
ABSTRACT 

The Chromatin Accessibility Signature of Aging in Human Blood Leukocytes Stems 
from CD8+ T cells 
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Mentor: Jacques Banchereau, Ph.D. 

    Human aging is linked to changes in immune function that contribute to decreased 

responses to pathogens and increased systemic inflammation. Human aging is also 

associated with profound epigenetic changes across cell types and tissues. How these 

changes affect the aging –associated decline of the immune system is unknown. The 

Assay for Transposase Accessible Chromatin with sequencing technology (ATAC-seq) 

allowed us to study, at a system biology level, the open chromatin landscapes of human 

peripheral blood mononuclear cells (PBMCs), monocytes, purified B and T cell subsets 

from healthy young and healthy elderly individuals. We captured aging-associated 

epigenomic remodeling in PBMCs consisting of  (1) systematic chromatin closing at 

promoters and enhancers targeting the T cell signaling and development and (2) 

chromatin opening, mostly at quiescent and repressed sites associated with cytotoxicity. 

Transcriptome profiling of the same individuals revealed gene expression changes 

concordant with epigenomic changes. Analysis of naïve and memory CD4+ and CD8+ T 



cell subsets demonstrated that the epigenomic signature of aging in PBMCs arises mostly 

from memory CD8+ T cells, indicating that aging differentially affects T cell epigenomes 

in a subset-specific manner.   

    This study provides the first systems-level description of chromatin accessibility 

changes associated with immune aging in human PBMCs and T cell subsets. It revealed 

in PBMCs significant chromatin closing at promoters and enhancers, including at the 

IL7R locus and the IL-7 signaling pathway. Our study revealed individual-level 

variability in aging-associated chromatin remodeling and provided a systematic and 

modular tool for assessing deviations from chronological age. The open chromatin 

profiling of sorted T cell subsets, concluded that the chromatin “aging signature” 

captured in PBMCs, mostly stems from memory CD8+ T cells. The combined ATAC-

seq/RNA-seq analyses uncovered epigenetic changes poised for expression changes and 

active noncoding elements (e.g., enhancers), both of which will be essential for 

understanding the regulatory mechanisms underlying immunosenescence.  

    Nevertheless, ATAC-seq based open chromatin profiling is a straightforward approach 

to identify functional genomic regulatory regions, master regulators, and gene regulatory 

networks controlling complex in vivo processes. In our lab, ATAC-seq is utilized to 

understand the epigenetics differences in different immune cells and diseases.  
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CHAPTER ONE 
 

Introduction 
 
 

Epigenetics of Aging 

    Aging is the process of growing old, and is a complex phenomenon characterized by 

progressive functional decline at the molecular, cellular, tissue, and organ level (1) and 

results in physical, psychological, and social changes.  During aging, the mechanisms that 

normally maintain health and stress resistance strikingly decline, resulting in decrepitude, 

frailty, and ultimately death.  Many factors can potentially affect the reaction time of 

aging, such as nutrition, environment, metabolism, exercise, disease, etc.  Approximately 

150,000 people die each day across the globe, and about two thirds die from age-related 

causes (http://www.who.int/ageing/publications/global_health.pdf).  The major leading 

causes of death in aging people are heart disease, cancer, stroke, chronic lower 

respiratory diseases, influenza and pneumonia, Alzheimer disease, diabetes, nephritis, 

accidents, and septicemia.  Unsurprisingly, the majority of these diseases are attributed to 

genomic instability such as epigenetic modification and DNA damage, causing biological 

systems to fail.  Epigenetics has recently emerged as another possible determinant of 

aging. Carlos Lopez-Otın, et al. identified nine cellular and molecular hallmarks of aging 

(Figure 1)(2).  Undoubtedly, immune responses in the cellular senescence play an 

important role in aging. 

   Epigenomic changes associated with aging encompass alterations in transcription factor 

binding, histone marks, DNA methylation, nucleosome position, and non-coding RNA. 
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Figure 1. The hallmarks of aging from Lopez-Otin et al., Cell, 2013 (2).  Nine hallmarks described in this 
figure: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated 
nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered 
intercellular communication, Lopez-Otin et al., Cell, 2013 (2).  
 

    These epigenetic modifications may be used to track donor age forensic analysis or to 

estimate biological age, C. I. Weidner et al. 2014 (37). Epigenetics refers to changes in 

phenotype or gene expression caused by mechanisms other than changes in the 

underlying DNA sequence. The gene regulatory landscape includes many interconnected 

players that promote or repress gene expression, L. N. Booth et al. (Figure 2).  
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Figure 2. Transcription factors and chromatin modifiers act together to regulate gene expression from L. N. 
Booth et al Molecular cell, 2016 (1). The remodeling and transcription activation of a gene occurs in a 
stepwise fashion that begins with the binding of a sequence-specific DNA-binding protein called a pioneer 
transcription factor. Following recruitment by a pioneer transcription factor, nucleosome remodeling 
complexes displace or move nucleosomes and open chromatin. This increases DNA accessibility and 
allows binding of additional transcription factors, recruitment of chromatin modifiers that remove 
repressive marks (red hexagons) and add activating marks (green stars), and finally, transcription of the 
gene. Age-associated changes have been observed at every step of this process, and changes in one step (for 
example, the activity of pioneer transcription factor) can have down-stream consequences for gene 
regulation(1).  
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    Chromatin and regulation of transcription play key roles in the age-dependent 

manifestation of these hallmarks of aging and in the response to their emergence.  

Epigenetic changes, such as histone markers and DNA methylation, take time to develop 

and are long-lived (62, 63, 64, 65, 66).  The epigenetic responses to the emergence of a 

hallmark of aging could create a “memory” of the event, causing it to be perpetuated over 

time and through cellular divisions.  There are a series of factors that induce genome 

dysregulation (Figure 3)(1).  First, with age, genomic instability can be attributed to a 

high frequency of mutations within the genome of a cellular lineage; including changes in 

nucleic acid sequences, chromosomal rearrangements or aneuploidy, telomere attrition 

and transposon activation (67, 68). Decreased telomerase activity weakens DNA 

protection against external caused damage, which results in errors in repair and mutations. 

Another source of genome instability is epigenetic or mutational reductions in expression 

of DNA repair genes.  Secondly, during aging, mitochondria turnover declines and 

mitochondrial dysfunction increases, C. Lopez-Otin et al (2).  The activity of 

mitochondria with age can result in epigenomic changes that alter lifespan.  Thirdly, 

appropriate epigenomic regulation is key to proteostasis, and age-associated epigenomic 

changes can modify the ability of a cell to respond to proteostatic stress (69).  Last but 

not least, an increase in the number of senescent cells and a decline in tissue regeneration 

due to the loss of stem cell proliferation are hallmarks of aging (2, 70, 71 ).  In recent 

years, it has been appreciated that senescent cells manifest dramatic alteration in their 

secretome, which is particularly enriched in proinflammatory cytokines (2).  This 

proinflammatory secretome, mostly driven by immune cells, may contribute to aging (72, 

73). 
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Figure 3. Epigenomic changes are a hub in the progression of aging from L. N. Booth et al. Molecular cell, 
2016 (1).  Epigenomic changes—changes in transcription factors, histone marks, nucleosome position, and 
DNA methylation— are connected with the other hallmarks of aging (2-4).  Epigenomic changes can 
trigger the emergence of other hallmarks of aging and can also be affected by them in L. N. Booth et al. 
Molecular cell, 2016(1). 
 

Immunosenescence 

    Aging accompanies gradually diminished immunity.  Immunosenescence refers to the 

decline of the immune system related to aging, contributing to high risk of infection, 

cancer, and autoimmune diseases in the elderly,	G. A. Poland et al (5, 74).  The progress 

of immunosenescence is full of complexities and affects on both innate and adaptive 

immunity limiting the response to pathogens and to different therapies. Some of the age-

dependent biological changes that contribute to the onset of immunosenescence are listed 

in Figure 4(5). Hematopoietic stem cells (HSCs) diminish in their self-renewal capacity. 
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It is due to the accumulation of oxidative damage to DNA by aging and cellular 

metabolic activity and shortening of telomeric terminals of chromosomes. The total 

number of phagocytes is decreased in aged hosts. The cytotoxicity of natural killer (NK) 

cells and the antigen-presenting function of dendritic cells are decreased with old age 

(76). Thus, it is the inability for effector T-lymphocytes to modulate an adaptive immune 

response (75). The humoral immunity is decline because of a reduction in the population 

of antibody producing B-cells along with a smaller immunoglobulin diversity and 

affinity.   

 

 
Figure 4. Immunological changes due to immunosenescence from G. A. Poland et al	Current opinion in 
immunology, 2014 (5). 
 

    The changes in the immune response with aging are often paralleled by inflamm-aging 

or inflammaging (6, 77), a state that is associated with gradually increased pro-
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inflammatory mediators, which develops due to continuous antigenic stimulation and 

cellular deterioration in aged subjects.  Inflammaging is a highly significant risk factor 

for both morbidity and mortality in the elderly people (78). Generally, stress of immunity 

can be induced by pathogens, such as cytomegalovirus (CMV), Epstein-Barr virus (EBV) 

or by other cellular and molecular debris generated by the damage of reactive oxygen 

species (ROS) (79, 80).  These factors can induce chronic inflammation and exhaust the 

adaptive immune response, accelerating unrelated age-associated pathologies. Immune 

cells responsible for innate immunity (neutrophils and nature killer cells (NK)) or for 

adaptive immunity (T and B lymphocytes) are continuously stimulated and secrete pro-

inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and IL-6.  This is 

referred to as a low-grade inflammatory response in aging.  Pro-inflammatory cytokines 

and acute-phase proteins (IL-6, IL-8, TNF-α, C-reactive protein) are two characteristics 

of inflamm-aging that negatively modulate T-cell receptor (TCR)-mediated signaling 

pathways (81, 82, 83, 84).  

    Alterations in innate immunity may affect the priming of adaptive immunity.  For 

example, the malfunction of aged CD4+ T cells fails to sustain the responses of innate 

and adaptive immune cells against pathogens or cancer cells.  The generation of novel 

naïve T cells is entirely dependent on thymic function (7, 85,).  The loss of the thymus 

prompted a natural supposition that thymic involution is responsible for the age-

associated failure of the adaptive immune system (Figure 5) (8).  Moreover, peripheral 

expansion of naïve T cells is driven by tonic T cell receptor (TCR) signals and 

homeostatic cytokines, in particular by interleukin-7 (IL-7).  IL-7 drives T cell 

proliferation and its concentration does not decline with age; therefore, it does not 
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become limiting (86, 87).  However, increased IL-7-driven proliferation, possibly due to 

a lower threshold for IL-7 receptor signaling, leads to abrupt declines in T cell 

compartment size several years later, D. B. Palmer et al (8, 87, 88).  

 

Figure 5. Naive T cell homeostasis and age from D. B. Palmer et al. Frontiers in immunology, 2013. 
Thymic T cell regeneration is quantitatively irrelevant throughout adult life, and homeostatic proliferation 
is responsible for maintaining the size of the naive T cell compartment.  Although only thymic T cell 
generation can add novel naive T cells and enrich diversity, homeostatic T cell proliferation can sustain the 
richness of the TCR repertoire (i.e., the total number of T cells with different TCR sequences), whereas 
peripheral selection during homeostatic proliferation may result in increasing unevenness, that is, 
increasing inequalities in clonal sizes and clonal expansions of selected few clones.  Age-associated 
changes in these metrics between CD4 and CD8 T cells of young (35 y) and older (65–80 y old) healthy 
adults are illustrated, D. B. Palmer et al. Frontiers in immunology, 2013(8). 
 

    There is no evidence that T cell turnover decreases with age; possibly, it increases in 

the very old.  Transcriptional and epigenetic profiling could address whether naïve T cells 

differentiate with age and have transcriptional signatures reminiscent of memory genes or 
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an epigenetic landscape in which T effector genes are poised.  For these reasons, 

understanding how to overcome the reduced immunity in elderly individuals is in an 

important research field in aging.  

    These changes may result in serious clinical consequences such as increased infections, 

cancers, and autoimmune disease (9).  Aging is associated with alterations in immune 

responses, such as altered signaling pathways in immune cells.  For example, the 

mammalian target of rapamycin, mTOR, is a critical kinase in a pathway that regulates 

many processes, but has been linked mainly to glucose metabolism and longevity (89).  

Rapamycin, an anti-aging drug, has been researched and used to extend the life span of 

yeasts and humans, and it has been published that rapamycin counteracts certain aging-

related alterations in both young and old mice (89, 90).  The mTOR-signaling pathway is 

under control of TCR/CD28 stimulation, S. Sauer et al (38).  

    Human aging is an ubiquitous complex phenomenon that results from environmental, 

stochastic, genetic, and epigenetic events in different cell and tissue types and their 

interactions throughout life(10). Human aging is characterized by a chronic, low-grade 

inflammation, which is involved in innate immunity, crosstalk between innate and 

adaptive immunity, cell signaling, homeostasis, etc. Adaptive immunity, antigen 

presenting cells (APCs), T lymphocytes and B lymphocytes, decline with age, whereas 

innate immunity, NK cells and neutrophils, undergo more subtle changes that could result 

in mild hyperactivity (91).       

    Cytokines are central to immune cell communication. Therefore, age-related changes 

in cytokine profiles contribute to many changes in the immune system. Chronic 

inflammation in adaptive immunity contains several cytokines, molecular pathways, 
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effector cells, and tissue responses that appear to be shared across multiple age-related 

diseases. IL-6 is a commonly used marker of inflammatory status, and a hallmark of 

chronic morbidity. Other inflammatory mediators that increase across multiple age-

related diseases include IL-1β and TNF-α. In the cell signaling cascades and 

transcriptional pathways, IL-1β and TNF-α are regulated by similar upstream molecules, 

NF-κB, STAT, etc.	M. Maggio (39). How the immune responses interact to trigger 

complicated signaling pathways inducing different cytokines to affect aging is profound.  

 
Next Generation Sequencing Technologies 

    There are different sequencing technologies to explore immunosenescence at the 

molecular level. Next Generation Sequencing (NGS), also known as high-throughput 

sequencing, comprise a number of different modern sequencing technologies including 

Illumina sequencing and long read (PacBio) sequencing (92).  These recent technologies, 

which allow us to sequence DNA and RNA much faster and less expensively than the 

previously used Sanger sequencing, have revolutionized the study of genomics and 

molecule biology. Epigenetic processes control gene expression by altering chromatin 

structure. Epigenomics can be measured by DNA methylation, analysis of DNA/protein 

interactions, chromatin accessibility and conformation assays. Among these, chromatin 

accessibility assays include DNase sequencing (DNA-seq), Formaldehyde-Assisted 

Isolation of Regulatory Elements sequencing (FAIRE-seq) (94, 95, 96), and Assay for 

Transposase-Accessible Chromatin sequencing (ATAC-seq). DNase-seq and FAIRE-seq, 

require millions of cells as starting material and take longer to generate sequencing 

libraries (93).  In these assays, cells must be expanded ex vivo to gain sufficient material, 

and the culture conditions will perturb the in vivo context and change the epigenetic state 
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in unknown ways, and input requirements often prevent application of these assays to 

clinical samples, thereby, precluding generation of personal epigenomic on diagnostic 

timescales (11).  In contrast, ATAC-seq technology has a series of advantages: (1) 

sequence can be generated from small number of cells even from single cells,	J. D. 

Buenrostro et al. (40) (2) It has a higher signal-to-noise ratio with low background signal 

and sharper peaks J. D. Buenrostro et al. (11) and (3) It has the ability to determine 

nucleosome positioning when using paired-end sequencing; and (4) ATAC-seq protocol 

is straightforward and libraries are easier to generate. ATAC-seq uses a bacterial (Tn5) 

transposase, an enzyme that inserts a short fragment of DNA (a transposon) into another 

molecule of DNA, or in this case, inserts two short fragments separate from each other.  

This recent method can also provide better readouts.  Indeed, the lab of William J. 

Greenleaf at Stanford University concluded that ATAC-seq is compatible with clinical 

timescales and standard blood draws by generating the open-chromatin landscape from 

small cell numbers (11).  Therefore, ATAC-seq technology provides a unique 

opportunity to profile and study chromatin accessibility profiles of blood-derived human 

immune cells in the context of aging.  

	



 12 

 
 
 

CHAPTER TWO 
 

Objectives 
 
 

Rationale 

    Aging is a very complicated process accompanied by significant decline in immune 

defense that results in increased susceptibility to infections or malignancy compared to 

young adults. Therefore, trying to find a way to reverse immunity from elderly to young 

adult, or to slow down the decline of immunity is very important. Nevertheless, trying to 

identify a set of reliable biomarkers of aging is important not only to monitor the effect of 

pharmacological interventions and predict the timing of pathologies associated with aging 

but also to understand the mechanisms and contrive appropriate countermeasures. 

The goal of the present work is to analyze and compare the epigenomes of young adults 

and elderly adults by using chromatin accessibility (ATAC-seq) and gene expression 

profiling (RNA-seq). 

 
Aims 

    Aim 1:  To generate a comparative epigenomic and transcriptomic database in health 
young adults and the elderly using ATAC-seq and RNAseq technologies. 
         
     Currently, the resource of the ATAC-seq epigenomic database is limited and needs to 

be expanded. The epigenetic information extracted from healthy young adults and healthy 

elderly needs to be validated with transcriptomic data using RNA-seq.  
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    Aim 2: Analyze and compare the epigenomic immune signature of young adults and 
the elderly. 
     
    Currently, the ATAC-seq data set can be pre-processed by public computational 

pipelines. However, tools to integrate ATAC-seq data leading to proper data 

interpretation are still missing.  Developing non-biased proper computational analysis 

pipeline and applying it to the analysis are very important. We can determine whether 

ATAC-seq is a proper method for further study and whether a correlation exists between 

epigenomics and the transcriptomics obtained from blood-derived immune cells.     

    Aim 3: To understand the mechanisms that are involved in immune regulation in 
healthy young adults and healthy elderly adults.    
     
    The aim of this goal is to determine the cell population, cellular mechanisms, and 

signaling pathways play an important role in aging. 
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CHAPTER THREE 
 

Materials and Methods 
 
 

Subject Recruitment 

    All studies were conducted following approval by the Institutional Review Board of 

University of Connecticut Health Center (IRB Number: 14-194J-3).  Following informed 

consent, blood samples were obtained from young (HY, 22-40 yrs.) and 26 old (HO, >= 

65 yrs.) healthy volunteers residing in the Greater Hartford, CT, USA region using 

services of the UConn Center on Aging Recruitment and Community Outreach Research 

Core (http://health.uconn.edu/aging/research/research-cores/).  Recruitment criteria were 

selected to identify healthy individuals who are experiencing “usual aging” and thus 

represent the health of the majority of the population within the different age groups. 

Selecting this type of cohort increases the generalizability of our studies and the 

likelihood that these findings can be translated to the general population.  

    Subjects were carefully screened in order to exclude potentially confounding diseases 

and medications, as well as frailty.  All individuals who reported chronic or recent 

infections within the last two weeks were excluded.  Subjects could have underlying 

chronic diseases, but were excluded if the following were present: congestive heart 

failure, known kidney disease (serum creatinine > 1.2 mg/dl in men and >1.1 mg/dl in 

women), diabetes requiring medications, immunosuppressive disorders or the use of 

immunosuppressive agents including oral prednisone in doses >10 mg daily. 



	 15	

Since declines in self-reported physical performance are highly predictive of frailty, 

subsequent disability and mortality (13), all subjects were questioned as to their ability to 

walk ¼ mile (or 2-3 city blocks).  For those who self-reported an inability to walk ¼ mile 

(13), “Timed Up and Go” (TUG) test was performed and measured as the time taken to 

stand up from the sitting position, walk 10 feet and return to sitting in the chair (14).  

TUG > 10 sec represented an indication of increased frailty and was an exclusion from 

the study (15).  

 
Primary Cell Isolation  

    Peripheral blood mononuclear cells (PBMCs) were purified from the blood of healthy 

donors collected in ACD tubes.  Briefly, PBMCs were collected from the mononuclear 

cell enriched layer obtained by Ficoll (GE Cat no.17-1440-02) density centrifugation of 

the blood, 

 
Cell Sorting and Flow Cytometry Analysis 

    For cell sorting, we used fluorochrome-labeled antibodies specific for CD3 (UCHT1), 

CD27 (M-T271) (Biolegend) and CD4 (RPA-T4), CD45RO (UCHL1), CD45RA 

(HI100), CD19 (HIB19), CD16 (B73.1), IgD (IA6-2), and CD11c (S-HCL-3) (BD 

Biosciences), and CD8 (SCF121Thy2D3) and CD19 (J3-119) (Beckman-Coulter).  Naïve 

CD4 (CD4+CD8-CD45RO-CD45RA+), naïve CD8 (CD4-CD8+CD45RO-CD45RA+), 

memory CD4 (CD4+CD8-CD45RO+CD45RA-), and memory CD8 (CD4-

CD8+CD45RO+CD45RA-) T cells were sorted from the CD19-CD16-CD11c- fraction 

(DUMP channel).  Naïve B cells (CD19+IgD+CD27-) were sorted from the CD3-CD16- 
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CD11c-) fraction (DUMP channel).  Cell sorting was performed using the FACSAria 

Fusion instrument (BD).  Monocytes were isolated from fresh PBMCs by positive 

selection using magnetic CD14 microbeads (Miltenyi Biotech).  For phenotypic analysis, 

PBMCs were stained with fluorochrome-labeled antibodies specific for CD3 (UCHT1), 

CD4 (RPA-T4), CD8 (SCF121Thy2D3), CD45RA (HI100), CD19 (HIB19), CD14 

(MSE2), CCR7 (150503), and CD127 (HIL-7R-M21).  For the analysis of the 

frequencies of naïve T cells (CD45RA+CCR7+), central memory T cells (CM; CD45RA-

CCR7+), effector memory T cells (EM; CD45RA-CCR7-), and effector memory RA 

(EMRA; CD45RA+CCR7-), B cells and monocytes, PBMCs were stained with 

fluorochrome-labeled antibodies specific for CD3 (UCHT1), CD4 (RPA-T4), CD8 

(SCF121Thy2D3), CD45RA (HI100), CD19 (HIB19), CD14 (MSE2), CCR7 (150503), 

and CD127 (HIL-7R-M21).  The stained cells were acquired with a BD Fortessa and 

analyzed with FlowJo software (TreeStar). 

 
CMV-Seropositivity Measurements 

    Anti-CMV IgG titers were determined in frozen sera by commercially available 

enzyme-linked immunosorbent assay (ELISA) (Genway Biotech Inc. San Diego, CA) 

with an interassay coefficient of variance of 5.2%.  A titer of 1.2 ELISA Units/ml or 

greater in a sample was predetermined by the manufacturer as CMV-seropositive.  

 
Assay for Transposase-Accessible Chromatin Using Sequencing (ATAC-seq) 

    Approximately 50,000 cells were harvested and spun down at 500 g for 5 min, 4°C.  

Cells were washed once with 50 µL of cold 1x PBS buffer and pelleted by centrifugation 

at 500 g for 5 min, 4°C.   Pellets were pipetted gently to resuspend the cell pellet in 150 
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µL of cold lysis buffer (50 mM Tris-HCl, pH 8.0, 140 mM NaCl, 1mM EDTA, 10% 

glycerol, 0.5% NP-40, 0.25% TritonX-100).  The cell lysate was incubated on ice for 15 

min.  The lysate was centrifuged at 2500x g for 5 min, at 4°C and the supernatant was 

discarded.   

 
    Transposition reaction: Ice-cold transposition reaction mix was added to the cell pellet.  

Transposition reaction mix consisted of 25 µL 2x TD Buffer (Illumina Cat #FC-121-

1030), 2.5µL Tn5 transposase (Illumina Cat #FC-121-1030), and 22.5 µL nuclease free 

water in a 50 µL total volume for reaction.  The pelleted nuclei were resuspend in the 

transposition reaction mix and incubated at 37°C for 30 min.  Immediately following 

transposition, DNA from the reaction was purified using a Qiagen MinElute Kit.  

Transposed DNA was eluted in 10 µL elution buffer (10mM Tris buffer, pH 8).  The 

purified DNA was stored at -20°C. 

 
     PCR amplification: To amplify transposed DNA fragments, 10 µL of transposed 

DNA, 9.7 µL nuclease free water, 2.5 µL Nextera PCR Primer 1, 2.5 µL Nextera PCR 

Primer 2 (Barcode primer, table 1), 0.3 µL 100x SYBR Green I (Invitrogen Cat #S-7563), 

and 25 µL NEBNext High-Fidelity 2x PCR Master Mix (New England Bio Labs Cat 

#M0541) in a total 50 µL reaction volume were combined in a PCR tube.  The PCR cycle 

as performed as follows: 72°C, 5 min, 98°C, 30 sec, 98°C, 10 sec, 63°C, 30 sec, 72°C, 1 

min, repeat steps 3-5, 4x, and hold at 4°C.  In order to reduce GC and size bias in the 

PCR reaction, the reaction was monitored using qPCR to stop amplification prior to 

saturation.  The qPCR side reaction was performed as follows: 5 µL of PCR amplified 

DNA, 4.44 µL nuclease free water, 0.25 µL Nextera PCR Primer 1, 0.25 µL Nextera PCR 
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Primer 2, 0.06 µL 100x SYBR Green I, and 5 µL NEBNext High-Fidelity 2x PCR Master 

Mix, in a total reaction volume of 15µL.  The qPCR reaction was conducted as follows: 

98°C for 30 sec, 98°C for 10 sec, 63°C for 30 sec, 72°C for 1 min, repeat steps 3-5, 19x, 

and hold at 4°C.  

    To determine the additional number of cycles needed for the remaining 45 µL PCR 

reaction, linear Rn vs. Cycle was plotted and the RF threshold was set at 5000.   The 

corresponding cycle number was calculated at a maximum fluorescent intensity for each 

individual sample.  Then, the remaining 45 µL PCR reaction was run to the correct cycle 

number.  The cycle was conducted as follows: 98°C, 30 sec, 98°C, 10 sec, 63°C, 30 sec, 

72°C, 1 min, repeat steps 3-5, x times, and hold at 4°C.  The amplified library was 

purified using Qiagen PCR Cleanup Kit and eluted in 20 µL elution buffer (10mM Tris 

Buffer, pH 8).  

 
    Library quantification. Real-time PCR based methods were used to quantify our 

ATAC-seq libraries.  We found that other methods, such as Bioanalyzer and Qubit, gave 

misleading and inaccurate results due to the large distribution of insertion sizes. We used 

the commercially available library quantitation kit, KAPA Library Quant Kit for Illumina 

Sequencing Platforms (KAPABiosystems) for analysis. 

    ATAC-seq libraries were sequenced by using NextSeq series and HiSeq series from 

Illumina Sequencing Platforms.  Pair-end sequencing was performed on an Illumina 

HiSeq 2500 with read lengths of 150 base pairs to a minimum depth of 30 million reads 

per sample. 
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ATAC-seq Data Pre-Processing 

    ATAC-seq sequences were quality-filtered using trimmomatic (16), and trimmed reads 

were mapped to the GRCh37 (hg19) human reference sequence using bwa-mem (17). 

After alignment, technical replicates were merged and all further analyses were carried 

out on these merged data.  For peak calling, MACS2 (18) was used with no-model, 100bp 

shift, 200bp extension, and broad peaks options.  Only peaks called with a peak score (q-

value) of 1% or better were kept from each sample, and the selected peaks were merged 

into a consensus peak set using Bedtools multiinter tool.   

 

Figure 6: Oligo designs. A list of ATAC-seq oligos used for PCR. 
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    Only those consensus peaks overlapping 20 short reads or more in at least one sample 

were selected for further analyses.  Finally, we excluded peaks overlapping blacklisted 

regions as defined by ENCODE mappability criteria, downloaded from 

http://hgdownload.cse.ucsc.edu/ goldenpath/hg19/encodeDCC/wgEncodeMapability/ on 

July 2015. 

    An additional quality-control step was developed to filter out samples with a 

consistently poor signal, consisting of an algorithm to discover and characterize a series 

of relatively invariant benchmark peaks, defined as a set of peaks expected to be called in 

all samples.  Samples that consistently miss calls for a significant portion of these 

benchmark peaks are flagged as having poor quality.  A benchmark peak is defined based 

on three criteria, namely (1) that it remains approximately invariant between the two 

groups of interest (i.e., young and old samples), (2) that it captures a substantial number 

of reads, and (3) that it is called in most samples.  For each peak, the absolute value of the 

log of the ratio of healthy old to healthy young mean normalized read counts (log fold 

change, logFC) was used to assess the first criteria, whereas the maximum read count 

over all samples (maxCt) is used to assess the second one.  In this study, a peak was 

considered apt for benchmarking when (1) its absolute logFC was in the bottom decile of 

the distribution over all peaks, (2) its maxCt was in the top decile of the distribution over 

all peaks, and (3) the peak was called in at least 90% of the samples.  Using these 

parameters, 1,491 (out of 238,004) peaks were selected as benchmark; only samples for 

which at least 95% of these peaks were called were selected for analyses, which excluded 

10 samples from further.  
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    We examined the effects of each of these parameter choices and found that the same 

samples were consistently chosen as poor quality for a wide range of values chosen to 

assess the benchmark criteria. 

 
RNA-seq Library Generation and pre-processing 

    Total RNA was isolated from PBMCs using the Qiagen RNeasy (Qiagen) or Arcturus 

PicoPure (Life Technologies) kit following manufacturer’s protocol.  DNase treatment 

was additionally performed during RNA isolation using the RNase-free DNase set 

(Qiagen).  RNA quality was checked using an Agilent 2100 Expert bioanalyzer (Agilent 

Technologies).  RNA quality was reported as a score from 1 to 10, samples falling below 

threshold of 8.0 being omitted from the study.  cDNA libraries were prepared using either 

the TruSeq Stranded Total RNA LT Sample Prep Kit with Ribo-Zero Gold (Illumina) or 

KAPA Stranded mRNA-Seq Library Prep kit (KAPA Biosytems) according to the 

manufacturer’s instructions using 100ng or 500ng of total RNA.  Final libraries were 

analyzed on a Bioanalyzer DNA 1000 chip (Agilent Technologies).  Paired-end 

sequencing (2x100bp) of stranded total RNA libraries was carried out in either Illumina 

NextSeq500 using v2 sequencing reagents or the HiSeq2500 using SBS v3 sequencing 

reagents.  

    Quality control (QC) of the raw sequencing data was performed using the FASTQC 

tool, which computes read quality using summary of per-base quality defined using the 

probability of an incorrect base call (19).  According to our quality criteria, reads with 

more than 30% of their nucleotides with a Phred score under 30 are removed, whereas 

samples with more than 20% of such low quality reads are dropped from analyses. None 

of the samples used in this study were dropped after QC.  Reads from samples that pass 
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the quality criteria were quality-trimmed and filtered using trimmomatic (16).  High-

quality reads were then used to estimate transcript abundance using RSEM (20).  Finally, 

to minimize the interference of non-messenger RNA in our data, estimate read counts 

were re-normalized to include only protein-coding genes. Table 2 summarizes the depth 

and alignment rate of our PBMC RNA-seq samples.  

 
Differential Analysis 

    To identify differentially open chromatin regions from ATAC-seq and differentially 

expressed genes from RNA-seq data, the R package edgeR was used to fit a generalized 

linear model (GLM) to test for the effect of aging between healthy young and healthy old 

samples.  In addition to age group (old vs. young), our models included sex and the 

season in which the sample was collected (summer vs. winter) as covariates (21), since it 

was determined, using Principal Variance Component Analysis (PVCA, (22)), that these 

factors account for a sizeable fraction of the variance in read counts.  Furthermore, we 

used Surrogate Variable Analysis (SVA (23)) to capture unknown sources of variation 

(e.g., batch effects, subject-level heterogeneity) statistically independent from age group 

assignments.  Using the built-in permutation-based procedure in the R package SVA, we 

choose to retain three SVs to include as covariates in the GLM model for PBMC ATAC-

seq and RNA-seq data analyses (24).  Within GLM models, a negative binomial link 

function was used, including both genome-wide and peak-specific dispersion parameters, 

estimated using edgeR’s “common,” “trended,” and “tagwise” dispersion components, 

calculated using a robust estimation option. Benjamini-Hochberg P-value correction was 

used to select differentially open peaks at a False Discovery Rate (FDR) of 5%.  To 

generate a set of model-adjusted peak estimates of chromatin accessibility (i.e., sex-, 
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season-, and SV-adjusted) for downstream analyses and visualization, we used edgeR to 

fit a “null” model excluding the age group factor, and then subtracted the resulting fitted 

values from this model from the original TMM-normalized reads. 

    An equivalent approach was used to analyze the effects of CMV seropositivity and 

seasonal variation (i.e., winter vs. summer-acquired samples) in PBMC data.  For CMV 

analysis, the subset of samples for which this information was available (i.e., N=21, 12 

HY and 9 HO) was fit to a model including a sex as a factor and CMV status (positive, 

negative) as a blocking factor.  In this analysis, the season factor was not taken into 

consideration since all subjects for whom CMV status was available were collected in the 

same season.  For seasonal analysis, we used season (summer, winter) as a blocking 

factor. In both analyses, we tested both separately and jointly for the significance of age 

group by CMV status or season.  In addition, we fitted the converse models (CMV status 

or aging nested within age group) to test for and calculate fold change estimates for 

CMV+/CMV- and winter/summer stratified by age group. 

 
Peak Annotation and Downstream Analyses 

    Multiple data sources were used to annotate ATAC-seq peaks with regard to functional 

and positional information.  HOMER (25) was used to annotate peaks as promoter (i.e., 

within 1 kb of known TSS), intergenic, intronic, and other positional categories.  A 

simplified version of 18-state ChromHMM-derived chromatin states obtained from 

Roadmap Epigenomics data for PBMC(26) was used for functional annotations.  First, 

we intersected the Roadmap-generated states with our set of consensus peaks, and solved 

conflicting cases where multiple chromatin states overlap the same ATAC-seq peak so 

that each peak was assigned a single annotation, according to the following priority rules: 
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Active TSS > Active Enhancer 1 > Active Enhancer 2 > Genic Enhancer 1 > Genic 

Enhancer 2 > Weak Enhancer > Strong Transcription > Flanking Active TSS > Flanking 

Upstream Active TSS > Flanking Downstream Active TSS > Weak Transcription > 

Bivalent Poised TSS > Bivalent Enhancer > Weakly Repressed PolyComb > Repressed 

Polycomb > ZNF Genes and Repeats > Heterochromatin > Quiescent/Low signal.  

Finally, to facilitate interpretation and visualization, we simplified the set of 18 chromatin 

states to a scheme with 6 pooled meta-states containing: (1) active, flanking, and bivalent 

TSS states (2) active, weak and bivalent enhancer states, (3) both weak and strong 

PolyComb states, (4) both weak and strong transcription states, (5) the quiescent state, 

and (6) all others states combined together. 

    ATAC-seq peaks were also annotated using gene sets provided by curated immune 

function-related co-expression modules (27).  We used these annotations to test for 

enrichment of modules in a variety of gene sets of interest, such as genes associated to 

closing/opening peaks.  We assessed enrichment using the hypergeometric test, with a 

background defined by the set of genes that are expressed, as determined by RNA-seq 

data, or potentially expressed, as given by promoter accessibility, in the appropriate cell 

type.  In addition, we summarized the representation of GO terms among gene 

annotations for all peaks, after solving for multiple GO annotations for the same gene by 

prioritizing terms according to the order: Immunity > Metabolic > Transcription, 

Translation > Migration > Mitochondria > Axon > Development. 

    Further functional enrichment analyses were carried out using ClueGO (28) to test for 

overrepresentation of GO:Immune System Process terms using GO term fusion option 

and Wikipathways pathways (29) among genes associated with differentially open peaks.  
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In addition to testing for enriched gene sets, ClueGO combines GO terms and pathways 

into functionally relevant meta-sets based on the rate of shared genes among terms, 

allowing for an efficient assessment of enriched categories, as well as their potential 

interactions, as inferred from sets of shared genes.  We applied these methods separately 

to peaks significantly closing and opening between age groups to investigate the degree 

to which these two sets of peaks are associated to unique signatures.  We only listed 

terms that are significant at p-value 0.05 after Bonferroni step down correction.  In 

addition, we used ClueGO to annotate the aforementioned immunological co-expression 

modules that were originally associated to unknown function. Visualization of signaling 

pathways were generated ClueGO and PathVisio (30) tools. 

 
Congruence between Chromatin Accessibility and Transcription Data 

    Gene expression (mRNA-seq, see above) data was generated for a subset of subjects 

with ATAC-seq profiles (n=39, 24 HY and 15 HO).  These data were normalized to 

protein-coding transcripts, and annotated to ENSEMBL GRCh37 gene symbols.  Genes 

for which at least three normalized reads per million were obtained in at least two 

samples were considered as expressed, all others removed prior to analysis.  This resulted 

in a total estimate of 11,311 expressed genes in PBMCs.  We built a data set comprising 

paired ATAC-seq and RNA-seq samples by matching promoter peaks to nearest gene 

(TSS) annotations.  First, we retrieved the complete list of refSeq TSS coordinates from 

the hg19 genome reference (n=34,783), and defined promoters as the regions within 1000 

bp flanks of each TSS.  The final set of promoters was defined by merging overlapping 

flanked TSS regions annotated to the same gene (n=34,700).  We then selected ATAC-

seq peaks overlapping these promoters and annotated them to the corresponding gene.  
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Only the peak closest to the TSS was kept.  Finally, the resulting data set was filtered as 

to only include promoter peaks for genes that were transcribed, as defined above.  

Whenever multiple expressed genes were matched to the same promoter peak, all of them 

were retained for analysis. 

    To study the concordance between promoter accessibility and gene expression, we 

subdivided the space defined by aging-related fold changes derived from ATAC-seq and 

RNA-seq data into gene sets defined by the direction and magnitude of change along both 

dimensions, such as genes with both up-regulated expression and increasing accessibility 

in elderly subjects, or genes for which expression is up-regulated but accessibility 

remains unchanged with aging.  In order to capture enough genes to enable functional 

enrichment analysis of these gene sets, fold changes between healthy old and young 

subjects for matching promoter peaks and transcripts were estimated empirically as the 

difference between the mean normalized values of each group, and plotted against each 

other (see Figure 14A). For each gene set, we tested for enrichment in immune modules 

and Wikipathways pathways and compared these results to gene sets constructed based 

solely on significant differential accessibility or expression as determined using GLM as 

previously described.  Specifically, we defined a gene or promoter as being significantly 

“up” or “down” if the empirical log fold change of the HO mean relative to HY mean 

was above or below zero, respectively, and if the adjusted empirical p-value < 0.01 for 

that gene.  Empirical p-values were computed by randomly permuting the HO and HY 

sample labels 1,000 times for each promoter peak and gene.  Genes for which p < 0.01 

were considered significantly different between aging groups, whereas all others were 

considered to have “stable” expression and/or accessibility relative to aging. Here we 
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focus on a subset of the combined accessibility expression gene sets generated by this 

method, namely, (1) genes with both increased or (2) both decreased promoter 

accessibility and expression with aging, and (3) genes with increased or (4) decreased 

promoter accessibility but stable aging-related expression. 

 
Transcription Factor (TF) Motif and Footprinting Analysis 

    ATAC-seq data from PBMCs and T cells were scanned for TF footprints using the PIQ 

algorithm (31).  This method integrates genome-wide TF motifs (i.e., position weight 

matrices or PWMs) with chromatin accessibility estimates profiled at base pair resolution 

to generate a list of possible footprint matches for a motif. The method also produces a 

probability estimate for each footprint’s reproducibility, termed “purity score”.  Here, we 

compiled a set of 1,273 distinct motifs comprising the curated (CORE) list available in 

the JASPAR 2016 database (n=466, http://jaspar.genereg.net) in addition to the complete 

set of HT-SELEX motifs made available in (32) (n=819).  Altogether, these motifs 

represent binding sites for 381 distinct TF Prior to footprint calling, we merged samples 

belonging to the same cell type and age group to maximize our ability to find highly 

reproducible footprints.  In addition, we used SAMtools v. 0.1.19 (17) to randomly 

subsample aligned reads from each merged data set to approximately match the mapped 

library depth of the least deeply sequenced sample, i.e., 113 Mb.  This normalization step 

is included to minimize the impact of the high correlation observed between library depth 

and footprint purity scores.  Only footprints with a purity score of 90% or more were 

retained for further analysis.  Finally, footprint calls were further filtered to include in 

analyses only those associated to TFs determined that are expressed in immune cells. 
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    To examine the regulatory landscape of IL7R, a potential aging biomarker, we focused 

on footprints called on the promoter region (+/-1 kb from TSS) of this gene separately by 

age group and cell type.  To complement this set of footprints, we also carried out de 

novo motif discovery using HOMER by searching for motifs enriched in peaks annotated 

to IL7R relative to all peaks in PBMCs and T cell subsets.  Each enriched motif was 

annotated to the best fitting known TF, as found by HOMER, with the added requirement 

that the annotated TF should be expressed in the appropriate cell type. We then used PIQ 

to call footprints of the enriched motifs, and combined those overlapping IL7R promoter 

with the previously selected footprints.  Finally, in addition to footprint and motif 

enrichment analyses, known TF motifs were retrieved for the region around IL7R TSS (-

10kb upstream, +1kb downstream) using MotifMap tool (33) at a 20% FDR. 
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CHAPTER FOUR 
 

Results 
 
 

Generating Epigenomic Datasets in Human Immune Cells  

    ATAC-seq is a relatively novel technology that enables generating open chromatin 

profiles from small cell numbers (as few as single cells) compared to other techniques.  

Moreover, ATAC-seq technique is also easier to manipulate than traditional DNA 

sequencing methods, such as DNase-seq.  The key element of this novel technology is the 

use of hyperactive Tn5 transposase that can simultaneously fragment and tag a genome 

with adaptors for high-throughput DNA sequencing, However, ATAC-seq has also some 

drawbacks such as contamination of ATAC-seq libraries with mitochondrial DNA 

(mtDNA) and generation of excessive number of reads that can affect the computational 

analysis, in particular, alignment of sequences to the genome, Therefore, it is very critical 

to solve these issues in order to increase the power of computational analysis before we 

build our own epigenomic datasets and extract more accurate information from 

epigenetics of ageing.   

 
Removal of mtDNA form Cell Lysates 

    In the preliminary experiments, we noticed that the majority of reads were aligned to 

mtDNA, due to the ineffective lysis method in the nuclear purification procedure.  In 

order to optimize the original ATAC-seq protocol, we aimed to reduce the amount of 

mtDNA from the starting material.  
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    The structure of mtDNA is a small circular chromosome, and is simpler than nuclear 

chromosomes, which is supercoiling structure. Its structure permits easier access of Tn5 

transposase that cleaves mtDNA more readily than nuclear DNA, resulting in generation 

of more fragments of mtDNA than fragments of nuclear DNA. Data in Table 5 shows a 

high mtDNA duplicate rate among many of the libraries.  Indeed, we found that more 

reads are specifically aligned to the mitochondrial rather than nuclear chromosomes.  For 

example, data from two donors showed that of the total of 27M reads in an HO 

individual, 17.3M reads are occupied by mtDNA, which represents almost two-thirds of 

total number of reads (Figure 7).  Likewise, the HY donor showed a similar pattern. 

Many mtDNA fragments were enriched around 100 to 200 bps region.  

 

 

Figure 7. The proportion of nuclear DNA and mtDNA read counts in DNA sequencing. (A) and (B) The 
distribution of read counts in healthy elderly (HO). (C) and (D) The distribution of read counts in healthy 
young adult (HY).  
     

    Currently, samples are sequenced with millions of reads to compensate, for the reads 

aligning to the mtDNA, increasing the cost of experiments. We tested several different 

A B 

C D 
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methods to solve this issue including i. Targeted DNA size selection for Next-Gen 

sequencing using BluePippin system, ii. Avidin-biotin-mediated depletion of mtDNA , 

iii. Customized nuclear purification buffers, iv. collaboration with biotech company for 

mtDNA depletion.  

     First, the BluePippin systems use pre-cast and disposable agarose gel cassettes. DNA 

fractions are collected by electro-elution into a buffer-filled well using a branched 

channel configuration with switching electrodes (48). The timing of switching is 

determined by measuring the rate of DNA migration with optical detection of labeled 

markers.  By taking the advantages of BluePippin system, we selected 7 ATAC-seq 

libraries enriched with high amount of mtDNA (4HY and 3HO), and tested whether 

mtDNA would be removed by selecting adequate size of DNA, from 120 bps to 250 bps 

and 250 bps to 500 bps. Results are indicated in Table 1, there are no differences after 

DNA size selection. Moreover, we might lose useful and interesting DNA information, 

DNA size smaller than 120 bps, if we apply this methodology to avoid mtDNA issue.    

 
Table 1. BluePippin size selection result 

Sample Mapped pairs chrM Mapped Size selection 
mtDNA%  

      Original   
      mtDNA% 

HY114 983456 626150 63.39 63.9 
HO212 1223965 639895 52.07 66 
HY115 874045 515332 58.66 60.2 

HY ND9 1523389 882894 57.43 69.5 
HO215 1053904 541373 51.13 58.6 

HY ND10 1518338 758000 49.74 59.2 
HO213 489494 203934 41.17 54.3 

   

    Secondly, the interaction of biotin and avidin or streptavidin has been exploited for use 

in many protein and nucleic acid detection and purification methods (49). To utilize this 
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highly sensitive assay, we customized and designed specific avidin-biotin-mediated 

depletion to mtDNA sequences. We did not harvest any mtDNA products after avidin-

biotin incubation. 

    Thirdly, we used the commercial cell lysis buffer provided by Sigma-Aldrich to 

separate mitochondria organelle from nuclei (50). The result indicated that (table 2) the 

average of mtDNA percentage using commercial lysis buffer and original lysis buffer 

were 29.2% and 34.7%. It did not provide a good outcome; however, using optimized 

nuclear lysis buffer to separate mitochondria organelle and nuclei would not interfere and 

loss any information.  

  
Table 2. The commercial buffer and original buffer comparison  

Sample Mapped_pairs chrM_Mapped Percent_chrM 

Commercial lysis buffer 1881395 490520 25.35009352 
Commercial lysis buffer 1556876 534503 33.24639765 

Original lysis buffer 1275844 525083 40.92851737 
Original lysis buffer 1478263 423440 28.508642 

 

    Last, we collaborated with a biotech company for mtDNA depletion (51). We used the 

me290, a melanoma cancer cell line that contained high amount of mtDNA, and 5 

PBMCs samples to test mtDNA depletion method provided by the biotech company. As 

result shown in table 3, the mtDNA was removed from samples successfully (me290 

from 86% to 21% and PBMCs samples from 31.6% down to 4.2% on average). Even 

though mtDNA was successfully removed, it is still time-consuming issue. It took a long 

time to remove mtDNA in few samples, and outsourcing this step would generate another 

additional expense. 
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Table 3. The result from biotech company collaboration 
Sample Before depletion mtDNA(%) After depletion mtDNA(%) 

Me290 0.86 0.21 
ND16_fnPBMC_1 0.24 0.03 
ND16_fnPBMC_2 0.29 0.04 
ND16_PBMC_1 0.29 0.03 
ND16_PBMC_2 0.38 0.06 
ND16_PBMC_3 0.38 0.05 

 

    Therefore, best results were obtained using optimized nuclear lysis buffer (52). To this 

end, we compared optimized new cell lysis buffer to the original cell lysis buffer, recipe 

provided by Greenleaf lab, using total 300 samples.  As a result, the mtDNA duplicate 

rate dropped significantly from 56% to 26% (Figure 8A).  In addition, the number of 

PCR cycles required for ATAC-seq library preparation also decreased from 6.25 cycles 

to 4.3 cycles (Figure 8B), a difference of 2 cycles, demonstrating that the new homemade 

cell lysis buffer made library preparation more efficient. The major difference in the new 

buffer is the addition of Triton-X100, which is a key component in the buffer to separate 

mitochondria organelle.  

    Furthermore, large amounts of raw reads were acquired after Next-seq sequencing. Our 

analysis pipeline filtered raw reads, eventually, retaining useful reads that could be 

aligned with the genome for further analysis. We noticed that 66.4% reads were useless 

using the original cell lysis buffer. In contrast, the protocol using the new homemade 

lysis buffer produced almost two-fold as many useful reads (i.e. from 33.6% to 59% more 

reads) (Figure 8C).    

    In sum, the new cell lysis buffer resulted in increased nuclear purity, lowered mtDNA 

duplicates (a 30% difference) and provided more reads which increased the power of 

analysis.  
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Figure 8. New homemade buffer improved ATAC-seq quality. (A) Duplicate rate decreases from 56% to 
26%. (B) PCR cycle number decreases from 6.25 to 4.3 cycles in ATAC-seq library preparation. (C) After 
sequencing, filtered reads increase from 33.6% to 59%. P<0.0001 compared with original buffer group, as 
analyzed by two-tailed Student’s t-test. 
 

    Taken together, we had tried five different methods, BluePipin size selection, biotin-

avidin interaction, commercial lysis buffer, mtDNA blocking project, and new 

homemade lysis buffer to remove mtDNA. The conclusion is summarized as below 

(Table 4). 

 
Table 4. Conclusion of mtDNA depletion methods 

Method Pros Cons Result 

BluePippin system 
Specific size 

selection 
Undistinguished nuclear DNA and 

mtDNA Negative 

Biotin-avidin interaction 
High affinity 
interaction Unpredictable mtDNA fragments Negative 

Commercial lysis buffer Time efficiency 
 

Negative 
mtDNA blocking project Outsource Time-consuming; pricy Positive 
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Table 4—continued 
Method              Pros               Cons         Result  

New homemade lysis 
buffer Time efficiency; data comparable Positive 

 

Improving the Number of Useful Reads 

    In our preliminary experiments, we found that after sequencing, many reads were 

filtered out as they were considered redundant primer dimers. As shown in Table 5, 

which indicates the general sequencing quality control information, around 60% of the 

raw reads were removed and only 40% reads could be used. As a result, the power of 

computational analysis was decreased not only due to mtDNA contamination interfering 

with the final readout, as shown above, but also due to the small portion of reads 

considered as useful reads (Table 5). 

 
Table 5.  The preliminary sequencing result from healthy donors, including young adults 

and elderly adults, were collected from UCHC aging center. 
Sample Raw Reads Aligned Reads Filtered reads 

% 
Percent of 

Duplication % 
HO210-PBMC-50-1 37786837 15036982 39.79423311 50.099 

HO211-PBMC-50-1 33694743 7693138 22.83186431 71.170 

HO211-PBMC-50-2 35678556 11642061 32.63041531 58.791 

VHY402_D0_PBMC_50_
1 

28235978 9644735 34.15760913 57.582 

VHY402_D0_PBMC_50_
2 

30061027 12371955 41.15612883 49.707 

HM501_PBMC_50_1 31849685 12083702 37.93978496 47.922 

HM501_PBMC_50_2 31999636 14777007 46.17867216 38.117 

HM502_PBMC_50_1 35634255 12246893 34.36831498 52.642 

HM502_PBMC_50_2 29372000 11340409 38.60959077 48.767 

HM503_PBMC_50_1 39192554 15365795 39.20590375 47.807 

HM503_PBMC_50_2 30669338 12447092 40.58480819 44.936 

ND9_PBMC_50_1 31817566 7111806 22.35182289 69.485 
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Table 5-- continued 
Sample Raw Reads Aligned Reads Filtered reads 

% 
Percent of 

Duplication % 
ND9_PBMC_50_2 46424285 14694929 31.65353866 55.876 

ND10_PBMC_50_1 33011817 10274516 31.12375184 58.240 

ND10_PBMC_50_2 31832200 9671452 30.38260629 59.204 

ND11_PBMC_50_1 26701073 10316367 38.63652596 46.819 

ND11_PBMC_50_2 28353103 15478950 54.59349546 25.701 

HO212_PBMC_50_1 51172337 13373090 26.13343612 64.437 

HO212_PBMC_50_2 47107490 11948701 25.36475834 65.985 

HY113_PBMC_50_1 30385486 10848445 35.70272004 51.790 

HY113_PBMC_50_2 32918745 17395944 52.84510087 29.781 

HY114_PBMC_50_1 33400809 9203209 27.55385057 63.856 

HY114_PBMC_50_2 35434327 8103889 22.87016485 70.592 

HO213_PBMC_50_1 28541117 5941472 20.81723711 71.485 

HO213_PBMC_50_2 25767688 8508487 33.01998612 54.267 

VHY402D1_PBMC_50_1 30034699 9547804 31.78924483 56.936 

VHY402D1_PBMC_50_2 37558000 11692666 31.13229139 58.171 

VHY402D7_PBMC_50_1 40597149 13340302 32.8601942 54.292 

VHY402D7_PBMC_50_2 37923417 10139182 26.73593996 64.028 

VHY402D28_PBMC_50_
1 

38887131 9353477 24.05288526 67.752 

VHY402D28_PBMC_50_
2 

41562650 10664809 25.65959822 64.763 

HY112_PBMC_50_1 35807400 16168626 45.15442618 41.404 

HY112_PBMC_50_2 35099328 13238755 37.71797283 50.931 

F303_PBMC_50_1 39603844 7278155 18.37739539 72.958 

F303_PBMC_50_2 46340592 10336225 22.30490495 68.181 

ND8_PBMC_50_1 36922628 8757347 23.71810316 68.002 

ND8_PBMC_50_2 36922811 8612576 23.32589466 69.188 

HO214_PBMC_50_1 33044657 8872071 26.84873079 63.959 
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Table 5--continued 
Sample Raw Reads Aligned Reads Filtered reads 

% 
Percent of 

Duplication % 
HO214_PBMC_50_2 26064895 9628367 36.93998 51.884 

HM504_PBMC_50_1 23460422 7531775 32.10417528 58.849 

HM504_PBMC_50_2 23363486 7685049 32.89341753 58.828 

HM505_PBMC_50_1 27232230 6621388 24.31452731 67.916 

HM505_PBMC_50_2 22807220 6551444 28.72530716 63.591 

HM506_PBMC_50_1 19095987 4796213 25.11633989 64.869 

HM506_PBMC_50_2 24156274 8911492 36.89100397 53.756 

HM507_PBMC_50_1 24481608 11897326 48.59699575 38.588 

HO215_PBMC_50_1 24902449 8103249 32.53996826 58.605 

HO215_PBMC_50_2 24539146 10675546 43.5041464 44.649 

HO216_PBMC_50_1 24216437 6889293 28.44883002 63.061 

HO216_PBMC_50_2 20499448 6712211 32.74337436 57.863 

HY115_PBMC_50_1 23997273 7513017 31.30779485 60.216 

HY115_PBMC_50_2 24401832 8882970 36.40288155 53.158 

HY116_PBMC_50_1 23404746 11333246 48.42285407 37.959 

HY116_PBMC_50_2 25837511 13592401 52.60723837 31.540 

HM402_PBMC_50_1 33334606 6359476 19.07769961 73.658 

HM403_PBMC_50_1 28580940 9386665 32.84239427 55.575 

HM403_PBMC_50_2 24333909 6507547 26.74271117 64.833 

HM404_PBMC_50_1 26235365 6621259 25.23791455 66.855 

HM404_PBMC_50_2 23490515 4774021 20.32318576 72.704 

HM508_PBMC_50_1 23442040 5569029 23.75658859 68.959 

HM508_PBMC_50_2 25037853 5249926 20.967956 71.934 

HY117_PBMC_50_1 33705027 8076663 23.96278454 68.813 

HY117_PBMC_50_1 35099328 13238755 37.71797283 50.931 

HY119_PBMC_50_1 25073261 8822561 35.18713023 52.426 
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Table 5--continued 
Sample Raw Reads Aligned Reads Filtered reads 

% 
Percent of 

Duplication % 
HY119_PBMC_50_1 20574888 7291086 35.43681987 52.622 

HY125_PBMC_50_1 22034043 7304625 33.15154191 56.208 

HY125_PBMC_50_1 20533575 7958057 38.75631496 49.478 

HY126_PBMC_50_1 21832155 7033569 32.21655856 57.183 

HY126_PBMC_50_1 25880675 7654752 29.57709565 60.076 

HY123-PBMC-50-1 37481447 20639973 55.0671723 31.898 

HY123-PBMC-50-2 41061078 21553864 52.49220198 36.084 

HY123-FROZEN-PBMC-
50-1 

37594892 21677554 57.66090244 30.587 

HY123-FROZEN-PBMC-
50-2 

37232313 19311785 51.86834619 36.479 

HY127-PBMC-50-1 41480758 22961382 55.35429705 30.451 

HY127-PBMC-50-2 36830194 19060277 51.75176921 36.103 

HY127-FROZEN-PBMC-
50-1 

42141867 21743349 51.59559969 36.830 

HY127-FROZEN-PBMC-
50-2 

43299314 21088874 48.70486863 39.535 

HY121_PBMC_50_1 30138080 10807638 35.8604065 52.388 

HY121_PBMC_50_2 25806707 11016834 42.68980928 44.275 

HY120_PBMC_50_1 29180795 10259435 35.15817509 51.956 

HY120_PBMC_50_2 26310013 8371101 31.81716786 58.636 

HO218_PBMC_50_1 25607626 8232215 32.1475134 58.040 

HO218_PBMC_50_2 25883255 8221488 31.76373296 57.120 

VHY402_D60_PBMC_50
_1 

25863745 6122570 23.6724032 68.138 

VHY402_D60_PBMC_50
_2 

32388940 8699813 26.86044372 63.566 

HO219_PBMC_50_1 33466836 15088614 45.08527188 39.697 

HO219_PBMC_50_2 28246906 8338177 29.51890377 59.925 

HY128_PBMC_50_1 25006849 13373418 53.47902089 29.792 

HY128_PBMC_50_2 26735497 12062010 45.11608668 41.273 

HM411_PBMC_50_1 22200689 11096229 49.98146229 36.000 
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Table 5--continued 
Sample Raw Reads Aligned Reads Filtered reads 

% 
Percent of 

Duplication % 
HM411_PBMC_50_2 26623753 14646791 55.01399821 29.065 

HM415_PBMC_50_1 25992273 11160672 42.93842251 42.206 

HM415_PBMC_50_2 24554754 11362280 46.27323898 39.173 

HM511_PBMC_50_1 31912618 8289858 25.97674061 64.675 

HM511_PBMC_50_2 25858478 8213191 31.76208205 57.781 

HO217_PBMC_50_1 30317856 11086001 36.5659135 51.639 

HO217_PBMC_50_2 30600283 11679840 38.16905876 48.005 

HM417_PBMC_50_1 27709743 9541525 34.43382712 54.251 

HM417_PBMC_50_2 31854559 8591071 26.96967489 63.325 

HO221_PBMC_50_1 31122483 5612646 18.03405596 76.034 

HO221_PBMC_50_2 32623623 12768094 39.13757218 46.098 

HM416_PBMC_50_1 26582060 8299063 31.22054122 56.014 

HM416_PBMC_50_2 24591437 7433326 30.22729416 58.909 

ND12_PBMC_50_1 28430928 8238663 28.97781951 61.962 

ND12_PBMC_50_2 28391143 7437282 26.19578226 65.381 

ND13_PBMC_50_1 32043492 5643908 17.61327386 75.865 

ND13_PBMC_50_2 27550722 7051935 25.59618946 65.667 

HM401_PBMC_50_1 40364624 14833770 36.74943188 50.026 

HM401_PBMC_50_2 40990945 15294963 37.31302852 50.124 

HM407_PBMC_50_1 39016651 7047614 18.06309311 74.880 

HM407_PBMC_50_2 23565753 7134839 30.27630392 59.626 

HM408_PBMC_50_1 26116800 5008095 19.17576043 73.969 

HM408_PBMC_50_2 22465269 6946650 30.92173078 57.553 

HM409_PBMC_50_1 23649161 5960118 25.20223868 66.194 

HM409_PBMC_50_2 25051345 5807200 23.18119047 68.015 

HM509_PBMC_50_1 28816457 6833381 23.71346693 68.021 
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Table 5--continued 
Sample Raw Reads Aligned Reads Filtered reads 

% 
Percent of 

Duplication % 
HM509_PBMC_50_2 26903188 6453857 23.98919043 67.895 

HM510_PBMC_50_1 29398267 7428498 25.26848947 65.240 

HM510_PBMC_50_2 26489867 7417120 27.99983858 61.993 

HY129_PBMC_50_1 25093919 9763477 38.90774096 48.288 

HY129_PBMC_50_2 32713650 6401361 19.56785929 73.587 

 

     While using the original protocol, we found that the library concentration around the 

64 base pair (bps) region was too high and unknown (Figure 9A).  Usually, the average 

size of fragments cut by Tn5 transposase is around 300 bps. We concluded that the index 

primer concentration was too high for the library preparation thus contributing to a large 

number of reads regarded as useless during the filtration process and therefore could not 

be aligned to the genome. To solve this, many labs use Ampure beads to remove 

redundant index primers contained in the libraries. However, the Ampure beads can 

potentially also remove useful genomic information from libraries. We, therefore, 

decided to test the effect of lowering 4 to 6-fold the concentration of index primers 

(Figure 9B-D).  Thus, using four to six times lower concentration of index primer 

decreased the concentration of primer dimers near the 64 bps region. Moreover, the 

library complexity using the lower concentration of index primers was not affected.    
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Figure 9. ATAC-seq library QC results from bioanalyzer. Shown are the profiles of ATAC-seq libraries 
prepared using (A) 1250nM index primer, according to original protocol (B) 417nM index primer, 3 fold 
less than the original concentration and (C) 200nM index primer, 6-fold less than original concentration. 
(D) Comparison of three different concentrations of index primer.    
 

    We next prepared ATAC-seq libraries using the lower concentration of index primers. 

We expected that more reads could be used to sequence the genome rather than 

sequencing the redundant index primers. Indeed, the control group, which contains the 

original index primer concentration, gained more than 3 million reads, (12,046,897 vs. to 

9,427,182 from a total of 21,474,079 reads) than the experimental group using optimized 

index primer concentration (Table 6).  We hypothesized that by using low concentration 

of index primers we will increase the number of reads and improve library quantification 

in the control group.  However, we noticed in fact with the small size of library, it was 

difficult to conclude. There are additional factors that could potentially affect sequencing 

results, such as library quantification or sequencer programing.  Table 2 shows that there 

is no difference in reads filtered, read genome alignment, and percent of duplication. 

Additional troubleshooting is needed to optimize the ATAC-seq protocol. 
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Table 6: Illumina Mi-seq raw data. Six ATAC-seq libraries were made by using two 
different concentrations of index primers. 

Sample Name Reads Total Reads 
Filtered 

Reads 
Filtered % 

Reads Aligned 
Genome % 

Percent of 
Duplication % 

PBMCs 
1250nM_1 

2969808 1930992 65 99.5 4.8 

PBMCs 
1250nM_2 

5193443 3331671 64.2 99.5 4.7 

PBMCs 
1250nM_3 

3883646 2401657 61.8 99.5 8 

PBMCs 
417nM_1 

4995248 3234701 64.8 99.4 8.2 

PBMCs 
417nM_2 

4079444     2527034     61.9      99.5        9.3 

PBMCs 
417nM_3 

352490   232415     65.9      99.5        2.4 

Total Mi-seq 
reads 

21474079     

 

    Using the above-mentioned optimizations, we built the human immune epigenomic 

database. We used 474 subjects and we generated over 1350 ATAC-seq libraries from the 

total and sorted blood immune cell populations. Detailed information is summarized in 

Table 7. 

 
Table 7. Construction of the epigenome database. Peripheral blood mononuclear cells 

(PBMCs); central memory (CM); effector memory (EM); follicular helper T cells (Tfh); 
helper 1 T cells (Th1), helper 2 T cells (Th2); RA positive effector memory T cells 

(EMRA); myeloid dendritic cells (mDC); plasmacytoid dendritic cells (pDC). 
Cell type Category Donors ATAC-seq samples 
PBMCs Healthy Infant 12 36 

PBMCs Healthy Young adult 71 213 

PBMCs Healthy Middle age 47 141 

PBMCs Healthy Elderly 41 123 

PBMCs Healthy Frail 8 24 

CD14+ Healthy subject 33 99 

BDCA1 Flu Vaccine 3 18 

BDCA2 Flu Vaccine 3 18 

BDCA3 Flu Vaccine 3 7 
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Table 7--continued 

Cell type Category Donors ATAC-seq samples 
Total CD4 T Healthy subject 13 39 

Naïve CD4 T Healthy subject 15 28 

Memory CD4 T Healthy subject 10 21 

CD4 Tcm  Healthy subject 1 1 

CD4 Tem  Healthy subject 1 2 

Tfh Healthy subject 7 14 

Th1 Healthy subject 7 10 

Th2 Healthy subject 7 11 

Th17 Healthy subject 7 12 

Total CD8 T Healthy subject 10 30 

Naïve CD8 T Healthy subject 11 21 

Memory CD8 T Healthy subject 10 20 

CD8 Tcm  Healthy subject 1 1 

CD8 Tem  Healthy subject 1 2 

CD8+CD28+ Healthy subject 9 27 

CD8+CD28- Healthy subject 9 27 

Total CD19 Healthy subject 13 39 

Naïve CD19 Healthy subject 11 21 

Memory CD19 Healthy subject 11 14 

Innate memory B Healthy subject 11 16 

CD56+ Healthy subject 6 17 

CD3+CD56+ Healthy subject 6 15 

CD8-NK-NKT-PBMC Healthy subject 6 18 

Naïve T cell Healthy subject 8 18 

Tcm_em Healthy subject 8 24 

Temra Healthy subject 8 21 
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Table 7--continued 

Cell type Category Donors ATAC-seq samples 
mDC Healthy subject_treatment 3 45 

pDC Healthy subject_treatment 3 37 

PBMCs SLE 17 51 

PBMCs JDM 3 9 

PBMCs Inactive SLE 3 9 

CD14+ SLE 14 42 

PBMCs SYS 3 9 

 

Donor Recruitment 

    Seventy-seven healthy subjects were recruited by the Center for Aging at UConn 

Health Center to contribute the blood for this study. Of the 77 healthy subjects, 51 were 

young adult (22~40yrs) and 26 were elderly (>65yrs).  

 
Epigenomic Datasets Generation 

    Of the 77 health subjects, 49 subjects were used to establish PBMCs epigenomic 

dataset, 8 subjects were used to established T lymphocyte epigenomic dataset, 7 subjects 

were used to established B lymphocyte epigenomic dataset, and 20 subjects were used to 

established monocyte epigenomic dataset. Once we successfully established the 

epigenomic dataset, the data were analyzed by using different computational tools 

(Figure 10). The clinical lab recorded the relevant information from each individual, such 

as age, gender, ethnicity, and personal disease history. More advanced information from 

each subject, such as cell compositions, was examined by flow cytometry for further 

analysis. 
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Figure 10. Epigenomic database generation flow chart. All studies were conducted following approval by 
the Institutional Review Board of University of Connecticut Health Center.  
 

The Major Cell Populations Differ from Age Groups 

    We recorded cell compositions of PBMCs from different subjects using flow 

cytometry. As shown in Figure 11, the amount of CD8+ T cells and CD19+ B cells 

significantly decreased with aging, consistent with the age-related decline in thymus and 

bone marrow activity. Overall, CD4+ T cells showed non-significant reduction with 

aging, but the proportion of CD4+ T cell subsets changed, most notably naïve CD4+ T 

cells were significantly decreased with aging (Appendix A). The most significant aging-

associated decline was observed in the naïve CD8+ T cell population (Appendix A), 

where the percentage of naïve CD8+ T cells in PBMCs decreased from ~7% to ~3% with 

age (p=1e-04, Wilcoxon rank-sum test). 
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Figure 11. Cell composition changes with aging. Changes in major cell compositions with aging. P-values 
are calculated using the Wilcoxon test. Note significant decrease in total CD19+ and CD8+ T cells. 
 

An Epigenomic Signature of Aging in PBMCs 

    PBMCs, enriched with different immune cells, including T lymphocytes, B 

lymphocytes, monocytes, and dendritic cells, etc., represent a means by which to assess 

and monitor an individual’s immune health. We examined the aging-associated 

chromatin accessibility profiles, after PBMC epigenomic database was successfully 

established using 49 subjects (28 HY, 21 HO). Only high-quality samples passing quality 

control criteria were used in downstream analysis (44 samples, 25 HY and 19 HO). We 

analyzed the adjusted reads estimated for all of the PBMC ATAC-seq peaks scored in 

this study (n=140,172 peaks). Using principal component analysis (PCA), we observed 

that age groups tend to cluster separately from total ATAC-seq peaks (Figure 12A). From 

differential analysis, total 12626 differential peaks were separated between age groups. 

6977 differential peaks were defined as closing peaks, size of peaks or expression of 

peaks decreasing with age, and 5649 differential peaks were defined as opening peaks, 

size of peaks or expression of peaks increasing with age, respectively (Figure 12B). The 

heatmap result from hierarchical clustering analysis (Figure 12C), the differential peaks 

can be clearly separated into two groups. The blue cluster represented as HY group, and 
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the red cluster represented as HO group. The peaks opening with aging and the peaks 

closing with aging provides a clear picture of separation (Figure 12C).  

 

Figure 12. PBMCs epigenomic signature of aging. (A) Sample loadings on first and second principal 
component computed based on adjusted reads estimated for all of the PBMC ATAC-seq peaks scored in 
this study (n=140,172 peaks). Note that age groups tend to cluster separately, implying aging as a leading 
factor explaining epigenetic variation in PBMC. (B) Plot representing log2 fold change (old-young) versus 
average read count for ATAC-seq peaks. Peaks differentially opening (closing) with aging are represented 
in red (blue) (5% FDR). (C) Heatmap showing normalized (z -scores) chromatin profiles for differentially 
closing/opening peaks across PBMC samples. (D) Plot of first two Principal Components (PC) based on 
differential peaks confirms that PC1 accounts for the separation between age groups. Percent of variation 
among differential peaks accounted for by each PC is shown in parentheses. PC1 from this analysis 
accounts for ~7% of the variance in the complete data set (Appendix A). 
 

B A 

C D 
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    PCA analysis uses differential peaks and age groups as parameters. We found that 

differential peaks were well separated between age groups in figure 12D. Two subjects (1 

HY and 1 HO) were not clustered together with the age group they were supposed to be 

in (42 out of 44 hierarchical clustering), and considered as outliers.    

 
Definition of Functional States of Differential Peaks 

    The Roadmap Epigenomics Project (34) profiled reference PBMC samples and defined 

functional states such as promoters, enhancers, and repressors in these cells. To 

determine where these differential peaks belong to on the genome, we annotated them 

using these Roadmap-defined chromatin states. Thus, we found that the most accessible 

peaks were shown at promoter sites and enhancer sites; however, the less accessible 

peaks were shown at quiescent and repressed sites (Figure 13A). The remarkable 

differences in the functional states of differential peaks, with closing peaks mostly found 

at promoters and enhancers, and with opening peaks mostly found at repressed and 

quiescent sites (Figure 13B). With closing peaks, 25% differential peaks were shown at 

promoter region, and around 50% peaks were shown at enhancer region. In contrast, with 

opening peaks, showing less promoter peaks, around 15% differential peaks were shown 

at repressed region, and 61.3% peaks were shown at quiescent region. 
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Figure 13. Definition of functional states of differential peaks. (A) Relationship between peak size (i.e., 
normalized read counts within peak) and functional annotations, as annotated using Roadmap chromHMM 
states for PBMC. Larger, more accessible peaks are more likely to be found at promoters (red bars) and 
enhancers (yellow), whereas small peaks are more likely to be called at inactive regions, represented by 
quiescent (salmon) and repressed sites (slate). (B) Relative to all peaks tested, differentially closing peaks 
are enriched in promoters and enhancers, whereas opening peaks are enriched in quiescent and repressed 
sites (Appendix A). 
 

Gene Ontology Terms Definition for Differential Peaks 

    Differential peaks were annotated to the closing genes based on their distance to 

transcription start sites (TSS). Therefore, 3,987 closing peaks and 3069 opening peaks 

were linked to their closing genes respectively (Figure 14A). 622 out of 3987 closing 

peaks and 379 out of 3069 opening peaks were associated with immune-related genes. In 

addition, ClueGO (28) can compare clusters of genes and visualize their functional 

differences. ClueGO takes advantage of Cytoscape’s versatile visualization framework 

and can be used in conjunction with the GOlorize plug (28). ClueGO enrichment analysis 

exhibited that a majority of 622 chromatin-closing immune-related genes were involved 

in T cell activation-related GO terms. In contrast, the majority of the 379 chromatin-

opening immune-related genes were involved in myeloid leukocyte and osteoclast 

differentiation processes (Figure 14B). 

 

A B 
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Figure 14. Epigenomic signature of aging at immune-related genes. (A) Major GO category annotations of 
genes associated with differentially closing and opening peaks. (B) GO terms associated with immune-
related genes enriched among genes annotated to differentially closing (blue, left) and opening (red, right) 
peaks (Appendix A). 
 

Epigenomic Signature of Aging Showing at T Cell Immune Module 

    To further interpret immunological implication of these chromatin changes, we applied 

transcription immune modules (27), where each module represents a coordinately 

expressed gene set across many PBMC expression profiles. These immune modules are 

functionally well characterized and linked to pathways or cell types involved in immune 

processes. When we applied ATAC-seq data to transcriptional modules analysis, we 

found significantly chromatin closing at promoter sites and enhancer sites in T cell gene 

module (Figure 15A).  By looking into T cells module genes, we found genes in the T 

cells module were closing with aging systemically, such as CD28 (Figure 15B). Adopting 

a module-based data-mining strategy can enhance biomarkers and biological knowledge 

discovery. For example, in the inflammation I module showed promoter and enhancer 

peaks closing with aging, but repressed and quiescent peaks opened with aging. It might 

suggest that aging has dual effect on inflammation-related genes.    
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Figure 15 Epigenomic signature of aging showing at T cell immune module. (A) Average chromatin 
remodeling (log2 fold change) of genes listed in 28 immune co-expression modules, calculated based on all 
peaks (leftmost column) and separately using peaks annotated to specific chromHMM states. (B) Subject-
specific normalized (z -scores) chromatin accessibility patterns of peaks annotated to genes in the T cell co-
expression module reveals concerted aging-related variation across the cohort. Warmer (cooler) hues 
represent increased (decreased) chromatin accessibility relative to the cohort mean.  
 

The Correlation between Epigenome and Transcriptome 

    To link aging-associated chromatin changes to transcription levels, we generated a 

PBMCs transcriptome database with 39 subjects (24 HY and 15 HO). 39 RNA-seq data 

were generated to match with ATAC-seq samples. The most significantly positive 

correlation between age-related changes in gene expression levels and chromatin 

accessibility at gene promoters was detected when we compared chromatin accessibility 

to gene expression data (Figure 16). 

 

A B 
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Figure 16. Aging-associated gene expression and chromatin accessibility changes. Chromatin remodeling at 
gene promoters correlates significantly with changes in expression of the co-located genes (Pearson r = 
0.32, p-value < 2.2x10-16). Dashed lines delineate the set of peaks (x-axis) and genes (y-axis) that are 
differentially accessible or expressed between young and old subjects with a permutation-based p 
value<0.01. Shaded quadrants define sets of genes showing congruent aging-related shifts in chromatin 
accessibility and expression (Appendix A). 
 

Concordant Remodeling Together with Transcriptome Data and Epigenomic Data 

    Analysis of ATAC-seq data and RNA-seq data showed concordant data remodeling, 

increasing or decreasing together in the same direction. Next, we have to identify which 

transcriptional immune modules undergo transcriptional, epigenetic, and concordant 

changes with aging (Figure 17). We identified that the most significant concordant 

chromatin closing and decline of gene expression occurs in T cell module (Figure 17, 

Combined remodeling column and Figure 18). Furthermore, the most significant 

concordance between chromatin opening and increased in gene expression occurs in 

cytotoxic cell module (Figure 17). 
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Figure 17. Concordant remodeling together with transcriptome data and epigenomic data. Enrichment of 
immune modules among genes sets associated to differentially accessible peaks (left), differentially 
expressed genes (center), and congruent (concordant) chromatin and expression remodeling (right). Plots 
show - log10 of hypergeometric test p-values, colored according to the direction of the observed change 
(blue for decrease and red for increase with age). Reference lines are drawn at the largest p-value for which 
a 5% FDR is attained (Appendix A). 
 

    In depth analysis of T cell module showed that gene expression decrease correlates 

with chromatin accessibility closing with aging. Many genes in this module are 

associated with T cell functions, including Transcription factors (TF), involved in 

lymphocyte development and activation. LEF1 and TCF7 are among the genes associated 

with T cell function (Figure 18B). Figure 18B indicates that ATAC-seq signal and RNA-

seq signal were correlated, and gene expression and chromatin accessibility was 

decreased with aging.  
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Figure 18. Concordant remodeling in T cells module. (A) Personal profiles of chromatin accessibility of 
promoter peaks associated to genes in the T cell module for which both chromatin accessibility and gene 
expression decrease with aging. Personal profiles of gene expression of genes in the T cell module, with 
samples and genes sorted to match the clustering computed based on chromatin accessibility. (B) Examples 
of concordantly remodeled genes from the T cells module.  Top: chromatin accessibility and gene 
expression correlate among subjects. Bottom: both chromatin accessibility (yellow dots and lines) and gene 
expression (green dots and lines) decrease with aging (Appendix A). 
 

    In the cytotoxic cell module chromatin opening correlates with the activation of gene 

expression (Figure 19A). Among these are GNLY, GZMB, and GZMH, expressed by 

plasmacytoid dendritic cells (53), CD4+ T cells (54, 55), or plasma cells (56) (Figure 

19B).    

    The epigenomic dataset is comparable with transcriptome dataset, showing concordant 

chromatin closing and decline of gene expression. Top 15 closing peaks were generated 

from ATAC-seq data and associated with chromatin closing (Figure 20).   

A B 
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Figure 19. Concordant remodeling in cytotoxic cell module. (A) Promoter chromatin accessibility (top) and 
gene expression (bottom) of genes in the cytotoxic cells module that show congruent increased in 
accessibility and expression with aging. Warmer (cooler) hues represent increased (decreased) chromatin 
accessibility (expression) relative to the cohort mean, data shown as normalized (z -scores) values. (B) 
Examples of concordantly remodeled genes from the cytotoxic cells module. Top: chromatin accessibility 
and gene expression correlate among subjects. Bottom: both chromatin accessibility (yellow dots and lines) 
and gene expression (green dots and lines) increase with aging (Appendix A). 
 

     Many peaks were associated with immune-related function, such as TGFBR2 (57), 

BACH2 (58), FOXP1 (59), IL7R, etc. IL-7R has been reported to be associated with 

lymphocytes development, proliferation, and activation (42). Noteworthy, recent 

gerontology studies reported that IL-7R decreased with aging. Willemijn et. al. concludes 

that the IL7R network reflected by gene expression levels in blood may be involved in 

the rate of ageing and health status of elderly individuals (42).  Deficiencies of other 

transcription factors that control IL-7Ra expression, such as Foxo1 and Ets1, also lead to 

a more profound reduction of peripheral naïve CD8+ T cells than CD4 T+ cells (43, 44, 

45), strengthening reports that IL-7Ra controls development and survival of naïve CD8+ 

T cells more stringently than CD4+ naïve T cells (46, 47).  Therefore, we selected IL-7R 

as a validation candidate for further analysis and validation experiments. 
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Figure 20. Top 15 genes associated with chromatin closing with aging. Genes are sorted with respect to the 
number of significantly closing peaks annotated to their promoters. IL7R is a top gene in this list with 13 
closing peaks (Appendix A). 
 

The Chromatin Accessibility Closing with Aging in IL-7R and IL-7 Signaling Pathway 

    We have visualized IL-7R peaks information using UCSD genome browser from 10 

subjects (5 HY and 5 HO). Eight out of 12 highlighted peaks, located at either promoter 

or enhancer sites decreased with aging (Figure 12A). Moreover, ATAC-seq signal and 

RNA-seq signal were positively correlated; chromatin accessibility and gene expression 

decreased together with aging (Figure 21B, 21C). Furthermore, aging-related chromatin 

closing with aging affected not only IL-7R, but also disrupted other genes in the IL-7 

signaling cascade. Thus, genes in the IL-7 signaling pathway, such as JAK1, JAK2, 

STAT5A, and STAT5B have their chromatin closed with aging (figure 21D) (60). The 

heatmap provided a more dynamic chromatin-closing pattern in IL-7 signaling pathway 

at subject level (Figure 21E).  
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Figure 21. The chromatin accessibility is closing with aging in IL-7R and IL7 signaling pathway. (A) 
Genome browser view of IL7R locus highlighting 8 (out of 12) differentially closing peaks. Blue and red 
tracks represent open chromatin profiles of HY (n=5) and HO (n=5) samples, respectively. (B) IL7R 
expression and chromatin accessibility at its promoter decrease with aging. (C) Promoter chromatin 
accessibility and gene expression are highly correlated at among subjects. (D) Chromatin accessibility of 
peaks annotated to genes in the IL7 signaling pathway. Color represents the fold change of the most 
significant differential peak annotated to this gene. Genes marked in grey are not associated with a closing 
or opening peak. (E) Subject-specific chromatin accessibility of peaks significantly closing with aging and 
annotated to genes in the IL7 signaling pathway. Warmer (cooler) hues represent increased (decreased) 
chromatin accessibility relative to the cohort mean, data shown as normalized (z-scores) values (Appendix 
A).  
 

IL-7R Protein Expression Decreases with Aging 

    Then we examined IL-7R protein expression between HY and HO in different immune 

cells, such as CD4+ T cells, CD8+ T cells, CD19+ B cells, and CD14+ monocytes.  

Figure 22A indicated that IL-7R protein expression decreased specifically in CD8+ T 
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cells in HO compared to the expression in CD8+ T cells in HY. Other immune cells 

showed no difference between HY and HO groups. When the IL-7R protein expression 

was analyzed as a function of age, the IL-7R protein expression in CD8+ T cells showed 

a profound reduction with age (Figure 22B).  

 

 
Figure 22. IL-7R protein expression decreases with aging. (A) Flow cytometry plots in representative 
young (left) and old (right) subjects illustrate the decrease in IL7R protein levels with aging in CD8+ T 
cells. (B) Flow cytometry results indicating that the aging-related decrease in IL7R levels is specific to 
CD8+ T Cells (Appendix A). 
 

The Chromatin-Remodeling Signature Presented in CD8+ T cells 

    We next analyzed chromatin-remodeling signature on different T cell subpopulations 

such as naïve and memory CD4+ T cells and CD8+ T cells. The ATAC-seq dataset were 

generated after checking the purity of sorted cells. Using Generalized Linearized Model 

to distinguish the differential peaks from naïve and memory CD4+/CD8+ T cells between 
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HY and HO. Figure 23A indicated that naïve and memory CD4+ T cells showed minimal 

chromatin remodeling pattern; however, naïve and memory CD8+ T cells showed 

dramatic differences in chromatin remodeling. Naïve CD8+ T cells displayed 2,925 

differential peaks, and memory CD8+ T cells displayed 8,503 differential peaks. 

Differential peak analysis in CD8+ T cells indicated that gene promoter closing is 

substantially higher on memory CD8+ T cells (Figure 23B). Closing peaks in memory 

CD8+ T cells were 4 times higher than in naïve CD8+ T cells. Further differential peaks 

information was identified with Roadmap T cell annotation ChromHMM states (34). The 

pattern of closing peaks in memory CD8+ T cells showing at promoter sites and enhancer 

sites was similar to PBMCs pattern. In contrast, more than 50% of opening peaks in naïve 

CD8+ T cells occurred at enhancer sites (Figure 23C).  

     We, next, inspected chromatin remodeling of selected gene promoters known to be 

expressed in CD4+ T cell subsets. Figure 24 indicates that surface molecules, such as 

IL7R, CD28 (61), and signaling molecule STAT4, chromatin-remodeling signature was 

mainly from memory CD8+ T cells, instead of the three T cell subsets.   

    Last, we compared age-induced chromatin remodeling in T cell subsets to that of 

PBMCs. Chromatin closing in PBMC around T cell signaling pathways, such as IL-7 

signaling pathway and TCR signaling pathway, mostly stemmed from memory CD8+ T 

cells (Figure 25). Taken altogether, these results identify memory CD8+ T cells as the 

subpopulation with the most profound chromatin remodeling with aging. 
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Figure 23. The chromatin-remodeling signature showed in CD8+ T cells. (A) Differential accessibility 
analyses in T cell subsets show that most significant aging-related remodeling occurs in CD8+ T cells, and 
particularly in memory CD8+ T cells. Plots representing log2 fold change (old-young) versus average read 
count for the corresponding ATAC-seq peaks in T cell subsets. Opening (closing) peaks are represented in 
red (blue) (5% FDR). (B) Number of peaks in memory and naïve CD8+ T cells showing the increased 
extent of remodeling associated to aging observed in memory CD8+ T cells. (C) Distribution of differential 
and all peaks classified by chromHMM state annotations (Roadmap T cell annotations) for memory and 
naïve CD8+ T cells. Promoters and enhancers close with aging in memory CD8+ T cells, similar to PBMCs 
(Appendix A). 
 

A B 

C 
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Figure 24. Selected gene promoters displayed chromatin accessibility remodeling in memory CD8+ T cell. 
Chromatin accessibility remodeling (median fold change) of promoters of selected functionally relevant 
signaling and surface molecules in naïve and memory CD4+ and CD8+ T cells. Red and blue bars represent 
positive (i.e., opening with aging) and negative (i.e., closing with aging) median fold change, respectively, 
aggregated over all peaks overlapping promoters of the corresponding gene (Appendix A). 
 

 
Figure 25. The comparison of age-induced chromatin accessibility in T subsets to PBMCs. Chromatin 
remodeling of closing PBMC regions associated to genes in the IL7 signaling pathway (left) and TCR 
signaling pathway (right) stems from the remodeling in memory CD8+ T cells. Boxplots for PBMC and T 
cell subsets represent distribution of log2 fold changes of peaks annotated to genes that are associated to 
closing peaks in PBMC (Appendix A). 
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CHAPTER FIVE 

Conclusions 

    These results indicate the importance of optimizing the ATAC-seq protocol and the 

importance of studying the epigenetic landscape of aging in human PBMCs. Here, we 

provide an insight to the anatomy of immunosenscence associated with aging. The major 

observations from the epigenomic data generated from PBMC isolated from the blood of 

young and old healthy donors is as follows:  

• Chromatin accessibility reduces systemically with aging. The majority of 

differential peaks closing at enhancer sites and promoter sites are associated with 

immune genes related T cell signaling pathways and T cell activation. In contrast, 

chromatin opening with aging is more stochastically distributed across the cohort, 

instead of systemically opening with aging. The majority of differential peaks 

opening at quiescent sites and repressed sites are associated with immune genes 

related myeloid leukocyte differentiation and osteoclast differentiation.  

• Epigenomic signature in PBMCs mainly relates to memory and naïve CD8+ T 

cells.   

• IL-7R gene and genes involved in the IL-7 signaling pathway may qualify as 

potential epigenomic biomarkers of aging.  

    From the technical standpoint, optimized ATAC-seq technology can provide a 

powerful tool to investigate the human epigenome. Among the major observations, the  
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reduction of mtDNA in the analyzed DNA and removal of redundant material from 

ATAC-seq libraries result in improved sequencing results: 

• The use of improved buffer reduces between 30% and 50% the mtDNA 

contamination and increases the percentage of reads aligning to genomic DNA 

from 30% to 60%.  

• Reduction of amplification cycles used in preparation of ATAC-seq libraries 

reduces redundant repetitive sequences, which substantially improves 

computational analysis.  
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CHAPTER SIX 

Discussion 

    The major findings of the present study include, i. technical improvements to the 

ATAC-seq technique and ii. identification of the epigenomic landscape of the immune-

related genes in elderly in particular memory CD8+ T cells.  

    A significant improvement to the current ATAC-seq technology is related to the 

optimization of the nuclear isolation buffer that is more selective in the isolation of 

genomic DNA and profoundly reduced the mtDNA extraction. The new buffer 

successfully separates mitochondrial organelle and nuclei from cells and does not alter 

the sequencing efficiency. The key component in this new lysis buffer is triton X-100. 

Proper concentration of this mild detergent, after 15 minutes incubation on ice, and 5 

minutes centrifuge; then, we isolated good quality nuclei.  

     This method provided as with better results than any other tested methods such as size 

exclusion or using of blocking primers. Thus, the selection of 100-500 bps fragments 

using the BluePippin system poses the risk of excluding potential useful information. 

Moreover, we find that mtDNA also contains 100 bps to 200 bps fragments. Other 

methods, such as designing a set of mtDNA blocking primers, needs computational 

analysis to predict or to collect information about the frequency of mtDNA fragments 

randomly cut by Tn5 transposase. Outsourcing this methodology to the biotech company 

takes long time and increases the cost of experiments, even though it works successfully. 

But it will eventually bring up another issue, which is the comparison of different  
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techniques. Taken all together, new lysis buffer makes the ATAC-seq better in the most 

efficient. The major finding relative to the immune epigenome in elderly was that we find 

the chromatin accessibility closing with aging in PBMCs; the difference of chromatin 

accessibility between CD4+ and CD8+ T cells, CD8+ T cells display more epigenome 

changes with aging. 

    Of note, combined analysis of chromatin accessibility (ATAC-Seq) and gene 

expression (RNA-Seq) profiles revealed IL-7R and genes involved in IL-7 signaling 

pathway are dramatically reduced in elderly and may be potential biomarkers to monitor 

the status of immunity in elderly. Thus, factors that can regulate IL-7R gene, such as NF-

kB and STATs, closing with aging are specifically associated with memory CD8+ T 

cells. Future experiments aimed at identification of poised enhancers, active enhancers, 

and promoters in chromatin immune-precipitates directed to specific histones (H3K4me1, 

H3K4me3, H3K27ac) will be crucial for validation. Combining these in vitro results and 

designing in vivo experiments will eventually lead us to clinical studies. 

    Recent studies mention that IL-7 therapy may improve the survival of EMCD45RA+ 

CD8+ T cell with diverse TCR repertoire in the young but not in the elderly(35). It 

suggests that IL-7 therapy in the elderly may not be as effective and beneficial as in the 

young because a large proportion of CD8+ T cells in the elderly group has decreased IL-

7Rα expression and limited TCR repertoire compared with the young group. Indeed, the 

clinical studies of recombinant human IL-7 (rhIL-7) to rejuvenate circulating T cells it is 

a matter of debate in the scientific community. Thus, we need to understand how to up-

regulate IL-7R in aging CD8+ T cells. 

    Module-based data-mining strategy is very useful for ATAC-seq data analysis; 
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however, it was used for patient-based microarray transcriptional studies(18). Many 

genes in the module were well defined and were associated with different immune 

responses and different cell types in previous studies. But, in the literature, many genes 

and regulators that are associated with DNA replication, metabolism, non-coding 

elements, etc. are still undetermined.  Further characterization of these modules using 

epigenomic data will be beneficial for the identification of potential biomarkers and 

regulators especially in the noncoding space (97).     

    Aging-associated chromatin accessibility profiles are stable and robust. It is neither 

associated with cytomegalovirus (CMV) seropositivity and season. Ageing-related 

increase in CMV seropositivity may affect chromatin signature in PBMCs. Analysis of 

either CMV+ cohort and CMV- cohort or CMV+ cohort shows no influence of CMV 

seropositivity. We divided our samples into two groups according to the collection 

season, from Dec to May as winter group, from Jun to Nov as summer group. The result 

shows that season does not affect aging-associated chromatin signature (Appendix A).  

   Last but not least, the epigenomic signature from other immune cells, such as 

monocytes or B lymphocytes, do not show any major difference between young adult 

group and elderly group (Appendix A). The phenotype of monocytes and B lymphocytes 

between young and elderly adults showed no difference, but the way these immune cells 

respond to stimuli may display difference. Frasca, D et al. explored that T-bet and CD11c 

expression was higher in memory than in naïve B cells, but no difference was observed 

between young and elderly individuals. After TLR7 stimulation, CD11c increases in all B 

cell subsets (especially in naïve and IgM) from the elderly (41). It explains why there are 

no epigenomic signature differences between young and elderly adults, and provides a 
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hint to add proper stimuli to monocytes, or B lymphocytes. Besides, we did not collect 

germinal center B lymphocytes. Possibly, germinal center B lymphocytes would show 

the difference of epigenomic signature in young and elderly adults. It may also be related 

to the small cohort size. We will try to increase cohort size to see what can be concluded. 

If not, looking for the proper stimuli would be another important task. 

    In sum, our computational analysis and advanced ATAC-seq technique established this 

systems immunology approach as an integral and powerful immune-monitoring tool for 

the study of epigenome in diverse clinical contexts.  
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Appendix A 

The Chromatin Accessibility Signature of Aging in Human Blood Leukocytes Stems 
from CD8+ T Cells (Accepted) 
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