
ABSTRACT

Improving the Learning Platform for the Leukocoria Detection Project

James Boer, M.S.

Mentor: Gregory J. Hamerly, Ph.D.

In this paper we describe a new and significantly improved learning platform

for the leukocoria detection project. We have developed an easily maintainable and

extensible system that can train hundreds of semi-random convolutional neural net-

works very quickly on GPUs. Docker is used to enable simple and platform-agnostic

deployment of the system. The Torch machine learning library is used to train the

convolutional neural networks and a PostgreSQL database is used to store the train-

ing results. A literature review of recent convolutional neural network research is

done to find methods of improving accuracy. Training results are promising, with

single-network performance at 96.6% using minimal data and 99.5% using data aug-

mentation.



CHAPTER ONE

Introduction

Retinoblastoma (Rb) is the most common ocular malignancy in children, oc-

curring in 1 in 18,000 to 30,000 live births worldwide (Abramson and Schefler 2004).

A child with Rb can develop one or more tumors in one or both eyes. Left untreated,

retinoblastoma can advance towards the brain and cause death. Early detection al-

lows treatments that can prevent death or surgical removal of the eye (Abramson and

Schefler 2004).

The most common symptom of Rb is a white reflection emitted from the retina

and seen through the pupil. The reflection of light off the tumor causes the white

color. This symptom is called leukocoria and is present in 60% of reported Rb cases

in the United States (Abramson and Schefler 2004). It has been concluded that the

intensity of leukocoria is an indicator of the state of the malignancy (Abdolvahabi,

Taylor, Holden, Shaw, Kentsis, Rodriguez-Galindo, Mukai, and Shaw 2013). An

example of a normal eye can be seen in 1.1a compared to a leukocoric eye in 1.1b.

Leukocoria does not always indicate Rb, as it can also indicate several other ocular

diseases (e.g. Coats’ disease and cataracts).

(a) normal (b) leukocoric

Figure 1.1. Examples of a normal and leukocoric eye. Credit: Ryan Henning et al.
(2014)

1



Rb is most common in children age 5 or less, with most diagnoses occurring

between 1 and 2 years of age (Ries, Smith, Gurney, Linet, Tamra, Young, Bunin,

et al. 1999). While physicians screen for leukocoria, parents often detect it first

(from pictures of their child), but are not aware of its connection to Rb. Therefore,

automated leukocoria detection is valuable, as it increases the likelihood of earlier

diagnosis of Rb or other ocular diseases. This offers motivation for the leukocoria

detection project.

The goal of our project is to improve on the previous work done on leukocoria

detection. This previous work and its known deficiencies are discussed in Chapter

3, which will provide motivation for our improvements. Ultimately, we develop an

easily maintainable and extensible system that can train hundreds of semi-random

convolutional neural networks very quickly on GPUs. Docker is used to enable simple

and platform-agnostic deployment of the system. The Torch machine learning library

is used to train the convolutional neural networks and a PostgreSQL database is

used to store the training results. A literature review of recent convolutional neural

network research is done to find methods of improving accuracy. Training results are

promising, with single-network performance at 96.6% using minimal data and 99.5%

using data augmentation.

2



CHAPTER TWO

Neural Networks and Convolutional Neural Networks

In this chapter we discuss neural networks and convolutional neural networks,

and explain why convolutional neural networks are well-suited for the task of detecting

leukocoria.

2.1 Neural Networks

Neural networks (NNs) are supervised machine learning models that are in-

spired by the biological connections in the brain. By training on some inputs and

labels, the neural network will model some function that allows its outputs to match

the given labels.

Traditional feed-forward neural networks are composed of multiple layers of

neurons, where each neuron in a layer is connected to each neuron in the following

layer by some learnable weight. Typically these weights are learned from the error

backpropagation algorithm. The input to each neuron is composed of the dot product

of the value and weight of its input neurons, to which some non-linearity is applied

using an activation function like the hyperbolic tangent.

2.2 Convolutional Neural Networks

Traditional feed-forward neural networks are not well-suited for image classi-

fication. This is because neural networks treat all RGB values as independent. This

ignores the significance of what an image is. When we look at images, we use the

neighbors of pixels in order to determine where objects and features of objects begin

and end. The idea behind convolutional neural networks (CNNs) is to change the

data representation into something more useful for a fully-connected neural network

to classify.

3



Figure 2.1. A fully-connected neural network. Credit: Ryan Henning et al. (2014)

Figure 2.2. A single neuron in a neural network. Credit: Wikimedia

Convolutions are used to change the data representation. A convolution is

simply a filter that “slides” over an image, computing the dot product of the filter

weights and the image values. See Figure 2.3 for an illustration. In a CNN, an

activation function is applied to each convolution result to provide non-linearity.

The filter weights in a convolution layer are learnable parameters, i.e. the

CNN will learn the convolution filter weights that minimize the error. In the first

layer of convolutions, primitive features like edges and colors are learned to be found.

As convolution layers are stacked on top of each other, complex combinations of the

features of previous layers are learned. With enough layers, things like faces and cars

can be easily recognized.

4



Figure 2.3. A convolution illustration. Credit: Standord CS231n (2015)

Normally after one or more convolution layers a pooling layer is used to de-

crease data size. The most common pooling operation is the 2 × 2, stride 2 kernel

that performs the max operation. See Figure 2.4 for an illustration.

Figure 2.4. A pooling illustration

After successive convolution, activation, and pooling layers, one or more fully-

connected layers are used, with one for output. This style of architecture for CNNs

is very common. It can be easily generalized in the following form:

INPUT → [[CONV → ACT ] ∗N → POOL?] ∗M → [FC → ACT ] ∗K → FC

where N,M,K are positive integers, INPUT indicates input data, CONV indicates

a convolution layer, ACT indicates an activation function, POOL indicates a pooling

5



layer, and FC indicates a fully-connected layer. The question mark after POOL

indicates that pooling is optional after each CONV → ACT .

Figure 2.5 shows an example CNN with an image of an eye as input. There

are two convolution layers with pooling after each (N = 1,M = 2) followed by one

hidden fully-connected layer (K = 1) and one fully-connected output layer.

Figure 2.5. A convolutional neural network. Credit: Ryan Henning et al. (2014)

CNNs have been shown to provide state-of-the-art performance in many image

recognition problems. A recent example is ResNet, which achieved a 3.57% classifi-

cation error in ImageNet (He, Zhang, Ren, and Sun 2015a). This is impressive and

is nearing human-level performance. It is because CNNs are so good at classifying

image data that we use them for leukocoria detection.

6



CHAPTER THREE

Previous Work

Henning et al. developed neural networks to automate the detection of leuko-

coria in images (Henning, Rivas-Perea, Shaw, and Hamerly 2014). The authors

achieved a classification accuracy of less than 3% on three classes: normal, leuko-

coric, and pseudo-leukocoric (a false leukocoria resulting from the white LED flash

used by mobile phones). This chapter is a summary of the their work. See (Henning,

Rivas-Perea, Shaw, and Hamerly 2014) for more detailed information.

3.1 Data

The data came from two sources: recreational photographs contributed by

families of children with Rb and recreational photographs gathered from Flickr. The

authors analyzed these images and extracted three types of eye crops: normal (437 eye

images), leukocoric (222), and pseudo-leukocoric (173). The normal eyes came from

both data sources, the leukocoric eyes came from the images of children with Rb, and

the pseudo-leukocoric eyes came from Flickr. The authors performed ground-truth

classification of each eye image. They also assumed that the images from Flickr do

not contain true leukocoria, as leukocoria of the type we are seeking (a reflection off

of the retina) is quite rare.

3.2 Experimentation and Results

The authors experimented on several neural network architectures, including

traditional neural networks and convolution neural networks (CNNs). Network inputs

were 40 × 40 raw RGB images. They used ten-fold cross validation on ten different

crops of the data, with ten corresponding networks acting as an ensemble.

7



Networks 1 through 5 were traditional feed-forward fully-connected neural

networks. They each used one hidden layer with a hyperbolic tangent squashing

function. The number of hidden neurons was variable. Networks 6 through 20 were

CNNs. They each used a kernel of size 5×5, a hyperbolic tangent squashing function, a

2×2 max-pooling layer after the first two convolution layers, and two fully-connected

layers. The number of kernels per convolution layer, the number of convolution

layers, and the number of fully-connected neurons were all variable. The authors used

gradient descent with momentum (SGDM) to train networks 1-15 and RMSPROP

for networks 16-20.

Table 3.1 contains the results of training. Network 16 performed the best

with an error rate of 2.40 ± 0.74%. This result is interesting because it has the

least number of free parameters relative to the other networks. This indicates that a

network with more capacity is not necessarily better than a network with less capacity

for generalized performance.

id Convolution Layers Training Method Fully-Connected Layers Layer Types # Free Parameters Error Rate ± Std. Error

1 — SGDM 6-3 h-s 28,827 6.37 ± 1.29%
2 — SGDM 12-3 h-s 57,651 5.89 ± 1.19%
3 — SGDM 25-3 h-s 120,103 6.49 ± 1.18%
4 — SGDM 50-3 h-s 240,203 6.73 ± 1.13%
5 — SGDM 100-3 h-s 480,403 6.97 ± 1.12%
6 7 SGDM 5-3 h-h-s 11,898 5.05 ± 0.88%
7 14 SGDM 5-3 h-h-s 23,767 5.05 ± 0.98%
8 21 SGDM 5-3 h-h-s 35,639 5.17 ± 0.97%
9 21 SGDM 10-3 h-h-s 69,679 5.41 ± 1.02%
10 21 SGDM 15-3 h-h-s 103,719 5.29 ± 0.91%
11 7-7 SGDM 5-3 h-h-h-s 3,502 3.97 ± 0.83%
12 14-14 SGDM 5-3 h-h-h-s 9,431 4.09 ± 0.76%
13 21-21 SGDM 5-3 h-h-h-s 17,810 3.73 ± 0.69%
14 21-21 SGDM 10-3 h-h-h-s 22,975 4.21 ± 0.66%
15 21-21 RMSPROP 15-3 h-h-h-s 28,140 4.33 ± 0.88%
16 7-7-7 RMSPROP 5-3 h-h-h-h-s 3,334 2.40 ± 0.74%
17 14-14-14 RMSPROP 5-3 h-h-h-h-s 11,545 2.88 ± 0.83%
18 21-21-21 RMSPROP 5-3 h-h-h-h-s 24,656 3.00 ± 0.83%
19 21-21-21 RMSPROP 10-3 h-h-h-h-s 25,621 2.88 ± 0.61%
20 21-21-21 RMSPROP 15-3 h-h-h-h-s 26,586 3.73 ± 0.64%

Table 3.1. Results from old neural networks

8



3.3 Mobile Deployment

The authors trained another neural network and deployed it in an iOS app

and an Android app. These apps find faces and corresponding eyes in images, take

crops of the eye, and feed the eye crop through the network. The user is notified

when some eye appears to be leukocoric. There is a scanning mode that goes through

existing photos and a screening mode that checks a screen-view video feed in real-

time. Another requirement for our work is that these apps can be updated to use the

newly trained neural networks.

3.4 Known Deficiencies

The results that Henning obtained are good, but there are also a number of

known deficiencies that should be addressed.

Training Time A network that trains quickly allows the researcher to make rapid

adjustments to the network with readily available results. If it takes too

long to train, finding a good network becomes more time consuming. This

system runs on the CPU and can take up to 36 hours to train the 10-network

ensemble. As more and more training data is gathered, this training time

would only get worse. Training time needs to be improved.

Difficulty of Use The training code is written in C++, is bare-bones, and not well

documented. This makes it difficult to be able to make changes, add features,

and rapidly prototype. It should be much easier to write network architecture

and training code.

Performance While an error rate of 3% is good, it is reasonable to strive for bet-

ter performance given the somewhat simple and yet very important subject

matter. Consider that CNNs can achieve 99.8% accuracy on MNIST, which

could possibly be considered to be similar in difficulty to leukocoria detec-

tion. Given more training data, we also want to make sure performance is

9



well-generalized, with testing and validation accuracy very close to the train-

ing accuracy.

Mobile Network The CNN that was used on iOS and Android was documented but

we are not sure what the performance actually is. The app network doesn’t

seem to work as well as one would expect given the error rates shown here.

We need a network with documented performance that works better in the

real world.

Classification Jitter The ten crops these networks trained on were not random.

Intuitively, one would expect that these networks would favor eyes located

nearby one of those ten crops. This behavior is indeed noticed in the CRA-

DLE app deployed for iOS and Android. This behavior needs to be elimi-

nated.

These deficiencies give us an open-ended, yet understandable problem to solve. We

need to provide a system that trains new CNNs much more quickly, allows the user

to make changes to network architecture and training code very easily, which will in

turn allow CNNs with better performance to be trained.

10



CHAPTER FOUR

Implementation

In this chapter we discuss the work that we did on the improved system. We

start with some early investigations which show the difficulty of using traditional

approaches. We later show how these difficulties were overcome and discuss how our

system improves over the existing one.

4.1 Early Investigations

We started by focusing on decreasing training time. Parallelizing network

training was the clear way to do this. We collaborated with Dr. Grabow on this

because of his expertise in parallel systems. We considered several different possible

ways of doing this.

4.1.1 Näıve Parallelization

Given several CPU cores, we can give each core a subset of the training data

to forward propagate in parallel, accumulate error, and backpropagate the error. The

pseudocode looks like the following:

while not converged do

for each minibatch in parallel do

err ← cnn.forward(minibatch)

err total← err total + err

end for

cnn.backprop(err total)

err total← 0

end while

11



We investigated using OpenMP to do this parallelization for us automatically.

Either way, there are a few problems with this approach. First, moderately extensive

re-working of the existing code would be required. Second, we would still end up with

a system that is difficult to change or update for future users. And finally, it’s not

obvious how much of a speed-up would be gained, or if it would even be worth the

effort.

4.1.2 CUDA

We also considered writing our own CUDA kernels to do the convolutions,

activations, pooling, etc. in parallel on a graphics processing unit (GPU). GPUs

can have several thousand computation cores and are known to significantly speed

up CNN training. The speed-up from training on a GPU would almost certainly be

superior to our näıve parallelization. But, we would need to completely re-write all

training and neural network code, and the resulting code would still be difficult to

change or update for future users due to the low-level of C++ and CUDA kernels.

4.1.3 The Solution

During our investigation of how to speed up training, we discovered that there

already existed several deep learning libraries which seem to fulfill our criteria for the

new system. They took advantage of GPUs to processes training data in parallel,

used scripting languages which makes making changes to the code relatively simple,

and had dedicated open-source communities with promising support levels. Some of

the libraries we investigated were Torch, Theano, Caffe, and deeplearning4j. We will

discuss the one we picked in a future section.

4.2 Design

The system design is actually quite simple, as there are two distinct and pri-

mary things that need to be done by the system: data loading and repeated random-

ized CNN trials.

12



4.2.1 Data Loading

Vaclav Cibur developed a very nice image tagging and database platform called

Facetag, from which we need to pull tagged examples of healthy and leukocoric eyes

(Cibur 2016). The database uses PostgreSQL with the schema seen in Figure 4.1.

The fields that are relevant for our work are described as follows:

image.id primary key for an image

image.data the image itself, encoded as a binary string

eye tag.id primary key for an eye tag

eye tag.left, top, width, height together these define a bounding box around an

eye

eye tag.review result indicates if an eye tag has been reviewed or not

eye tag.label indicates if an eye tag is healthy or leukocoric

eye tag.image id foreign key to the image.id which corresponds to this eye tag

Data loading needs to go through all eye tags that have been accepted by a

reviewer which are healthy or leukocoric, download the associated image, create a

crop based on the bounding box, and save them to disk. We save to disk because

generating these crops on-the-fly takes far too long, as moving around many gigabytes

of images even within a single machine, can take a very long time.

Data augmentation artificially increases the amount of available training data.

The idea behind it is to augment existing data in random ways so that the network

becomes well-generalized i.e. doesn’t prefer any particular image scale, rotation, etc.

as input. This means we need create multiple variations of each training example,

with random rotations, crops, scales, and flips.

13



Figure 4.1. Relevant portion of the Facetag database schema

4.2.2 Randomized CNN Experiments

The end goal of the project is to easily find some CNN that maximizes general-

ized performance. Therefore, dozens if not hundreds of CNNs will need to be trained

through a randomized experimentation process. That is, given some parameters to

randomize and ranges for those random parameters, we should have a system that

will generate and train a semi-random CNN and save the results for later viewing.

Through this process we can see which models and parameters work well and which

don’t. Successive batches of experiments could then be run based on those models

and parameters to produce even better CNNs. One could think of this as a guided

evolutionary algorithm that may be repeated as desired.

Some network and learning parameters that should be randomized in this

manner include:

• Maximum number of epochs

• Maximum number of epochs to try to find a new error minimum (for early

stopping)

• Starting and minimum learning rate

• Learning rate decay rate, or saturation epoch

14



• Momentum

• Number of convolution layers

• Size of convolution kernels

Exactly what gets randomized will be discussed in the experimentation chap-

ter.

4.3 Technologies Used

This section describes the technologies used in building the new system.

4.3.1 Docker

Docker is a program that automates the deployment of applications inside

software containers. It provides a layer of abstraction and automation of operating-

system-level virtualization. It uses the resource isolation features of the Linux kernel

to allow independent containers to run within a single Linux instance, avoiding the

overhead of starting and maintaining virtual machines.

Docker images are state snapshots of an operating system. Docker containers

are isolated operating systems spawned from some image which can be running or

not running. There can be many containers spawned from a single image. Changes

made to a container can be pushed to the parent image in a fashion similar to Git.

Resources like GPUs and ports can be shared between containers simply by passing

some parameters into a container start command. Docker is used for its ability to

isolate concerns, share resources, and the ease with which it makes deployment.

4.3.2 Torch

Torch is a scientific computing framework with wide support for machine learn-

ing algorithms. It is easy to use and efficient, thanks to an easy and fast scripting

language, Lua, and underlying C and CUDA implementations. It includes some im-

portant features like neural network and hyperoptimization libraries, ports to iOS and

Android, and an open-source community. For these reasons, it is used in our system.

15



We tested the iOS and Android ports and the neural network and hyperoptimization

libraries to verify they fulfill the requirements from Section 4.2 (with the addition of

another database for storing hyperoptimizaiton results).

16



CNNs are very easy to build in Torch. Here’s the Torch definition (using the

Lua programming language) of Network 16 from Figure 3.1:

local net = nn.Sequential()

-- 3 input channels, 7 output channels, 5x5 kernel, 1x1 stride, tanh, 2x2

pool, 2x2 stride

net:add(nn.SpatialConvolution(3, 7, 5, 5, 1, 1))

net:add(nn.Tanh())

net:add(nn.SpatialMaxPooling(2, 2, 2, 2))

-- 7 input channels, 7 output channels, 5x5 kernel, 1x1 stride, tanh, 2x2

pool, 2x2 stride

net:add(nn.SpatialConvolution(7, 7, 5, 5, 1, 1))

net:add(nn.Tanh())

net:add(nn.SpatialMaxPooling(2, 2, 2, 2))

-- 7 input channels, 7 output channels, 5x5 kernel, 1x1 stride, tanh, 2x2

pool, 2x2 stride

net:add(nn.SpatialConvolution(7, 7, 5, 5, 1, 1))

net:add(nn.Tanh())

net:add(nn.SpatialMaxPooling(2, 2, 2, 2))

-- re-size for fully-connected layers

net:add(nn.View(inputSize))

-- fully connected layer, 5 input channels, 3 output channels (classes)

net:add(nn.Linear(inputSize, 5))

net:add(nn.Linear(5, 3))

17



Training on the CPU is straightforward as well. Note that this is simply for

illustration, as this is not how we trained the networks.

local criterion = nn.MSECriterion()

while not converged do

for i = 1, #examples do

-- feed it to the neural network and the criterion

criterion:forward(net:forward(examples[i]), target[i])

-- train over this example in 3 steps

-- (1) zero the accumulation of the gradients

net:zeroGradParameters()

-- (2) accumulate gradients

net:backward(input, criterion:backward(net.output, target[i]))

-- (3) update parameters with a 0.01 learning rate

net:updateParameters(0.01)

end

end

4.3.3 PostgreSQL

The Facetag database stores the images on a PostgreSQL database, so we need

to interface with that database to read images, eye tags, etc. The hyperoptimization

library requires a PostgreSQL database to write hyperoptimization results. Therefore,

we use two PostgreSQL databases in our system.

18



4.4 Deployment

This final section of the chapter is about how we deployed the system. Refer

to Appendix A for the User Guide. See Figure 4.2 for a diagram of the whole system.

4.4.1 Docker and Hyperoptimization

The hyperoptimization container contains the hyperoptimization database,

which stores the network training results.

4.4.1.1 Hyperoptimization Dockerfile. We choose to build using a Dockerfile,

as it contains all the setup instructions necessary for Docker to create a Docker image.

In the event that an image is lost, it can simply be recreated from a Dockerfile.

Dockerfiles are only a handful of KB in size, which makes them nice to use with some

version control system like Github.

4.4.1.2 Hyperoptimization Image . The hyperoptimzation image “hypero-

db” is based on the vanilla Ubuntu 14.04 image. When “hypero-db” is built, it installs

PostgreSQL, creates a database our hyperoptimization code is expecting, makes it

accessible, and stops PostgreSQL.

4.4.1.3 Hyperoptimization Container . When container “hypero-db” is

spooled up from image “hypero-db”, all we do is tell it to restart PostgreSQL.

4.4.2 Docker and Learner

The learner container contains all of the Torch code necessary to fulfill the

requirements from Section 4.2. It has links to the facetag database (which contains

the images for training), the hyperoptimization database (which contains the network

training results), and a host volume for simple data persistence. Many learners can

be created, which can be run in parallel. Our training platform has two GPUs, so we

create two learner containers.

19



4.4.2.1 Learner Dockerfile. We use a Dockerfile to build the learner for the

same reasons we used it before.

4.4.2.2 Learner Image. The learner image “learner” is based on the vanilla

CentOS 7 image. When “learner” is built, several things get installed: common de-

pendencies like gcc, vim, git, etc., CUDA dependencies, CUDNN dependencies, Torch

dependencies, CUDA itself, CUDNN itself, and Torch itself, useful Torch libraries,

environment variables, and the PostgreSQL connection settings for “hypero-db”.

4.4.2.3 Learner Container . When container “learner” is spooled up from

image “learner”, we setup a volume that is shared with the host, and link it to the

“facetag-db” and “hypero-db” containers (which must already be running). We also

attach the necessary Nvidia devices to make GPU access possible.

20



Figure 4.2. Deployment diagram; solid arrows indicate Docker commands, dashed
lines indicate Docker links. The shared host volume is a link to a shared directory on
the host, not a container, hence the different color.

21



CHAPTER FIVE

Improvements

The original leukocoria detector was trained in 2014. Since then, many ad-

vances have been made in deep learning research. Part of our project included

reviewing the literature and attempt to improve network performance using these

innovations and new rules-of-thumb. Unless otherwise stated, these concepts come

from Stanford’s CS231n Spring 2016 course, “Convolution Neural Networks for Visual

Recognition” (Karpathy and Johnson 2016).

5.1 Convolutions

While there perhaps is no right or wrong answer when it comes to the use

of convolutions, some concepts which are known to work well have been adopted as

“best-practice.”

5.1.1 Kernel Size and Stacks

The use of convolution kernels larger than 3 × 3 has fallen out of favor in

CNNs. Consider the 3 × 3 convolution kernel with C channels. A 3 × 3 kernel will

use 9C2 parameters with a receptive field of 3 × 3, a stack of two 3 × 3 kernels will

use 18C2 parameters with a receptive field of 5× 5, and a stack of three 3× 3 kernels

will use 27C2 parameters with a receptive field of 7×7. Compare this to a 7×7 filter

with C channels, which would use 49C2 parameters with a receptive field of 7 × 7.

Parameters can be saved by using stacks of 3 × 3 kernels rather than larger kernels.

Stacks also provide the addition of more non-linearity. For these reasons, 3×3 kernels

are by far the most common in practice.

22



5.1.2 Padding

Convolution kernels of size greater that 1 × 1 decrease the size of the data.

For example, given a 40× 40 image a 3× 3 convolution operating on that image will

result in a 38× 38 image. This is not optimal if a deep network is desired. Therefore,

padding is introduced, which is simply the addition of zeros around the border of

the data. Given a convolution kernel stride of 1, the amount of padding needed is

given by the formula P = b(F − 1)/2c, where P is the amount of padding and F is

the size of the convolution kernel. Padding is also likely to improve performance as

information on the borders doesn’t get washed away due to minimal coverage.

5.2 Activation Functions

Traditional CNNs used either the sigmoid (σ(x) = 1/(1 + e−x)) or the hy-

perbolic tangent (tanh(x) = 2σ(2x) − 1) as activation functions. However, there is

a severe problem with both functions in CNNs: they saturate as the input x goes

to ±∞. This means that the gradient at each end is near zero, resulting in the er-

ror gradient disappearing during error backpropagation. These neurons pass minimal

gradient back to connected neurons, which in turn pass even less gradient back to their

connected neurons. The deeper the network the bigger this problem becomes, as less

and less gradient is passed back through the layers. Sigmoid also has the additional

problem of the output not being zero-centered. Therefore, the hyperbolic tangent is

always preferred over sigmoid in practice. For the rest of this section, we discuss new

activation functions that outperform sigmoid and the hyperobolic tangent.

5.2.1 ReLU

The Recitified Linear Unit (ReLU) is defined as f(x) = max(0, x). ReLUs

have been shown to speed up training and improve network performance over sigmoid

and the hyperbolic tangent. This is probably due to ReLUs being non-saturating and

23



Figure 5.1. sigmoid

Figure 5.2. hyperbolic tangent

24



Figure 5.3. ReLU

constant gradient on unity on positive inputs, as well as being computationally trivial

in both forward and backward directions (Krizhevsky, Sutskever, and Hinton 2012).

The biggest drawback of ReLUs is that on negative inputs there is no output

on the forward pass and no gradient on the backward pass. This means that under

certain conditions, some ReLUs in a network will never be activated and will never

offer contributions to the weights of neurons that precede them. In fact, in some

CNNs up to 40% of ReLU units are never activated, and therefore never useful for

output on forward passes or updating weights on backward passes..

5.2.2 LReLU and PReLU

The Leaky Rectified Linear Unit (LReLU) is defined as f(x) = max(0, x)+α∗

min(0, x), α ∈ [0, 1). LReLUs were introduced to solve the main problem with ReLUs

(mentioned above) while retaining the advantages. The Parametric Rectified Linear

Unit (PReLU) is the same as the LReLU, except that for PReLUs, α is a learnable

parameter. LReLUs have been shown to outperform ReLUs (Maas, Hannun, and Ng

25



Figure 5.4. LReLU/PReLU, α = 0.5

2013) and PReLUs have been shown to outperform both (He, Zhang, Ren, and Sun

2015b).

5.2.3 RReLU

The Randomized Rectified Linear Unit (RReLU) is defined as f(x) = max(0, x)+

α ∗min(0, x), α ∼ U(l, u), l, u ∈ [0, 1). RReLUs have been shown to outperform all

previously mentioned activation functions (Xu, Wang, Chen, and Li 2015).

5.2.4 ELU

The Exponential Linear Unit (ELU) is defined as f(x) = max(0, x)+min(0, α∗

(ex − 1)). One of the problems with LReLU, PReLU, and RReLU units concerns

negative inputs: while passing some gradient back is good, saturation is actually a

nice property. Details about why this is can be found in the original paper (Clevert,

Unterthiner, and Hochreiter 2015), which also shows the ELUs can outperform all

previously mentioned activation functions yet again.

26



Figure 5.5. RReLU, l = 0.125, u = 0.333

Figure 5.6. ELU, α = 0.5

27



5.3 Pooling

Pooling is used to decrease the size of data as it moves through the network.

With the introduction of convolution padding, pooling layers are the only layers that

do this dimension reduction. The most common pooling operation is the 2 × 2 max

pool with stride 2.

5.3.1 Overlapping Pooling

Sometimes a 3×3 max pool with stride 2 is used. In some cases the overlapping

action that this pooling presents may be beneficial. Any larger max pooling is too

destructive to be useful.

5.3.2 Convolution Pooling

Some researchers don’t like pooling because it destroys information. They

avoid the use of pooling altogether simply by using convolution kernels of stride 2 in

lieu of a traditional convolution-pooling pair. This is normally done with kernel size

2× 2 and padding 0, or kernel size 3× 3 and padding 1. State-of-the-art performance

is achieved in some tasks with this configuration (Springenberg, Dosovitskiy, Brox,

and Riedmiller 2014).

5.4 Other

5.4.1 Dropout

One serious problem with CNNs is their tendency to over-fit and develop

neuron co-adaptation during training. Dropout is a technique designed to mitigate

this.

The idea is to randomly not use some neurons and their connections during

training. At training time, each neuron in layer i has probability pi of not being used.

During evaluation, the output of layer i is multiplied by pi to prevent saturation.

Intuitively, training is done on a randomly sampled subset of the original network,

28



resulting in a sort of built-in ensemble. See Figure 5.7 for a graphical representation

of dropout.

(a) Before dropout (b) After dropout

Figure 5.7. Graphical representation of dropout. Credit: blog.christianperone.com

Dropout has been shown to be useful in most domains, including image clas-

sification. For example, dropout has been used to improve upon already state-of-

the-art performance on SVHN, ImageNet, CIFAR, and MNIST (Srivastava, Hinton,

Krizhevsky, Sutskever, and Salakhutdinov 2014).

5.4.2 Weight Initialization

Proper weight initialization can mean the difference between good performance

and state-of-the-art performance. Kaiming initialization takes advantage of proper-

ties of rectifier-based networks in order to boost performance over more traditional

initializations (He, Zhang, Ren, and Sun 2015b).

29



CHAPTER SIX

Experimentation

6.1 Method

With the new system implemented, we move on to experimental results. We

use the same data as discussed in Chapter 3.

6.1.1 Round 1

For the first round of experiments, we desire to provide a baseline for per-

formance, so we make several changes to provide that reasonable baseline: the two

classes are set to be evenly represented, the various crops from the previous work are

not used, nor is the corresponding CNN ensemble. As detection of pseudo-leukocoria

is no longer important, we ignore the images corresponding to that class. All of these

slight changes result in 297 examples of leukocoria and 297 examples of normal eyes.

The validation and testing sets each get 10% of the data.

We set up a battery of 600 CNNs to train, validate, and test. Because we

have two graphics cards, each is responsible for 300 CNNs. Each CNN is trained

using mini-batch gradient descent with momentum for a minimum of 50 epochs and

a maximum of 250. Convolutions of size 3× 3 were used, as was padding. The entire

battery took about 3 hours, compared to the several hours it took to train a single

network using the same data on the old system.

Each of the 600 CNNs is built from many randomly selected values. This

allows us to search for the CNN that performs the best for the given problem. The

random values are selected from ranges as follows:

Start Learning Rate The learning rate for the first epoch, selected from U(0.001, 1).

30



Minimum Learning Rate The minimum learning rate as a fraction of the start

learning rate, selected from U(0.001, 1).

Momentum The momentum coefficient, selected from U(0.0, 0.9).

Saturation Epoch The epoch at which the learning rate becomes the minimum

learning rate (linear decay), selected from N(250, 50).

Max Out Norm Normalizes the neuron weights as seen in (Hinton, Srivastava,

Krizhevsky, Sutskever, and Salakhutdinov 2012), selected from {x|1 ≤ x ≤

4, x ∈ N}.

Convolution Stacks The number of convolutions before pooling (N from Chap-

ter 2), selected from {x|1 ≤ x ≤ 2, x ∈ N}.

Start Convolution Filters The number of convolution filters on the first layer was

fixed to 8.

Final Convolution Filters The number of convolution filters on the last layer, with

intermediate layers increasing linearly from start to final, selected from {x|3 ≤

x ≤ 32, x ∈ N}.

Convolution Layers The number of convolution layers (M from Chapter 2), se-

lected from {x|2 ≤ x ≤ 4, x ∈ N}.

Activation The activation function to use, selected uniformly from {Relu, PReLU,

RReLU, ELU}.

Pool Size The size of the pooling filter, selected from {x|2 ≤ x ≤ 3, x ∈ N}.

Pool Method The pooling method to use, selected uniformly from {Conv, Max}.

FC Layers The number of fully-connected layers to use (K from Chapter 2), selected

from {x|1 ≤ x ≤ 2, x ∈ N}.

31



FC Neurons The number of neurons in each fully-connected layer, selected from

{x|10 ≤ x ≤ 100, x ∈ N}.

FC Dropout If dropout is used (which itself is given a probability of 50%), the value

of p for dropout on the fully connected layers, selected from U(0.2, 0.5).

6.1.2 Round 2

For the second round of experiments, we determine how valuable more data

is. Therefore, we include all of the crops from the previous work, which means a 10x

increase in training data. We set up another battery of 600 CNNs to train, validate,

and test, all using the same criteria and randomly assigned values as before except

for the following additions:

Convolution Kernel Size The size of the kernels, selected uniformly from {3, 5}.

Convolution Dropout If dropout is used (which itself is given a probability of

50%), the value of p for dropout on convolution layers, selected from U(0.1, 0.2).

6.2 Results

The 50 top-performing networks for both batteries are contained in Figure B.1

and Figure B.2. We see that even with minimal data we can train a single network

that is nearly as good as the entire ensemble from the previous work (96.6% vs 97.6%

accuracy). As ensembles typically add 2-3% to classification accuracy (Karpathy and

Johnson 2016), this shows that the improvements we added are indeed improving

network performance. Using the extra crops sees a network with an accuracy of

99.5%, which shows that we are indeed data limited.

Despite these good results, we are still skeptical of good real-world perfor-

mance. An example set of 297 unique eyes per class is not much, even with many

variations, and likely cannot be well-generalized to the real-world. We are curious to

see how much performance increases as more data becomes available and used.

32



CHAPTER SEVEN

Conclusion

We have developed a new system which makes training CNNs much easier

than before. The system uses GPUs to train CNNs significantly faster than before.

The use of a scripting language (Lua) and machine learning framework (Torch) al-

lows changes to be made quickly and easily. We leverage and expand existing Torch

libraries to make training hundereds of semi-random CNNs quite simple. Our de-

ployment on Docker allows simple, compartmentalized, and platform-agnostic devel-

opment deployment.

The networks we trained on this system used recent innovations in deep learn-

ing research. The results are promising, with a single network not using data augmen-

tation achieving 96.6% accuracy and another single network using data augmentation

achieving 99.5% accuracy.

33



CHAPTER EIGHT

Future Work

8.1 More data

Machine learning performance is heavily dependent on having lots of good

data. More batteries of CNNs need to be trained when more data becomes available.

We expect an accuracy of 99.8% to be feasible (because this problem is likely not

harder than MNIST, whose state-of-the-art accuracy is 99.8%).

8.2 More CNN innovations

There is an almost endless amount of new things to try to improve CNN

performance. Here is a small list of examples that would be interesting to investigate:

• Layer-sequential unit-variance initialization, which nearly achieves SOTA in

CIFAR-10 (Mishkin and Matas 2015)

• Fractional max pooling, which achieves SOTA in CIFAR-10 (Graham 2014)

• Generalized max-average pooling, which achieves SOTA in SVHN (Lee, Gal-

lagher, and Tu 2015)

• Dilated convolutions are mainly useful for dense captioning, but may be useful

here (Yu and Koltun 2015)

• Local contrast normalization, a classic and possibly helpful pre-processing

technique

• Interesting network architectures like ResNet, Network-In-Network, or Incep-

tion

8.3 Surprisingly, Torch is no longer king (or viable)

With the release of TensorFlow in late 2015, Torch seems to be losing favor in

the deep learning community. When we started working with Torch, Android and iOS

34



ports were both working. Unfortunately, support for those ports has effectively been

dropped, as neither one has been in good working condition since December 2015.

This is despite reasonable indications that they would be supported. TensorFlow has

a working Android port and an upcoming iOS port. It has a significantly larger con-

tributor base despite it’s much younger age (see https://github.com/tensorflow/

tensorflow vs https://github.com/torch/torch7), and has the full support of

Google. For these reasons, much of the work in this project must be replicated (and

preferably made even better) using TensorFlow.

35



APPENDICES

36



APPENDIX A

User Guide

Spending hours getting someone else’s code to run can be quite frustrating.

Thankfully, a lot of work was put into making it as easy as possible for future devel-

opers to get working on this project. This guide explains how to set up and use the

new system, which should be relatively painless.

A.1 Source Code

Start by getting the source code.

(1) As this project is designed to run on the Facetag server, ssh into it.

(2) Change the working directory to wherever the user desires the source code

to be. The author uses /home/grad/boer/shared for reasons that will be

evident later.

(3) Run git clone https://github.com/boerjames/leuko.

A.2 Hyperoptimization Database

Now that the code is obtained, set up the hyperoptimization database by doing

the following.

A.2.1 Build the image

(1) If necessary, change the working directory to leuko/docker/hypero.

(2) Run ./docker-build.sh. This step may take multiple tries to complete

successfully, as Docker still has some rough edges.

(3) Run docker images to verify the existence of the “hypero-db” image.

A.2.2 Run the container

(1) If necessary, change the working directory to leuko/docker/hypero.

37



(2) Run ./docker-run.sh.

(3) Run docker ps -a to verify the existence of the “hypero-db” container. If

it isn’t running, run docker start hypero-db.

A.3 Learner

Now that the hyperoptimization database is setup, continue by setting up the

learner.

A.3.1 Build the image

(1) If necessary, change the working directory to leuko/docker/learner.

(2) Run ./docker-build.sh. This step may take multiple tries to complete

successfully, as Docker still has some rough edges.

(3) Run docker images to verify the existence of the “learner” image.

A.3.2 Run the container

(1) If necessary, change the working directory to leuko/docker/learner.

(2) Run ./docker-run.sh SHARED NAME. The argument SHARED is the directory

from the host OS that will be readable from the container. This is use-

ful for persistent data. The argument NAME is the name of the container

that will be run. The author typically runs the following: ./docker-run.sh

/home/grad/boer/shared learner. If multiple learner containers are de-

sired, most likely for training using both GPUs, create another container

with the same shared directory but a different name.

(3) Run docker ps -a to verify the existence of the container. If it isn’t running,

run docker start NAME.

A.4 Clean Up

Sometimes Docker will leave behind broken or dangling image layers. To clean

these up do the following:

38



(1) Change the working directory to leuko/docker.

(2) Run ./docker-clean.sh.

(3) Be careful with this, as all unused layers will be permanently deleted from

the cache.

A.5 Train CNNs

Now that all the necessary components are built, we can train some CNNs.

A.5.1 Download Crops

Start by downloading crops from the Facetag database.

(1) If necessary, attach a “learner” container by running docker attach NAME,

where NAME is the name of the container.

(2) If necessary, change the working directory to leuko.

(3) Run th DownloadCrops.lua --password PASSWORD, where PASSWORD is the

password to the Facetag database. Ask Dr. Hamerly for this, as it is nowhere

to be found in our code on purpose.

(a) The script will run for at least an hour as there are several hundred

gigabytes of data to download in order to make the small crops.

(b) Inspect DownloadCrops.lua to see which command line options are

available.

(c) When the script is complete, the crops will be available at /root/

shared/data/normal and /root/shared/data/leuko.

A.5.2 Build Data Source

Now that the crops are available, we can build a usable data set.

(1) If necessary, attach a “learner” container by running docker attach NAME,

where NAME is the name of the container.

(2) If necessary, change the working directory to leuko.

(3) Enter the Torch REPL by running th.

39



(4) Run require ’./DataLoader.lua’.

(5) Run ds = DataLoader.loadData(DATA PATH, DATA SIZE, EQUAL REPRESENTATION,

TEST PERCENTAGE, VALID PERCENTAGE, VERBOSE), where the arguments should

be set as necessary. The author typically uses DATA PATH = ’/root/shared/data’,

DATA SIZE = {3,40,40}, EQUAL REPRESENTATION = true, TEST PERCENTAGE

= 0.15, VALID PERCENTAGE = 0.15, and VERBOSE = true.

(6) Run torch.save(’datasource.t7’, ds) to save the data set.

(7) Exit the Torch REPL by running os.exit().

(8) Move datasource.t7 by running mv datasource.t7 /root/shared/data.

A.5.3 Run Experiments

Now that we have prepared a data source, we can run lots of experiments. This

section can be done twice using a second “learner” container to use both GPUs.

(1) If necessary, attach a “learner” container by running docker attach NAME,

where NAME is the name of the container.

(2) If necessary, change the working directory to leuko.

(3) Run Hypero.lua --useDevice DEVICE, where DEVICE is the GPU to use,

either 1 or 2 as Lua is 1-indexed.

(a) There are many command line parameters to change, please see the file

to see what can be changed. Typically the author changes the command

line options in the source code itself.

(b) This script will train however many CNNs are specified, which can take

seconds, minutes, hours, or days. It may be possible to set up a script

that notifies the user via email when the training is complete, but we had

difficulty getting this to work due to restrictions on the host machine.

(c) Results such as the saved networks can be found in /root/shared/log,

/root/shared/unit, /root/shared/save. Delete these directories as

necessary to save space on the server.

40



A.5.4 Retrieve Results

When the experiments are complete, retrieve the results from the hyperopti-

mization database.

(1) If necessary, attach a “learner” container by running docker attach NAME,

where NAME is the name of the container.

(2) If necessary, change the working directory to hypero.

(3) Run th scripts/export.lua --batteryName BATTERY NAME --versionDesc

VERSION DESC --metaNames ’hostname’ --resultNames ’trainAcc,validAcc,testAcc’

--orderBy ’testAcc’ --desc, where BATTERY NAME is the name of the bat-

tery and VERSION DESC is the name of the version from when Hypero.lua

was run.

(4) A file hyper.csv with the sorted results of the experiments is created. Use a

program like Cyberduck to easily view it from a remote computer.

A.6 Complete

This concludes the section on how to get started using the new learning plat-

form for the leukocoria detection project. Enjoy!

41



APPENDIX B

Results

As the table of experimentation results is too large to fit in the main text, we

show it here.

42



h
ex

Id

sa
tE

p
o
ch

st
ar

tL
R

m
in

L
R

m
om

en
tu

m

m
ax

O
u
tN

or
m

ac
ti

va
ti

on

st
ar

tC
on

vo
lu

ti
on

F
il
te

rs

fi
n
al

C
on

vo
lu

ti
on

F
il
te

rs

co
n
vo

lu
ti

on
S
ta

ck
s

n
u
m

C
on

vo
lu

ti
on

L
ay

er
s

p
o
ol

M
et

h
o
d

p
o
ol

S
iz

e

d
ro

p
ou

t

fc
D

ro
p

ou
tP

ro
b

n
u
m

F
C

L
ay

er
s

n
u
m

F
C

N
eu

ro
n
s

tr
ai

n
A

cc

va
li
d
A

cc

te
st

A
cc

1330 311.0183382 0.08664861 0.000367362 0.235514973 2 PReLU 8 25 1 2 Max 3 TRUE 0.449836982 2 44 0.81512605 0.93220339 0.966101695
1356 187.5208854 0.202705933 0.092268488 0.427572363 4 ReLU 8 9 2 4 Conv 2 FALSE 0.272208137 2 44 0.905462185 0.949152542 0.966101695
1240 213.6346912 0.283124349 0.002534267 0.523135812 1 ReLU 8 24 1 2 Max 3 FALSE 0.340276113 1 100 0.754201681 0.915254237 0.949152542
1274 254.674558 0.008382632 8.62E-06 0.718215575 4 ELU 8 13 2 2 Max 2 FALSE 0.286491155 2 36 0.897058824 0.966101695 0.949152542
1019 275.3695583 0.003996147 0.003207279 0.626159006 4 RReLU 8 20 2 3 Max 3 FALSE 0.432442524 1 58 0.771008403 0.93220339 0.949152542
1042 272.0075339 0.114437759 0.064461206 0.178636424 2 RReLU 8 9 2 4 Conv 2 TRUE 0.200131979 2 16 0.888655462 0.966101695 0.949152542
1040 260.9178224 0.01824492 0.000300447 0.608124132 2 PReLU 8 19 1 3 Conv 3 FALSE 0.351659019 1 70 0.911764706 0.949152542 0.949152542
1273 264.5962948 0.142004225 0.007994054 0.53088616 2 RReLU 8 19 1 3 Conv 3 TRUE 0.248036839 1 36 0.932773109 0.966101695 0.949152542
941 262.9314895 0.072897218 0.000335597 0.63795725 3 ReLU 8 13 2 3 Max 3 TRUE 0.215758438 2 45 0.926470588 0.949152542 0.949152542
848 251.2699072 0.114606613 0.027776248 0.678048298 2 RReLU 8 13 2 2 Conv 3 TRUE 0.349780902 1 67 0.798319328 0.949152542 0.949152542
899 157.7161863 0.068481152 0.025112897 0.856476526 3 ReLU 8 27 2 4 Max 3 FALSE 0.344112852 1 27 0.899159664 0.966101695 0.949152542
985 301.2438543 0.057804935 0.010470742 0.216184287 4 RReLU 8 30 2 3 Max 3 FALSE 0.342066316 2 94 0.962184874 0.966101695 0.949152542
914 242.4247986 0.115938375 0.010216256 0.09718976 4 PReLU 8 16 1 3 Max 2 TRUE 0.394803516 1 87 0.869747899 0.949152542 0.949152542
1304 200.3966019 0.024935535 9.55E-05 0.635460232 2 ELU 8 24 1 2 Conv 2 FALSE 0.302809152 1 22 0.93697479 0.949152542 0.949152542
1078 269.1369243 0.044642948 8.26E-05 0.599374606 2 PReLU 8 24 2 3 Max 3 FALSE 0.408433686 2 37 0.903361345 0.966101695 0.949152542
1081 231.7609995 0.082169759 0.003455411 0.461680522 3 RReLU 8 28 2 3 Max 2 TRUE 0.377686816 1 54 0.945378151 0.966101695 0.949152542
859 264.8091225 0.013662654 0.003056698 0.454998501 2 PReLU 8 29 2 3 Max 3 FALSE 0.201401811 2 83 0.859243697 0.93220339 0.93220339
992 249.1952009 0.046827443 0.000277386 0.228045749 2 ReLU 8 25 2 3 Conv 3 TRUE 0.479695984 1 12 0.911764706 0.949152542 0.93220339
1346 145.2126977 0.046418221 0.001411609 0.032034246 2 ReLU 8 20 2 3 Conv 3 FALSE 0.432005943 2 45 0.785714286 0.949152542 0.93220339
1138 163.7863822 0.233123918 0.007937216 0.088424425 3 PReLU 8 11 1 4 Max 3 TRUE 0.305253306 1 95 0.915966387 0.93220339 0.93220339
939 233.6121241 0.138050376 0.002101428 0.199332087 2 ReLU 8 24 1 3 Max 2 FALSE 0.242466799 2 96 0.871848739 0.915254237 0.93220339
1101 262.7993386 0.152719071 0.000532623 0.896752691 2 PReLU 8 15 1 4 Conv 3 TRUE 0.329518418 2 47 0.855042017 0.966101695 0.93220339
829 223.4579257 0.037362911 0.000774847 0.873060793 3 RReLU 8 25 1 3 Conv 2 FALSE 0.341080004 1 68 0.901260504 0.949152542 0.93220339
894 260.8170135 0.108195779 0.000791958 0.328524114 4 PReLU 8 13 1 2 Max 3 FALSE 0.225077666 2 89 0.918067227 0.966101695 0.93220339
887 296.7628352 0.044213039 0.010911822 0.743520128 2 RReLU 8 29 2 4 Conv 3 FALSE 0.430848194 1 94 0.863445378 0.966101695 0.93220339
1246 220.4709943 0.037503997 0.02855196 0.824040348 3 ELU 8 13 1 4 Conv 3 TRUE 0.320128252 2 96 0.941176471 0.949152542 0.93220339
828 280.1996544 0.04199416 0.004381524 0.243249133 2 PReLU 8 18 2 4 Max 3 TRUE 0.352330085 2 76 0.827731092 0.966101695 0.93220339
1351 328.1443304 0.049103555 9.79E-05 0.609236204 4 ELU 8 19 1 2 Conv 2 TRUE 0.362543731 2 14 0.913865546 0.949152542 0.93220339
925 170.2675189 0.061690275 0.000153933 0.333747884 2 RReLU 8 21 1 3 Conv 2 FALSE 0.369717053 2 95 0.892857143 0.966101695 0.93220339
1350 248.696652 0.036059319 0.000116218 0.469373106 4 PReLU 8 29 2 2 Max 2 TRUE 0.475193735 1 51 0.871848739 0.966101695 0.93220339
935 237.8381417 0.18767672 0.096697453 0.251050854 4 ReLU 8 8 2 2 Max 2 TRUE 0.330647922 2 23 0.880252101 0.966101695 0.93220339
1271 248.6256382 0.306203419 0.002607777 0.778554839 1 PReLU 8 23 1 4 Max 3 FALSE 0.462915133 1 44 0.781512605 0.93220339 0.93220339
1004 252.5953789 0.189094194 0.024445033 0.104993306 3 PReLU 8 12 1 3 Conv 2 TRUE 0.34267154 1 91 0.882352941 0.966101695 0.93220339
989 373.8001295 0.027694355 0.000652937 0.083503303 3 ELU 8 19 2 2 Max 2 TRUE 0.316059727 2 94 0.888655462 0.949152542 0.93220339
923 217.3316545 0.007078696 3.74E-05 0.300877697 4 ELU 8 29 1 4 Max 2 TRUE 0.423289557 1 21 0.827731092 0.93220339 0.93220339
1186 255.1703252 0.010572303 0.000640313 0.280480286 2 RReLU 8 24 2 3 Conv 3 FALSE 0.247179678 1 20 0.783613445 0.949152542 0.93220339
1397 281.699976 0.028565762 0.009481878 0.739434986 2 ELU 8 20 2 2 Conv 2 FALSE 0.380677074 1 85 0.932773109 0.93220339 0.93220339
895 190.8012299 0.001396368 1.47E-05 0.088292122 4 ELU 8 27 2 3 Conv 2 FALSE 0.492838846 1 90 0.848739496 0.949152542 0.93220339
1272 158.6333941 0.031532844 0.012380631 0.859216882 2 RReLU 8 14 1 2 Conv 2 TRUE 0.212403927 1 60 0.897058824 0.93220339 0.93220339
1227 273.1455967 0.048201299 0.002509373 0.721744428 3 ELU 8 8 2 4 Conv 2 FALSE 0.334243921 2 61 0.901260504 0.966101695 0.93220339
1208 158.6861579 0.124258581 0.002504448 0.695067397 3 RReLU 8 29 2 4 Max 3 TRUE 0.313943298 1 81 0.930672269 0.949152542 0.93220339
1198 285.0150992 0.121555928 0.002072066 0.259213235 4 PReLU 8 32 1 3 Max 2 TRUE 0.489024582 2 26 0.911764706 0.966101695 0.93220339
1179 295.8860317 0.055110315 0.004056306 0.588717655 1 ELU 8 32 1 2 Conv 3 FALSE 0.285874585 1 72 0.951680672 0.949152542 0.93220339
1374 227.614117 0.004508949 2.81E-05 0.647590425 3 PReLU 8 27 2 2 Conv 3 FALSE 0.452934997 1 70 0.756302521 0.898305085 0.915254237
870 297.6883191 0.069754319 0.00078843 0.611545392 2 ReLU 8 16 2 2 Conv 3 FALSE 0.397891986 1 59 0.773109244 0.93220339 0.915254237
918 265.6591252 0.087756401 0.01605421 0.627533335 2 ReLU 8 13 1 2 Max 3 TRUE 0.420194874 1 83 0.911764706 0.966101695 0.915254237
1183 200.2725473 0.005886628 0.000524279 0.057155636 3 PReLU 8 31 1 3 Conv 3 FALSE 0.407245833 2 22 0.640756303 0.898305085 0.915254237
880 303.8255841 0.022140123 0.011753715 0.183705231 3 PReLU 8 21 1 3 Max 3 FALSE 0.305228893 1 40 0.718487395 0.966101695 0.915254237
1359 270.988096 0.053893898 0.000194458 0.71038198 2 PReLU 8 29 2 2 Conv 2 TRUE 0.480401802 2 29 0.892857143 0.93220339 0.915254237
928 241.5161719 0.045426553 0.016302366 0.408462217 3 RReLU 8 16 2 4 Conv 2 FALSE 0.365802632 1 76 0.913865546 0.966101695 0.915254237

Table B.1. Results without extra crops

43



h
ex

Id

sa
tE

p
o
ch

st
ar

tL
R

m
in

L
R

m
om

en
tu

m

m
ax

O
u
tN

or
m

ac
ti

va
ti

on

co
n
vo

lu
ti

on
K

er
n
el

S
iz

e

co
n
v
D

ro
p

ou
tP

ro
b

st
ar

tC
on

vo
lu

ti
on

F
il
te

rs

fi
n
al

C
on

vo
lu

ti
on

F
il
te

rs

co
n
vo

lu
ti

on
S
ta

ck
s

n
u
m

C
on

vo
lu

ti
on

L
ay

er
s

p
o
ol

M
et

h
o
d

p
o
ol

S
iz

e

d
ro

p
ou

t

fc
D

ro
p

ou
tP

ro
b

n
u
m

F
C

L
ay

er
s

n
u
m

F
C

N
eu

ro
n
s

tr
ai

n
A

cc

va
li
d
A

cc

te
st

A
cc

572 235.2479838 0.378651091 0.235757551 0.642607996 4 RReLU 3 0.127220721 9 32 2 4 Max 2 TRUE 0.484395624 1 70 0.976827094 0.995006242 0.995422389
55 175.9589063 0.55092653 0.498024084 0.486126684 1 PReLU 5 0.167908004 10 28 2 4 Max 3 TRUE 0.370078446 2 24 0.974420677 0.993757803 0.992093217
451 205.9315649 0.607343804 0.003554934 0.892360449 3 PReLU 5 0.168426745 8 31 2 4 Ave 3 TRUE 0.336436674 1 50 0.979857398 0.992509363 0.993757803
344 192.5969792 0.158396045 0.024511531 0.242248226 3 RReLU 5 0.116539283 8 31 2 4 Conv 3 FALSE 0.347241228 2 86 0.981105169 0.990428631 0.989180191
189 222.5527992 0.513529207 0.293113798 0.689570211 4 PReLU 5 0.174325585 12 12 1 4 Conv 3 FALSE 0.309909921 2 108 0.980659537 0.990012484 0.987515605
81 186.4415795 0.189135657 0.000220765 0.64318643 2 RReLU 3 0.111140832 10 32 2 4 Max 3 TRUE 0.303158657 2 80 0.9614082 0.989180191 0.986267166
355 135.7480121 0.574477336 0.001187626 0.417044525 2 RReLU 3 0.12974231 11 11 1 4 Max 3 FALSE 0.393311178 1 92 0.956327986 0.988347898 0.98460258
161 136.1371818 0.542762106 0.014599195 0.235067373 1 ReLU 5 0.198466846 8 9 2 4 Max 2 FALSE 0.325743997 1 60 0.956773619 0.988347898 0.986267166
151 113.2564257 0.196990105 0.005627606 0.189321877 4 PReLU 5 0.160438913 9 9 2 3 Max 3 TRUE 0.457321036 1 88 0.951247772 0.987931752 0.981689555
560 170.1376626 0.168605744 0.000353951 0.532105332 2 RReLU 5 0.149514891 11 28 2 2 Max 3 TRUE 0.4414414 1 10 0.965864528 0.987099459 0.983354141
429 159.0813088 0.140465366 0.017461991 0.267001746 3 PReLU 5 0.103143469 10 10 2 2 Max 2 TRUE 0.435851031 2 49 0.965953654 0.986683313 0.981689555
483 133.0434481 0.546060803 0.045336788 0.674684824 4 PReLU 3 0.105879765 8 10 2 3 Ave 3 TRUE 0.412097337 1 88 0.959625668 0.986267166 0.984186434
591 146.5839579 0.452431063 0.006151972 0.486115516 3 PReLU 3 0.148294122 10 19 1 4 Max 3 FALSE 0.348319071 2 120 0.951960784 0.986267166 0.979608822
551 149.67593 0.265522112 0.093458207 0.50369725 1 PReLU 3 0.186084064 8 25 1 3 Conv 3 FALSE 0.473901271 1 124 0.976024955 0.985434873 0.983354141
363 202.2580142 0.101055087 0.027356789 0.587147482 3 ReLU 5 0.116726517 9 28 2 3 Max 2 FALSE 0.305475943 1 15 0.960249554 0.985018727 0.983354141
615 147.1214064 0.182402531 0.000495867 0.431694925 2 ReLU 3 0.115956375 9 23 1 4 Conv 3 TRUE 0.46968652 2 16 0.954010695 0.982521848 0.978360383
213 283.0705217 0.053962391 0.015398742 0.592259298 4 ReLU 5 0.124374492 9 20 2 3 Conv 3 FALSE 0.339218962 1 21 0.958645276 0.982105701 0.97752809
102 204.3887433 0.900595991 0.002668172 0.825896987 2 RReLU 3 0.187242597 9 32 1 3 Conv 3 FALSE 0.363511024 2 36 0.970677362 0.981273408 0.982937994
49 147.703966 0.113487388 0.000470506 0.073801326 3 ReLU 5 0.184599566 9 28 2 4 Max 3 FALSE 0.498172623 2 101 0.942691622 0.981273408 0.977944236
25 212.2515608 0.208157192 0.001065195 0.314019929 4 ReLU 5 0.15574223 8 24 2 4 Conv 3 FALSE 0.329539786 2 40 0.957575758 0.980024969 0.977944236
327 211.5136221 0.257221665 0.001712906 0.291625457 2 RReLU 5 0.138509645 8 10 1 3 Conv 3 FALSE 0.46974108 2 63 0.957843137 0.979608822 0.978360383
66 108.605852 0.162372259 0.031561904 0.562044063 4 ReLU 5 0.102112963 10 14 2 4 Ave 2 TRUE 0.469361396 1 40 0.953208556 0.979608822 0.975031211
122 130.2673093 0.087374794 0.000419329 0.390607716 2 ELU 5 0.193262501 10 21 2 3 Max 3 TRUE 0.479510263 2 104 0.940909091 0.97752809 0.978360383
263 215.2265518 0.458219489 0.371604462 0.732216952 3 PReLU 3 0.14953052 8 23 2 2 Conv 2 TRUE 0.360438715 2 37 0.967112299 0.977111943 0.978776529
576 163.5379525 0.105631985 0.051693551 0.235841211 3 PReLU 5 0.109424895 9 28 2 2 Max 2 TRUE 0.389384822 2 72 0.953743316 0.97627965 0.970869746
138 235.7162382 0.207166371 0.000534136 0.48111136 2 PReLU 3 0.151626466 9 25 2 4 Conv 3 FALSE 0.412929841 2 33 0.953654189 0.975863504 0.974615065
310 158.2980798 0.074132803 0.013175034 0.61744286 3 PReLU 5 0.124480356 10 13 2 4 Conv 3 FALSE 0.334739045 1 100 0.959447415 0.975447357 0.974198918
53 190.5642876 0.178850727 0.14274637 0.071829751 1 RReLU 5 0.133074498 12 19 1 2 Max 3 TRUE 0.441818465 1 52 0.953832442 0.974198918 0.972534332
97 143.8217161 0.175332387 0.061911864 0.004233371 1 ReLU 3 0.109264426 8 28 1 3 Conv 3 TRUE 0.345839556 1 80 0.971568627 0.973782772 0.975447357
199 142.6118065 0.112825226 0.086458226 0.761143231 2 ELU 5 0.123948145 8 16 1 2 Max 3 FALSE 0.466729135 2 15 0.94741533 0.973782772 0.974615065
298 56.03592741 0.150514536 0.05969678 0.635792658 4 RReLU 5 0.194913645 11 28 1 3 Max 3 FALSE 0.326384701 2 66 0.949910873 0.973782772 0.976695797
99 122.5566254 0.116638341 0.003609139 0.664429483 3 RReLU 5 0.110248306 8 29 2 4 Ave 2 TRUE 0.470381987 2 93 0.952406417 0.973366625 0.975863504
116 207.7327939 0.464397431 0.107600328 0.611855376 1 ReLU 5 0.142859392 10 22 1 2 Conv 3 TRUE 0.349230422 2 53 0.97486631 0.972950479 0.972534332
245 173.4445489 0.289095757 0.054145047 0.576235865 4 PReLU 5 0.189666114 12 27 2 3 Ave 3 TRUE 0.387981265 1 76 0.940819964 0.972534332 0.9704536
362 81.81765475 0.380502267 0.001057016 0.708985295 2 PReLU 3 0.113998241 12 24 2 4 Conv 3 TRUE 0.466903861 1 32 0.957308378 0.972534332 0.970037453
635 250.8837523 0.067567463 0.051450302 0.869826144 1 RReLU 5 0.162469737 11 28 2 2 Conv 3 FALSE 0.478596511 2 111 0.94714795 0.972118186 0.970037453
152 236.331373 0.222652376 0.0039135 0.360496498 3 ReLU 3 0.148694847 10 11 1 4 Max 2 FALSE 0.451867782 1 107 0.929322638 0.972118186 0.965459842
609 134.01304 0.105580211 0.014088728 0.088693959 4 ELU 3 0.175957068 9 20 1 4 Max 3 TRUE 0.389719522 2 101 0.939661319 0.972118186 0.972950479
393 172.1775567 0.064912833 0.000712177 0.777005928 4 ELU 3 0.155016493 10 16 2 3 Max 3 TRUE 0.432904238 1 12 0.932442068 0.972118186 0.969621307
477 139.8377391 0.429266626 0.040251979 0.325038814 1 ELU 3 0.194167878 11 26 2 3 Max 3 FALSE 0.326736593 1 44 0.937789661 0.971702039 0.96920516
596 87.73605288 0.104882569 0.006181763 0.738889037 2 ELU 5 0.185285173 9 11 2 3 Max 3 FALSE 0.367404176 1 117 0.931818182 0.971702039 0.970869746
172 119.6873832 0.560468759 0.005042358 0.677621188 4 ReLU 5 0.194403399 8 18 2 4 Conv 2 FALSE 0.318494145 1 54 0.950445633 0.971702039 0.970037453
69 159.4400251 0.282078601 0.014087521 0.519463051 4 RReLU 3 0.168037515 12 26 2 3 Conv 2 FALSE 0.306573409 1 75 0.946345811 0.971285893 0.967540574
297 182.8877851 0.25020883 0.000355533 0.701381009 4 ReLU 3 0.152464171 10 16 1 4 Max 3 FALSE 0.300551798 2 55 0.921746881 0.971285893 0.968372867
564 105.5165205 0.11688184 0.000366457 0.773670164 4 ELU 5 0.191220674 9 26 2 4 Max 2 TRUE 0.354802549 1 33 0.944741533 0.970869746 0.973782772
543 216.6339499 0.150274257 0.016655139 0.069461127 4 RReLU 3 0.17799817 12 28 2 3 Conv 2 TRUE 0.300268529 1 27 0.951693405 0.970869746 0.972534332
267 72.16311724 0.87726686 0.026220397 0.630886329 4 PReLU 5 0.151800717 8 15 2 2 Ave 3 TRUE 0.441068643 2 18 0.931729055 0.970869746 0.966708281
204 271.0151177 0.086754221 0.026320428 0.760668932 3 ReLU 5 0.171142847 9 18 1 3 Conv 3 FALSE 0.400276817 2 118 0.948039216 0.9704536 0.972118186
430 198.0002623 0.416932564 0.001795343 0.532197142 1 ELU 3 0.123151676 12 30 2 4 Ave 3 TRUE 0.321682336 1 67 0.958823529 0.970037453 0.970869746
544 116.0911452 0.092938733 0.01624934 0.787286902 3 PReLU 5 0.166722884 8 30 2 2 Conv 2 FALSE 0.401841022 2 119 0.949910873 0.969621307 0.964627549

Table B.2. Results with extra crops

44



BIBLIOGRAPHY

Abdolvahabi, A., B. W. Taylor, R. L. Holden, E. V. Shaw, A. Kentsis,
C. Rodriguez-Galindo, S. Mukai, and B. F. Shaw (2013). Colorimetric and
longitudinal analysis of leukocoria in recreational photographs of children with
retinoblastoma. PloS one 8 (10), e76677.

Abramson, D. H. and A. C. Schefler (2004). Update on retinoblastoma.
Retina 24 (6), 828–848.

Cibur, V. (2016). Facetag, the image managing service for the leukocoria detection
project.

Clevert, D.-A., T. Unterthiner, and S. Hochreiter (2015). Fast and accurate
deep network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289 .

Graham, B. (2014). Fractional max-pooling. arXiv preprint arXiv:1412.6071 .

He, K., X. Zhang, S. Ren, and J. Sun (2015a). Deep residual learning for image
recognition. arXiv preprint arXiv:1512.03385 .

He, K., X. Zhang, S. Ren, and J. Sun (2015b). Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification. In Proceedings of
the IEEE International Conference on Computer Vision, pp. 1026–1034.

Henning, R., P. Rivas-Perea, B. Shaw, and G. Hamerly (2014). A convolutional
neural network approach for classifying leukocoria. In Image Analysis and In-
terpretation (SSIAI), 2014 IEEE Southwest Symposium On, pp. 9–12. IEEE.

Hinton, G. E., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdi-
nov (2012). Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580 .

Karpathy, A. and J. Johnson (2016). Stanford cs231n: Convolution neural networks
for visual recognition.

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pp. 1097–1105.

Lee, C.-Y., P. W. Gallagher, and Z. Tu (2015). Generalizing pooling functions
in convolutional neural networks: Mixed, gated, and tree. arXiv preprint
arXiv:1509.08985 .

45



Maas, A. L., A. Y. Hannun, and A. Y. Ng (2013). Rectifier nonlinearities improve
neural network acoustic models. In Proc. ICML, Volume 30, pp. 1.

Mishkin, D. and J. Matas (2015). All you need is a good init. arXiv preprint
arXiv:1511.06422 .

Ries, L. A. G., M. A. Smith, J. Gurney, M. Linet, T. Tamra, J. Young, G. Bunin,
et al. (1999). Cancer incidence and survival among children and adolescents:
United states seer program 1975-1995. Cancer incidence and survival among
children and adolescents: United States SEER Program 1975-1995 .

Springenberg, J. T., A. Dosovitskiy, T. Brox, and M. Riedmiller (2014). Striving
for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806 .

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov
(2014). Dropout: A simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research 15 (1), 1929–1958.

Xu, B., N. Wang, T. Chen, and M. Li (2015). Empirical evaluation of rectified
activations in convolutional network. arXiv preprint arXiv:1505.00853 .

Yu, F. and V. Koltun (2015). Multi-scale context aggregation by dilated convolu-
tions. arXiv preprint arXiv:1511.07122 .

46


