
ABSTRACT

Bayesian Methods for Hurdle Models

Joyce H. Cheng, Ph.D.

Chairpersons: David J. Kahle, Ph.D. and John W. Seaman, Jr., Ph.D.

Hurdle models are often presented as an alternative to zero-inflated models for

count data with excess zeros. They consist of two parts: a binary model indicating

a positive response (the “hurdle”) and a zero-truncated count model. One or both

parts of the model can depend on covariates, which may or may not coincide. In this

dissertation, we explore the Bayesian approach to these models in detail, focusing on

prior structures.

Many of the Bayesian hurdle models encountered in the literature fail to incor-

porate expert opinion into the prior structure. We consider how prior information can

be elicited from experts and incorporated into the prior structure of a hurdle model

with shared covariates through the use of conditional means priors. More specifically,

we propose a prior structure that assumes an inherent functional relationship between

the two parts of the model. Through simulations, we explore the potential gains, as

well as the shortcomings, of the approach. We also consider a simulation algorithm

for Bayesian sample size determination for such models. We illustrate the use of the

new methods on data from a hypothetical sleep disorder study.
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CHAPTER ONE

Introduction

In many areas of research, data containing a large number of zero outcomes

are common. For example, count data outcomes are common in controlled clinical

trials. These counts could be recording occurrences of symptoms, occurrences of

adverse events, episodes of risky behavior, etc., over a certain time period. Count

data of this sort often exhibit the additional characteristic of zero-inflation, meaning

the data include a larger number of zeros than would be expected under a standard

count distribution, such as the Poisson, binomial, or negative binomial. However,

zero-inflation is not restricted to count data. There are also cases in which data is

characterized by a large number of zeros and a positive continuous outcome, often

referred to as semicontinuous data.

In the statistics literature, models dealing with excess zeros are often in a count

data context, where an important distinction is made in terms of how zeros are

interpreted. Generally, there are two types of zeros: structural and sampling. Neelon

et al. (2010) give the following example to distinguish between the two types. Consider

an outpatient service study where patients may either decline service (y = 0) or use

services one or more times (y > 0). If all the patients in the study will potentially use

the service, then the observed zeros are sampling zeros. However, suppose that only a

subset “at-risk” group of patients will potentially use the service. The zeros observed

in this case come from two sources: patients who do not use the service because they

are not at-risk and patients who are at-risk’ yet decline service. The zeros resulting

from the patients who are not “at risk” are structural zeros.

Two commonly discussed methods of dealing with excess zeros in count data are

zero-inflated models (i.e. zero-inflated Poisson, zero-inflated negative binomial) and

hurdle models. Zero-inflated models are mixture models consisting of a degenerate
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distribution at zero and a full count distribution, including zeros (Lambert, 1992;

Neelon et al., 2010). Thus, their structure is conducive to handling two sources of

zeros. On the other hand, hurdle models, whose structure will be discussed in detail

in this dissertation, are designed to handle only one source of zeros. By this logic, the

main distinction made in the literature, for example in Rose et al. (2006), between

these two types of models is that, when a study allows for both types of zeros, it is

appropriate to use a zero-inflated model, and when a study only has one type of zero,

it is appropriate to use a hurdle model.

The focus of this dissertation is on Bayesian methods for hurdle models. In

Chapters Two and Three, we define the general form of the hurdle model used in

the literature, introduce a contextual example for when these models may be used,

discuss what has been done with regards to a Bayesian approach, and propose al-

ternative prior structures that incorporate prior information. In Chapter Four, we

consider sample size determination issues for these models using the Bayesian two-

priors approach.
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CHAPTER TWO

Bayesian Hurdle Models

2.1 Introduction to Hurdle Models

Hurdle models are historically rooted in a model developed by Cragg (1971),

which had an econometric context with regards to expenditure or consumption data;

they were first developed in a count context by Mullahy (1986) and later Heilbron

(1989, 1994). Hurdle models are also known as two-part models, and the econometrics

literature covers an abundance of similar models that deal with excess zeros, includ-

ing the double-hurdle and tobit models, as well as sample selection models, which

are somewhat related (Heckman, 1979). We will not delve into these models, but

Humphreys (2013) gives a good overview. Similarly, Ridout et al. (1998) provide an

overview of count data models for excess zeros.

Hurdle models work under the assumption that the zero counts are generated

from a different process than the positive counts (Hilbe, 2011). To define the hurdle

model, we follow the general formulation used by Tutz (2012) and Congdon (2005).

Suppose f1 and f2 are probability mass functions with support {0, 1, 2, ...}. Let C

be a binary variable that determines if the count variable is zero or positive; this

threshold is what is referred to as the “hurdle” in hurdle model. When C = 1, the

hurdle is crossed and a positive outcome is observed, and when C = 0, the hurdle is

not crossed and a zero is observed. This binary outcome is determined by f1 such

that

P (C = 1) = 1− f1(0)

and

P (C = 0) = f1(0).

3



If the hurdle is crossed, we observe a positive outcome, which is modeled by a

truncated count distribution, such that

P (y = r|C = 1) =
f2(r)

(1− f2(0))
, r = 1, 2, ...

Following the law of total probability,

P (y = r) = P (y = r|C = 0)P (C = 0) + P (y = r|C = 1)P (C = 1),

so the hurdle model is defined as

P (y = 0) = P (C = 0) = f1(0) (2.1)

and

P (y = r) = P (y = r|C = 1)P (C = 1)

=
f2(r)

1− f2(0)
(1− f1(0)), r = 1, 2, ...

(2.2)

It follows that the mean is

E(y) =
∞∑
r=1

rf2(r)
1− f1(0)

1− f2(0)
= ω

∞∑
r=1

rf2(r),

and the variance is

V ar(y) = ω

∞∑
r=1

r2f2(r)−
[
ω

∞∑
r=1

rf2(r)

]2

,

where

ω =
1− f1(0)

1− f2(0)
.

From this, note that the model allows for both under and overdispersion. When

ω = 1, f1 = f2 and the model reduces to the standard count model. However, if

0 < ω < 1, then there are excess zeros (overdispersion), and if ω > 1, then there are

less zeros than expected (underdispersion).

As noted by Tutz (2012), any specific hurdle model is determined by choices of

f1 and f2. Generally, f1 and f2 can be any discrete probability density, and we can

link one or both of them to explanatory variables. Thus, one or both parts can be

extended to generalized linear models, which may or may not share covariates.

4



2.1.1 Bernoulli-Poisson Hurdle Model

Consider a hurdle model where f1 is Bernoulli and f2 is Poisson, henceforth

referred to as the Bernoulli-Poisson hurdle model. Applying the general hurdle model

formula given in equations (2.1) and (2.2), this model is defined as

P (yi = 0) = 1− θi (2.3)

and

P (yi = r) =
λr
i e

−λi

r!

θi
1− e−λi

, r > 0, (2.4)

where 0 < θi < 1 is the Bernoulli probability parameter and λi > 0 is the Poisson

rate parameter.

The corresponding likelihood function is

L(θi, λi|y) =
n∏

i=1

[
(1− θi)

I0(y)

(
λyi
i e

−λi

yi!

θi
1− e−λi

)I(0,∞)(y)
]
, (2.5)

where IA(y) is an indicator function defined as

IA(y) =

⎧⎪⎪⎨
⎪⎪⎩
1, y ∈ A

0, y /∈ A.

Note that both θi and λi in (2.5) can either be constant or dependent on explana-

tory variables, resulting in four variations on the Bernoulli-Poisson hurdle model:

(1) Both θi and λi are constant.

(2) θi is constant and λi is dependent on explanatory variables.

(3) θi is dependent on explanatory variables and λi is constant.

(4) Both θi and λi are dependent on explanatory variables.

Throughout this dissertation, we use variation (4). Specifically, we focus on the

Bernoulli-Poisson hurdle model, with likelihood given by equation (2.5), where θi is

modeled by a logistic regression,

logit(θi) = z′iβ,

5



and λi is modeled by a Poisson regression,

log(λi) = x′
iγ,

where zi and xi represent vectors of explanatory variables, which may have common

components, and β and γ are the corresponding regression coefficient vectors. Moving

forward, we will often refer to the logistic regression as the “hurdle” part of the model

and the Poisson regression as the “count” part of the model.

One artifact of the Bernoulli-Poisson hurdle model, and hurdle models in gen-

eral, is that the probability of crossing the hurdle θi has strong bearing on the effective

sample size for the Poisson count part of the model. If θi is very small, resulting in

very few observations that cross the hurdle, it may result in poor estimation of λi.

Thus it is important to be aware of the effective sample size for the Poisson part of

the model in any data set considered.

2.1.2 Maximum Likelihood Estimation

Frequentist estimation of the parameters in this model is straightforward. From

the likelihood function (2.5), we determine the log-likelihood is

l(β,γ) =
∑
yi=0

log(1− θi) +
∑
yi>0

log

(
λyi
i

yi!

θi
1− e−λi

e−λi

)
,

where

logit(θi) = z′iβ

and

log(λi) = x′
iγ.

Cameron and Trivedi (1998) and Tutz (2012) point out that the log-likelihood can

easily be decomposed into two components: l(β,γ) = l1(β) + l2(γ), such that

l1(β) =
∑
yi=0

log(1− θi) +
∑
yi>0

log(θi)

and

l2(γ) =
∑
yi>0

yi log(λi)− λi − log(yi!)− log(1− e−λi).

6



This means the joint likelihood can be maximized by simply maximizing each com-

ponent separately. Maximizing these two components can be done computationally

using the R function hurdle (Zeileis et al., 2008) in the pscl package (Jackman,

2014).

2.1.3 Bayesian Approach

The Bayesian approach to hurdle models has been covered by Congdon (2005)

and is widely used in the literature. Some applications include dental caries data

(Levin et al., 2009, 2010), pupal population counts (Aldstadt et al., 2011), Verotox-

igenic Escherichia coli (VTEC) infections data (Jalava et al., 2011), and ecological

data (Kuhnert et al., 2005; Martin et al., 2005a,b). In the literature, hurdle models

are often mentioned as an alternative to other zero-modified count models such as

zero-inflated count distributions and sometimes the zero-altered model. There are a

number of papers in the literature that compare these models, some of which do so

with a Bayesian approach. For example, Neelon et al. (2010) investigate Bayesian

approaches to various zero-inflated models for repeated measures.

The Bayesian hurdle models in the sources cited above all typically use diffuse

priors on the model parameters. One exception being that Martin et al. (2005a)

and Kuhnert et al. (2005) describe a two-component (hurdle) model with random

effects for bird density data, which incorporates expert knowledge in the priors for

the random effects. More recently, Neelon et al. (2013, 2014) have developed Bayesian

hurdle models with spatially and temporally correlated random effects.

2.1.4 Application: Sleep Disorders

Consider a hypothetical study where we are interested in investigating the re-

lationship between a subject’s weight and the number of sleep disturbances they

experience over a night.1 Suppose the subjects of the study are an at-risk group of

men classified as obese with weights between 200 and 400 lbs. In the course of the

1 Although our scenario is hypothetical, studies of sleep disturbances have identified obesity as

a potential risk factor. See, for example, Dunson (2005).
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study, the subjects’ weights are recorded and they are asked to recall the number

of sleep disturbances they experienced over the night. From previous knowledge of

sleep disorders, we believe this number may range from 4 or 5 up to around 30 dis-

turbances per night’s sleep. We also believe that these outcomes are likely to exhibit

zero-inflation, as not all subjects in the study will suffer from a sleep disorder, despite

being at risk for it.

Using a hurdle model would be appropriate in this scenario because all the men

in the study are obese and thus “at-risk” of suffering from a sleep disorder. In this

chapter we construct a Bayesian hurdle model for scenarios such as this. We use the

hypothetical sleep-disturbance study to illustrate use of our model throughout the

dissertation.

2.2 Diffuse Prior Structure

As mentioned in Section 2.1.3, most Bayesian hurdle models in the literature

rely on diffuse priors. We demonstrate this approach with a Bayesian Bernoulli-

Poisson hurdle model for our hypothetical sleep-disturbance study. To represent the

absence of prior information regarding this problem, the typical prior structure places

independent diffuse Normal(0, σ2) priors on both sets of regression coefficients. This

is diagrammed in Figure 2.1.

Figure 2.1: Diffuse Bayesian Model Structure.

8



For this example we take σ2 = 252, which is very large relative to the true

values of the regression parameters from which we are generating data, as described in

Appendix A. We address more realistic ways to specify diffuse priors when discussing

Bayesian sample size simulations in Chapter Four.

2.2.1 Example

Consider an example set of outcomes from the hypothetical sleep disorder study.

We use the method described in Appendix A to generate data for a sample of size

n = 100. Of the n = 100 responses, 40 positive responses made up the effective

sample size for estimation on the Poisson part of the model. Histograms of the

subjects’ weights and outcomes are shown in Figure 2.2.

Figure 2.2: Histogram of Generated Weights (left) and Study Outcomes (right) for a Sample
of Size n = 100.

The diffuse Bayesian Bernoulli-Poisson hurdle model can be fit to these out-

comes using Markov chain Monte Carlo (MCMC) methods implemented, for example,

in OpenBUGS. To do so, we follow the method used by Congdon (2005) for a sample

y = (y1, ..., yn):

(1) Arrange the outcomes so that zero counts (i = 1, ..., n1) are at the beginning

and positive counts (i = n1 + 1, ..., n) are at the end.
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(2) For i = 1, ..., n the logistic regression models the probability of crossing the

hurdle (yi > 0) or not (yi = 0).

(3) For i = n1 + 1, ..., n the truncated Poisson regression models the number of

events occurred, given a hurdle cross.

Note that OpenBUGS was chosen over WinBUGS to implement this model because

of its ability to easily handle truncated distributions. Alternatively, the model can

also be fit using the zeros trick in WinBUGS/OpenBUGS to define the non-standard

likelihood, as done by Neelon et al. (2010), with comparable results.

The resulting posterior densities for β = (β0, β1) and γ = (γ0, γ1) are shown

in Figure 2.3. Table 2.1 shows the posterior means and 95% credible sets for each

of the parameters, as well as for θ and λ at certain weights. For reference Table

2.1 also includes the maximum likelihood estimates (MLEs) of these parameters and

their true values. The MLEs were calculated using the previously discussed hurdle

function (Zeileis et al., 2008) in the pscl package (Jackman, 2014).

Figure 2.3: Posterior Density Plots for the Diffuse Model.
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Table 2.1: Posterior Means and 95% Credible Sets for the Diffuse Model

Parameter Truth MLE Mean 2.5% 97.5% Width
β0 -4.18 -1.40 -1.43 -4.31 1.43 5.75
β1 0.28 0.07 0.08 -0.14 0.29 0.42

θ|xi = 200 0.20 0.34 0.34 0.18 0.54 0.36
θ|xi = 300 0.50 0.43 0.43 0.30 0.56 0.25
θ|xi = 400 0.80 0.52 0.52 0.20 0.82 0.62

γ0 0.54 0.47 0.47 -0.20 1.13 1.33
γ1 0.13 0.14 0.14 0.09 0.19 0.09

λ|xi = 200 6.56 6.55 6.57 5.28 8.09 2.82
λ|xi = 300 12.84 13.26 13.24 11.92 14.62 2.70
λ|xi = 400 25.15 26.84 27.07 19.99 35.77 15.78

Note that the posterior means line up well with their frequentist counterpart

MLEs. Also, the true values of the parameters are all contained in their respective

95% credible sets. Interval widths are difficult to interpret on the slope and intercept

level, but the select values of θ and λ appear to all have reasonable interval widths,

especially given this diffuse prior structure, with the exception of λ at 400 lbs. This

is due in part to the inverse-link transformation and, as we shall see in the following

simulation, the relatively small number of observations for the heaviest weights in

this example.

2.2.2 Operating Characteristics

In order for Bayesian methods to be accepted as an alternative to their frequen-

tist counterparts, it is often necessary to assess their operating characteristics. This

is, for example, recommended in the U.S. Food and Drug Administration’s guidance

on the use of Bayesian methods in medical device trials (FDA, 2010). To do so, we

consider a small simulation study with 100 replications for this model. Following the

data generation process described in Appendix A, we generate 100 sets of subjects’

weights and corresponding outcomes for sample sizes n = 50 and 100. For each data

set, we fit the diffuse model using the same specifications as described in Section 2.2.

The posterior means and 95% credible sets for β = (β0, β1), γ = (γ0, γ1), as well as

some select values of θ and λ at various weights, were recorded for each iteration of

the simulation.
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Marginal results for these simulations are summarized in Tables 2.2 and 2.3,

which show the true value of each parameter, the median of the 100 posterior means

and 95% credible intervals, the median width of the intervals, and their coverage. For

sample size n = 50, the lowest coverage is 0.90, and for sample size n = 100, the

lowest coverage is 0.92. But, in both cases, the majority of the coverages are around

0.95 or higher.

Table 2.2: Simulation Results for the Diffuse Model with n = 50

Parameter True 2.5% Median 97.5% Width Coverage
β0 -4.18 -8.72 -4.24 -0.12 8.92 0.95
β0 0.28 -0.02 0.28 0.60 0.65 0.94

θ|xi = 200 0.20 0.05 0.21 0.45 0.40 0.92
θ|xi = 300 0.50 0.34 0.51 0.69 0.34 0.90
θ|xi = 400 0.80 0.35 0.76 0.97 0.61 0.94

γ0 0.54 -0.38 0.53 1.47 1.87 0.98
γ1 0.13 0.07 0.13 0.19 0.13 0.97

λ|xi = 200 6.56 4.66 6.57 9.06 4.19 0.96
λ|xi = 300 12.84 11.16 12.68 14.32 3.20 0.98
λ|xi = 400 25.15 17.38 25.10 34.75 17.52 0.97

Table 2.3: Simulation Results for the Diffuse Model with n = 100

Parameter True 2.5% Median 97.5% Width Coverage
β0 -4.18 -7.73 -4.56 -1.54 6.11 0.94
β1 0.28 0.10 0.30 0.53 0.44 0.95

θ|xi = 200 0.20 0.08 0.20 0.37 0.28 0.92
θ|xi = 300 0.50 0.38 0.50 0.63 0.25 0.96
θ|xi = 400 0.80 0.56 0.82 0.96 0.39 0.97

γ0 0.54 -0.07 0.58 1.23 1.30 0.96
γ1 0.13 0.09 0.13 0.18 0.09 0.96

λ|xi = 200 6.56 5.33 6.75 8.38 3.01 0.97
λ|xi = 300 12.84 11.83 12.97 14.15 2.32 0.97
λ|xi = 400 25.15 19.43 25.24 31.72 11.99 0.96

These results are also shown as box plots in Figures 2.4 and 2.5. In each box

plot, the horizontal line represents the true value of the specified parameters. The

center point in each box plot represents the median of the 100 posterior means. The

upper and lower limits represent the average of the upper and lower bounds of the

100 posterior 95% credible sets. The grey bars represent ±1 simulation standard
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deviation above and below each respective point on the box plot, which occasionally

overlap, resulting in a darker shade of grey.

Figure 2.4: Simulation Results for β = (β0, β1) and γ = (γ0, γ1) for the Diffuse Model with
n = 50 (left) and n = 100 (right).

Figure 2.5: Simulation Results for Select Values of θ and λ for the Diffuse Model with
n = 50 (left) and n = 100 (right).
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The results show that on average the posterior means for all the parameters

tend towards the truth with very little bias. In each plot, the left box plot shows the

results for n = 50 and the right box plot shows the results for n = 100. There is a

clear difference in average interval widths as sample size increases. Particularly, the

intervals for θ and λ at extreme weight values (i.e. 400 lbs.) appear to get slightly

more reasonable with a sample size increase, a trend that will likely continue to hold

for any larger sample sizes considered.

2.3 Informative Prior Structure

Methods of prior construction for Bayesian hurdle models have not been covered

in detail and are worth exploring. Recall that the Bernoulli-Poisson hurdle model we

consider here consists of a logistic regression model for the hurdle part and a truncated

Poisson regression for the count part. There are a number of prior elicitation methods

for generalized linear models widely discussed in the literature that can potentially

be adapted for this model of interest, including power priors, commensurate priors,

informative g-priors, and conditional means priors. In this section, we focus on the

latter. We discuss how prior information can be elicited from experts and incorporated

into a prior structure for the Bernoulli-Poisson hurdle model using conditional means

priors.

2.3.1 Conditional Means Priors

Bedrick et al. (1996) developed the idea of conditional means priors, also known

as BCJ priors, which are commonly used on regression parameters in generalized linear

models. It is difficult to elicit prior information on regression coefficients because it

is often hard to interpret slopes and intercepts, making it challenging to elicit the

appropriate information from experts. The conditional means prior approach solves

this problem by instead asking experts for average response values at various covariate

configurations, which is much more operational. This information is then used to

induce priors on the regression coefficients.

14



Consider the general form of a generalized linear model. Let yi have a density

f(yi|μi,φ), with μi = h−1(x′
iβ), where xi is a p × 1 vector of covariates and β is a

p × 1 vector of regression coefficients. Here, h−1 represents the inverse link function

and φ represents any nuisance parameters. The goal is to induce a prior distribution

on β, based on priors elicited on μi, at various configurations of xi.

Suppose we have K covariate configurations, as specified by a K × p design

matrix

X̃ =

⎡
⎢⎢⎢⎢⎣

x̃1

...

x̃K

⎤
⎥⎥⎥⎥⎦ ,

where the rows represent K distinct values of xi. Note that in order for X̃ to be

nonsingular, K must be equal to p. For each covariate configuration, x̃i, a prior is

elicited for the corresponding mean response value, μ̃i = h−1(x̃iβ). This informative

prior is elicited from an expert and denoted as Fi. Note that all the Fi’s are assumed to

be independent, meaning the covariate configurations x̃i are assumed to be sufficiently

distinct from each other. The prior structure for the conditional means approach can

thus be derived as follows. Observe that

μ̃ =

⎡
⎢⎢⎢⎢⎣

μ̃1

...

μ̃K

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

h−1(x̃′
1β)

...

h−1(x̃′
Kβ)

⎤
⎥⎥⎥⎥⎦ ≡ h−1(X̃β).

Since X̃ was designed to be invertible, β = X̃−1h(μ̃). Thus, the induced priors on β

are defined as ⎡
⎢⎢⎢⎢⎣

β1

...

βK

⎤
⎥⎥⎥⎥⎦ ∼ X̃−1h

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

F1

...

FK

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ ,

which generally has no closed form.

2.3.2 Conditional Means Priors for the Bernoulli-Poisson Hurdle Model

For the Bernoulli-Poisson hurdle model, we can use conditional means priors to

incorporate expert opinion in both parts of the model, leading to improved inference.
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We describe this process in terms of the sleep disorder scenario introduced in Section

2.1.4.

First, consider eliciting a conditional means prior for the logistic regression used

to model whether or not a subject suffers from a sleep disorder,

logit(θi) = x′
iβ

= β0 + β1xi,

where xi represents the single covariate, weight. Since there are two regression co-

efficients, the design matrix X̃ will have two covariate configurations. Bedrick et al.

(1996) explain in detail how these configurations can be chosen. For our purposes,

we choose the two weights to be the endpoints of the weight range, 200 and 400 lbs.

Here we are assuming that this weight difference renders corresponding responses

sufficiently distinct.

We use the mode-percentile method of elicitation to translate information re-

layed from an expert into informative prior distributions on θ at 200 and 400 lbs. At

both weights, the expert is asked “What, do you think, is the probability of suffering

from a sleep disorder for a xi lb. man?” In response, they are prompted to relay a

most likely probability (mode) along with an upper or lower bound (percentile) to

represent uncertainty. Numerical methods are then used to translate this information

into parameters for an appropriate prior distribution at each weight. Note that other

methods of elicitation can be used as well.

Suppose Table 2.4 shows the resulting information collected from the expert.

That is, the expert believes that for a 200 lb. subject, the probability of suffering from

a sleep disorder is most likely θ = 0.20 and is not likely to be more than θ = 0.30. For

a 400 lb. subject, he believes the probability is most likely θ = 0.80 and is not likely

to be less than θ = 0.70. The upper and lower bounds are interpreted as 95th and

5th percentiles respectively. Note that the choice of eliciting an upper or lower bound

is determined at the researcher’s discretion based on how to best fit an appropriate

distribution.
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Table 2.4: Expert Elicited Information on θ

Weight Mode Percentile
200 0.20 0.30 (upper)
400 0.80 0.70 (lower)

This mode-percentile information can be translated into beta priors. This can

be done, for example, with the elicitor function in the glmcmp package (Kahle

et al., 2014) in R. The resulting priors at xi = 200 and 400 are

θ|xi=200 = θ200 ≡ logit−1(β0 + β1(200)) ∼ Beta(12.82, 48.28)

and

θ|xi=400 = θ400 ≡ logit−1(β0 + β1(400)) ∼ Beta(48.28, 12.82).

Density plots for these priors are shown in Figure 2.6. In practice, these priors would

be shown to the expert to verify whether or not they properly reflect their beliefs and

appropriate changes would be made until acceptance. For our purposes, we assume

that the expert was consulted and agreed with the appropriateness of these prior

choices.

Figure 2.6: Informative Beta Priors for θ at 200 and 400 lbs.

The conditional means priors for β0 and β1 are the resulting induced priors⎡
⎢⎣ β0

β1

⎤
⎥⎦ ∼ X̃−1logit

⎡
⎢⎣ Beta(12.82, 48.28)

Beta(48.28, 12.82)

⎤
⎥⎦ ,
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where

X̃ =

⎡
⎢⎣ 1 200

1 400

⎤
⎥⎦ .

These priors have no closed form but can easily be simulated and the resulting den-

sities are shown in Figure 2.7.

Figure 2.7: Simulated Density Plots for the Induced Priors on β0 and β1.

Following this, an analogous process can be used to elicit conditional means

priors for the parameters of the Poisson regression used to model the number of

unwanted sleep interruptions, given the subject suffers from a sleep disorder,

log(λi) = x′
iγ

= γ0 + γ1xi,

where xi again represents the single covariate, weight. The same two covariate con-

figurations of xi = 200 and 400 lbs. are used, but this time the expert is asked, “For a

xi lb. subject suffering from a sleep disorder, how many unwanted sleep interruptions

do you expect him to experience in a single night?”

Using mode-percentile elicitation as before, Table 2.5 shows the information

collected from the expert. The expert believes a 200 lb. subject most likely has λ = 6

interruptions with a 95th percentile (upper bound) of λ = 8 and a 400 lb. subject

most likely has λ = 25 interruptions with a 95th percentile of λ = 33 interruptions.
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Table 2.5: Expert Elicited Information on λ

Weight Mode Percentile
200 6 8 (upper)
400 25 33 (lower)

We use the elicitor function in glmcmp (Kahle et al., 2014) to fit the fol-

lowing gamma priors for xi = 200 and 400,

λ|xi=200 = λ200 ≡ exp(γ0 + γ1(200)) ∼ Gamma(34.65, 0.18)

λ|xi=400 = λ400 ≡ exp(γ0 + γ1(400)) ∼ Gamma(37.11, 0.69).

Density plots for these priors are shown in Figure 2.8. Again, we assume that the

expert agreed with these chosen priors. The conditional means priors for γ0 and γ1

are the resulting induced priors⎡
⎢⎣ γ0

γ1

⎤
⎥⎦ ∼ X̃−1 log

⎡
⎢⎣ Gamma(34.65, 0.18)

Gamma(37.11, 0.69)

⎤
⎥⎦ ,

which again have no closed form but simulated density plots are shown in Figure 2.9.

Figure 2.8: Informative Gamma Priors for λ at 200 and 400 lbs.
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Figure 2.9: Simulated Density Plots for the Induced Priors on γ0 and γ1.

The Bayesian Bernoulli-Poisson hurdle model with these conditional means pri-

ors is diagrammed in Figure 2.10. Note that, as the diagram suggests, the information

elicited on the hurdle part of the model is considered completely separate from the

information elicited on the count part of the model. This can also be seen in the joint

prior contours for all pairings of β = (β0, β1) and γ = (γ0, γ1) shown in Figure 2.11.

The contours for (β0, β1) and (γ0, γ1) reflect the covariance that is known to exist

between them. The lack of a connection between elicitation for the hurdle and count

parts of the models is further reflected in the circular contours for (β0, γ0), (β0, γ1),

(β1, γ0), and (β1, γ1).

Figure 2.10: Bayesian Model with Conditional Means Priors.
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Figure 2.11: Simulated Joint Prior Contours for the Regression Parameters.

2.3.3 Example

Consider the same set of generated sleep study outcomes shown in Figure 2.2.

Given the described expert elicited information, we fit the Bayesian Bernoulli-Poisson

hurdle model with independent conditional means priors to this data using Markov

chain Monte Carlo (MCMC) methods in OpenBUGS following the method specified

by Congdon (2005). We ran a single chain with 16,000 iterations, including a burn-in

of 1,000 iterations, with initial values set at the elicited modal values: θ200 = 0.2,

θ400 = 0.8, λ200 = 6, and λ400 = 25. To reduce autocorrelation issues, we set thinning

at 10. As before, we investigated convergence issues for this model using multiple

chains and a variety of starting values. We found little difference in the posteriors

and the Gelman-Rubin plots all converged to one.

The resulting posterior densities for β = (β0, β1) and γ = (γ0, γ1) are shown

by the solid curves in Figure 2.12. For reference, the dashed curves show the pos-

terior densities under the previously fit diffuse Bayesian model. Additionally, Table

2.6 shows the posterior means and 95% credible sets for each of the parameters for
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this informative model. Note the improved agreement between posterior means and

true parameter values compared to the diffuse model, as expected with the use of

informative priors. Furthermore, the the true values of the parameters are all still

contained in their respective 95% credible sets.

Figure 2.12: Posterior Density Plots for the Informative Model (solid) and the Diffuse Model
(dashed).

Table 2.6: Posterior Means and 95% Credible Sets for the Informative Model

Parameter Truth Mean 2.5% 97.5% Width
β0 -4.18 -3.65 -4.80 -2.54 2.25
β1 0.28 0.24 0.17 0.32 0.15

θ|xi = 200 0.20 0.23 0.16 0.31 0.15
θ|xi = 300 0.50 0.50 0.42 0.57 0.15
θ|xi = 400 0.80 0.76 0.66 0.85 0.19

γ0 0.54 0.47 0.00 0.94 0.94
γ1 0.13 0.14 0.11 0.17 0.06

λ|xi = 200 6.56 6.54 5.54 7.65 2.10
λ|xi = 300 12.84 13.15 12.00 14.35 2.35
λ|xi = 400 25.15 26.61 21.50 32.35 10.85
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As another illustration of using twin CMP structures for our hurdle model,

suppose we have substantially different precision in elicitation for the two components.

Recall that the independent conditional means prior is not structured to account for

any relationship between the hurdle and count parts of the model. Thus, having more

or less information with respect to one part of the model should have no effect on the

other part. To illustrate this concept, suppose that, in contrast to what was previously

described, researchers are unable to get such precise information on the hurdle part

of the model. That is, for whatever reason, we do not know as much regarding

the probability of suffering from a sleep disorder for these subjects compared to our

previous illustration in Section 2.3.2. Specifically, the elicited percentile information

is widened to account for increased uncertainty. The expert still believes that, for a

200 lb. subject, θ is expected to be 0.2, but sets the upper bound (or 95th percentile)

at θ = 0.4. Similarly, he or she still believes that, for a 400 lb. subject, θ is expected

to be 0.8, but sets the lower bound (or 5th percentile) at θ = 0.6. Again, using

glmcmp in R for this mode-percentile elicitation results in the following beta priors,

θ|xi=200 = θ200 ≡ logit−1(β0 + β1(200)) ∼ Beta(4.46, 14.84)

and

θ|xi=400 = θ400 ≡ logit−1(β0 + β1(400)) ∼ Beta(14.84, 4.46),

which are then transformed to induced priors on β = (β0, β1).

With this slight modification in prior information, the model is once again fit to

the given data set using Markov chain Monte Carlo (MCMC) methods in OpenBUGS

under the same specifications. The resulting posterior densities for β = (β0, β1) and

γ = (γ0, γ1) are shown by the solid curves in Figure 2.13. For reference, the posteriors

from the previously fit informative model are shown by the dashed curves. Table 2.7

shows the posterior means and 95% credible sets for each of the parameters under

the modified informative model.

For the parameters on the hurdle part of the model, the true values are still

contained in their respective 95% credible sets. However, the intervals are wider,
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reflecting the fact that our information is less precise than before. On the other

hand, the posteriors means and 95% credible sets for the parameters on the Poisson

count part of the model have not changed significantly. Any slight differences can be

attributed to Monte Carlo error.

Figure 2.13: Posterior Density Plots for the Modified Informative Model (solid) and the
Previous Informative Model (dashed).

Table 2.7: Posterior Means and 95% Credible Sets for the Informative Model

Parameter Truth Mean 2.5% 97.5% Width
β0 -4.18 -2.99 -4.65 -1.40 3.25
β1 0.28 0.19 0.08 0.31 0.23

θ|xi = 200 0.20 0.26 0.16 0.38 0.22
θ|xi = 300 0.50 0.48 0.39 0.57 0.18
θ|xi = 400 0.80 0.70 0.53 0.85 0.31

γ0 0.54 0.48 0.00 0.95 0.95
γ1 0.13 0.14 0.11 0.17 0.07

λ|xi = 200 6.56 6.55 5.52 7.66 2.13
λ|xi = 300 12.84 13.15 11.99 14.34 2.35
λ|xi = 400 25.15 26.59 21.40 32.37 10.97
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2.4 Summary

In this chapter we introduced the Bernoulli-Poisson hurdle model along with a

hypothetical sleep disorder application. The Bayesian approach to this model with

diffuse priors has been well covered in the literature. For completeness, we considered

a diffuse model with respect to data generated to reflect the sleep disorder scenario.

Operating characteristics showed that the performance of the Bayesian model with

an absence of prior information was comparable to frequentist maximum likelihood

methods.

We then proposed an informative prior structure for the Bernoulli-Poisson hur-

dle model, with both parts dependent on covariates, that consisted of conditional

means priors placed separately, or independently, on both parts. We discussed how

information could be elicited from experts in the context of the sleep disorder exam-

ple. This informative Bayesian model was fit to an example generated data set, and

the resulting posteriors reflected the influence of the added information. Then we

relaxed the specificity of the information provided on the hurdle part of the model

and re-fit the model to the same data. Posterior results showed wider credible sets

for parameters on the hurdle part and no changes on the count part, illustrating and

emphasizing the independence of the approach.

When the two parts of the Bernoulli-Poison hurdle model share the same covari-

ates, as in our sleep disorder application, a relationship may exist between parameters

for which prior elicitation is needed. In this chapter, the proposed independent condi-

tional means prior approach essentially ignores this relationship. This is an important

aspect of the elicited information and we examine methods of incorporating this de-

pendency directly into the prior structure in Chapter 3.
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CHAPTER THREE

A Coupled Prior Structure for Bayesian Hurdle Models

3.1 Motivation: Independent vs. Coupled Approaches

In Chapter Two, we introduced a Bayesian Bernoulli-Poisson hurdle model

consisting of a logistic regression in the hurdle part and a Poisson regression in the

count part. We proposed an informative prior structure consisting of two conditional

means priors independently constructed for the hurdle and count parts of the model.

We described how information could be elicited from experts for this purpose, using

a hypothetical sleep disorder study for context. In that elicitation process, the expert

first relays their beliefs regarding the probability that a subject suffers from a sleep

disorder for the hurdle part of the model. The same expert then relays their beliefs

regarding the number of sleep disturbances expected, given the subject suffers from

a sleep disorder, for the count part of the model.

Constructing hurdle and count prior components independently ignores any

available joint knowledge. Plausibly, higher sleep disturbance probabilities may be

associated with higher sleep disturbance rates. In this chapter, we propose a coupled

conditional means prior structure that better reflects how the expert’s opinions on the

two parts of the Bernoulli-Poisson hurdle model are entangled in the case of shared

covariates. Continuing with the hypothetical sleep disorder example, we explore the

potential gains, as well as the shortcomings, of such an approach.

3.2 Relationship Between the Hurdle and the Count

In the special case where the covariates in both parts of the hurdle model

coincide, Ridout et al. (1998) state that the general hurdle model assumption that

the linear predictor for θi is unrelated to the linear predictor for λi is restrictive

(and unrealistic), proposing a model analogous to the ZIP (τ) model (Lambert, 1992)
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where both parts of the model are related by a scalar value τ . Applied to the Bernoulli-

Poisson hurdle model (2.5) that we have been discussing, it would follow that

logit(θi) = τx′
iβ

and

log(λi) = x′
iβ.

Suppose we generalize this further and propose instead that the relationship between

θi and λi can be modeled by some coupling function, f(θi) = λi, such that

logit(θi) = x′
iβ

and

log(λi) = log ◦f ◦ logit−1(x′
iβ), (3.1)

which acts as a reparameterization of the original log(λi) = z′iγ.

To fit this model, we must specify the coupling function, f , using expert opinion.

The latter is unlikely to be in explicit functional form. We must elicit information

with which to construct a function which represents the expert’s beliefs. To this end,

we suggest an approach that begins with the use of information from the independent

CMP elicitation we have already described. To illustrate how this might proceed, we

return to the hypothetical sleep disturbance study, wherein the hurdle and count

parts of the model share a covariate, the subject’s weight.

From the independent elicitation of conditional means priors on both parts

of the model, we have prior information on the probability of suffering from a sleep

disorder and the expected number of sleep disturbances suffered by an afflicted subject

at two specific weights, 200 and 400 lbs. This information is summarized graphically

in Figure 3.1. The points represent the modal values elicited from the expert. The

vertical line running through each of the points represent a central 90% interval

(5th percentile lower bound, 95th percentile upper bound) for the parameter at that

weight. Further, the solid portion of the vertical line represents the elicited upper or

lower bound, and the dashed portion represents the calculated upper or lower bound,
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based on the corresponding elicited beta or gamma prior. The hinges are at the

endpoints of these central 90% intervals, representing bounds of uncertainty.

Figure 3.1: Prior Information on (a) the Probability of Suffering from a Sleep Disorder and
(b) the Number of Sleep Disturbances Suffered by an Afflicted Subject.

Note that, in Figure 3.1, θi and λi are both plotted against the same weights.

Suppose we collapse the weight covariate and instead plot θi versus λi directly. This

allows us to better picture the relationship between the two, as shown in Figure 3.2.

The box at the lower left corner summarizes information given for subjects weighing

200 lbs. and the box at the upper right corner for subjects weighing 400 lbs. The

points within the boxes represent the pair of modal values (θi, λi) at each weight

and the length and width of the boxes depict the now two-dimensional uncertainty,

with length being the uncertainty with respect to λi and width the uncertainty with

respect to θi.

To specify a coupling function, we need to determine the functional relation-

ship between θ and λ for covariate values within the extremes. Thus, suppose that, in

addition to the information at 200 and 400 lbs., we ask the expert to provide modal

values for θi and λi at 200, 300, and 350 lbs. This additional information is shown by

the red points in Figure 3.3, with the solid lines connecting them representing interpo-

lated modes for the weights in between. Now, collapsing the shared weight covariate
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gives us the information shown in Figure 3.4, where the functional relationship f is

much clearer than before.
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Figure 3.2: Combined Prior Information on θi and λi.

Note that it is, of course, possible to elicit full prior distributions for these

additional weights by asking the expert for an appropriate upper or lower bound

to correspond with each modal value, resulting in boxes around each of the three

points representing 250, 300, and 400 lbs. in Figure 3.4. We explored doing this but

discovered that the additional information, and incurring the costs of gathering it,

was not necessary in formulating this prior. The reasons for this become clearer in

the next section when we discuss our method for calibrating the elicitation.

The choice of the coupling function f is important. There are a number of

functions that could model the relationship shown in Figure 3.4: linear, parabolic,

cubic, exponential, etc., with some more appropriate than others. Fit is one concern;

however, more importantly, we have found that the most practical coupling function

is one that is ‘separable’ in terms of its parameters after the link function in the count

part of the model is applied, as in (3.1). Further, we want it to have the same number

of parameters as the generalized linear model that it is replacing.
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Figure 3.3: Prior Information on (a) the Probability of Suffering from a sleep disorder and
(b) the number of Sleep Disturbances Suffered by an Afflicted Subject.
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Figure 3.4: Combined Prior Information on θi and λi.

To illustrate, consider a coupling function of the form

λi = f(θi) = u exp(vlogit(θi)). (3.2)

The red line in Figure 3.4 shows the least squares fit of this function to the modal

values, which, calculated in R, is u = 12.72 and v = 0.48.

Note that the chosen coupling function has two parameters, u and v, corre-

sponding to the two parameters, γ0 and γ1 in the original Poisson regression model.
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Observe that when the log-link is applied,

log(λi) = γ0 + γ1xi

= log(u) + vlogit(θi)

= log(u) + v(β0 + β1xi)

= [log(u) + vβ0] + [vβ1]xi

= γ0 + γ1xi.

The resulting equation is ‘separable’ in that the terms can be regrouped in a way that

essentially reparameterizes γ0 and γ1 in terms of u and v, where

γ0 = log(u) + vβ0 (3.3)

and

γ1 = vβ1. (3.4)

This proves to be useful for comparison and interpretation later on.

The convenient separability was made possible due to the choice for f to be

exponential, which is the inverse of the log-link, as a function of the logit transform

of θi, which we know to be linear. Then, by choosing a coupling function with the

same number of parameters as the original regression, it was easy to reparameterize

the original parameters (i.e. γ0 and γ1) as functions of the new parameters introduced

in the coupling function (i.e. u and v).

This idea is generalizable and analogous choices of coupling functions should be

possible for any chosen pair of generalized linear models in a given hurdle model with

shared covariates. For example, suppose g is the link function for the hurdle part of

the model, such that

g(θi) = x′
iβ,

and h is the link function of the count part of the model, such that

h(λi) = x′
iγ.
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Recall we want to choose the coupling function f(θi) = λi in order for

h(λi) = h ◦ f(θi) = h ◦ f ◦ g−1(x′
iβ)

to reparameterize h(λi) = x′
iγ. Thus, generally, we should let f(θi) = h−1 ◦ g(θi),

with the appropriate number of new parameters incorporated within it.

3.3 Coupled Prior Structures

We want to incorporate the elicited information regarding the relationship be-

tween θi and λi into a coupled prior structure for our Bernoulli-Poisson hurdle model.

Given the elicited coupling function f , we propose two approaches to such a prior.

The “fixed approach” fixes the parameters of the coupling function at values be-

lieved to correctly characterize the relationship. The “variable approach” relaxes this

assumption, instead allowing these values to vary, giving the prior more flexibility,

albeit at a price. Both approaches are rooted in conditional means priors and have

advantages and disadvantages compared to the independent approach introduced in

Chapter Two.

3.3.1 Fixed Approach

Consider the prior structure diagrammed in Figure 3.5. Suppose we fix the

parameters of the coupling function at their least squares estimates, u = 12.72 and

v = 0.48. The resulting prior is what we refer to as the “fixed coupled prior structure.”

Note that unlike in the independent approach of Section 2.3.2, the two parts of the

model are now coupled using information on θi, as shown by the dashed line in the

diagram.

A problem with the coupled approach as described so far is that, although we

are directly using the expert elicited information on the hurdle part of the model via

the conditional means prior on β = (β0, β1), the expert elicited information on the

count part is not being used. Rather, the information on the hurdle part is being

transformed into information on the count part via the coupling function, with u and

v fixed. Clearly, we do not want to ignore elicited information about the count part.
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Figure 3.5: Bayesian Model With Coupled CMP.

Garthwaite et al. (2005) suggest that the last stage of prior elicitation should be

to assess the accuracy of the elicitation. One way to do this for the fixed coupled prior

is to determine whether or not the induced priors on λi are reasonable. The known

information on the count part can then be used at this step as a basis of comparison.

We determine the induced prior on λi at select weights as follows:

(1) Simulate values of β = (β0, β1) from its conditional means prior.

(2) Use Equations (3.3) and (3.4) to transform the β = (β0, β1) values into cor-

responding values of γ = (γ0, γ1).

(3) The induced prior for λi at weight xi is calculated as exp(γ0 + γ1xi).

Figure 3.6 plots information for λi at various weights. The information plotted

in black represents what we previously elicited from the expert for the count side

of the model. Recall that there are bounds at weights 200 and 400 lbs. from the

independent conditional means prior elicitation. However, we did not elicit bounds

for the three additional modal values in between. The red dots represent the 5th and

95th percentiles of the induced prior on λi at each weight via the fixed coupled prior.

Notice that the red dots do a reasonable job of reflecting the previously elicited

information at 200 and 400 lbs. We did not elicit intervals for the three additional

weights between 200 and 400 lbs; the reason being that that information has no direct

use in the elicitation process. However, at this point, we can show the expert these

induced intervals to determine if they believe them to be reasonable. Ideally, this
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should not be a problem, given a reasonable coupling function. For our purposes, we

assume that the expert relays back that these intervals are indeed reasonable and we

conclude the elicitation was adequate. If this were not the case, it may be necessary

to consider other possibilities for the coupling relationship, f , which would need to

be explored as future work.

Figure 3.6: Induced 90% Intervals for λi at Specific Weights.

The coupling function f allows the priors on γ = (γ0, γ1) to be dependent on

the priors on β = (β0, β1) via the reparameterization given by equations (3.3) and

(3.4). In contrast to the independent approach of Section 2.3.2, the values are now

naturally “paired up” because each θi has a corresponding λi, as determined by the

coupling function defined in equation (3.2). Simulated density plots for these regres-

sion parameters are shown in Figure 3.7. For comparison, the simulated densities for

the independent approach are superimposed and represented by the dashed curves.

Note that, due to how we structured the coupled prior, the simulated densities for

β = (β0, β1) are exactly the same as in the independent approach. However, for

γ = (γ0, γ1), they are slightly shifted reflecting the effect of the coupling function.
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Figure 3.7: Simulated Density Plots for the Induced Priors on β0, β1, γ0, and γ1 under the
Fixed Coupled Model (solid) and the Independent Model (dashed).

3.3.1.1 Example

We revisit the generated sleep disorder study outcomes shown in Figure 2.2.

The Bayesian model is fit to this data under the fixed coupled prior structure with u

and v fixed at the elicited least squares values, u = 12.72 and v = 0.48. Initial values

were set at θ200 = 0.2 and θ400 = 0.8. To reduce autocorrelation issues, thinning

was set at 10. As before, convergence issues were investigated using multiple chains

and a variety of starting values resulting in little difference in the posteriors and

Gelman-Rubin plots that all converged to one.

The resulting posterior densities for β = (β0, β1) and γ = (γ0, γ1) are shown by

the solid curves in Figure 3.8. The corresponding posteriors under the independent

conditional means priors model are shown by the dashed curves for reference. Table

3.1 summarizes the posterior means and 95% credible sets for each of the parameters,

as well as for θ and λ at certain weights. For this data set, it appears that the fixed

coupled model results in a slight decrease in posterior variability over the independent
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model for each of the parameters, as seen graphically in Figure 3.8 and by comparing

interval widths in Table 3.1. Further, the 95% credible sets still contain the true

values. However, without extensive simulations we cannot be sure if this behavior

always holds true or if it is just an artifact of the particular data set.

Figure 3.8: Posterior Density Plots for the Fixed Coupled Model (solid) and the Independent
Model (dashed).

Table 3.1: Posterior Means and 95% Credible Sets for the Fixed Coupled Model

Parameter Truth Mean 2.5% 97.5% Width
β0 -4.18 -3.88 -4.77 -3.02 1.75
β1 0.28 0.26 0.20 0.32 0.12

θ|xi = 200 0.20 0.22 0.17 0.27 0.10
θ|xi = 300 0.50 0.51 0.47 0.55 0.09
θ|xi = 400 0.80 0.79 0.72 0.85 0.13

γ0 0.54 0.68 0.25 1.09 0.84
γ1 0.13 0.13 0.10 0.16 0.06

λ|xi = 200 6.56 6.94 6.00 7.97 1.97
λ|xi = 300 12.84 12.97 11.92 14.08 2.16
λ|xi = 400 25.15 24.37 20.01 29.48 9.47
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One interesting observation is that the posterior intervals for the parameters on

the hurdle part are narrower for the fixed coupled model, compared to the independent

model, even though the priors appear to be the same in both approaches. The reason

for this is that, when u and v are fixed, both parts of the model become dependent

on β = (β0, β1), as γ = (γ0, γ1) is simply a transformation of β = (β0, β1). Thus,

the positive counts are essentially used twice for estimation of β0 and β1: they are

interpreted as hurdle crosses on the hurdle part and positive counts on the count part.

This sort of double counting results in what appears to be improved estimation.

When we chose to fix u and v at their least squares estimates, we depicted a

situation in which a highly informed expert provided information that conveniently

led us to infer the exact coupling function from which the data was generated, as

described in Appendix A. Consider instead that a somewhat less informed expert

leads us to infer that the values should be fixed at u = 10.27 and v = 0.75. Note that

these values were not chosen completely at random. Instead, this pair of (u, v) values

were randomly selected from one of the 5,000 sampled (u, v) pairs that result in the

curves plotted in Figure 3.11, which will be discussed in the following section.

We re-fit the Bayesian model with the fixed coupled prior structure, under

the previous specifications, assuming that u and v are fixed at these newly specified

values. The resulting posterior densities for β = (β0, β1) and γ = (γ0, γ1) are shown

by the solid curves in Figure 3.9. This time the dashed curves in the figure show the

corresponding posteriors under the previously fit fixed coupled model for reference.

Posterior means and 95% credible sets are summarized in Table 3.2.

The results from this modified fixed coupled model show similarly narrow in-

tervals as before. However, for this data set, the posterior means of the parameters

do not approximate their true values as well. Particularly, there are certain param-

eters for which the true value is not contained within its 95% credible set. Again,

extensive simulations must be done before we can determine if this is always the case.

However, the varied results from this one example suggests that the performance of
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the Bayesian model under the fixed coupled prior is not surprisingly affected by the

choices of u and v.

Figure 3.9: Posterior Density Plots for the Fixed Coupled Model with u = 10.27 and
v = 0.75 (solid) Compared to When u = 12.72 and v = 0.48 (dashed).

Table 3.2: Posterior Means and 95% Credible Sets for the Fixed Coupled Model with
u = 10.27 and v = 0.75

Parameter Truth Mean 2.5% 97.5% Width
β0 -4.18 -2.86 -3.55 -2.17 1.39
β1 0.28 0.21 0.16 0.26 0.10

θ|xi = 200 0.20 0.32 0.27 0.37 0.10
θ|xi = 300 0.50 0.57 0.54 0.60 0.06
θ|xi = 400 0.80 0.79 0.74 0.84 0.10

γ0 0.54 0.18 -0.34 0.70 1.04
γ1 0.13 0.16 0.12 0.19 0.07

λ|xi = 200 6.56 5.84 4.89 6.90 2.01
λ|xi = 300 12.84 12.82 11.69 14.04 2.35
λ|xi = 400 25.15 28.39 22.42 35.60 13.18
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3.3.2 Variable Approach

The disadvantages to the fixed coupled prior include its dependency on the

selection of an exact coupling function as well as its inability to directly make use of

the existing expert opinion regarding the count part of the model. One way to address

these concerns is to add an additional dimension to the proposed Bayesian model,

with informative priors placed on u and v in order to better reflect the uncertainty

of the coupling function. We will refer to this as the variable coupled prior, as the

coupling function is now varying.

Informative priors for u and v can be determined as follows. Recall that applying

the log-link to the coupling function conveniently reparameterized γ0 and γ1 as

γ0 = log(u) + vβ0

and

γ1 = vβ1.

Solving for u and v, this becomes

u = exp

(
γ0 − γ1

β0

β1

)
(3.5)

and

v =
γ1
β1

.

From the independent conditional means prior elicitation described in Chapter Two,

we have induced priors on both β = (β0, β1) and γ = (γ0, γ1). By sampling from these

induced priors, a joint prior on u and v can be induced via (3.5). As this joint prior

has no closed form, we approximate it with a fitted bivariate normal distribution,

which acts as an informative joint prior on u and v. Figure 3.10 shows the sampled

marginal densities, represented by the dashed curves, along with the fitted bivariate

normal, represented by the solid curves.
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Figure 3.10: Informative Priors on u and v.

In the fixed approach, the prior elicitation on the count side of the model, for

γ = (γ0, γ1), was used only indirectly, serving as a checking reference in the last step

of elicitation. The variable approach uses this information more directly. To see how

the joint prior on u and v better reflects our uncertainty, we sample 5,000 pairs of

(u, v) values and plot the resulting curves, as determined by equation (3.2), in Figure

3.11. The curves were plotted with transparency, so the darker red area reflects where

the majority of the curves fall. This new Bayesian model with variable coupled priors

is diagrammed in Figure 3.12.

Figure 3.11: 5,000 Possible Curves Relating θi and λi.
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Figure 3.12: Bayesian Model with Variable Coupled CMP.

Simulated density plots for the induced priors on β = (β0, β1) and γ = (γ0, γ1)

resulting from this structure are shown by the solid curves in Figure 3.13. For ref-

erence, the dashed curves show the induced priors resulting from the previously de-

scribed fixed coupled prior. Again, the priors on β = (β0, β1) remain the same. But,

as a result of the priors on u and v, there is now much more variability on the priors

for γ = (γ0, γ1).

Figure 3.13: Simulated Density Plots for the Induced Priors on β0, β1, γ0, and γ1 Under
the Variable Coupled Model (solid) and the Fixed Coupled Model (dashed).
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3.3.2.1 Example

Consider again the generated sleep disorder study outcomes shown in Figure

2.2. This time the Bayesian model is fit to this data under the variable coupled

prior structure using Markov chain Monte Carlo (MCMC) methods in OpenBUGS.

Once again, one chain with 16,000 iterations, including a burn-in of 1,000 iterations,

was used. Initial values were set at θ200 = 0.2, θ400 = 0.8, and (u, v) = (0, 0).

Thinning was set at 10 to reduce autocorrelation and, as before, convergence issues

were investigated using multiple chains and a variety of starting values, finding little

difference in the posteriors, and all Gelman-Rubin plots converged to one.

Posterior densities for β = (β0, β1) and γ = (γ0, γ1) are shown by the solid

curves in Figure 3.14. The posteriors from the independent model are shown by the

dashed curves for reference. Table 3.3 shows posterior means and 95% credible sets

for each of the parameters, as well as for θ and λ at certain weights.

Figure 3.14: Posterior Density Plots for the Variable Coupled Model (solid) and the Inde-
pendent Model (dashed).
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Table 3.3: Posterior Means and 95% Credible Sets for the Variable Coupled Model

Parameter Truth Mean 2.5% 97.5% Width
β0 -4.18 -3.71 -4.76 -2.75 2.01
β1 0.28 0.25 0.18 0.32 0.13

θ|xi = 200 0.20 0.23 0.16 0.30 0.14
θ|xi = 300 0.50 0.50 0.44 0.57 0.13
θ|xi = 400 0.80 0.77 0.69 0.85 0.16

γ0 0.54 0.56 -0.02 1.12 1.14
γ1 0.13 0.13 0.10 0.18 0.08

λ|xi = 200 6.56 6.73 5.54 8.07 2.54
λ|xi = 300 12.84 13.15 11.91 14.42 2.51
λ|xi = 400 25.15 25.95 20.04 33.17 13.13

For the parameters on the hurdle part, the variable coupled model has slightly

less posterior variability compared to the independent model. This suggests that we

are still seeing the effect of having β = (β0, β1) involved in both parts of the model, as

discussed earlier. However, on the count part, there is increased posterior variability,

reflecting the increased variability in the variable coupled prior that was a result of

adding priors on u and v. Still, all the 95% credible sets contain the true parameter

values.

3.3.3 Discussion

Despite the increased posterior variability over the fixed approach, we suggest

that the variable coupled approach results in the more practical coupled prior which

has some potential gains over the independent prior described in Chapter Two. There

are several reasons for this.

So far, we have only considered marginal posterior results for all the models.

Suppose we are interested in simultaneous inference on β1 and γ1. Consider the joint

posterior contours of β1 and γ1 for the independent conditional means prior model

versus the variable coupled model based on one sample of n = 100 observations shown

in Figure 3.15. The contours show that the posteriors for β1 and γ1 are independent

under the independent conditional means prior model, but there is a dependence

under the variable coupled conditional means prior model.
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Figure 3.15: Joint Posterior Contours for β1 and γ1 Under the Independent Model (left)
and the Variable Coupled Model (right).

Having knowledge of a joint posterior opens up the opportunity for joint hy-

pothesis testing on this data. Additionally, there may be situations in which it is

useful to know the relationship between β1 and γ1. For example, given a subpopu-

lation for which we know the change in log odds, β1, we can make inference on the

corresponding change in log rate, γ1, based on this joint posterior. This sort of sce-

nario may occur if we were to introduce random effects into the given model such that

β1 and γ1 will vary in subpopulations. These ideas will need to be explored further

as future work.

Also, we suspect that the influence of the variable coupled approach can be

more clearly seen when considering a parameter of interest that is a function of both

θ and λ at specific weights. For example, say that, for whatever reason, we are

interested in the ratio of θ/λ for a subject weighing 300 lbs. The posterior density

for this ratio under the variable coupled model is shown by the solid curve in Figure

3.16. For reference the posterior density under the independent model is shown by

the dashed curve. Note that the variable coupled model appears to result in less

posterior variability for this ratio.
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Figure 3.16: Posterior Density for λ/θ at 300 lbs. Under the Variable Coupled Model (solid)
and the Independent Model (dashed).

3.4 Simulation

To better assess how the variable coupled model performs relative to the inde-

pendent model described in Chapter Two, we perform a small scale simulation study.

We generate 100 data sets of size n = 100 from the same set of parameters used to

generate the sleep disorder study outcomes shown in Figure 2.2. For each data set, we

fit the two Bayesian models under the previously described specifications. We record

the posterior means and 95% credible sets for β = (β0, β1), γ = (γ0, γ1), select values

of θ and λ at specific weights, as well as the ratio, λ/θ, at 300 lbs., for each iteration

of the simulation.

Simulation results for the independent model are summarized in Table 3.4 and

results for the variable coupled model are summarized in Table 3.5. Each table shows

the true value of each parameter, the median of the posterior means and 95% credible

intervals, and the median width of the intervals. Figures 3.17, 3.18, and 3.19 show

this information in box plots. Recall that the horizontal line represents the true value

of the parameters, the center point is the median of the 100 posterior means, and the

upper and lower limits represent the average of the upper and lower bounds across

100 posterior 95% credible sets. The grey bars represent ±1 simulation standard

deviation above and below each respective point on the box plot, which occasionally
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overlap resulting in a darker shade of grey. Further, in each individual plot, the box

plot on the left shows results under the independent model and the box plot on the

right shows results under the variable coupled model.

Table 3.4: Simulation Results for the Independent CMP Model with n = 100

Parameter True 2.5% Median 97.5% Width
β0 -4.18 -5.29 -4.07 -2.92 2.37
β1 0.28 0.20 0.27 0.35 0.16

θ|xi = 200 0.20 0.14 0.21 0.29 0.15
θ|xi = 300 0.50 0.43 0.50 0.58 0.15
θ|xi = 400 0.80 0.70 0.79 0.87 0.17

γ0 0.54 0.05 0.52 0.99 0.94
γ1 0.13 0.10 0.14 0.17 0.06

λ|xi = 200 6.56 5.48 6.56 7.73 2.25
λ|xi = 300 12.84 11.93 12.95 14.02 2.12
λ|xi = 400 25.15 21.23 25.68 30.57 9.15
λ/θ|xi = 300 25.69 21.82 25.97 31.10 9.01

Table 3.5: Simulation Results for the Variable Coupled Model with n = 100

Parameter True 2.5% Median 97.5% Width
β0 -4.18 -5.07 -3.97 -2.96 2.14
β1 0.28 0.20 0.27 0.34 0.14

θ|xi = 200 0.20 0.15 0.21 0.29 0.14
θ|xi = 300 0.50 0.44 0.50 0.57 0.14
θ|xi = 400 0.80 0.71 0.79 0.87 0.16

γ0 0.54 0.00 0.57 1.14 1.15
γ1 0.13 0.09 0.13 0.17 0.08

λ|xi = 200 6.56 5.43 6.73 8.11 2.68
λ|xi = 300 12.84 11.87 12.95 14.12 2.23
λ|xi = 400 25.15 19.99 25.07 31.03 10.83
λ/θ|xi = 300 25.69 22.12 25.87 30.15 7.87

Overall, the results from this simulation mirror what we observed from the

single example we previously considered. For all parameters considered, there is no

indication that any one model is resulting in more or less bias. For the parameters

on the hurdle part, the variable coupled model results in narrower posterior intervals,

on average, than the independent model. The opposite is true for the parameters on

the count part. However, when considering the ratio λ/θ at 300 lbs., as suspected,

46



the posterior intervals are narrower under the variable coupled model compared to

the independent model.

Figure 3.17: Simulation Results for β = (β0, β1) and γ = (γ0, γ1) for the Independent CMP
Model (left) and the Variable Coupled Model (right) with n = 100.

Figure 3.18: Simulation Results for Select Values of θ and λ for the Independent CMP
Model (left) and the Variable Coupled Model (right) with n = 100.
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Figure 3.19: Simulation Results for λ/θ at 300 lbs. for the Independent CMP Model (left)
and the Variable Coupled Model (right) with n = 100.

3.5 Summary & Future Work

In this chapter, we sought to develop a prior structure that was able to take

advantage of the dependency inherent between the two parts of the Bernoulli-Poisson

hurdle model in the case of shared covariates. We proposed a method that relied on

eliciting a functional relationship between θi and λi, thus coupling the information in

the hurdle and count parts of the model. We described two such prior structures to

take advantage of the relationship: the fixed coupled prior and the variable coupled

prior.

The two proposed approaches both have their advantages and disadvantages.

In a sense, they represent two extremes. The fixed coupled prior is straightforward to

implement but is very dependent on the chosen values of u and v. Fixing these values

effectively eliminates all parameters from the model except for β = (β0, β1). The

priors on these parameters become the model’s only source of variability and there

is no direct use for the information known about the count part of the model. The

variable coupled prior addresses some of these issues by placing informative priors

on u and v rather than fixing them. We proposed a method of inducing priors on u

and v which made use of the information the count part of the model. However, this

method may have led us to double count some variability as the priors for β were
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reused when inducing the joint prior on (u, v). Indeed the resulting prior structure

has inflated variability on the count part of the model. However, the variable coupled

model has the added benefit of allowing for joint posterior inference. Thus, we believe

the variable coupled approach is more practical than the fixed coupled approach.

We further evaluated how the variable coupled Bayesian model performed on

generated sleep disorder study outcomes relative to the independent model described

in Chapter Two. The results from a short simulation study suggest that, in this

scenario, there is not much to gain marginally from using the coupled prior. How-

ever, we found that the influence of the coupled model may be more apparent when

interest is in some function of parameters from both parts of the model. Still, we

only considered how these models perform for a single set of parameters designed to

emulate this sleep disorder scenario. For future work, a more extensive simulation

study exploring other scenarios with zero-inflated count data should be performed to

fully understand the performance of these prior structures.

We believe a more practical coupled prior would be a medium between the fixed

and variable approaches. One possibility is to consider how the induced prior on (u, v)

can be made more informative, so another avenue for future work would be to explore

how this can be done. Additionally, we believe the idea of a coupled prior, with a

family of coupling functions, can be extended to hurdle models with more than one

shared covariate and generalized to other similar applications.
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CHAPTER FOUR

Sample Size Determination for Hurdle Models

4.1 Introduction

Sample size determination is an important aspect of experimental design for

clinical trials. This is not a new problem in the realm of zero-inflated count data

and has been addressed in the literature. Williamson et al. (2007) perform power

calculations for zero-inflated count models and suggest that a reverse approach can

be used to calculate sample size. Lachenbruch (2001) investigate power for two-

part models for semicontinuous data, and derive sample size calculations for these

models, noting that their procedures can be modified for the discrete case. Channouf

et al. (2014) modify a method by Shieh (2001) for sample size determination for

Poisson regression models and extend their methodology to the zero-inflated Poisson

regression model.

However, the cited methodologies are all based on the frequentist approach to

sample size determination. There are advantages to a Bayesian approach to this

problem, which are worth exploring. In this chapter, we give an overview of the

Bayesian two-prior approach to sample size determination, describe how it can be

applied in the context of hurdle models for count data, and show its results when

applied to the hypothetical sleep disorder study first introduced in Section 2.1.4.

4.2 Bayesian Sample Size Determination

One approach to Bayesian sample size determination is the “two-priors” ap-

proach, which makes use of “design” and “analysis” priors. This method has been

well covered by Adcock (1997), Joseph et al. (1997), Wang and Gelfand (2002), and

Brutti et al. (2008). Suppose ϕ is the parameter of interest and, for a sample of size

n, the vector of observations yn = (y1, y2, ..., yn) has density f(yn|ϕ). In frequentist
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sample size determination, it is sometimes necessary to fix the parameter of interest at

a certain value, known as a planning estimate. In the Bayesian approach, the design

prior replaces this fixed value with a range of values, which allows pre-experimental

uncertainty to be incorporated in the process. Additionally, each parameter in the

model, not just the parameter of interest, is given such a design prior. Elicitation

for these design priors is based on either certain regulatory requirements, previous

studies, or expert opinion.

This approach to sample size determination is typically carried out via simula-

tion. The design priors are used to generate values for all the necessary parameters

and covariates in the model. These parameter and covariate values are then used to

generate a data set for the model. Given a generated data set, the analysis prior is

used in the actual fitting of the Bayesian model. Typically analysis priors are chosen

to be rather diffuse, in contrast to relatively informative design priors.

The Bayesian sample size determination algorithm repeats this data generation

and model fitting process for a number of iterations across various sample sizes. Then,

the optimal sample size n is chosen to satisfy a certain criterion. There are many

such criterion, all based on optimizing certain aspects of the posterior distribution of

ϕ, such as average variance, average power, or average interval length.

4.3 Application to the Bernoulli-Poisson Hurdle Model

In this section, we describe how Bayesian sample size determination can be

implemented on the Bernoulli-Poisson hurdle model discussed in Chapters Two and

Three, whose likelihood is given by equation (2.5), with

logit(θi) = z′iβ (4.1)

and

log(λi) = x′
iγ, (4.2)

where zi and xi represent vectors of explanatory variables, which may have common

components, and β and γ are the corresponding regression coefficient vectors. Recall
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that in Chapters Two and Three, we discussed informative prior structures for this

model in the special case where both parts of the model shared the same covariate.

However, here we focus more generally on sample size determination for a model

where both sides do not necessarily share covariates.

As discussed in Section 2.3.1, one method for eliciting informative priors for

regression parameters in generalized linear models is conditional means priors, as

developed by Bedrick et al. (1996). Recall that conditional means priors allow for

information to be elicited at an operational level, inducing informative priors on the

regression coefficients. The resulting priors typically do not have closed form, but we

can fit distributions to them, which become the design priors for each parameter.

Since there are covariates on both parts of the model, appropriate design priors

for these covariates, zi and xi, must also be specified based on the population at

hand. The choice of distribution depends on what the covariate is meant to represent.

Generally, binary treatment covariates are generated from Bernoulli distributions and

continuous covariates are generated from uniform or normal distributions. Also, if

the covariate is expected to be skewed, this can be taken into account through use

of a skewed distribution. In contrast, analysis priors are meant to be appropriately

diffuse. The typical diffuse prior used on regression coefficients is Normal(0, σ2) for

a sufficiently large σ chosen to fit the scenario.

Suppose we are interested in the average length criterion (ALC), which looks

for the necessary sample size to achieve a desired average interval length. With the

design and analysis priors and the parameter of interest specified, following Stamey

et al. (2013), the steps for sample size determination for this model are shown in

Algorithm 1.
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for a range of sample sizes, n do1

for b = 1, ..., B Monte Carlo iterations at sample size n do2

Generate values of parameters γ and β from their design priors;3

Generate values for the covariates zi and xi from specified distributions;4

Compute θi and λi according to equations (4.1) and (4.2);5

Generate response data yi using the values generated. In this step we6

follow the data generation method described in Appendix A;

Fit the Bayesian Bernoulli-Poisson hurdle model using the analysis7

priors. A Gibbs sampler such as WinBUGS/OpenBUGS is usually used

at this step;

Record the length of the 1− α credible interval for the specified8

parameter of interest;

Average B values to get the average length, l, at sample size n;9

Plot and fit a curve through the points (n, l);10

Algorithm 1: Sample Size Determination for the Bernoulli-Poisson Hurdle Model.

4.4 Simulation

To illustrate this process, we use Algorithm 1 to determine the appropriate sam-

ple size under the average length criterion (ALC) for the hypothetical sleep disorder

study. It should be noted that in the sleep disorder scenario, the recorded weights are

a shared covariate on both parts of the model. Thus, it would likely be possible to

adapt the coupled prior described in Chapter Three when defining design priors for

this scenario. However, the general method for sample size determination described

in Section 4.3 can still be implemented, so we will not demonstrate that approach.

4.4.1 Design and Analysis Priors

The design and analysis priors used in this simulation are summarized in Table

4.1. We let the conditional means priors from Section 2.3.2 act as the design priors
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for the two sets of regression coefficients β = (β0, β1) and γ = (γ0, γ1). Since these

priors do not have closed forms, we fit normal distributions to them. Figure 4.1

shows the normal fit (solid curve) superimposed upon the simulated densities (dashed

curve) originally shown in Figures 2.7 and 2.9. Thus, we confirm that these normal

distributions are an adequate approximation.

Table 4.1: Design and Analysis Priors

Parameter Design Prior Analysis Prior

β0 N(−4.049, 0.713) N(−4.049, 2.646)

N(0, 25)

β1 N(0.270, 0.045) N(0.270, 0.227)

N(0, 25)

γ0 N(0.413, 0.381) N(0.413, 1.282)

N(0, 25)

γ1 N(0.141, 0.024) N(0.141, 0.120)

N(0, 25)

X Beta[200,400](1.7, 3) NA

Beta[200,400](3, 1.7)
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Figure 4.1: Normal Distributions Fitted to Simulated Densities for β0, β1, γ0, and γ1.
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It is also necessary to specify a design prior for the weight covariate. For

this simulation study, we consider two such specifications to better understand the

sample size problem. Suppose we assume that the overweight subjects in the study

all have weights in the range of 200 to 400 lbs. For one specification, we further

assume that the majority weigh closer to 200 than 400 lbs. For the other, we assume

the opposite, that the majority weigh closer to 400 than 200 lbs. For both cases,

we choose appropriate shifted beta distributions to represent these beliefs, whose

densities are plotted in Figure 4.2.

Figure 4.2: Design Priors for Weight Covariate.

Recall that in contrast to the design priors, analysis priors are typically meant

to be rather diffuse. However, at the same time, they should not be unrealistically

so. Suppose one way to specify appropriately diffuse analysis priors is to center them

at the means of the design priors but inflate the standard deviation. The question

then becomes, how large should the standard deviation be.

Consider the following reasoning for β0. We know that the probability of suf-

fering from a sleep disorder should not fall below 10% for 200 lb. subjects or above

90% for 400 lb. subjects. This means the log odds, β0 + β1xi, should stay between

−2.197 and 2.197 for all values of the covariate xi. From its design prior, we know

that β1 mainly stays between 0.270± 2(0.045) = (0.180, 0.360). It follows that, for a
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subject weighing 200 lbs., β0 should be in the following range:

β0 + 0.180(200/20) = −2.197 ⇒ β0 = −3.997

β0 + 0.360(200/20) = −2.197 ⇒ β0 = −5.797.

Similarly, for a subject weighing 400 lbs.,

β0 + 0.180(400/20) = 2.197 ⇒ β0 = −1.403

β0 + 0.360(400/20) = 2.197 ⇒ β0 = −5.003.

Note that the weights are divided by 20 because, in our data generation scheme

described in Appendix A, we chose to work with 20 lb. units of weight. With

this logic, we determine that all reasonable values for β0 should fall between −5.797

and −1.403. Note that the mean of the design prior for β0 is −4.049, which falls

within this range, but not directly in the middle. In fact, the mean has a distance

of | − 4.049− (−5.797)| = 1.748 from the lower bound and a distance of | − 4.049−
(−1.403)| = 2.646 from the upper bound. Following the empirical rule that 95% of

the values in a normal distribution lie within two standard deviations of the mean, we

could set the standard deviation of the analysis prior to be half of the larger difference.

However, we make the more conservative choice and let the entire difference, 2.646,

be the standard deviation of analysis prior for β0.

We can repeat this reasoning to determine the dispersion of the analysis prior for

β1. From its design prior, we know that β0 mainly stays between −4.049±2(0.713) =

(−5.475,−2.623). As before, the log odds should be between −2.197 and 2.197 for

all values of the covariate xi. Thus, all reasonable values for β1 should be between

(−2.197 − (−2.623))/(200/20) = 0.043 and (2.197 − (−5.475))/(400/20) = 0.384.

Again, the mean of the design prior does not fall exactly in the middle of this range.

It has a distance of |0.27 − 0.043| = 0.227 from the lower bound and a distance of

|0.27 − 0.384| = 0.114| from the upper bound. Following previous reasoning, we set

the standard deviation of the analysis prior of β1 to be 0.227.
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The same reasoning extends to the analysis priors for γ0 and γ1. Suppose we

believe the expected number of sleep interruptions for a subject suffering from a sleep

disorder should be greater than 4 for 200 lb. subjects and less than 35 for 400 lb.

subjects. Thus, log(λi) = γ0+γ1xi should stay between 1.386 and 3.555 for all values

of the covariate xi. Similar calculations and reasoning as before justify the analysis

priors for γ0 and γ1 shown in Table 4.1.

In addition to “realistically” diffuse analysis priors, we also consider “unrealisti-

cally” diffuse analysis priors centered at zero with a large standard deviation σ = 25 to

investigate the affect of the choice of analysis priors on sample size recommendations.

4.4.2 Results

Following the algorithm described in Section 4.3, we consider samples of size

n = 50 through 200 in increments of 25. For each sample size, we generate 200

replications of parameter and covariate values and their corresponding data sets. We

first consider the design prior for the weight covariate xi that is skewed towards the

lower weights. We fit the Bayesian model using OpenBUGS with realistically diffuse

analysis priors under the same specifications as the previous chapters: we ran 16,000

iterations, discarding the first 1,000 as burn-in, with thinning set at 10.

For each replication, we record the posterior samples for β = (β0, β1) and γ =

(γ0, γ1). Suppose the parameter of interest is the average amount of sleep interruptions

experienced by subjects of certain weights who suffer from sleep disorders, defined

as λi = exp(γ0 + γ1xi). Since λi is a function of the parameters γ = (γ0, γ1), we

can transform the recorded posterior samples into a posterior sample of λi at various

weights. Figure 4.3 summarizes resulting posterior samples for λi at various weights

between 200 and 400 lbs. for four select instances of the 200 replications for sample

size n = 100. The solid line represents the posterior median and the dashed bounds

represent 95% credible intervals. Note that the scale of the y axis changes from each

instance, reflecting the changing true values of β = (β0, β1) and γ = (γ0, γ1) in the
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simulation. But, generally, we see that the interval widths narrow at around 300 lbs.

and then begin to spread out as weight increases to 400 lbs.

Figure 4.3: Posterior Samples for λi in Four Instances of the 200 Replications for n = 100
with xi ∼ β(1.7, 3).

In this manner, we record the 95% interval lengths of λi at certain covariate

specifications across all 200 replications for a range of sample sizes. Table 4.2 shows

the coverage of these 200 intervals for λi at various weights across the range of sample

sizes. The lowest coverage was 0.915. Figure 4.4 shows the density of the 200 interval

lengths, at sample size n = 100,of λi for a subject weighing 225 lbs. Similar density

plots for the other weights and sample sizes exhibited similar behavior. Typically,

and according to the algorithm, we record the mean of the 200 lengths to summarize

these results. However, due to the skewness of this distribution, we use the median

interval length instead.
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Table 4.2: Coverage for λi at Various Weights Across the 200 Intervals with xi ∼ β(1.7, 3)

n 225 lbs. 275 lbs. 325 lbs. 375 lbs.
50 0.950 0.945 0.975 0.995
75 0.920 0.915 0.945 0.945
100 0.960 0.960 0.970 0.980
125 0.970 0.930 0.955 0.985
150 0.950 0.965 0.935 0.920
175 0.945 0.935 0.940 0.955
200 0.960 0.945 0.955 0.965

Figure 4.4: Density of 200 Interval Lengths for λi at 225 lbs. with xi ∼ β(1.7, 3).

Figure 4.5 plots the median interval widths across the sample sizes for λi at

xi = 225, 275, 325, and 375. We see that λi at 375 lbs. results in by far the largest

interval widths over all the sample sizes followed by λi at 325, 225, and 275 lbs.

These results are logical as the design prior on weight shows that the majority of the

generated weights are be between 225 and 275 lbs. with significantly fewer weights

on the upper end of the scale. That is, the necessary sample size for a study where

the parameter of interest is λi at larger weights is understandably larger to ensure

that the sample will have enough subjects with larger weights.
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Figure 4.5: Median Interval Widths Over 200 Replications for λi at Various Weights with
xi ∼ Beta[200,400](1.7, 3).

To determine whether our beliefs concerning the effect of the covariate design

prior on sample size are justified, we redo the sample size simulation, replacing the

current covariate design prior with the alternative that is skewed towards the larger

weights. As before, we look at the resulting posterior samples for λi at various

weights for four select instances of the 200 replications at sample size n = 100, shown

in Figure 4.6. Again, the solid line represents the posterior median and the dashed

bounds represent 95% credible intervals. This time, we see that the interval widths

narrow around 350 lbs., but there is no significant difference in widths at the ends of

the weight scale.

We also record 95% interval lengths of λi at various weights across all 200

replications fo a range of sample sizes, with their coverage shown in Table 4.3. The

lowest coverage here is 0.935. The density of the 200 interval lengths, at sample size

n = 100 of λi for a subjet weighing 225 lbs. is shown Figure 4.7. Thus, we continue

to record median interval lengths.

60



Figure 4.6: Posterior Samples for λi in Four Instances of the 200 Replications for n = 100
with xi ∼ β(3, 1.7).

Table 4.3: Coverage for λi at Various Weights Across the 200 Intervals with xi ∼ β(3, 1.7)

n 225 lbs. 275 lbs. 325 lbs. 375 lbs.
50 0.960 0.960 0.950 0.955
75 0.970 0.970 0.960 0.965
100 0.955 0.955 0.935 0.960
125 0.970 0.970 0.960 0.940
150 0.970 0.965 0.965 0.985
175 0.950 0.945 0.935 0.960
200 0.945 0.965 0.965 0.945

Figure 4.8 plots the median interval widths across the sample sizes for λi at

xi = 225, 275, 325, and 375 for this case. We see that λi at 375 lbs. again results in

the largest interval widths, though not as large as before, over all the sample sizes,

followed by λi at 225, 275, and 325 lbs. In this case, we know from the design prior

that the majority of the generated weights should be between 325 and 375 lbs. with

significantly fewer weights on the lower end of the scale. However, the results still
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show that λi at 375 lbs. results in the largest interval widths at each sample size. We

suspect that this result is due to the exponential affect of the transformation.

Figure 4.7: Density of 200 interval lengths for λi at 225 lbs. with with xi ∼ β(3, 1.7).

Figure 4.8: Median Interval Widths Over 200 Replications for λi at Various Weights with
xi ∼ Beta[200,400](3, 1.7).

Consider instead that the parameter of interest is the log transform of the

expected number of sleep interruptions, or log(λi) = γ0 + γ1xi. Figure 4.9 shows

interval width curves for log(λi) at the same weights as before. Here the curve for

log(λi) at 375 lbs. shows smaller interval widths, confirming the suspicion that the

exponential transform is causing the inflated widths seen in Figure 4.8.
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Figure 4.9: Median Interval Widths Over 200 Replications for log(λi) at Various Weights
with xi ∼ Beta[200,400](3, 1.7).

Suppose we repeat the simulation again, this time generating data sets and

fitting them with unrealistically diffuse analysis priors. Figure 4.10 shows the resulting

median interval width curves for λi at four weights of interest under both sets of

analysis priors in the case where the design prior for the weight covariate is skewed

towards the lower weights. Similarly Figure 4.11 shows the same for the case where the

covariate design prior is skewed towards the higher weights. In both cases, it appears

that there is little difference in results between the two sets of analysis priors, with

the most noticeable differences occurring at the smaller sample sizes. It is possible

that what we are observing is, as sample size increases, the increasing number of

observations overwhelms the effective sample size of our chosen “realistically” diffuse

analysis priors. Thus, to really see a clear difference, we must be less conservative in

defining these priors.
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Figure 4.10: Realistic v. Unrealistic Analysis Priors for xi ∼ β(1.7, 3).

Figure 4.11: Realistic v. Unrealistic Analysis Priors for xi ∼ β(3, 1.7).
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4.4.3 Interpretation

The goal of the these simulations is, of course, to use these interval width curves

to make sample size recommendations to researchers designing this sleep disorder

study. The researcher will likely specify a required interval length for the parameter

of interest. In our case, the parameter of interest is the expected number of sleep

disturbances for an afflicted subject, λi, at various weights. Thus, the required interval

length may change depending on the subject’s weight. For example, the researcher

may believe the range of expected number of disturbances for a 225 lb. subject to

be much smaller than that of a 375 lb. subject, and that has a bearing on interval

length requirements.

Consider the simulation where the design prior for weight, xi, was skewed to-

wards the lower weights, whose results are shown in Figure 4.5. Suppose the researcher

requires a length of 2 for λi for subjects weighing 225 lbs. In Figure 4.12, we reproduce

the interval width curve for λi at 225 lbs. The horizontal dashed line is at an interval

width of 2. Thus, the appropriate sample size for this scenario occurs where the curve

intersects with the horizontal line, which appears to happen around n = 180. Note

that the final step of the algorithm is to fit a functional curve to the one shown in

Figure 4.12, in which case one could solve more definitively for n. This same process

can be repeated given any requirement for any parameter of interest.

We have described how to determine the appropriate sample size for a sleep

disorder study in which the parameter of interest is the expected number of sleep

interruptions, λi, suffered by afflicted subjects of a particular weight. In practice,

it is unlikely that researchers would want to design a study in which they are only

specifically interested in subjects of one weight. However, they may be particularly

interested in subjects of a certain weight group. For example, perhaps they are most

interested in subjects weighing between 300 and 350 lbs. One way to use this method

to determine the required sample size in this case would be to consider various weights

within this interval. As demonstrated, each weight will produce a curve via the sample
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size determination algorithm, leading to a sample size recommendation. We propose

that researchers can simply use the maximum of these sample sizes for their study.

Figure 4.12: Median Interval Widths Over 200 Replications for λi at 225 lbs. with
xi ∼ β(1.7, 3).

4.5 Discussion

In this chapter, we considered the sample size determination problem for the

proposed sleep disorder study discussed throughout the dissertation. While sample

size issues for zero-inflated data have been discussed in the literature, the majority

of it is based in the frequentist approach. We discussed the “two-priors” Bayesian

approach to sample size determination and the advantages it has. Then, we described

how this method could be applied to hurdle models and performed the simulation to

determine sample size requirements for the sleep disorder study. We found that sample

size requirements in this problem are dependent on specific parameters of interest, as

well as the nature of the population from which the sample is taken with respect to

covariate design priors.

We also found that specifying realistically diffuse analysis priors had little ef-

fect over using exceedingly diffuse ones. We hypothesize that the reason for this may

be that the effective sample size of the realistically diffuse analysis priors was over-
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whelmed by the sample size of the observations. Thus, one possible solution would

be to consider even less conservative analysis priors.

In the traditional Bayesian two-priors approach to sample size determination,

diffuse analysis priors are typically used. However, the results we found lead us to

believe that, in order for there to be a significant reduction in sample size, these

analysis priors need to incorporate more information. The difficulty in doing so is

that, in the simulation algorithm, the “true” parameter values change change at

each iteration. For future work it would be useful to explore how the coupled prior

structure described in Chapter Three can be adapted into informative analysis priors

with potentially larger effective sample sizes than the ones considered in this analysis.

The effective sample size of these priors can be explored using a method de-

veloped by Morita et al. (2008, 2012). The idea is that the total necessary sample

size can potentially be reduced by the effective sample size of the more informative

analysis prior. Better understanding of this relationship would prove extremely useful

in the design of experiments overall.
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APPENDIX A

Data Generation for Sleep Study Example

The process we use to generate outcomes for the hypothetical sleep disorder

study described in Section 2.1.4 is described here. We begin by discussing how zero-

inflated outcomes appropriate for a hurdle model can be generated. Recall that, in

the Bernoulli-Poisson hurdle model, the parameter θ represents the probability that

the subjects will cross the hurdle. The rbinom function in R generates a specified

number of random values from a specified binomial distribution. Since the Bernoulli

distribution is essentially binomial with one fixed trial, we can use rbinom, with

specified parameters n (sample size) and θ, to generate 0’s and 1’s, which determine

whether or not subjects cross the hurdle. Once we determine the subjects who cross

the hurdle, we want to generate positive counts for them from a truncated count

distribution, which for our purposes is the Poisson. The VGAM package (Yee, 2014)

in R has a function rpospois for generating random values from a truncated Poisson

distribution. Thus, for all subjects assigned a 1 by rbinom, we use rpospois, with

specified parameters n and λ, to generate corresponding positive counts.

In the sleep disorder example, we suppose that weight acts as a shared covariate

on both parts of the model. Assume that the overweight men all weigh between 200

and 400 lbs., with slightly more weighing closer to 200 than 400 lbs. To reflect

this, we generate the subjects’ weights from a shifted Beta[200,400](1.7, 3) distribution,

rounded to the nearest whole pound. Note that when these weights are used for data

generation, we consider them in 20 lb. units. This was an arbitrary decision made

for interpretability reasons as well as to help combat autocorrelation issues we saw

preliminarily in fitting the Bayesian model.

With the added covariate on both parts of the model in the sleep disorder

context, the described generation process is modified slightly. Instead of constant
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values of θ and λ, these values change depending on the subject’s weight, where

θi =
exp(β0 + β1xi)

1 + exp(β0 + β1xi)

and

λi = exp(γ0 + γ1xi).

To best assess the proposed prior structures, we want the generated data to

accurately reflect the expert opinion shown in Figures 3.3 and 3.4. We consider

a simple way to do this, working backwards and employing least squares methods.

Recall that, in the model,

logit(θi) = β0 + β1xi.

Using R, we get the least squares linear fit based on the logit transform of the elicited

modal values of θi shown in Figure 3.3(a), finding that β0 = −4.18 and β1 = 0.28.

Then, for the positive counts, we transform the θi values to λi values using the elicited

the functional relationship (3.2) with fixed values u = 12.72 and v = 0.48

λi = f(θi) = 12.72 exp(0.48 · logit(θi))

so that the data reflects this relationship. Under the reparameterization (3.3), this is

equivalent to having γ0 = 0.54 and γ1 = 0.13.
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