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Abstract— Modeling the dynamics of charged dust particles, 

confined in a glass box placed on the lower electrode of a GEC cell, 

requires that the interactions between the charged dust, plasma, 

and boundaries need to be accounted for in a self-consistent 

manner.  The charged lower electrode affects the plasma 

conditions throughout the glass box, altering the electron and ion 

densities and temperatures within the plasma sheath.  These 

plasma characteristics determine the charge collected on the walls 

of the surrounding glass box, the electric potential within the glass 

box, the dust charge, and ultimately the dynamics of the dust. This 

work describes the steps taken to build a simple model of the 

relationship between the plasma conditions and the potential 

within the box as well as the expected dust charge near the center 

of the box. The calculated potential and dust charge are used to 

construct acceleration maps for the dust, which are compared to 

experimentally measured acceleration of the dust within the box. 

 
Index Terms—Dusty plasmas, plasma sheaths 

 

I. INTRODUCTION 

complex plasma is an ionized gas containing ions, 

electrons and dust particles. The particles (as well as any 

plasma-facing surfaces) become charged by collecting 

electrons and ions from the plasma; this charge is usually 

negative due to the high thermal speed of the electrons.  

In laboratory experiments, the dust can be levitated against 

the force of gravity in the vertical electric field of the plasma 

sheath above the lower electrode.  When the potential energy of 

the particle interactions is large compared to the kinetic energy, 

the particles can organize into regular structures, such as two-

dimensional plasma crystals [1], [2]. This allows the particles 

to be used to study the detailed physics of phase transitions [3]–

[5], fluid motion in strongly coupled systems [6]–[8], and wave 

phenomena [9]–[12]. A benefit of dusty plasma systems is that 

the dynamics of the dust are characterized by easily-observable 

time and spatial scales.  

In many experiments, conducted within a GEC rf reference 

cell [13], horizontal confinement of the dust is provided by a 

ring placed on top of or a shallow depression in the lower 

electrode.  This confinement is weak in comparison to the 

strong confinement in the vertical direction provided by gravity 

and the sheath electric field. The resulting dust structures are 
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planar, usually only consisting of a single to a few layers. 

Increasing the confinement in the horizontal direction allows 

stable three-dimensional structures to be formed, such as 

coulomb balls, clusters, and extended vertical strings [14]–[20]. 

The equilibrium states of these structures strongly depend on 

the confinement conditions, controlled by the neutral gas 

pressure and the power delivered to the system [21].  

Increased horizontal confinement can be achieved by placing 

a glass box on the lower electrode, the walls of which also 

become negatively charged.  However, it is difficult to directly 

measure the conditions within the box as probes inserted into 

the plasma alter the local plasma conditions. Micrometer-sized 

dust particles, however, are small enough that they do not 

appreciably perturb the local plasma conditions [22].  Tracking 

the motion of the dust particles allows the forces that the plasma 

exert on the particles to be determined, providing a map of the 

plasma potential within the box [23].  Careful measurements 

have shown that the box creates a radially-symmetric 

confinement near the center of the box, which varies in strength 

depending on the height above the lower electrode. In addition, 

measurements have also shown that the box allows for an 

extended vertical region where the vertical acceleration of a 

charged particle exceeds the acceleration of gravity [22], [23].   

One drawback of using the dust particles as probes is that it 

is difficult to measure a particle’s charge independently of the 

electric field within the box. The particles’ charge is usually 

assumed to be fixed, but is actually a function of the plasma 

conditions within the box.  There are several methods to model 

the plasma conditions within a given geometry, including fluid 

models where plasma is treated as a continuous fluid [24], [25] 

and Particle-in-Cell (PIC) models where the electrons and ions 

are treated as discrete particles [26]–[28].  However, these 

models usually take advantage of symmetry in the system to 

reduce the problem to two dimensions. A full treatment of a 

three-dimensional space takes much more computation time.  

Here we present a simplified model to approximate the effect 

that the box has on the local plasma conditions.  The plasma 

conditions (electron and ion densities and temperatures) within 

the sheath above the lower electrode are first determined using 

a fluid model for varying system power and gas pressure.  These 

plasma conditions are used to calculate the charge collected on 

the walls of the box.  The sheath electric field at the center of 
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the box is then modified by adding the electric field due to the 

charge on the box walls.  The revised plasma conditions are also 

used to determine the charge on dust particles confined within 

the box, allowing particle acceleration maps to be calculated, 

which can be compared with experimental measurements.   

A description of the experimental setup and observations are 

given in Section II. The numerical model used to obtain the 

potential within the box is described Section III. The potential 

and electric fields calculated from the model are presented in 

Section IV and are compared to experimental measurements. A 

discussion of these results is found in Section V.  

II. EXPERIMENT 

A. Experimental Setup 

Complex plasma experiments are carried out at 

CASPER in a Gaseous Electronic Conference (GEC) rf 

reference cell filled with argon gas. The dust particles used are 

manufactured uniform spheres of melamine formaldehyde 

(MF) with a density of 1.154 g/cm3 and diameter 8.89 𝜇m. A 

glass box with inner dimensions 10.5 mm × 10.5 mm × 12.5 

mm sits directly on the lower electrode of the cell, as shown in 

Fig. 1. Two cameras, one of each in the vertical and horizontal 

directions, are used to track the motion of the particles within 

the box at a rate of 500-1200 frames per second. The particles 

can be tracked from frame to frame to construct their 

trajectories, allowing the velocities and accelerations to be 

calculated. 

 

 
 

Figure 1. GEC rf reference cell schematic. The upper electrode 

is grounded and the lower electrode has a variable bias as 

needed. The glass box sits on the lower powered electrode and 

the two vertical and horizontal cameras track the motion of the 

dust particles within the box.  

B. Observations 

The total force acting on a particle consists of gravity, the 

confinement force from the electric field within the box, neutral 

gas drag, and the interaction force from other dust grains 

 

𝑭𝑡𝑜𝑡𝑎𝑙 = 𝑚𝒈 + 𝑞𝑬 − 𝛽𝒗 + 𝑭𝑑𝑑. (1) 

 

Here 𝑚 is the mass, 𝑞 is the charge, and 𝑣 is the velocity of the 

dust grain, 𝛽 is the Epstein drag coefficient. Other forces, such 

as ion drag and thermophoresis are small compared to these 

forces and are not considered here. Equilibrium dust structures 

are primarily determined by the ratios of gravity, the confining 

electric fields in the horizontal and vertical directions, and the 

electrostatic interactions between the dust grains which are 

mediated by the surrounding plasma.  

The confinement forces within the glass box lead to some 

unique dust particle structures which are rarely observed under 

other confinement conditions.  These include a single vertically 

aligned dust particle chain and helical dust particle structures. 

The single vertical chain provides not only an ideal way to study 

the particle interaction and interaction with the vertical ion 

flow, but also an accurate and simple method to control the dust 

particle number. For example, once a vertical particle chain is 

formed, it is convenient to drop the lowest particle by slowly 

decreasing the system power.   The helical structures undergo 

sharp phase transitions as the  operating conditions (power and 

pressure) are changed, demonstrating the sensitivity of the 

stability of structures to the confinement [17], [21]. 

The change in levitation height of a single particle inside the 

glass box as the system power changes is also different than in 

other environments. With particle confinement provided by a 

cut-out or trench in the lower electrode, the levitation height 

always increases with increasing system power. Using the glass 

box, the height first decreases then increases while raising the 

power in a given range (this range is related to the pressure and 

the size of the dust particle). Other unique observed phenomena 

include turbulence, position-dependent response to changing 

system power (when decreasing the power, particles in some 

regions go up and in others go down) and particle motion which 

can best be explained by the presence of overlapping sheaths. 

C. Mapping of the Electric Field 

A dust particle is an ideal probe to investigate the plasma 

sheath due to its small perturbation to the plasma environment 

[29]. All coefficients in the equation of motion can be measured 

or calculated from gas parameters, with velocity and 

acceleration determined from the particle trajectories, allowing 

qE to be calculated.  The details of this method are described in  

[23].  The mass of the dust particles can be calculated using the 

density and diameter as provided by the manufacturer. The gas 

drag coefficient β is defined as 

            β =  δ
4π

3
a2 Nmn  𝑐n̅                                                     (2) 

where 𝑎 is the radius of the dust particle, N is the neutral gas 

number density, 𝑚𝑛 is the mass of the neutral gas atoms 

(Argon), and the coefficient δ accounts for the microscopic 

mechanism governing collisions between the gas atom and the 

surface of the dust particle. For MF particles and Argon gas, δ 

has been determined to be 1.44 as reported in Refs [30, 31]. 

Finally,  𝑐n̅ = √8𝑘𝑇/𝜋𝑚𝑛is the thermal speed of the neutral 
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gas, where k is the Boltzmann constant and T is the temperature. 

Only trajectories where particles are far away from other dust 

particles are used in the analysis, allowing 𝐹𝑑𝑑 to be taken to be 

negligible. By assuming a fixed charge on the dust particle, and 

averaging over many trajectories, the electric field can be 

mapped throughout the box. However, the charge on the dust 

particles is not constant, but instead varies with location due to 

the local plasma conditions [32]. An investigation of the electric 

field inside the glass box, using a numerical method to 

determine the charge on the box walls, the electric field due to 

the box, and the charge on the dust particles, will be introduced 

in the following and compared to the experimental results. 

III. NUMERICAL MODEL 

It is evident that the charge on the walls of the box changes 

the potential within the box, altering the electric field both in 

the vertical and horizontal directions. To avoid the 

computational demands of a 3D PIC model to determine the 

plasma potential within the box, we use a two-dimensional 

plasma fluid model to determine the plasma parameters as a 

function of z, the height above the lower electrode.  These 

plasma parameters are used to calculate local charging currents 

to the walls of the box, which are treated as a perfect insulator.  

The charge accumulated on the box walls is then used to 

calculate the contribution of the walls to the potential and 

electric field within the box.  

A. Plasma Sheath Parameters 

A basic assumption in this model is that the electron and ion 

densities within the plasma sheath determine the charge 

collection on the walls of the box.  A self-consistent fluid model 

(a description of which can be found in [30]) is used to solve 

the equations for the electron and ion-fluid (in an argon 

discharge) as a function of the gas discharge parameters.  These 

parameters include the gas pressure, the power delivered to the 

cell (as determined by the peak-to-peak amplitude of the driving 

potential) and the bias on the lower electrode. The output of the 

fluid model provides the spatially resolved plasma 

characteristics within CASPER’s GEC rf reference cell, 

including the plasma potential V(z), Debye length 𝜆𝐷(𝑧), 

electron and ion densities 𝑛𝑒,𝑖(𝑧), and electron temperature 

𝑇𝑒(𝑧), where 𝑧 is the height above the lower electrode [33].  

B. Charging Calculation 

Objects in a plasma environment become charged by 

collecting particles from the surrounding plasma. Using orbital 

motion-limited (OML) theory, the current density to a point 

𝑡 on a surface can be found by calculating the flux of charged 

particles to that point, given by 
 

𝐽𝑠(𝑡) =  𝑛𝑠𝑞𝑠 ∫ 𝑓𝑠
∞

𝑣𝑚𝑖𝑛(𝑡)
(𝑣𝑠)𝑣𝑠

3𝑑𝑣 𝑠  × ∬ cos(𝜃)𝑑𝛺 (3) 

 

where s denotes the plasma species (electron or ion) with 

number density n and charge q, f(v) is the distribution of 

velocities v, and θ is the angle between the surface normal and 

the incoming particle velocity. The lower limit in the 

integration 𝑣𝑚𝑖𝑛(𝑡) = √2𝑞𝑠𝑉(𝑡)/𝑚𝑠 is the minimum velocity 

a plasma particle with mass 𝑚𝑠 and the same polarity of charge 

as the surface must have to reach the surface with potential 𝑉. 

For plasma particles with the opposite polarity of charge, 

𝑣𝑚𝑖𝑛(𝑡) = 0.  Assuming a Maxwellian velocity distribution for 

the electrons and ions with a given temperature 𝑇𝑠, the first 

integral can be calculated directly to give 

 

𝐽0𝑠 exp (−
𝑞𝑠𝑉

𝑘𝑇𝑠

) , 𝑞𝑠𝑉 > 0 

𝐽0𝑠 (1 −
𝑞𝑠𝑉

𝑘𝑇𝑠
) , 𝑞𝑠𝑉 < 0          (4)   

        

where 𝐽0𝑠 = 𝑛𝑠𝑞𝑠√𝑘𝑇𝑠/2𝜋𝑚𝑠. The integration over the angles 

includes all directions for which the trajectories of the incoming 

plasma particles are not blocked, termed the Line of Sight 

(LOS) approximation [32].    

 The OML_LOS method is suitable to model the charge 

collected on any arbitrarily-shaped object, and here was adapted 

to model the charge collected on the interior surfaces of the 

glass box by dividing each face into N×M patches. The number 

of patches is determined by the Debye length in the plasma, 

with the patch dimension approximately equal to or smaller 

than  𝜆𝐷.   Three distinct types of surface patches were defined: 

the lower corners, where the open angles are one-octant of a 

sphere; the lower and interior edges of the panes, where the 

open angles are one quadrant of a sphere, and the remainder of 

the patches, where the open angles cover a hemisphere. These 

open angles were used to define the LOS_factor for the three 

types of patches. In the following work, N×M = 25×30, though 

it was determined that above this minimum resolution, the 

charge collected on the box walls was relatively independent of 

the number of patches. 

C. Charge on the Box 

To first approximation, the charge on the walls of the box is 

assumed to be determined by the electron and ion temperatures 

and densities within the sheath, established by the charged 

lower electrode. The quantities ni(z), ne(z), and Te(z) obtained 

from the fluid model were used to calculate the current density 

to each patch according to Eq (2).  The ions are assumed to be 

at room temperature with 𝑇𝑖 =  298 K. The lower limit of 

integration was set by the potential at the center of each patch, 

calculated from the sum of the potential due to all other patches 

on the box, the charge on the patch itself, and the potential due 

to the charge on the lower electrode 

 

𝑉 𝑗 = ∑ 𝑉𝑖𝑗
 
𝑖≠𝑗 + 𝑉𝑠𝑒𝑙𝑓,𝑗 + 𝑉𝑠ℎ𝑒𝑎𝑡ℎ  (5) 

 

The potential due to the charge on the patch itself is calculated 

at the center of a square sheet of charge 

 

𝑉𝑠𝑒𝑙𝑓 =
𝜎

2𝜋𝜖0
 𝑙  log(17 + 12√2)  (6) 

 

where σ is the charge density, and l is the length of the side of 

the patch. 𝑉𝑖𝑗 is the shielded Coulomb potential 
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𝑉𝑖𝑗 =
1

4𝜋𝜖0

𝑞𝑖

𝑟𝑖𝑗
exp(−𝑟𝑖𝑗/𝜆𝐷(𝑧)) (7) 

 

where 𝑞𝑖 is the charge on the ith patch, 𝑟𝑖𝑗  is the distance between 

patch i and patch j, and 𝜆𝐷(𝑧) is the Debye length, obtained 

from the fluid model, as is  𝑉𝑠ℎ𝑒𝑎𝑡ℎ. 

The current density is multiplied by the patch area to calculate 

the net electron and ion current to the center of each patch, and 

the net charge accumulated in the time step is determined. This 

process is iterated until equilibrium is reached, defined by a 

difference in total charge between the previous and current time 

step of less than 0.01%. The calculated charges on the walls of 

the box for a representative set of conditions are shown in 

Figure 2.  

 
Fig. 2. (Color online) Equilibrium charge density on walls of 

the glass box with gas pressure 150 mTorr and driving potential 

60 VPP. Note the log scale for the color bar. 

 

 

 Note that the ion flow within the sheath is neglected in 

calculating the ion current, as the direction of ion flow is 

parallel to the box walls. The effect of neglecting this directed 

flow is discussed further in the conclusion. 

IV. MAPPING THE ELECTRIC FIELD INSIDE THE BOX 

The charge on the box walls was calculated for gas 

pressures Pg =  100, 150, 250, 350 mTorr and driving potentials, 

Vpp = 40-80 V, where the amplitude of the driving potential was 

measured peak-to-peak.  The charges at each patch i on the box 

walls was used to calculate the potential at points A within the 

box 𝑉 𝐴 = ∑ 𝑉𝑖𝐴
 
𝑖 , using the Yukawa potential as in Eq. 6. To 

take into account the changing Debye length, the contribution 

from each patch charge to the potential was numerically 

integrated along the path connecting patch i to point A  

 

𝑉𝑖𝐴 =
1

4𝜋𝜖0

𝑞𝑖

𝑟𝑖𝐴
exp(−Σ𝑗Δ𝑟𝑗/𝜆𝐷(𝑧)) (8) 

 

where Δ𝑟𝑗 is a segment along the path with a length of one-third 

of the patch height.  A representative map of the potential for 

vertical slice in the midplane of the box is shown in Fig. 3.  

 
Figure 3. Potential (in Volts) within the glass box due to the 

charge on the walls.  The slice is a vertical plane through the 

middle of the box. Plasma conditions are Pg = 150 mTorr, VPP 

= 60 V. 

 

The electric field within the box due to the charge on the 

walls was then calculated from 𝐸⃗ =  −∇𝑉. The horizontal 

component of the electric is assumed to be solely due to the 

electric field of the box, while in the vertical direction the total 

electric field is due to the electric field of the sheath (obtained 

from the fluid model) plus the electric field of the box.  

Under most experimental conditions, the particles are trapped 

in a small region very close to the centerline of the box. A 

comparison of the magnitude of the vertical electric field along 

the midline of the box due to the sheath alone and the sheath 

plus the box is shown in Figure 4a for a constant gas pressure, 

Pg = 150 mTorr, with varying driving potentials. As power 

increases, the magnitude and slope of the electric field 

increases. In the region where dust particles are stably trapped 

(2-8 mm above the lower electrode), the sheath electric field 

predicted by the fluid model is approximately linear.  The 

addition of the box increases the magnitude of the electric field 

and flattens the slope slightly.  The shift in the minimum of the 

potential makes the non-linearity in the sheath electric field an 

important factor in the stability of dust structure which span an 

appreciable vertical extent, such as a vertical chain.  The effect 

becomes more pronounced at lower driving potentials (Figure 

4a) and at lower pressures (Figure 4b), as the plasma density is 

reduced. The lower plasma density results in an increased 

shielding length, which allows the charge on the box walls to 

have a greater impact on the electric field within the box.  
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Fig. 4. (Color online) Vertical electric field along the midline 

of the box for (a) constant gas pressure, P = 150 mTorr, with 

varying driving potential and (b) constant driving potential VPP 

= 60 V with varying pressure. The green circles denote the 

sheath electric field, the blue diamonds indicate the combined 

electric fields of the sheath and box. 

 

 

 

The equilibrium charge on dust particles was also calculated 

for the same set of plasma conditions at various locations within 

the box, with the charge of a particle in the center of the box as 

a function of height above the lower electrode shown in Figure 

5.  The magnitude of the particle charge decreases as it 

approaches the lower electrode; however, as the vertical electric 

field increases in magnitude, there is an extended vertical 

region in which the electric force can balance gravity. 

Acceleration maps can be constructed for the various plasma 

conditions (Figure 6 a,c) and compared with acceleration maps 

constructed from experimental data taken for similar plasma 

conditions as described in Section IIC (Figure 6 b,d).  It should 

be noted that the numerically-derived acceleration map does not 

correctly account for the changing screening length as a particle 

approaches the box walls.  However, the agreement along the 

midline of the box is fairly good. At lower pressures, the 

experimental and numerical acceleration maps show less 

agreement (Fig. 7). This indicates that the expanding sheaths 

from the box walls need to be treated in a manner which takes 

into account the non-linear nature of the sheath addition. 

 

 
 

Figure 5. Particle charge vs height above lower electrode. 

Plasma conditions are Pg = 150 mTorr, VPP = 60 V.  

V. DISCUSSION AND CONCLUSION 

A simple model was presented to calculate the charge 

collected on the walls of a glass box and determine how this 

charge alters the confining electric fields within the box.  The 

comparison of the numerical and experimental results for the 

electric field inside the box indicate that for high powers the 

numerical model provides both qualitative and quantitative 

agreement in the vertical direction along the midline of the box, 

as shown in Fig. 6.  Due to the changing plasma conditions in 

the vertical direction, there is an extended region where the 

vertical acceleration provided by the electric field exceeds that 

of gravity, which allows the stable trapping of extended vertical 

structures such as dust strings.  The model does not take into 

account the formation of sheaths next to the box walls.  At low 

power the sheaths above the lower electrode and from the box 

walls expand, and the overlapping sheaths add in a non-linear 

manner.  In this case, the model, which assumes the linear 

addition of the electric fields, does not match the experimental 

results (Figure 7).  Thus the electric field within the box is quite 

different from that in the sheath above the bare lower electrode. 
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Figure 6. (Color online) Acceleration maps for charged dust particles within the box in the (top row) vertical and (bottom row) 

horizontal directions. The images on the left were generated by the numerical model (150 mTorr and 60 Vpp) and those on the right 

were measured by experiment (140 mTorr, driving potential 66 Vpp).  The color bar gives the acceleration in units of g. 
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Figure 7. (Color online) Acceleration maps for charged dust particles within the box in the (top row) vertical and (bottom row) 

horizontal directions. The images on the left were generated by the numerical model (100 mTorr and 60 Vpp) and those on the right 

were measured by experiment (100 mTorr, driving potential 66 Vpp). The color bar gives the acceleration in units of g. 
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