
MovieOracle System
(Recommender System on Twitter)

Detailed Design Document

Author: Yao Yao

TABLE OF CONTENTS

1. Introduction ... 4
1.1 References and Related Documents .. 4

2. System Overview .. 5
2.1 Functional Requirements Overview .. 5
2.2 High Level Component Model .. 5

2.2.1 Component Descriptions .. 5
3. Twitter API [1] .. 7

3.1 Twitter4J Specification .. 7
3.2 Twitter API Limitations... 8

4. CI-Bayes[4] ... 10
4.1 CI-Bayes Specification .. 10
4.2 CI-Bayes Usage ... 10

5. Application Design ... 12
5.1 Property File .. 12
5.2 Tweet Collection.. 12

5.2.1 Target and Requirements .. 12
5.2.2 Data Model ... 13
5.2.3 Variables and Constants ... 14
5.2.4 Algorithm.. 15

5.3 Polarity Classifier .. 16
5.3.1 Target and Requirements .. 16
5.3.2 Data Model ... 16
5.3.3 Variables and Constants ... 16
5.3.4 Algorithm.. 17

5.4 Potential User Finder ... 17
5.4.1 Target and Requirements .. 17
5.4.2 Data Model ... 18
5.4.3 Variables and Constants ... 19
5.4.4 Algorithm.. 19

5.5 Decision Tree ... 20
5.5.1 Target and Requirements .. 21
5.5.2 Data Model ... 21
5.5.3 Variables and Constants ... 21
5.5.4 Algorithm.. 22

5.6 Command-line Interface .. 22
5.6.1 Target and Requirements .. 22
5.6.2 Data Model ... 22
5.6.3 Variables and Constants ... 23
5.6.4 Algorithm.. 23

5.7 System Service .. 25
5.7.1 Target and Requirements .. 25
5.7.2 Variables and Constants ... 25

5.7.3 Data Model ... 26
5.7.4 Algorithm.. 26

6. Details of Supplemental System ... 27
6.1 Sentiment Analysis [7] .. 27

6.1.1 Tweet Polarity... 27
6.1.2 CI-Bayes ... 27
6.1.3 Bayesian Classification [9] ... 28
6.1.4 Fisher Classification [10].. 29
6.1.5 Type I and type II errors [11] ... 30
6.1.6 Comparison of naive Bayesian and Fisher classification 30
6.1.7 Conclusion .. 31

6.2 Decision Tree [12] ... 31
6.2.1 Algorithm.. 33

References .. 34

1. Introduction

The detailed design document covers the basic theory, related technique, and

implementation details of the MovieOracle system. It first provides a high-level system

overview. Then it discusses the usage of Twitter API, Twitter4J and CI-Bayes. After

that, it describes how components communicate with each other, how they are

organized, and how each of them is implemented. Finally the document introduces the

sentiment analysis and the decision tree method of the project. A program

implementation for this project should follow the direction of this document.

1.1 References and Related Documents

Document Author

Software Requirements Specification (MovieOracle System) Yao Yao

MovieOracle User Tutorial Yao Yao

2. System Overview

This project provides the service of recommending movies to appropriate twitter

users. It is implemented in Java and is supported by MySQL database. The system

specification is in the Software Requirements Specification document.

2.1 Functional Requirements Overview

The major functions of this system include: collecting tweet information of specified

movies; finding potential users for prediction; classifying tweets; predicting twitter

users’ opinions on movies. It also provides a command line interface and a log

service.

2.2 High Level Component Model

Besides a database, this project is composed of five major components: Tweet

Collection, Potential User Finder, Polarity Classifier, Decision Tree and System

Service. Each component corresponds to different functional requirements as follows.

1. Tweet Collection: collecting tweet information of specified movies

2. Potential User Finder: finding potential users for prediction

3. Polarity Classifier: classifying tweets into three categories

4. Decision Tree: predicting twitter users’ opinions on movies

5. System Service: command line interface and log service

2.2.1 Component Descriptions

1. Tweet Collection

Tweet Collection is used to collect tweet information of specified movies and store

them in the database. The Twitter Search API (see Section 3) limits calling its search

method within each hour and every search returns the 100 latest tweets containing

the key word or phrase (movie name).

2. Polarity Classifier

Polarity Classifier periodically classifies tweets’ sentiments into three categories:

positive, negative, and unknown. The time interval of periodical classification is

determined by the MovieOracle user. It writes the classification results to the

database.

3. Potential User Finder

Potential User Finder periodically calls methods of the Twitter Rest API (see Section 3)

to get tweet authors’ friends and followers. It analyzes tweet information in the

database to find the potential users, which are users in the system with sufficient

related tweets1 to qualify the decision tree prediction. After that, it invokes the decision

tree to predict potential users’ opinions on specified movies.

4. Decision Tree

The decision tree is constructed after the MovieOracle system starts. (This allows

MovieOracle users to use their own training data to construct the decision tree.) It is

then invoked by the Potential User Finder component to predict the potential users’

sentiments. The attributes used in the tree are percentages of positive, negative, and

unknown related tweets of a potential user.

5. System Service

System Service invokes and coordinates some other components. It also provides a

log service and a command line interface for the entire system. The log service

records in a log file the starting of each component, important operations, warning and

error messages. The command line interface accepts commands to manipulate the

MovieOracle system. The command specification is introduced in Chapter 4

“Commands” of the MovieOracle User Tutorial document.

1 For Twitter users who publish tweets about some topic, if their friends and followers
publish the tweets discussing the same topic, these tweets from their friends and
followers are called related tweets of the users.

3. Twitter API [1]

An application can access Twitter data via the Twitter API. Twitter4J [2] is a Java

library for the Twitter API. It is applied in the Tweet Collection and Potential User

Finder components of this project. The Twitter API (Twitter4J) has its own

specification and limitation for the programs accessing it.

3.1 Twitter4J Specification

The Twitter4J introduction can be found on http://twitter4j.org. The major classes and

interfaces used in this project are: TwitterFactory, Twitter, Configuration,

ConfigurationBuilder, Query, QueryResult, and Tweet. Some of their common

methods and usage are discussed as follows.

1. TwitterFactory

TwitterFactory is a factory class for Twitter. Its constructor used in the project is

“TwitterFactory(Configuration conf)”. Its “getInstance()” method is used to

generate an authenticated Twitter instance. The class of this instance represents

the Twitter API.

2. Twitter

An instance of the Twitter class is generated by the TwitterFactory. In this project,

all usage of the Twitter API are accessed via such an instance. Its “search(Query

query)” method searches tweets by a key word or phrase. This method is used in

the Tweet Collection component. Its “getFollowersIDs(String screenName)”

method returns the follower ids of a given screen name. Its “getFriendsIDs(String

screenName)” method returns the friend ids of a given screen name. Its

“getRateLimitStatus()” method returns an instance of RateLimitStatus. The

RateLimitStatus has a method “getRemainingHits()” that returns the remaining

number of Twitter REST API requests available. These four methods are used in

the Potential User Finder component.

3. ConfigurationBuilder

ConfigurationBuilder is used to set Twitter API parameters. In this project, these

parameters include Token, TokenSecret, ConsumerKey, and ConsumerSecret [3].

These four parameters are provided by Twitter once a twitter-based application is

registered. For this project, these parameters are in a property file (see Chapter 5

of the MovieOracle User Tutorial document for detail). Its “build()” method creates

an instance of the class which implements Configuration interface.

4. Query

Query is a class used to search tweets. Its instance is passed to the “search(Query

query)” method of a Twitter instance in order to search tweets having the desired

movie names. The parameter in its constructor “Query(String key)” is the desired

movie name. Its “setRpp(int rpp)” method sets the number of latest tweets to return

per query, up to a max of approximately 100. Its “setLang(String lang)” method

restricts return tweets in the given language.

5. QueryResult

QueryResult is an interface representing the search response. It is implemented

by the class of the returned instance of the method “search(Query query)”, which

is mentioned in item 2 and 4 in this list. The “getTweets()” method returns a list of

Tweet instances. The maximum list size is approximately 100 (limited by the

Twitter API).

6. Tweet

Tweet is a class representing a tweet in the search result. Its “getId()” method

returns a tweet status id. The “getFromUserId()” method returns the tweet author

id. The “getFromUser()” method returns the tweet author name. The “getText()”

method returns the actual tweet.

3.2 Twitter API Limitations

The Twitter API only allows a client to make a limited number of method calls within an

hour. More information is available on http://dev.twitter.com/pages/rate-limiting. In
this project, retrieving friends or followers is limited by the Rest API rate limit.

Authorized applications are permitted 350 requests per hour. The search method is

limited by the Search API rate limit. The access rate is not made public but is close to

the rate of Rest API rate limit. In this project, the default value of the Search API rate

limit is set to 300 (it can be modified to a lower value in the property file).

When using a movie name as the key word to collect tweets, there will be an

“unrelated tweet” problem, which means the collected tweets are not all related to the

discussion of a desired movie. For example, consider the movie “Red”. A tweet

containing the word “Red” could be about the famous fairy tale “Little Red Riding

Hood”, or even just some body talked the house painting. One helpful method is to

add a string “movie” plus a blank space as the prefix of the movie name while using

“start” or “collect” command. Although it can avoid gathering meaningless tweets, it

also may miss some valuable tweets that do discuss the movie but have no such

prefix. In addition, some tweets contain the movie names which are commonly

thought to be used for movies, but they may still talk about something else. For

example, “Harry Potter” can be used for a book. When opportunities of such “faulty

collecting” are relatively few, it is unnecessary to add the string “movie” to the movie

name.

In the future, if new-found methods can well distinguish the tweets about the desired

movie from other meaningless ones, the problem discussed in the paragraph above

can be solved by modifying code for the tweet collection thread. After the thread

successfully retrieves tweets, instead of directly storing them in the database, add the

desired method to filter out the unrelated tweets and then only store the meaningful

ones (see more details about the design of the tweet collection thread in Section

5.2.4).

4. CI-Bayes[4]

CI-Bayes provides the Fisher classification method for this project. Its basic

information and fundamental theory are introduced in Section 6.1.2, 6.1.3, and 6.1.4.

4.1 CI‐Bayes Specification

The major class and interface used in this project are: FisherClassifier and

FisherClassifierImpl. FisherClassifierImpl implements the interface FisherClassifier.

Its common methods are:

1. train(Object tweet, String category)

It tells the fisher classifier that the “tweet” belongs to the “category”. Given a large

number of tweets, this method trains the classifier. In this project, three categories

are used: positive, negative, and unknown.

2. getFisherProbability(Object tweet, String category)

It returns a double number and this value represents the probability that the “tweet”

belongs to the “category”.

3. getClassification(Object tweet)

It returns a string and this value represents the category to which the “tweet”

belongs.

4.2 CI‐Bayes Usage

Although CI-Bayes has a “getClassification(Object tweet)” method which allow

directly classifying a tweet, sometimes the project does not use it to classify tweets.

Instead, some simple rules are applied based on the “getFisherProbability(Object

tweet, String category)” method. These rules are derived from long-term observation

on many experiments for validating the correctness of “getClassification(Object

tweet)”. With the “getFisherProbability(Object tweet, String category)” method, let P

be the probability of a tweet is “positive”, N be the probability of a tweet is “negative”,

U be the probability of a tweet is “unknown”,

1. If U is no greater than both P and N, and the absolute value of (P - N) < 0.1, then

the tweet is considered “unknown”.

2. If P <= U <= N and (N - U) < 0.1, then the tweet is considered “unknown”.

3. If N <= U <= P and (P - U) < 0.1, then the tweet is considered “unknown”.

4. If the three rules above fail, then the tweet is directly classified by the

“getClassification(Object tweet)” method.

In the future, if new rules are found or the original rules need to be modified, one can

implement them by modifying the method which applies rules to classify a tweet in the

polarity classifier (see more details about the design of the polarity classifier in section

5.3.4).

5. Application Design

This section introduces the system property file and the detailed design of five major

components: Tweet Collection, Potential User Finder, Polarity Classifier, Decision

Tree, and System Service. Each subsection describes the component’s functional

requirements, data model, variables and constants, and algorithm implementation.

Since the design of the command line interface has much information, it is discussed

in a separate subsection.

5.1 Property File

The MovieOracle system uses a standard property file called “config.properties” to

indicate environment variables. The file is in the same directory of the system. It has

the following variables used by different components.

Variable Component

database_name System Service

related_tweets_threshold Potential User Finder

polarity_training_set Polarity Classifier

search_limit Tweet Collection

clear_interval System Service

check_tweet_interval Polarity Classifier

token System Service

token_secret System Service

consumer_key System Service

consumer_secret System Service

More details of the environment variables can be found in Chapter 5 “Property File” of

the MovieOracle User Tutorial document.

5.2 Tweet Collection

The implementation of the Tweet Collection component is supported by five tables

introduced in 5.2.2 Data Model. They are MOVIE, AUTHOR, TWEET,

THREAD_RESOURCE, and THREAD_CALL. The specification of this part is in 3.2 of

the Software Requirements Specification document.

5.2.1 Target and Requirements

The Tweet Collection component targets getting the newest tweets on specified

movies and storing them (as well as related information) in the database. Since the

search rate is limited by the Twitter Search API and each search returns the latest 100

tweets of a movie, each movie search is run in a separate thread. Every thread

periodically collects tweets of one movie. It uses primary key constraint of the TWEET

table to avoid storing duplicate tweets.

The sleep time of each thread is evenly divided among all threads currently running in

the system. Let cph (calls per hour) represent the number of available calls per hour

for a thread. Then cph = Twitter search limit rate/the total number of active movies

and the sleep time = 1/cph.

5.2.2 Data Model

1. MOVIE

The MOVIE table stores the movie information.

Field Type Null Key Default Extra

MOVIE_ID INT(4) NO YES AUTO INCREMENT

MOVIE_NAME VARCHAR(50) NO

DELETE_TAG INT(1) NO 0

MOVIE_ID: movie id

MOVIE_NAME: movie name

DELETE_TAG: indicates whether it is currently being processed or not (0: processed,

1: otherwise)

2. AUTHOR

The AUTHOR table stores the tweet author information.

Field Type Null Key Default Extra

AUTHOR_ID INT(9) NO YES

AUTHOR_NAME VARCHAR(20) NO

CHECK_TAG INT(1) NO 0

AUTHOR_ID: id of the author who publishes the tweet

AUTHOR_NAME: name of the author who publishes the tweet

CHECK_TAG: indicates whether his or her friends and followers have already been

found via Twitter REST API (0: no, 1: yes)

3. TWEET

The TWEET table stores the tweet information.

Field Type Null Key Default Extra

TEXT_ID BIGINT(10) NO YES

AUTHOR_ID INT(9) NO

MOVIE_ID INT(4) NO

TEXT VARCHAR(250) YES

POLARITY VARCHAR(10) YES NA

TEXT_ID: tweet status id

AUTHOR_ID: id of the author who publishes the tweet

MOVIE_ID: movie id

TEXT: contents of the tweet

POLARITY: sentimental polarity of a tweet (pos: positive, neg: negative, unknown:

unknown. it is initially set to NA to indicate not processed)

4. THREAD_RESOURCE

The THREAD_RESOURCE table stores the available times to call the Twitter search

method for the tweet-collection threads.

Field Type Null Key Default Extra

THREAD_ID INT(4) NO YES

MOVIE_ID INT(4) NO

CPH NUMERIC(7,3) NO

THREAD_ID: thread id

MOVIE_ID: movie id

CPH: amount of the available calls per hour for this thread

5. THREAD_CALL

The THREAD_CALL table stores the time when tweet-collection threads call the

Twitter search method.

Field Type Null Key Default Extra

THREAD_ID INT(4) NO

TIME TIMESTAMP NO NOW()

THREAD_ID: thread id

TIME: the time when some thread calls the Twitter API search method

5.2.3 Variables and Constants

1. Variables

Name Default Value Remark

search_limit 300 It is defined in the property file “config.properties”.

See Chapter 5 “Property File” of the MovieOracle

User Tutorial document for more details.

2. Constants

Name Default Value Remark

LANGUAGE_CODE en It represents “English”, which directs the

Twitter API to only retrieve English tweets.

More language codes can be found in the

Twitter4J document [5].

TWEETS_PER_PAGE 100 It indicates the maximum number of tweets

that the Twitter4J method (see Section 3.1)

retrieves within one query.

5.2.4 Algorithm

1. The program gets all of the movie names from the MOVIE table with

DELETE_TAG = 0.

2. It deletes all records in the THREAD_RESOURCE table.

3. For each movie acquired in 1, the program inserts the thread id (program

generated), movie id, cph (search_limit /the total number of movies) to the

THREAD_RESOURCE table and then starts a thread. Within each thread:

(a) It sets the movie name as a query key, TWEETS_PER_PAGE as the

number of returned tweets, and LANGUAGE_CODE as the tweet

language code for the Query instance.

(b) Until tweet collection on this movie ended (if DELETE_TAG of the movie

equals to 1), repeat step i – v.

i. In the THREAD_CALL table, in a synchronized call, check the total

number of calls using the search method of Twitter4J within the past 1

hour. If this number is greater than search_limit, it sleeps for 1 second

and then executes sub step i again. Otherwise, it executes ii.

ii. Insert the thread id to the THREAD_CALL table (to record one call at

the certain time).

iii. Retrieve the tweets by the search method (see Section 3.1).

iv. For each tweet found in iii, the program inserts the tweet text id, tweet

author id, movie id, and tweet text to the TWEET table and inserts the

tweet author id and author name to the AUTHOR table.

v. It gets the current cph from the THREAD_RESOURCE table. The

thread sleeps for 1/cph hour(s). After waking up, it executes i – v

again.

5.3 Polarity Classifier

The implementation of the Polarity Classifier is supported by the two tables in 5.3.2

Data Model. They are TWEET and MOVIE. The specification of this part is in 3.3 of

the Software Requirements Specification document.

5.3.1 Target and Requirements

The Polarity Classifier component classifies tweets’ sentimental polarities and writes

the results to the database. Since the tweet collection threads continually store the

newest tweets, this component is implemented by a thread and periodically checks

the database to find unclassified tweets. A tool called CI-Bayes (see Section 4)

performs the basic classification job for each tweet.

5.3.2 Data Model

TWEET

(Check the TWEET table in 5.2.2 Data Model)

MOVIE

(Check the MOVIE table in 5.2.2 Data Model)

5.3.3 Variables and Constants

1. Variables

Name Default Value Remark

polarity_training_set ClassifierTrainingSet It is defined in the property file

“config.properties”. See Chapter 5

“Property File” of the MovieOracle

User Tutorial document for more

details.

check_tweet_interval 5 It is defined in the property file

“config.properties” and indicates the

time interval for classifying tweets. See

Chapter 5 “Property File” of the

MovieOracle User Tutorial document

for more details.

2. Constants

Name Default Value Remark

REPLACE_NAME movie It indicates the constant string used to

replace the real movie name in tweets.

The replacement is for avoiding the

possible positive or negative words in

the movie name that may influence the

polarity classification.

5.3.4 Algorithm

1. If the training data set (polarity_training_set folder) does not exist, the program

prints a fatal error in the log file and quits. Otherwise, it uses the files in three

subfolders of polarity_training_set to train the fisher classifier (see Section 4.1).

The names of the three subfolders are pos, neg, and unknown.

2. It retrieves all of the tweet texts and corresponding movie names from the TWEET

table joined with the MOVIE table where POLARITY = ‘NA’. For each of the tweet

texts and its corresponding movie name:

(a) The program replaces the movie name in the text with REPLACE_NAME.

Then it calls the method “getFisherProbability(Object tweet, String category)”

of the fisher classifier to calculate the positive probability P, negative

probability N, and unknown probability U of the tweet text, respectively.

(b) The program uses the four rules in Section 4.2 to classify this tweet.

(c) It updates the classified result (polarity) to the TWEET table.

3. It sleeps for check_tweet_interval minutes. After waking up, the program executes

2. again.

5.4 Potential User Finder

The implementation of the Potential User Finder component is supported by four

tables in Section 5.4.2 Data Model. They are TWEET, AUTHOR,

RELATED_TO_AUHOR, and POTENTIAL_USER. The specification of this part is in

3.4 of the Software Requirements Specification document.

5.4.1 Target and Requirements

The Potential User Finder component targets finding predictable users and calculating

the percentages of three kinds of their related tweets. It continually checks the

database to get new tweet authors. Since the rate of finding friends or followers is

limited by the Twitter REST API, this component is implemented by a thread and

needs to wait once exceeding the limitation.

5.4.2 Data Model

TWEET

(Check the TWEET table in 5.2.2 Data Model)

AUTHOR

(Check the AUTHOR table in 5.2.2 Data Model)

6. RELATED_TO_AUHOR

The RELATED_TO_AUHOR table stores the tweet authors (ids) and their

corresponding friends and followers (ids).

Field Type Null Key Default Extra

AUTHOR_ID INT(9) NO YES

USER_ID INT(9) YES YES

FLAG INT(1) YES YES

AUTHOR_ID: id of the author who publishes the tweet

USER_ID: twitter user id

FLAG: indicates whether a twitter user is a friend or follower of the tweet author (0:

friend, 1: follower)

7. POTENTIAL_USER

The POTENTIAL_USER table stores the potential user information.

Field Type Null Key Default Extra

MOVIE_ID INT(4) NO YES

USER_ID INT(9) NO YES

RELATIVE_POS_NUMBER NUMERIC(6,5) YES NO

RELATIVE_NEG_NUMBER NUMERIC(6,5) YES NO

RELATIVE_UNKNOWN_NUMBER NUMERIC(6,5) YES NO

POLARITY VARCHAR(10) YES NO

MOVIE_ID: movie id

USER_ID: twitter user id

RELATIVE_POS_NUMBER: relative number of positive related tweets

RELATIVE_NEG_NUMBER: relative number of negative related tweets

RELATIVE_UNKNOWN_NUMBER: relative number of unknown related tweets

POLARITY: sentiment prediction of the user on the movie (pos: positive, neg:

negative, unknown: unknown)

5.4.3 Variables and Constants

1. Variables

Name Default Value Remark

related_tweets_threshold 6 It is defined in the property file

“config.properties”. According to

experiments, the accuracy of the decision

tree with related_tweets_threshold < 6 is

lower than related_tweets_threshold >= 6,

but the there is no big difference between

the accuracies of the decision tree with

related_tweets_threshold = 6 and the

decision tree with

related_tweets_threshold > 6.

remain_hit NULL This value is from “twitter.

getRateLimitStatus().getRemainingHits()”.

It indicates the remaining number of

Twitter REST API requests available. The

getRemainingHits() method itself does not

consume the available requests of Twitter

REST API (see Section 3.1).

2. Constants

Name Default Value Remark

FRIEND_TAG 0 In the RELATED_TO_AUHOR table, it

indicates the user (id) is the friend of the

author (id).

FOLLOWER_TAG 1 In the RELATED_TO_AUHOR table, it

indicates the user (id) is the follower of the

author (id).

FRIEND_TAG &

FOLLOWER_TAG

 Currently, no distinction is made between

friend and follower, but these two tags are

included for future improvement.

5.4.4 Algorithm

1. The program gets the movie ids from the AUTHOR table join the TWEET table

with CHECK_TAG = 0.

2. If the number of movie ids found in step 1 equals 0, sleep for 1 minute and

executes 1 again. Otherwise, set rest_call to remain_hit/2 (for each author, the

program needs to call Twitter API method twice: “getFriendsIDs” method and

“getFollowersIDs” method). For each movie id found in 1:

(a) If rest_call equals to 0, the program executes step 3. Otherwise, it executes

(b).

(b) Query the authors from the AUTHOR table join the TWEET table with

CHECK_TAG = 0 and MOVIE_ID = movie id.

(c) If the number of author ids is less than rest_call, keep all of the author ids.

Otherwise, keep rest_call author ids. For each of the author ids:

i. The program gets all of his or her friend ids via the method

“twitter.getFriendsIDs(String screenName)” and inserts these ids,

the author id, and FRIEND_TAG to the RELATED_TO_AUHOR

table.

ii. The program gets all of his or her follower ids via the method

“twitter.getFollowersIDs(String screenName)” and inserts these ids,

the author id, and FOLLOWER_TAG to the RELATED_TO_AUHOR

table.

iii. The program updates CHECK _TAG to 1 in the AUTHOR table

where AUTHOR_ID = the author id in (c).

(d) Put the movie id used in (b) in a movie list and set rest_call to rest_call minus

the number of authors kept in (c).

3. If the movie list (which is set in 1(d)) is not null, then for each movie id in this list:

(a) Retrieve the user ids from the RELATED_TO_AUHOR table join the TWEET

table where MOVIE_ID = the movie id and group by USER_ID having the

number of its corresponding AUTHOR_ID be greater than or equal to

related_tweets_threshold.

(b) The program clears the POTENTIAL_USER table with MOVIE_ID = the

movie id. Then for each of the user ids in 3(a):

i. Retrieve the corresponding authors’ opinions (sentimental polarities)

on this movie id from the RELATED_TO_AUHOR table join the

TWEET table where USER_ID = the user id and MOVIE_ID = the

movie id.

ii. Calculate the percentage of positive, percentage of negative, and

percentage of unknown related tweets for this user.

iii. Insert the user id, the movie id, and these percentages to the

POTENTIAL_USER table.

4. The program clears the movie list set in 1(d). It invokes the decision tree to predict

users whose POLARIY is null in the POTENTIAL_USER table.

5. If remain_hit equals to 0, sleep for 1 minute and execute step 5 again. Otherwise,

execute step 1 - 5 again.

5.5 Decision Tree

The implementation of the Decision Tree component is supported by two tables

introduced in 5.5.2 Data Model. They are POTENTIAL_USER and

DECISION_TREE_TRAINING. The specification of this part is introduced in 3.5 of the

Software Requirements Specification document.

5.5.1 Target and Requirements

The Decision Tree component targets predicting potential users’ opinions on movies

and writing prediction results to the database. The decision tree is invoked by the

Potential User Finder component, however the tree construction (training) starts just

after the entire system starts (more explanation for training is in Section 2.2.1). When

the tree is invoked, it also prints all users who hold positive attitudes to an indicated

file.

5.5.2 Data Model

POTENTIAL_USER

(Check the POTENTIAL_USER table in 5.4.2 Data Model)

8. DECISION_TREE_TRAINING

The DECISION_TREE_TRAINING table stores the training data for the decision tree.

Field Type Null Key Default Extra

TWEET_ID BIGINT(10) NO YES

RELATIVE_POS_NUMBER NUMERIC(6,5) YES NO

RELATIVE_NEG_NUMBER NUMERIC(6,5) YES NO

RELATIVE_UNKNOWN_NUMBER NUMERIC(6,5) YES NO

POLARITY VARCHAR(10) YES NO

TWEET_ID: tweet status id

RELATIVE_POS_NUMBER: relative number of positive related tweets

RELATIVE_NEG_NUMBER: relative number of negative related tweets

RELATIVE_UNKNOWN_NUMBER: relative number of unknown related tweets

POLARITY: sentimental polarity of a tweet (pos: positive, neg: negative, unknown:

unknown)

5.5.3 Variables and Constants

1. Variables

None

2. Constants

Name Default Value Remark

RECOMMENDATION Recommendations.txt It indicates the name of the file

which contains twitter use ids with

the specific movies they like.

5.5.4 Algorithm

The algorithm of the decision tree component can be divided into two parts: tree

construction and tree invocation.

Construction

1. The program gets all of the records from the DECISION_TREE_TRAINING table.

According to the ID3 algorithm [6], it uses these training data to construct a

decision tree. The detailed implementation of the algorithm is described in Section

6.2.1

Invocation

1. Once invoked, the program retrieves the records from the POTENTIAL_USER

table where POLARITY is null and then traverses the tree to predict potential users’

sentiments on movies.

2. It updates the predicted polarities to the POTENTIAL_USER table.

3. The program then retrieves users who have positive opinions in the

POTENTIAL_USER table and writes them to the indicated file

RECOMMENDATION.

5.6 Command‐line Interface

The command line interface is a part of the System Service component. Its

implementation is supported by four tables introduced in 5.6.2 Data Model. They are

POTENTIAL_USER, TWEET, THREAD_RESOURCE, and MOVIE. The specification

of this part is in 3.1 of the Software Requirements Specification document.

5.6.1 Target and Requirements

The Command-line Interface targets providing commands to use the entire system.

5.6.2 Data Model

POTENTIAL_USER

(Check the POTENTIAL_USER table in 5.4.2 Data Model)

TWEET

(Check the TWEET table in 5.2.2 Data Model)

THREAD_RESOURCE

(Check the THREAD_RESOURCE table in 5.2.2 Data Model)

MOVIE

(Check the MOVIE table in 5.2.2 Data Model)

5.6.3 Variables and Constants

1. Variables

Name Default Value Remark

search_limit 300 It is defined in the property file “config.properties”.

See Chapter 5 “Property File” of the MovieOracle

User Tutorial document for more details.

2. Constants

NULL

5.6.4 Algorithm

1. It prints a prompt denotation and waits for screen input.

(a) If the prefix of the input equals “predict”:

i. It validates whether this prefix is followed by three file names which are

separated by spaces.

ii. Further validate that file 1 and file 2 exist and file 3 does not exist

iii. If the validation fails, print the error and execute 1 again.

iv. Otherwise, it gets twitter user ids from file 1 and gets movie names

from file 2. For each movie and each user id, it executes the procedure

A and B, and then prints the users’ sentiment prediction on the movies

to file 3.

A. The program returns the user’s opinion (polarity) from the

POTENTIAL_USER table where MOVIE_ID = the movie id and

USER_ID = the user id.

B. If the user’s opinion does not exist in this table, it gets the major

polarity from the TWEET table with MOVIE_ID = the movie id

and calculates the simplistic prediction score (which is the

maximum integer less than or equal to 10 * P, let P be the

highest percentage of sentimental polarities of such movie.

Therefore the prediction score is between 3 and 10).

(b) If the prefix of the input equals “oracle”:

i. It validates whether this prefix is followed by a user id and a movie

name which are separated by a space.

ii. Further validate that the user id is an integer.

iii. If the validation fails, print the error and execute 1 again.

iv. Otherwise, it executes procedures (a)iv A and (a)iv B, and then prints

the prediction result to screen.

(c) If the prefix of the input equals “collect”:

i. It validates whether this prefix is followed by a file name.

ii. Further validate that the file does exist.

iii. If the validation fails, print the error and execute 1 again.

iv. Otherwise, it gets all movie names from the file.

v. The program then calculates the cph = search_limit /total number of

movies (without duplicate movies) and updates all cph in the

THREAD_RESOURCE table.

vi. For each movie found in iv, it checks whether it is in the MOVIE table

where DELETE_TAG = 0 and MOVIE_NAME = the movie name. If

yes, it prints a warning message. Otherwise, it executes A, B and C.

A. The program stores the new movie in the MOVIE table or

updates DELETE_TAG to 0 where MOVIE_NAME = the

movie name.

B. Put the cph and the movie (id) to the THREAD_RESOURCE

table.

C. Start a thread (see the thread design in Section 5.2.4) to

collect tweets on the new movie.

(d) If the prefix of the input equals “start”:

i. It validates whether this prefix is followed by a movie name.

ii. If the validation fails, print the error and execute 1 again.

iii. Otherwise, check whether the movie is in TWEET table with

DELETE_TAG = 0 and MOVIE_NAME = the movie name.

iv. If yes, it prints a warning message and executes 1 again.

v. Otherwise, the program calculates the cph = search_limit/total number

of movies and executes procedures (c)vi A, (c)vi B, and (c)vi C.

(e) If the prefix of the input equals “terminate”:

i. It validates whether this prefix is followed by a file name.

ii. Further validate that the file does exist.

iii. If the validation fails, it prints the error and executes 1 again.

iv. Otherwise, it gets all movie names from the file.

v. The program then calculates the cph = search_limit /total number of

movies (without removed movies) and updates all cph in the

THREAD_RESOURCE table.

vi. For each movie, it checks whether it is in the MOVIE table with

DELETE_TAG = 0 and MOVIE_NAME = the movie name. If no, it

prints a warning message. Otherwise, it executes A and B.

A. The program updates DELETE_TAG to 1 in the MOVIE table

with MOVIE_NAME = the movie name.

B. Delete the record in the THREAD_RESOURCE table with

MOVIE_ID = the movie id.

(f) If the prefix of the input equals “stop”:

i. It validates whether this prefix is followed by a movie name.

ii. If the validation fails, print the error and execute 1 again.

iii. Otherwise, it checks whether the movie is in the MOVIE table with

DELETE_TAG = 0 and MOVIE_NAME = the movie name.

iv. If no, print a warning message and execute 1 again.

v. Otherwise, the program calculates the cph = search_limit /total

number of movies (without the removed movie) and updates all cph in

the THREAD_RESOURCE table. Then it executes procedures (e)vi A

and (e)vi B.

(g) If the input equals “show movies”:

i. The program gets all the movie names from the MOVIE table with

DELETE_TAG = 0 and then prints them.

(h) If the input equals “show commands”:

i. The program prints all the commands and their explanations (see

Chapter 4 “Commands” of the MovieOracle User Tutorial document).

(i) If the input equals “exit”:

i. The program stops and exits.

(j) The program executes step 1 again.

5.7 System Service

The implementation of the System Service component is not directly supported by any

table. The specification of this part is introduced in 3.1 of the Software Requirements

Specification document.

5.7.1 Target and Requirements

The System Service component invokes other components. It also provides

parameter validation and log service for the entire project. This component is started

once the system is started.

5.7.2 Variables and Constants

1. Variables

Name Default Value Remark

clear_interval 12 It is defined in the property file “config.properties”.

See Chapter 5 “Property File” of the MovieOracle

User Tutorial document for more details.

2. Constants

None

5.7.3 Data Model

NULL

5.7.4 Algorithm

1. The program validates related_tweets_threshold, search_limit, clear_interval and

check_tweet_interval in the property file “config.properties”. (In Chapter 5

“Property File” of the MovieOracle User Tutorial document, it discusses the

selection of these variable values.) The validation includes:

(1) related_tweets_threshold, an integer greater than 3.

(2) search_limit, an integer no greater than 300.

(3) clear_interval, a float number greater than 0.

(4) check_tweet_interval, a float number greater than 0.

If the validation passes, it executes 2. Otherwise, the program indicates the error

and exits.

2. It prompts to input the database user name and password. If they are incorrect or

the database service is not started, the program indicates the error and requires

input again.

3. The program starts the Tweet Collection (Section 5.2) service and the Polarity

Classifier (Section 5.3) Service. Then it constructs the Decision Tree (Section 5.5)

and starts the Potential User Finder (Section 5.4) service.

4. For every clear_interval hours, a thread clears all of the records in the

THREAD_CALL table an hour ago.

5. The program starts the Command-line (Section 5.6) service.

6. Details of Supplemental System

This part discusses two important theories which support the entire system. They are

the sentiment analysis method and the decision tree method.

6.1 Sentiment Analysis [7]

Sentiment Analysis, also called Opinion Mining, is a cross research field of text mining,

and machine learning [8]. It aims to find the text authors’ attitudes on some topic. This
project requires automatically determining the polarities of movie-review tweets from

followers and friends. The ideal situation is finding an available twitter tool that can do

this work. Otherwise, data-mining tools and methods will be considered.

6.1.1 Tweet Polarity

The movie reviews on twitter can be classified into positive, negative, and neutral 2.

Take reviews on the movie “Avatar” for example. “I saw Avatar. Very fun, great movie.”

is a positive tweet, while “I think I’m the only one on the planet that didn’t like Avatar...

Seemed a bit too much like an American history lesson + CG” is a negative tweet.

However, there are still some ambiguous tweets which are difficult to classify as

positive or negative. In this situation, they are considered neutral. For instance, “Yes,

today I went to see the movie Avatar; in 3D. It was very well done, but not

extraordinary...I give it a B- at best. Storyline is weak.” is an ambiguous tweet, which

might be considered positive or negative. In addition, when tweet authors do not

display their opinions, their tweets on some movie can also be considered as neutral.

For example, “Home from Aliante. Watched Avatar. Late.” is neutral. Because of

ambiguous tweets, even human beings have difficulties determining the sentimental

polarity.

6.1.2 CI-Bayes

According to experimental comparisons of many programs, CI-Bayes is chosen for

this project. It can be used by adding the jar file to the project classpath. CI-Bayes

provides two major classification systems: Bayesian classifier and Fisher classifier.

2 When talking about the tweet polarity, neutral and unknown are interchangeable

terms in this document.

6.1.3 Bayesian Classification [9]

Bayesian classification is based on a statistical method called Bayes theorem.

Assuming X describes a group of values on n attributes and H is a certain hypothesis.

Then the fundamental formula of Bayes theorem can be represented as

P(H|X) =
(|) ()

()

P X H P H

P X
. In this formula, P(H|X) is the posterior probability, which

indicates the probability of hypothesis H given that X happens. P(X|H) is the posterior

probability, which indicates the probability of X happening given that hypothesis H

exists. P(H) is the prior probability, which indicates the probability of hypothesis H

existing regardless of any X. P(X) is the prior probability, which indicates the

probability of X happening regardless of any H.

Since there are multiple classes in a data set, the naive Bayesian classifier will

choose the class having the highest posterior probability as the final result. Let the

multiple classes be C1, C2, ..., Cm. According to the formula P(H|X) =
(|) ()

()

P X H P H

P X
,

an item with the attribute vector X belongs to the class Ci with the maximum P(Ci|X),

which is equal to
(|) ()

()
i iP X C P C

P X
. Only P(X|Ci)P(Ci) need to be considered in that

P(X) indicates the probability of X happening regardless of any Ci and thus is a fixed

value. Let the training data set be D, then P(Ci) = |Ci, D|/|D|, where |Ci, D| is the number

of items belonging to Ci in D. As to P(X|Ci), all attributes represented by X can be

assumed as independent of one another. Let the attribute vector X be (x1, x2, ..., xn).

Thus, P(X|Ci) =
1

(|)
n

k i
k

P x C

 . P(xk|Ci) represents the probability of the value xk on

some attribute given all items of class Ci.

When using Bayesian classification on tweet sentimental analysis, each attribute

refers to one particular word in a tweet and the hypothesis means the polarity of a

tweet: positive, negative, or neutral. Suppose there is a tweet “Avatar is awesome”.

The word “Avatar” appears in 100 percent of the positive training set, the word “is”

appears in 30 percent of the positive training set, and the word “awesome” appears in

20 percent of the positive training set. Then the independent probability of them

appearing in a positive tweet is 1×0.3×0.2 = 0.06. At the same time, the percentage of

the three words appearing in the negative training set are 100 percent, 25 percent,

and 0 percent, respectively, and their percentage in the unknown training set are 100

percent, 35 percent, and 1 percent. Therefore the independent probability of them

appearing in a negative tweet is 1×0.25×0 = 0 and in an unknown tweet is

1×0.35×0.01 = 0.0035. Further assume the weights of positive, negative, and

unknown tweets on training set are 0.4, 0.2, and 0.3, respectively. So the probability

of a positive tweet is 0.06×0.4 = 0.024, the probability of a negative tweet is 0×0.2 = 0,

and the probability of an unknown tweet is 0.0035 × 0.3 = 0.00105. Since this tweet

has the highest probability of being positive, it is considered a positive review on

Avatar.

6.1.4 Fisher Classification [10]

An alternative classification system considered in CI-Bayes is Fisher classification.

This classification is based on Fisher’s method. Assuming k is the number of

attributes and the attribute vector X is (x1, x2, ..., xk). Then the fundamental formula of

Fisher’s method can be represented as X2 =
1

2 log ()
k

e i
i

p


  . In this formula, pi is the

probability of hypothesis H given that xi happens. The formula can also be written as

X2 =
1

2 log
k

e i
n

p


  .

The Fisher classifier is different from naive Bayesian classification in that it estimates

the probability of a hypothesis (an item belong to some class) for each attribute on an

item. Let multiple classes be C1, C2, ..., Cm and j [1, m]. Given an item, pi can be

calculated as the ratio of the frequency of xi in the data with class Cj to the frequency

of xi in the data of all classes. For m attributes, we can get m*pi values. With the

formula X2 =
1

2 log ()
k

e i
i

p


  , the probability of this item belonging to Cj is calculated.

Similar to Bayesian classification, an item with the attribute vector X belongs to the

class Cj with the maximum probability.

Also, when using Fisher classification on tweet sentimental analysis, each attribute

refers to one particular word in a tweet and the hypothesis means the polarity of a

tweet: positive, negative, or neutral. Suppose there is a tweet “Avatar is awesome”.

The word “Avatar” appears in 100 percent of the positive training set, 100 percent of

the negative training set, and 100 percent of the unknown training set. The word “is”

appears in 30 percent of the positive training set, 25 percent of the negative training

set, and 35 percent of the unknown training set. The word “awesome” appears in 20

percent of the positive training set, 0 percent of the negative training set, and 1

percent of the unknown training set. Then the probability of a positive tweet is

ଵ

ሺଵାଵାଵሻ
ൈ

଴.ଷ

ሺ଴.ଷା଴.ଶହା଴.ଷହሻ
 ൈ

଴.ଶ

ሺ଴.ଶା଴ା଴.଴ଵሻ
 = 0.106, the probability of a negative tweet is

ଵ

ሺଵାଵାଵሻ
ൈ

଴.ଶହ

ሺ଴.ଷା଴.ଶହା଴.ଷହሻ
ൈ

଴

ሺ଴.ଶା଴ା଴.଴ଵሻ
 = 0, and the probability of a unknown tweet is

ଵ

ሺଵାଵାଵሻ
ൈ

଴.ଷହ

ሺ଴.ଷା଴.ଶହା଴.ଷହሻ
ൈ

଴.଴ଵ

ሺ଴.ଶା଴ା଴.଴ଵሻ
 = 0.006. This tweet is considered a positive

review on Avatar.

6.1.5 Type I and type II errors [11]

Type I and type II errors are used to test the correct rate of one classifier. Type I error,

also known as “false positive”, occurs when some hypothesis is accepted but actually

it is not true. For example, one tweet is classified as positive but in fact it is negative or

unknown. In this situation, accepting the hypothesis “this tweet is positive” makes a

type I error. Type II error, also known as “false negative”, occurs when some

hypothesis is rejected but actually it is true. For example, one tweet is classified as

negative or unknown but in fact it is positive. In this situation, rejecting the hypothesis

“this tweet is positive” makes a type II error. Type I error rate is the proportion of the

events which actually should reject a hypothesis but accept it. For example, let the

total number of both negative and unknown tweets be 40. But one classifier

mistakenly determines that 10 of them are positive, then the Type I error rate for

determining positive tweets is 10/40 = 0.25. Type II error rate is the proportion of the

events which actually should accept a hypothesis but reject it. For example, let the

total number of both positive tweets be 20. But one classifier mistakenly determines

that 5 of them are not positive, then the Type II error rate for determining positive

tweets is 5/20 = 0.25.

6.1.6 Comparison of naive Bayesian and Fisher

classification

A Java project CI-Bayes provides two major classification features: one is a naive

Bayesian classifier and one is a Fisher classifier. Five-fold cross validation is used to

determine the correct rate of the two classifiers. The error rates for naive Bayesian

classifier are 0.30666667, 0.34, 0.38, 0.3, 0.34, for Fisher classifier are 0.23333333,

0.26, 0.22, 0.26666668, 0.22666667. Tables 3 and 4 describe Polarity Distribution of

two classifiers.

The training is chosen to represent real tweets, by setting the proportion of positive,

negative, unknown, and neutral tweets close to 4:2:3. The data includes 370 positive

tweets, 180 negative tweets, and 240 unknown tweets (including neutral tweets).

Fold Predicted Neg/Pos/Unk

of Neg

Predicted Neg/Pos/Unk

of Pos

Predicted Neg/Pos/Unk

of Unk

1 0.5/0.3611/0.1388 0.04/0.8533/0.1066 0.1041/0.2916/0.6041

2 0.5833/0.2777/0.1388 0.0133/0.8933/0.0933 0.1041/0.5416/0.3541

3 0.5277/0.25/0.2221 0.0266/0.84/0.1333 0.0625/0.5208/0.4166

4 0.5555/0.2777/0.1666 0.0266/0.8666/0.1066 0.0625/0.5208/0.4166

5 0.5/0.3333/0.1666 0.0266/0.8/0.1733 0.1041/0.4791/0.4166

Table 3: Polarity Distribution of naive Bayesian Classifier Prediction

Fold Predicted Neg/Pos/Unk

of Neg

Predicted Neg/Pos/Unk

of Pos

Predicted Neg/Pos/Unk

of Unk

1 0.6944/0.1111/0.1944 0.1333/0.72/0.1466 0.2083/0.0625/0.7291

2 0.8889/0.0833/0.0277 0.0667/0.72/0.2133 0.1458/0.2291/0.6249

3 0.9166/0.0277/0.0555 0.0533/0.7466/0.1999 0.1041/0.2708/0.6249

4 0.75/0.0555/0.1943 0.08/0.76/0.1599 0.1875/0.3125/0.4999

5 0.75/0.0555/0.1943 0.0666/0.72/0.2133 0.2083/0.0833/0.7082

Table 4: Polarity Distribution of Fisher Classifier Prediction

6.1.7 Conclusion

From Table 3, the positive type I error rate of Fisher’s classifier is much lower than

naive Bayesian classifier, although its negative type I error rate is slightly higher than

naive Bayesian classifier. As to type II error, table 4 displays that the performance of

Fisher’s classifier is much better on determining negative, while its positive error rate

is close to naive Bayesian classifier. Since negative reviews in real tweets are few on

most movies, correctly determining the negative tweets become very important.

Furthermore, the total error rate of Fisher’s classifier is lower than naive Bayesian

classifier in each fold of five-fold cross validation. Therefore, the Fisher classifier is

selected as the method to automatically determine the polarities of tweets.

6.2 Decision Tree [12]

A decision tree has two kinds of nodes: internal nodes and leaf nodes. Every node

points to a set of tuples. In addition, each internal node represents a test on one

attribute and its branches are created according to different values or ranges of

values of the test result. For example, one internal node represents the test on an

attribute “percentage of its negative related tweets” and its result has two values, one

for all tuples with percentage of negative related tweets “ 0.45” and one for all “>

0.45”. Leaf nodes are labeled with a classification, also called the target attribute

value. For example, leaf nodes are labeled by a sentimental polarity value so that

each has one of three possible values “negative”, “positive” and “neutral”. The

decision tree used in this project is restricted to a binary tree. However it could be a

n-way splitting (n > 2) tree in other situations. The figure 6.1 depicts a sample decision

tree.

Figure 6.1

A decision tree builds a tree model on training data in order to predict unknown data.

Training data in this project come from the super tweet set[2] whose sentimental

polarity are already known[3], while test data comes from the super tweet set with

unknown sentimental polarity. Each tuple in the training data set represents a tweet

and it has four attributes: percentage of its negative related tweets, percentage of its

positive related tweets, percentage of its unknown related tweets, and its own

sentimental polarity. Each tuple of the test data set only has the former three

attributes of the training set, but does not have the last one. Sentimental polarity is a

target attribute that will be predicted for the test set.

The construction of a decision tree starts with one single node, pointing to all of the

tuples in the training set. If all tuples on this node belong to the same class (have the

same target attribute value), it becomes a leaf node and labeled with that class.

Otherwise, the ID3[6] method (which will be described in detail in the next paragraph)

is used to select a “best” split attribute and a “best” split point. On the split attribute,

the data set is then partitioned into two subsets according to the split point (a

threshold). Each partition becomes a child of the current node, and this procedure is

repeated until all children are leaf nodes. In this project, because a tuple has very

limited attributes (totally three), the construction does not remove an attribute after

selecting it as a split attribute. In other words, a selected attribute will also be

reconsidered in the next recursion.

In the ID3 method, given a data partition (a set of tuples) D, a classification (a target

attribute value) Ci, and Ci,D be the set of tuples classified as Ci in D. The total

information needed to classify a tuple can be represented by

Info(D) = − 2
1

log ()
m

i i
i

p p

 , where pi is |Ci,D|/|D| (|Ci,D| and |D| indicate the number of

tuples in Ci,D and D, respectively). ID3 selects a “best” attribute and a “best” split point

(threshold) that generate two data sets D1 and D2 to minimize InfoA(D) =

1

| |
()

| |

n
j

j
j

D
Info D

D

 , which is the information needed to further classify the data after

the partition.

If tuples of D have disjoint values on attribute A, to get the “best” split point, these

values will be sorted in increasing order. Then consider the midpoint (mean value)

between each pair of adjacent values. For every possible midpoint, the tuples are

divided into two partitions: one for lower than or equal to it and one for higher than it.

Therefore, if the tuples on attribute A have n distinct values, ID3 will test (n-1)

partitions. Further, if all tuples have m attributes and each attribute has ni values (for i

= 1,...,m), to acquire the “best” attribute and the “best” split point, ID3 needs to

consider
1

(1)
m

i
i

n


 possible partitions.

Finally, information that can be acquired after a partition is defined as Gain(A) =

Info(D) - InfoA(D). Consequently, the algorithm selects the split attribute and the split

point that maximize Gain(A), or minimize InfoA(D) since Info(D) is fixed.

6.2.1 Algorithm

In the following algorithm, the original input d is the training set. All tuples of this set

are acquired from a database.

CONSTRUCT(d)

(1) create a new node containing all tuples of d

(2) if all tuples have the same class, then node = leaf and value = class of the

classification, return

(3) otherwise, over all 3 attributes, use ID3 method to get the attribute and the split

point with highest information gain
(4) if the highest information gain  ɛ, label this node as a leaf with value = class of

the most common class in the set, return

(5) on the “best” split attribute, use the “best” split point p to divide the set into two

partitions A and B: all tuples of A having values of split attribute  p and all tuples of

B having values of split attribute > p

(6) for each partition, recursively invoke the procedure CONSTRUCT(d)

References

[1] Twitter Inc. Engineers. REST API Resources | Twitter Developers
https://dev.twitter.com/docs/api Twitter Inc.
[2] Yusuke Yamamoto. Twitter4J - A Java library for the Twitter API
http://twitter4j.org Open Source
[3] Twitter Inc. Engineers. Authentication & Authorization | Twitter Developers
https://dev.twitter.com/docs/auth Twitter Inc.
[4] Joseph Ottinger. CI-Bayes https://ci-bayes.dev.java.net Open Source

[5] Yusuke Yamamoto. Twitter4J - JavaDoc http://twitter4j.org/en/javadoc.html Open
Source
[6] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques,
Second Edition (Chapter 6.3.2)
[7] Yelena Mejova. Sentiment Analysis: An Overview. 2009
[8] Bing Liu. Opinion Mining. 2008
[9] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques,
Second Edition (Chapter 6.4.1 and 6.4.2)
[10] Toby Segaran. Programming Collective Intelligence, First Edition (Chapter 6)
[11] Tom Rogers. Amazing Applications of Probability and Statistics
[12] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques,
Second Edition (Chapter 6.3.1)

