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1. Introduction 

The detailed design document covers the basic theory, related technique, and 

implementation details of the MovieOracle system. It first provides a high-level system 

overview. Then it discusses the usage of Twitter API, Twitter4J and CI-Bayes. After 

that, it describes how components communicate with each other, how they are 

organized, and how each of them is implemented. Finally the document introduces the 

sentiment analysis and the decision tree method of the project. A program 

implementation for this project should follow the direction of this document. 

1.1 References and Related Documents 

Document Author 

Software Requirements Specification (MovieOracle System) Yao Yao 

MovieOracle User Tutorial Yao Yao 

  

 



2. System Overview 

This project provides the service of recommending movies to appropriate twitter 

users. It is implemented in Java and is supported by MySQL database. The system 

specification is in the Software Requirements Specification document. 

2.1 Functional Requirements Overview 

The major functions of this system include: collecting tweet information of specified 

movies; finding potential users for prediction; classifying tweets; predicting twitter 

users’ opinions on movies. It also provides a command line interface and a log 

service. 

2.2 High Level Component Model 

Besides a database, this project is composed of five major components: Tweet 

Collection, Potential User Finder, Polarity Classifier, Decision Tree and System 

Service. Each component corresponds to different functional requirements as follows. 

 

1. Tweet Collection: collecting tweet information of specified movies 

2. Potential User Finder: finding potential users for prediction 

3. Polarity Classifier: classifying tweets into three categories 

4. Decision Tree: predicting twitter users’ opinions on movies 

5. System Service: command line interface and log service 

2.2.1 Component Descriptions 

1. Tweet Collection 

Tweet Collection is used to collect tweet information of specified movies and store 

them in the database. The Twitter Search API (see Section 3) limits calling its search 

method within each hour and every search returns the 100 latest tweets containing 

the key word or phrase (movie name). 

 

2. Polarity Classifier 

Polarity Classifier periodically classifies tweets’ sentiments into three categories: 

positive, negative, and unknown. The time interval of periodical classification is 

determined by the MovieOracle user. It writes the classification results to the 

database. 

 

3. Potential User Finder 



Potential User Finder periodically calls methods of the Twitter Rest API (see Section 3) 

to get tweet authors’ friends and followers. It analyzes tweet information in the 

database to find the potential users, which are users in the system with sufficient 

related tweets1 to qualify the decision tree prediction. After that, it invokes the decision 

tree to predict potential users’ opinions on specified movies. 

 

4. Decision Tree 

The decision tree is constructed after the MovieOracle system starts. (This allows 

MovieOracle users to use their own training data to construct the decision tree.) It is 

then invoked by the Potential User Finder component to predict the potential users’ 

sentiments. The attributes used in the tree are percentages of positive, negative, and 

unknown related tweets of a potential user. 

 

5. System Service 

System Service invokes and coordinates some other components. It also provides a 

log service and a command line interface for the entire system. The log service 

records in a log file the starting of each component, important operations, warning and 

error messages. The command line interface accepts commands to manipulate the 

MovieOracle system. The command specification is introduced in Chapter 4 

“Commands” of the MovieOracle User Tutorial document. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-----------------------------------------------------------------------------------------------------------------
1 For Twitter users who publish tweets about some topic, if their friends and followers 
publish the tweets discussing the same topic, these tweets from their friends and 
followers are called related tweets of the users. 



3. Twitter API [1] 

An application can access Twitter data via the Twitter API. Twitter4J [2] is a Java 

library for the Twitter API. It is applied in the Tweet Collection and Potential User 

Finder components of this project. The Twitter API (Twitter4J) has its own 

specification and limitation for the programs accessing it. 

3.1 Twitter4J Specification 

The Twitter4J introduction can be found on http://twitter4j.org. The major classes and 

interfaces used in this project are: TwitterFactory, Twitter, Configuration, 

ConfigurationBuilder, Query, QueryResult, and Tweet. Some of their common 

methods and usage are discussed as follows. 

 

1. TwitterFactory 

TwitterFactory is a factory class for Twitter. Its constructor used in the project is 

“TwitterFactory(Configuration conf)”. Its “getInstance()” method is used to 

generate an authenticated Twitter instance. The class of this instance represents 

the Twitter API. 

 

2. Twitter 

An instance of the Twitter class is generated by the TwitterFactory. In this project, 

all usage of the Twitter API are accessed via such an instance. Its “search(Query 

query)” method searches tweets by a key word or phrase. This method is used in 

the Tweet Collection component. Its “getFollowersIDs(String screenName)” 

method returns the follower ids of a given screen name. Its “getFriendsIDs(String 

screenName)” method returns the friend ids of a given screen name. Its 

“getRateLimitStatus()” method returns an instance of RateLimitStatus. The 

RateLimitStatus has a method “getRemainingHits()” that returns the remaining 

number of Twitter REST API requests available. These four methods are used in 

the Potential User Finder component. 

 

3. ConfigurationBuilder 

ConfigurationBuilder is used to set Twitter API parameters. In this project, these 

parameters include Token, TokenSecret, ConsumerKey, and ConsumerSecret [3]. 

These four parameters are provided by Twitter once a twitter-based application is 

registered. For this project, these parameters are in a property file (see Chapter 5 

of the MovieOracle User Tutorial document for detail). Its “build()” method creates 

an instance of the class which implements Configuration interface. 

 

4. Query 

Query is a class used to search tweets. Its instance is passed to the “search(Query 

query)” method of a Twitter instance in order to search tweets having the desired 



movie names. The parameter in its constructor “Query(String key)” is the desired 

movie name. Its “setRpp(int rpp)” method sets the number of latest tweets to return 

per query, up to a max of approximately 100. Its “setLang(String lang)” method 

restricts return tweets in the given language. 

 

5. QueryResult 

QueryResult is an interface representing the search response. It is implemented 

by the class of the returned instance of the method “search(Query query)”, which 

is mentioned in item 2 and 4 in this list. The “getTweets()” method returns a list of 

Tweet instances. The maximum list size is approximately 100 (limited by the 

Twitter API). 

 

6. Tweet 

Tweet is a class representing a tweet in the search result. Its “getId()” method 

returns a tweet status id. The “getFromUserId()” method returns the tweet author 

id. The “getFromUser()” method returns the tweet author name. The “getText()” 

method returns the actual tweet. 

3.2 Twitter API Limitations 

The Twitter API only allows a client to make a limited number of method calls within an 

hour. More information is available on http://dev.twitter.com/pages/rate-limiting. In 
this project, retrieving friends or followers is limited by the Rest API rate limit. 

Authorized applications are permitted 350 requests per hour. The search method is 

limited by the Search API rate limit. The access rate is not made public but is close to 

the rate of Rest API rate limit. In this project, the default value of the Search API rate 

limit is set to 300 (it can be modified to a lower value in the property file). 

 

When using a movie name as the key word to collect tweets, there will be an 

“unrelated tweet” problem, which means the collected tweets are not all related to the 

discussion of a desired movie. For example, consider the movie “Red”. A tweet 

containing the word “Red” could be about the famous fairy tale “Little Red Riding 

Hood”, or even just some body talked the house painting. One helpful method is to 

add a string “movie” plus a blank space as the prefix of the movie name while using 

“start” or “collect” command. Although it can avoid gathering meaningless tweets, it 

also may miss some valuable tweets that do discuss the movie but have no such 

prefix. In addition, some tweets contain the movie names which are commonly 

thought to be used for movies, but they may still talk about something else. For 

example, “Harry Potter” can be used for a book. When opportunities of such “faulty 

collecting” are relatively few, it is unnecessary to add the string “movie” to the movie 

name. 

 

In the future, if new-found methods can well distinguish the tweets about the desired 

movie from other meaningless ones, the problem discussed in the paragraph above 



can be solved by modifying code for the tweet collection thread. After the thread 

successfully retrieves tweets, instead of directly storing them in the database, add the 

desired method to filter out the unrelated tweets and then only store the meaningful 

ones (see more details about the design of the tweet collection thread in Section 

5.2.4). 

 



4. CI-Bayes[4] 

CI-Bayes provides the Fisher classification method for this project. Its basic 

information and fundamental theory are introduced in Section 6.1.2, 6.1.3, and 6.1.4. 

4.1 CI‐Bayes Specification 

The major class and interface used in this project are: FisherClassifier and 

FisherClassifierImpl. FisherClassifierImpl implements the interface FisherClassifier. 

Its common methods are: 

 

1. train(Object tweet, String category) 

It tells the fisher classifier that the “tweet” belongs to the “category”. Given a large 

number of tweets, this method trains the classifier. In this project, three categories 

are used: positive, negative, and unknown. 

 

2. getFisherProbability(Object tweet, String category) 

It returns a double number and this value represents the probability that the “tweet” 

belongs to the “category”. 

 

3. getClassification(Object tweet) 

It returns a string and this value represents the category to which the “tweet” 

belongs. 

4.2 CI‐Bayes Usage 

Although CI-Bayes has a “getClassification(Object tweet)” method which allow  

directly classifying a tweet, sometimes the project does not use it to classify tweets. 

Instead, some simple rules are applied based on the “getFisherProbability(Object 

tweet, String category)” method. These rules are derived from long-term observation 

on many experiments for validating the correctness of “getClassification(Object 

tweet)”. With the “getFisherProbability(Object tweet, String category)” method, let P 

be the probability of a tweet is “positive”, N be the probability of a tweet is “negative”, 

U be the probability of a tweet is “unknown”, 

 

1. If U is no greater than both P and N, and the absolute value of (P - N) < 0.1, then 

the tweet is considered “unknown”. 

2. If P <= U <= N and (N - U) < 0.1, then the tweet is considered “unknown”. 

3. If N <= U <= P and (P - U) < 0.1, then the tweet is considered “unknown”. 

4. If the three rules above fail, then the tweet is directly classified by the 

“getClassification(Object tweet)” method. 

 



In the future, if new rules are found or the original rules need to be modified, one can 

implement them by modifying the method which applies rules to classify a tweet in the 

polarity classifier (see more details about the design of the polarity classifier in section 

5.3.4). 

 



5. Application Design 

This section introduces the system property file and the detailed design of five major 

components: Tweet Collection, Potential User Finder, Polarity Classifier, Decision 

Tree, and System Service. Each subsection describes the component’s functional 

requirements, data model, variables and constants, and algorithm implementation. 

Since the design of the command line interface has much information, it is discussed 

in a separate subsection. 

5.1 Property File 

The MovieOracle system uses a standard property file called “config.properties” to 

indicate environment variables. The file is in the same directory of the system. It has 

the following variables used by different components.  

 

Variable Component 

database_name System Service 

related_tweets_threshold Potential User Finder 

polarity_training_set Polarity Classifier 

search_limit Tweet Collection 

clear_interval System Service 

check_tweet_interval Polarity Classifier 

token System Service 

token_secret System Service 

consumer_key System Service 

consumer_secret System Service 

 

More details of the environment variables can be found in Chapter 5 “Property File” of 

the MovieOracle User Tutorial document. 

5.2 Tweet Collection 

The implementation of the Tweet Collection component is supported by five tables 

introduced in 5.2.2 Data Model. They are MOVIE, AUTHOR, TWEET, 

THREAD_RESOURCE, and THREAD_CALL. The specification of this part is in 3.2 of 

the Software Requirements Specification document. 

5.2.1 Target and Requirements 

The Tweet Collection component targets getting the newest tweets on specified 

movies and storing them (as well as related information) in the database. Since the 



search rate is limited by the Twitter Search API and each search returns the latest 100 

tweets of a movie, each movie search is run in a separate thread. Every thread 

periodically collects tweets of one movie. It uses primary key constraint of the TWEET 

table to avoid storing duplicate tweets.  

 

The sleep time of each thread is evenly divided among all threads currently running in 

the system. Let cph (calls per hour) represent the number of available calls per hour 

for a thread. Then cph = Twitter search limit rate/the total number of active movies 

and the sleep time = 1/cph. 

5.2.2 Data Model  

1. MOVIE 

The MOVIE table stores the movie information. 

 

Field Type Null Key Default Extra 

MOVIE_ID INT(4) NO YES  AUTO INCREMENT 

MOVIE_NAME VARCHAR(50) NO    

DELETE_TAG INT(1) NO  0  

 
MOVIE_ID: movie id 

MOVIE_NAME: movie name 

DELETE_TAG: indicates whether it is currently being processed or not (0: processed, 

1: otherwise) 

 
2. AUTHOR 

The AUTHOR table stores the tweet author information. 

 

Field Type Null Key Default Extra 

AUTHOR_ID INT(9) NO YES   

AUTHOR_NAME VARCHAR(20) NO    

CHECK_TAG INT(1) NO  0  

 
AUTHOR_ID: id of the author who publishes the tweet 

AUTHOR_NAME: name of the author who publishes the tweet 

CHECK_TAG: indicates whether his or her friends and followers have already been 

found via Twitter REST API (0: no, 1: yes) 

 
3. TWEET 

The TWEET table stores the tweet information. 

 

Field Type Null Key Default Extra 

TEXT_ID BIGINT(10) NO YES   



AUTHOR_ID INT(9) NO    

MOVIE_ID INT(4) NO    

TEXT VARCHAR(250) YES    

POLARITY VARCHAR(10) YES  NA  

 
TEXT_ID: tweet status id 

AUTHOR_ID: id of the author who publishes the tweet 

MOVIE_ID: movie id 

TEXT: contents of the tweet 

POLARITY: sentimental polarity of a tweet (pos: positive, neg: negative, unknown:  

unknown. it is initially set to NA to indicate not processed) 

 
4. THREAD_RESOURCE 

The THREAD_RESOURCE table stores the available times to call the Twitter search 

method for the tweet-collection threads. 

 

Field Type Null Key Default Extra 

THREAD_ID INT(4) NO YES   

MOVIE_ID INT(4) NO    

CPH NUMERIC(7,3) NO    

 
THREAD_ID: thread id 

MOVIE_ID: movie id 

CPH: amount of the available calls per hour for this thread 

 
5. THREAD_CALL 

The THREAD_CALL table stores the time when tweet-collection threads call the 

Twitter search method. 

 

Field Type Null Key Default Extra 

THREAD_ID INT(4) NO    

TIME TIMESTAMP NO  NOW()  

 
THREAD_ID: thread id 

TIME: the time when some thread calls the Twitter API search method 

5.2.3 Variables and Constants 

1. Variables 

 

Name Default Value Remark 

search_limit 300 It is defined in the property file “config.properties”. 

See Chapter 5 “Property File” of the MovieOracle 



User Tutorial document for more details. 

 

2. Constants 

 

Name Default Value Remark 

LANGUAGE_CODE en It represents “English”, which directs the 

Twitter API to only retrieve English tweets. 

More language codes can be found in the 

Twitter4J document [5]. 

TWEETS_PER_PAGE 100 It indicates the maximum number of tweets 

that the Twitter4J method (see Section 3.1) 

retrieves within one query. 

5.2.4 Algorithm 

1. The program gets all of the movie names from the MOVIE table with 

DELETE_TAG = 0. 

2. It deletes all records in the THREAD_RESOURCE table. 

3. For each movie acquired in 1, the program inserts the thread id (program 

generated), movie id, cph (search_limit /the total number of movies) to the 

THREAD_RESOURCE table and then starts a thread. Within each thread: 

(a) It sets the movie name as a query key,   TWEETS_PER_PAGE as the 

number of returned tweets, and    LANGUAGE_CODE as the tweet 

language code for the Query instance.   

(b) Until tweet collection on this movie ended (if DELETE_TAG of the movie 

equals to 1), repeat step i – v. 

i. In the THREAD_CALL table, in a synchronized call, check the total 

number of calls using the search method of Twitter4J within the past 1 

hour. If this number is greater than search_limit, it sleeps for 1 second 

and then executes sub step i again. Otherwise, it executes ii. 

ii. Insert the thread id to the THREAD_CALL table (to record one call at 

the certain time).  

iii. Retrieve the tweets by the search method (see Section 3.1). 

iv. For each tweet found in iii, the program inserts the tweet text id, tweet 

author id, movie id, and tweet text to the TWEET table and inserts the 

tweet author id and author name to the AUTHOR table. 

v. It gets the current cph from the THREAD_RESOURCE table. The 

thread sleeps for 1/cph hour(s). After waking up, it executes i – v 

again. 



5.3 Polarity Classifier 

The implementation of the Polarity Classifier is supported by the two tables in 5.3.2 

Data Model. They are TWEET and MOVIE. The specification of this part is in 3.3 of 

the Software Requirements Specification document. 

5.3.1 Target and Requirements 

The Polarity Classifier component classifies tweets’ sentimental polarities and writes 

the results to the database. Since the tweet collection threads continually store the 

newest tweets, this component is implemented by a thread and periodically checks 

the database to find unclassified tweets. A tool called CI-Bayes (see Section 4) 

performs the basic classification job for each tweet. 

5.3.2 Data Model  

TWEET 

(Check the TWEET table in 5.2.2 Data Model) 

 

MOVIE 

(Check the MOVIE table in 5.2.2 Data Model) 

5.3.3 Variables and Constants 

1. Variables 

 

Name Default Value Remark 

polarity_training_set ClassifierTrainingSet It is defined in the property file 

“config.properties”. See Chapter 5 

“Property File” of the MovieOracle 

User Tutorial document for more 

details. 

check_tweet_interval 5 It is defined in the property file 

“config.properties” and indicates the 

time interval for classifying tweets. See 

Chapter 5 “Property File” of the 

MovieOracle User Tutorial document 

for more details. 

 

2. Constants 

 



Name Default Value Remark 

REPLACE_NAME movie It indicates the constant string used to 

replace the real movie name in tweets. 

The replacement is for avoiding the 

possible positive or negative words in 

the movie name that may influence the 

polarity classification. 

5.3.4 Algorithm 

1. If the training data set (polarity_training_set folder) does not exist, the program 

prints a fatal error in the log file and quits. Otherwise, it uses the files in three 

subfolders of polarity_training_set to train the fisher classifier (see Section 4.1). 

The names of the three subfolders are pos, neg, and unknown. 

2. It retrieves all of the tweet texts and corresponding movie names from the TWEET 

table joined with the MOVIE table where POLARITY = ‘NA’. For each of the tweet 

texts and its corresponding movie name: 

(a) The program replaces the movie name in the text with REPLACE_NAME. 

Then it calls the method “getFisherProbability(Object tweet, String category)” 

of the fisher classifier to calculate the positive probability P, negative 

probability N, and unknown probability U of the tweet text, respectively. 

(b) The program uses the four rules in Section 4.2 to classify this tweet. 

(c) It updates the classified result (polarity) to the TWEET table.  

3. It sleeps for check_tweet_interval minutes. After waking up, the program executes 

2. again. 

5.4 Potential User Finder 

The implementation of the Potential User Finder component is supported by four 

tables in Section 5.4.2 Data Model. They are TWEET, AUTHOR, 

RELATED_TO_AUHOR, and POTENTIAL_USER. The specification of this part is in 

3.4 of the Software Requirements Specification document. 

5.4.1 Target and Requirements 

The Potential User Finder component targets finding predictable users and calculating 

the percentages of three kinds of their related tweets. It continually checks the 

database to get new tweet authors. Since the rate of finding friends or followers is 

limited by the Twitter REST API, this component is implemented by a thread and 

needs to wait once exceeding the limitation. 



5.4.2 Data Model  

TWEET 

(Check the TWEET table in 5.2.2 Data Model) 

 

AUTHOR 

(Check the AUTHOR table in 5.2.2 Data Model) 

 
6. RELATED_TO_AUHOR 

The RELATED_TO_AUHOR table stores the tweet authors (ids) and their 

corresponding friends and followers (ids). 

 

Field Type Null Key Default Extra 

AUTHOR_ID INT(9) NO YES   

USER_ID INT(9) YES YES   

FLAG INT(1) YES YES   

 
AUTHOR_ID: id of the author who publishes the tweet 

USER_ID: twitter user id 

FLAG: indicates whether a twitter user is a friend or follower of the tweet author (0: 

friend, 1: follower) 

 
7. POTENTIAL_USER 

The POTENTIAL_USER table stores the potential user information. 

 

Field Type Null Key Default Extra 

MOVIE_ID INT(4) NO YES   

USER_ID INT(9) NO YES   

RELATIVE_POS_NUMBER NUMERIC(6,5) YES NO   

RELATIVE_NEG_NUMBER NUMERIC(6,5) YES NO   

RELATIVE_UNKNOWN_NUMBER NUMERIC(6,5) YES NO   

POLARITY VARCHAR(10) YES NO   

 
MOVIE_ID: movie id 

USER_ID: twitter user id 

RELATIVE_POS_NUMBER: relative number of positive related tweets 

RELATIVE_NEG_NUMBER: relative number of negative related tweets 

RELATIVE_UNKNOWN_NUMBER: relative number of unknown related tweets 

POLARITY: sentiment prediction of the user on the movie (pos: positive, neg: 

negative, unknown: unknown) 



5.4.3 Variables and Constants 

1. Variables 

 

Name Default Value Remark 

related_tweets_threshold 6 It is defined in the property file 

“config.properties”. According to 

experiments, the accuracy of the decision 

tree with related_tweets_threshold < 6 is 

lower than related_tweets_threshold >= 6, 

but the there is no big difference between 

the accuracies of the decision tree with 

related_tweets_threshold = 6 and the 

decision tree with 

related_tweets_threshold > 6. 

remain_hit NULL This value is from “twitter. 

getRateLimitStatus().getRemainingHits()”. 

It indicates the remaining number of 

Twitter REST API requests available. The 

getRemainingHits() method itself does not 

consume the available requests of Twitter 

REST API (see Section 3.1). 

 

2. Constants 

 

Name Default Value Remark 

FRIEND_TAG 0 In the RELATED_TO_AUHOR table, it 

indicates the user (id) is the friend of the 

author (id). 

FOLLOWER_TAG 1 In the RELATED_TO_AUHOR table, it 

indicates the user (id) is the follower of the 

author (id). 

FRIEND_TAG & 

FOLLOWER_TAG 

 Currently, no distinction is made between 

friend and follower, but these two tags are 

included for future improvement. 

5.4.4 Algorithm 

1. The program gets the movie ids from the AUTHOR table join the TWEET table 

with CHECK_TAG = 0.  

2. If the number of movie ids found in step 1 equals 0, sleep for 1 minute and 

executes 1 again. Otherwise, set rest_call to remain_hit/2 (for each author, the 



program needs to call Twitter API method twice: “getFriendsIDs” method and 

“getFollowersIDs” method). For each movie id found in 1: 

(a) If rest_call equals to 0, the program executes step 3. Otherwise, it executes 

(b). 

(b) Query the authors from the AUTHOR table join the TWEET table with 

CHECK_TAG = 0 and MOVIE_ID = movie id.  

(c) If the number of author ids is less than rest_call, keep all of the author ids. 

Otherwise, keep rest_call author ids. For each of the author ids: 

i. The program gets all of his or her friend ids via the method 

“twitter.getFriendsIDs(String screenName)” and inserts these ids, 

the author id, and FRIEND_TAG to the RELATED_TO_AUHOR 

table.  

ii. The program gets all of his or her follower ids via the method 

“twitter.getFollowersIDs(String screenName)” and inserts these ids, 

the author id, and FOLLOWER_TAG to the RELATED_TO_AUHOR 

table. 

iii. The program updates CHECK _TAG to 1 in the AUTHOR table 

where AUTHOR_ID = the author id in (c).  

(d) Put the movie id used in (b) in a movie list and set rest_call to rest_call minus 

the number of authors kept in (c). 

3. If the movie list (which is set in 1(d)) is not null, then for each movie id in this list:  

(a) Retrieve the user ids from the RELATED_TO_AUHOR table join the TWEET 

table where MOVIE_ID = the movie id and group by USER_ID having the 

number of its corresponding AUTHOR_ID be greater than or equal to 

related_tweets_threshold.  

(b) The program clears the POTENTIAL_USER table with MOVIE_ID = the 

movie id. Then for each of the user ids in 3(a):  

i. Retrieve the corresponding authors’ opinions (sentimental polarities) 

on this movie id from the RELATED_TO_AUHOR table join the 

TWEET table where USER_ID = the user id and MOVIE_ID = the 

movie id.  

ii. Calculate the percentage of positive, percentage of negative, and 

percentage of unknown related tweets for this user.  

iii. Insert the user id, the movie id, and these percentages to the 

POTENTIAL_USER table. 

4. The program clears the movie list set in 1(d). It invokes the decision tree to predict 

users whose POLARIY is null in the POTENTIAL_USER table. 

5. If remain_hit equals to 0, sleep for 1 minute and execute step 5 again. Otherwise, 

execute step 1 - 5 again. 

5.5 Decision Tree 

The implementation of the Decision Tree component is supported by two tables 

introduced in 5.5.2 Data Model. They are POTENTIAL_USER and 



DECISION_TREE_TRAINING. The specification of this part is introduced in 3.5 of the 

Software Requirements Specification document. 

5.5.1 Target and Requirements 

The Decision Tree component targets predicting potential users’ opinions on movies 

and writing prediction results to the database. The decision tree is invoked by the 

Potential User Finder component, however the tree construction (training) starts just 

after the entire system starts (more explanation for training is in Section 2.2.1). When 

the tree is invoked, it also prints all users who hold positive attitudes to an indicated 

file. 

5.5.2 Data Model  

POTENTIAL_USER 

(Check the POTENTIAL_USER table in 5.4.2 Data Model) 

 

8. DECISION_TREE_TRAINING 

The DECISION_TREE_TRAINING table stores the training data for the decision tree. 

 

Field Type Null Key Default Extra 

TWEET_ID BIGINT(10) NO YES   

RELATIVE_POS_NUMBER NUMERIC(6,5) YES NO   

RELATIVE_NEG_NUMBER NUMERIC(6,5) YES NO   

RELATIVE_UNKNOWN_NUMBER NUMERIC(6,5) YES NO   

POLARITY VARCHAR(10) YES NO   

 
TWEET_ID: tweet status id 

RELATIVE_POS_NUMBER: relative number of positive related tweets 

RELATIVE_NEG_NUMBER: relative number of negative related tweets 

RELATIVE_UNKNOWN_NUMBER: relative number of unknown related tweets 

POLARITY: sentimental polarity of a tweet (pos: positive, neg: negative, unknown:  

unknown) 

5.5.3 Variables and Constants 

1. Variables 

None 

 

2. Constants 

 

Name Default Value Remark 



RECOMMENDATION Recommendations.txt It indicates the name of the file 

which contains twitter use ids with 

the specific movies they like. 

5.5.4 Algorithm 

The algorithm of the decision tree component can be divided into two parts: tree 

construction and tree invocation. 

Construction 

1. The program gets all of the records from the DECISION_TREE_TRAINING table. 

According to the ID3 algorithm [6], it uses these training data to construct a 

decision tree. The detailed implementation of the algorithm is described in Section 

6.2.1 

Invocation 

1. Once invoked, the program retrieves the records from the POTENTIAL_USER 

table where POLARITY is null and then traverses the tree to predict potential users’ 

sentiments on movies.  

2. It updates the predicted polarities to the POTENTIAL_USER table. 

3. The program then retrieves users who have positive opinions in the 

POTENTIAL_USER table and writes them to the indicated file 

RECOMMENDATION. 

5.6 Command‐line Interface 

The command line interface is a part of the System Service component. Its 

implementation is supported by four tables introduced in 5.6.2 Data Model. They are 

POTENTIAL_USER, TWEET, THREAD_RESOURCE, and MOVIE. The specification 

of this part is in 3.1 of the Software Requirements Specification document. 

5.6.1 Target and Requirements 

The Command-line Interface targets providing commands to use the entire system. 

5.6.2 Data Model  

POTENTIAL_USER 



(Check the POTENTIAL_USER table in 5.4.2 Data Model) 

 

TWEET 

(Check the TWEET table in 5.2.2 Data Model) 

 

THREAD_RESOURCE 

(Check the THREAD_RESOURCE table in 5.2.2 Data Model) 

 

MOVIE 

(Check the MOVIE table in 5.2.2 Data Model) 

5.6.3 Variables and Constants 

1. Variables 

 

Name Default Value Remark 

search_limit 300 It is defined in the property file “config.properties”. 

See Chapter 5 “Property File” of the MovieOracle 

User Tutorial document for more details. 

 

2. Constants 

NULL 

5.6.4 Algorithm 

1. It prints a prompt denotation and waits for screen input. 

(a) If the prefix of the input equals “predict”:  

i. It validates whether this prefix is followed by three file names which are 

separated by spaces. 

ii. Further validate that file 1 and file 2 exist and file 3 does not exist 

iii. If the validation fails, print the error and execute 1 again.  

iv. Otherwise, it gets twitter user ids from file 1 and gets movie names 

from file 2. For each movie and each user id, it executes the procedure 

A and B, and then prints the users’ sentiment prediction on the movies 

to file 3.  

A. The program returns the user’s opinion (polarity) from the 

POTENTIAL_USER table where MOVIE_ID = the movie id and 

USER_ID = the user id.  

B. If the user’s opinion does not exist in this table, it gets the major 

polarity from the TWEET table with MOVIE_ID = the movie id 

and calculates the simplistic prediction score (which is the 

maximum integer less than or equal to 10 * P, let P be the 



highest percentage of sentimental polarities of such movie. 

Therefore the prediction score is between 3 and 10). 

(b) If the prefix of the input equals “oracle”:  

i. It validates whether this prefix is followed by a user id and a movie 

name which are separated by a space.  

ii. Further validate that the user id is an integer.  

iii. If the validation fails, print the error and execute 1 again.  

iv. Otherwise, it executes procedures (a)iv A and (a)iv B, and then prints 

the prediction result to screen. 

(c) If the prefix of the input equals “collect”: 

i. It validates whether this prefix is followed by a file name.  

ii. Further validate that the file does exist.  

iii. If the validation fails, print the error and execute 1 again. 

iv. Otherwise, it gets all movie names from the file.  

v. The program then calculates the cph = search_limit /total number of 

movies (without duplicate movies) and updates all cph in the 

THREAD_RESOURCE table.  

vi. For each movie found in iv, it checks whether it is in the MOVIE table 

where DELETE_TAG = 0 and MOVIE_NAME = the movie name. If 

yes, it prints a warning message. Otherwise, it executes A, B and C. 

A. The program stores the new movie in the MOVIE table or 

updates DELETE_TAG to 0 where MOVIE_NAME = the 

movie name.  

B. Put the cph and the movie (id) to the THREAD_RESOURCE 

table.  

C. Start a thread (see the thread design in Section 5.2.4) to 

collect tweets on the new movie. 

(d) If the prefix of the input equals “start”:  

i. It validates whether this prefix is followed by a movie name.  

ii. If the validation fails, print the error and execute 1 again.  

iii. Otherwise, check whether the movie is in TWEET table with 

DELETE_TAG = 0 and MOVIE_NAME = the movie name.  

iv. If yes, it prints a warning message and executes 1 again.  

v. Otherwise, the program calculates the cph = search_limit/total number 

of movies and executes procedures (c)vi A, (c)vi B, and (c)vi C. 

(e) If the prefix of the input equals “terminate”:  

i. It validates whether this prefix is followed by a file name.  

ii. Further validate that the file does exist.  

iii. If the validation fails, it prints the error and executes 1 again. 

iv. Otherwise, it gets all movie names from the file.  

v. The program then calculates the cph = search_limit /total number of 

movies (without removed movies) and updates all cph in the 

THREAD_RESOURCE table.  



vi. For each movie, it checks whether it is in the MOVIE table with 

DELETE_TAG = 0 and MOVIE_NAME = the movie name. If no, it 

prints a warning message. Otherwise, it executes A and B. 

A. The program updates DELETE_TAG to 1 in the MOVIE table 

with MOVIE_NAME = the movie name.  

B. Delete the record in the THREAD_RESOURCE table with 

MOVIE_ID = the movie id. 

(f) If the prefix of the input equals “stop”:  

i. It validates whether this prefix is followed by a movie name.  

ii. If the validation fails, print the error and execute 1 again. 

iii. Otherwise, it checks whether the movie is in the MOVIE table with 

DELETE_TAG = 0 and MOVIE_NAME = the movie name.  

iv. If no, print a warning message and execute 1 again.  

v. Otherwise, the program calculates the cph = search_limit /total 

number of movies (without the removed movie) and updates all cph in 

the THREAD_RESOURCE table. Then it executes procedures (e)vi A 

and (e)vi B. 

(g) If the input equals “show movies”: 

i. The program gets all the movie names from the MOVIE table with 

DELETE_TAG = 0 and then prints them. 

(h) If the input equals “show commands”:  

i. The program prints all the commands and their explanations (see 

Chapter 4 “Commands” of the MovieOracle User Tutorial document). 

(i) If the input equals “exit”: 

i. The program stops and exits. 

(j) The program executes step 1 again. 

5.7 System Service 

The implementation of the System Service component is not directly supported by any 

table. The specification of this part is introduced in 3.1 of the Software Requirements 

Specification document. 

5.7.1 Target and Requirements 

The System Service component invokes other components. It also provides 

parameter validation and log service for the entire project. This component is started 

once the system is started. 

5.7.2 Variables and Constants 

1. Variables 



 

Name Default Value Remark 

clear_interval 12 It is defined in the property file “config.properties”. 

See Chapter 5 “Property File” of the MovieOracle 

User Tutorial document for more details. 

 

2. Constants 

None 

5.7.3 Data Model  

NULL 

5.7.4 Algorithm 

1. The program validates related_tweets_threshold, search_limit, clear_interval and 

check_tweet_interval in the property file “config.properties”. (In Chapter 5 

“Property File” of the MovieOracle User Tutorial document, it discusses the 

selection of these variable values.) The validation includes:  

(1) related_tweets_threshold, an integer greater than 3.  

(2) search_limit, an integer no greater than 300.  

(3) clear_interval, a float number greater than 0.  

(4) check_tweet_interval, a float number greater than 0.  

If the validation passes, it executes 2. Otherwise, the program indicates the error 

and exits. 

2. It prompts to input the database user name and password. If they are incorrect or 

the database service is not started, the program indicates the error and requires 

input again. 

3. The program starts the Tweet Collection (Section 5.2) service and the Polarity 

Classifier (Section 5.3) Service. Then it constructs the Decision Tree (Section 5.5) 

and starts the Potential User Finder (Section 5.4) service. 

4. For every clear_interval hours, a thread clears all of the records in the 

THREAD_CALL table an hour ago. 

5. The program starts the Command-line (Section 5.6) service. 



6. Details of Supplemental System 

This part discusses two important theories which support the entire system. They are 

the sentiment analysis method and the decision tree method. 

6.1 Sentiment Analysis [7] 

Sentiment Analysis, also called Opinion Mining, is a cross research field of text mining, 

and machine learning [8]. It aims to find the text authors’ attitudes on some topic. This 
project requires automatically determining the polarities of movie-review tweets from 

followers and friends. The ideal situation is finding an available twitter tool that can do 

this work. Otherwise, data-mining tools and methods will be considered. 

6.1.1 Tweet Polarity 

The movie reviews on twitter can be classified into positive, negative, and neutral 2. 

Take reviews on the movie “Avatar” for example. “I saw Avatar. Very fun, great movie.” 

is a positive tweet, while “I think I’m the only one on the planet that didn’t like Avatar... 

Seemed a bit too much like an American history lesson + CG” is a negative tweet. 

However, there are still some ambiguous tweets which are difficult to classify as 

positive or negative. In this situation, they are considered neutral. For instance, “Yes, 

today I went to see the movie Avatar; in 3D. It was very well done, but not 

extraordinary...I give it a B- at best. Storyline is weak.” is an ambiguous tweet, which 

might be considered positive or negative. In addition, when tweet authors do not 

display their opinions, their tweets on some movie can also be considered as neutral. 

For example, “Home from Aliante. Watched Avatar. Late.” is neutral. Because of 

ambiguous tweets, even human beings have difficulties determining the sentimental 

polarity. 

6.1.2 CI-Bayes 

According to experimental comparisons of many programs, CI-Bayes is chosen for 

this project. It can be used by adding the jar file to the project classpath. CI-Bayes 

provides two major classification systems: Bayesian classifier and Fisher classifier. 

 

-----------------------------------------------------------------------------------------------------------------
2 When talking about the tweet polarity, neutral and unknown are interchangeable 

terms in this document. 



6.1.3 Bayesian Classification [9] 

Bayesian classification is based on a statistical method called Bayes theorem. 

Assuming X describes a group of values on n attributes and H is a certain hypothesis. 

Then the fundamental formula of Bayes theorem can be represented as  

P(H|X) = 
( | ) ( )

( )

P X H P H

P X
. In this formula, P(H|X) is the posterior probability, which 

indicates the probability of hypothesis H given that X happens. P(X|H) is the posterior 

probability, which indicates the probability of X happening given that hypothesis H 

exists. P(H) is the prior probability, which indicates the probability of hypothesis H 

existing regardless of any X. P(X) is the prior probability, which indicates the 

probability of X happening regardless of any H. 

 

Since there are multiple classes in a data set, the naive Bayesian classifier will 

choose the class having the highest posterior probability as the final result. Let the 

multiple classes be C1, C2, ..., Cm. According to the formula P(H|X) = 
( | ) ( )

( )

P X H P H

P X
, 

an item with the attribute vector X belongs to the class Ci with the maximum P(Ci|X), 

which is equal to 
( | ) ( )

( )
i iP X C P C

P X
. Only P(X|Ci)P(Ci) need to be considered in that 

P(X) indicates the probability of X happening regardless of any Ci and thus is a fixed 

value. Let the training data set be D, then P(Ci) = |Ci, D|/|D|, where |Ci, D| is the number 

of items belonging to Ci in D. As to P(X|Ci), all attributes represented by X can be 

assumed as independent of one another. Let the attribute vector X be (x1, x2, ..., xn). 

Thus, P(X|Ci) = 
1

( | )
n

k i
k

P x C

 . P(xk|Ci) represents the probability of the value xk on 

some attribute given all items of class Ci. 

 

When using Bayesian classification on tweet sentimental analysis, each attribute 

refers to one particular word in a tweet and the hypothesis means the polarity of a 

tweet: positive, negative, or neutral. Suppose there is a tweet “Avatar is awesome”. 

The word “Avatar” appears in 100 percent of the positive training set, the word “is” 

appears in 30 percent of the positive training set, and the word “awesome” appears in 

20 percent of the positive training set. Then the independent probability of them 

appearing in a positive tweet is 1×0.3×0.2 = 0.06. At the same time, the percentage of 

the three words appearing in the negative training set are 100 percent, 25 percent, 

and 0 percent, respectively, and their percentage in the unknown training set are 100 

percent, 35 percent, and 1 percent. Therefore the independent probability of them 

appearing in a negative tweet is 1×0.25×0 = 0 and in an unknown tweet is 



1×0.35×0.01 = 0.0035. Further assume the weights of positive, negative, and 

unknown tweets on training set are 0.4, 0.2, and 0.3, respectively. So the probability 

of a positive tweet is 0.06×0.4 = 0.024, the probability of a negative tweet is 0×0.2 = 0, 

and the probability of an unknown tweet is 0.0035 × 0.3 = 0.00105. Since this tweet 

has the highest probability of being positive, it is considered a positive review on 

Avatar. 

6.1.4 Fisher Classification [10] 

An alternative classification system considered in CI-Bayes is Fisher classification. 

This classification is based on Fisher’s method. Assuming k is the number of 

attributes and the attribute vector X is (x1, x2, ..., xk). Then the fundamental formula of 

Fisher’s method can be represented as X2 = 
1

2 log ( )
k

e i
i

p


  . In this formula, pi is the 

probability of hypothesis H given that xi happens. The formula can also be written as 

X2 = 
1

2 log
k

e i
n

p


  . 

 

The Fisher classifier is different from naive Bayesian classification in that it estimates 

the probability of a hypothesis (an item belong to some class) for each attribute on an 

item. Let multiple classes be C1, C2, ..., Cm and j [1, m]. Given an item, pi can be 

calculated as the ratio of the frequency of xi in the data with class Cj to the frequency 

of xi in the data of all classes. For m attributes, we can get m*pi values. With the 

formula X2 = 
1

2 log ( )
k

e i
i

p


  , the probability of this item belonging to Cj is calculated. 

Similar to Bayesian classification, an item with the attribute vector X belongs to the 

class Cj with the maximum probability. 

 

Also, when using Fisher classification on tweet sentimental analysis, each attribute 

refers to one particular word in a tweet and the hypothesis means the polarity of a 

tweet: positive, negative, or neutral. Suppose there is a tweet “Avatar is awesome”. 

The word “Avatar” appears in 100 percent of the positive training set, 100 percent of 

the negative training set, and 100 percent of the unknown training set. The word “is” 

appears in 30 percent of the positive training set, 25 percent of the negative training 

set, and 35 percent of the unknown training set. The word “awesome” appears in 20 

percent of the positive training set, 0 percent of the negative training set, and 1 

percent of the unknown training set. Then the probability of a positive tweet is 

ଵ

ሺଵାଵାଵሻ
ൈ 

଴.ଷ

ሺ଴.ଷା଴.ଶହା଴.ଷହሻ
 ൈ

଴.ଶ

ሺ଴.ଶା଴ା଴.଴ଵሻ
 = 0.106, the probability of a negative tweet is 

ଵ

ሺଵାଵାଵሻ
ൈ 

଴.ଶହ

ሺ଴.ଷା଴.ଶହା଴.ଷହሻ
ൈ

଴

ሺ଴.ଶା଴ା଴.଴ଵሻ
 = 0, and the probability of a unknown tweet is 



ଵ

ሺଵାଵାଵሻ
ൈ 

଴.ଷହ

ሺ଴.ଷା଴.ଶହା଴.ଷହሻ
ൈ

଴.଴ଵ

ሺ଴.ଶା଴ା଴.଴ଵሻ
 = 0.006. This tweet is considered a positive 

review on Avatar. 

6.1.5 Type I and type II errors [11] 

Type I and type II errors are used to test the correct rate of one classifier. Type I error, 

also known as “false positive”, occurs when some hypothesis is accepted but actually 

it is not true. For example, one tweet is classified as positive but in fact it is negative or 

unknown. In this situation, accepting the hypothesis “this tweet is positive” makes a 

type I error. Type II error, also known as “false negative”, occurs when some 

hypothesis is rejected but actually it is true. For example, one tweet is classified as 

negative or unknown but in fact it is positive. In this situation, rejecting the hypothesis 

“this tweet is positive” makes a type II error. Type I error rate is the proportion of the 

events which actually should reject a hypothesis but accept it. For example, let the 

total number of both negative and unknown tweets be 40. But one classifier 

mistakenly determines that 10 of them are positive, then the Type I error rate for 

determining positive tweets is 10/40 = 0.25. Type II error rate is the proportion of the 

events which actually should accept a hypothesis but reject it. For example, let the 

total number of both positive tweets be 20. But one classifier mistakenly determines 

that 5 of them are not positive, then the Type II error rate for determining positive 

tweets is 5/20 = 0.25. 

6.1.6 Comparison of naive Bayesian and Fisher 

classification 

A Java project CI-Bayes provides two major classification features: one is a naive 

Bayesian classifier and one is a Fisher classifier. Five-fold cross validation is used to 

determine the correct rate of the two classifiers. The error rates for naive Bayesian 

classifier are 0.30666667, 0.34, 0.38, 0.3, 0.34, for Fisher classifier are 0.23333333, 

0.26, 0.22, 0.26666668, 0.22666667. Tables 3 and 4 describe Polarity Distribution of 

two classifiers. 

 

The training is chosen to represent real tweets, by setting the proportion of positive, 

negative, unknown, and neutral tweets close to 4:2:3. The data includes 370 positive 

tweets, 180 negative tweets, and 240 unknown tweets (including neutral tweets). 

 

Fold Predicted Neg/Pos/Unk 

of Neg 

Predicted Neg/Pos/Unk 

of Pos 

Predicted Neg/Pos/Unk 

of Unk 

1 0.5/0.3611/0.1388 0.04/0.8533/0.1066 0.1041/0.2916/0.6041 

2 0.5833/0.2777/0.1388 0.0133/0.8933/0.0933 0.1041/0.5416/0.3541 

3 0.5277/0.25/0.2221 0.0266/0.84/0.1333 0.0625/0.5208/0.4166 



4 0.5555/0.2777/0.1666 0.0266/0.8666/0.1066 0.0625/0.5208/0.4166 

5 0.5/0.3333/0.1666 0.0266/0.8/0.1733 0.1041/0.4791/0.4166 

Table 3: Polarity Distribution of naive Bayesian Classifier Prediction 

 

Fold Predicted Neg/Pos/Unk 

of Neg 

Predicted Neg/Pos/Unk 

of Pos 

Predicted Neg/Pos/Unk 

of Unk 

1 0.6944/0.1111/0.1944 0.1333/0.72/0.1466 0.2083/0.0625/0.7291 

2 0.8889/0.0833/0.0277 0.0667/0.72/0.2133 0.1458/0.2291/0.6249 

3 0.9166/0.0277/0.0555 0.0533/0.7466/0.1999 0.1041/0.2708/0.6249 

4 0.75/0.0555/0.1943 0.08/0.76/0.1599 0.1875/0.3125/0.4999 

5 0.75/0.0555/0.1943 0.0666/0.72/0.2133 0.2083/0.0833/0.7082 

Table 4: Polarity Distribution of Fisher Classifier Prediction 

6.1.7 Conclusion 

From Table 3, the positive type I error rate of Fisher’s classifier is much lower than 

naive Bayesian classifier, although its negative type I error rate is slightly higher than 

naive Bayesian classifier. As to type II error, table 4 displays that the performance of 

Fisher’s classifier is much better on determining negative, while its positive error rate 

is close to naive Bayesian classifier. Since negative reviews in real tweets are few on 

most movies, correctly determining the negative tweets become very important. 

Furthermore, the total error rate of Fisher’s classifier is lower than naive Bayesian 

classifier in each fold of five-fold cross validation. Therefore, the Fisher classifier is 

selected as the method to automatically determine the polarities of tweets. 

6.2 Decision Tree [12] 

A decision tree has two kinds of nodes: internal nodes and leaf nodes. Every node 

points to a set of tuples. In addition, each internal node represents a test on one 

attribute and its branches are created according to different values or ranges of 

values of the test result. For example, one internal node represents the test on an 

attribute “percentage of its negative related tweets” and its result has two values, one 

for all tuples with percentage of negative related tweets “  0.45” and one for all “> 

0.45”. Leaf nodes are labeled with a classification, also called the target attribute 

value. For example, leaf nodes are labeled by a sentimental polarity value so that 

each has one of three possible values “negative”, “positive” and “neutral”. The 

decision tree used in this project is restricted to a binary tree. However it could be a 

n-way splitting (n > 2) tree in other situations. The figure 6.1 depicts a sample decision 

tree. 

 



 
Figure 6.1 

 

A decision tree builds a tree model on training data in order to predict unknown data. 

Training data in this project come from the super tweet set[2] whose sentimental 

polarity are already known[3], while test data comes from the super tweet set with 

unknown sentimental polarity. Each tuple in the training data set represents a tweet 

and it has four attributes: percentage of its negative related tweets, percentage of its 

positive related tweets, percentage of its unknown related tweets, and its own 

sentimental polarity. Each tuple of the test data set only has the former three 

attributes of the training set, but does not have the last one. Sentimental polarity is a 

target attribute that will be predicted for the test set. 

 
The construction of a decision tree starts with one single node, pointing to all of the 

tuples in the training set. If all tuples on this node belong to the same class (have the 

same target attribute value), it becomes a leaf node and labeled with that class. 

Otherwise, the ID3[6] method (which will be described in detail in the next paragraph) 

is used to select a “best” split attribute and a “best” split point. On the split attribute, 

the data set is then partitioned into two subsets according to the split point (a 

threshold). Each partition becomes a child of the current node, and this procedure is 

repeated until all children are leaf nodes. In this project, because a tuple has very 

limited attributes (totally three), the construction does not remove an attribute after 

selecting it as a split attribute. In other words, a selected attribute will also be 

reconsidered in the next recursion. 

 

In the ID3 method, given a data partition (a set of tuples) D, a classification (a target 

attribute value) Ci, and Ci,D be the set of tuples classified as Ci in D. The total 

information needed to classify a tuple can be represented by  



Info(D) = − 2
1

log ( )
m

i i
i

p p

 , where pi is |Ci,D|/|D| (|Ci,D| and |D| indicate the number of 

tuples in Ci,D and D, respectively). ID3 selects a “best” attribute and a “best” split point 

(threshold) that generate two data sets D1 and D2 to minimize InfoA(D) = 

1

| |
( )

| |

n
j

j
j

D
Info D

D

 , which is the information needed to further classify the data after 

the partition.  

 

If tuples of D have disjoint values on attribute A, to get the “best” split point, these 

values will be sorted in increasing order. Then consider the midpoint (mean value) 

between each pair of adjacent values. For every possible midpoint, the tuples are 

divided into two partitions: one for lower than or equal to it and one for higher than it. 

Therefore, if the tuples on attribute A have n distinct values, ID3 will test (n-1) 

partitions. Further, if all tuples have m attributes and each attribute has ni values (for i 

= 1,...,m), to acquire the “best” attribute and the “best” split point, ID3 needs to 

consider 
1

( 1)
m

i
i

n


 possible partitions.  

 

Finally, information that can be acquired after a partition is defined as Gain(A) = 

Info(D) - InfoA(D). Consequently, the algorithm selects the split attribute and the split 

point that maximize Gain(A), or minimize InfoA(D) since Info(D) is fixed. 

6.2.1 Algorithm 

In the following algorithm, the original input d is the training set. All tuples of this set 

are acquired from a database. 

 

CONSTRUCT(d) 

(1) create a new node containing all tuples of d 

(2) if all tuples have the same class, then node = leaf and value = class of the 

classification, return 

(3) otherwise, over all 3 attributes, use ID3 method to get the attribute and the split 

point with highest information gain 
(4) if the highest information gain   ɛ, label this node as a leaf with value = class of 

the most common class in the set, return 

(5) on the “best” split attribute, use the “best” split point p to divide the set into two 

partitions A and B: all tuples of A having values of split attribute   p and all tuples of 

B having values of split attribute > p 

(6) for each partition, recursively invoke the procedure CONSTRUCT(d) 
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