
ABSTRACT

Construction and Implementation of Multiphase Voxel Finite Elements for Use in
Stiffness Tensor Prediction of Woven Fiber Composite Laminae

Christopher M. Boise, M.S.M.E.

Mentor: David A. Jack, Ph.D.

As woven fabric composites become a more popular choice of material, it be-

comes important to understand how various weave, fibers, and resin systems will react

under loading. This can be done by performing a finite element analysis (FEA) of the

representative volume element (RVE) to calculate the effective stiffness tensor; how-

ever, the complex geometry of the RVE makes meshing tedious. This thesis develops

two novel multiphase voxel elements (MVEs) that can account for multiple materials

within their domain by applying material properties and appropriate strain correc-

tions at the Gauss integration points. Studies performed on simple geometries show

exceptional agreement with traditional FEA results, being more accurate than previ-

ous MVEs presented in literature. These new MVEs are also used to analyze various

woven composite laminae and they also show good agreement with the experimental

results presented in literature and studies from traditional finite elements.
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CHAPTER ONE

Introduction

1.1 Research Motivation

In the past 40 years, woven fabric composites and other composite materials have

become increasingly popular in many industries such as the automotive and aerospace

industries. They are often favored over traditional materials such as steel and alu-

minum because they are much lighter while providing similar stiffness properties; this

high strength–to–weight ratio can help provide savings in fuel costs.

Another growing application is in the world of musical instruments; because

carbon fiber composites are more resistant to humidity and temperature change than

wood is, some luthiers are creating more durable stringed instruments that can be

used in more rugged applications, such as the outdoors. Further, this change from

wood to laminated composites is also ecologically friendly. Traditionally, bows are

made of pernambuco wood, but this is becoming an endangered species; carbon fiber

bows can provide a superior sound quality at the mid–range price level [4].

With the growing applications of woven fabric composites, it has become nec-

essary to understand how these materials will react to specific loading conditions,

namely structural loading. In structural mechanics, the stress tensor σij and the

strain tensor εij in the linear elastic regime are related through the stiffness tensor

Cijkl, a fourth–order tensor that can have up to 21 independent constants depending

upon the degree of anisotropy. The stiffness tensor is an intrinsic property of the

material in question (see e.g., [5]). Determining this stiffness tensor for a material is

the key to characterizing the structural response of the material.
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For metals in general, the stiffness tensor Cijkl is simpler to characterize

through experiment because metals are homogeneous and often isotropic, being de-

pendent only upon two stiffness properties (see e.g., [6]). For woven fabric composites

— heterogeneous structures that may be fully anisotropic — the stiffness tensor is

dependent upon all 21 stiffness properties that are not always directly measurable

through experiment (see e.g., [6]). Many woven fabrics have sufficient geometry sym-

metry that they may be considered orthotropic with nine independent stiffness param-

eters. Further, because woven fabric composites are manufactured structures created

from combining two separate materials, manufacturing consistent test samples is of-

ten tedious and time–consuming. Therefore, alternative means of determining the

stiffness tensor Cijkl are required.

Because the properties of constituent materials of a woven fabric composite

(the fiber tow and matrix) are easily determined through the use of experiments

and micromechanics models, much focus has been placed on determining the stiffness

tensor at the mesomechanical level; that is, the level of an individual lamina where the

woven geometry of the fiber tows within the matrix are in effect. These properties can

be determined by analyzing a representative volume element (RVE) of the composite,

which is defined as the smallest repeating unit of a geometry that can build a woven

composite.

These analyses historically were performed analytically through the use of

closed–form geometric functions, but today, numerical methods, namely finite element

analysis (FEA), is often preferred as it uses fewer assumptions about the stress and

strain fields. FEA is a numerical analysis technique whereby a partial differential

equation can be solved over a discretized domain via a set of linear algebraic equations.

The geometry in FEA can be modeled without having to define closed–form geometric
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functions. While spline functions are still used to build woven geometries (see e.g.,

[7]), geometry data can potentially be extracted pointwise from a three-dimensional

ultrasound scan (see e.g. [8]) or a micro CT scan (see e.g. [9,10]) and analyzed using

FEA.

However, in order for a finite element analysis to be performed, the geometry

of the RVE has to be discretized into a set of elements. These elements traditionally

have to cohere to material boundaries because each one can only have one set of

continuous material properties within their domain. This poses a problem for woven

composite geometries because their internal structure is often quite complex; very

small elements are required to accurately define geometry which can sometimes be-

come ill–conditioned, which leads to high memory costs and numerical instabilities in

the solution.

One of the methods presented in the literature to circumvent this issue is to

instead apply the stiffness tensor Cijkl at the integration points within the element

instead of the element as a whole (see e.g., [1, 11, 12]). With this type of approach,

the mesh can be built independent of the geometry, and therefore, a consistent mesh

can be created without the risk of ill–conditioned elements. The use of these elements

are termed voxel methods in some applications.

Lippmann et al. [11] and Zeng [12] simply applied the corresponding stiffness

tensor at each Gauss point, but Caselman [1] determined this approach was not suffi-

cient for accuracy. He extended this method by including strain corrections at each

integration point for applications in short fiber composites with reasonable success.

While this element developed was a step in the right direction, there is more room

for greater accuracy in the transverse shear stiffness terms; further, this method can

be applied to woven composites.
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1.2 Thesis Objectives

The objective of the research presented in this thesis is to

Construct a multiphase voxel finite element (MVE) allowing the construction of a

mesh independent of internal geometry variations by incorporating material

properties determined at the integration points for use in correctly predicting the

averaged material stiffness tensor Cijkl over the representative volume element

(RVE) of a woven fabric composite lamina.

In broad terms, the research aims to

• Expand upon the work of Caselman [1] by generalizing the strain correction

factors within the MVE formulation to better account for the shear effect

• Determine the effectiveness of the existing methods that can be expressed in the

general MVE form proposed in this thesis and the two newly proposed MVEs in

calculating the averaged stiffness tensor Cijkl of woven fabric composite laminae

• Expose shortcomings of the investigated MVEs in order to suggest further im-

provements and demonstrate the improved performance of the two newly pro-

posed MVEs

1.3 Thesis Outline

Chapter Two begins with a broad overview of the currently available literature

applicable to the stiffness property prediction of woven composite laminae. A discus-

sion on some unidirectional micromechanics models are presented first, followed by

several analytic methods that laid the foundation for woven fiber composite stiffness

property prediction with particular attention given to MESOTEX [3, 13] for later

comparisons. This is followed by a presentation of several methods that utilize finite

elements to perform woven composite analyses. Various techniques in applying FEA
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will be looked at to show how previous researchers overcame the obstacle of analyz-

ing a woven composite RVE. A close look at voxel elements will be presented as it

forms the basis of this thesis. Finally, a brief overview of the extended finite element

method (XFEM) will be presented; future applications of MVEs in XFEM will be

left to the future work chapter.

Chapter Three presents the derivation of the finite element method for three–

dimensional structural mechanics; this derivation intends to provide a basic demon-

stration of how the finite element process works and to form the basis for Chapter 4.

The methods on how to solve the finite element equations will focus specifically on

how to obtain the stiffness tensor Cijkl from a heterogeneous structure.

Chapter Four will introduce the formulation of the four multiphase voxel ele-

ments (MVEs) studied in this research. The four MVEs are

1. The Average Stiffness Element (ASE), constructed by determining the volume

average of each component of the stiffness tensor. The ASE is similar to the

volume fraction–based homogenization method presented by Kim and Swan [14]

and Watanabe et al. [15].

2. The Basic Multiphase Voxel Element (B–MVE), constructed as described in

Zeng et al. [12].

3. The Tensile Modulus Corrected Multiphase Voxel Element (TMC–MVE), a

newly developed MVE adapted from the element of isotropic materials used by

Caselman [1] with enhancements presented in this thesis for use with orthotropic

materials.

4. The Stiffness Tensor Corrected Multiphase Voxel Element (STC–MVE), a newly

developed MVE utilizing components of the stiffness tensor for strain correction,

as well as improved methods for accounting for shear stiffness.
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These MVEs will then be used to determine the stiffness properties of simple geome-

tries using custom MATLAB code. The first test developed to provide a comparison

is the volume fraction test to determine how a shifting material boundary affects the

accuracy of the MVEs. The second test, the material angle test, determines how

the MVEs are affected by a rotating material reference frame. Finally, the boundary

angle test seeks to determine the effect of an angled boundary on the MVEs.

Chapter Five applies the MVEs to the determination of the material stiffness

tensor of various woven fiber composite laminae using code written in MATLAB.

Specifically, a plain weave composite lamina is defined using geometric functions

adapted from Scida et al. [13], and then analyzed using the MVEs. These results are

compared to the results provided from COMSOL Multiphysics, a commercial finite

element code, and experimental results from Scida et al. [3] to complete the validation

of the model. The chapter concludes with studies of satin and twill weave composite

laminae to demonstrate the versatility of the MVEs.

Chapter Six concludes the thesis by revisiting the objectives presented in Sec-

tion 1.2. Each objective is thoroughly discussed using the results from the previous

chapter. Also included is a discussion of future work, including potential ways to

unite the MVEs with the extended finite element method (XFEM). XFEM is an

emerging area of research; it includes the ability to enrich the solution space of the

element, allowing for higher resolution within the element without the addition of

nodes. Because XFEM and the MVEs have similar goals (the modeling of material

discontinuities within an element), there is potential ground to use both methods

together. Some applications of XFEM to composites from the literature will also be
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described. Finally, recommendations for future work will be provided, including im-

provements to the MVEs, the ways to test the MVEs, and the MATLAB code used

in this research.
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CHAPTER TWO

Literature Review

This chapter will introduce the motivation and background behind the analysis

of laminated woven composites. A discussion will be had on some of the key analytic

and numerical techniques previously developed for stiffness property prediction of

heterogeneous materials. Further, discussion on some new emerging techniques in

finite elements that are currently being studied will be presented.

2.1 Introduction to Woven Fabric Composites

A fiber–reinforced polymer (FRP) is a composite material system composed of

two materials: a fiber and a polymer matrix. The matrix material in this research

is a thermosetting epoxy, but thermoplastics are also common. The thermoset resin

can be easily poured or molded into the desired shape, and, after curing, can hold that

desired shape. The polymeric material does not have the stiffness or strength proper-

ties needed for the applications desired; thus they require some form of reinforcement

in order to be useful in structural applications.

The fiber reinforcing material is often glass, carbon, boron, etc., with the se-

lection made based on the desired application. Due to some limiting factor (cost to

manufacture, difficult to manufacture, high weight, etc), it is not prudent or some-

times even possible to use this material in bulk. There is often a desire to use as

little of the reinforcing material as possible.

The fiber and polymer matrix are combined because the strengths of one com-

pliment the weaknesses of other. When a material is manufactured into a fiber,

it exhibits similar or even enhanced tensile properties when compared to the bulk
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form [6], but it loses any bending stiffness. For example, even though steel is a very

stiff metal, it easily “droops” under its own weight when made into a rod. However,

when a fiber material is combined with a matrix material to hold the fiber into the

shape for the desired application; the matrix acts as a binder to prevent the fibers

from moving. Even though the manufactured composite is not as stiff or strong as the

fiber reinforcing material by itself [6], the other properties of the composite (shapabil-

ity, strength–to–weight ratio, etc.) make this heterogeneous structure more versatile

than the individual constituent materials.

There are many different methods to manufacture FRPs. Chopped fiber–filled

polymers are obtained by mixing short or long fibers into a preferential orientation

state such as in compression or injection molding. Alternatively, continuous fibers

can be braided together and held in place by infusing the braided fibers with polymer

matrix. The manufacturing method studied in this research is a method whereby the

individual fibers are formed into a strand, then the strands are woven together into

a fabric. This fabric is then infused with a low viscosity polymer matrix, and the

matrix is allowed to cure while holding the desired shape. The produced part with

woven fabrics and a polymer matrix will be called a woven fabric composite in this

thesis.

In the early 1980s, woven fabric composite materials, especially unidirectional

and woven composites, saw a growth in the number of applications, especially in struc-

tural applications (see e.g., [16]). In both the automotive and aerospace industries,

the high strength–to–weight ratio of FRP composites is quite desirable, particularly

as the demand for more fuel–efficient vehicles continues to grow. These relatively

light structures can replace traditional, and heavier, metals such as aluminum and

steel in the structure of the vehicles to save on fuel costs. In the music industry,
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the acoustic properties of carbon fiber have been found to be comparable to that of

the oft preferred pernambuco wood for stringed–instrument bows [4]. As the world

supply of pernambuco wood has diminished due to consumer demand, there is a

push to switch to carbon fiber bows. In some instances, carbon fiber bows are more

durable, cheaper, more resistant to temperature and humidity, and match the sound

quality of similarly–priced pernambuco bows [4]. A comparison of a carbon fiber and

pernambuco bow is provided in Figure 2.1.

Figure 2.1: A comparison of a carbon fiber cello bow (left) with a pernambuco wood
bow (right)

To further the use of fiber reinforced composites, effective and accurate meth-

ods to quantify the material properties of these woven composites is desired. While

experimental standards are available to determine the stiffness properties of these

laminae (see e.g., [17]), the methods require the fabrication of many samples. This

is a costly and time–prohibitive process, especially if it is desired to determine a

suitable system from a broad selection. This becomes prohibitive as the number of

design variables in woven composites is quite high, and there often are several valid

options for a desired set of performance metrics. A number of analytic and numer-

ical methods have therefore been developed to predict the properties of composite
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laminae. Unlike homogeneous metals, the heterogeneous nature of these composites

require that the interaction between the fiber and matrix materials are considered

when estimating their material properties.

2.2 Unidirectional Composites

Unidirectional composites are FRPs where the fibers are all aligned in one

direction; this provides the best strength and stiffness properties in the direction

of the fibers. While unidirectional composites are not specifically analyzed in this

research, some of the methods used for their analysis form the basis of the discussion

of woven composites. Specifically, the micromechanical models for individual laminae

of unidirectional fibers is used to provide the material properties of an infused fiber

bundle in a woven lamina. Similarly, the macromechanical laminate analysis methods

provide the basis for the earliest analytic models for woven composites (see e.g., [18]).

2.2.1 Micromechanics of Unidirectional Laminae

When referring to the micromechanics of unidirectional laminae, the mechanics

of how a single fiber interacts with the surrounding matrix are in consideration.

Extensive research has been performed into analytic models that are able to predict

the mechanical properties of a discontinuous fiber in matrix; these models are often

functions of the aspect ratio of the fiber, labeled α and defined as

α =
ℓ

d
(2.1)

where ℓ is the length of the fiber, and d is the diameter. Fortunately, it has been

shown in literature (see e.g., [19]) that for large aspect ratios (α & 100), the fibers

are often considered to be infinitely long. In the case of unidirectional laminae, they

often have aspect ratios much greater than 100. The discontinuous fiber models with
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a large aspect ratio as the input can be used to predict the micromechanical behavior

of a fiber infused with resin (assuming the fiber is straight).

The most commonly used micromechanics model used in industry is the

Halpin–Tsai model [20] due to its algebraic simplicity, but not necessarily its ac-

curacy. The material properties of the fiber composite that are affected by changes

in aspect ratio (E11, G12, and ν12) are represented as simple ratios of the constituent

material properties of the fiber (Ef , Gf , νf) and matrix (Em, Gm, νm), the aspect

ratio α of the fiber, and the volume fraction of the fiber Vf as

E11

Em

=
1 + ηVf

1− ηVf
, where η =

Ef

Em
− 1

Ef

Em
+ 2α

(2.2)

G12

Gm

=
1 + ηVf

1− ηVf
, where η =

Gf

Gm
− 1

Gf

Gm
+ 1

(2.3)

ν12 ∼ Vfνf + (1− Vf)νm (2.4)

Despite the popularity of the Halpin–Tsai equations, there are several models

that have been developed that are more accurate. Tucker and Liang [21] provide a

review of the more common micromechanics models and validate the results, using

a finite element model as a reference for comparison. They determined that, of the

models tested, Mori–Tanaka type models [22] provided the best predictions. The

Mori–Tanaka model is based on a theory from Eshelby [23] for an ellipsoidal inclusion

in an infinite matrix; the authors expanded the model from Eshebly to include fiber

interaction through the stress field, and therefore predict the stiffness with greater

accuracy for higher volume fractions.

Tandon and Weng [19], a Mori–Tanaka type model, expanded the average

stress and strain formuations of Mori and Tanaka with further use of Eshelby’s tensor.

Further, the Tandon–Weng formulation include calculations for all material proper-

ties, not just the ones that are affected by changing aspect ratio. One drawback to
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this method is the requirement that ν12 be calculated iteratively, but Tucker and

Liang [21] provide an alternate closed–form formulation.

The Halpin–Tsai and Tandon–Weng methods were both analyzed by Gusev et

al. [24] and compared against a finite element model. The conclusion was that the

Halpin–Tsai equations poorly predicted the models analyzed. The Tandon–Weng

model provided reasonable results for composites of high aspect ratio and low volume

fraction.

Unidirectional analyses have also been performed in finite element packages.

It has already been mentioned that Tucker and Liang [21] used a finite element model

to determine the accuracy of some analytic models. Sun and Vaidya [2] presented a

means to predict the overall elastic constants of a heterogeneous periodic structure

by averaging the stress and strain fields. Xia et al. [25] provided a means of apply-

ing periodic boundary conditions to a periodic structure without overconstraining

the system. These new boundary conditions allow opposite material boundaries to

displace in relation to each other without overconstraining the system by forcing the

boundaries to remain planar, like previously accepted boundary conditions did.

2.2.2 Macromechanics of Unidirectional Laminates

The macromechanics of a unidirectional laminate refers to how an infused stack

of multiple unidirectional laminae at various orientations interact to affect the overall

properties of the entire laminate. A short discussion of the macromechanical theory

is included as the theory behind this analysis forms the basis of the earliest woven

composite analytic models (see e.g., [18]).

Classical laminate theory (CLT) provides a means to calculate the planar

strain properties of a laminate undergoing loads and moments. CLT uses the two–

dimensional rotated stiffness matrix of each lamina in a stack to relate the applied
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forces and moments to the resulting mid–plane strains and curvatures (or vice versa).

A reduced presentation of CLT will be presented here, based on the full discussion

found in Jones [6].

CLT is developed with the following assumptions (see e.g., [6])

• Plane stress (σz = σxz = σyz = 0)

• Thin laminate (εz = γxz = γyz = 0)

• Linear elastic

• Homogeneous stiffness through the thickness of each lamina

The planar stress vector [σ]k and strain vector [ε]k of the kth composite lamina in

a stack of N laminae (with k = 1 being the top lamina) can be related through the

rotated planar material stiffness matrix [Q̄]k as [6]

[σ]k = [Q̄]k[ε]k (2.5)

where

[σ]k =
[
σx σy σxy

]⊤

k
(2.6)

[ε]k =
[
εx εy γxy

]⊤

k
(2.7)

[Q̄]k =





Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66





k

(2.8)

The value of [Q̄]k can be determined for each lamina by taking the reduced stiffness

matrix tensor expressed only in terms that contribute to the plane stress [Q]k and

rotating it at the angle of the lamina θk using the rotation matrix T(θk) as [6]

[Q̄]k = [T(θk)]
−1[Q]k[T(θk)]

−⊤ (2.9)

where −⊤ refers to the transpose of the inverse, and

T(θ) =





cos2 θ sin2 θ 2 sin θ cos θ
sin2 θ cos2 θ −2 sin θ cos θ

− sin θ cos θ sin θ cos θ cos2 θ − sin2 θ



 (2.10)
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[Q]k =





Q11 Q12 0
Q12 Q22 0
0 0 Q66





k

(2.11)

The individual [Q̄]k can be related by first splitting the strain vector [ε]k into a

vector of strains [ε◦]k, located at the mid–plane of a laminate stack, and a vector of

mid–plane curvatures [κ]k as

[ε]k = [ε◦]k + z[κ]k (2.12)

where z is the coordinate along the laminate thickness from the mid–plane of the

laminate. This reduction can be made under the Kirchhoff hypothesis, which assumes

the laminae are thin plates (see e.g., [6]).

The second step is to integrate the stresses to calculate the reaction forces N

and reaction moments M per unit thickness as (see e.g., [6])

N =

∫ t
2

−
t
2

σdz M =

∫ t
2

−
t
2

zσdz (2.13)

where t is the full thickness of the laminate. The result of using (2.12) in (2.5) and

then integrating with (2.13) results in

[
N

M

]

=

[
A B

B D

] [
ε◦

κ

]

(2.14)

where

Aij =

N∑

k=1

(Q̄ij)k(zk − zk−1) (2.15)

Bij =

N∑

k=1

(Q̄ij)k(z
2
k − z2k−1) (2.16)

Dij =
N∑

k=1

(Q̄ij)k(z
3
k − z3k−1) (2.17)

where zk refers to the z–coordinate of the bottom of the kth lamina.

Equation (2.14) is the full form of CLT that describes how a laminate reacts

to applied loading. Note that the form does not relate stress and strain, but rather
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reaction forces and moments to mid–plane strains and curvatures via a stiffness ma-

trix, the inverse of the compliance matrix. For a general loading state, a composite

laminate made up of unidirectional composite laminae must be treated as a structure

and not a material; this means that attempting to derive an effective set of stiffness

properties from CLT will inherently ignore the coupling between bending and exten-

sion (denoted as B). However, this issue is not present when a laminate is symmetric

about the mid–plane and is only subject to extensional loading [6].

2.3 Analytic Methods for Woven Composite Analysis

The analysis of woven laminated composites is complicated beyond that of a

unidirectional laminae by the woven architecture of the lamina. The strands weave

and undulate, and thus the material properties will be functions of internal variations

and rotations of the strands. Further, as the lamina is deformed, the strands will

straighten, causing the lamina to be stiffer. Therefore, improved models have been

proposed that are better suited for woven composite laminae.

Outside of experimental methods, two broad categories exist by which estima-

tions of the material properties of woven fabric composites can be obtained. Analytic

methods use closed–form equations based on the geometry of the representative vol-

ume element (RVE) of the composite and the material properties of the constituent

fiber and matrix to calculate the overall properties of the composite. Numerical meth-

ods, specifically the finite element method, numerically approximates the solution of

the structural mechanics partial differential equation for the modeled RVE with the

constituent material properties as inputs.

This section will focus on the development of analytic methods for woven

composites, whereas the next section will cover finite element methods. The me-

somechanical models presented here is not an exhaustive collection or discussion, and
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only select highlights are presented. For a more complete discussion, see Crookston

et al. [26], Dixit and Mali [27], and ElAgamy and Laliberté [16].

Analytic models are often computationally faster than numerical solutions of

the governing partial differential equations (see e.g., [28]). The ability to quickly

compute the properties from an analytic model means the results can be retrieved

rapidly; this can be useful when computing damage progression in a more robust finite

element model (see e.g., [29]). Further, because the analytic methods are generally

a set of closed–form expressions, they provide easier analysis for when the effect of

a certain set of design parameters are being studied. Optimization of these design

parameters are also simplified because of the closed–form nature (see e.g., [30]).

For the general governing set of partial differential equations for stress and

strain, there does not exist a closed form solution, thus there are often a set of

assumptions made about either the geometry or the stress and strain field within the

geometry (see e.g., [26]). These assumptions can either reduce the accuracy of the

analytic methods or create a computationally prohibitive and complicated analysis of

the expressions.

Ishikawa and Chou [18, 31–34] are often credited with being the first to use a

specialized model to predict the mechanical properties of woven composites. They de-

veloped three models for one–dimensional mechanical property analysis of satin weave

laminae: the mosaic model, the fiber undulation model, and the bridging model.

The mosaic model [18, 31] idealizes the woven pattern as an assembly of asymmetric

cross–ply laminae; in other words, the RVE is treated as a unidirectional stack of a fill

strand and a warp strand, with the stacks swapped where the strand crosses over the

opposing strand. The model was analyzed with both non–hybrid [31] and hybrid [18]

weaves. The fiber undulation model [32, 33] includes a set of sinusoidal functions to
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better represent the undulation of the fibers passing over one another. The bridging

model [32] uses the fiber undulation model surrounded by unidirectional ply stacks

representing the fill and warp strands; this model was created to represent the gap

between fiber crossover regions. All models use a form of classical laminate theory

(CLT) to compute upper and lower bounds of the stiffness properties of the laminae.

These models were experimentally validated in [34].

Raju and Wang [35] later expanded the mosaic model for three–dimensional

analysis of thermomechanical properties, removing some of the original assumptions

made by Ishikawa and Chou. The overall stiffness results are similar to that of

Ishikawa and Chou, but the authors noted that the coefficient of thermal expansion

analyses were unsatisfactory.

Naik et al. [36,37] also expanded upon the methods for predicting the effective

lamina stiffness tensor of Ishikawa and Chou for two dimensions by accounting for

the strand thickness transverse to the loading direction. In [36], Naik and Shembekar

present a series–parallel (SP) model and a parallel–series model (PS), using an in-

finitesimal CLT approach similar to the methods presented by Ishikawa and Chou,

which is then simplified in [37].

With an assumed geometry, CLT can be performed at each infinitesimal slice

to obtain a stiffness or compliance matrix at each (x, y) location. The equations that

define the A(x, y), B(x, y), and D(x, y) matrices of Equations (2.15) – (2.17) are

defined using the assumed geometric functions of the weave and the Q̄ matrices of

the warp, fill, and matrix (see [36] for these formulae). Note now that the force and

moment values of Equation (2.14) are now spatially dependent; thus, the form of the

infinitesimal CLT stiffness matrix becomes [36]

[
N(x, y)
M(x, y)

]

=

[
A(x, y) B(x, y)
B(x, y) D(x, y)

] [
ε◦(x, y)
κ(x, y)

]

(2.18)
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which can be inverted to obtain the compliance matrix as

[
ε◦(x, y)
κ(x, y)

]

=

[
a(x, y) b(x, y)
b(x, y) d(x, y)

] [
N(x, y)
M(x, y)

]

(2.19)

Note that a,b, and d are not the inverses of A,B, and D. The infinitesimal stiffness

or compliance matrices can be averaged over the domain to obtain an effective stiffness

or compliance matrix. From this process, SP and PS models can be determined.

The SP model first averages the compliance matrices given in Equation (2.19) in the

direction of the load (assumed to be in the x–direction, or along the fill strand) as [36]

āsij(y) =
1

Lw

∫ Lw

0

aij(x, y)dx (2.20)

b̄sij(y) =
1

Lw

∫ Lw

0

bij(x, y)dx (2.21)

d̄sij(y) =
1

Lw

∫ Lw

0

dij(x, y)dx (2.22)

where Lw is the length of the RVE in the warp direction and i, j ∈ {1, 2, 3}.

The compliance matrices āsij(y), b̄
s
ij(y), d̄

s
ij(y) are put into the concatenated matrix

form in Equation (2.19), which is then inverted to obtain the stiffness matrices

Ās
ij(y), B̄

s
ij(y), D̄

s
ij(y). With an iso–strain condition, these stiffness matrices are av-

eraged transverse to the loading direction as [36]

Ā
sp
ij =

1

Lf

∫ Lf

0

Ās
ij(y)dy (2.23)

B̄
sp
ij =

1

Lf

∫ Lf

0

B̄s
ij(y)dy (2.24)

D̄
sp
ij =

1

Lf

∫ Lf

0

D̄s
ij(y)dy (2.25)

where Lf is the length of the RVE in the fill direction and i, j ∈ {1, 2, 3}. The results

of this analysis provides the formulation for the SP model. A similar formulation

is presented for the PS model, starting instead with averaging the infinitesimal stiff-

nesses in Equation (2.18) along y, inverting to obtain the compliances, then averaging
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again along x assuming an iso–stress condition. The SP model provides lower bounds

for the stiffness and upper bounds for the compliance, and the PS model provides

upper bounds for the stiffness and lower bounds for the compliance.

Scida et al. [3, 13] expanded the work of Naik and colleagues. They devel-

oped a model termed MESOTEX (MEchanical Simulation Of TEXtiles) based on

the methods of Naik and Shembekar [36]. The main improvement is that, in [13],

Scida et al. provide analytic forms of approximate geometric functions for both satin

and twill weave composite laminae. Further, in [3], they expand the analysis for

three–dimensional properties and compare the analytic results to experimental re-

sults, with good agreement to experimental results available for select components

of the stiffness moduli. This particular model is used as a means of comparison for

the twill and satin weave laminae in Chapter Five when no finite element model is

available; this is chosen in part because of the amount of experiment results available

for comparison for different systems.

A subset of analytic models are cell models (see e.g., [28,29,38]). These mod-

els, based upon a method introduced by Aboudi [39], use multiple homogenization

steps to combine easily analyzed “cells” into one system. These methods are a com-

promise between the fast but low accuracy analytic models and the highly accurate

but slow finite element models [28]. Further, more complicated analyses can be made

as there is no need to generate one closed–form solution for the entire RVE.

One of the more prominent cell models in literature is one presented by

Vardeurzen et al. [38, 40, 41]. In [38], they build a library of 108 possible subcells

from which virtually any lamina could be built from. These subcells are then ho-

mogenized together and material properties predicted [40]. This method can also be

used to calculate local stresses and strains [41]; after the cells are homogenized, a

20



stress state is applied and the cells are broken back down to determine local stresses

and strains.

Despite the increased use of finite element methods in analysis of woven com-

posite laminae, analytic methods are still being developed and analyzed for various

purposes. Lua [29] developed a cell model that can determine the thermomechanical

properties of a composite lamina at a given state of damage. This type of analytic

method can be used in tandem with a finite element model to recalculate the ma-

terial properties of the composite as damage propagates through the part. Zuo and

Xie [30] used the effective property functions from Liu et al. [42] to optimize the effec-

tive stiffness of composite laminae based on several design parameters. The functions

presented in Liu et al. [42] are unique in their own right. The functions developed

disprove the idea that the Voigt estimate of material properties (i.e., rule of mixtures)

is the upper bound of stiffness; the model presented by Liu accounts for Poisson effect,

which alters the bounds of stiffness in a composite.

2.4 Finite Element Methods for Woven Composite Analysis

Another means of predicting the material properties of a woven composite lamina

is to use a numerical method, specifically the finite element method. Finite element

analysis (FEA) is a numerical method that recasts a partial differential equation as

a set of linear equations which can be solved through matrix manipulation. Chapter

Three provides an in–depth look into the formulation of the structural mechanics

finite element problem; here, a discussion of the merits of the method itself as applied

to woven composites as well as some previously developed finite element methods

are presented. The finite element method has as its prime advantage that it yields

solution accuracy of the internal stress and strain state that is only limited by the

machine precision of the computer.
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One major advantage that FEA has over analytic methods is that there are few

assumptions about stress and strain field. The derivation of the structural mechanics

finite element problem starts from basic continuum principles; numerical approxima-

tions are made only within the displacement field of a single element. Because the

problem is solved numerically, there is no need to make assumptions about how the

geometry affects the resulting mechanical response because there is no closed–form

analytic form that needs to be derived. A derivation of the three–dimensional struc-

tural mechanics problem is presented in Chapter Three.

A major disadvantage, especially in woven composite lamina analysis, is mesh-

ing the geometry. Traditionally, a single finite element contains has smooth and con-

tinuous functions for the material behavior, so the mesh must conform to material

boundaries. Due to the complex internal geometry of woven composite RVEs, how-

ever, the mesh can become very difficult and time–consuming to generate, as well as

computationally expensive to solve. As computational resources are limited for these

analyses, some researchers seek ways to work around these issues.

2.4.1 Geometry Generation

Because the mesh is a direct function of the geometry, it is natural to assume a

form of the geometry that is more easily meshed than a more realistic model. Early

on, authors such as Thom [43] and Chapman and Whitcomb [44] would have to

investigate what assumptions about the geometry had the least affect in the accuracy

of the model. As computers continued to improve, assumptions on the geometry were

replaced with analytic models that worked in tandem with finite element software (see

e.g., [29,45]). These homogenization models were best suited for progressive damage

models, where the material properties of the composite could be homogenized through

an analytic model, sent to the finite element code to calculate the next step of the
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crack propagation, then the new parameters would be returned to the analytic model,

etc.

Recently, some authors (see e.g., [46]) have been relying heavily on specialized

software packages to generate woven composite RVEs, such as WiseTex [47] or TexGen

[7, 48]. These packages automatically generate meshes of more complex and more

realistic RVEs for woven, three dimensional, and braided composites than analytic

functions can easily provide.

To obtain the most realistic geometries for analysis, a physical composite struc-

ture can be digitally scanned to generate a two dimensional image or three dimensional

model. For example, Stair et al. [8] demonstrated a method for using ultrasound to

scan woven composites for the internal fiber architecture and orientation. Goris and

Osswald [9] used micro CT scans on short fiber filled composites to determine fiber ori-

entation within the composite. Middleton [10] also used micro CT scans of long fiber

composites to determine the stiffness properties using FEA. These physical methods

do not directly generate the geometry, but produce a pointwise description of material

behavior, which is not easily mapped over to tradition finite elements.

2.4.2 Alterations to the Finite Element Methods

Because it is desirable to analyze the most realistic geometry possible for the

most accurate results, alterations to the geometric model are undesirable. Another

option to simplifying the analysis of complex geometries is to alter the traditional

finite element process. Some unique methods have been developed over time to over-

come the difficulties in analyzing complex internal geometries; some of those methods

will be presented here.

Whitcomb and Woo [49–51] presented a number of methods to develop what

are termed “macroelements”. The macroelements were developed by using a preex-
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isting mesh for an RVE and relating unwanted degrees of freedom to the macroelement

degrees of freedom; these macroelements would then be used as building blocks to

build more complex composite structures.

In Woo and Whitcomb [49], a method termed “subdomain integration” is de-

rived by adding another Jacobian transformation to the calculation. Essentially, a

deformed element containing multiple materials would be related to a master ele-

ment by the Jacobian matrix, then the multiple materials within this master element

would be related to their own master elements through another application of the Ja-

cobian matrix. This formulation was simplified in [50], where the unwanted degrees

of freedom were instead directly related to the macroelement degrees of freedom via

the interpolation functions. A “multi–field” approach to macroelements is presented

in [51]; the interior boundary degrees of freedom are related to the boundary degrees

of freedom for the macroelement using static condensation. After the application of

static condensation, the boundary degrees of freedom are related to the macroelement

degrees of freedom using a method based on the work performed by the boundary

nodes.

Both the subdomain integration method and the multi–field method were eval-

uated against a homogenized approach by Maxwell and Whitcomb [52]. It was deter-

mined that both methods performed better overall as compared to the homogenized

method. The subdomain integration method provided shorter solution times, but the

multi–field approach provided marginally better results.

Cox et al. [53,54] presented a binary model for three–dimensional textile com-

posites. The formulation of the element consists of modeling the axial properties of

each yarn as two–noded line elements, whereas the remaining properties of the yarn

24



and surrounding matrix (deemed the “effective medium”) is modeled as a solid three–

dimensional element [53]. When compared to experimental results, the binary model

showed some improvement over orientation averaging methods [54].

Chen et al. [55] presented a method similar to that of Whitcomb and Woo [50]

for applications in three–dimensional braided composites. The method consists of

separately analyzing three regions of the braided composite: the interior, the surface,

and the corner. The material properties of these regions are determined using a fine

mesh. The entire composite is then analyzed using the properties of these smaller

regions using a much coarser mesh. The resulting analysis provided good results as

compared to experimental results, but experimental results were only available for

E11, ν12, and ν13, thus limiting the validated terms.

Wang and Sun [56] presented a novel means of modeling yarn architecture using

what the authors termed as the “digital element”. The yarn is modeled as a one–

dimensional linkage of cylindrical rods and frictionless pins, where the rods maintain

the tensile properties of the rod and the pins maintain the flexibility. When two yarns

are in contact, the frictional force between them can be calculated to determine if the

yarns stick or slip. This method of simplifying the model down to a one–dimensional

model simplifies the calculation of the stiffness matrix, although a perturbation has

to be included to prevent singularities in the solution.

Nakai et al. [57] presented a superposition method whereby the local mesh of

the strands are superimposed upon the global mesh of the matrix. In other words,

the mesh is created for the matrix alone, and then the mesh for the strands are placed

on top of this mesh. The full stiffness matrix K is composed of three submatrices:

one for the global RVE KG, one for the local strands KL, and a global/local cor-

relation submatrix KGL. This method was first tested on a unidirectional fiber and
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matrix micromechanics model to measure the effects of volume fraction on material

properties. As compared to a traditional finite element model, the proposed method

showed excellent agreement. The method was then used to predict the stiffness and

strength of a plain weave composite lamina; as compared to the traditional finite

element model, the superposition model showed good agreement.

Iarve et al. [58], similar to Nakai et al. [57], also proposed that the yarn and

matrix should be meshed separately. In a method proposed by Iarve, the yarns are

meshed first as usual, but then the entire domain of the RVE is meshed using cuboid

elements as if the yarns were not present. Using a penalty factor, the effect of the

elements occupying the same space as the yarn elements are removed; the remaining

elements are used to represent the matrix. A method to refine the elements around

the material boundary is also presented. A comparison of this model was made to

experimental results, showing good match of results.

Gager and Pettermann [59] proposed the use of shell elements instead of solid

elements to model woven geometries. Shell elements are two–dimensional elements

that exist in three–dimensions. The idea behind this was to reduce the number of de-

grees of freedom required to solve by modeling the fiber and resin as two–dimensional

geometries instead of three–dimensional ones. The stress–strain curve from an analy-

sis of a twill weave composite showed excellent agreement with a traditionally meshed

RVE.

2.4.3 Voxel Methods

Another trick to work around geometric complexities is to use a mesh of sim-

ple cuboid elements, termed “voxels”, that do not fully conform to the material

boundaries; rather, as the mesh becomes more refined, the mesh itself converges to
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the material boundaries. This type of method has become collectively referred to as

“voxel methods.”

In the present context, this approach was first suggested in 2003 by Kim

and Swan [14] for applications in textile composites. In the method they proposed,

when a voxel contains a material boundary, the element is homogenized based on the

volume fraction of the materials contained within the element. A rule of mixtures

approach was proposed in [14] to generate an upper bound on material properties,

whereas an inverse rule of mixtures approach was used generate a lower bound on

material properties. In addition to this homogenization scheme, the authors also

detailed a means of refining the mesh around material boundaries through the use

of nonconforming elements; that is, elements that had nodes on the edges of other

elements. Similar to Whitcomb and Woo [50], these nodes could be slaved to the

master edge. When compared to a traditional mesh, both the upper and lower bound

converged to the results obtained from the traditional mesh. Although there was an

increase in computational cost, the authors in [14] argue that this is offset by a

reduction in the time required to mesh the geometry.

An identical method was proposed by Watanabe et al. [15] for applications

in electromagnetism. The voxel elements sitting upon a rounded boundary could

be homogenized based on the permeability of the two materials contained; rule of

mixtures was used to determine the tangential component and inverse rule of mixtures

was used to determine the normal component. Results as compared to a traditional

voxel method showed a faster convergence in inductance for the homogenized voxel

elements. Sato et al. [60] extended upon the voxel element strategy with a method

for refining the voxels around material boundaries, similar to Kim and Swan [14].
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The results showed an improved calculation of all results except for magnetic force

as the homogenization affected the distribution of the magnetic flux density.

Smitheman et al. [61] presented a two–level numerical homogenization scheme

to determine the thermomechanical properties a woven composite. The RVE is first

divided into cuboids, and each cuboid is divided into subcuboids. Within each sub-

cuboid, the material at the centroid is determined; if the centroid is within resin, the

properties of the entire subcuboid are assumed to be that of the resin. If the centroid

lands in a yarn, the subcuboid is sampled at a number of equally distributed points

to estimate the volume fraction of the subcuboid, which is then used in a microme-

chanics model to estimate the thermomechanical properties of the subcuboid. Once

the properties are known in each subcuboid, the thermomecanical properties of the

cuboid are estimated to be the average of each of the subcuboids properties. On the

carbon/epoxy plain weave composite tested in [61], the proposed method predicted

the planar tensile modulus and Poissons ratio within 1% accuracy of experimental re-

sults. However, all other properties were predicted poorly (over 6% error), especially

the planar shear moduli, predicting a property with over 20% error as compared to

experimental data.

The biggest downside of voxel–based methods is that a very fine mesh is still

necessary to obtain the necessary resolution needed for accuracy. In addition, the

sharp edges of the voxel elements can cause stress stress concentrations, thus limiting

their use in damage modeling. In 2015, Doitrand et al. [62] compared a traditional

finite element mesh with a voxel mesh in the application of material property predic-

tion and damage prediction of a meso–scale model of a woven fabric composite. It

was determined that, while voxel elements performed well for homogenization stud-

ies at finer resolutions, due to the local stress concentrations and oscillations at the
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sharp edges of the voxel elements, damage prediction was poor. While a smoothing

method could be applied (such as the stress–averaging technique proposed by Fang

et al. [63]), this also removes stress concentrations that agree with the traditional

model. The authors in [62] urge caution with the application of voxel methods where

studying the local stress concentrations are required.

The resolution of an individual element can be increased by considering the

points used by the numerical integration scheme to calculate the elemental stiffness

matrix. Lippmann et al. [11] proposed a three dimensional multiphase element where

material properties are applied at the Gaussian integration points as a means to in-

crease resolution. The application sought was for easier analysis of metallic compos-

ites. An identical method was proposed by Zeng et al. [12,64] for applications in the

mechanical analysis of three–dimensional braided composites. In [12], the authors

test the method for mechanical properties against the braid angle of the composite;

compared against experimental results from literature, the method showed reasonable

accuracy for planar tensile modulus while showing exceptional accuracy for out–of–

plane tensile modulus. No comparisons were made for the shear moduli or Poisson’s

ratios. In [64], the authors used the element to reproduce the nonlinear stress–strain

curve of a braided composite, taking failure into account. Again, the multiphase

element presented showed reasonable accuracy compared to experiment.

Caselman, in his thesis [1], sought to improve upon the accuracy of the fi-

nite element proposed by Zeng et al. [12] for applications in RVE analysis of short

fiber composites. He proposed that the accuracy within the element was affected

because of the change in the strain field that occurred across the discontinuous ma-

terial boundary; therefore, it was hypothesized that simply using the material found

at each integration point was not enough for sufficient accuracy. Using the analogy
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of a one–dimensional spring model, Caselman derived a set of strain correction fac-

tors that could be applied at each integration point. For a simple one–dimensional

system, these corrections provided an exact result as compared to a traditional fi-

nite element model. For a simple three–dimensional system, the trends were noted

to be nearly exact except for the calculation of the transverse shear modulus G23.

Using the UEL function in ABAQUS, a custom element was made and applied to

the single fiber models of Tucker and Liang [21] and Xia [25], providing results in

good agreement with these previous models. The element was then used to analyze

an RVE of randomly oriented short fibers in matrix. This element was also used by

Middleton [10] for the analysis of micro CT data of a long fiber composite, to good

accuracy. A summary of the findings in both Caselman’s thesis [1] and Middleton’s

thesis [10] can be found in Smith [65].

The elements proposed by Kim and Swan [14], Zeng et al. [12], and Caselman

[1] are discussed in further detail in Chapter Four.

2.5 The Extended Finite Element Method

Here, a brief overview of the extended finite element method (XFEM) will be

given, but a more in–depth review of the theory and applications will be given in

Chapter Six as a part of discerning the future work of the presented research. While

the XFEM method is not directly applied in this research, the ideas presented in this

thesis can in theory reasonably be applied in conjunction with XFEM to potentially

construct a more accurate multiphase voxel element (MVE).

The extended finite element method (XFEM) is an extension upon standard

finite element methods that utilize “enrichment functions” that allow for greater

resolution within the element. This allows discontinuities, such as cracks or material

boundaries, to exist within an element without the addition of more nodes; rather,
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the nodes are enriched through the addition of extra degrees of freedom. Therefore,

XFEM can be reasonably extended to applications in material property predicting

of woven composite laminae. A methodical summary of the XFEM process can be

found in Fries and Belytschko [66]; a summary of XFEM as it applies to material

studies can be found in Huynh and Belytschko [67] and Belytschko et al. [68].

The mathematical basis for the XFEM process is the partition of unity method,

first proposed by Melenk and Babuška [69]; they propose a mathematical means for

including local phenomena within the finite element space. Belytschko and Black [70]

used this parity of unity method to develop a means of studying elastic crack growth

within a finite element model without discretely modeling the crack itself.

The basic premise is that the displacement within an element field is estimated

as (see e.g., [66, 68])

u(x) =
∑

i∈I

uiψi(x)

︸ ︷︷ ︸

u
FE

+
∑

i∈I

qiψi(x)Φ(x)

︸ ︷︷ ︸

u
enr

∀x ∈ Ω (2.26)

The first part of this equation, labeled uFE, is the standard approximation of the

displacement field used in finite elements, where ui refers to the ith nodal displace-

ment in the domain of the geometry Ω, and ψi(x) is the corresponding interpolation

function. This form will be discussed in more detail in Chapter Three, where the

standard finite element methods are presented.

The second part of Equation (2.26), uenr, refers to the displacement caused

by the enrichment function Φ(x). This enrichment function describes a local phe-

nomenon that is occurring within the domain of an element. An example of this

enrichment function for crack propagation (an example of a strong discontinuity) is

provided Belytschko et al. [68]; Moës et al. [71] developed an enrichment function

that is used to describe a material boundary (an example of a weak discontinuity).
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To determine the efficiency of XFEM as compared to current methods, Lian

et al. [72] directly compared XFEM to a voxel–based method. The models selected

to perform the comparison include a two–dimensional randomly generated composite

with circular inclusions, a two dimensional ceramic–metallic composite from a digital

image, and a three dimensional foam material generated from a scan. It was deter-

mined that, while XFEM had a higher computational cost due to the added degrees of

freedom, the method converged faster than the voxel–based methods and is therefore

overall more numerically efficient.

A concern with using the enrichment functions is the numerical integration

[73]. As will be discussed further in Chapter Three, the calculation of the stiffness

matrices require numerical integration, which is traditionally done through the use of

Gauss quadrature. In XFEM, the solution space is enriched with singular or discon-

tinuous functions; the numerical integration of these functions are inaccurate when

using standard Gauss quadrature. An alternate scheme is required, such as an adap-

tive scheme or a subdomain quadrature; see [73] for a full list of suggestions. Yazdani

et al. [74] performed studies on some traditional numerical integration techniques

(Gauss quadrature, Newton–Cotes, and Lobatto quadrature) to determine the accu-

racy of each technique. They determined that Lobotto quadrature performed best

overall, but many attempts to obtain a converged solution resulted in oscillations in

the solution curve. Because the method of MVEs relies on application of material

properties at integration points in Gauss quadrature, then this could pose a problem

when combining an MVE–like approach with XFEM.
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CHAPTER THREE

The Finite Element Method

In this chapter, a list of methods for use in finite elements and their deriva-

tions will be presented and discussed. The purpose of this discussion is to provide a

theoretical background on tools that were used in this research.

Note that in the equations contained in the following sections, vectors will

be represented as bold letters (e.g., a), whereas scalars and tensor/matrix compo-

nents will be represented with italics (e.g., a or ai). Further, unless otherwise noted,

Einstein summation convention will be used in order to reduce the complexity of the

written equations. This convention says that repeated indices imply summation from

1 to 3; for example, aii = a11 + a22 + a33, and aibi = a1b1 + a2b2 + a3b3. Under this

convention, partial derivatives with respect to the global coordinates xj are repre-

sented with a comma, so the partial derivative of ai with respect to xj is represented

as ai,j. Derivatives with respect to the local coordinates ξχ will be represented with

the Greek letter χ, so the derivative of ai with respect to ξχ is represented as ai,χ.

3.1 The Finite Element Equations for Structural Mechanics

This section will focus on deriving the constituent finite element equations used

in the structural analysis of a three–dimensional geometry. The derivation following

will start from first principles found in continuum mechanics and then derive the

approximation of the weak form following the Petrov–Galerkin formulation.

3.1.1 Continuum Mechanics First Principles

In order to derive the finite element form of the structural mechanics problem,

three relations are needed. The first equation, the strain–displacement relationship,
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relates the six strain states εij to the displacement ui as (see e.g., [5])

εij =
1

2
(ui,j + uj,i) (3.1)

Note that this linear relationship assumes small strains. The second relationship

required are the three local equations of motion. These equations state that the sum

of the derivative of the six stresses σij plus internal body forces per unit volume fi

at every material point is equivalent to the density ρ times the acceleration üi of the

local point. Moving all the terms to the left–hand side, the local equations of motion

are expressed mathematically as (see e.g., [5])

−σij,j − fi + ρüi = 0 (3.2)

The numbering scheme for both the stress tensor σij and the strain tensor εij is

presented in Figure 3.1; the two schemes are identical.

The final equation is referred to as generalized Hooke’s law, expressed as (see

e.g., [5])

σij = Cijklεkl (3.3)

This equation relates the stress σij on a body to the strain εkl through Cijkl, which

is the fourth–order stiffness tensor and is an intrinsic property of the material. The

tensor Cijkl may be shown to contain symmetry through work–energy and Hooke’s

Law (see e.g., [6]), meaning some terms with interchanged indicies are equivalent to

each other. Therefore, while Cijkl has 81 terms in total, there are only 21 independent

terms [6]. The equivalent terms are

Cijkl = Cjikl = Cijlk = Cjilk = Cklij = Cklji = Clkij = Clkji (3.4)

The property will be useful in the derivation of the finite element form as it will help

simplify formulae with redundant terms.
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Figure 3.1: The numbering scheme for the stress tensor σij (left) and for the strain
tensor εij (right). The schemes used are identical.

3.1.2 Development of the Weak Form

The first step in deriving the finite element equations in the Petrov–Galerkin

formulation is to develop the weak form of the differential equation over a general

body, represented in Figure 3.2. The domain of the general body is labeled Ω, the

surface of the body is labeled Γ, and the surface normal vector is labeled n̂. The

derivation of this form will follow a similar to one commonly presented in finite ele-

ment textbooks (see e.g., [75]). To start, Equation (3.2) is multiplied by an arbitrary

continuous and sufficiently differentiable weight function w = w(x) and integrated

over the domain as
∫

Ω

w (σij,j − fi + ρüi) dΩ = 0 (3.5)

The weight function is distributed to the terms in the parentheses, and the integral

is split as

−

∫

Ω

wσij,j dΩ−

∫

Ω

wfi dΩ +

∫

Ω

wρüi dΩ = 0 (3.6)
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Figure 3.2: A general domain Ω with surface Γ and surface normal n̂. An element
with domain Ωe and surface Γe is also depicted.

From Equation (3.3), the stress is a function of strain, which from Equation

(3.1) is in turn a function of gradients of the displacement ui. Thus in Equation (3.6),

the derivative of stress can be thought of as being a function of the second derivatives

of displacement. To reduce the order of the derivative on σij — thereby reducing the

order of differentiation on ui — divergence theorem can be invoked, resulting in an

integral around the closed surface of the domain Γ. Thus the first term in Equation

(3.6) is recast as

−

∫

Ω

wσij,j dΩ =

∫

Ω

w,jσij dΩ−

∮

Γ

wnjσij dΓ (3.7)

where ni is the i
th component of the surface normal vector n̂. With the above equa-

tion, Equation (3.6) is expressed as

∫

Ω

w,jσij dΩ +

∫

Ω

wρüi dΩ =

∫

Ω

wfi dΩ +

∮

Γ

wnjσij dΓ (3.8)

an expression termed the weak form in terms of the stress σij .
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To recast Equation (3.8) in terms of the displacement ui, Equations (3.1) and

(3.3) can be substituted into the first term of Equation (3.8) as

∫

Ω

w,jσij dΩ =

∫

Ω

w,jCijklεkl dΩ =

∫

Ω

1

2
w,jCijkl(uk,l + ul,k) dΩ (3.9)

As described in Equation (3.4), the tensor Cijkl is a symmetric tensor. Further, as

the indicies k and l are repeated, they are arbitrary. These properties can be invoked

here to simplify Equation (3.9) as

∫

Ω

1

2
w,j(Cijkluk,l + Cijklul,k) dΩ =

∫

Ω

1

2
w,j(Cijkluk,l + Cijlkuk,l) dΩ

=

∫

Ω

1

2
w,j(Cijkluk,l + Cijkluk,l) dΩ

=

∫

Ω

w,jCijkluk,l dΩ (3.10)

This reduces Equation (3.8) to the weak form in terms of the displacements and

boundary stress.

∫

Ω

w,jCijkluk,l dΩ +

∫

Ω

wρüi dΩ =

∫

Ω

wfi dΩ +

∮

Γ

wnjσij dΓ (3.11)

3.1.3 Approximating the Solution

The domain Ω is next discretized into smaller subdomains called “elements”,

each with domain Ωe and closed boundary Γe, as shown in Figure 3.2. Each element

is defined by N nodes, where the node n ∈ {1, 2, . . . , N} is globally located at xn and

has a time–dependent displacement of uni (t). These nodes are used to estimate the

displacement of the element.

The displacement field within the element is estimated by a set of N spatially–

dependent interpolation functions ψn(x). These interpolation functions have two con-

ditions, referred to as the partition of unity, given as (see e.g, [75])

ψn(xj) =

{

1 if n = j

0 if n 6= j
(3.12)
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N∑

n=1

ψn(x) ≡ 1 ∀x ∈ Ωe (3.13)

Using the nodal displacements uni (t) and the interpolation functions ψn(x), the dis-

placement at a location x ∈ Ωe can be numerically estimated as

ui(x, t) =

N∑

n=1

uni (t)ψ
n(x) (3.14)

For the present work, these interpolation functions will also serve as the arbi-

trary weight function. Substituting w(x) = ψm(x) and the approximation in Equa-

tion (3.14) into the weak form in Equation (3.11) for each element Ωe yields

∫

Ωe

ψm
,j Cijklψ

n
,l dΩeu

n
k +

∫

Ωe

ρψmψn dΩeü
n
i =

∫

Ωe

fiψ
m dΩe +

∮

Γe

njσijψ
m dΓe (3.15)

where i, j, k, l ∈ {1, 2, 3} and m,n ∈ {1, 2, . . . , N}, where N is the number of nodes

in the element. Notice in Equation (3.15), for each value of i, there are N equations,

one for each value of n. Further, the free indicies are i and m.

3.1.4 From Index to Vector Notation

The index form of Equation (3.15), although correct, is cumbersome for some

computational implementations; it would be much more convenient for the equation

to be written in a matrix form so that matrix operations can be performed in lieu of

a series of nested for loops. The matrix formulation will be presented first, and then

equivalency between this matrix form and the index form in Equation (3.15) will be

shown.

The matrix form of the three–dimensional structural mechanics problem is

given as (see e.g., [75])

∫

Ωe

BTCB dΩeu
e +

∫

Ωe

ρΨTΨ dΩeü
e =

∫

Ωe

ΨTf dΩe +

∮

Γe

ΨT(σn̂) dΓe (3.16)

where ue is a 3N × 1 vector containing the elemental displacements, given as

ue =
[
u11 u22 u33 · · · uN1 uN2 uN3

]⊤
(3.17)
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f is a 3× 1 vector containing the elemental body forces from Equation (3.2), given as

f =
[
f1 f2 f3

]⊤
(3.18)

B, termed the strain–displacement matrix, is a 6× 3N matrix given as

B(x1, x2, x3) =
[
B1 B2 · · · BN

]
(3.19)

Bm(x1, x2, x3) =











ψm
,1 0 0
0 ψm

,2 0
0 0 ψm

,3

0 ψm
,3 ψm

,2

ψm
,3 0 ψm

,1

ψm
,2 ψm

,1 0











(3.20)

Ψ is a 3× 3N matrix representing the interpolation functions as

Ψ =





ψ1 0 0 ψ2 0 0 · · · ψN 0 0
0 ψ1 0 0 ψ2 0 · · · 0 ψN 0
0 0 ψ1 0 0 ψ2 · · · 0 0 ψN



 (3.21)

and C is the contracted form of the stiffness tensor, a symmetric 6× 6 matrix repre-

senting only the 21 independent terms of the stiffness tensor Cijkl, given as

C =











C1111 C1122 C1133 C1123 C1113 C1112

C1122 C2222 C2233 C2223 C2213 C2212

C1133 C2233 C3333 C3323 C3313 C3312

C1123 C2223 C3323 C2323 C2313 C2312

C1113 C2213 C3313 C2313 C1313 C1312

C1112 C2212 C3312 C2312 C1312 C1212











(3.22)

For most of the terms in Equation (3.15), the transition from index to matrix

form is trivial. This is not true for the first term on the left hand side, however, and

a more involved proof must be demonstrated; this equivalency can be demonstrated

by multiplying in the individual matrices one–at–a–time. Note that the symmetry

on Cijkl in Equation (3.4) will be invoked here. For the mth interpolation function,

BT
mC =





ψm
,j C1j11 ψm

,j C1j22 ψm
,j C1j33 ψm

,j C1j23 ψm
,j C1j13 ψm

,j C1j12

ψm
,j C2j11 ψm

,j C2j22 ψm
,j C2j33 ψm

,j C2j23 ψm
,j C2j13 ψm

,j C2j12

ψm
,j C3j11 ψm

,j C3j22 ψm
,j C3j33 ψm

,j C3j23 ψm
,j C3j13 ψm

,j C3j12



 (3.23)
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This expression is postmultiplied by Bn to give the form

BT
mCBn =





ψm
,j C1j1lψ

n
,l ψm

,j C1j2lψ
n
,l ψm

,j C1j3lψ
n
,l

ψm
,j C2j1lψ

n
,l ψm

,j C2j2lψ
n
,l ψm

,j C2j3lψ
n
,l

ψm
,j C3j1lψ

n
,l ψm

,j C3j2lψ
n
,l ψm

,j C3j3lψ
n
,l



 (3.24)

The displacement vector in Equation (3.17) is postmultiplied into this result as

BT
mCBnu

n =





ψm
,j C1jklψ

n
,lu

n
k

ψm
,j C2jklψ

n
,lu

n
k

ψm
,j C3jklψ

n
,lu

n
k



 (3.25)

The form in equation (3.25) suggests that the ith row of BT
mCBnu can be evaluated

as

(BT
mCBnu

n)i = ψm
,j Cijklψ

n
,lu

n
k (3.26)

Thus the index form in Equation (3.15) and the matrix form in Equation (3.16) are

equivalent.

Equation (3.16) is merely a set of linear algebra equations. The form becomes

more obvious when the following relations are made:

Ke =

∫

Ωe

BTCB dΩe (3.27)

Me =

∫

Ωe

ρΨTΨ dΩe (3.28)

Fe =

∫

Ωe

ΨTf dΩe (3.29)

Qe =

∮

Γe

ΨT(σn̂) dΓe (3.30)

This leads to the final form of the finite element equations for one element with

domain Ωe.

Keue +Meüe = Fe +Qe (3.31)

where Ke and Me are 3N × 3N matrices, and Fe and Qe are 3N × 1 matrices. The

final solution form of Equation (3.31) has recast the differential equations of (3.1)–

(3.3) as a set of linear algeraic equations.
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The matrix Ke in is commonly referred to as the “stiffness matrix” (not to be

confused with Equation (3.22), the contracted form of the stiffness tensor C) and re-

lates local displacements in the system to a force required to cause that displacement.

The matrix Me is referred to as the “mass matrix” and similarly relates local accel-

erations in the system to a force. The load vector Fe refers to applied internal body

forces within the system, and the reaction force vector Qe refers to the nodal reaction

forces caused by the applied displacements, point loads, and surface tractions.

3.1.5 Assembling the Global System

Equation (3.31) is a linear algebraic system of equations that define one three–

dimensional N–noded element with domain Ωe. To approximate the differential equa-

tions in Equations (3.1) through (3.3) for the entire domain Ω as shown in Figure

3.2, a global system of equations can be assembled from the result of each of the

elemental matrices in Equations (3.27) through (3.30). This is done by considering

that a global node is a part of multiple elements and that the individual contribution

from the stiffness matrix Ke of each element is simply added together at that degree

of freedom. Thus, this element connectivity can be used to combine the individual

elemental matrices in Equations (3.27) through (3.30) into a final global system of

the form (see e.g., [75])

Ku+Mü = F+Q (3.32)

This system of equations is the system that is solved once the boundary conditions

are applied, with all the unknown variables contained within the nodal displacement

vector u, the nodal acceleration vector ü, and the nodal reaction force vector Q at

each time step.
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3.2 The Linear Hexahedral Element

With the finite element equations defined, a set of spatially dependent interpo-

lation functions ψn(x) must be selected for use in the strain displacement submatrix

Bm in Equation (3.20). These interpolation functions are defined by the shape of

the element and the location of the nodes xj within the element, and the number

of interpolation functions is equal to the number of nodes N . A constraint of the

Petrov–Galerkin method is that the functions themselves equal one at the node it is

associated with and zero at the other nodes, as described in Equation (3.12). Fur-

ther, the sum of all N interpolation functions equal one at any given point x ∈ Ωe,

as described in Equation (3.13).

Because real–world geometries are complex, elements often have to be irregular

in order to mesh the geometry accordingly. It would be cumbersome to have to define

and derive a new set of interpolation functions in the global coordinate system defined

by (x1, x2, x3) for every irregular element with domain Ωe in the system. To simplify

this process, a simple “master element” with domain Ω̂e is defined, and then the

irregular elements are mapped to this master element before calculating the element

stiffness matrix in Equation (3.27). This master element is defined in its own local

orthogonal coordinate system defined by (ξ1, ξ2, ξ3); the local nodal locations ξj and

the interpolation functions ψn(ξ) are therefore defined in this local coordinate system.

The Jacobian Jij maps the irregular element in x to the master element in ξ.

3.2.1 The Master Element

In theory, any polyhedron can be selected to be a master element, but the tetra-

hedral element, triangular prism, and hexahedral element are commonly used. The

interpolation functions for these elements are often simple polynomial expressions,

i.e., linear, quadratic, cubic, etc. Computationally, however, the linear hexahedral
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element is the simplest because the edges of the element align with the local orthog-

onal coordinate system ξ. The master element for the linear hexahedral element is

shown in Figure 3.3. The linear hexahedral master element is an 8–noded element

in the shape of a cube centered at the origin of a local coordinate system defined by

(ξ1, ξ2, ξ3) and has side lengths of 2, as shown in Figure 3.3. That is to say, the local

coordinates ξn = [ξn1 ξn2 ξn3 ] at each node n is







ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ7

ξ8







=















−1 −1 −1
1 −1 −1
1 1 −1
−1 1 −1
−1 −1 1
1 −1 1
1 1 1
−1 1 1















(3.33)

The partition of unity, given in Equations (3.12) and (3.13), can be used

with the nodal coordinates ξn to define a system of N equations to determine the

N interpolation functions for the master element. The final result of this work for

the 8–noded linear hexahedral element is a vector ψ (ξ1, ξ2, ξ3) of eight interpolation

functions, given as (see e.g., [75])

ψ (ξ1, ξ2, ξ3) =







ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7

ψ8







=
1

8







(1− ξ1) (1− ξ2) (1− ξ3)
(1 + ξ1) (1− ξ2) (1− ξ3)
(1 + ξ1) (1 + ξ2) (1− ξ3)
(1− ξ1) (1 + ξ2) (1− ξ3)
(1− ξ1) (1− ξ2) (1 + ξ3)
(1 + ξ1) (1− ξ2) (1 + ξ3)
(1 + ξ1) (1 + ξ2) (1 + ξ3)
(1− ξ1) (1 + ξ2) (1 + ξ3)







(3.34)

3.2.2 The Jacobian

The master element serves as a mathematically convenient way to use the same

set of equations to calculate the stiffness matrix Ke for multiple unique 8–noded

elements. In order to fully utilize the master element, the deformed element with
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Figure 3.3: The master element with domain Ω̂e for a linear hexahedral element in
the local coordinates (ξ1, ξ2, ξ3)

domain Ωe needs to be mapped to the master element with domain Ω̂e. This can be

achieved through the use of the Jacobian matrix. Figure 3.4 visually demonstrates the

relationship of the deformed element and the master element through the Jacobian.

Figure 3.4: The Jacobian Jij maps a deformed element Ωe in the xi coordinate system

to the master element Ω̂e in the ξi coordinate system

The Jacobian J is a matrix with components Jχi defined as the derivative of

the global coordinates x with respect to the local coordinates ξ as (see e.g., [75])

Jχi ≡
∂xi

∂ξχ
= xi,χ (3.35)

Note here that the derivative of the global coordinate xi with respect to the local
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coordinate ξχ is represented as xi,χ; this notation will be used to represent the deriva-

tive with respect to ξχ. The inverse of the Jacobian can be shown (see e.g., [5]) to

be the derivative of the local coordinates with respect to the global coordinates as

J−1
iχ = ξχ,i (3.36)

The global coordinates (x1, x2, x3) of any local coordinate (ξ1, ξ2, ξ3) can be found us-

ing the interpolation functions and the N local nodal locations (ξn1 , ξ
n
2 , ξ

n
3 ) in Equation

(3.33) as

xi =

N∑

n=1

ξni ψ
n(ξ) (3.37)

Using Equation (3.37) in Equation (3.35) yields

Jχi =
N∑

n=1

ξni ψ
n
,χ (3.38)

The Jacobian is applied within the strain–displacement submatrixBm in Equa-

tion (3.20). Currently, the submatrix Bm contains derivatives of ψm with respect to

the global coordinates x, but the interpolation functions defined in Equation (3.34)

are functions with respect to the local coordinates ξ. Therefore, to find the deriva-

tives of ψ(ξ) with respect to x, chain rule is used along with Equation (3.36).

ψm
,i = ξχ,iψ

m
χ = J−1

iχ ψ
m
χ (3.39)

These equations are then applied in the Bm matrix in Equation (3.20) to map any

valid 8–noded element to the master element as

Bm(ξ1, ξ2, ξ3) =











J−1
1χ ψ

m
,χ 0 0

0 J−1
2χ ψ

m
,χ 0

0 0 J−1
3χ ψ

m
,χ

0 J−1
3χ ψ

m
,χ J−1

2χ ψ
m
,χ

J−1
3χ ψ

m
,χ 0 J−1

1χ ψ
m
,χ

J−1
2χ ψ

m
,χ J−1

1χ ψ
m
,χ 0











(3.40)

allowing the finite element equations to be expressed in the local coordinates ξ of the

master element instead of the global coordinates x of the system.
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The Jacobian is also used to transform the global volume integral over Ωe in

Equation (3.16) to a local volume integral over Ω̂e as (see e.g., [5])

dΩe = dx1dx2dx3 = det(J) dξ1dξ2dξ3 = det(J) dΩ̂e (3.41)

3.2.3 Numerical Integration

For a general element without orthogonal sides, there are not closed form

expressions to express the solution to Equation (3.16). Thus a numerical approach

to approximate the solution is necessary. Numerical methods allow for a numerical

estimation of a complex analytic mathematical operation without calculating the

analytic function itself.

There are many ways to numerically evaluate an integral, but the method often

chosen for use in finite elements is Gauss quadrature. Gauss quadrature estimates an

integral from −1 to 1 by a sum of the integrand evaluated at Ngp integration points

(or Gauss points) ξ̂n multiplied by a corresponding weight coefficient wn as

∫ 1

−1

f(ξ) dξ ≈

Ngp∑

n=1

wnf(ξ̂n) (3.42)

Note that the superscript n refers to the nth term in the series and is not a power; this

notation is selected in order to reserve the subscript as a reference to the dimension

of the variable, as discussed shortly.

Equation (3.42) has Ngp unknown weights wi and Ngp unknown integration

points ξ̂i, or 2Ngp unknowns for one equation. To calculate all 2Ngp unknowns, the

Equation (3.42) is evaluated for simple choices of f(ξ), namely

f(ξ) = ξα α ∈ {0, 1, . . . , 2Ngp − 1} (3.43)

Solving Equation (3.42) using the equations in (3.43), the weights and locations of

the Gauss points for any value of Ngp can be solved for (see e.g., [76]). Therefore,
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this numerical integration is exact for a polynomial of order 2Ngp − 1, which is the

most significant advantage of Gauss quadrature.

The Gauss quadrature method can easily be extended for use in multiple

dimensions. Further note that it can be extended to integrals other than from -1

to 1; however, the use of the Jacobian above transforms the integration in Equation

(3.16) to the required domain for Gauss quadrature to be used.

∫ 1

−1

∫ 1

−1

∫ 1

−1

f(ξ1, ξ2, ξ3) dξ1dξ2dξ3 ≈

N1
gp∑

m=1

N2
gp∑

n=1

N3
gp∑

p=1

wm
1 w

n
2w

p
3f(ξ̂

m
1 , ξ̂

n
2 , ξ̂

p
3) (3.44)

where Nχ
gp refers to the number of Gauss points in the ξχ direction as the number of

Gauss points used in each direction need not be equivalent.

The use of Gauss quadrature approximates the triple integrals in Equations

(3.27) through (3.29) as triple summations. For example, the form of the Equation

for the Ke in Equation (3.27) now becomes

Ke =

∫ 1

−1

∫ 1

−1

∫ 1

−1

[B(ξ1, ξ2, ξ3)]
TCB(ξ1, ξ2, ξ3)det(J) dξ1dξ2dξ3

≈

N1
gp∑

m=1

N2
gp∑

n=1

N3
gp∑

p=1

wm
1 w

n
2w

p
3[B(ξ̂m1 , ξ̂

n
2 , ξ̂

p
3)]

TCB(ξ̂m1 , ξ̂
n
2 , ξ̂

p
3)det(J) (3.45)

3.3 Solving the Finite Element Problem for Material Stiffness Prediction

Now that the finite element equations have been fully developed, Equation

(3.32) can now be used to solve specific problems. A geometry is created and then

discretized into specific elements (called a mesh). Once the mesh is created, a series

of boundary and initial conditions can be applied to the global system in Equation

(3.32) and the system solved.

The methods presented in Section 3.2 were discussed in general for any struc-

tural mechanics problem. The specific problem being considered in this study is

the stiffness tensor prediction of a stationary heterogeneous material representative
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volume element (RVE). Therefore the methods for solving Equation (3.32) will be

presented in this section with this context in mind. Further, the RVE in question is

allowed to be a heterogeneous material, where each constituent material has a known

stiffness matrix; for example, the stiffness properties could be that of a fiber and resin

system forming a laminated fabric composite.

3.3.1 Theory of Material Stiffness Property Prediction

The theory for determining the components of the concatenated for of the

stiffness tensor C in Equation (3.22) can be explained by looking at the matrix form

of the generalized Hooke’s Law in Equation (3.3). For a given C, when a strain ε is

applied, the resulting stresses σ can be calculated as







σ11
σ22
σ33
σ23
σ13
σ12







=











C1111 C1122 C1133 C1123 C1113 C1112

C1122 C2222 C2233 C2223 C2213 C2212

C1133 C2233 C3333 C3323 C3313 C3312

C1123 C2223 C3323 C2323 C2313 C2312

C1113 C2213 C3313 C2313 C1313 C1312

C1112 C2212 C3312 C2312 C1312 C1212

















ε11
ε22
ε33
ε23
ε13
ε12







(3.46)

However, if C is unknown, as is the case in the present context of an RVE,

then the values of the components of C must be determined “experimentally”. In

other words, the RVE of the object is placed under a strain state in finite elements,

the average stresses are measured, and then the components of C calculated. Unfor-

tunately, the problem is now underdefined for a single strain state where one has 6

equations for 21 unknowns.

It is reasonable to apply a set of randomized strain states to an RVE and de-

termine the concatenated form of the stiffness tensor using some form of optimization

scheme. In the present work, a more direct approach is used: Each of six individual

strain states are applied one at a time to determine uniquely a given column of the

concatenated form of the stiffness tensor C. For example, if a ε11 is applied while all
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other strains are 0, then the system in Equation (3.47) becomes






σ11
σ22
σ33
σ23
σ13
σ12







=











C1111 C1122 C1133 C1123 C1113 C1112

C1122 C2222 C2233 C2223 C2213 C2212

C1133 C2233 C3333 C3323 C3313 C3312

C1123 C2223 C3323 C2323 C2313 C2312

C1113 C2213 C3313 C2313 C1313 C1312

C1112 C2212 C3312 C2312 C1312 C1212

















ε11
0
0
0
0
0







(3.47)

which simplifies down to a set of six algebraic expressions in terms of ε11 and the

resulting σij values.

C1111 =
σ11

ε11
, C1122 =

σ22

ε11
, C1133 =

σ33

ε11
, C1123 =

σ23

ε11
, C1113 =

σ13

ε11
, C1112 =

σ12

ε11
(3.48)

As ε11 is applied, and the resulting σij can be measured from the finite element

analysis, the first column of C can be calculated. This process can be repeated for

the other five applied strain states to fully determine C. The RVE is geometrically

periodic, or one repeating cell of an infinitely expansive volume, so even if the cell

is deformed, it must remain periodic without overlap. If this condition is met, the

calculated stiffness tensor will naturally be symmetric.

In order to calculate the stresses from the finite element model, it is convenient

to have a uniform strain state on the boundary of the RVE. However, as Xia et

al. [25] pointed out, this is not as simple as fixing one boundary and then prescribing

a displacement on the opposing boundary; in fact, this method will overconstrain

the system and the boundaries will not be able to displace freely. Periodic boundary

conditions with added displacement allow for source and destination boundaries to be

displaced relative to one another while still allowing the geometry to deform according

to the applied strains.

A cuboid RVE, as represented in Figure 3.5, has six faces whose normal vectors

are parallel to one of the three coordinate axes. The RVE occupies the region {0 ≤

x1 ≤ ∆x1; 0 ≤ x2 ≤ ∆x2; 0 ≤ x3 ≤ ∆x3}; in order for the RVE to be periodic in all
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directions, the following conditions must be imposed (see e.g., [25])

u1(∆x1, x2, x3) = u1(0, x2, x3) + ε̄11∆x1

u1(x1,∆x2, x3) = u1(x1, 0, x3) +
ε̄12∆x2

2

u1(x1, x2,∆x3) = u1(x1, x2, 0) +
ε̄13∆x3

2

u2(∆x1, x2, x3) = u2(0, x2, x3) +
ε̄12∆x1

2

u2(x1,∆x2, x3) = u2(x1, 0, x3) + ε̄22∆x2

u2(x1, x2,∆x3) = u2(x1, x2, 0) +
ε̄23∆x3

2

u3(∆x1, x2, x3) = u3(0, x2, x3) +
ε̄13∆x1

2

u3(x1,∆x2, x3) = u3(x1, 0, x3) +
ε̄23∆x2

2

u3(x1, x2,∆x3) = u3(x1, x2, 0) + ε̄33∆x3 (3.49)

where ε̄ij refers to an applied averaged strain state. Note that for an applied shear

strain (ε̄23, ε̄13, and ε̄12), two separate boundary conditions are necessary. Further,

for shear deformation, the applied displacement is halved in order to account for the

difference in true shear strain and engineering shear strain. Notice that all of these

conditions must be applied regardless of the strain state prescribed. The methods

on mathematically applying the boundary conditions in Equations (3.49) will be

presented in detail in Section 3.3.3.

The system needs to be anchored at some point in the body to prevent rigid

body translations. For simplicity, the node at the origin is chosen to be fixed, thus

u1(0, 0, 0) = 0

u2(0, 0, 0) = 0

u3(0, 0, 0) = 0 (3.50)

50



Figure 3.5: An example of a cuboid representative volume element (RVE), with ap-
plied strains ε̄ij and dimensions labeled.

3.3.2 Problem–Specific Simplifications to the Finite Element Equations

Now that the theory behind RVE material stiffness property prediction has

been established, the finite element approach to perform these tasks can be estab-

lished. The three–dimensional structural mechanics problem was shown in Equation

(3.32). However, problem–specific simplifications can be made to the general finite

element form to reduce the complexity of the finite element equations further. The

simplifications pertinent to the material stiffness property prediction problem are as

follows:

• Stationary System. Some problems have a load or displacement that is ap-

plied over a time period, such as modeling the material response to an impact;

this, however, is not required for linear elastic material property prediction, so

ü = 0 in Equation (3.32).
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• No Internal Body Forces. In Equation (3.29), f refers to applied internal

body forces on an object, which are assumed to be negligible, i.e., F = 0.

• No Applied Surface Tractions or Point Loads. Equation (3.30) defines

the Q vector, containing the resulting nodal reaction forces caused by applied

point loads, surface tractions, and displacements. There is no applied point

loads or surface tractions, meaning the nodal reaction force is zero when the

nodal displacement is unknown.

These three simplifications reduce the global finite element equation to

Ku = Q (3.51)

Typically in stationary solid mechanics systems, both u and Q are column

vectors having the length of the number of nodal degrees of freedom (3) times the

nodes (N). However, multiple displacement states can be calculated simultaneously

by concatenating P desired displacement states into one matrix and the P applied

loads in another. In other words, u and Q, respectively, become

u =
[
u1 u2 · · · uP

]
Q =

[
Q1 Q2 · · · QP

]
(3.52)

Thus, multiple solutions to the global system in Equation (3.51) can be solved simul-

taneously as

[
u1 u2 · · · uP

]
= K−1

[
Q1 Q2 · · · QP

]
(3.53)

greatly reducing computational efforts. This becomes particularly useful in material

property prediction as the same stiffness matrix K can be used to simultaneously

calculate the reaction forces from all six strain states.
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3.3.3 Boundary Conditions

In order for the finite element equations to be properly utilized, boundary condi-

tions need to be applied. In Equation (3.51), boundary conditions can be prescribed

through a displacement within u or a boundary force in Q. Often, there will be a

mix of displacements and boundary forces, thus various components of u of Q will

be known, but at every nodal degree of freedom, either the displacement or force will

be known. If no displacement is specifically applied at a node, because no surface

tractions or point loads are applied, the resulting reaction force is zero; if there is an

applied displacement, then the reaction force remains unknown.

Periodic boundary conditions, as presented in Equation (3.49), refer to a spe-

cial form of conditions where the value of displacements or forces at one boundary

of the geometry (the destination) is dependent on the value of the displacements or

forces on the opposing boundary (the source). This form of boundary condition is

used when a large geometry can be fully represented by a reduced, geometrically

periodic RVE.

The periodicity in this thesis is enforced through the displacements, where the

displacement on the destination face (ud) is equivalent to the displacements on the

source face (us) plus a constant c [25].

ud = us + c (3.54)

The constant c is related to the average strain ε̄, where

ε̄ ≈
ud − us

∆x
(3.55)

where ∆x is the distance between the source and destination faces. Thus, from Equa-

tions (3.54) and (3.55),

c = ε̄∆x (3.56)
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To ensure that periodicity of the geometry is maintained in the boundary forces in

the absence of body forces, the reaction forces on the opposing faces are equivalent

in magnitude, but opposite in direction by the balance of forces (see e.g., [25]).

Qs = −Qd (3.57)

To demonstrate how to implement the periodic boundary conditions, a one–

dimensional system of three nodes shall be considered. The three nodes are shown in

Figure 3.6, where xs and xd are, respectively, the source and displacement positions,

and xo is some nodal location between them. Upon assembly, the full system looks

like (see e.g. [77])




Kss Ksd Kso

Kds Kdd Kdo

Kos Kod Koo











us
ud
uo






=







Qs

Qd

Qo






(3.58)

where the subscript s refers to the source, d refers to the destination, and o refers to

the other non–periodic nodes in the system. With Equations (3.54) and (3.57), the

system becomes




Kss Ksd Kso

Kds Kdd Kdo

Kos Kod Koo











us
us + c

uo






=







−Qd

Qd

Qo






(3.59)

The first and second rows of this matrix system can be added together in order to

eliminate the Qd terms. Simplifying the equation yields

(Kdd +Kds +Ksd +Kss)us + (Kdo +Kso)uo = −c (Kdd +Ksd) (3.60)

The third row of the matrix equation can be simplified as well.

(Kod +Kos)us +Koouo = Qo − cKod (3.61)

Reformatting Equations (3.60) and (3.61) into matrix form yields (see e.g., [77])

[
Kdd +Kds +Ksd +Kss Kdo +Kso

Kod +Kos Koo

]{
us
uo

}

=

{
−c (Kdd +Ksd)
Qo − cKod

}

(3.62)
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Equation (3.62) demonstrates that the displacements of the destination nodes

are not calculated directly during the solution process, but rather are calculated in

the post–processing phase by using Equation (3.54).

Figure 3.6: A three–noded one–dimensional periodic system

3.3.4 Partitioning and Solving the Finite Element Equations

Once the boundary conditions are applied to the global system, the matrix sys-

tem in Equation (3.51) is ready to be solved. As mentioned previously, each nodal

degree of freedom will either have an unknown displacement or an unknown reaction

force, but not both. Further, the stiffness matrix K is calculated from selected inter-

polation functions ψm(x) and from the selected contracted form of the stiffness tensor

C.

Before solving the system of equations, it is beneficial to partition the system

in terms of the free nodes uf and the prescribed nodes up. This form allows rapid

implementation within the computational framework. The displacement vector is

recast as

u =

{
uf

up

}

(3.63)

using elementary row operations. The finite element form of Equation (3.51) is then

rewritten as
[
Kff Kfp

Kpf Kpp

]{
uf

up

}

=

{
Qf

Qp

}

(3.64)

The unknowns in Equation (3.64) are uf and Qp. Knowing this, the entire system
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can be solved within two steps. The first series of rows are rewritten as

uf = K−1
ff (Qf −Kfpup) (3.65)

Then, from the second series of rows from Equation (3.64), once uf is known, yields

the solution for the reaction forces Qp

Qp = Kpfuf +Kppup (3.66)

Thus solutions of Equations (3.65) and (3.66) yields the unknown displacements uf

and unknown reaction forces Qp.

3.4 Post–Processing

After performing the matrix operations necessary to solve for all of the displace-

ments and reaction forces in the system, the contracted form of the stiffness tensor

C of the RVE in Figure 3.5 can be calculated. This is performed as described in

Equation (3.48); the average stress over the RVE can be divided by the applied strain

state ε̄ to determine each component in the appropriate column of C.

To calculate the average stresses σ̄ij , each component of the stress tensor σij

is integrated over the domain and divided by the total volume V = ∆x1∆x2∆x3 as

σ̄ij =
1

V

∫

Ω

σij dΩ (3.67)

While this is a valid way of determining the average stresses in the system,

Gauss theorem and the local equations of motion from Equation (3.2) can be used to

simplify the calculation to directly use the reaction forces on the boundaries found in

Q (see e.g., [2, 25]). To start, it can be shown that σij is equivalent to (σikxj),k by

expanding out the latter term using product rule as

(σikxj),k = σik.kxj + σikxj,k (3.68)
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Based on the assumptions presented in Section 3.3.2, there are no body forces or

acceleration in the system, so the local equations of motion in Equation (3.2) reduces

down to

σij,j = 0 (3.69)

Using Equation (3.69), Equation (3.68) can continue to be expanded as

(σikxj),k = σik.kxj + σikxj,k = σikδjk = σij (3.70)

where δij refers to the Kronecker delta function. Thus it has been shown that σij =

(σikxj),k, so Equation (3.69) becomes

σ̄ij =
1

V

∫

Ω

(σikxj),k dΩ (3.71)

Gauss theorem can be applied to Equation (3.71) to recast the volume integral

to a surface integral as (see e.g., [5])

σ̄ij =
1

V

∫

Ω

(σikxj),k dΩ =
1

V

∫

Γ

σikxjnk dΓ (3.72)

Using the assumption that the reactions on opposite faces are periodic as in Equation

(3.57), and that nk = −1 on the source face Γs
k and nk = 1 on the destination face

Γd
k, this can be further reduced to (see e.g., [25])

1

V

∫

Γ

σikxjnk dΓ =
1

V

(
∫

Γd
k

σd
ikx

d
j dΓ−

∫

Γs
k

σs
ikx

s
j dΓ

)

=
1

V

∫

Γd
k

σd
ik(x

d
j −xsj) dΓ (3.73)

where s refers to the source face and d refers to the destination face. If k 6= j, then

the integral reduces to 0 as xdj − xsj = 0. However, if k = j, then xdj − xsj = ∆xj ,

which is constant. This ∆xj term then can be pulled out of the integral as

σ̄ij =
∆xj
V

∫

Γj

σij dΓ (3.74)
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The integral of σij over the surface Γj is sum of the reaction forces on the positive xj

face. Therefore, the calculation of σ̄ij is (see e.g., [25])

σ̄ij =
Rij

Sj

(no sum on j) (3.75)

where Sj refers to the surface area of the positive xj face, and Rij refers to the sum

of the reaction forces acting in the xi direction upon the positive xj face.

Once the average stresses are calculated, the components of the concatenated

form of the stiffness tensor are calculated by dividing the column of the average

stresses by the applied strain, as in Equation (3.48). When this is performed for all

6 applied strain states, the full 6 × 6 contracted form of the stiffness tensor of the

RVE C is determined.
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CHAPTER FOUR

The Multiphase Voxel Element (MVE)

Now that a foundational understanding of the various processes involved in

solving finite element problems has been built, a discussion can be had on the four

types of multiphase voxel elements (MVEs) developed and studied in this thesis. This

chapter will go in depth into the theory behind how each MVE is constructed, as well

as provide studies on simple materials to compare the effectiveness of each method.

4.1 Motivation

The goal of this research is to develop a finite element for use in the Petrov-

Galerkin formulation capable of containing multiple materials while also being entirely

independent of internal material boundaries. WiseTex [47] and TexGen [7,48] are ef-

fective meshing programs for select weave geometries; this work seeks to formulate an

alternative meshing configuration that can be applied to multiple–material systems.

Research has already been performed by Whitcomb et al. [49–52] on a type

of homogenized element termed a “macroelement”. Nakai et al. [57] and Iarve et

al. [58] both determined methods for superimposing the local mesh of the fiber upon

the global homogeneous mesh of the matrix. However, these methods require that a

geometry–specific mesh be defined and solved for each representative volume element

(RVE) that constitutes the entire woven geometry. Sometimes, geometry data is

only available pointwise, as extracted from a three-dimensional ultrasound scan (see

e.g., [8]) or a micro CT scan (see e.g., [9, 10]). It would be convenient to have a

means to analyze these geometries without having to explicitly model and mesh the

data. Further, some meshes of complex geometries contain ill–conditioned elements,
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whereby the Jacobian of the element approaches singularity. It would be beneficial

to have an element that can build a consistent mesh with no risk of ill–conditioned

elements.

Recent developments in extended finite elements (XFEM) have proven promis-

ing for studies in crack propagation (see e.g., [68]). The power of XFEM is through

the superposition of enrichment functions that allow greater refinement within an ele-

ment; this means that elements built through the XFEM process can ignore material

discontinuities. However, in order to enrich the element, extra degrees of freedom

have to be added, and therefore more computational resources are required.

The use of voxel elements is an alternative to the traditional meshing process

whereby a mesh of equal–sized and shaped elements can be superimposed upon a

two–dimensional image or three–dimensional scan (see e.g., [72]). The material prop-

erty within each voxel can either be the material with the highest volume fraction

within the element (see e.g., [62]) or some homogenization method for these voxels

are employed (see e.g, [11, 14]). However, the former is usually selected to reduce

model setup and computational effort which can produce sharp spikes in stress due

to “stairstep–like” material boundaries [62]. The homogenized voxel methods often

used in literature range from using rule–of–mixtures to homogenize voxels contain-

ing material boundaries (see e.g., [14, 15]) to applying the material properties at the

integration points (see e.g., [11, 12]). Caselman showed in his thesis [1] that the use

of the latter method can be improved upon through the use of strain corrections at

each integration point. The purpose of the present study is to further improve upon

these homogenized voxel elements where material properties are applied at the Gauss

points; these shall be termed “multiphase voxel elements” (MVEs) in this thesis.
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Figure 4.1 shows two flowcharts comparing the process behind using traditional

finite elements versus MVEs. The desired characteristics of an MVE are to

1. Accurately predict the stiffness tensor of heterogeneous structures with complex

geometries using material information at the integration points.

2. Evaluate an element domain that contains more than one material type with

an infinite gradient in properties along an internal boundary, such as between

the resin and the fiber tow.

3. Mesh a domain entirely independent of internal geometry. In other words, the

mesh can be generated before internal geometry is considered (as shown in

Figure 4.1).

4.2 Selected Multiphase Voxel Elements

For this research, four types of MVEs are investigated, and the construction

of each element is discussed in detail in this section. Studies on simple geometries

are provided in this chapter to highlight strengths and weaknesses of each method.

The application of each method to woven composite material stiffness properties are

presented in Chapter Five.

An algorithm scans each element for the materials contained within its domain

at discrete points and uses that information to build an element that approximates the

homogenized stiffness properties of the element as a whole. Because the stiffness ma-

trix Ke is often computed through Gauss quadrature (or a similar numerical scheme),

it is convenient to have the material information collected along with applying any

corrections at the individual Gauss points. For each of the elements presented, it is

assumed that an equal number of Ngp Gauss points are used in each of the coordinate

directions.
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Figure 4.1: The process for using traditional finite elements versus the process for
using MVEs. For MVEs, the geometry can be considered as the system is being
solved for.

4.2.1 Average Stiffness Element (ASE)

The average stiffness element (ASE) is the simplest of the MVEs investigated.

The concept is that the element–wise average 〈Cijkl〉 of the individual stiffness tensor

components C̃ijkl(x) over the volume of the element, calculated as

〈Cijkl〉 =
1

V

∫∫∫

V

C̃ijkl(x)dV (4.1)

is used as the stiffness property within the finite element calculation in Equation

(3.27). This formulation is similar to the volume fraction–based homogenization

method presented by Kim and Swan [14] and Watanabe et al. [15], but extended

for more than two materials in the element.

To evaluate this integral numerically is straight–forward. The values of the

stiffness tensor is determined at each of the Gauss points within the element, and then

all of the individual stiffness tensors are summed and divided by the total number of

Gauss points, evaluated as

〈Cijkl〉 =
1

N3
gp

Ngp∑

m=1

Ngp∑

n=1

Ngp∑

p=1

C̃ijkl(ξ̂m, ξ̂n, ξ̂p) (4.2)
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The integration in (3.45) is then calculated independent of any spatial variation in

C.

This method is not provided as a potential solution, but merely as the reference

which the other methods will be compared to in order to demonstrate improvement.

It is expected that a more realistic MVE should perform as good as or better than

the averaging method.

4.2.2 Basic Multiphase Voxel Element (B–MVE)

Zeng et al. [12,64] devised a simple method to homogenize elements for use in me-

chanical and failure analyses of three-dimensional braided composites. The method

is a numerical technique that applies the separate material properties individually

at the nth Gauss point ξ̂ni within the numerical integral calculation of the stiffness

matrix Ke.

Ke =

Ngp∑

m=1

Ngp∑

n=1

Ngp∑

p=1

wm
1 w

n
2w

p
3[B(ξ̂m1 , ξ̂

n
2 , ξ̂

p
3)]

TC(ξ̂m1 , ξ̂
n
2 , ξ̂

p
3)B(ξ̂m1 , ξ̂

n
2 , ξ̂

p
3)det(J) (4.3)

As previously discussed in Chapter Two Section 2.4.4, Zeng et al. [12] used

this method to study the effects of braid angle on engineering properties; compared

against experimental results from literature, the method showed reasonable accuracy

for planar tensile modulus while showing exceptional accuracy for out-of-plane tensile

modulus. No experimental comparisons were made for shear modulus or Poisson’s

ratio. The method was also used to predict the failure of braided composites with

reasonable agreement to experimental results [64]. There is, however, room for im-

provement in both studies, as discussed in Section 4.2.3.

This approach to the finite elements problem is beneficial in that it alleviates

the issues involved with meshing complex geometries by accommodating multiple ma-

terial properties within an element. The element can reference an analytic geometric
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function, results from a scan of a geometry, or even a preexisting mesh to determine

the material property at each Gauss point. For the purpose of this study, the element

presented by Zeng et al. will be referred to as the Basic Multiphase Voxel Element

(B–MVE).

4.2.3 Tensile Modulus Corrected Multiphase Voxel Element (TMC–MVE)

Caselman [1], in his thesis, evaluated the applicability of the B–MVE for a

unidirectional fiber reinforced composite by altering the volume composition of the

element’s two materials and solving for the effective material properties. For both a

one–dimensional and three–dimensional isotropic system, Caselman discovered that

the B–MVE element produces a rule–of–mixtures result that was not characteristic

of the actual system. He postulated that the B–MVE did not account for the change

in the strain field that occurs across the material boundary within the element. This

is because the selected interpolation functions ψ(ξ) from Equation (3.34) are forced

to be linear across the entire heterogeneous element, whereas the strain is only truly

linear within the same material.

Using a one–dimensional spring analogy (as depicted in Figure 4.2), Caselman

proposed a means to “correct” the strain within the element by using the material

properties to adjust the derivatives of the interpolation functions (which are analogous

to the strain in the finite element equations). Assuming a two–material spring system

with stiffnesses k1 and k2, the effective stiffness of the springs in series keff can be

determined.

keff =
k1k2

k1 + k2
(4.4)

Recognizing that the tensile modulus Eq, where q is the qth material in a line of

springs, both constituent materials and the effective material Eeff can be related to
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their respective spring constants by

kq =
EqA

Lq
(4.5)

where Lq refers to the length of the material and A refers to the cross–sectional area.

Using Equation (4.5) in Equation (4.4), the value of Eeff evaluates to (assuming

equal cross-section areas)

Eeff =
E1E2

β1E2 + β2E1
(4.6)

where βq is a line fraction evaluated as

βq =
Lq

L1 + L2
(4.7)

Figure 4.2: A visual depiction of the spring analogy used by Caselman [1]

Two springs in series have different values of strains εq distributed across the

two materials. By only applying the material that is at each Gauss point, the value

of strain calculated εeff would be equivalent in both materials. To correct this, a

relationship between the actual strain within the material and the effective strain

being calculated (the “correction”) needs to be determined. This is done by using

the force–equivalent nature of two springs in series and their resultant equivalent

spring, expressed as

F

A
= E1ε1 = E2ε2 = Eeffεeff (4.8)

65



Solving for the ratio of each material strain to the effective strain yields the correction

factor αq that is applied to the interpolation functions at each Gauss point.

αq =
εq

εeff
=
Eeff

Eq
(4.9)

At each Gauss point, this correction factor is multiplied into terms within the strain-

displacement matrix B. The value of the correction factor depends on the material

at the Gauss point. For a one-dimensional system, this is mathematically equivalent

to applying Eeff to the entire element.

The extension to three dimensions may be made by treating each line of Gauss

points as a spring system. Each Gauss point is treated as a part of three different

spring systems, each with their own line fraction.

In Caselman’s presentation [1], only the isotropic tensile modulus E of two

materials is used; there is no extension of the method to orthotropic materials that

have different tensile moduli (E1, E2, E3) in each of the coordinate directions or to

elements containing more than two materials. Caselman only needed two isotropic

materials for his studies of short fiber composites, so in this research his efforts are

extended to more than two orthotropic materials within the element. The tensile

moduli Ei will be used instead of the isotropic tensile modulus E. This modified

element will be referred to the Tensile Modulus Corrected Multiphase Voxel Element

(TMC–MVE).

Expanding into three dimensions, the evaluation of the correction factors ex-

pand to include a dimension on the line fraction βq. So now the subscript i refers to

the dimension xi in which the value is calculated. Thus the corrections in Equation

(4.9) become

α
q
i =

E
eff
i

E
q
i

(no sum on i) (4.10)
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where

E
eff
i =

E1
iE

2
i

β1
iE

2
i + β2

iE
1
i

(no sum on i) (4.11)

and

β
q
i =

L
q
i

L1
i + L2

i

(no sum on i) (4.12)

The TMC–MVE was originally developed for an element containing two

isotropic materials for use in analysis of short fiber composites [1]. Short fiber com-

posites may contain glass or carbon fibers within a polymer matrix, both isotropic, so

this element worked well for that application. However, woven composites are made

from an isotropic matrix and a transversely isotropic strand. Because of this differ-

ence, the strand’s properties vary with direction, meaning there are more than two

sets of stiffness tensors to account for in the formulation of Ke.

Returning to Caselman’s original derivation, in Equation (4.4), he presents the

effective stiffness of two springs in series. This is actually the specific case of a more

generalized form for calculating the effective stiffness of multiple springs in series;

the method can be extended to calculate the effective stiffness of Ngp Gauss points

springs in series as

1

k
eff
i

=

Ngp∑

q=1

1

k
q
i

(4.13)

When including the relation between kq and Eq in Equation (4.5), Equation (4.13)

becomes

1

E
eff
i

=

Ngp∑

q=1

β
q
i

E
q
i

(no sum on i) (4.14)

where βq is (as generalized from Equation (4.7))

β
q
i =

L
q
i

∑Ngp

r=1 L
r
i

(no sum on i) (4.15)

It is worth noting that βq
i can also be calculated from the Gauss weights wq

i used in
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the numerical integration.

β
q
i =

w
q
i

2
(4.16)

With this more general form for calculating the effective stiffness Eeff
i , the correction

factors αq
i can be calculated for any number of materials included within the element.

These expanded correction factors are then applied to each of the individ-

ual submatrices of the strain–displacement matrix presented in Equation (3.40) by

multiplying the strain correction αq
i with the corresponding ψm

,i as

B̂q
m =











α
q
1J

−1
1χ ψ

m
,χ 0 0

0 α
q
2J

−1
2χ ψ

m
,χ 0

0 0 α
q
3J

−1
3χ ψ

m
,χ

0 α
q
3J

−1
3χ ψ

m
,χ α

q
2J

−1
2χ ψ

m
,χ

α
q
3J

−1
3χ ψ

m
,χ 0 α

q
1J

−1
1χ ψ

m
,χ

α
q
2J

−1
2χ ψ

m
,χ α

q
1J

−1
1χ ψ

m
,χ 0











(4.17)

These corrections are applied based upon the representation of the strain εij in

the finite element equations. From Equation (3.1), strains are represented as spa-

tial derivatives of the displacement ui. However, from the approximation of the dis-

placement in Equation (3.14), the spatial derivatives are applied to the interpolation

functions ψm
,i . Ergo, the strain corrections αq

i in Equation (4.10) multiply into the

derivatives of the interpolation functions because these derivatives are analogous to

strain.

With Equation (4.17), the elemental stiffness matrix is evaluated as

Ke =

Ngp∑

m=1

Ngp∑

n=1

Ngp∑

p=1

wm
1 w

n
2w

p
3[B̂

q(ξ̂m1 , ξ̂
n
2 , ξ̂

p
3)]

TC(ξ̂m1 , ξ̂
n
2 , ξ̂

p
3)B̂

q(ξ̂m1 , ξ̂
n
2 , ξ̂

p
3)det(J) (4.18)

where B̂q is the corresponding strain–displacement matrix for the integration point

located at (ξ̂m1 , ξ̂
n
2 , ξ̂

p
3) with the appropriate corrections as calculated in Equation

(4.17).
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The strain corrections for the TMC–MVE reduce down to the strain correc-

tions presented in Caselman [1] when there are only two materials within the domain

of the element and both materials are isotropic.

4.2.4 Stiffness Tensor Corrected Multiphase Voxel Element (STC–MVE)

For non–isotropic materials, the other stiffness properties (such as shear modulus

G) are independent of the tensile modulus E. Thus it is desirable to expand the

TMC–MVE to account for the coupling between extension and shearing prevalent

in the non–isotropic materials that compose woven composites. A new element is

presented that utilized strain corrections based directly on the components of the

stiffness tensor and will therefore be referred to as the Stiffness Tensor Corrected

Multiphase Voxel Element (STC–MVE).

For a three dimensional object, stress and strain are expressed in terms of

the stiffness tensor Cijkl using Equation (3.3). The stiffness tensor components will

therefore be used in lieu of engineering constants. A similar form for the strain cor-

rection αq
ij is defined, where some effective stiffness tensor component Ceff

ijkl is divided

by the individual property of the material Cq
ijkl at the Gauss point q in question as

α
q
ij =

C
eff
ijkl

C
q
ijkl

(no sum on i, j) (4.19)

This form, similar to Equation (4.10), is used to maintain the analogy that a line of

integration points is analogous to a line of springs. The difference here is that the

stiffness of each spring is now defined by components of the stiffness tensor Cijkl,

rather the tensile moduli Ei. The theory is that, for a three–dimensional system, the

stiffness tensor Cijkl more directly relates an applied strain εij to a resulting stress σij ,

as expressed in Equation (3.3). Further, this set of corrections includes contributions

from the shear stiffness terms C2323, C1313, and C1212, absent from the TMC–MVE.

69



With this proposed generalization, only the terms Cq
ijij (no sum on i, j) are

used for the strain corrections. It is proposed that the six diagonal terms in the

contracted form of the stiffness tensor C most affect the six strain states as they most

directly relate an applied strain εij with its corresponding stress σij . However, there is

also expected to be some contribution from the other extension–extension terms (i.e.,

C1122, C1133, and C2233), but this contribution is neglected in this present formulation.

This choice will therefore neglect effects from the Poisson’s ratios. Future work should

be performed to determine a way to apply the contributions from these terms.

The corrected individual strain–displacement submatrices in Equation (4.17)

is then updated to include the shear stiffness corrections, thus becoming

B̂q
m =











α
q
11J

−1
1χ ψ

m
,χ 0 0

0 α
q
22J

−1
2χ ψ
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0 0 α
q
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−1
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m
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q
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m
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(4.20)

The question now remains how the effective linear stiffness Ceff
ijij is calculated.

There are two separate ways this term is calculated, one for the axial terms Ciiii and

one for the shear terms Cijij (where i 6= j).

The underlying argument for the axial strain corrections is that each Gauss

point is a part of three spring systems, one in each of the orthogonal directions xi,

as depicted in Figure 4.3 (imagine each point is a spring with the value of stiffness

labeled). A line of springs extending in the x1 direction, for example, is affected by

a strain in that direction (i.e., ε11) alone. Therefore, the stiffness of these springs are

determined only by the property that is affected by ε11, in this case C1111 (again, the

off–diagonal terms are being ignored as a part of this derivation). Thus, the effective
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property C
eff
1111 is calculated similar to that of to Eeff in Equation (4.14) as

1

C
eff
1111

=

Ngp∑

q=1

β
q
1

C
q
1111

(4.21)

A similar argument can be presented for Ceff
2222 and C

eff
3333, or just C

eff
iiii in general.

1

C
eff
iiii

=

Ngp∑

q=1

β
q
i

C
q
iiii

(no sum on i) (4.22)

Note that, again, a constraint for this approach is that only the material properties

in the xi direction contribute to C
eff
iiii for any particular Gauss point. This will be an

important concept to understand for deriving the effective shear components.

Figure 4.3: A visual demonstration showing which stiffness tensor components are
accounted for in the axial effective stiffness components Ceff

iiii . The white point is the
integration point in question.

The shear terms are not as straight–forward. Because the shear strain εij

(i �= j) affects two planes (the xi–xj plane), contributions of the shear stiffness tensor

components Cijij are required from the two lines of “springs” passing through a Gauss

point in both the xi and xj directions. To further complicate matters, the material

composition may not be equivalent in both of these directions. To overcome this
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obstacle, a simple means of combining the properties from the two lines of springs

into one is presented, producing a C̄eff
ijij that can be used in a form similar to Equation

(4.22).

For simplicity, the shear term C
q
2323 will be used in this explanation. Once

the explanation is complete, similar techniques may be applied for C
eff
1212 and C

eff
1313.

Figure 4.4 visually demonstrates how to calculate the effective shear stiffness compo-

nents. There are two sets of material properties that need to be considered: 2C
q
2323

and 3C
q
2323. The purpose of the superscript preceding these terms is to help describe

from which axis xi the material properties are coming from by adding directionality.

So, for example, 3C
q
2323 refers to the stiffness tensor component C2323 located at the

qth Gauss point in the line of Gauss points extending in the x3 direction.

Figure 4.4: A visual demonstration showing how the shear stiffness tensor compo-
nents are accounted for in the calculation of the effective shear stiffness component
C

eff
2323. The white point is the integration point in question

To include the contributions from both of these materials, they are averaged

together to form C̄
q
2323. So, in general,

C̄
q
2323 =

1

2

(
2C

q
2323 +

3C
q
2323

)
(4.23)
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This series of q averaged terms C̄q
2323 are used in the calculation of Ceff

2323;

1

C
eff
2323

=

Ngp∑

q=1

β
q
23

C̄
q
2323

(4.24)

where βq
23 is calculated in a similar manner as C̄q

2323 as

β
q
23 =

1

2
(βq

2 + β
q
3) (4.25)

where βq
i is the line fraction at the qth integration point in the ith dimension.

Table 4.1: List of all of the equations to determine the strain corrections for the
STC–MVE

i j α
q
ij (Ceff

ijij )
−1 C̄

q
ijij β

q
ij

1 1
C

eff
1111

C
q
1111

∑ β
q
11

C̄
q
1111

1C
q
1111 β

q
1

2 2
C

eff
2222

C
q
2222

∑ β
q
22

C̄
q
2222

2C
q
2222 β

q
2

3 3
C

eff
3333

C
q
3333

∑ β
q
33

C̄
q
3333

3C
q
3333 β

q
3

2 3
C

eff
2323

C
q
2323

∑ β
q
23

C̄
q
2323

1

2
(2Cq

2323 +
3C

q
2323)

1

2
(βq

2 + β
q
3)

1 3
C

eff
1313

C
q
1313

∑ β
q
13

C̄
q
1313

1

2
(1Cq

1313 +
3C

q3
1313)

1

2
(βq

1 + β
q
3)

1 2
C

eff
1212

C
q
1212

∑ β
q
12

C̄
q
1212

1

2
(1Cq

1212 +
2C

q
1212)

1

2
(βq

1 + β
q
2)

Summarizing Equations (4.23)–(4.25) for a general effective shear stiffness Ceff
ijij

(no sum on i, j):

C̄
q
ijij =

1

2

(
iC

q
ijij +

jC
q
ijij

)
(4.26)

1

C
eff
ijij

=

Ngp∑

q=1

β
q
ij

C̄
q
ijij

(4.27)

β
q
ij =

1

2

(
β
q
i + β

q
j

)
(4.28)
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Further, Table 4.1 summarizes all of the necessary Equations to calculate all of the

strain correction factors αq
ij in Equation (4.19).

For the axial corrections, because the stiffness tensor components Ciiii (no sum

on i) depend on both the tensile modulus E and Poisson’s ratio ν (see e.g., [6]), the

only time these corrections reduce down to the corrections in Caselman [1] is when

there are two materials within the domain of the element that are both isotropic

and have the same Poisson’s ratio. For the shear corrections Cijij (no sum on i, j),

because of the averaging scheme to calculate the effective shear stiffness, the only

time these corrections will reduce down to Caselman’s formulation is if the shear

moduli G of both materials is equivalent. However, if the materials are isotropic,

the shear moduli depends upon both the tensile modulus and Poisson’s ratio (see

e.g. [6]). Therefore, the only time the corrections for the STC–MVE reduce down to

Caselman’s corrections is when the element is homogeneous.

4.3 Volume Fraction Studies

Before applying these MVEs to their desired application of woven composites, a

set of studies is presented for simple systems to investigate their limits. The results

are compared to traditional finite element results with a mesh that takes the material

boundary into account. The next three sections each develop simple tests to compare

the results of each of the introduced elements and provide the results over to a variety

of material systems. The first test is based on volume fraction, the second test is based

on rotation of the material properties, and the third on the the material boundary

angle.

4.3.1 Description of Test Method

Caselman [1], in his thesis, used a simple test to compare the B–MVE to his

own element; this test is depicted in Figure 4.5. A cube divided into two materials

74



is built. The material boundary is then shifted across the cube to alter the volume

fraction of the two materials; at each volume fraction, the material properties are

recorded and compared to the true finite element result with a high resolution mesh.

The results are then plotted with respect to volume fraction.

Figure 4.5: The volume fraction study

For this research, a similar study is performed using finite element code written

in MATLAB. A two–material cube spanning 0 ≤ xi ≤ 1 for {i = 1, 2, 3} was built with

the material boundary parallel to the x2–x3 plane. The material boundary was then

shifted along the x1 axis, recording the material properties at each volume fraction.

The nine major non-zero stiffness tensor components (C1111, C2222, C3333, C1122, C1133,

C2233, C2323, C1313, C1212) are then plotted with respect to volume fraction.

The mesh for the traditional finite element solution is a simple mesh of 10 ×

10×10 linear hexahedral elements, with each material always containing 5 elements in

the x1 direction. For the numerical integration, three Gauss points in each direction

are used for each element. The mesh of MVEs is 9 × 9 × 9 equally sized elements,

each element containing nine Gauss points in each direction. The MVE mesh remains

constant, independent of the material boundary’s position within the domain.
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Two studies will performed for each material system. For the first study, the

volume fraction Vf of the first material will be altered from 4
9
≤ Vf ≤ 5

9
. This is

selected to allow the material boundary to pass through the middle set of element

sin the MVE; as Vf goes from 4
9
to 5

9
, the plane shifts from one edge of the middle

element to the opposite edge. This is meant to determine the behavior of each MVE

depending on where the material boundary is within the element. The resulting

stiffness tensor components for each MVE (as well as the true finite element response)

are then plotted against the volume fraction. The absolute error for each MVE is

also plotted; this is calculated by using the standard finite element approach as the

true value:

Errijkl(Vf) ≡

∣
∣
∣
∣
∣

Ctrue
ijkl (Vf)− CMVE

ijkl (Vf)

Ctrue
ijkl (Vf)

∣
∣
∣
∣
∣

(4.29)

The boundary locations selected in this study are the points directly between the

Gauss points. The resolution of each MVE is affected by the number of integration

points present; the material properties recorded will be the same as long as the

material boundary remains between the same two Gauss points. An example of this

is provided in Figure 4.6; the C1212 component for the isotropic/transversely isotropic

study is plotted with respect to volume fraction at 30 equally–spaced points. Note

how the solution does not change between Gauss points, marked by the dashed vertical

lines. Selecting the point directly between each Gauss point provides a smooth curve

by which a trend can more easily be determined.

The second set of results to be investigated in each MVE system will provide

a more quantitative basis for comparing each MVE. The analysis of the cube is ex-

panded to 0 ≤ Vf ≤ 1, calculating the properties at fifty equally-spaced material

boundary locations. Once all the material properties are calculated, the integral ab-

solute error eijkl is calculated over the entire domain for each component of Cijkl to
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Figure 4.6: An example of the “stairstep–like” plot produced when the stiffness com-
ponent is evaluated at an arbitrary number of volume fractions. The vertical dashed
lines represent the locations of Gauss points.

provide one overall number to describe the total error of the MVE.

eijkl =

∫ 1

0

∣
∣
∣
∣
∣

Ctrue
ijkl (Vf)− CMVE

ijkl (Vf )

Ctrue
ijkl (Vf)

∣
∣
∣
∣
∣
dVf (4.30)

4.3.2 Results — Two Isotropic Materials

Isotropic materials are the most common material models system used. Most

metals, as well as polymer matrices and fiber materials, are isotropic. An isotropic

material has an infinite number of planes of symmetry, meaning they are invariant to

rotation. The contracted form of the stiffness tensor C of an isotropic material can

be reduced to a relationship of two independent constants, C1111 and C1122, as (see

e.g., [6])

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C1111 C1122 C1122 0 0 0
C1122 C1111 C1122 0 0 0
C1122 C1122 C1111 0 0 0
0 0 0 1

2
(C1111 − C1122) 0 0

0 0 0 0 1
2
(C1111 − C1122) 0

0 0 0 0 0 1
2
(C1111 − C1122)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.31)
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The material properties of the two isotropic materials (a fiber and a matrix)

used were adapted from Sun and Vaidya [2] for a boron/aluminum composite, but

the tensile moduli from are divided by 10 to better represent a fiber/matrix system

(this has no effect on the trend of the results). These properties are listed in Table

4.2.

Figures 4.7 and 4.8 show the results of the one–element sweep for the two

isotropic material system from the custom MATLAB code. Figure 4.7 presents var-

ious components of the effective stiffness tensor from each of the aforementioned

methods, and Figure 4.8 shows the error as calculated using Equation (4.30) for each

of the methods.

Table 4.2: The properties of the two isotropic materials used in this study, adapted
from [2]

Material 1 Material 2
(Fiber) (Matrix)

E (GPa) 37.93 6.83
ν 0.1 0.3

The ASE tends to either undulate around the true solution or overpredict it,

but never correctly follows the trend of the true finite element solution. The error of

this element is, in general, the greatest on all nine of the major components test.

The B–MVE performs well in the directions where there is no change in ma-

terial (C2222, C3333, C2233, and C2323), matching the trends of the true finite element

solution almost perfectly (the error is on the order of 10−3). However, this trend

breaks down for any stiffness property that is affected by the material discontinuity

in x1. Regardless, visually, the B–MVE performs better than the averaging method

in nearly all scenarios as seen by the error plot of Figure 4.8.
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Figure 4.7: The values of the stiffness tensor Cijkl vs. volume fraction (Vf) for the
two isotropic material system
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two isotropic material system, calculated using Equation (4.29)
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The TMC–MVE does well to correct most of the components from the B–

MVE, with the exception of the shear stiffness terms C1122 and C1133. The overall

error is still much lower than with the B–MVE. However, it comes at the cost of an

increased error in certain scenarios the shear terms C1212 and C1313. Overall, outside

of those shear terms, the TMC–MVE is an improvement upon the B–MVE.

The STC–MVE, as noted by Figure 4.8, is the most accurate method of those

investigated in all but a few scenarios. But in those few cases, specifically C2233

and C1111, the error remains less than the third significant digit. In the two worst

performing stiffness component predictions — C1313 and C1212 — the STC–MVE still

yields an error of 10−2 ∼ 10−3; these results are better than all alternative methods

presented.

Table 4.3: The percent integral absolute error for the isotropic study, calculated
using Equation (4.30)

(%) ASE B–MVE TMC–MVE STC–MVE
e1111 4.12 3.56 0.56 0.55
e2222 0.91 0.52 0.52 0.52
e3333 0.91 0.52 0.52 0.52
e1122 0.25 0.22 0.05 0.04
e1133 0.25 0.22 0.05 0.04
e2233 0.06 0.03 0.03 0.03
e2323 1.18 0.67 0.67 0.67
e1313 6.81 5.98 4.94 2.15
e1212 6.81 5.98 4.94 2.15

Table 4.3 provides the average percent absolute error for the stiffness tensor

calculations for 0 ≤ Vf ≤ 1, as described in Equation (4.30). Again, the ASE per-

forms the worst in all cases. The B–MVE shows slight improvement from the ASE

in most cases, but not by much; in the worst cases (C1313 and C1212), the B–MVE
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only reduces the error from 6.81% to 5.98%. The TMC–MVE is a much more sub-

stantial improvement over the averaging case than the B–MVE provided, dropping

the error on C1111 from 3.56% to 0.56%. While the STC–MVE performs similarly

to the TMC–MVE in most cases, the drop from 4.94% to 2.15% error on the C1313

and C1212 terms is noteworthy. Overall, the STC–MVE is either as good as or better

than the alternative elements. The error on the calculation of the transverse shear

stiffness terms C1313 and C1212 present the greatest error for all elements tested, rang-

ing from 2.15% for the STC–MVE to 6.81% for the ASE. Given the results from

Figures 4.7 and 4.8, this is not unexpected. None of the elements followed the trend

for these shear stiffness terms perfectly, so it is expected that the error on these terms

will be the greatest. Again, the trend previously noted still holds: the B–MVE pro-

vides marginal improvement over the ASE, the TMC–MVE provides a significant im-

provement over the B–MVE element, with the STC–MVE presenting the best overall

performance.

4.3.3 Results — One Isotropic Material and One Transversely Isotropic Material

A transversely isotropic material is a material that has one plane of symmetry,

and can be defined by five independent constants (C1111, C2222, C1122, C2233, and

C1313 if the x2–x3 plane is the plane of symmetry). An example of a transversely

isotropic material is a unidirectional bundle of fibers infused within a matrix: the

stiffest properties are aligned in the direction of the fiber. The stiffness tensor for a

transversely isotropic material is given as (see e.g., [6])

C =











C1111 C1122 C1122 0 0 0
C1122 C2222 C2233 0 0 0
C1122 C2233 C2222 0 0 0
0 0 0 1

2
(C2222 − C2233) 0 0

0 0 0 0 C1313 0
0 0 0 0 0 C1313











(4.32)
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A system of an isotropic and a transversely isotropic material is analogous to

that of the constituent materials in a laminated composite; the matrix is generally

isotropic, and the strand of fibers (a fiber/matrix system) is often considered trans-

versely isotropic. Therefore, the set of material properties from one of the woven

composites analyzed in the Chapter Five was selected for this study. The proper-

ties come from Scida et al. [3] for a plain weave E–glass/vinylester composite. The

properties used are listed in Table 4.4.

Table 4.4: The properties of the isotropic material (vinylester) and the transversely
isotropic material (E–glass/vinylester) used in this study, from [3]

Material 1 Material 2
(E–glass/Vinylester) (Vinylester)

E11 (GPa) 57.5 3.4
E22 = E33 (GPa) 18.8 3.4
G12 = G13 (GPa) 7.44 1.49

G23 (GPa) 7.26 1.49
ν12 = ν13 0.25 0.35

ν23 0.29 0.35

Figures 4.9 and 4.10 show the results from the volume fraction study performed

in MATLAB for 4
9
≤ Vf ≤ 5

9
, or across one set of MVEs. Some trends observed in the

isotropic study are also observed here. The ASE performed worst overall and either

undulates around the true solution or overpredicts it. The B–MVE performs well

when the stiffness term is not affected by the material boundary moving in x1, but only

provides marginal improvement on the other terms. The TMC–MVE underpredicts

C1122 and C1133, even more so than previously with the isotropic material, and the

terms C1313 and C1212 are overpredicted around the same order that the ASE and B–

MVE. Even so, the TMC–MVE performs well for the other components. The STC–

MVE results are graphically indistinguishable for almost all of the stiffness tensor
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Figure 4.9: The values of the stiffness tensor Cijkl vs. volume fraction (Vf) for the
isotropic/transversely isotropic material system
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Figure 4.10: The error of the stiffness tensor Errijkl vs. volume fraction (Vf) for the
isotropic/transversely isotropic material system, calculated using Equation (4.29)
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components, with the exception of the shear stiffness terms C1313 and C1212. There

is also a slight overprediction on C2233 at the higher volume fractions (a similar case

is noticed with the TMC–MVE). But as noted in Figure 4.10, the STC–MVE error

for C1313 and C1212 is less than all alternatives and is between 10−2 and 10−3.

Table 4.5 shows the percent integral absolute error for 0 ≤ Vf ≤ 1, as cal-

culated in Equation (4.30). As before, the ASE has the highest calculated error for

each stiffness term; also as before, the B–MVE only provides a slight improvement

over the ASE. The strain–corrected MVEs, the TMC–MVE and the STC–MVE, have

similar errors, with the STC–MVE having reduced error over the TMC–MVE in the

shear stiffness terms C1313 and C1212 (a 1.53% error verses 2.86% error).

Table 4.5: The percent integral absolute error for the isotropic/transversely
isotropic study, calculated using Equation (4.30)

(%) ASE B–MVE TMC–MVE STC–MVE
e1111 10.83 9.71 0.98 0.97
e2222 0.88 0.49 0.49 0.49
e3333 0.88 0.49 0.49 0.49
e1122 3.75 3.40 0.52 0.38
e1133 3.75 3.40 0.52 0.38
e2233 0.62 0.37 0.38 0.37
e2323 1.00 0.57 0.57 0.57
e1313 5.08 4.42 2.86 1.53
e1212 5.08 4.42 2.86 1.53

Again, the shear stiffness terms C1313 and C1212 were the among the least

accurate for all of the MVEs studied. Interestingly, compared to the isotropic results

in Table 4.3, the shear stiffness terms calculated by all of the MVEs were more

accurate on this study. For example, for the ASE, the error for C1313 was calculated

at 6.81% for the isotropic study, versus an error of 5.08% for the present study; this
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also occurs despite an increase of error in C1111 from 4.12% in Table 4.3 to 10.83% in

Table 4.5. This may suggest a correlation between the ratio of the stiffness properties

of the materials within the MVE and the accuracy of the MVE. For reference, in the

isotropic study, G ≈ 17.24 GPa for material 1, and G ≈ 2.63 GPa for material 2.

Therefore, the ratio between these two properties is 6.56. In the present study, the

ratio between the G12 value of material 1 and material 2 is 5.03, a slight decrease.

The ratios of tensile moduli E11 for both studies presents a greater difference; in the

isotropic study, the ratio is 5.55, whereas in the transversely isotropic study, the ratio

is 16.9. This larger difference in ratio correlates to a larger error calculation.

4.3.4 Results — Two Orthotropic Materials

An orthotropic material is a material that exhibits symmetry only across two or-

thogonal planes (and subsequently, across a third mutually orthogonal plane) [6]. The

representative volume element for a laminated woven composite, when the axes are

aligned to the principal directions, are often orthotropic materials. The contracted

form of the tensor for an orthotropic material is dependent upon nine independent

constants as (see e.g., [6])

C =











C1111 C1122 C1133 0 0 0
C1122 C2222 C2233 0 0 0
C1133 C2233 C3333 0 0 0
0 0 0 C2323 0 0
0 0 0 0 C1313 0
0 0 0 0 0 C1212











(4.33)

The materials selected for this study of two orthotropic materials are a stack

of two woven laminated composites, a E–glass/vinylester plain weave composite and

a carbon/bakelite twill weave composite. The properties selected are estimates from

the MESOTEX analytic method presented in [3] and are listed in Table 4.6. Figure
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4.11 shows the calculated components of the stiffness tensor against the volume frac-

tion of the E–Glass/vinylester composite, and Figure 4.12 shows the error as com-

pared to the true solution. Interestingly, the error on this study is much lower than

the other two studies. Regardless, the same trends appear as in the previous two

studies. The ASE performs the worst overall by either overpredicting or undulating

around the solution. The B–MVE improves upon the solution from the ASE slightly

while being close to exact for the stiffness terms not associated with the material

discontinuity that occurs in x1.

The results from the TMC–MVE are quite reasonable except for a slight over-

prediction on C1313 and C1212. However, unlike in the other studies, the TMC–MVE

does not underpredict C1122 and C1133; the error for these terms hover around 10−4.

The STC–MVE’s performance is similar to the TMC–MVE, with the exception of the

C1313 and C1212 terms; the STC–MVE yields a result that is accurate to the fourth

significant digit.

Table 4.6: The properties of the two orthotropic materials (E-glass/vinylester
composite and carbon/bakelite composite) used in this study, from [3]

Material 1 Material 2
(E–glass/Vinylester) (Carbon/Bakelite)

E11 (GPa) 25.33 46.11
E22 = E33 (GPa) 13.46 8.18
G12 = G13 (GPa) 5.24 3.09

G23 (GPa) 5.19 3.33
ν12 = ν13 0.29 0.44

ν23 0.12 0.042

Table 4.7, the percent integral absolute error for the full cube study, further

confirms the reduced error in the newly proposed element STC–MVE, with all terms
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Figure 4.11: The values of the stiffness tensor Cijkl vs. volume fraction (Vf ) for the
two orthotropic material system
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Figure 4.12: The error of the stiffness tensor Errijkl vs. volume fraction (Vf) for the
two orthotropic material system, calculated using Equation (4.29)
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having an error less than 1% error. While it is difficult to draw any useful conclusions

when all of the elements performed well, it can be noted that the ASE still performs

worst overall and the newly presented TMC–MVE and newly presented STC–MVE

both perform the best.

Table 4.7: The percent integral absolute error for the orthotropic study, calculated
using Equation (4.30)

(%) ASE B–MVE TMC–MVE STC–MVE
e1111 0.63 0.50 0.20 0.20
e2222 0.37 0.21 0.21 0.21
e3333 0.37 0.21 0.21 0.21
e1122 0.23 0.19 0.07 0.07
e1133 0.23 0.19 0.07 0.07
e2233 0.14 0.08 0.08 0.08
e2323 0.29 0.16 0.16 0.16
e1313 0.62 0.50 0.30 0.22
e1212 0.62 0.50 0.30 0.22

As done with the transversely isotropic and isotropic study, comparing this

study to the previous two studies may suggest there is a correlation between the ratio

of the two sets of constituent material properties and the accuracy of the MVE. For

example, in Table 4.6, E11 for the constituent materials used in the orthotropic study

differed by a factor of 2; the error for C1111 in Table 4.7 ranged from 0.20% ∼ 0.63%.

In Table 4.2, E for the constituent materials used in the isotropic study differed by a

factor of 5.5 and the error for C1111 in Table 4.3 ranged from 0.55% ∼ 4.12%. Finally,

in Table 4.4, E11 for the constituent materials used in the isotropic/transversely

isotropic study differed by a factor of 17; the error for C1111 in Table 4.5 ranged

from 0.97% ∼ 10.83%. This suggests in general that an increase in ratio between two
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sets of material properties correlates to an increase in error in the stiffness properties

calculated by the MVEs.

4.4 Material Angle Study

Isotropic materials have an infinite number of planes of symmetry, so they are

invariant to rotation. Transversely isotropic materials, such as strands from a lam-

inated composite, are variant to rotation. This property of a nonisotropic material

can adversely affect the performance of the MVE; therefore, a test was developed to

determine the effect of material rotation on the accuracy of the MVE. This test was

performed using custom finite element code written in MATLAB.

4.4.1 Description of Test Method

Figure 4.13 visually demonstrates how this test was performed. Using the two-

material unit cube from the volume fraction test, an isotropic material and a trans-

versely isotropic material are placed side–by–side, each composing half of a unit cube.

The isotropic material remains unchanged throughout the test, but the transversely

isotropic material is rotated from the principal frame to a number of local coordinate

frames. The material properties of the cube are then evaluated and plotted.

Figure 4.14 shows how the property rotation is performed (see e.g., [78]). A

stiffness tensor in the local principal direction of the fiber C ′

ijkl is rotated into the

global frame using the rotation tensor Q(θ, φ), defined as

Q(θ, φ) =





sin θ cosφ sin θ sinφ cos θ
− sinφ cosφ 0

− cos θ cosφ − cos θ sin φ sin θ



 (4.34)

where θ is the angle from the positive x3 axis, and φ is the angle measured from the

positive x1 axis about the x3 axis in the x1–x2 plane. The rotation tensor in Equation

(4.34) is used to obtain the global stiffness tensor Cijkl from the local principal stiffness
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Figure 4.13: The material angle study

tensor C ′
ijkl through a series of summations as

Cijkl = Qip(θ, φ)Qjq(θ, φ)Qkr(θ, φ)Qls(θ, φ)C
′

pqrs (4.35)

This global stiffness tensor Cijkl is what is used in the Gauss point integration and

where the corrections for the TMC–MVE and STC–MVE are derived from.

The values of the angles tested were a 15 × 15 grid of equally spaced points

spanning 0 ≤ θ ≤ π
2
and 0 ≤ φ ≤ π

2
. While this does not cover the full hemisphere

needed to fully test this method, this choice only affects the anisotropic terms in the

stiffness tensor; the nine orthotropic terms being studied are symmetric about θ = π
2

and φ = π
2
.

The mesh of the cube is the same as for the volume fraction study, with

10 × 10 × 10 elements for the true solution and 9 × 9 × 9 for the MVE mesh, with

9 integration points in each dimension within each element. The material properties

used come from Table 4.4, the material properties from the isotropic/transversely

isotropic volume fraction study, and the volume fraction was set to Vf = 0.5.
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Figure 4.14: The definitions of θ and φ, which define the coordinate system which
material properties are rotated to.

The error calculation eijkl is similar to the calculation made in Equation (4.30),

but is not exactly the same. A double integration is required to determine the percent

integral absolute error, as Cijkl is now dependent on two variables instead of just one.

eijkl =

∫ π
2

0

∫ π
2

0

∣
∣
∣
∣
∣

Ctrue
ijkl (θ, φ)− CMVE

ijkl (θ, φ)

Ctrue
ijkl (θ, φ)

∣
∣
∣
∣
∣
dφdθ (4.36)

4.4.2 Results

Figure 4.15 plots a surface with the calculated values of the material stiffness

tensor at each θ and φ, and Figure 4.16 plots the error against the true solution, as

found from Equation (4.29). While the nature of the surface plots make it difficult to

analyze, a few useful trends are noticed. From Figure 4.15, all of the MVEs appear to

at least follow the trend of the true solution; although, often, the MVEs are shifted in

some fashion vertically from the true solution. A notable exception is the prediction

of C1313 and C1212 for the TMC–MVE. Interestingly, the slope of the surface as it

changes in θ at φ = 0 is much steeper than the other elements. Overall, it appears
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the TMC–MVE and the STC–MVE have the lowest overall error, but it is hard to

tell from Figures 4.15 and 4.16.

Table 4.8: The percent integral absolute error for the material angle study,
calculated using Equation (4.36)

(%) ASE B–MVE TMC–MVE STC–MVE
e1111 10.44 9.96 1.87 2.08
e2222 1.10 1.58 1.99 1.98
e3333 1.09 1.61 1.87 1.86
e1122 6.95 6.65 1.78 0.95
e1133 6.41 6.13 1.77 0.98
e2233 0.82 0.72 1.67 1.61
e2323 1.46 2.19 2.16 2.18
e1313 13.12 12.65 10.45 8.37
e1212 13.82 13.35 12.02 8.86
e2313 33.21 31.79 35.83 17.28

Table 4.8 shows the percent integral absolute error, as calculated by Equation

(4.36). The ASE again has the highest error overall, but does not have the highest

error in all cases. In fact, the ASE is the most accurate method for calculating C2222,

C3333, and C2323 for this study. The B–MVE provides slight improvements on the

ASE for some of the terms, but degrades in accuracy on the C2222, C3333, and C2323

terms. These terms only generate equivalent or slightly higher error for the TMC–

MVE and STC–MVE, but these two come with the benefit of having a much improved

accuracy on C1111 (a drop from about 10% to about 2%). While the TMC–MVE

performs the best on C1111, the STC–MVE has the best overall performance, being

the only element with an error less than 10% on C1313 and C1212 terms. All other

terms for the STC–MVE have an error of 2.2% or below (similar to the TMC–MVE).

This test proved to be more rigorous for the MVEs as the test introduced some

anisotropic behavior. The last row of Table 4.8 provides the error calculation one of
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Figure 4.15: The values of the stiffness tensor Cijkl vs. material rotation angles θ

and φ
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Figure 4.16: The error of the stiffness tensor Errijkl vs. material rotation angles θ

and φ, calculated using Equation (4.29)
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these anisotropic terms, C2313. The actual values for this stiffness component is at a

maximum on the order of 108 Pa, as opposed to 109 Pa for the nine orthotropic terms.

Because the value of this component is zero for certain conditions, the calculation can

sometimes result in minute inaccuracies at the machine–precision level, which can

cause spikes in the error calculation in Equation (4.36). To prevent this, the values

of C2313 were truncated at 105 before calculating the error.

The error for this anisotropic stiffness component is fairly high in comparison

to the other stiffness tensor components. This is because not all stiffness tensor com-

ponents are accounted for in the calculation of strain corrections of the applicable

MVEs. Future work is required to incorporate more terms of the stiffness tensor in

the calculation of each MVE.

Outside of the shear terms C1313 and C1212, the TMC–MVE and STC–MVE

maintained overall a low error from the true solution.

4.5 Boundary Angle Study

The previous studies had a cube with a boundary that was parallel to the

x2–x3 plane, which will not be the case when working with complex geometries such

as woven composites. Sometimes, the material boundaries will be at oblique angles,

which may adversely affect the accuracy of the MVEs. This study tests the accuracy

of each MVE when the material boundary changes angles. Further, a study on how

the number of Gauss points used affects accuracy will be performed.

4.5.1 Description of Test Method

Figure 4.17 depicts a representation of the geometry used for this study. The

boundary between Material 1 and Material 2 is a sideways chevron, which is done to

keep the geometry periodic (i.e., so the boundaries on the top and bottom line up

with each other). The boundary line therefore consists of two parts, an upper and
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a lower part, that each “pivot” about the black points marked in Figure 4.17. The

angle θ is measured from the positive x1 axis to the lower boundary portion; this

angle θ has the same magnitude as the angle between the top edge and the upper

boundary.

Figure 4.17: The boundary angle study

The material properties for this study are the same isotropic properties found

in Table 4.2. The range of the angle θ was chosen to be π
6
≤ θ ≤ 5π

6
radians, or

30◦ ≤ θ ≤ 150◦. This is about the maximum range of θ before the boundary collides

with the left- or right-most edge of the geometry.

The mesh of the cube is 9× 9× 9 for the MVE mesh, with 9 Gauss points in

each dimension, just as the previous two studies. The mesh for the true solution is

shown in Figure 4.18. Due to the more complex nature of the geometry, the study

for the true solution was performed in commercial finite element software (COM-

SOL Multiphysics 5.2) instead of MATLAB. However, the MVE solutions are still

computed using custom finite element code in MATLAB.

For the Gauss point study, the angled boundary cube in Figure 4.17 with a

boundary angle of 60◦ is used. The cube is analyzed using the MVEs with the number
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Figure 4.18: The mesh for the true solution to boundary angle study for θ = 50◦

of Gauss points Ngp ∈ {1, 2, . . . , 10}. The relative error is calculated and plotted as

a function of the number of Gauss points; this error can be calculated as

Rel Errijkl(Ngp) ≡

∣
∣
∣
∣
∣

CMVE
ijkl (10)− CMVE

ijkl (Ngp)

CMVE
ijkl (Ngp)

∣
∣
∣
∣
∣

(4.37)

The integral absolute error calculation eijkl is similar to the calculation made

in Equation (4.30), but is calculated over the angle of the planes in Figure 4.17 as

eijkl =

∫ 5π
6

π
6

∣
∣
∣
∣
∣

Ctrue
ijkl (θ)− CMVE

ijkl (θ)

Ctrue
ijkl (θ)

∣
∣
∣
∣
∣
dθ (4.38)

4.5.2 Results – Gauss Point Study

Figure 4.19 shows the relative error of each MVE as calculated in Equation (4.37)

against the number of Gauss points used within each MVE. The purpose of this study

is to determine the number of Gauss points required for a converged solution.

As shown in the figure, for all of the MVEs, the relative error is below the

1% line (the dashed–dotted line) by around three or four Gauss points. Even though
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Figure 4.19: The relative error of the MVEs versus the number of Gauss points. The
dashed line represents 5% error, and the dashed–dotted line represents 1% error.
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the solution still fluctuates some past this, it stays within 1% of the 10 Gauss point

solution.

An interesting phenomenon occurs as the solution is calculated for an even

and odd number of Gauss points. It appears that an odd number of Gauss points

generates a much higher error than the even numbered counterparts. It is unknown

why this occurs; it may be a function of the geometry tested. To prevent this type of

response in the future, an adaptive quadrature scheme can be used to force integration

points to areas where more refinement is required (i.e., at material boundaries).

Regardless of this odd phenomenon, the solution is converged by four Gauss

points, so the use of nine Gauss points in these studies is justified.

4.5.3 Results – Boundary Angle Study

Figure 4.20 shows the calculated stiffness tensor components as a function of

the angle of the material boundary θ in degrees. Figure 4.21 shows the error from

the true solution as calculated by Equation (4.29).

One thing that is apparent right away is the symmetry of the solution; the

geometry is symmetric about 90◦, so the results are expected to be symmetric as

well. Another thing that is apparent is the large error in all of the MVEs studied

for the shear stiffness terms C1313 and C1212; in Figure 4.21, these terms show error

consistently in excess of 10−1, or 10%. From previous studies, it is understood these

terms will have the highest error, but the error is much larger in this study than in

previous studies.

Except for C1313, the MVE results tend to follow the trend of the true solution

very well. The accuracy of each MVE is more so affected by a vertical shift up or

down from the true solution. Similar to the previous studies, the TMC–MVE and

STC–MVE remain the most accurate, with the STC–MVE having the lowest error on
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Figure 4.20: The values of the stiffness tensor Cijkl vs. the boundary angle θ
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Figure 4.21: The error of the stiffness tensor Errijkl vs. the boundary angle θ, cal-
culated using Equation (4.29)
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the C1313 and C1212 terms. The MVEs, in most cases, follow the trend of the stiffness

terms fairly well; inaccuracies draw from either being vertically shifted from the true

solution (see the ASE and B–MVE on C1111) or having gradually increasing error as

the angle drifts from 90◦ (see all elements on C1133).

Interestingly, on the C2222 term, all of the MVEs drop dramatically in value

right at the 90◦ mark. This can be seen in the other terms as well, to a lesser extent.

The reason for this is that, at 90◦, the material boundary is directly vertical and on

top of a Gauss point. This is the worst case performance for the MVE: when the

boundary is right on top of the integration point. This causes a miscalculation in the

properties because both sets of material properties exist at that point, so just using

one set will produce an inaccurate result.

Table 4.9: The percent integral absolute error for the boundary angle study,
calculated using Equation (4.38)

(%) ASE B–MVE TMC–MVE STC–MVE
e1111 11.03 8.23 0.99 0.90
e2222 0.27 0.29 0.31 0.31
e3333 6.74 4.79 0.88 0.82
e1122 0.43 0.31 0.11 0.05
e1133 7.07 5.54 2.41 2.89
e2233 0.32 0.22 0.12 0.09
e2323 11.48 9.91 3.68 2.35
e1313 41.19 38.45 31.16 22.99
e1212 43.10 39.77 37.13 25.06

As alluded to in the previous tests, C1313 and C1212 are the terms calculated

with the highest error. This is demonstrated also in Table 4.9, which calculates the

percent integral absolute error defined in Equation (4.38). For these shear stiffness

terms, the error is significantly higher than for the other terms. For example, the

TMC–MVE has error on the order of 1%–2% for most of the terms which then jumps
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to around 35% for these shear stiffness terms. As expected, the STC–MVE predicts

these two terms with the lowest error, but this error is still on the order of 25%.

4.6 Overall Conclusions

In all tests performed, the TMC–MVE and STC–MVE performed about the

same on most of the stiffness terms, but the STC–MVE consistently has the best

performance across the board, specifically the shear stiffness terms C1313 and C1212.

This is most likely attributed to how this element handles the correction on the shear

stiffness terms. Further, the STC–MVE uses the stiffness tensor terms directly in

calculating the strain corrections (unlike the TMC–MVE, which only uses the tensile

moduli).

Despite the improved accuracy of the STC–MVE on these shear terms, the

calculation of these terms could still be improved. The way the STC–MVE handles

the calculation of the strain corrections for the shear stiffness terms is a step in the

correct direction, but more research into alternate methods should be performed to

further decrease this error. Of specific improvement would be to include extension–

extension coupling and shear–extension coupling to the corrections, something that

is neglected in the present formulation.

From the volume fraction studies, it is hypothesized the accuracy of the MVEs

are most directly related to the magnitude of separation between the material prop-

erties present within the element. The orthotropic study had the most accurate per-

formances of the MVEs overall, but this may be attributed to the relative magnitudes

of the stiffness in the two materials being much closer than for the first set of stud-

ies. The isotropic/transversely isotropic study had the greatest error; the material

properties spanned a larger magnitude for this study.
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CHAPTER FIVE

Analysis of Woven Composites using Multiphase Voxel Elements

With the multiphase voxel elements (MVEs) fully developed and tested, they

can now be applied to the finite element analysis (FEA) of a representative volume

element (RVE) of various woven composite laminae. In this chapter, the structure

of the MATLAB code for the analysis of woven composite laminae will be intro-

duced, and results will be presented for several types of laminae: a plain weave, a

satin weave, and a twill weave. Special emphasis will be given to the plain weave to

validate the approach proposed in this thesis due to the wide availability of results,

both experimental and computational, in the literature. The results of a satin–weave

composite and twill weave composite are presented, and results are in reasonable

agreement with those available in literature.

5.1 Structure of MATLAB Code

The finite element analysis for these studies were performed in the MATLAB

coding environment; this was done to better implement the use of custom elements.

Figure 5.1 shows a flowchart detailing the general structure of the MATLAB code

used in the following analyses. There are four sets of tasks: an initialization stage,

an assembly and solver stage, the elemental construction function, and the geometrical

construction function. An input tab–delimited DAT file is generated first; this input

file contains information about the mesh used (i.e., the global nodal locations and the

element connectivity), the boundary conditions, and information about the composite

laminae such as the constituent material properties and the weave type. This input

file is imported into the initialization file, which reads the information contained in

the input file and stores that information in the appropriate variables.

107



Figure 5.1: The structure of the MATLAB code used in the finite element analyses
performed with MVEs
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The variables generated in the initialization file are then passed to the assembly

and solver file. This assembly and solver file acts as the “master” file which handles

most of the information and calculation. First, it collects the elemental stiffnesses

Ke from the elemental file, as calculated in general in Equation (3.27). Once all

the elemental stiffnesses have been calculated, the assembly and solver file assembles

the global stiffness matrix K, as presented in Equation (3.51). After the full global

stiffness matrix is formed, the periodic boundary conditions are applied as described

in Equation (3.62). With this reduced K matrix, the system is parsed as in Equation

(3.64) and the unknown global displacements u and the global reaction forced Q are

calculated. Using the Q matrix from all six strain states, the effective stiffness tensor

Cijkl for the geometry is calculated as in Equation (3.75).

There are four separate element files, one for each of the four MVEs presented

in Chapter Four (ASE, B–MVE, TMC–MVE, and STC–MVE); the element file used

is selected in the input file at the beginning of the analysis. Each MVE has its

own element file, but the general structure of the inputs and outpurs of the code

is the same. The selected element method file “scans” the domain of the element

at each individual Gauss point and determines the material located at that Gauss

point via a geometry file. The spatially varying anisotropic stiffness tensor for that

material is returned, along with, in the case of the fiber strands, the rotations of

the stiffness tensor cause by the tow undulation. With this information, the MVEs

can be calculated as presented in Chapter Four to calculate the elemental stiffness

matrix Ke for that element. Example MATLAB code for the element file of each of

the MVEs is provided in the appendices.

The geometry file uses the global node locations provided by the element file

to determine the material at that point via the use of the appropriate geometric
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function. It evaluates the function at the input integration point, determines the

material using a set of piecewise relations, and then stores the appropriate reduced

stiffness tensor into a data structure. This data structure contains the stiffness tensor

at every individual Gauss point within the element, which is necessary to calculate

the strain corrections for the TMC–MVE and the STC–MVE.

In Chapter Four Section 4.5.2, it was determined that for the boundary angle

study, four Gauss points in each direction was needed to have a converged solution.

Because a woven composite is more complex than the boundary angle model, a higher

resolution of Gauss points will be chosen. To increase resolution within the element,

eight Gauss points in each of the three dimensions, as opposed to two or three for

most standard finite element analyses, is selected to be used. This choice does cause

the code to become computationally expensive, but this is offset by less user time

required to mesh the domain. The loop that contains the evaluation of the elemental

file is unique for each element, thus this loop is parallelized using the parfor option

in MATLAB. To further optimize the computational resources, the element files are

generated as MEX functions [79], which converts the MATLAB code to a C or C++

format and wraps it in a format that MATLAB can read.

5.2 Analysis of a Plain Weave Composite Lamina

After over 100 pages of background information, upper–level math, and multiple

analyses of cubes, we have finally reached the part where the material properties of

a woven composite lamina is calculated using multiphase voxel elements, just as it

is promised in the title of this thesis. If the reader has made it this far, the author

would like to note that he admires his or her tenacity and determination.

To determine the accuracy of the MVEs presented in practical applications,

a plain weave composite lamina is analyzed. A picture of carbon fiber plain weave
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fabric is shown in Figure 5.2. Plain weave composite laminae are one of the simplest

weave types, having both the smallest RVE of all woven geometries investigated in

this research and a simple geometry that is estimated in this study with sinusoidal

functions. Due to their simplicity and common use in industry, they are often chosen

as the first set of laminae tested for a new mesomechanical model (see e.g., [36]).

Further, plain weave fabrics are easier to drape than unidirectional fabrics, so they are

often used for parts with complex curvature, and they have a high degree of stability

so they will not unravel as easily (see e.g., [80]). Example applications extend from

hobbyist applications, such as the spoiler of a car, to structural applications, such as

an airplane wing, to acoustic applications, such as a cello bow.

Figure 5.2: A picture of carbon fiber plain weave fabric

For the analysis, the geometry is evaluated with traditional finite elements

using the commercial code COMSOL Multiphysics, and with MVEs in the MAT-

LAB code detailed in Section 5.1. The stiffness tensor components calculated are

compared to each other and to experimental results from Scida et al. [3] to demon-

strate accuracy. A convergence study to determine the number of elements required

to achieve acceptable accuracy levels is also presented. From the results shown in
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the following section, the accuracy of the MVE method is equal to that of traditional

finite element approaches, and also aligns nicely with the experimental results.

5.2.1 Geometry

In order to analyze the RVE of a woven composite lamina, its geometry must

first be defined. For this study (as well as the studies that follow), the geometry is

defined using analytic functions. Figure 5.3 shows top and side views of the plain

weave composite lamina.

Figure 5.3: Top and side views of a plain weave composite lamina. Fill strands (f)
are represented in red, and warp strands (w) are represented in green.

5.2.1.1 Geometric Functions. Figure 5.4 shows a cut–plane view of the geom-

etry of the plain weave lamina analyzed with the geometric functions labeled. The

geometric functions used were adapted from those presented in Scida et al. [13], who

define a plain weave composite RVE with no fiber gap using sinusoidal functions for

both the strand undulation and thickness. The functions were originally defined for
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a quarter RVE and have been adapted to define a full RVE to allow the application

of the periodic boundary conditions.

Figure 5.4: 2D cut-plane view of a plain-weave woven composite, with geometric
functions labeled. (a) View along the positive x2–axis to highlight geometry of fill,
and (b) view along the positive x1–axis to highlight geometry of warp

Scida et al. [13] originally used the functions to model composite laminae with

two different types of fiber tows; therefore, the following functions will differentiate

between those describing the fill strand (as denoted by the subscript f) and the warp

strand (the subscript w). For the purpose of this thesis, the fill strand undulates

in the x1 direction and the warp strand undulates in the x2 direction, with the x3

direction being in the direction of the composite thickness.

The undulation of the fill strand through space Hf(x1, x2) and the warp strand

Hw(x1, x2) are defined in terms of a sinusoidal function as

Hf(x1, x2) =

⎧

⎪⎨

⎪⎩

hw

2
sin

πx1

aw
0 ≤ x2 ≤ aw

−
hw

2
sin

πx1

aw
aw ≤ x2 ≤ 2aw

(5.1)
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Hw(x1, x2) =







−
hf

2
sin

πx2

af
0 ≤ x1 ≤ af

hf

2
sin

πx2

af
af ≤ x1 ≤ 2af

(5.2)

where hf and hw refer to the thickness of the strands, and af and aw refer to the

width of the strands; the domain of the RVE is defined in the region {0 ≤ x1 ≤ 2aw;

0 ≤ x2 ≤ 2af ; −(hf + hw) ≤ x3 ≤ (hf + hw)}. The piecewise nature of the formulae

ensure that the two sets of fill and warp strands undulate 180◦ out of phase with

each other, as is characteristic of plain weaves. Note that while a resin pocket is

sometimes included between the fill and warp strand, this case is not considered in

the following studies. For the laminae studied, the full height hRV E is calculated as

the sum of hf and hw for ease of generating the reference model in COMSOL. Future

studies should focus on analyzing more realistic geometries.

The functions defining the strand shape transverse to the strand direction,

ef (x2) and ew(x1), are defined as

ef(x2) =
hf

2
sin

πx2

af
(5.3)

ew(x1) =
hw

2
sin

πx1

aw
(5.4)

This set of sinusoidal functions defines the curvature on the top and bottom surface

of the strand. When used in tandem with the undulation functions in Equations

(5.1) and (5.2), it can be determined whether the point (x1, x2, x3) is in the fill, warp,

or matrix. Then the stiffness tensor of Equation at a point Cijkl(x1, x2, x3) may be

defined as either the stiffness tensor of the fill strand (CF
ijkl), the warp strand (CW

ijkl),

or the matrix (CM
ijkl). This can be done using the following piecewise relationship:

Cijkl(x1, x2, x3) =







CF
ijkl Hf(x1, x2)− ef(x2) ≤ x3 ≤ Hf(x1, x2) + ef (x2)

CW
ijkl Hw(x1, x2)− ew(x2) ≤ x3 ≤ Hw(x1, x2) + ew(x2)

CM
ijkl else

(5.5)
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5.2.1.2 Fiber Rotation. As discussed in Chapter Four, because the strands

are transversely isotropic materials, they are variant to rotation. Therefore, CF
ijkl

depends upon the angle of the local principal frame with respect to the global frame.

To reiterate, the local stiffness tensor C ′
ijkl can be rotated into the global frame as

Cijkl via the rotation tensor Q(θ, φ) as (see e.g., [78])

Cijkl = Qip(θ, φ)Qjq(θ, φ)Qkr(θ, φ)Qls(θ, φ)C
′

pqrs (5.6)

where θ is the angle from the positive x3 axis and φ is the angle measured from the

positive x1 axis for a rotation about the x3 axis, and the rotation tensor is

Q(θ, φ) =





sin θ cosφ sin θ sinφ cos θ
− sinφ cosφ 0

− cos θ cosφ − cos θ sin φ sin θ



 (5.7)

In the particular case of the fill and warp strands, the values of θ and φ are

found in relation to the geometric functions presented. The value of φ is trivial; as

the fill strand travels in the x1 direction, the value of φf = 0◦ for the entire RVE.

Similarly, the warp strand travels in the x2 direction — a +90◦ rotation from the x1

axis — so the value of φw = π
2
for the entire RVE.

The values of θf and θw are dependent upon the angle of the undulation

at a particular point. This is defined in terms of the tangent line to the functions

Hf(x1, x2) and Hw(x1, x2) for, respectively, the fill and the warp angles. The angles

of the tangent line, denoted as γf(x1, x2) and γw(x1, x2) in Figure 5.4, are calculated

as [13]

tan γf(x1, x2) =
∂Hf

∂x1
(5.8)

tan γw(x1, x2) =
∂Hw

∂x2
(5.9)

The angle γf is measured from the x1 axis, and γw from the x2 axis, whereas the values

of θf and θw in Equation (5.6) are both measured from the x3 axis. The values of θf
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and θw can therefore be calculated from γf and γw as

θf (x1, x2) =
π

2
− γf(x1, x2) θw(x1, x2) =

π

2
− γw(x1, x2) (5.10)

With these relations, the local stiffness tensor for each transversely isotropic fiber

Q(θf , φf) or Q(θw, φw) can now be calculated.

The constitutive properties of the fiber tows and polymer matrix of the plain

weave composite lamina analyzed come from Scida et al. [3]. The lamina is an E–

glass and vinylester composite, with the geometric parameters listed in Table 5.1 and

the material properties listed in Table 5.2. Note that the properties for the fiber tow

are aligned in the x1 direction and will be rotated appropriately with Equation (5.6).

These are the same material properties used in the isotropic/transversely isotropic

volume fraction study and the material angle study in Chapter Four, Sections 4.3.3

and 4.4, respectively.

Table 5.1: The geometric parameters of the plain weave lamina studied, from [3]

Fill Warp RVE
Height h (mm) 0.05 0.05 0.10
Width a (mm) 0.60 0.60 1.20

Table 5.2: The properties of the plain weave lamina matrix (vinylester) and fiber
tow (E–glass/vinylester) used in this study, from [3]

Fiber Tow Matrix
(E–glass/Vinylester) (Vinylester)

E11 (GPa) 57.5 3.4
E22 = E33 (GPa) 18.8 3.4
G12 = G13 (GPa) 7.44 1.49

G23 (GPa) 7.26 1.49
ν12 = ν13 0.25 0.35

ν23 0.29 0.35
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5.2.2 COMSOL Model

A model of the described geometry was created and analyzed in COMSOL to

provide a set of reference results to compare the MVE elements against. Figure 5.5

presents the model used; the left image shows the unmeshed geometry of the full RVE

with both the matrix and the strands. To demonstrate the woven architecture, the

center and right images show the matrix removed and the quarter RVE, respectively.

Figure 5.5: The plain weave woven geometry as modeled in COMSOL. (a) The full
RVE model domain, (b) the full RVE with the matrix is removed, and (c) the quarter
RVE without matrix to highlight the tow geometry.

COMSOL 5.2 contains a feature to apply periodic boundary conditions, but

does not directly allow the application of added displacements. However, a method

for applying periodicity in older versions of the software (specifically, Version 4.0)

was found, and a similar procedure was adapted for use in this study [81]. A lin-

ear extrusion of the boundary is imposed from the desired source face to the desired

destination face. This extrusion is then used in a pointwise constraint, which con-

strains the defined input expression to equal zero. The pointwise constraint from

Equation (3.54) for mathematical periodicity is applied to the destination face with

the equivalent expression

udest − usrc − cij = 0 (5.11)

set as the constraint. From a comparison of results with the two–dimensional shear

117



study from Xia et al. [25], it was determined this method for applying the periodic

boundary conditions in COMSOL yielded identical results to those from Xia et al. [25].

Figure 5.6: The plain weave woven geometry as meshed in COMSOL, with (a) 1,064
elements, (b) 19,600 elements, and (c) 68,968 elements.

The mesh of the COMSOL model (shown in Figure 5.6) was tested for con-

vergence by running the stiffness tensor prediction study for different mesh densities.

The purpose of this study is to determine how many elements are needed to deter-

mine a consistent solution. To determine this, the relative error as a function of the

number of elements used Nel is calculated as

Rel Errijkl(Nel) ≡

∣
∣
∣
∣
∣

Cijkl(N
max
el )− CMVE

ijkl (Nel)

CMVE
ijkl (Nmax

el )

∣
∣
∣
∣
∣

(5.12)

where Nmax
el is the maximum number of elements used in the entire study.

Figure 5.7 shows the relative error from select stiffness tensor components

obtained from the RVE analysis as a function of increasing elements (i.e., mesh re-

finement). The dashed line is the 5% of the true answer bound, and the dash–dotted

line is the 1% error bound. As noted in the figure, by around 4,000 elements, a rela-

tively coarse mesh, the calculated values of the stiffness tensor are within 1% of the

values obtained from the highest mesh refinement. From this study, it was deter-

mined that COMSOL converges to a solution even with a low number of elements.

Throughout the remainder of this study, the reference values for comparison will be
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from the COMSOL model with 68,968 elements, the highest refinement mesh studied

and depicted in Figure 5.6(c).

5.2.3 Results

Using the MATLAB code developed as part of this thesis and presented in the

appendices, the geometry of the plain weave lamina defined in Tables 5.1 and 5.2 was

analyzed using the MVEs described in Chapter Four and compared to the reference

COMSOL model from the previous section and experimental results from Scida et

al. [3]. Eight Gauss points were used in each coordinate direction within each MVE.

A convergence study is also presented to determine if the number of elements used

was enough to obtain a consistent result, as well as a computation time study to

determine the effects of using parallelization and MEX functions.

For the analysis of the composite laminae, it is more intuitive to compare the

engineering stiffness properties (tensile modulus E, shear modulus G, and Poisson’s

ratio ν) rather than the individual components of the stiffness tensor Cijkl. For an

orthotropic material, the nine independent engineering properties can be calculated

from the compliance matrix S as [6]

S =












1
E11

− ν12
E11

− ν13
E11

0 0 0

− ν12
E11

1
E22

− ν23
E22

0 0 0

− ν13
E11

− ν23
E22

1
E33

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12












= C−1 (5.13)

where S is the matrix inverse of the contracted form of the stiffness tensor C. To

quantify the error between the MVE approach and the “true” finite element solution

from COMSOL, the percent absolute error of the engineering properties is defined as

Error =

∣
∣
∣
∣

True Value− Approx. Value

True Value

∣
∣
∣
∣

(5.14)
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Figure 5.7: The relative error defined in Equation (5.12) of select engineering prop-
erties through analysis in COMSOL. By 4,000 elements, most of the values converge
to within 1% of the “true” solution

120



5.2.3.1 Computation Time. To demonstrate the savings in computation time

with the use of parallelization and MEX function generation, the STC–MVE imple-

mentation of Figure 5.1 was used to analyze the plain weave composite described in

Tables 5.1 and 5.2. The machine used for this analysis has two Intel Xeon E5-2665

processors, each with eight cores, and 256 GB of shared memory; within MATLAB, a

parallel pool of 12 workers was created. At 2,000 nodes (1,444 elements), the MAT-

LAB code was timed using the tic and toc commands with the various combinations

of optimization methods; these times are listed in Table 5.3. As indicated in the ta-

ble, parallelization and the use of MEX functions individually cut the computation

down nearly eight fold; using both enhancements together drops the computation

time to almost 2% of the original run time.

Table 5.3: Comparison of computation time for the STC–MVE using various
combinations of optimization methods

Time (s)
No Optimization 380.6
Parallelization 51.1
MEX Functions 50.2

Both 8.7

While these times could be compared to COMSOL, the comparison would not

be a fair one for a number of reasons. Due to the proprietary nature of the code

used in COMSOL, there is little way of determining how the program calculates the

parametric study used to calculate the six strain states. Further, as COMSOL is

a software package that is sold commercially, it is expected that the code is more

optimized.

5.2.3.2 Convergence. To determine the number of elements needed to present

a converged solution using the MVE technique, the plain weave composite lamina
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was analyzed with increasingly finer meshes. The mesh in the thickness direction x3

is refined at a quarter of the rate of the planar coordinates; for example, one of the

meshes tested had 48 nodes in both the x1 and x2 directions, and 12 nodes in the

x3 direction (or 47× 47× 11 elements). This ratio was chosen as a balance between

keeping the dimensions of the elements as equivalent as possible and having an equal

number of elements in all directions.

Because of the large planar dimensions relative to the through thickness, at

the extremes, keeping the elements close to cuboid does not allow for much refinement

through the thickness of the lamina, but having an equal number of elements along

each dimension over–refines the mesh in x3, which can use computational resources

that could be better applied towards analyzing the much larger and more complex

planar geometry.

The engineering stiffness properties were calculated for a variety of mesh sizes,

and the relative error is calculated using Equation (5.12) and presented in Figure 5.8.

This result does not show convergence to the true solution, but only that there is no

benefit with further mesh refinements. Accuracy of the MVEs will be discussed in

Section 5.2.3.3.

For almost all cases, the relative error is within 1% of the finest mesh by

around 20,000 elements and was therefore determined to be sufficient for a 4–to–

1 element ratio. For the planar properties (E11, E22, G12, and ν12), the ASE and

B–MVE converged faster, but for the other properties, the TMC–MVE and STC–

MVE converged faster. This is almost 5 times the number of elements required in

the COMSOL solution. However, the COMSOL model is using quadratic elements,

with 9 nodes in a hexahedral element; this is inherently a more accurate element, but
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Figure 5.8: The relative error as defined in Equation (5.12) of select engineering
stiffness properties through analysis of the plain weave lamina with the MVEs. The
planar–to–thickness element ratio is 4:1
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is more computationally expensive. The MVEs presented are linear elements, which

compute faster, but are less accurate.

A similar convergence study was run for a 2:1 planar–to–thickness element

ratio. Compared to the 4:1 planar–to–element ratio, some of the error for the out

of plane components was reduced, but overall, the change in results was negligible.

Therefore, a 4:1 ratio will be used.

5.2.3.3 Comparison of Calculated Engineering Properties. For the following

MVE studies, a mesh of 39,325 elements (55×55×13) was selected as it was available

from the convergence study. Table 5.4 shows the calculated engineering properties

for the plain weave composite lamina, determined from using the MATLAB FEA

code for MVEs to calculate the contracted form of the stiffness tensor C from the

periodic RVE and then computing the engineering properties using Equation (5.13).

The experimental results from Scida et al. [3] are presented in Table 5.4, along with

a solution using COMSOL with classic finite elements.

Comparing the COMSOL results with the experimental results in Table 5.4

shows that the plain weave geometry used for the analysis is in good agreement with

experimental results. While finding an accurate woven geometry model for use in

finite element analysis is not an objective of this study, it is useful to know that

experimental results from literature can be used as a rough point of comparison for

the MVEs when a COMSOL model is not available. An interesting artifact from the

geometry can be observed in the calculation of E33; because there is no resin pocket

between the fill and warp strands in the COMSOL model, the influence of the strands

is overpredicted in the x3 direction of the model. Therefore, as the transverse stiffness

of the strands are stiffer than the matrix, the stiffness is overpredicted as compared
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to the mean of experimental results (but is still within the experimental measurement

error margin presented by [3]).

Table 5.4: The calculated values of the plain weave lamina engineering stiffness
properties with the MVEs, classic finite elements, and experimental values from [3]

ASE B–MVE TMC–MVE STC–MVE COMSOL Exp. [3]
E11 (GPa) 24.92 24.92 24.36 24.34 24.47 24.8 ± 1.1
E22 (GPa) 24.92 24.92 24.36 24.34 24.47 24.8 ± 1.1
E33 (GPa) 10.99 10.85 10.24 10.20 9.90 8.5 ± 2.6
G23 (GPa) 3.66 3.60 3.32 3.24 3.22 4.2 ± 0.7
G13 (GPa) 3.66 3.60 3.32 3.24 3.22 4.2 ± 0.7
G12 (GPa) 4.90 4.90 4.82 4.78 4.81 6.5 ± 0.8
ν23 0.32 0.33 0.33 0.33 0.34 0.28 ± 0.07
ν13 0.32 0.33 0.33 0.33 0.34 0.28 ± 0.07
ν12 0.14 0.14 0.14 0.14 0.14 0.1 ± 0.01

Looking at Table 5.4 qualitatively, all of the MVEs performed well in the

analysis of the plain weave lamina. All values are similar to those from the classic

finite element solution, as hoped for. This suggests that any of these methods are a

reasonable selection for an estimate of the material properties.

The percent relative error calculations found in Table 5.5 can be used to obtain

a more quantitative analysis. Table 5.5 compares the percent absolute relative error

of the engineering properties calculated by MVEs as compared to the properties cal-

culated in using the commercial finite element solver. The ASE and B–MVE perform

similarly for all properties calculated. The lowest errors for these two methods are

found in the planar properties (E11, E22, G12, and ν12), showing less than a 1% error

for ν12, while predicting the other planar properties at around a 2% error. However,

the ASE and B–MVE poorly predict the out of plane properties, returning around a

10% error for E33 and a 12%–14% error on G23 and G13.

The accuracy of results from the TMC–MVE and the STC–MVE improve
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Table 5.5: The percent absolute error for the MVEs in the plain weave study as
compared to COMSOL, calculated using Equation (5.14)

(%) ASE B–MVE TMC–MVE STC–MVE
Eerr

11 1.84 1.83 0.44 0.54
Eerr

22 1.84 1.83 0.44 0.54
Eerr

33 10.99 9.60 3.44 3.01
Gerr

23 13.64 11.82 3.07 0.69
Gerr

13 13.64 11.81 3.07 0.69
Gerr

12 1.96 1.88 0.26 0.58
νerr23 4.21 3.72 2.23 1.59
νerr13 4.21 3.72 2.23 1.59
νerr12 0.31 0.47 0.93 0.82

significantly upon the ASE and B–MVE approaches. The planar properties predicted

by these two MVEs are within 1% of the stiffness results produced by COMSOL. The

maximum error overall for both the TMC–MVE and STC–MVE is calculated for E33,

and that error is only ∼ 3.0%, with the STC–MVE yielding the more accurate result.

While it may be worth further investigations to reduce this error, it is relatively low

compared to the greater than 10% error in the predicted E33 from the ASE and

B–MVE.

An interesting trend to note is that, relative to the other properties, the calcu-

lated error for E33 is consistently high for all of the MVEs as compared to COMSOL,

which is inconsistent with the studies performed in Chapter Four (see e.g., Figure

4.15 and Table 4.8). A part of this may be related to the mesh refinement issue de-

scribed in the convergence study in Figure 5.8; the MVEs may be sensitive to how

the geometry is meshed. A future study should be performed to determine how the

ratio of the number of MVEs in each direction affects the property calculation.

Overall, the newly proposed STC–MVE produced results closest to the COM-

SOL results for nearly all stiffness components. The greatest improvement in prop-

erty prediction as compared to the other MVEs is found in the out of plane shear
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moduli G23 and G13. The ASE and B–MVE predict these properties with a greater

than 10% error and the newly proposed TMC–MVE yields a 3.07% error. However,

this error drops to less than 1% for the STC–MVE. Recall the STC–MVE uses exclu-

sively the material stiffness moduli in the xi and xj directions for the calculation of

the effective shear stiffness in Equation (4.27), which directly relates to shear moduli

Gij. The reduced accuracy from the B–MVE is due to the lack of strain correction in

the transverse direction to a load, and the TMC–MVE only uses the tensile moduli

Ei to correct these values.

5.2.4 Section Conclusion

In this section, the geometry of a plain weave composite lamina was defined and

analyzed using the MVEs presented in Chapter Four. The newly presented TMC–

MVE and STC–MVE showed significant improvement over the ASE and B–MVE.

In particular, the error on the out of plane tensile modulus E33 was decreased from

about 10% to about 3%. Further, the out of plane shear moduli G23 and G13 were

decreased from about 12%–14% to about 3% for the TMC–MVE. The STC–MVE

showed an even greater improvement on this figure, dropping the error to less than

1%.

Coupled with the simple analyses of Chapter Four, the MVE models presented

here have been shown to be valid, with the STC–MVE providing the best accuracy

overall. For future work, the inclusion of the extension–extension terms and perhaps

the anisotropic terms from the stiffness tensor should be incorporated into the strain

correction factors. Further, there is still room for improvement on the prediction

of the shear stiffness terms. However, it has been effectively shown that the way

the shear stiffness terms are handled within the STC–MVE helps provide a superior

accuracy over the other MVEs presented.
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5.3 Analyses of Other Weave Types

To demonstrate the versatility of the MVEs presented, two other woven geome-

tries will be presented and analyzed: a satin weave and a twill weave. These weaves

are also common in industry; their use is favored in applications where a highly dra-

pable fabric is required. In other words, the fabrics are more easily laid and shaped

over complex molds; plain weave composites tend not to drape very well as compared

to these looser weaves [80]. However, satin and twill weaves have a more complex and

larger RVE than the plain weave laminae, and therefore are harder to analyze using

classical finite elements. For the MVE method, however, the mesh for the various

weaves is identical and no new meshing is required for each new weave type.

5.3.1 Twill Weave Lamina

This section will detail the analysis of a twill weave lamina, as depicted in

Figure 5.10. A twill weave often balances the weave stability of a plain weave lamina

with the drapability of a satin weave lamina [80]. The weave depicted in Figure 5.9

is specifically referred to as a 2/2 twill weave, where a strand will pass under two

strands then over two strands. Again, the pattern is offset by one each row and

column, creating a “stairstep” pattern; this generates an RVE four sections by four

sections.

Figure 5.9: A picture of carbon fiber 2/2 twill weave fabric
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No COMSOL model was generated for this study, so the properties predicted

by the MVEs will again be compared to analytic and experimental results from Scida

et al. [3].

5.3.1.1 Geometry. As with the plain weave RVE, the geometry of the twill

weave RVE is based on the functions provided by Scida et al. [13]. Most of the

functions are the same as the functions for the plain weave lamina; the thickness

functions ef (x2) and ew(x1) are the same as in Equations (5.3) and (5.4) for the plain

weave lamina. The determination of the local stiffness tensor at a given point is still

found through the piecewise relationship in Equation (5.5), and the angles of the

strands at a given point γf(x1, x2) and γw(x1, x2) are given by Equations (5.8) and

(5.9). The major change between the the plain weave and twill weave is found in the

definition of the undulation functions, Hf (x1, x2) and Hw(x1, x2).

Figure 5.10: Top and side views of 2/2 twill weave composite lamina. Fill strands
(f) are represented in red, and warp strands (w) are represented in green.

A piecewise function is used to define the undulation functions of a 2/2 twill

weave composite lamina with the domain {0 ≤ x1 ≤ 4aw; 0 ≤ x2 ≤ 4af ; −(hf+hw) ≤
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x3 ≤ (hf+hw)}. The lamina is split up into 4×4 sections, as depicted in Figure 5.10.

The sections are assigned coordinates (I, J) to determine the interaction between the

Ith fill strand and the J th warp strand. The individual section coordinates I ≡ I(x1)

and J ≡ J(x2) can be determined from the (x1, x2) coordinates of an arbitrary point

as

I ≡ I(x1) = ⌈
x

af
⌉ J ≡ J(x2) = ⌈

y

aw
⌉ (5.15)

where the brackets ⌈·⌉ imply rounding up the quantity in the brackets to the next

integer (i.e., the ceiling function). In the case of x1 = 0, I is set equal to 1, and when

x2 = 0, J is set equal to 1. These section coordinates can then be used to calculate

the piecewise undulation function that defines the fill strand as

Hf(x1, x2) =
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and the undulation function of the warp strand as

Hw(x1, x2) =
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where

Sf(x1, x2) =
hf

2
sin

[(
x2

af
+ I(x1)

)

π

]

(5.18)

Sw(x1, x2) =
hw

2
sin

[(
x1

aw
+ J(x2)

)

π

]

(5.19)
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When the derivative ofHf andHw are taken for the calculation γf and γw in Equations

(5.8) and (5.9), the derivative at a point where two subfunctions meet in the piecewise

functions is zero as the undulation functions by construction are first–order smooth

and continuous.

The composite lamina analyzed is a 2/2 twill carbon fiber with a bakelite

matrix from Scida et al. [3]. The geometric parameters listed in Table 5.6 and the

material properties are listed in Table 5.7.

Table 5.6: The geometric parameters of the 2/2 twill weave lamina, from [3]

Fill Warp RVE
Height h (mm) 0.15 0.15 0.30
Width a (mm) 1.50 1.50 6.00

Table 5.7: The properties of the 2/2 twill weave lamina matrix (Bakelite) and fiber
tow (carbon/Bakelite) used in this study, from [3]

Fiber Tow Matrix
(Carbon/Bakelite) (Bakelite)

E11 (GPa) 137 3.2
E22 = E33 (GPa) 9.57 3.2
G12 = G13 (GPa) 4.74 1.19

G23 (GPa) 3.23 1.19
ν12 = ν13 0.31 0.35

ν23 0.45 0.35

5.3.1.2 Results. The twill weave was analyzed using 31,212 (51 × 51 × 12)

elements for each of the MVEs. Table 5.8 presents the results from these studies

alongside the analytic model proposed by Scida et al. [3,13] (MESOTEX), as well as

the available experimental results from these papers. It should be noted that Table

5.8 compares a finite element method, an analytic method, and an experimental
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method. The experimental results were only for select components of stiffness, but

show a general agreement of the results from the MVE approach with experimental

observations. The results here are only meant to show a general agreement of results

across the different methods.

Table 5.8: The MVE calculated values of the engineering stiffness properties of the
twill weave compared against analytic and experimental results from [3]

ASE B–MVE TMC–MVE STC–MVE MESOTEX [3] Exp. [3]
E11 (GPa) 44.83 44.89 43.18 42.98 46.11 49.38
E22 (GPa) 44.83 44.89 43.18 42.98 46.11 49.38
E33 (GPa) 8.13 8.05 7.80 7.77 8.18 n/a
G23 (GPa) 2.49 2.45 2.30 2.26 3.09 n/a
G13 (GPa) 2.49 2.45 2.30 2.26 3.09 n/a
G12 (GPa) 3.23 3.23 3.15 3.05 3.33 2.36
ν23 0.46 0.46 0.46 0.46 0.44 n/a
ν13 0.46 0.46 0.46 0.46 0.44 n/a
ν12 0.09 0.09 0.08 0.08 0.04 0.059

The MVEs, qualitatively, are in fair agreement with the MESOTEX and ex-

perimental results. In this set of results, the ASE appears to perform the best overall

as compared to MESOTEX. As compared to the experimental results, the B–MVE

has the best agreement for E11 and E22, and the STC–MVE provides the closest result

for G12 and ν12. Again, the results here are not a fully valid comparison.

Despite the fair agreement of the MVEs with the analytic and experimental

results, the discrepancy in the values are enough to wonder if there was a source of

this error other than inaccuracies in the MVE formulation. In Scida et al. [3], the

material properties for the fiber tow in Table 5.7 are generated using a numerical

micromechanics technique. In a results comparison made by Tucker and Liang [21],

even at high aspect ratios, these micromechanics methods can disagree by upwards of

10%–15%. Thus, the STC–MVE was used to reanalyze the twill weave with a 10%

increase on the modulus values presented in Table 5.7 (the Poisson’s ratios remained
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the same); Table 5.9 shows the results from this “adjusted” study, compared against

the relevant results from Table 5.8.

Table 5.9: The STC–MVE calculated values of the adjusted engineering stiffness
properties of the twill weave compared against analytic and experimental results

from [3]

Original Adjusted MESOTEX [3] Exp. [3]
E11 (GPa) 42.98 46.96 46.11 49.38
E22 (GPa) 42.98 46.96 46.11 49.38
E33 (GPa) 7.77 8.19 8.18 n/a
G23 (GPa) 2.26 2.35 3.09 n/a
G13 (GPa) 2.26 2.35 3.09 n/a
G12 (GPa) 3.05 3.28 3.33 2.36
ν23 0.46 0.46 0.44 n/a
ν13 0.46 0.46 0.44 n/a
ν12 0.08 0.09 0.04 0.059

The tensile moduli from the adjusted study are in much better agreement with

the experimental results. The values of E11 and E22 now differ by only about 5%,

rather than about 13% in the original study. While no experimental results were

given for E33, the adjusted study shows better agreement with the analytic model for

E33. For G12, the adjusted results less accurate than the original results, but this is

because all of the input shear moduli were increased by 10%; therefore, the already

high result from the original study became higher.

When the inputs from the micromechnics models are reasonably adjusted, the

STC–MVE agreed much better with experimental results. Threrfore, based on the

available results, the MVEs appear to predict the properties of the twill weave with

a reasonable degree of accuracy. Ideally, a traditional finite element model using the

exact model as presented would be used as a reference for the MVEs, thus this will

be reserved for a future study.
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5.3.2 Satin Weave Lamina

This section will detail the geometry and analysis of the satin weave to show

the strengths of the MVE approach. A type of satin weave is pictured in Figure 5.11.

The results are compared to the select components provided by from Scida et al. [3].

Figure 5.11: A picture of a type of carbon fiber 5HS satin weave fabric

5.3.2.1 Geometry. An ng–harness satin weave composite is woven in such a

way so that the fill and warp strands only interlace every ng strands, where ng refers

to the harness number of the weave. For example, a 5–harness satin (5HS) weave is

depicted in Figure 5.12. The 5HS has fill strands that only interlace at every 5th warp

strand, and warp strands that only interlace at every 5th fill strand. The interlaced

regions are offset by one section each row and column down the fabric, which visually

gives the fabric a diagonal pattern. This weave pattern allows for higher drapability

of the fabric, but has low stability during handling and manufacturing and can unravel

easily [80]. A plain weave composite can be thought of as a 2HS weave.

As with the plain and twill weaves, the geometry of the satin weave RVE is

derived from functions provided by Scida et al. [13]. Again, most of the functions are

134



Figure 5.12: Top and side views of a 5–harness satin weave composite lamina. Fill
strands (f) are represented in red, and warp strands (w) are represented in green.

the same as the functions for the plain weave and twill weave laminae, with only an

alteration in the undulation functions, Hf(x1, x2) and Hw(x1, x2). The satin weave

is defined similarly to the twill weave, using piecewise based functions dependent

upon section coordinates (I, J) defined in Equation (5.15). The domain occupied

by the satin weave lamina is defined by the region {0 ≤ x1 ≤ ngaw, 0 ≤ x2 ≤

ngaf ,−(hf + hw) ≤ x3 ≤ (hf + hw)}. Thus, the undulation functions for a general

ng–harness satin weave in Figure 5.12 are

Hf (x1, x2) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(−1)ng+1Sw(x1, x2) 0 ≤ x1 ≤
(
J + 1

2
− ng

)
aw

∪
(
J − 3

2
+ ng

)
aw ≤ x1 ≤ ngaw

−Sw(x1, x2)
(
J − 3

2

)
aw ≤ x1 ≤

(
J + 1

2

)
aw

−
hw

2
else

(5.20)
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Hw(x1, x2) =







(−1)ngSf(x1, x2) 0 ≤ x2 ≤
(
I + 1

2
− ng

)
af

∪
(
I − 3

2
+ ng

)
aw ≤ x2 ≤ ngaf

Sf(x1, x2)
(
I − 3

2

)
af ≤ x2 ≤

(
I + 1

2

)
af

hf

2
else

(5.21)

where Sf(x1, x2) is as defined in Equation (5.18) and Sw(x1, x2) is as defined in Equa-

tion (5.19). As for the twill weave, the functions defined in Equations (5.20) and

(5.21) are first–order continuous and as such the derivatives everywhere are continu-

ous.

The composite lamina presented in this thesis is an 8–harness satin (8HS)

E–glass and epoxy composite from Scida et al. [3]. The geometric parameters from

[3] are listed in Table 5.10 and the material properties from [3] are listed in Table

5.11. Note that the calculation of the width of the RVE is found by taking the

strand width and multiplying by ng; in this case, ng = 8, so the RVE dimensions are

8aw × 8af × hRV E .

Table 5.10: The geometric parameters of the 8HS weave lamina studied, from [3]

Fill Warp RVE
Height h (mm) 0.09 0.09 0.18
Width a (mm) 0.60 0.60 4.80

Table 5.11: The properties of the 8HS weave lamina matrix (epoxy) and fiber tow
(E-glass/epoxy) used in this study, from [3]

Fiber Tow Matrix
(E–glass/Epoxy) (Epoxy)

E11 (GPa) 59.3 3.2
E22 = E33 (GPa) 23.2 3.2
G12 = G13 (GPa) 8.68 1.16

G23 (GPa) 7.60 1.16
ν12 = ν13 0.21 0.38

ν23 0.32 0.38
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5.3.2.2 Results. The 8HS weave was analyzed using 31,212 (51 × 51 × 12)

elements for each of the MVEs. Table 5.12 presents the results from these studies

alongside an analytic mesomechanical model proposed by Scida et al. [3,13] (MESO-

TEX), as well as the experimental results from these papers. The values from the

mesomechanics method and the experimental method are only an approximate com-

parison and shows the MVE method predicts results similar to those in literature.

In general, the MVEs are in fair agreement with the MESOTEX method and

the available experimental results, but there remains some room for improvement.

This study does not validate or invalidate the use of the MVEs; that is best done

against a full finite element mesh as was done in Section 5.2. In the plain weave

study, the planar tensile moduli E11 and E22 were in very good agreement for all

of the MVEs; in this study, however, it appears that E11 and E22 are consistently

overpredicted by each MVE approach, while E33 was underpredicted. However, it

should be noted that the behavior exhibited by the MVEs in this study appears to be

consistent with previous studies. For example, the values calculated with the ASE

and B–MVE are about the same, as in Table 5.4. The same observation is made with

the tensile moduli predicted with the TMC–MVE and the STC–MVE.

It is entirely possible this is again a function of the material inputs found in

Table 5.11; as discussed with the twill weave, numerically determining the properties

of a fiber tow with different micromechanics models can provide a spread of results

spanning 10% – 15%. However, there may be another factor at play here, namely

that the method is simply not converged. Indeed, the plain weave lamina was ana-

lyzed using 55 elements in each planar direction; given there are two strands in each

direction, this means that there are around 28 elements dedicated to each strand

along the coordinate axes. The 8HS lamina was analyzed using 51 elements in each

137



planar direction (this lower number was selected due to memory constraints), and

therefore only about 6 elements are dedicated to each strain along the coordinate

axes. Therefore, it is plausible to postulate that the solutions in Table 5.12 are not

fully converged.

Table 5.12: The MVE calculated values of the engineering stiffness properties of the
8HS weave compared against analytic and experimental results from [3]

ASE B–MVE TMC–MVE STC–MVE MESOTEX [3] Exp. [3]
E11 (GPa) 35.64 35.09 30.73 30.60 26.03 25.6
E22 (GPa) 35.64 35.09 30.73 30.60 26.03 25.6
E33 (GPa) 13.81 13.17 11.84 11.69 15.65 n/a
G23 (GPa) 4.05 3.74 3.08 2.94 5.42 n/a
G13 (GPa) 4.05 3.74 3.08 2.94 5.42 n/a
G12 (GPa) 5.39 5.33 4.57 4.31 5.67 5.7
ν23 0.31 0.31 0.34 0.34 0.28 n/a
ν13 0.31 0.31 0.34 0.34 0.28 n/a
ν12 0.21 0.20 0.17 0.18 0.13 0.13

A convergence study was run for the 8HS lamina, using the relative error

calculation from Equation (5.13). The results of this study are presented in Figure

5.13. The results show that the MVEs appear to still be converging when the highest

number of elements is run. In each case, the relative error of the MVEs is barely

passing the 1%mark (the dashed–dotted line). Further, the error curve is not smooth,

but rather jagged; this may be because the material boundaries within the MVEs are

changing drastically with each mesh resolution increase.

The apparent solution is to generate a mesh with more elements. However,

the memory required to solve the system was on the order of 250 GB. The custom

MATLAB code described in Section 5.1 is only optimized for computation time and

not for memory usage; there is only a limited use of memory saving techniques, such

as using sparse matrices when parsing the system into Kff , Kpf , etc. as in Equation
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Figure 5.13: The relative error as defined in Equation (5.12) of select engineering
properties through analysis of the 8HS satin weave lamina with the MVEs.
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(3.64). A technique used by COMSOL to conserve memory is to use virtual memory

on the hard disk of the machine [82]; a crude version of this was attempted, but

significantly increased the computation time.

Currently, because of the way parallelization the periodic boundary conditions

are handled in the code, the full global matrix K from Equation (3.51) cannot be

stored as a sparse matrix. With around 35,000 nodes, and 3 degrees of freedom for

each node, this amounts to a matrix that contains 11 × 109 elements. This alone

consumes about 83 GB of memory. If K was allowed to be a sparse matrix, this

memory consumption would be reduced to less than 1 GB. Therefore, future work on

this research will require restructuring the code for more efficient memory usage.

5.4 Concluding Remarks

The structure of a custom finite element code in MATLAB was presented for use

in analyzing geometries generated functionally. This finite element code was used to

analyze various woven geometries using each of the MVE methods presented in Chap-

ter Four. The geometries of a plain weave, satin weave, and twill weave composite

lamina were defined and analyzed with various methods using parameter presented

in Scida et al. [3]. Of the three laminae presented, the plain weave composite was

analyzed the most extensively due to the availability of high quality experimental

data and full finite element solutions.

From the analysis of the plain weave composite, the STC–MVE performed

the best overall, predicting most properties with less than a 2% error as compared

to a traditional finite element model defined as the true result. The most significant

improvement of the STC–MVE over the other MVEs is the more accurate prediction

of the out of place shear moduli G23 and G13; this is due to the strain corrections

taking into account the shear properties within the entire plane of interest.
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For the satin and twill weaves, thorough analyses were both limited by the

lack of models for the laminae in commercial software and by memory limitations.

Future work should be performed to determine the accuracy of the MVEs in the

application of weave types other than plain weave composites. The code used in this

study should be restructured to allow for more efficient use of memory; further, a

model that can be analyzed easily in both commercial software and the MATLAB

code should be determined. A promising alternative is a program such as WiseTex

[47] or TexGen [7, 48], the latter of which will automatically generate a woven RVE

and ABAQUS mesh. These programs will work well if the constituent materials are

isotropic; the fiber angle, however, is needed in order to determine the rotation of a

transversely isotropic strand.
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CHAPTER SIX

Conclusion

6.1 Revisiting the Thesis Objectives

To conclude the work presented here, the thesis objectives from Chapter 1 will

be revisited. The objective of the research presented in this thesis was to

Construct a multiphase voxel finite element (MVE) allowing the construction of a

mesh independent of internal geometry variations by incorporating material

properties determined at the integration points for use in correctly predicting the

averaged material stiffness tensor Cijkl over the representative volume element

(RVE) of a woven fabric composite lamina.

It has been shown in Chapters Four and Five that the objective of this research has

been met. A set of four multiphase voxel elements (MVEs) — the ASE, B–MVE,

TMC-MVE, and STC–MVE — were presented in Chapter Four, each of them utiliz-

ing material properties collected at the integration points to estimate the displace-

ment within the element. These elements were analyzed using simple geometries and

compared to a traditional finite element model; the conclusion was that the newly

presented MVEs were superior to the MVEs presented in literature. In Chapter Five,

these MVEs were used to extensively analyze a plain weave woven composite lamina;

again, the newly presented MVEs showed superior performance in these analyses.

To detail these conclusions, the three points from Chapter One will be revis-

ited.

• Expand upon the work of Caselman [1] by generalizing the strain correction

factors within the MVE formulation to better account for the shear effect
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• Determine the effectiveness of the existing methods that can be expressed in the

general MVE form proposed in this thesis and the two newly proposed MVEs in

calculating the averaged stiffness tensor Cijkl of woven fabric composite laminae

• Expose shortcomings of the investigated MVEs in order to suggest further im-

provements and demonstrate the improved performance of the two newly pro-

posed MVEs

6.1.1 Extend the Work of Caselman

Caselman [1] presented an element capable of applying the material properties

at the integration points within an element, as opposed to the entire element domain

as a whole, through the use of strain correction factors. The element presented was

limited to an element containing two isotropic materials, which suited the application

the element was originally developed for. For isotropic materials, he showed that the

element he developed was an improvement over the element of Zeng [12], termed the

B–MVE in this thesis.

The TMC–MVE presented in Chapter Four in Section 4.2.3 directly expands

the formulation of Caselman’s element. By replacing the isotropic tensile modulus E

with the orthotropic tensile moduli E11, E22, and E33, the formulation was expanded

to include materials independent of the coordinate axis. Further, the spring analogy

used by Caselman in his derivation was expanded from two springs in series to a

general system of springs in series, thus expanding the number of materials that can

be present within an MVE to as many integration points being used.

The STC–MVE, also presented in Chapter Four in Section 4.2.4, aimed to con-

tinue the extension of Caselman’s theory on strain corrections by basing the derivation

of the correction factors off of the components of the stiffness tensor Cijkl instead of

using the engineering stiffness properties. This was done because, through Hooke’s
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law, the stiffness tensor directly relates the resultant stress tensor σij with the applied

strain tensor εij . Further, correction factors were developed for use in better predict-

ing the shear stiffness modulus; these corrections for the shear stiffness components

Cijij (for i < j, and no sum on i or j) collect the material properties in both the xi

and xj direction. This is based on the fact that a shear strain is applied over two

faces instead of one and therefore is affected by material boundaries in both of these

directions.

6.1.2 Determine the Effectiveness of the MVEs

In the latter part of Chapter Four (Section 4.3 and onwards), the four MVEs were

used to estimate the material properties of simple cuboid geometries, each developed

to individually test a certain aspect of the MVEs. The first test, the volume fraction

test, sought to predict how the MVEs react to the placement of a material boundary

within the element. Three sets of composite materials were tested: a composite of

two isotropic materials, a composite of one isotropic and one transversely isotropic

material, and a composite of two orthotropic materials. The STC–MVE produced

the lowest error overall on all three cases, consistently providing an error of about

2% or less. The TMC–MVE also performed admirably, dropping the error on the

similarly performing ASE and B–MVE to acceptable levels. The STC–MVE vastly

improved upon the calculation of the shear stiffness components.

The material angle test looked to test the MVEs on a composite material of

an isotropic material and a transversely isotropic material rotated at different angles

out of the principal frame. Again, both the TMC–MVE and STC–MVE overall were

the most accurate as compared to the true finite element result. The error for the

transverse shear stiffness terms C1313 and C1212 were both higher in this study, but the
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STC–MVE was still the most accurate for these terms, dropping the error to under

10%.

The boundary angle study aimed to determine the accuracy of the MVEs

when used to analyze geometries with material boundaries that are not parallel to a

coordinate axis. Outside the shear stiffness terms C1313 and C1212, the TMC–MME

was consistently under a 4% error, and the STC–MME was consistently under 3%

error, with most terms being under 1%. All MVEs had high error for the shear

stiffness terms C1313 and C1212, but the STC–MVE was the only MVE to calculate

both terms under a 30% error.

In Chpater Five, the MVEs were used to predict the properties of a plain weave

fiber composite lamina, and the results were compared with the results provided from

a fully meshed traditional finite element model in commercial code and experimental

results provided by Scida et al. [3]. The results showed that all of the MVEs provided

results that were reasonable, ranging from less than 1% to about 14% error as com-

pared against the reference finite element model. However, the STC–MVE predicted

all stiffness terms with less than a 3% error, with most terms being under 1% error.

Therefore, it has been shown that the newly presented STC–MVE is the most

accurate MVE of the MVEs compared in this study, with the newly presented TMC–

MVE also performing well.

6.1.3 Expose the Shortcomings

As these tests were performed, a few shortcomings of all the MVEs in their

present formulations were discovered that were not corrected with the construction

of the TMC–MVE or the STC–MVE. These shortcomings help provide a basis for

recommendations for future work.
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• In the volume fraction study from Chapter Four, the tests on the three dif-

ferent material systems showed that the MVEs are sensitive to the ratio of

the constituent materials’ stiffness properties. Namely, the larger the differ-

ence between the properties of two materials contained within an MVE, the

less accurate the MVEs are.

• In the material angle study from Chapter Four, the error for the anisotropic

stiffness term C2313 was calculated. It was determined from this example cal-

culation that the MVE is sensitive to anisotropic behavior.

• In most studies performed in both Chapters Four and Five, the transverse shear

stiffness terms were often the least accurate of the stiffness terms calculated,

often by a large margin. The STC–MVE was usually the most accurate of the

four MVEs.

6.2 Recommendations for Future Work

In this section, recommendations for future work on this research will be pre-

sented. Namely, recommendations on how to improve the theory of MVEs itself, the

testing of the MVEs, and the MATLAB code used in the research will be provided.

This section starts with a review of the extended finite element method

(XFEM). Both MVEs and XFEM share a similar goal of being able to impose discon-

tinuities within the domain of a finite element, so there is potentially a way to utilize

the methods from both areas to help construct a more accurate way of including

discontinuities within the element domain.

6.2.1 The Extended Finite Element Method

As briefly discussed in Chapter Two, the extended finite element method

(XFEM) is an extension upon standard finite element methods that utilize “enrich-

ment functions” that allow for greater resolution within the element. This technique
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allows discontinuities, such as cracks or material boundaries, to exist within an ele-

ment without the addition of more nodes; rather, the nodes are enriched through the

addition of extra degrees of freedom.

A brief discussion of the theory behind XFEM is provided here as an exten-

sion to the material provided in Chapter Three; for a more in–depth discussion of

the methods of XFEM, see [66]. In addition, some applications to composite mate-

rials from literature will be presented; for further discussion on XFEM in regards to

material modeling, see [68].

6.2.1.1 Theory. The mathematical basis for the XFEM process is the partition

of unity method, first proposed by Melenk and Babuška [69]. As summarized in

Belytschko et al. [68], the partition of unity is a set of functions ψi(x) in a domain Ω

that represent a partitioning of unity (i.e., one) such that

∑

i∈I

ψi(x) = 1, ∀x ∈ Ω (6.1)

where I represents all nodes in Ω. These functions, which are usually the standard

Lagrangian interpolation functions used in standard finite elements, can be multiplied

by an enrichment function Φ(x) and summed over i ∈ I, which will just return the

enrichment function. However, after the introduction of an unknown parameter qi,

this summation can be modified. All three of these components constitute the nodal

enrichment uenr, which is added to the standard finite element displacement uFE from

Equation (3.14) to approximate the global displacement function u(x) as [66, 68]

u(x) =
∑

i∈I

uiψi(x)

︸ ︷︷ ︸

u
FE

+
∑

i∈I

qiψi(x)Φ(x)

︸ ︷︷ ︸

u
enr

(6.2)

where ui refers to the ith nodal displacement in Ω. Note that both ui and qi are

unknowns; nodal enrichment adds a set of degrees of freedom. The application of
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this form was first performed by Belytschko and Black for crack growth in elastic

media [73], where Φ(x) was used to describe the near–tip displacement field for Mode

I and II failure.

Because the approximation of u(x) is the summation of uFE and uenr, valid

interpolation functions ψi(x) from traditional finite elements are also valid in XFEM.

The MVEs developed in Chapter Four can therefore be used in XFEM as well.

The form for uenr in Equation (6.2) is inconvenient as, in general, ui(xi) 6= ui,

where xi is a nodal location [66]. This is because Φ(x) does not disappear at the

nodal locations. While this could be solved by enriching every node in Ω, this is

computationally inefficient since it doubles the number of degrees of freedom for

the entire system, especially considering Φ(x) is a local phenomenon. Belytschko

et al. [70] suggested subtracting off Φ(xi), the value of the function evaluated at

each nodal location, before multiplying it into the enrichment function as a means

to get the enrichment function to disappear at each nodal location. It was shown

this reproduces Φ(x) exactly. Therefore, the enrichment function now only has to

be applied to the subset of nodes I⋆ ⊂ I that need to be enriched because of the

application of Φ(x); this is done as [66]

u(x) =
∑

i∈I

uiψi(x) +
∑

i∈I⋆

qiψi(x)[Φ(x)− Φ(xi)] (6.3)

There are two types of discontinuities that can be modeled with XFEM. Strong

discontinuities (i.e., cracks) refer to interfaces that are entirely discontinuous, mean-

ing there is a “jump” across the interface. Weak discontinuities (i.e., material bound-

aries) refer to interfaces that only have discontinuous gradients, meaning there is only

a “kink” across the interface [66]. The enrichment functions for these two types of

discontinuities are handled differently.
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Assume there is a level–set function f(x) that is equal to zero at the discon-

tinuity, and has opposite signs on either side of the discontinuity. For strong discon-

tinuities, the enrichment function is the Heaviside function of this function, written

as [66, 73]

Φstrong(x) = H(f(x)) =

{

0 f(x) ≤ 0

1 f(x) > 0
(6.4)

If an element contains the crack tip, the enrichment function changes to include the

physics of the near–tip stresses. See [68, 73] for more details.

The first proposed enrichment function for weak discontinuities was simply

taking the absolute value of the level–set function as [66]

Φweak(x) = |f(x)| (6.5)

with a gradient of

∇Φweak(x) = sign(f(x)) · ∇f(x) (6.6)

This form, however, leads to a problem with what are termed “blending elements”

[66]. Blending elements are the elements that form the boundary between enriched

elements and standard elements; therefore, they often have only some nodes enriched.

Blending elements are not an issue when Φ(x) disappears outside of elements that

contain discontinuities, but this is not the case with Equation (6.5). Convergence is

greatly affected by the presence of blending elements.

Fries [83] tackled this issue with the introduction of a ramp function. By

multiplying the enrichment function by a localized ramp function; this served to

eliminate the effect of the enrichment within the blending elements.

An alternative formulation for the enrichment function for weak discontinuities

was proposed by Moës et al. [71], given as

Φweak(x) =
∑

i∈I

|f(xi)|ψi(x)−

∣
∣
∣
∣
∣

∑

i∈I

f(xi)ψi(x)

∣
∣
∣
∣
∣

(6.7)
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This form of the enrichment function disappears outside of the elements that do not

contain a discontinuity; therefore there is no need to provide special consideration for

blending elements.

The enrichment function presented by Moës et al. models a general material

weak discontinuity without considering the material properties of the constituent

elements. A derivation similar to that of the MVEs in Chapter Four could perhaps

be used to create a specialized enrichment function that can be used specifically in

the structural mechanics implementation in XFEM.

As mentioned in Chapter Two, a concern with using the enrichment functions

is the numerical integration [73]. As discussed previously in Chapter Three, the cal-

culation of the stiffness matrices require numerical integration, which is traditionally

done through the use of Gauss quadrature in Equation (3.45). In XFEM, the solution

space is enriched with singular or discontinuous functions, and the numerical integra-

tion of these functions are inaccurate when using standard Gauss quadrature. This

could pose a problem with the unification of the MVE method and XFEM, as the

MVEs presented in this thesis are by definition dependent upon the use of integration

points. In the list of alternatives suggested by [68], an adaptive quadrature scheme

is suggested as an option; this type of quadrature can also help to refine the MVEs

around the material boundaries.

6.2.1.2 Applications in Composites.With the continued development of XFEM,

its application to the study of composite materials is beginning to become more

common in literature. The ability of XFEM to study both crack propagation and

complex internal boundaries without remeshing allows for very efficient studies in the

mechanical properties and failure of composite materials. Some recent applications

of XFEM to composite materials will be presented in this section.
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Huynh and Belytschko [67] described the XFEM process for studying fracture

in composite materials. This particular problem is interesting as both weak and

strong discontinuities exist within the domain. The tests performed include a center

crack on an infinite bimaterial plate, a centered crack in a slated bimaterial plate,

and three–dimensional analysis of a randomly–oriented fiber composite RVE with

cracks on the fiber/matrix interface. The ramp function of Fries [83] was implemented

to increase accuracy. The studies found that the methodology presented has good

potential for use in studying failure in composite materials; the XFEM approach

showed excellent agreement with exact analytic results.

Kästner et al. [84] studied simple unidirectional and woven composite geome-

tries, both infused with a polymer resin. In these studies, the fibers were modeled

as isotropic and linear elastic, while the polymer resin was modeled as viscoelastic.

Using XFEM, the nonlinear stress–strain curve was reproduced with good accuracy

as compared to experimental results (up until the onset of failure, which was not

included in the model presented). Further, a crack propagation study was presented

without comparison. The methodology presented only took the local material prop-

erties and geometry into account; there was no macroscale homogenization performed.

Therefore, the model provides a real prediction of how the material would react under

loading.

Safdari et al. [85] studied an extension to XFEM where each material boundary

is modeled using a non–uniform rational B–spline (NURBS). This extension, termed

the NURBS–based interface enriched generalized finite element method (NIGFEM),

allows complex material boundaries to be enriched using the generated NURBS sur-

face without having to determine a level–set function to describe the material bound-

ary; rather, the generated NURBS surface can be used to define the enrichment
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function. The results showed excellent accuracy when compared with standard finite

element solutions; further, the NIGFEM mesh converged faster than the standard

FEM mesh.

Yazdani et al. [74] applied XFEM to model delamination in composite lami-

nates. The laminates were modeled at the macroscopic level; fiber architecture was

not taken into account. The XFEM process was coupled with the first–order shear

deformation theory to perform the studies. Two tests were modeled: a double can-

tilever beam test for pure Mode I failure, and an end notched flexure test for pure

Mode II failure. Both tests were calculated using different numerical integration tech-

niques and compared with experimental results. Very good agreement with exper-

imental results were calculated, especially considering the focus of the study was

within the nonlinear regime of the interlaminar stresses.

Savvas et al. [86] used XFEM to study the material properties of a two di-

mensional composite of a matrix with circular inclusions. The RVE was generated

using a Monte Carlo simulation. The purpose of the study was to determine the as-

pect ratio of the window size to the diameter of the inclusion required to determine

the material properties of the inclusion–filled composite. XFEM helped the study

be computationally efficient as no remeshing is required to study multiple RVEs.

The study showed that, for an inclusion diameter of 1, a window size of about 30 is

required for converging material properties.

6.2.2 Recommendations

The following recommendations are made for the STC–MVE, the overall most

accurate MVE presented in this thesis:

• Improve Transverse Shear Stiffness Prediction. In many of the tests

throughout Chapter Four, the transverse shear stiffness terms C1313 and C1212
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were often the least accurate term predicted by all of the MVEs. The formula-

tion of the STC–MVE, through the way it calculated the strain corrections for

these terms, proved to be a step in the right direction, but there is still room

for improvement here.

• Incorporate the Extension–Extension Terms. In the current formulation

of the STC–MVE, Poisson’s effect is not taken into account as the extension–

extension terms (C1122, C1133, and C2233) are neglected. The inclusion of these

terms, as well as the shear–extension terms, may help to reduce the error on

the MVEs.

• Implement an Adaptive Quadrature Scheme. Gauss quadrature uses

fixed points to calculate the numerical integral. The MVE may benefit from the

use of an adaptive quadrature scheme that will focus refinement of integration

points around a material boundary.

• Extend the Formulation to Other Problems. Currently, the STC–MVE

can only be used in the three–dimensional structural mechanics problems. A

similar formulation could be found for other problems, such as fluid mechanics

and heat transfer.

• Conjoin the MVE methods with XFEM. Section 6.2.1 goes into detail

about the XFEM process and some current applications in literature. As both

MVEs and XFEM aim to include discontinuities within an element, there may

be some way to conjoin the two methods, whether by using an MVE directly

with XFEM or using the derivation of the STC–MVE as a basis for a new

enrichment function.

The following recommendations are made for ways to test the MVE:

• Use a Unidirectional Fiber Model for the Volume Fraction Study.
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Nakai et al. [57] used a two–dimensional circular inclusion RVE to test their

finite element method with changing volume fraction. This type of test is use-

ful as it helps provide a real world analogue for the test. A similar test with

unidirectional continuous fibers could be used, where the radius of the fiber is

altered to change the volume fraction.

• Use a Rotating Fiber in Matrix Model for the Material Angle Study.

With the purpose of providing a real world analogue for the material angle

study, a single rotating fiber inclusion within a matrix can be used instead.

• Traditional Finite Element Models should be Created for Reference.

The analysis of the MVEs for the satin and twill weave laminae was limited

by the lack of a readily available finite element model on hand for use as a

reference. A reference model should be created and compared to the MVEs to

better determine their accuracy for those weaves.

The following recommendations are made for the MATLAB code specifically created

used in this study:

• Restructure the Code for More Efficient Memory Usage. The analyses

of the twill and satin weave composite laminae in Chapter Five were in part

limited by the inefficient handling of memory. Greater use of sparse matrices,

virtual memory, and iterative solvers could be explored to reduce memory costs

on the MATLAB code.

• Adapt Code for Use with Preexisting Meshes. Software such as TexGen

[7] have been developed to automatically generate and mesh the RVE of a woven

composite lamina, which can be exported as an ABAQUS mesh. The ability

to read these mesh files can be useful to test multiple composite laminae.

• Adapt Code for Use With Scans of Real Geometries. Ultrasound scans
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(see e.g., [8]) and micro CT scans (see e.g., [9]) can be used to determine the

weave geometry of a real composite. The ability to read this scan data and

analyze it using th MVEs would allow a means to predict the properties of a

real life geometry without having to explicitly model the geometry data.

155



APPENDICES

156



APPENDIX A

MATLAB Code for ASE

The following is an example element file that can be used to calculate the element

stiffness matrix of the average stiffness element (ASE), similar to the volume fraction–

based formulations from Kim and Swan [14] and Watanabe et al. [15]. The ASE is

mathematically described in Equation (4.2).

function K = ASE(eprop,xe)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This is a multiphase voxel element that uses the average of the stiffness

% tensor components as the global stiffness tensor

%

% INPUTS:

% - eprop : Properties from input.dat file

% - xe : Global locations of nodes

%

% OUTPUTS:

% - K : Elemental Stiffness Matrix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Determine Gauss points from input.dat file

Ngp = eprop(3);

% Collect material information at each Gauss point from geometry file

C_all = geom(eprop,Ngp,xe);

% Average the stiffness tensor components together

Ceff = sum(sum(sum(C_all,5),4),3)/(Ngp^3);

% Change to a typical number of Gauss points

Ngp = 3;

% Pull Gauss points and corresponding weights from table

[wgt,gpt] = gaussquad_tab(Ngp);

%% Evaluate element stiffness matrix

K = zeros(24);

% Gauss integration

for m = 1:Ngp
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for n = 1:Ngp

for p = 1:Ngp

zeta1 = gpt(m); zeta2 = gpt(n); zeta3 = gpt(p);

% Derivative of interpolation functions w.r.t. zeta

Dpsi = 1/8*[...

-(1-zeta2)*(1-zeta3), (1-zeta2)*(1-zeta3),...

(1+zeta2)*(1-zeta3),-(1+zeta2)*(1-zeta3),...

-(1-zeta2)*(1+zeta3), (1-zeta2)*(1+zeta3),...

(1+zeta2)*(1+zeta3),-(1+zeta2)*(1+zeta3);... //

-(1-zeta1)*(1-zeta3),-(1+zeta1)*(1-zeta3),...

(1+zeta1)*(1-zeta3), (1-zeta1)*(1-zeta3),...

-(1-zeta1)*(1+zeta3),-(1+zeta1)*(1+zeta3),...

(1+zeta1)*(1+zeta3), (1-zeta1)*(1+zeta3);... //

-(1-zeta1)*(1-zeta2),-(1+zeta1)*(1-zeta2),...

-(1+zeta1)*(1+zeta2),-(1-zeta1)*(1+zeta2),...

(1-zeta1)*(1-zeta2), (1+zeta1)*(1-zeta2),...

(1+zeta1)*(1+zeta2), (1-zeta1)*(1+zeta2)];

% Calculate the Jacobian

Jac = Dpsi*xe; % Jacobian

detJ = det(Jac); % Det(J)

DpsiX = Jac\Dpsi; % d(psi)/dx

% Form strain-displacement matrix

B = zeros(6,24);

for ii = 1:8

B(:,(3*ii-2):(3*ii)) = ...

[DpsiX(1,ii),0 ,0 ;...

0 ,DpsiX(2,ii),0 ;...

0 ,0 ,DpsiX(3,ii);...

0 ,DpsiX(3,ii),DpsiX(2,ii);...

DpsiX(3,ii),0 ,DpsiX(1,ii);...

DpsiX(2,ii),DpsiX(1,ii), 0];

end

% Form K matrix using average stiffness tensor

K = K + B’*Ceff*B*detJ*wgt(m)*wgt(n)*wgt(p);

end

end

end

end
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APPENDIX B

MATLAB Code for B–MVE

The following is an example element file that can be used to calculate the ele-

ment stiffness matrix of the basic multiphase voxel element (B–MVE) as presented

in Lippmann et al. [11] and Zeng et al. [12]. The mathematical form is expressed in

Equation (4.3)

function K = B_MVE(eprop,xe)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This is a basic multiphase voxel element that applies the material

% properties at each Gauss point. From Zeng, et al.

%

% INPUTS:

% - eprop : Properties from input.dat file

% - xe : Global locations of nodes

%

% OUTPUTS:

% - K : Elemental Stiffness Matrix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Ngp = eprop(3); % Determine Gauss points from input.dat file

[wgt,gpt] = gaussquad_tab(Ngp); % Pull Gauss points and corresponding

weights from table

% Collect material information at each Gauss point from geometry file

C_all = geom(eprop,Ngp,xe);

%% Evaluate element stiffness matrix

K = zeros(24);

% Gauss integration

for m = 1:Ngp

for n = 1:Ngp

for p = 1:Ngp

zeta1 = gpt(m); zeta2 = gpt(n); zeta3 = gpt(p);

% Derivative of interpolation functions w.r.t. zeta

Dpsi = 1/8*[...
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-(1-zeta2)*(1-zeta3), (1-zeta2)*(1-zeta3),...

(1+zeta2)*(1-zeta3),-(1+zeta2)*(1-zeta3),...

-(1-zeta2)*(1+zeta3), (1-zeta2)*(1+zeta3),...

(1+zeta2)*(1+zeta3),-(1+zeta2)*(1+zeta3);... //

-(1-zeta1)*(1-zeta3),-(1+zeta1)*(1-zeta3),...

(1+zeta1)*(1-zeta3), (1-zeta1)*(1-zeta3),...

-(1-zeta1)*(1+zeta3),-(1+zeta1)*(1+zeta3),...

(1+zeta1)*(1+zeta3), (1-zeta1)*(1+zeta3);... //

-(1-zeta1)*(1-zeta2),-(1+zeta1)*(1-zeta2),...

-(1+zeta1)*(1+zeta2),-(1-zeta1)*(1+zeta2),...

(1-zeta1)*(1-zeta2), (1+zeta1)*(1-zeta2),...

(1+zeta1)*(1+zeta2), (1-zeta1)*(1+zeta2)];

% Calculate the Jacobian

Jac = Dpsi*xe; % Jacobian

detJ = det(Jac); % Det(J)

DpsiX = Jac\Dpsi; % d(psi)/dx

% Form strain-displacement matrix

B = zeros(6,24);

for ii = 1:8

B(:,(3*ii-2):(3*ii)) = ...

[DpsiX(1,ii),0 ,0 ;...

0 ,DpsiX(2,ii),0 ;...

0 ,0 ,DpsiX(3,ii);...

0 ,DpsiX(3,ii),DpsiX(2,ii);...

DpsiX(3,ii),0 ,DpsiX(1,ii);...

DpsiX(2,ii),DpsiX(1,ii), 0];

end

% Form K matrix

K = K + B’*C_all(:,:,m,n,p)*B*detJ*wgt(m)*wgt(n)*wgt(p);

end

end

end

end
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APPENDIX C

MATLAB Code for TMC–MVE

The following is the element file used to calculate the element stiffness matrix

of the tensile modulus corrected multiphase voxel element (TMC–MME) based on

the element presented in Caselman [1]. The mathematical form is found in Equation

(4.18).

function K = TMC_MVE(eprop,xe)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This is a multiphase voxel that uses the tensile modulus in each

% orthogonal direction to calculate strain correction factors. Based on a

% method of Caselman

%

% INPUTS:

% - eprop : Properties from input.dat file

% - xe : Global locations of nodes

%

% OUTPUTS:

% - K : Elemental Stiffness Matrix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Ngp = eprop(3); % Determine Gauss points from input.dat file

[wgt,gpt] = gaussquad_tab(Ngp); % Pull Gauss points and corresponding

weights from table

% Collect material information at each Gauss point from geometry file

[C_all,Ex,Ey,Ez] = geom(eprop,Ngp,xe);

% Invert Tensile Moduli

Exi = 1./Ex;

Eyi = 1./Ey;

Ezi = 1./Ez;

%% Evaluate element stiffness matrix

K = zeros(24);

% Gauss Integration

for m = 1:Ngp
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for n = 1:Ngp

for p = 1:Ngp

zeta1 = gpt(m); zeta2 = gpt(n); zeta3 = gpt(p);

Cpt = C_all(:,:,m,n,p);

% Derivative of interpolation functions w.r.t. zeta

Dpsi = 1/8*[...

-(1-zeta2)*(1-zeta3), (1-zeta2)*(1-zeta3),...

(1+zeta2)*(1-zeta3),-(1+zeta2)*(1-zeta3),...

-(1-zeta2)*(1+zeta3), (1-zeta2)*(1+zeta3),...

(1+zeta2)*(1+zeta3),-(1+zeta2)*(1+zeta3);... //

-(1-zeta1)*(1-zeta3),-(1+zeta1)*(1-zeta3),...

(1+zeta1)*(1-zeta3), (1-zeta1)*(1-zeta3),...

-(1-zeta1)*(1+zeta3),-(1+zeta1)*(1+zeta3),...

(1+zeta1)*(1+zeta3), (1-zeta1)*(1+zeta3);... //

-(1-zeta1)*(1-zeta2),-(1+zeta1)*(1-zeta2),...

-(1+zeta1)*(1+zeta2),-(1-zeta1)*(1+zeta2),...

(1-zeta1)*(1-zeta2), (1+zeta1)*(1-zeta2),...

(1+zeta1)*(1+zeta2), (1-zeta1)*(1+zeta2)];

% Calculate the Jacobian

Jac = Dpsi*xe; % Jacobian

detJ = det(Jac); % Det(J)

DpsiX = Jac\Dpsi; % d(psi)/dx

% Collect E_11 in x_1 direction

EiX = zeros(1,Ngp);

EiX(1,:) = Exi(:,n,p);

% Collect E_22 in x_2 direction

EiY = zeros(1,Ngp);

EiY(1,:) = Eyi(m,:,p);

% Collect E_33 in x_3 direction

EiZ = zeros(1,Ngp);

EiZ(1,:) = Ezi(m,n,:);

% Calculate E_eff in each direction, using wgt/2 as beta

% value.

EeffX = 2/(EiX*wgt);

EeffY = 2/(EiY*wgt);

EeffZ = 2/(EiZ*wgt);

% Calculate Strain Correction Factors

corX = EeffX*Exi(m,n,p);
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corY = EeffY*Eyi(m,n,p);

corZ = EeffZ*Ezi(m,n,p);

% Form strain-displacement matrix using corrections

B = zeros(6,24);

for ii = 1:8

B(:,(3*ii-2):(3*ii)) = ...

[corX*DpsiX(1,ii),0 ,0 ;...

0 ,corY*DpsiX(2,ii),0 ;...

0 ,0 ,corZ*DpsiX(3,ii);...

0 ,corZ*DpsiX(3,ii),corY*DpsiX(2,ii);...

corZ*DpsiX(3,ii),0 ,corX*DpsiX(1,ii);...

corY*DpsiX(2,ii),corX*DpsiX(1,ii), 0];

end

% Form K matrix

K = K + B’*Cpt*B*detJ*wgt(m)*wgt(n)*wgt(p);

end

end

end

end

163



APPENDIX D

MATLAB Code for STC–MVE

The following is the element file used to calculate the element stiffness matrix

of the stiffness tensor corrected multiphase voxel element (STC–MVE) described in

Table 4.1.

function K = STC_MVE(eprop,xe)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This is a multiphase voxel element that uses the stiffness tensor

% components to calculate strain correction factors.

%

% INPUTS:

% - eprop : Properties from input.dat file

% - xe : Global locations of nodes

%

% OUTPUTS:

% - K : Elemental Stiffness Matrix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Ngp = eprop(3); % Determine Gauss points from input.dat file

[wgt,gpt] = gaussquad_tab(Ngp); % Pull Gauss points and corresponding

weights from table

% Collect material information at each Gauss point from geometry file

C_all = geom(eprop,Ngp,xe);

%% Evaluate element stiffness matrix

K = zeros(24);

% Gauss integration

for m = 1:Ngp

for n = 1:Ngp

for p = 1:Ngp

zeta1 = gpt(m); zeta2 = gpt(n); zeta3 = gpt(p);

Ceff = zeros(6,1);

Cpt = C_all(:,:,m,n,p);

% Derivative of interpolation functions w.r.t. zeta

Dpsi = 1/8*[...
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-(1-zeta2)*(1-zeta3), (1-zeta2)*(1-zeta3),...

(1+zeta2)*(1-zeta3),-(1+zeta2)*(1-zeta3),...

-(1-zeta2)*(1+zeta3), (1-zeta2)*(1+zeta3),...

(1+zeta2)*(1+zeta3),-(1+zeta2)*(1+zeta3);... //

-(1-zeta1)*(1-zeta3),-(1+zeta1)*(1-zeta3),...

(1+zeta1)*(1-zeta3), (1-zeta1)*(1-zeta3),...

-(1-zeta1)*(1+zeta3),-(1+zeta1)*(1+zeta3),...

(1+zeta1)*(1+zeta3), (1-zeta1)*(1+zeta3);... //

-(1-zeta1)*(1-zeta2),-(1+zeta1)*(1-zeta2),...

-(1+zeta1)*(1+zeta2),-(1-zeta1)*(1+zeta2),...

(1-zeta1)*(1-zeta2), (1+zeta1)*(1-zeta2),...

(1+zeta1)*(1+zeta2), (1-zeta1)*(1+zeta2)];

% Calculate the Jacobian

Jac = Dpsi*xe; % Jacobian

detJ = det(Jac); % Det(J)

DpsiX = Jac\Dpsi; % d(psi)/dx

% Initialize "spring" property vectors

C11 = zeros(1,Ngp); % C_1111

C22 = zeros(1,Ngp); % C_2222

C33 = zeros(1,Ngp); % C_3333

C44_2 = zeros(1,Ngp); % C_2323 in x_2

C44_3 = zeros(1,Ngp); % C_2323 in x_3

C55_1 = zeros(1,Ngp); % C_1313 in x_1

C55_3 = zeros(1,Ngp); % C_1313 in x_3

C66_1 = zeros(1,Ngp); % C_1212 in x_1

C66_2 = zeros(1,Ngp); % C_1212 in x_2

% Calculate C_1111 Eff in x_1

C11(1,:) = 1./C_all(1,1,:,n,p);

Ceff(1) = (1/2*C11*wgt)^-1;

% Calculate C_2222 Eff in x_2

C22(1,:) = 1./C_all(2,2,m,:,p);

Ceff(2) = (1/2*C22*wgt)^-1;

% Calculate C_3333 Eff in x_3

C33(1,:) = 1./C_all(3,3,m,n,:);

Ceff(3) = (1/2*C33*wgt)^-1;

% Calculate C_2323 Eff in x_2/x_3

C44_2(1,:) = 1./C_all(4,4,m,:,p);

C44_3(1,:) = 1./C_all(4,4,m,n,:);

C44 = (C44_2+C44_3)./2;
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Ceff(4) = (1/2*C44*wgt)^-1;

% Calculate C_1313 Eff in x_1/x_3

C55_1(1,:) = 1./C_all(5,5,:,n,p);

C55_3(1,:) = 1./C_all(5,5,m,n,:);

C55 = (C55_1+C55_3)./2;

Ceff(5) = (1/2*C55*wgt)^-1;

% Calculate C_1212 Eff in x_1/x_2

C66_1(1,:) = 1./C_all(6,6,:,n,p);

C66_2(1,:) = 1./C_all(6,6,m,:,p);

C66 = (C66_1+C66_2)./2;

Ceff(6) = (1/2*C66*wgt)^-1;

% Calculate strain correction factors

corX = Ceff(1)/Cpt(1,1);

corY = Ceff(2)/Cpt(2,2);

corZ = Ceff(3)/Cpt(3,3);

corYZ = Ceff(4)/Cpt(4,4);

corXZ = Ceff(5)/Cpt(5,5);

corXY = Ceff(6)/Cpt(6,6);

% Form strain-displacement matrix using corrections

B = zeros(6,24);

for ii = 1:8

B(:,(3*ii-2):(3*ii)) = ...

[DpsiX(1,ii)*corX,0 ,0 ;...

0 ,DpsiX(2,ii)*corY,0 ;...

0 ,0 ,DpsiX(3,ii)*corZ;...

0 ,corYZ*DpsiX(3,ii),corYZ*DpsiX(2,ii);...

corXZ*DpsiX(3,ii),0 ,corXZ*DpsiX(1,ii);...

corXY*DpsiX(2,ii),corXY*DpsiX(1,ii), 0];

end

% Form K matrix

K = K + B’*Cpt*B*detJ*wgt(m)*wgt(n)*wgt(p);

end

end

end

end
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