful smoothing method was created for both 

blanking and repeat masking.  To reduce the popping effect of the harsh edges on either 

side of the masked dropped packet, the edges were blunted.  To do this for the front of the 

dropped packet, the last sample of the end of the last packet was held for a short period.  

The same was done with the first sample of the current packet.  Although this did not 

completely get rid of the edges, it greatly reduced them.  Next, the two points were 

connected with a simple linear equation.  The result was effective; the pop created by the 

harsh edges was reduced.  Both simple and effective, this smoothing technique was a 

great asset to the masking methods. 

The figures below show an example of this smoothing technique in action in 

combination with the repeat masking method.  The first figure, Figure 9, a single dropped 

packet is shown.  This is what would occur in a digital wireless communication system 

when the packet length is 180/44.1ms.  The loud pop associated with such a break in data 

is what our masking methods aim to ease for the human ear. 

 



 

42 

 

 

Figure 9: A Single Dropped Packet 

For the repeat masking method, when a dropped packet occurs it replaced the hole 

where data is missing with the last successfully sent packet.  This can be seen in Figure 

10.  The repeated packet is highlighted in red, with the last successfully sent packet 

enclosed in a box.  It is obvious from reviewing this figure that simply repeating the last 

packet will not be an effective masking method.  With the sudden break in data at both 

edges of the previously dropped packet, pops will occur.  Although not as loud as the pop 

when the entire dropped packet is missing, these two close pops will most certainly be 

heard by the human ear. 

 



 

43 

 

 

Figure 10: Repeat of Last Successfully Sent Packet 

To ease these pops, the smoothing technique, as described, is implemented on 

both ends of the previously dropped packet.  Figure 11 below shows the result of this 

additional smoothing.  Comparing Figures 10 and 11, it can be deducted that although 

repeating the last successfully sent packet would not suffice as a valid masking method, 

when additional smoothing is added to the ends of the repeated packet the dropped packet 

is, in fact, masked quite well. 

 



 

44 

 

 
Figure 11: Repeat Making Method and Smoothing 

 The effectiveness of this smoothing technique can also be shown for the blanking 

masking method.  The first step, as with the repeat masking method, is to view the 

dropped packet as missing data.  This can be seen in Figure 9.  Remembering the large 

pop associated with the break in data, there is a dire need for implementing a masking 

method to ease the pop for the human ear.  The simplest masking method, the blanking 

masking method, replaces the missing data with 0‟s.  This process can be reviewed in 

Figure 12 below. 

 



 

45 

 

 

Figure 12: A Blanked Dropped Packet 

With very minimal computation, this is already an improvement from missing 

data completely.  However, harsh edges typically occur at both ends of the previously 

dropped packet.  As seen in the Figure 12, the next packet after this particular dropped 

packet happens to start at 0.  Therefore, the pop due to a harsh edge only occurs on the 

left side of the blanked dropped packet.  To reduce this effect, the smoothing technique 

described before is executed.  Figure 13 below shows smoothing on both ends of the 

blanked packet.  By comparing Figures 12 and 13, it can easily be seen that the 

smoothing technique plays a big role in the effectiveness of the blanking masking 

method.  As with the repeat masking method, simply blanking the dropped packet would 



 

46 

 

not be enough for a valid masking method.  However, when the smoothing is applied, the 

result of the masking method in Figure 13 looks quite effective. 

 

 
Figure 13: Blanking Masking Method and Smoothing 

Data Collection Automation 

With testing so many subjects, and each having data for all nine tests, the data to 

be stored and analyzed quickly amounted to quite a bit.  To ease this process, some 

automation techniques were used.  The m-file for the GUI, found in Appendix A, 

automatically collects the answers from all nine tests.  The subject‟s bubble choice is 

stored for each test, as well as the subject number. 



 

47 

 

After the subject is done taking the tests, the packet error rate thresholds found 

were easily inserted into Microsoft Excel.  Through many equations in Excel, the test 

answers were sorted so that they matched the correct test number.  The error rate was also 

calculated, using the placement of the static set of error rates along with the particular test 

number.  It was then a simple task to see the trends of effectiveness of the methods for 

the different tests.  This also helped in discerning if the subject‟s test data was erroneous 

data, which is further described in the Human Subject Testing Data section below.   

 

Format 

The format for the GUI was designed in such a way that the subject would easily 

be able to listen to the sound samples, compare them, and find the packet error rate 

threshold for each test.  To accomplish this layout, the intuitive design of a vertical 

bubble list and button was used.  In this way, the subject could simply click between 

bubbles to compare sound samples, and easily move to the next test.  The Matlab m-file 

which creates and runs the GUI can be found in Appendix A.  Both [8] and [9] were used 

in order to create such a complex GUI format, which not only runs all nine tests, but also 

stores the data in a concise way. 

 

Using the GUI 

 

On the first screen of the GUI, the subject number will be chosen from a drop 

down menu.  This will choose the order that the subject will take the nine tests.  This 

Circular Ordering Technique ensures that the data from all subjects is evenly distributed, 

and is explained further in the section below. 



 

48 

 

When a bubble is selected by the user, it will play the sound sample with the 

corresponding packet error rate.  For the case where the subject forgets what the goal of 

the test is, clear and precise instructions are given at the top of each test page.  In 

layman‟s terms, the goal for the user is to find the lowest bubble for which when clicked 

plays a sound clip where corruption noise can be heard.  The packet error rate threshold 

will thus be found for each test, showing the highest error rate which can be successfully 

masked for a certain test. 

Once the user has compared the sound samples and found the packet error rate 

threshold, simply clicking the button labeled „Next‟ will prepare the GUI for the 

following test.  Once all nine tests have been completed, the GUI‟s screen will instruct 

the subject to notify me that they are done, and thank them for their help in taking the 

tests for my study. 

 

Test Ordering Technique 

When conducting human subject testing, there are important measures that must 

be taken to ensure true data.  There are many factors at play due to the nature of human 

beings.  Having enough data is crucial to conclusive results, therefore enough people to 

participate in the testing is needed.  While taking the nine distinct tests, the subjects will 

learn how to distinguish noise with more accuracy, and thus better find the packet error 

rate threshold.  Therefore, the last test that they take will be more accurate, with use of 

their newfound understanding, than the first test that they take.  This ability to find the 

packet error rate threshold better by the end of the session is called a learning effect.  

Naturally, having this advantage on the same test for every user would not make for the 

most accurate data. 



 

49 

 

Another effect that comes into play with human subject testing is fatigue.  As with 

any period of test taking, fatigue can cause the subject to lose concentration through 

testing.  The set of nine tests has been kept brief to combat this.  Fatigue is a very natural 

occurrence during human subject testing and can be due to a number of reasons.  The 

most common of these include lack of sleep, lack of motivation to stay attentive, and 

distraction.  

Not wanting the results to be order dependent, an ordering technique was used to 

mix up the order of test-taking for the subjects.  This technique was inspired by the Latin 

Squares Method, although the noticeable difference is the circular property of the 

ordering technique used, thus it will be referred to as the Circular Ordering Technique.  

The difference between the results of the Latin Squares Method and the Circular 

Ordering Technique is the robustness in which they counter the fatigue and learning 

effects already discussed.  Although the Circular Ordering Technique is not as robust, it 

is efficient enough for our human subject testing.  It should also be noted that although 

the Circular Ordering Technique did account for the fatigue and learning effects, it did 

not test for the order of adjacent tests.  In other words, each test had the same two 

adjacent tests for each of the nine orders.  Unlike the Circular Ordering Technique, the 

Latin Squares Method mixes up the order of the tests in such a way that, for instance, test 

number two would sometimes be followed by test number five, and other times preceded 

by test number five. 

For the Circular Ordering Technique, every user would obtain a subject number, 

and the order in which they take the nine distinct tests would change according to their 

given number.  The orders were defined as keeping the order of the nine tests, and simply 



 

50 

 

changing the starting test for the subject.  For example, if the starting test was found to be 

test three for a particular subject, then the order in which they would take the nine tests 

would be test numbers three, four, five, six, seven, eight, nine, one, and two.  A table 

showing which subject numbers gave a particular starting test number is given below. 

 

Table 1: Combination Order for Each Subject 

Starting Test Subject Number 

 

1 8 17 26 35 44 53 

2 9 18 27 36 45 54 

3 1 10 19 28 37 46 

4 2 11 20 29 38 47 

5 3 12 21 30 39 48 

6 4 13 22 31 40 49 

7 5 14 23 32 41 50 

8 6 15 24 33 42 51 

9 7 16 25 34 43 52 

       

 

With nine different test order combinations, data for six subjects was kept for 

each combination.  This gives data for a total of fifty-four subjects, excluding the 

erroneous data, using each of the test orders, using subject numbers one through fifty-

four.  In this way, the effects of both fatigue and the learning effect would be distributed 

throughout all of the results, eliminating any bias towards a particular test. 

 

 



 

51 

 

 

 

 

CHAPTER EIGHT 

 

Results and Analysis 

 

 

Expected Results 

 

Primary Goal 

The results of the human subject testing were of great important for the analysis 

of the properties of the nine tests.  The primary goal from collecting the answers was to 

obtain an average packet error rate threshold for each combination of packet size and 

masking method.  Using this, I would then be able to evaluate the different tests, with the 

data showing which combination of masking method and packet length masked the 

largest packet error rate. 

Of the three masking methods, the blanking masking method has the least 

computation involved, and I expected the worst results from it.  On the other end, the 

low-pass blend masking method was computationally intensive.  I expected this to serve 

as an asset to the masking method, and for the effectiveness of the masking method to be 

above the rest.  With this result, I would evaluate the tradeoff between computation, 

resulting in a delay in the system, and effectiveness of the system, where a better sound 

quality and longer range would be obtained.  The middle masking method, where a 

dropped packet is replaced with the last successful packet, was expected to be a good 

balance between computation and result, and thus the best choice between the three 

masking methods. 



 

52 

 

The three packet lengths are previously defined in this thesis as the original 

packet length (180/44.1 ms), a small burst of packets (540/44.1 ms), and a large burst of 

packets (1620/44.1 ms).  When masking simulated dropped packets, it was expected that 

the larger the burst of dropped packets, the worse the resulting sound sample would 

sound.  This is because a long string of dropped packets will result in interfering noise 

that is hard to mask due to the nature of the masking techniques.  It can then be said that 

the smallest packet length, defined as a single packet dropped, would produce the best 

quality in the resulting sound sample.  This assumption is due to the fact that a smaller 

gap in the masking method to fix, the easier it would be to mask it. 

 

Erroneous Data 

Although most subjects asked to participate in the human subject testing would be 

of college age and should still have good hearing intact, I expected some subjects‟ data to 

not meet the typical hearing requirements or to be uncooperative.  For a worst case 

scenario, I expected twenty percent of the subjects‟ data to end up being set aside as 

erroneous data.  Data was determined to be erroneous by simply analyzing the subject‟s 

results for all nine tests, looking for indications of hearing loss or lack of attentiveness. 

 

Analysis of Results 

 

Data from the Human Subject Testing 

 Once the data was collected from all of the subjects, Microsoft Excel was used to 

organize the data to be used.  The excluded data, erroneous data, is discussed further in 

the section below.  The goal of evaluating the data was to determine the quality of 

masking done by each of the nine distinct pairs of packet length and masking method.  To 



 

53 

 

do this, the average, mode, and median were calculated for each of these pairs.  Tables 

showing these values, broken down by masking method used, are given below. 

 

Table 2: Evaluation for Blanking Masking Method 

 

Analysis p1 p2 p3 

Average: 2.29E-03 2.22E-03 3.29E-04 

Mode: 3.00E-03 3.00E-03 3.00E-05 

Median: 3.00E-03 3.00E-03 3.00E-05 

 

Table 3: Evaluation for Repeat Masking Method 

Analysis p1 p2 p3 

Average: 1.29E-03 2.50E-03 2.56E-03 

Mode: 3.00E-04 3.00E-03 3.00E-03 

Median: 1.00E-03 3.00E-03 3.00E-03 

 

Table 4: Evaluation for Low-Pass Blend Masking Method 

Analysis p1 p2 p3 

Average: 3.97E-04 3.99E-04 2.46E-05 

Mode: 3.00E-04 3.00E-05 3.00E-05 

Median: 3.00E-04 3.00E-05 3.00E-05 

 

 Careful viewing of the above tables does, in fact, determine which pairs 

effectively masked the simulated dropped packets better than the rest.  It should first be 

noted that the mode and median are close in number to the average for most of the nine 



 

54 

 

pairs.  This being said, the average answer is also the most common answer during the 

human subject testing, and the shape of the distribution is as expected.  This is further 

examined in the statistics analysis section below.  Remembering that higher numbers are 

better, meaning that it took a higher dropped packet rate to hear noise, the tables can then 

be deciphered. 

When categorizing the results by packet length, it can be seen that for the smallest 

packet length, p1, the blanking masking method works the best.  However, for the 

medium and large packet lengths, p2 and p3, respectively, the repeat masking method 

works the best.  Therefore, there is not one masking method that clearly works more 

effectively than the rest for all three packet lengths. 

It was also found that by placing many small dropped packets close together the 

interfering noise was more noticeable than when a single, large dropped packet occurred.  

In other words, several single dropped packets occurring in a close cluster proved to 

produce more unwanted noise in the sound sample than a burst of many dropped packets 

in a row.  This discovery could prove to be an interesting subject for future research in 

this field.  

 Another interesting find was that the ordering technique used to counter fatigue 

and learning effects was, in fact, not needed.  The noise heard in the nine different tests 

could be uniquely heard, no matter when it was heard.  Therefore, the consideration taken 

for the ordering of the tests was a good precaution to take, even though in the end it was 

not needed for this particular human subject testing.  It should, however, be kept as an 

important factor of this project, for most projects would show great biases due to effects 

such as fatigue and the learning effect. 



 

55 

 

Erroneous Data 

Some subjects‟ data from the tests was classified as erroneous data.  This could be 

due to anything from lack of attention to a good deal of hearing loss.  In some cases, the 

packet error rate threshold was consistently chosen where there was no error in the sound 

samples.  In others, they could not hear the noise from the dropped packets and therefore 

chose the maximum error rate for the tests.  In cases with data which was obviously 

erroneous, the data was simply set aside.  For instance, this could be consistently 

choosing the highest possible packet error rate threshold, indicating a large amount of 

hearing loss, or choosing the packet error rate threshold to be in a position where no 

packets were dropped, typically due to lack of attentiveness. 

Eighteen percent of the subjects that completed the GUI for human subject testing 

were classified as erroneous data.  This was below the estimated twenty percent, yet very 

close to it.  This data was not used in the final analysis.  Another subject took the tests 

with the same subject number to replace the erroneous data for analysis purposes.  

Therefore, the erroneous data was accounted for whilst aiming for a particular number of 

subjects‟ data for each testing order due to the Circular Order Technique constraints, 

described previously. 

 

Statistical Analysis of Results 

 To further analyze the data from the human subject testing, statistical models 

were applied.  Dr. Jack Tubbs, the chair of Baylor University‟s Department of Statistics, 

analyzed the data from the human subject tests using SAS. 

 Some of the results of the statistical analysis are discussed below, whereas the 

complete statistical analysis results from the human subject testing are shown in 



 

56 

 

Appendix K.  Figure 14 shows a histogram of the response data by masking method 

distribution, whereas Figure 15 shows a histogram of the response data by packet length 

distribution.  Note that the estimated distributions do not follow the curve of a normal 

distribution; therefore the data cannot be considered normal.  It can be seen, for instance, 

which masking method and packet length combination work most effectively.  When 

evaluating the histograms, it is important to define the axes.  The bottom axis represents 

the packet error rates, whereas the left axis shows how many subjects chose that 

particular packet error rate.  What we are looking for here is for the largest bar of a 

particular histogram to be on the right.  This would tell us that for most subjects taking 

that particular test, it took a higher packet error rate to hear interfering noise.  Thus, that 

test combination would more successfully mask dropped packets. 

 By evaluating the histogram in Figure 14, we can see that method 2, the repeat 

masking method, is the most effective masking method of the three.  It can also be seen 

that method 3, the low-pass blend masking method, has a histogram quite the opposite of 

what we would like to see.  This tells us that for most subjects, they could still hear 

interfering noise when the packet error rate was small, indicating that this masking 

method did not work as well as expected.  We anticipated the low-pass blend masking 

method to be the most effective of the three, although at the cost of computational delay.  

However, even with higher computational costs, the method did not compare favorably to 

the repeat masking method. 

 



 

57 

 

 

Figure 14: Histogram of the Response Data by Method Distribution 

 To evaluate the effectiveness of the packet lengths used, Figure 15 can be 

evaluated in the same manner as Figure 14.  Here we are still looking for the highest bar 

to be on the right side of the graph, with the definitions of the axes remaining the packet 

error rates and number of subjects as before.  With these criteria in mind, we notice that 

the histogram for the third packet length, defined as the largest packet length, on the 

bottom left has a tall bar on the left side of the graph.  This tells us that this large packet 

length did not help in masking the dropped packets, but rather made noise more apparent. 



 

58 

 

This analysis makes sense logically since a large string of dropped packets would 

be much harder to mask than a short burst of them.  Now bringing attention to the 

histogram of the second packet length, defined as the medium packet length, on the top 

right we see the shape that we are looking for.  Therefore, the medium packet length is 

the best length when evaluating the effectiveness of the masking techniques.  This comes 

as somewhat of a surprise, for the smaller packet length was expected to show better 

results.  Thus, it is not the single dropped packet that is the easiest for the masking 

methods to handle, but a small burst of dropped packets.  We conjecture that is in part 

due to the smoothing of the edges of the masked packet. 

 We now consider another type of analysis performed by Dr. Tubbs.  Figure 16 

shows this histogram of both the masking methods and the packet lengths.  The benefit of 

this graph is the ability to see which masking methods work the best for each packet 

length.  The left axis represents the packet error rates, where the bottom axis represents 

the three different packet lengths used. 

Looking above p1, the smallest packet length, we can see that the blue line, 

representing m1, the blanking masking method, corresponds to the highest packet error 

rate.  This tells us that for the smallest packet length, the blanking masking method 

results in the highest sound quality.  Likewise, for p2, the medium packet length, we see 

the blue and red dashed lines, blanking and repeat masking methods, respectively, 

compete for the best masking method, with the repeat masking method showing slightly 

better results.  Finally, on the far right we see for p3, the largest packet length, the repeat 

masking method works the best.  Here both the blanking and low-pass blend masking 

methods are far below the repeat masking method. 



 

59 

 

 

Figure 15: Histogram of the Response Data by Packet Distribution 

It should be noted that the low-pass blend masking method is far below the top-

performing masking method for all three packet lengths.  This confirms the previous 

finding that the low-pass blend masking method does not work as first expected.  Instead, 

its results are far below the other two masking methods.  

Overall, it can be said that the red dashed line is the highest on the graph, on 

average.  This tells us that the repeat masking method gives better sound quality during 

masking, on average, for the three tests where it is implemented.  This is in concurrence 



 

60 

 

 

 

Figure 16: Plot of the Response Data for Methods and Packet Lengths 

with the analysis of the previous graphs, confirming the repeat masking method as the 

best masking method when choosing one particular masking method for all three packet 

lengths. 

 

Conclusion 

Findings 

 After reviewing the analyses described above, we can see that there are multiple 

findings from this research project.  For a single, short dropped packet (180/44.1 ms), the 

blanking masking method was the most effective when comparing sound quality of the 

resulting sound samples.  For burst of dropped packets (540/44.1 ms and 1620/44.1 ms), 



 

61 

 

however, the repeat masking method was much more successful at creating a sound 

sample with superior sound quality. 

 There were two results found that I had not expected.  Initially, a small burst of 

dropped packets was masked better than a single dropped packet.  This can be logically 

explained due to the nature of the masking methods developed, particularly their 

smoothing property.  Although the smoothing technique used generally improved the 

sound quality of the sound sample, when a single dropped packet occurs there is simply 

not enough time for both masking and smoothing to take effect.  Therefore, the sound 

quality, when compared to the masking of a small burst, is inferior. 

 The second surprising find was the value of the low-pass blend masking method.  

Presented as the most complex of the three masking methods developed, it was expected 

to have a far better quality of sound sample resulting when evaluated against the results 

of the other two masking methods.  However, it was found that although much more 

computation was executed in the low-pass blend masking method, its resulting sound 

sample was of much lesser quality than the rest.  This came as somewhat of a 

disappointment, but an interesting discovery nonetheless. 

 The main deduction from this research is that for a typical digital wireless 

communication system of today‟s day and age, the repeat masking method is the best 

choice.  This judgment is for the condition where a system is being designed for 

maximum sound quality as a whole, not only for single dropped packets, but short and 

long bursts of dropped packets as well.   

 

 



 

62 

 

Applications 

The digital wireless communication systems of today can greatly benefit from my 

research.  There are many products for which my research can be applied, not only in 

wireless instruments and microphones, but also in-ear monitors and wireless speaker 

systems.  Not only is there a variety of products for which my research is applicable, but 

there are also many venues.  Intimate venues, such as a musician practicing at home or an 

at-home karaoke machine; houses of worship, where the entire band could be using 

wireless systems and large venues, such as a concert at a stadium, can all benefit from the 

findings of my research.  With the many products and venues for which my research can 

be implemented, it can easily be seen that my findings are a great contribution to the 

digital wireless communication systems of today. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

64 

 

 

 

 

APPENDIX A 

 

Matlab Code for Creating and Running the GUI 

function varargout = soundtest(varargin) 

% SOUNDTEST M-file for soundtest.fig 

%      SOUNDTEST, by itself, creates a new SOUNDTEST or raises the existing 

%      singleton*. 

%      H = SOUNDTEST returns the handle to a new SOUNDTEST or the handle to 

%      the existing singleton*. 

%      SOUNDTEST('CALLBACK',hObject,eventData,handles,...) calls the local 

%      function named CALLBACK in SOUNDTEST.M with the given input arguments. 

%      SOUNDTEST('Property','Value',...) creates a new SOUNDTEST or raises the 

%      existing singleton*.   

 

% Begin initialization code  

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @soundtest_OpeningFcn, ... 

                   'gui_OutputFcn',  @soundtest_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

  

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code  

  

% --- Executes just before soundtest is made visible. 

function soundtest_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args  

 

% Choose default command line output for soundtest 

handles.output = hObject; 

  

 



 

65 

 

%initializes the test number to load and the number of tests completed 

handles.testnumber=0; 

handles.numtest=0; 

 %this initializes the subject number (k) as 1 

handles.k=1; 

  

%this initializes the bubble answers 

handles.bubbles = []; 

     

%this initializes the radio button choice 

handles.rdbtn=[]; 

  

%This is for when you click the different buttons 

set(handles.clips_buttongroup,'SelectionChangeFcn',@clips_buttongroup_SelectionChan

geFcn); 

  

% Update handles structure 

guidata(hObject, handles); 

  

% --- Executes on selection change in subNums. 

function subNums_Callback(hObject, eventdata, handles) 

%        contents{get(hObject,'Value')} returns selected item from subNums 

  

%this grabs a copy of my handles 

handles = guidata(hObject);  

  

%this will read in the subject number the user has selected 

handles.k = get(hObject,'Value'); 

  

%this updates my handles 

guidata(hObject,handles); 

  

% --- Executes on button press in btnNext. 

function btnNext_Callback(hObject, eventdata, handles) 

 

%this will stop the sound so that the GUI can change 

clear playsnd 

  

%this grabs a copy of my handles 

handles = guidata(hObject);  

  

%output.bubbles will be the bubble answers 

handles.bubbles = [handles.bubbles handles.rdbtn];  

  

%this will start the first test 

if handles.numtest == 0 



 

66 

 

    %this initializes the button choice in case they don't change bubbles 

    handles.rdbtn=1; 

  

    %this will make the subject number list and text invisible 

    set(handles.subNums, 'Visible', 'off'); 

    set(handles.txtSubNum, 'Visible', 'off'); 

     

    %all of the testing elements will now be made visible 

    set(handles.txtInstruct, 'Visible', 'on'); 

    set(handles.clips_buttongroup, 'Visible', 'on'); 

    set(handles.txtHigh, 'Visible', 'on'); 

    set(handles.txtLow, 'Visible', 'on'); 

    set(handles.txtNum,'string','Test 1 of 9'); 

    set(handles.txtNum, 'Visible', 'on'); 

end 

     

%this will only run if there are still tests to run 

if handles.numtest < 9 

     

    %this increments the current test number 

    handles.numtest = handles.numtest+1; 

     

    %this sets the test number to load and run 

    %here there are 9 different tests (test0-test8) 

    handles.testnumber = mod(handles.k+handles.numtest,9); 

   

    %txtNum will display the current test number 

    tnum=num2str(handles.numtest); 

    currentTest =['Test ' tnum ' of 9']; 

    set(handles.txtNum,'string',currentTest); 

     

    %this resets the selection to the last bubble 

    handles.rdbtn=12; 

    set(handles.rdbtn12,'Value',1); 

  

    %this will load the next test's sound clips (y's and Fs's) 

    tload=num2str(handles.testnumber); 

    soundClips =['test' tload]; 

    load(soundClips) 

     

    %this update the y's and Fs's 

    handles.y1=y1; 

    handles.y2=y2; 

    handles.y3=y3; 

    handles.y4=y4; 

    handles.y5=y5; 



 

67 

 

    handles.y6=y6; 

    handles.y7=y7; 

    handles.y8=y8; 

    handles.y9=y9; 

    handles.y10=y10; 

    handles.y11=y11; 

    handles.y12=y12; 

    handles.Fs1=Fs1; 

    handles.Fs2=Fs2; 

    handles.Fs3=Fs3; 

    handles.Fs4=Fs4; 

    handles.Fs5=Fs5; 

    handles.Fs6=Fs6; 

    handles.Fs7=Fs7; 

    handles.Fs8=Fs8; 

    handles.Fs9=Fs9; 

    handles.Fs10=Fs10; 

    handles.Fs11=Fs11; 

    handles.Fs12=Fs12; 

     

    %this updates my handles 

    guidata(hObject,handles); 

else 

    

    %all of the testing elements will now be made invisible 

    set(handles.txtInstruct, 'Visible', 'off'); 

    set(handles.clips_buttongroup, 'Visible', 'off'); 

    set(handles.txtHigh, 'Visible', 'off'); 

    set(handles.txtLow, 'Visible', 'off'); 

    set(handles.txtNum, 'Visible', 'off'); 

    set(handles.btnNext, 'Visible', 'off'); 

     

    %this is the closing statement to the user, now visible 

    set(handles.txtClosing, 'Visible', 'on'); 

     

    %this is the final result for subject number and bubble selections 

    varargout{1}.bubbles=handles.bubbles; 

    varargout{1}.k=handles.k; 

    handles.output1=varargout; 

     

    %this updates my handles 

    guidata(hObject,handles); 

     

    %this resumes the output 

    uiresume; 

end 



 

68 

 

 % this function will run for when the different buttons are pressed 

function clips_buttongroup_SelectionChangeFcn(hObject, eventdata) 

  

%this will stop whatever is playing so that something else can play now 

clear playsnd 

  

%retrieve GUI data, i.e. the handles structure 

handles = guidata(hObject);  

  

switch get(eventdata.NewValue,'Tag')   % Get Tag of selected object 

    case 'rdbtn1' 

      %this keeps record of which button was played 

      handles.rdbtn = 1; 

      %execute this code when rdbtn1 is selected 

      sound(handles.y1,handles.Fs1); 

  

    case 'rdbtn2' 

      %this keeps record of which button was played 

      handles.rdbtn = 2; 

      %execute this code when rdbtn2 is selected 

      sound(handles.y2,handles.Fs2); 

  

    case 'rdbtn3' 

      %this keeps record of which button was played 

      handles.rdbtn = 3; 

      %execute this code when rdbtn3 is selected   

      sound(handles.y3,handles.Fs3); 

       

    case 'rdbtn4' 

      %this keeps record of which button was played 

      handles.rdbtn = 4; 

      %execute this code when rdbtn4 is selected 

      sound(handles.y4,handles.Fs4); 

  

    case 'rdbtn5' 

      %this keeps record of which button was played 

      handles.rdbtn = 5; 

      %execute this code when rdbtn5 is selected 

      sound(handles.y5,handles.Fs5); 

  

    case 'rdbtn6' 

      %this keeps record of which button was played 

      handles.rdbtn = 6; 

      %execute this code when rdbtn6 is selected   

      sound(handles.y6,handles.Fs6); 

       



 

69 

 

    case 'rdbtn7' 

      %this keeps record of which button was played 

      handles.rdbtn = 7; 

      %execute this code when rdbtn7 is selected 

      sound(handles.y7,handles.Fs7); 

  

    case 'rdbtn8' 

      %this keeps record of which button was played 

      handles.rdbtn = 8; 

      %execute this code when rdbtn8 is selected 

      sound(handles.y8,handles.Fs8); 

  

    case 'rdbtn9' 

      %this keeps record of which button was played 

      handles.rdbtn = 9; 

      %execute this code when rdbtn9 is selected   

      sound(handles.y9,handles.Fs9); 

       

    case 'rdbtn10' 

      %this keeps record of which button was played 

      handles.rdbtn = 10; 

      %execute this code when rdbtn10 is selected 

      sound(handles.y10,handles.Fs10); 

  

    case 'rdbtn11' 

      %this keeps record of which button was played 

      handles.rdbtn = 11; 

      %execute this code when rdbtn11 is selected 

      sound(handles.y11,handles.Fs11); 

  

    case 'rdbtn12' 

      %this keeps record of which button was played 

      handles.rdbtn = 12; 

      %execute this code when rdbtn12 is selected   

      sound(handles.y12,handles.Fs12); 

       

    otherwise 

       %the button pressed stored will be the last button pressed still 

end 

%updates the handles structure 

guidata(hObject, handles); 

  

% --- Outputs from this function are returned to the command line. 

function varargout = soundtest_OutputFcn(hObject, eventdata, handles)  

 

 



 

70 

 

%this will make the output function wait for the data 

uiwait; 

  

%retrieve GUI data, i.e. the handles structure 

handles = guidata(hObject);  

  

varargout=handles.output1; 

   



 

71 

 

 

 

 

APPENDIX B 

Matlab Code for Creating Sound Clips for All Nine Tests 

function make_clip_params 

%this function makes sound clips by calling make_clip with parameters 

%three types of masking (blanking, repeat, spectral) 

%three lengths of packets 

%there are 9 tests, each test has 12 bubble choices 

%5 particular fixed error rates for sound clips that will shift 

%use: 

%   make_clip_params(); 

%inputs: 

%   NONE 

%outputs: 

%   NONE, creates .mat files for test cases 0-8 

  

%% Intiaializations 

  

%length of the packet (*24) 

plbytes=[180 540 1620];  

 

%this loads dropall - the 3 lists of error locations 

load droparrays 

  

%this randomly decides how many 'blanks' are at the bottom of each test 

% for i=1:9 

% numBlank(i)=randi(7); 

% end 

numBlank=[5 3 6 2 2 5 7 6 5]; 

  

%these are the different error rates used to generate the sound clips 

err_rates=[.3e-2 1e-3 .3e-3 1e-4 .3e-4]; 

  

%this will be which test out of 9 

testnum=0; 

 

%% Calculations 

  

%type=0 -> blanking (test0,test1,test2) 

%type=1 -> repeat(test3,test4,test5) 

%type=2 -> Low Pass/Interpolated Blend(test6,test7,test8) 



 

72 

 

 %this will generate sound clips for the first and second masking methods 

for type=0:1 

    %this runs for all 3 packet sizes 

    for tnum=1:3 

         

        %this will be the list of dropped packet locations to use 

        currentdrop=dropall(tnum,:); 

  

        %length of the packet 

        payloadbytes=plbytes(tnum); 

  

        %these are used for the loops 

        %tells how many no-error clips will be at the bottom 

        temp1=12-numBlank(tnum+3*type); 

         

        %this sets the rest (top) to the same as the most error packet 

        probdrop=err_rates(1); 

        for i=1:temp1-5 

            %this creates the 'names' for the bubble 

            inum=num2str(i); 

            currentY=['y' inum]; 

            currentFs=['Fs' inum]; 

            currentErrLoc=['errorlocations' inum]; 

            %this sets the values for the bubble 

            eval(['[' currentY ' ' currentFs ' ' currentErrLoc ']' ' = make_clip(payloadbytes, 

probdrop, type, currentdrop);']); 

        end 

         

        %this sets the static chunk in place 

        k=1; 

        for i=temp1-4:temp1 

            %this creates the 'names' for the bubble 

            inum=num2str(i); 

            currentY=['y' inum]; 

            currentFs=['Fs' inum]; 

            currentErrLoc=['errorlocations' inum]; 

            %this sets the drop rate 

            probdrop=err_rates(k); 

            k=k+1; 

            %this sets the values for the bubble 

            eval(['[' currentY ' ' currentFs ' ' currentErrLoc ']' ' = make_clip(payloadbytes, 

probdrop, type, currentdrop);']); 

        end 

         

        %this sets the bottom numBlank(tnum) values with 0 drop rate 

        probdrop=0; 



 

73 

 

        for i=temp1+1:12 

            %this creates the 'names' for the bubble 

            inum=num2str(i); 

            currentY=['y' inum]; 

            currentFs=['Fs' inum]; 

            currentErrLoc=['errorlocations' inum]; 

            %this sets the values for the bubble 

            eval(['[' currentY ' ' currentFs ' ' currentErrLoc ']' ' = make_clip(payloadbytes, 

probdrop, type, currentdrop);']); 

        end 

        %this will save the data for each test 

        tempName=num2str(testnum); 

        currentName=['test' tempName]; 

        eval(['save ' currentName ' y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 Fs1 Fs2 Fs3 Fs4 

Fs5 Fs6 Fs7 Fs8 Fs9 Fs10 Fs11 Fs12 errorlocations1 errorlocations2 

errorlocations3 errorlocations4 errorlocations5 errorlocations6 errorlocations7 

errorlocations8 errorlocations9 errorlocations10 errorlocations11 

errorlocations12']); 

        testnum=testnum+1; 

    end 

end 

  

%this will generate sound clips for the third masking methods 

type=2; 

for tnum=1:3 

    %this will be the list of dropped packet locations to use 

    currentdrop=dropall(tnum,:); 

         

    %length of the packet 

    payloadbytes=plbytes(tnum); 

  

    %these are used for the loops; tells how many no-error clips will be at the bottom 

    temp1=12-numBlank(tnum+3*type); 

  

    %this sets the rest (top) to the same as the most error packet 

    probdrop=err_rates(1); 

    for i=1:temp1-5 

        %this creates the 'names' for the bubble 

        inum=num2str(i); 

        currentY=['y' inum]; 

        currentFs=['Fs' inum]; 

        currentErrLoc=['errorlocations' inum]; 

        %this sets the values for the bubble 

        eval(['[' currentY ' ' currentFs ' ' currentErrLoc ']' ' = make_blend(payloadbytes, 

probdrop, currentdrop);']); 

    end 



 

74 

 

     %this sets the static chunk in place 

    k=1; 

    for i=temp1-4:temp1 

        %this creates the 'names' for the bubble 

        inum=num2str(i); 

        currentY=['y' inum]; 

        currentFs=['Fs' inum]; 

        currentErrLoc=['errorlocations' inum]; 

        %this sets the drop rate 

        probdrop=err_rates(k); 

        k=k+1; 

        %this sets the values for the bubble 

        eval(['[' currentY ' ' currentFs ' ' currentErrLoc ']' ' = make_blend(payloadbytes, 

probdrop, currentdrop);']); 

    end 

  

    %this sets the bottom numBlank(tnum) values with 0 drop rate 

    probdrop=0; 

    for i=temp1+1:12 

        %this creates the 'names' for the bubble 

        inum=num2str(i); 

        currentY=['y' inum]; 

        currentFs=['Fs' inum]; 

        currentErrLoc=['errorlocations' inum]; 

        %this sets the values for the bubble 

        eval(['[' currentY ' ' currentFs ' ' currentErrLoc ']' ' = 

make_blend(payloadbytes, probdrop, currentdrop);']); 

    end 

  

    %this will save the data for each test 

    tempName=num2str(testnum); 

    currentName=['test' tempName]; 

    eval(['save ' currentName ' y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 Fs1 Fs2 Fs3 Fs4 

Fs5 Fs6 Fs7 Fs8 Fs9 Fs10 Fs11 Fs12 errorlocations1 errorlocations2 

errorlocations3 errorlocations4 errorlocations5 errorlocations6 errorlocations7 

errorlocations8 errorlocations9 errorlocations10 errorlocations11 

errorlocations12']); 

    testnum=testnum+1; 

end 

  

end  



 

75 

 

 

 

APPENDIX C 

Matlab Code for Creating Sound Clips for Blanking and Repeat Masking Methods 

function [y Fs errorlocations]=make_clip(payloadbytes, probdrop, type, droparray) 

%this function will give an output (y) of a sound clip 

%%THIS USES A 3-PART LINEAR CONNECTION 

%use: [y Fs]=make_clip(payloadbytes, probdrop, type, droparray) 

%outputs: 

% y - seven second sound clip 

% Fs - sampling rate returned from the wavread call 

% errorlocations - array of locations where dropped packets occur % <- 

%   could put back in 

%inputs: 

% payloadbytes - num of bytes in payload, min of 128 

% probdrop - probability of a packet being dropped (changes packet size) 

% type - what type of masking will be used for the dropped packets 

%   0=blanking, 1=repeat 

% droparray - this is the list of error locations to use 

  

%% Initializations 

  

%y will be the clip where packets are dropped 

[y Fs]=wavread('Allegro.wav');  

y=.5*y(10*Fs:20*Fs);  

  

%converts payloadsize (in bytes) to samples 

packsize=floor(payloadbytes/3);  

  

%m divides the sound clip into chunks depending on the number of samples 

m=floor(length(y)/(packsize)); 

  

%this is how many dropped packets there will be 

dropnum=ceil(m*probdrop); 

  

%this is the list of locations to use for dropped packets 

errloclist=droparray(1:dropnum); 

  

%mblank will tell where the packets were dropped 

errorlocations=[]; 

  

 



 

76 

 

%this is the part of the current/adjacent blocks for linear connections 

B=15; 

 

%this is the length of the horizontal linear portions 

Bsides=3; 

%this is the length of the sloped linear connection 

Bmid=B-Bsides*2; 

  

%% Calculations 

  

%here blanking is implemented 

if type == 0 

     

    %this is what will replace the dropped packet 

    replacements = 0; 

     

    %this is the process to drop the packets in the sound clip 

    for k=1:m 

  

        if sum(ismember(errloclist,k)) == 1 

            %when a packet is dropped, the entire packet is replaced with 

            %zeros, blanking the packet 

            y((k-1)*packsize+1:k*packsize)=replacements; 

  

            %each time a packet is dropped, mblank will hold the location 

            errorlocations=[errorlocations k]; 

             

            %this grabs the last point of the last packet 

            left_temp=y(((k-1)-1)*packsize+1:(k-1)*packsize); 

            leftend=left_temp(end); 

              

            %this grabs a point of the current/dropped packet B from front 

            curr_temp=y((k-1)*packsize+1:k*packsize); 

            frontB=curr_temp(B);           

            %this grabs a point of the current/dropped packet B from back 

            backB=curr_temp(end-B+1); 

             

            %this grabs the first point of the next packet (assumed right) 

            right_temp=y(((k+1)-1)*packsize+1:(k+1)*packsize); 

            rightfront=right_temp(1); 

  

            %this creates linear connections for the front end (lcf's) 

            %this is the sloped/middle connection 

            n=1:Bmid-1; 

            lcf_mid=leftend+((n/Bmid)*(frontB-leftend)); 

            %this is the front left horizontal piece 



 

77 

 

            lcf_left=[]; 

            for i=1:Bsides 

                lcf_left=[lcf_left leftend]; 

            end 

            %this is the front right horizontal piece 

            lcf_right=[]; 

            for i=1:Bsides 

                lcf_right=[lcf_right frontB]; 

            end 

            %this puts the three front linear connections together 

            lcf=[lcf_left lcf_mid lcf_right]; 

             

            %this creates a linear connections for the back end (lcb's) 

            %this is the sloped/middle connection 

            lcb_mid=backB+((n/Bmid)*(rightfront - backB)); 

            %this is the back left horizontal piece 

            lcb_left=[]; 

            for i=1:Bsides 

                lcb_left=[lcb_left backB]; 

            end 

            %this is the back right horizontal piece 

            lcb_right=[]; 

            for i=1:Bsides 

                lcb_right=[lcb_right rightfront]; 

            end 

            %this puts the three back linear connections together 

            lcb=[lcb_left lcb_mid lcb_right]; 

             

            %this puts the linear connections into the current packet 

            %there are B values 'created' with the linear connections 

            ynew=[lcf curr_temp(B:end-B+1) lcb]; 

            %this places the new current packet into place 

            y((k-1)*packsize+1:k*packsize)=ynew; 

        end 

    end 

  

%here repeat masking is implemented 

elseif type == 1 

     

    %this is what will replace the dropped packet 

    replacements = 0; 

     

    %this is the process to drop the packets in the sound clip 

    for k=1:m 

  

        if sum(ismember(errloclist,k)) == 1 



 

78 

 

            %when a packet is dropped, the entire packet is replaced with 

            %the last packet successfully sent 

            y((k-1)*packsize+1:k*packsize)=replacements; 

  

            %each time a packet is dropped, mblank will hold the location 

            errorlocations=[errorlocations k]; 

             

            %this grabs the last point of the last packet 

            left_temp=y(((k-1)-1)*packsize+1:(k-1)*packsize); 

            leftend=left_temp(end); 

              

            %this grabs a point of the current/dropped packet B from front 

            curr_temp=y((k-1)*packsize+1:k*packsize); 

            frontB=curr_temp(B);           

            %this grabs a point of the current/dropped packet B from back 

            backB=curr_temp(end-B+1); 

             

            %this grabs the first point of the next packet (assumed right) 

            right_temp=y(((k+1)-1)*packsize+1:(k+1)*packsize); 

            rightfront=right_temp(1); 

  

            %this creates linear connections for the front end (lcf's) 

            %this is the sloped/middle connection 

            n=1:Bmid-1; 

            lcf_mid=leftend+((n/Bmid)*(frontB-leftend)); 

            %this is the front left horizontal piece 

            lcf_left=[]; 

            for i=1:Bsides 

                lcf_left=[lcf_left leftend]; 

            end 

            %this is the front right horizontal piece 

            lcf_right=[]; 

            for i=1:Bsides 

                lcf_right=[lcf_right frontB]; 

            end 

            %this puts the three front linear connections together 

            lcf=[lcf_left lcf_mid lcf_right]; 

             

            %this creates a linear connections for the back end (lcb's) 

            %this is the sloped/middle connection 

            lcb_mid=backB+((n/Bmid)*(rightfront - backB)); 

            %this is the back left horizontal piece 

            lcb_left=[]; 

            for i=1:Bsides 

                lcb_left=[lcb_left backB]; 

            end 



 

79 

 

            %this is the back right horizontal piece 

            lcb_right=[]; 

            for i=1:Bsides 

                lcb_right=[lcb_right rightfront]; 

            end 

            %this puts the three back linear connections together 

            lcb=[lcb_left lcb_mid lcb_right]; 

             

            %this puts the linear connections into the current packet 

            %there are B values 'created' with the linear connections 

            ynew=[lcf curr_temp(B:end-B+1) lcb]; 

            %this places the new current packet into place 

            y((k-1)*packsize+1:k*packsize)=ynew; 

        end 

         

        %this holds onto the last packet successfully sent 

        replacements = y((k-1)*packsize+1:k*packsize); 

    end 

end 

 

end 

     

 

 

  



 

80 

 

 

 

APPENDIX D 

Matlab Code for Creating Sound Clips for Low-Pass Blend Masking 

function [y Fs errorlocations]=make_blend(payloadbytes, probdrop, droparray) 

%this function will give an output (y) of a sound clip 

%use: [y Fs]=make_blend(payloadbytes, probdrop, droparray) 

%outputs: 

% y - seven second sound clip 

% Fs - sampling rate returned from the wavread call 

% errorlocations - array of locations where dropped packets occur % <- 

%   could put back in 

%inputs: 

% payloadbytes - num of bytes in payload, min of 128 

% probdrop - probability of a packet being dropped (changes packet size) 

% droparray - this is the list of error locations to use 

  

%% Initializations 

  

%yorig will be a portion of the wav file 

%y will be the clip where packets are dropped 

[y Fs]=wavread('Allegro.wav');  

y=.5*y(10*Fs:20*Fs);  

 

%converts payloadsize (in bytes) to samples 

packsize=floor(payloadbytes/3);  

  

%m divides the sound clip into chunks depending on numsamples 

m=floor(length(y)/(packsize)); 

  

%this is how many dropped packets there will be 

dropnum=ceil(m*probdrop); 

  

%this is the list of locations to use for dropped packets 

errloclist=droparray(1:dropnum); 

  

%mblank will tell where the packets were dropped 

errorlocations=[]; 

  

%% Calculations 

%this is what will replace the dropped packet 

replacements = 0; 



 

81 

 

%this will indicate a packet was just dropped 

drop_flag=0; 

  

%this is the process to drop the packets in the sound clip 

for k=1:m 

  

    %if the last packet was dropped and the current packet is dropped, the 

    %  blending of the end of the last packet/front of the current packet 

    %  is automatically taken care of 

    if sum(ismember(errloclist,k)) == 1 

        %when a packet is dropped, the entire packet is replaced with 

        %the last packet successfully sent 

        y((k-1)*packsize+1:k*packsize)=replacements; 

         

        %this will indicate the packet was dropped 

        drop_flag=1; 

  

        %each time a packet is dropped, mblank will hold the location 

        errorlocations=[errorlocations k]; 

  

        %this holds onto the last packet sent 

        lastpac=y(((k-1)-1)*packsize+1:(k-1)*packsize); 

         

        %this holds onto the current packet 

        currpac=y((k-1)*packsize+1:k*packsize); 

         

        %this send the last and current packets into a sub-routine that 

        %  does low pass/interpolated blending on them 

        [lastpac currpac] = blend(lastpac,currpac); 

  

        %this replaces the last and current packets with the blended ones 

        y(((k-1)-1)*packsize+1:(k-1)*packsize)=lastpac; 

        y((k-1)*packsize+1:k*packsize)=currpac; 

         

    %if the current packet wasn't dropped but the last packet was, blending 

    %  of the end of the last packet/front of the current packet is done 

    elseif drop_flag 

         

        %this resets the flag indicator 

        drop_flag=0; 

         

        %this holds onto the last packet sent 

        lastpac=y(((k-1)-1)*packsize+1:(k-1)*packsize); 

         

        %this holds onto the current packet 

        currpac=y((k-1)*packsize+1:k*packsize); 



 

82 

 

        %this send the last and current packets into a sub-routine that 

        %  does low pass/interpolated blending on them 

        [lastpac currpac] = blend(lastpac,currpac); 

  

        %this replaces the last and current packets with the blended ones 

        y(((k-1)-1)*packsize+1:(k-1)*packsize)=lastpac; 

        y((k-1)*packsize+1:k*packsize)=currpac; 

    end 

  

    %this holds onto the last packet successfully sent 

    replacements = y((k-1)*packsize+1:k*packsize); 

end 

 

end 

     

 

 

  



 

83 

 

 

 

APPENDIX E 

Matlab Code for Implementing Low-Pass Blend Masking 

function [packetout1 packetout2] = blend(packetin1,packetin2) 

%this function will give 2 outputs, the current and next packets 

%use: [packetout1 packetout2] = blend(packetin1,packetin2) 

%outputs: 

% packetout1 - the last packet, with the end blended 

% packetout2 - the current packet, with the front blended 

%inputs: 

% packetin1 - the last packet sent 

% packetin2 - the current packet, which was dropped 

  

%% Initializations 

  

%flips the packets for calculation purposes 

packetin1=packetin1'; 

packetin2=packetin2'; 

  

%these are the lengths of the input packets (last and current) 

paclen1=length(packetin1); 

paclen2=length(packetin2); 

  

%if for some reason the packet lengths are different, an error occurs 

if paclen1~=paclen2 

    error('packets must be the same length'); 

end 

  

%Npts will be blended on the back of p1 and the front of p2 (Npts*2 total) 

%the variance in Npts is needed for the different packet sizes 

Npts=floor(.04*paclen1); 

  

%there are Dfactor points making every point in Npts 

Dfactor=4; 

  

%% Calculations 

  

%this will indicate the end portion of packetin1 

n1=paclen1:-Dfactor:paclen1-Npts*(Dfactor)+1; 

n1=fliplr(n1); 

 



 

84 

 

%this is the end portion of packetin1 to blend 

p1end=packetin1(n1); 

  

%this will indicate the front portion of packetin2 

n2=Dfactor:Dfactor:Npts*(Dfactor)+1; 

%this is the beginning portion of packetin2 to blend 

p2beg=packetin2(n2); 

  

%x is the section to be blended (end of packet1, front of packet2) 

x=[p1end' p2beg']; 

  

%this does FFT interpolation of x 

y=interpft(x,Dfactor*Npts*2); 

  

%this replaces the original packet1 with the new packet, the end blended 

packetout1=packetin1'; 

%the last Npts*Dfactor-3 pts of the last packet are replaced w/ blended y 

%  the last 3 points of the blended y section are not used 

packetout1(paclen1-(Npts*Dfactor-3-1):paclen1)=y(1:Npts*Dfactor-3); 

  

%this replaces the original packet2 with the new packet, the front blended 

packetout2=packetin2'; 

%the first Npts*Dfactor pts of the current packet are replaced w/ blended y 

%  the last 3 points of the blended y section are not used 

packetout2(1:Npts*Dfactor)=y((end-3)-(Npts*Dfactor-1):end-3); 

  

end 

  

  



 

85 

 

 

 

APPENDIX F 

Matlab Code for Calculating Locations of Simulated Dropped Packets 

function droparray=drop_pac_locs(m) 

%this function will generate an array of locations for dropped packets 

%use: 

%   droparray=drop_pac_locs(m); 

%inputs: 

%   m - the number of packets in the sound clip 

%outputs: 

%   droparray - the array of locations for dropped packets, use in order 

  

%% Initializations 

  

%this is the maximum number of dropped packets that will be used 

dropmax=50; 

  

%this will be the array of locations for the dropped packets 

droparray=zeros(1,dropmax); 

  

%% Calculations 

  

%this will randomly grab packet locations 

tempnum=0; 

while tempnum < dropmax 

     

    %this will grab a random location 

    temploc=randi(m-1,1)+1; 

     

    %this will make sure the location hasn't already been chosen 

    if sum(ismember(droparray,temploc)) == 0 

    

        %this increments tempnum for the number of locs used 

        tempnum=tempnum+1; 

         

        %this grabs the location for the dropped packet 

        droparray(tempnum)=temploc; 

    end 

end 

  

end  



 

86 

 

 

APPENDIX G 

Matlab Code for Encoding Using the Hamming (7, 4) Code 

codewords=[6 4 6 1 12 14]; 

  

codewords=uint8(codewords); 

  

for j=1:length(codewords) 

    temp=codewords(j); 

    da=0; 

    db=0; 

    dc=0; 

    dap=0; 

    dbp=0; 

    dcp=0; 

    for k=4:-1:1; 

         

        ix=bitget(temp,k); 

        dap=db; 

        dbp=xor(xor(ix,da),dc); 

        dcp=xor(ix,da); 

        da=dap; 

        db=dbp; 

        dc=dcp; 

    end 

     

    temp=bitset(temp,7,da); 

    temp=bitset(temp,6,db); 

    temp=bitset(temp,5,dc); 

     

    codewords(j)=temp; 

end 

  

     

     

 

 

 

  



 

87 

 

 

APPENDIX H 

Matlab Code for Decoding Using the Hamming (7, 4) Code 

function output=decoder(r) 

%this function will decode a word given the word (r) and ht. 

%   where r is n long, ht must be n-k wide and n tall 

%   this example will use a (7,4) code (n=7, k=4) 

%   try using: r=[1 0 1 1 0 1 1]; 

  

%this is h transform 

ht=[1 0 0; 0 1 0; 1 1 0; 0 0 1; 1 0 1; 0 1 1; 1 1 1]; 

  

%this is the particular syndrome 

k=r*ht; 

k=mod(k,2); 

  

%k can now be used as a particular place in the LUT 

k = (2^0)*k(3)+(2^1)*k(2)+(2^2)*k(1); 

  

%this is the LUT of error code words 

e=[0 0 0 0 0 0 0; 0 0 0 1 0 0 0; 0 1 0 0 0 0 0; 0 0 0 0 0 1 0; 1 0 0 0 0 0 0; 0 0 0 0 1 0 0; 0 0 

1 0 0 0 0; 0 0 0 0 0 0 1]; 

e2=e'; 

  

%s is the index telling which error code to use 

s=7*k+1; 

%the output is the corrected r 

output=xor(r, e2(s:s+6)) 

  

  

 

  



 

88 

 

 

 

APPENDIX I 

Matlab Code for Determining the Parity Bits 

function y2=paritybits(codeword) 

%this function finds the parity bits for the chunks in given codeword 

%use: paritybits(codeword) 

% codeword is the list of chunks to get parity bits for 

% codeword should be like: [6 4 6 1 12 14] 

  

%%  initialization 

codeword=[6 4 6 1 12 14]; 

y2=zeros(1.2*size(codeword)); 

  

codeword=uint8(codeword); 

y2=uint8(y2); 

  

%this will be the word of parity bits 

p=zeros(15); 

  

%this is used to put only 5 parities into p 

count=0; 

  

%this will keep track of where to put p in y2 

i=0; 

pinsert=0; 

 

%%  finding parity 

%this will run for every chunk in codeword 

for j=1:length(codeword) 

     

    %this holds the particular chunk to be looked at 

    temp=codeword(j); 

     

    %initializations for every encoding cycle 

    da=0; 

    db=0; 

    dc=0; 

    dap=0; 

    dbp=0; 

    dcp=0; 

     



 

89 

 

    %this puts the four info bits of the chunk through the encoder 

    for k=4:-1:1; 

        ix=bitget(temp,k); 

        dap=db; 

        dbp=xor(xor(ix,da),dc); 

        dcp=xor(ix,da); 

        da=dap; 

        db=dbp; 

        dc=dcp; 

    end 

     

    %the parity bits for the particular word (j) are put in place 

    %p will look like [p1 p2 p3 p4 p5] as 5 parities, 3 bits each 

    p((3*(j-1)+1):(3*(j-1)+3))=[da db dc]; 

     

    count=count+1; 

     

    %%  make the encoded codeword 

     

    %this puts the current word into the correct spot of y2 

    y2(pinsert+count)=temp; 

     

    %this runs once p has 5 parities in it (it's full) 

    if count==5 

        %resets count and adds 1 to the p index 

        count=0; 

        i=i+1; 

        %pinsert is the placement for p 

        pinsert=5*(i-1)+2; 

         

        %this puts p into the correct spot of y2 

        y2(pinsert)=p; 

         

        %resets p 

        p=zeros(15); 

    end  

  

end 

  

  

 

  



 

90 

 

 

 

APPENDIX J 

Matlab Code for Keeping the MSB 

function output=mbits(d, m, cells) 

%This function will grab m bits from d and 0-fill the rest of the cells 

%this is for 24-bit values, so 6 cells of a nibble each 

%use of the function: mbits(d,m,cells) 

%  d (the array of differences for the packet), ex: [27 12 -9 4 -2 -13]' 

%  m (the number of bits to keep from d, must be mult of 4) 

%  cells (array,the number of cells each number in d is in) 

   

%this is a temporary d, m and cells to test the function 

tempd=[27 12 -9 4 -2 -13]'; 

d=tempd; 

m=4; 

cells=[4 2 1 1 3 5]; 

  

for k=1:length(d) %this will keep the MSB (m) of each d(k) 

    if cells(k)==1 

         for i = 1:4-m 

             a(k) = bitset(d(k),(4-m)-i+1,0); 

         end 

  

    elseif cells(k)==2 

         for i = 1:8-m 

             a(k) = bitset(d(k),(8-m)-i+1,0); 

         end 

         

    elseif cells(k)==3 

         for i = 1:12-m 

             a(k) = bitset(d(k),(12-m)-i+1,0); 

         end 

         

    elseif cells(k)==4 

         for i = 1:16-m 

             a(k) = bitset(d(k),(16-m)-i+1,0); 

         end 

    else 

    fprintf('Value %d is not worth compressing it is more than 16 bits', k); 

    end 

end 



 

91 

 

     

 

 

APPENDIX K 

Statistical Analysis of Human Subject Testing Results 

 

 

Figure K.1: Histogram of the Response Data by Response Distribution 



 

92 

 

Response by Packet Distribution – The Mixed Procedure 
 

 

Model Information 

Data Set WORK.TEMP 

Dependent Variable response 

Covariance 

Structure 

Variance 

Components 

Estimation Method REML 

Residual Variance 

Method 

Profile 

Fixed Effects SE 

Method 

Model-Based 

Degrees of Freedom 

Method 

Containment 

 

 

Class Level Information 

Class 

Lev

els Values 

ORDER 9 1 2 3 4 5 6 7 8 9 

SUBJEC

T 

54 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

18 19 20 21 22 23 24 25 26 27 28 29 30 31 

32 33 34 35 36 37 38 39 40 41 42 43 44 45 

46 47 48 49 50 51 52 53 54 

method 3 m1 m2 m3 

packet 3 p1 p2 p3 

 

 

Dimensions 

Covariance 

Parameters 

2 

Columns in X 16 

Columns in Z 54 

Subjects 1 

Max Obs Per 

Subject 

486 

 

 

Number of Observations 

Number of Observations 

Read 

486 

Number of Observations 

Used 

486 

Number of Observations 

Not Used 

0 



 

93 

 

 

Iteration History 

Itera

tion 

Evaluat

ions 

-

2 Res Log 

Like 

Criter

ion 

0 1 -

5263.93636

706 

 

1 1 -

5275.85690

666 

0.0000

0000 

 

Covariance 

Parameter 

Estimates 

Cov 

Parm 

Estima

te 

SUBJECT 8.145E

-8 

Residua

l 

7.939E

-7 

 

Fit Statistics 

-2 Res Log 

Likelihood 

-

5275

.9 

AIC (smaller is 

better) 

-

5271

.9 

AICC (smaller is 

better) 

-

5271

.8 

BIC (smaller is 

better) 

-

5267

.9 

 

Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

De

n 

DF 

F 

Value 

Pr >

 F 

method 2 42

4 

185.0

0 

<.00

01 

packet 2 42

4 

27.62 <.00

01 

method*pac

ket 

4 42

4 

47.18 <.00

01 

Convergence 

criteria met. 



 

94 

 

Least Squares Means 

Effect 

metho

d 

pack

et 

Estim

ate 

Standa

rd 

Error DF 

t Va

lue 

Pr > 

|t| 

method m1  0.001

612 

0.0000

80 

42

4 

20.1

3 

<.00

01 

method m2  0.002

116 

0.0000

80 

42

4 

26.4

3 

<.00

01 

method m3  0.000

273 

0.0000

80 

42

4 

3.41 0.00

07 

packet  p1 0.001

325 

0.0000

80 

42

4 

16.5

5 

<.00

01 

packet  p2 0.001

706 

0.0000

80 

42

4 

21.3

1 

<.00

01 

packet  p3 0.000

970 

0.0000

80 

42

4 

12.1

2 

<.00

01 

method*pac

ket 

m1 p1 0.002

288 

0.0001

27 

42

4 

17.9

7 

<.00

01 

method*pac

ket 

m1 p2 0.002

218 

0.0001

27 

42

4 

17.4

2 

<.00

01 

method*pac

ket 

m1 p3 0.000

329 

0.0001

27 

42

4 

2.58 0.01

02 

method*pac

ket 

m2 p1 0.001

291 

0.0001

27 

42

4 

10.1

4 

<.00

01 

method*pac

ket 

m2 p2 0.002

500 

0.0001

27 

42

4 

19.6

4 

<.00

01 

method*pac

ket 

m2 p3 0.002

557 

0.0001

27 

42

4 

20.0

8 

<.00

01 

method*pac

ket 

m3 p1 0.000

397 

0.0001

27 

42

4 

3.12 0.00

20 

method*pac

ket 

m3 p2 0.000

399 

0.0001

27 

42

4 

3.13 0.00

19 

method*pac

ket 

m3 p3 0.000

025 

0.0001

27 

42

4 

0.19 0.84

67 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

95 

 

Differences of Least Squares Means 

Eff

ect 

met

hod 

pac

ket 

_met

hod 

_pa

cke

t 

Esti

mate 

Stan

dard 

Erro

r 

D

F 

t V

alu

e 

Pr 

> 

|t| 

Adjust

ment 

Ad

j 

P 

met

hod 

m1  m2  -

0.00

050 

0.00

0099 

4

2

4 

-

5.0

9 

<.0

001 

Tukey-

Kramer 

<.

00

01 

met

hod 

m1  m3  0.00

1338 

0.00

0099 

4

2

4 

13.

52 

<.0

001 

Tukey-

Kramer 

<.

00

01 

met

hod 

m2  m3  0.00

1842 

0.00

0099 

4

2

4 

18.

61 

<.0

001 

Tukey-

Kramer 

<.

00

01 

pac

ket 

 p1  p2 -

0.00

038 

0.00

0099 

4

2

4 

-

3.8

4 

0.0

001 

Tukey-

Kramer 

0.

00

04 

pac

ket 

 p1  p3 0.00

0355 

0.00

0099 

4

2

4 

3.5

9 

0.0

004 

Tukey-

Kramer 

0.

00

11 

pac

ket 

 p2  p3 0.00

0736 

0.00

0099 

4

2

4 

7.4

3 

<.0

001 

Tukey-

Kramer 

<.

00

01 



 

96 

 

 

Figure K.2: Plot of the Response Data for Methods and Packet Lengths 

 

Figure K.3: Analysis of Data by Order 



 

97 

 

 

Figure K.4: Analysis of Data by Order 

 

Figure K.5: Analysis of Data by Order 



 

98 

 

 

Figure K.6: Analysis of Data by Order 

 
Figure K.7: Analysis of Data by Order 



 

99 

 

 

Figure K.8: Analysis of Data by Order 

 

Figure K.9: Analysis of Data by Order 



 

100 

 

 

Figure K.10: Analysis of Data by Order 

 

Figure K.11: Analysis of Data by Order 



 

101 

 

 

Figure K.12: Analysis of Data by Order 



 

102 

 

 

Figure K.13: Analysis of Data by Order 

 

Figure K.14: Analysis of Data by Order 



 

103 

 

 

Figure K.15: Analysis of Data by Order 

 

Figure K.16: Analysis of Data by Order 



 

104 

 

 

Figure K.17: Analysis of Data by Order 

 

Figure K.18: Analysis of Data by Order 



 

105 

 

 

Figure K.19: Analysis of Data by Order 

 

Figure K.20: Analysis of Data by Order 



 

106 

 

 

Figure K.21: Analysis of Data by Order 

 

Figure K.22: Analysis of Data by Order 



 

107 

 

Analysis of the Ranked Response Data - The Mixed procedure 

 

 

Model Information 

Data Set WORK.RANK_TEM

P 

Dependent Variable responseRank 

Covariance 

Structure 

Variance 

Components 

Estimation Method REML 

Residual Variance 

Method 

Profile 

Fixed Effects SE 

Method 

Model-Based 

Degrees of Freedom 

Method 

Containment 

 

 

Class Level Information 

Class 

Lev

els Values 

ORDER 9 1 2 3 4 5 6 7 8 9 

SUBJE

CT 

54 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 

metho

d 

3 m1 m2 m3 

packe

t 

3 p1 p2 p3 

 

 

Dimensions 

Covariance 

Parameters 

2 

Columns in X 16 

Columns in Z 54 

Subjects 1 

Max Obs Per 

Subject 

486 

 

 

 

 

 

 



 

108 

 

Number of Observations 

Number of Observations 

Read 

486 

Number of Observations 

Used 

486 

Number of Observations 

Not Used 

0 

 

 

 

Iteration History 

Itera

tion 

Evaluat

ions 

-

2 Res Log 

Like 

Criter

ion 

0 1 4112.49240

714 

 

1 1 4063.46623

794 

0.0000

0000 

 

 

Convergence 

criteria met. 

 

 

Covariance 

Parameter 

Estimates 

Cov 

Parm 

Estima

te 

SUBJECT 64.345

9 

Residua

l 

237.05 

 

 

Fit Statistics 

-2 Res Log 

Likelihood 

4063

.5 

AIC (smaller is 

better) 

4067

.5 

AICC (smaller is 

better) 

4067

.5 

BIC (smaller is 

better) 

4071

.4 

 

 



 

109 

 

Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

De

n 

DF 

F 

Value 

Pr >

 F 

method 2 42

4 

2.43 0.08

91 

packet 2 42

4 

5.43 0.00

47 

method*pac

ket 

4 42

4 

4.62 0.00

12 

 

 

 

Least Squares Means 

Effect 

metho

d 

pack

et 

Estim

ate 

Standa

rd 

Error DF 

t Va

lue 

Pr > 

|t| 

method m1  14.41

98 

1.6294 42

4 

8.85 <.00

01 

method m2  13.22

22 

1.6294 42

4 

8.11 <.00

01 

method m3  16.91

98 

1.6294 42

4 

10.3

8 

<.00

01 

packet  p1 17.42

59 

1.6294 42

4 

10.6

9 

<.00

01 

packet  p2 15.29

63 

1.6294 42

4 

9.39 <.00

01 

packet  p3 11.83

95 

1.6294 42

4 

7.27 <.00

01 

method*pac

ket 

m1 p1 13.29

63 

2.3625 42

4 

5.63 <.00

01 

method*pac

ket 

m1 p2 14.51

85 

2.3625 42

4 

6.15 <.00

01 

method*pac

ket 

m1 p3 15.44

44 

2.3625 42

4 

6.54 <.00

01 

method*pac

ket 

m2 p1 20.16

67 

2.3625 42

4 

8.54 <.00

01 

method*pac

ket 

m2 p2 10.51

85 

2.3625 42

4 

4.45 <.00

01 

method*pac

ket 

m2 p3 8.981

5 

2.3625 42

4 

3.80 0.00

02 

method*pac

ket 

m3 p1 18.81

48 

2.3625 42

4 

7.96 <.00

01 

method*pac

ket 

m3 p2 20.85

19 

2.3625 42

4 

8.83 <.00

01 

method*pac

ket 

m3 p3 11.09

26 

2.3625 42

4 

4.70 <.00

01 



 

110 

 

Differences of Least Squares Means 

Eff

ect 

met

hod 

pac

ket 

_met

hod 

_pa

cke

t 

Esti

mate 

Stan

dard 

Erro

r 

D

F 

t V

alu

e 

Pr 

> 

|t| 

Adjust

ment 

Adj 

P 

met

hod 

m1  m2  1.19

75 

1.71

07 

4

2

4 

0.7

0 

0.4

843 

Tukey-

Kramer 

0.7

636 

met

hod 

m1  m3  -

2.50

00 

1.71

07 

4

2

4 

-

1.4

6 

0.1

447 

Tukey-

Kramer 

0.3

107 

met

hod 

m2  m3  -

3.69

75 

1.71

07 

4

2

4 

-

2.1

6 

0.0

312 

Tukey-

Kramer 

0.0

791 

pac

ket 

 p1  p2 2.12

96 

1.71

07 

4

2

4 

1.2

4 

0.2

139 

Tukey-

Kramer 

0.4

274 

pac

ket 

 p1  p3 5.58

64 

1.71

07 

4

2

4 

3.2

7 

0.0

012 

Tukey-

Kramer 

0.0

034 

pac

ket 

 p2  p3 3.45

68 

1.71

07 

4

2

4 

2.0

2 

0.0

439 

Tukey-

Kramer 

0.1

085 



 

115 

 

 

Figure K.23: Analysis of Ranked Response Data 

 

Figure K.24: Analysis of Data by Order 



 

116 

 

 

 

 

BIBLIOGRAPHY 

[1] S. A. Gelfand, “Measurement Principles and the Nature of Hearing,” in Essentials of 

Audiology, 3
rd

 ed. New York: Thieme, 2009, ch. 3, Central and Temporal Masking, 

pp. 103 

 

[2] N. Aldrich, “The Ear,” in Digital Audio Explained For The Audio Engineer, 2
nd

 ed. 

Fort Wayne: Sweetwater Sound, 2004, ch. 6, Cochlear Filters, pp. 74-76 

 

[3] D. Salomon, Data Compression: The Complete Reference, 4
th

 ed. Springer, 2006 

 

[4] C. R. Johnson, Jr., W. A. Sethares. And A. Klein, “Coding and Decoding,” in 

Software Receiver Design: Build Your Own Digital Communications System in Five 

Easy Steps, 2008,  ch. 2, A telecommunication System, pp. 23-24 

 

[5]  S. Lin, D. Costello, Error Control Coding: Fundamentals and Applications, 2
nd

 ed. 

Prentice Hall, 2004 

 

[6] J. Baylis, “Hamming‟s Solution,” in Error-Correcting Codes: A Mathematical 

Introduction, Florida: CRC, 1998, ch. 2, Reducing the Price 

 

[7] W. C. Huffman, V. Pless, “Hamming Codes,” in Fundamentals of Error-Correcting 

Codes, United Kingdom: Cambridge, 2003, ch. 1, Basic Concepts of Linear Codes, 

pp. 29-31 

 

[8] Q. Quach. (2007, Nov. 3). Matlab GUI Tutorial – Button Types and Button Group 

[Online]. Available: http://blinkdagger.com/matlab/matlab-gui-tutorial-buttons-

button-group 

 

[9] R. Narasimhan. (2006, Jan. 19). GUI Output [Online]. Available:  

http://www.mathworks.com/matlabcentral/newsreader/view_thread/113779 

 

 [10] D. R. Oran, and William VerSteeg, “Monitoring and Correcting Upstream Packet 

Loss,” U.S. Patent 370390, Sept. 30, 2010 

 

[11] C. Perkins, and O. Hodson. (1998, June). Options for Repair of Streaming Media 

[Online]. Available:  https://tools.ietf.org/html/rfc2354 

 

[12] T. K. Chua, and D.C. Pheanis. (2005). Perceptual Audio Quality Analysis of VOIP 

Loss-Recovery Techniques [Online]. Available: 

http://www.actapress.com/Abstract.aspx?paperId=22846 

 

http://blinkdagger.com/matlab/matlab-gui-tutorial-buttons-button-group
http://blinkdagger.com/matlab/matlab-gui-tutorial-buttons-button-group


 

117 

 

[13] D. Florencio, Philip A. Chou, and Li-Wei He, “Real-Time Jitter Control and Packet-

Loss Concealment in an Audio Signal,” US Patent 20090304032, Sept. 30, 2010 

 

[14] D. Hardman. (2003, April 23). Noise and Voice Quality in VoIP Environments 

[Online]. Available: http://cp.literature.agilent.com/litweb/pdf/5988-9345EN.pdf 

 

[15] Mohamed, Rubino, and Varela, “A Method for Quantitative Evaluation of Audio 

Quality over Packet Networks and its Comparison with Existing Techniques,” May, 

2004.  

 


