
 

 

 

 

ABSTRACT 

Synthesis, Characterization, and Biological Evaluation of Bioreductively Activatable 

Prodrug Conjugates (BAPCs) of Phenstatin, KGP18, OXi6196, Combretastatin A-1, and 

Combretastatin A-4 

 

Blake A. Winn, Ph.D. 

Mentor: Kevin G. Pinney, Ph.D. 

 

Selective targeting of tumors with anticancer agents represents a universally 

important strategy to improve efficacy and reduce patient side effects. Targeting tumor-

associated hypoxia (low oxygen tension) represents one type of promising therapeutic 

regimen. Bioreductively activatable prodrug conjugates (BAPCs) are designed to be 

biologically inert under normoxia, however in hypoxic environments they will selectively 

release their parent anticancer agent. Inhibitors of tubulin polymerization (assembly) are 

promising anticancer agents for functionalization as their corresponding BAPCs. Upon 

hypoxia-selective release, these compounds function biologically as antimitotic agents 

with a subset demonstrating dual mechanistic capability as potent vascular disrupting 

agents (VDAs), which selectively damage tumor-associated vasculature leading to 

enhanced tumor necrosis. Phenstatin, OXi6196, combretastatin A-1 (CA1), 

combretastatin A-4 (CA4), and KGP18 are promising anticancer agents for development 

as BAPCs. These compounds are effective inhibitors of tubulin assembly and 

demonstrate potent activity in vitro against human cancer cell lines. 



Synthetic pathways have been identified for the preparation of nitrothienyl 

prodrugs of CA1 and CA4 using the nor-methyl, mono-methyl, and gem-dimethyl 

nitrothiophene-based triggers. A regioselective protecting group strategy was utilized in 

order to synthesize the nitrothiophene triggers regioselectively to the C-2 and C-3 

positions of CA1. Tosyl, isopropyl, and tert-butyldimethylsilyl protecting groups were 

important in establishing this CA1 regioselectivity. Several series of BAPCs were also 

developed based on phenstatin, KGP18, and Oxi6196 using nor-methyl, mono-methyl, 

and gem-dimethyl variants of the nitrothiophene, nitrobenzyl, nitroimidazole, and 

nitrofuran triggers. A selection of the CA1, CA4, and phenstatin BAPCs were evaluated 

biologically for their ability to inhibit tubulin assembly as well as their stability in 

aqueous conditions and their ability to undergo enzymatic cleavage in the presence of 

NADPH cytochrome P450 oxidoreductase. 
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CHAPTER ONE 

Introduction 

Healthy and structured vasculature is required to efficiently deliver nutrients to 

and eliminate waste products from cells throughout the body.
1-11

 Vasculature in healthy

tissue is a well-organized system of vessels ranging in size from capillaries to arteries and 

veins (Figure 1.1).
1-11

 In contrast, tumor-associated vasculature is a disorganized system,

spread in a more random fashion and is subject to weak and inconsistent blood flow, 

reducing the overall nutrient delivery to the tumor.
1-11

 Poorly structured tumor-associated

vasculature offers an effective target to neutralize the nutrient-starved tumor, reducing or 

possibly eliminating blood flow to the tumor through vascular disruption or destruction.
1-

11  

Figure 1.1. Comparative Images of Vasculature in Healthy Tissue Versus Tumor-

Associated Vasculature.
3,9
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Vascular Targeting Agents 

One therapeutic option to target tumor-associated vasculature is the employment 

of vascular targeting agents (VTAs).
1-11

 Vascular targeting agents are divided into two

distinct classes of compounds: angiogenesis-inhibiting agents (AIAs), which disrupt the 

formation of new vasculature in the tumor, and vascular disrupting agents (VDAs), which 

collapse and destroy existing tumor vasculature (Figure 1.2).
1-11

Figure 1.2. The Effects of Vascular Disrupting Agents and Angiogenesis-Inhibiting 

Agents on Tumor-Associated Vasculature.
2

Tumor angiogenesis is the development of new vasculature within the tumor, 

which can be attributed to the presence of vascular endothelial growth factor-A (VGEF-

A).
2,12-13

  As most of the new vasculature in the tumor is generated at the periphery, AIAs

are most active inhibiting the newly forming vessels in that region.
2,12-13

 With fewer

overall blood vessels forming in the tumor, the remaining vasculature has less 

competition for blood flow, enhancing overall blood flow and nutrient delivery in the 

tumor (Figure 1.2).
1-13

 This enhanced blood flow allows for the improved delivery of
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cytotoxic agents and radiotherapy treatments.
1-13

 Thus, AIAs are most effective in

combination regimens, enhancing the efficacy of established cytotoxic agents such as 

carboplatin and paclitaxel in solid tumors, a difficult therapeutic target.
2,12-13

Vascular Disrupting Agents 

Vascular disrupting agents represent another therapeutic option for targeting 

blood vessels in tumors, functioning by collapsing the existing vasculature.
1-11

 VDAs

typically target the endothelial cells lining the vessel walls, subduing or eliminating blood 

flow through the damaged vessel (Figure 1.3).
1-11

 One subset of VDAs contains small

molecules that act through microtubule disruption in the endothelial cells lining the vessel 

walls.
1-11

 The disruption of microtubule assembly causes the cells to lose shape and round

up, removing the structural integrity of the endothelial layer inside the vessel walls and 

allowing the body’s interstitial pressure to collapse the vessel (Figure 1.4).
1-11

 VDAs

work well in concert with AIAs, as they only act on existing vasculature and cannot 

prevent vessel regrowth.
14-19

 Combinatorial therapies have shown promising results,

reducing overall tumor growth.
14-19 

Figure 1.3. Comparison of Healthy Vasculature and Tumor-Associated Vasculature. 

Effects of Vascular Disrupting Agents on Tumor-Associated Vasculature.
7
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Figure 1.4. Results of Endothelial Cell Disruption by VDAs on Vasculature.
11

 

 

Combretastatin A-1 and Combretastatin A-4 

Combretastatin A-1 (CA1) and combretastatin A-4 (CA4), natural products 

discovered by Pettit and co-workers, are two potent vascular disrupting agents that inhibit 

microtubule assembly.
20-25

 CA1 and CA4 (Figure 1.5) were first isolated and 

characterized by the Pettit group from the African bush willow tree Combretum caffrum 

Kuntze (Combretacae).
20-25

 Combretum caffrum bark has been historically utilized by the 

Zulu tribe as a charm to ward off enemies.
26

 The two natural products, CA1 and CA4, 

have the same biological mechanism of action, interacting with the colchicine binding 

site on tubulin to disrupt microtubule assembly, leading to a loss a defined cellular 

structure and collapsing the vasculature.
20-25

 With the aid of enhanced solubility, the 

phosphate salt prodrugs of CA1 (OXi4503) and CA4 (Zybrestat
TM

) have shown potency 

in clinical trials, and Zybrestat
TM

 has reached advanced clinical trials.
18,19,27-32 
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Figure 1.5. Structures of CA1, CA4, Phenstatin, KGP18, and OXi6196 and Their 

Phosphate Salts 

Phenstatin 

Phenstatin, first synthesized by Pettit and co-workers, is a potent cytotoxic agent 

and an inhibitor of tubulin polymerization, collapsing tumor vasculature (Figure 1.5).
28,33

Discovered serendipitously by the Pettit group during an attempt to synthesize an epoxide 

at the Z-stilbenoid bridge of CA4, phenstatin was first obtained as the surprising result of 

a Jacobsen epoxidation reaction (Figure 1.6).
33

 A diarylacetaldehyde was formed after a

phenyl shift during the epoxidation, and subsequent oxidative cleavage yielded the 

silylated phenstatin.
33

 Phenstatin has the same biological mechanism of action as CA4,

disrupting microtubule assembly through interactions with the colchicine binding site on 

tubulin.
33

 In preliminary biological evaluations to determine the ability of phenstatin to

inhibit tubulin polymerization activities of phenstatin and its corresponding phosphate 

prodrug in cell assays are very similar to those of CA4 and combretastatin A-4 phosphate 

(CA4P).
28,33
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Figure 1.6. Proposed Mechanism for the Formation of Phenstatin from CA4  

during a Jacobsen Epoxidation Reaction
33 

 

Structurally Modified Analogues of CA4 

The relative simplicity of the Z-stilbenoid molecular architecture inherent to CA4 

had led to many structural modifications. The Pinney Research Group (Baylor 

University) has a well-established program that centers on the design and synthesis of 

new small-molecule inhibitors of tubulin polymerization that are inspired by natural 

products, including CA4, CA1, and colchicine. KGP18, for example, is a benzosuberene-

based CA4 analogue that functions biologically with a similar mechanism of action to 

that inherent to CA1 and CA4, collapsing tumor-associated vasculature (Figure 1.5).
34-36

 

In preliminary biological testing, KGP18 and its corresponding phosphate salt have been 

shown to be effective inhibitors of tubulin assembly and VDAs, displaying potent 

cytotoxicity across a number of human cancer cell lines such as SK-OV-3, NCI-H460, 

and DU-145.
34-36
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OXi6196, the 6-membered ring analog of KGP18, was first synthesized by the 

Pinney group in 2004 (Figure 1.5).
34,37

 Owing in part to a nearly identical structure to

KGP18, OXi6196 is also a highly active inhibitor of tubulin assembly.
34,37

 The

preliminary biological data for OXi6196 is promising, showing excellent inhibition of 

tubulin assembly and potent cytotoxicity against human cancer cell lines.
37 

Tumor Vasculature

Tumor-associated vasculature is an attractive therapeutic target due to its distinct 

differences from blood vessels feeding healthy tissue.
3,8,38-49

 Due to the rapid growth of

the tumor tissue in comparison to the cellular division rate of the endothelial cells of 

blood vessels, tumor-associated vasculature tends to be poorly formed.
3,8,38-49

 The tumor-

associated vasculature not only lacks the overall structure and organization of vasculature 

feeding healthy tissue, but also can be irregularly shaped with inconsistent vessel 

diameter and wall thickness. The vessels in tumors can feature blind ends, occlusions, 

and bulges (Figure 1.7).
3,8,38-49

 Inconsistent vessel wall thickness, leading to thin spots in

the walls, can cause increased interstitial pressure due to fluid permeability.
3,8,38-49

 Leaky

vessel walls are common due to the disjointed nature of the endothelial cells and luminal 

layer.
3,8,38-49

All of these conditions in addition to irregular branching among the vessels causes 

the blood flow in tumor-associated vasculature to be inconsistent, sometimes even 

flowing in opposing directions within a blood vessel.
3,8,38-49

 Poor blood flow in addition

to varying distances between tumor-associated vasculature leads to regions of 

pronounced hypoxia, as the vessel distance becomes greater than the diffusion distance of 

oxygen (Figure 1.8).
3,8,38-49

 Solid tumor microenvironments can also experience pH and
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catabolite gradients as well as reduced cell proliferation. Hypoxic regions can become 

more acidic in nature than standard tissue.
3,8,38-49

   

 

 

Figure 1.7. Microvascular Cast of Healthy Lung Tissue Versus Human Sigmoidal 

Adenocarcinoma [blind ends circled, abnormal bulges noted with arrows]  

as Seen Through Scanning Electron Microscopy
2,50 

 

 

 

Figure 1.8. Characterization Displaying the Difference Between Tumor Tissue Growing  

Around Standard Tumor Vasculature Versus Damaged Vasculature.
3
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Tumor Hypoxia 

Tumor heterogeneity, particularly due to hypoxia, poses a unique obstacle in the 

clinical management of neoplastic disease based on traditional interventions, provided 

divergent biological characteristics on which these are rationalized (Figure 1.9).
8,38-49

Hypoxia in tumors incites a number of biological responses, ranging from increased 

metastasis and partial arrest of DNA repair mechanisms to aberrant genomic regulation of 

pro-apoptotic signaling, leading to suppression of apoptosis and an initiation of 

autophagy.
8,38-49

 By convention, the underlying mechanisms traditional therapies are

targeted to cannot be relied on in normal solid tumor biology for comprehensive curative 

effects.
8,38-49

 Radiotherapy as well as a number of cytotoxic agents such as taxanes and

platinum-based agents have been shown to be less effective against hypoxic tissues and 

solid tumors.
8,38-49

 Since hypoxia diminishes traditional therapeutic efficacy, it has

become a tempting target for new anticancer agents and treatments.
8,38-49

Figure 1.9. Intrinsic Features of Tumor-Associated Vasculature and the Biological 

Consequences of Those Conditions.
3
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Hypoxia activated prodrugs (HAPs) / bioreductively activatable prodrug 

conjugates (BAPCs) are a promising therapeutic option for targeting tumor hypoxia.
8,38

 

HAPs and BAPCs utilize bioreductive initiation mechanisms through enzymatic activity, 

typically NADPH cytochrome P450 oxidoreductase (POR) and NAD(P)H dependent 

flavoproteins, activating selectively in low oxygen environments.
8,38

  

Ideally, HAPs and BAPCs have a number of requirements to ensure maximum 

effectiveness, from favored activation in low oxygen environments over normoxic 

conditions to cytotoxicity against non-proliferative cells in hypoxic regions and the 

capacity to diffuse to the low oxygen areas of the tumor while active.
8,38

 A number of 

HAPs and BAPCs have reached the point of clinical trials, including tirapazamine, TH-

302, PR-104, and AQ4N.
8,38

 Although several of the BAPCs have displayed promising 

results in Phase I and Phase II trials, no BAPC has yet made it past Phase III trials.
8,38

  

 

 

Figure 1.10. Reduction Pathway of Nitro to Amine for Bioreductively Activatable  

Prodrugs Via NADPH Cytochrome P450 Oxidoreductase
49

 

 

Tirapazamine 

Tirapazamine, an aromatic N-oxide synthesized by Zeman et al., was one of the 

trailblazers for the BAPC field.
8,51-57

 Activated by one electron reductases such as 

cytochrome P450 oxidoreductase, tirapazamine is first radicalized by POR, which splits 

into a hydroxyl radical and a benzotriazinyl radical (Figure 1.11).
8,54-57

 Both the hydroxyl 

radical and benzotriazinyl radical can oxidize DNA and damage the strand.
8,54-57
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If tirapazamine reacts with a two electron reductase, it will be reduced into the 

mono N-oxide, rendering it effectively non-toxic.
8
 Since this reduction pathway

eliminates the tirapazamine’s toxicity, it can be viewed as a bioprotective step in the 

body.
8
 Due to promising results in cell line testing, tirapazamine has been taken into

clinical trials.
8
 While Phase I and Phase II trials yielded positive results, multiple Phase

III trials showed little to no benefit or increased survival duration in several cell lines.
8

Figure 1.11. Bioreductive Activation of Tirapazamine
8 

TH-302, AQ4N, and PR-104 

TH-302, synthesized and tested by Threshold Pharmaceuticals, is a 2-

nitroimidazole based BAPC attached to DNA alkylating agent bromo-

isophosphoramide.
8,58,59

 The prodrug is activated by one electron reductases such as

cytochrome P450 reductase, reducing the nitro group on the nitroimidazole trigger to an 

amine (Figure 1.12).
8,58,59

The free electron pair on the amine can then push into the ring, causing an 

electron cascade that cleaves the trigger, releasing the active drug in the hypoxic regions 

of the tumor.
8,58,59

 Highly effective in in vitro studies and early in vivo studies in mice
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with HCR ratios as high as 600, TH-302 has been taken into Phase III clinical trials.
8,60-64

 

After showing promising results in Phase I and Phase II clinical trials, TH-302 was 

unsuccessful in a Phase III clinical trial, displaying no statistically significant anticancer 

activity against soft tissue sarcoma and pancreatic adenocarcinoma.
8,60-64

  

 

 

Figure 1.12. Bioreductive Trigger Release from TH-302
8 

 

AQ4N, synthesized by McKeown et. al., is an aliphatic N-oxide prodrug that 

upon enzymatic activation is converted to the topoisomerase II inhibitor AQ4.
8,65-75

 

AQ4N is first converted to the mono-N-oxide AQ4M via a two electron reduction.
8,65-75

 

A subsequent two electron reduction of AQ4M generates the active form AQ4 (Figure 

1.13).
8,65-75

 The activated drug AQ4 acts in the hypoxic regions by non-covalent binding 

to DNA, inhibiting topoisomerase activity as the cells attempt to replicate.
8,65-75

 In 

aerobic conditions, AQ4N also displays some anti-angiogenic properties, targeting 

endothelial cells.
8,65-75

  

In terms of its anti-angiogenic properties, the mechanism of action for the drug is 

currently unknown, although extensive microtubule network disruption was detected.
8,65-

75
 The drug is only active in hypoxic regions due to its inability to compete with oxygen 



13 

at the active site of cytochrome P450 reductase, preventing reduction in the normoxic 

regions of the body.
8,65-75

 AQ4N has progressed to Phase I and Phase II clinical trials, but

has not as of yet progressed to Phase III trials.
76-77

Figure 1.13. Bioreductive Activation of AQ4 from AQ4N
8

PR-104, synthesized and tested by Wilson et. al. at the University of Auckland is 

a nitroaromatic preprodrug of PR-104A, eventually reducing to its active form PR-

104M.
8,78-85

 PR-104 is first hydrolyzed by phosphatases to reveal prodrug PR-104A

(Figure 1.14).
8,78-85

 One and two electron reductases reduce PR-104A into the active form

PR-104M, which can then interact with DNA.
8,78-85

The cytotoxicity associated with PR-104M derives from its ability to form 

interstrand DNA crosslinks.
8,78-85

 PR-104 has been taken into Phase I and II clinical trials,

yielding promising results in a Phase I/II trial against leukemia.
8,86-87

 The prodrug has

some dose-limiting toxicity issues when paired with gemcitabine and docetaxel, possibly 

due to the glucuronidation of PR-104A that diminishes the clearance of the drug from the 

patient’s system.
8,86-87
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Figure 1.14. Bioreductive Activation of PR-104 to PR-104M
8 

 

CA4-BAPCs 

In an attempt to generate a cytotoxic hypoxia-selective VDA, CA4 was linked to 

nitrothiophene triggers by Davis and co-workers.
88,89

 Davis and coworkers synthesized 

nor-methyl, mono-methyl, and gem-dimethyl nitrothiophene triggers (Figure 1.15) and 

utilized the Mitsunobu reaction to covalently attach them to CA4.
88,89

 The gem-dimethyl 

CA4 prodrug proved to be the most active of the trio, maintaining the highest HCR 

values.
88

  

The gem-dimethyl trigger provided the greatest resistance to cleavage under 

normoxic conditions, keeping the CA4-BAPC prodrug intact while the nor-methyl and 

mono-methyl trigger CA4-BAPCs underwent partial cleavage under normoxic 

conditions.
88

 Also of note was the overall lack of activity of the CA4-gem-dimethyl 
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trigger prodrug in normoxic conditions, as the compound only became active under 

hypoxic conditions, displaying high selectivity for low-oxygen environments.
88

Figure 1.15. Nor-methyl, Mono-methyl, and Gem-dimethyl Nitrothienyl CA4-BAPCs
88 

Nitrothiophene Triggers 

The mechanism of cleavage for the nitrothiophene triggers is similar in nature to 

the cleavage of nitroimidazole triggers with a one electron reductase such as cytochrome 

P450 reductase reducing the nitro group on the trigger.
88,90-100

 Once the nitro has been

reduced, an electron cascade through the thiophene ring will lead to the trigger cleaving 

from CA4, releasing the active drug (Figure 1.16).
88

 Once released from the

nitrothiophene trigger, CA4 acts in hypoxic regions as a VDA, interacting with the 

colchicine binding site on tubulin, disrupting the microtubules in endothelial cells which 

leads to the collapse of the tumor vasculature.
88

Figure 1.16. Gem-dimethyl Nitrothienyl CA4-BAPC Trigger Cleavage
88
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For the research described herein, inspired by the BAPC tumor targeting strategy, 

we developed BAPCs for KGP18, Oxi6196, CA4, CA1, and phenstatin. The bioreductive 

triggers utilized in the BAPC synthesis varied from the nitrothiophene, nitroimidazole, 

nitrobenzyl, and nitrofuran. These four trigger sets were covalently linked to the 

anticancer agents through the use of the Mitsunobu reaction. The newly prepared CA4, 

CA1, KGP18, Oxi6196, and phenstatin BAPCs were evaluated under hypoxic and 

normoxic conditions in order to determine their differential from their respective base 

anticancer agent (collaboration with the Trawick Research Group, Baylor University). 
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Abstract 

A variety of solid tumor cancers contain significant regions of hypoxia, which 

provide unique challenges for targeting by potent anticancer agents. Bioreductively 

activatable prodrug conjugates (BAPCs) represent a promising strategy for therapeutic 

intervention. BAPCs are designed to be biologically inert until they come into contact 

with low oxygen tension, at which point reductase enzyme mediated cleavage releases 

the parent anticancer agent in a tumor-specific manner. Phenstatin is a potent inhibitor of 

tubulin polymerization, mimicking the chemical structure and biological activity of the 

natural product combretastatin A-4. Synthetic approaches have been established for 

nitrobenzyl, nitroimidazole, nitrofuranyl, and nitrothienyl prodrugs of phenstatin 
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incorporating nor-methyl, mono-methyl, and gem-dimethyl variants of the attached nitro 

compounds. A series of BAPCs based on phenstatin have been prepared by chemical 

synthesis and evaluated against the tubulin-microtubule protein system. In a preliminary 

study using anaerobic conditions, the gem-dimethyl nitrothiophene and gem-dimethyl 

nitrofuran analogues were shown to undergo efficient enzymatic cleavage in the presence 

of NADPH cytochrome P450 oxidoreductase. Each of the eleven BAPCs evaluated in 

this study demonstrated significantly reduced inhibitory activity against tubulin in 

comparison to the parent anticancer agent phenstatin (IC50 = 1.0 µM). In fact, the 

majority of the BAPCs (seven of the eleven analogs) were not inhibitors of tubulin 

polymerization (IC50 > 20 µM), which represents an anticipated (and desirable) attribute 

for these prodrugs, since they are intended to be biologically inactive prior to enzyme-

mediated cleavage to release phenstatin. 

 

Introduction 

Tumor-associated vasculature has emerged as a promising target for anticancer 

therapies due to its marked differences from vasculature feeding healthy tissue.
1-8,10,11

 

Vasculature associated with healthy tissue forms a well-organized delivery network for 

oxygen and nutrients to cells.
1-8,10,11

 In contrast, tumor-associated vasculature is forced to 

develop rapidly to meet the enhanced demand for significant amounts of nutrients and 

oxygen required by tumors.
1-8,10,11

  

The rapid growth of tumor-associated vasculature results in compromised 

structural integrity, which is characterized by weakened vessel walls, increased interstitial 

pressure, blind ends, and bulges.
1-8,10,11

 Tumor-associated vasculature is generated 

rapidly, leading to groups of vessels spaced far apart from each other, and this results in 
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regions of hypoxia that develop when this distance is greater than the diffusion distance 

of oxygen.
1-8,10,11

One promising therapeutic option for targeting tumor-associated vasculature 

involves treatment with vascular targeting agents (VTAs), which include angiogenesis-

inhibiting agents (AIAs) and vascular disrupting agents (VDAs).
1-8,10,11

 AIAs, which

represent a fairly well investigated therapeutic strategy, act by inhibiting angiogenesis, 

the formation of new tumor-associated vasculature, while leaving existing vessels 

intact.
4,12-13

Inhibition of angiogenesis limits tumor growth and also leads to increased blood 

flow in the remaining vasculature, allowing for increased delivery of chemotherapy and 

potentially enhanced tumor damage from radiotherapy to an otherwise difficult 

therapeutic target due to hypoxia.
4,12-13

 VDAs impact tumor vasculature from a

mechanistic approach that is distinct from AIAs. One subset of VDAs is comprised of 

small-molecule inhibitors of tubulin polymerization that target existing tumor-associated 

vasculature by causing rapid morphology changes (flat to round) of the endothelial cells 

lining these vessels.
1-8,10,11

 This leads to irreversible vessel damage and tumor necrosis.
1-

8,10,11

A representative clinically relevant small-molecule VDA that disrupts 

microtubule formation is the natural product combretastatin A-4 (CA4) (Figure 2.1). First 

isolated from the African bush willow tree Combretum caffrum Kuntze by the Pettit 

group, CA4 is a potent inhibitor of tubulin polymerization, functioning through a binding 

interaction at the colchicine site on tubulin.
20-23,30

 Its corresponding water-soluble

phosphate prodrug salt [combretastatin A-4P (CA4P)] has reached advanced clinical 
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trials
 
as a promising VDA.

14,15,24,27,31
 However, no small-molecule VDA has yet been

approved by the FDA. 

Figure 2.1. Colchicine, Phenstatin, and Combretastatin Natural Products and their 

Corresponding Phosphate Salts 

Phenstatin, originally synthesized by the Pettit group in 1998, is another potent 

inhibitor of tubulin polymerization with pronounced anticancer activity against human 

cancer cell lines (Figure 1).
28,33

 Phenstatin was discovered serendipitously by the Pettit

group during an attempt to prepare a CA4 analogue bearing an epoxide moiety as a 

replacement for the ethylene bridge.
33

 The ketone functionality of phenstatin was the

surprising result of a Jacobsen epoxidation reaction intended to form an epoxide from the 

corresponding olefin.
33

 Phenstatin mirrors the biological mechanism of action of CA4,

disrupting microtubule assembly through a binding interaction with the colchicine site on 

tubulin.
28

 Phenstatin and its corresponding water-soluble phosphate salt prodrug

counterpart demonstrate pronounced cytotoxicity against human cancer cell lines.
28

While hydroxyphenstatin, the diol analog of phenstatin, displays potent inhibition of 

tubulin polymerization, its diphosphate salt analog is less active against in vitro cancer 
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cell lines and as an inhibitor of tubulin polymerization than its phenstatin phosphate 

counterpart.
28

Solid tumors represent inherently challenging therapeutic targets due, in part, to 

the significant differences between vasculature feeding healthy tissue versus tumor-

associated vasculature, which is a contributing factor to the profound regions of hypoxia 

that often characterize tumors.
3,8,38-49

 A combination of blind ends, leaky vessel walls,

occlusions, and kinked vessels, along with the increased average distance between 

capillaries, leads to hypoxic regions where many common radiotherapies and 

chemotherapeutic options are less effective.
8,38-49

 The challenges
 
created by hypoxia and

large diffusion distances offer a unique opportunity for targeted therapeutic 

intervention.
8,38

 Bioreductively activatable prodrug conjugates (BAPCs) represent a

possible hypoxia-activated treatment method.
8,38

 BAPCs are designed to be activated by

reductase enzymes, such as NADPH cytochrome P450 oxidoreductase (POR) in regions 

of hypoxia in the tumor microenvironment, releasing a potent anticancer agent in a 

tumor-specific manner.
8,38

A series of BAPCs utilizing CA4 as the parent anticancer agent and incorporating 

nor-, mono-, and gem-dimethyl nitrothiophene triggers was reported in 2006 by Davis 

and co-workers.
88-89

 The CA4-BAPC bearing the gem-dimethyl nitrothiophene trigger

proved to be the most active of the trio, demonstrating the greatest resistance to cleavage 

under normoxic conditions in vitro, in effect displaying a high selectivity for low-oxygen 

tumor environments.
88

 While the nor-methyl nitrothiophene BAPC was only activated at

very low oxygen concentrations (<0.01% O2), the bioreductive triggers for mono-methyl 

and gem-dimethyl BAPCs were cleaved over a greater range of oxygen concentrations.
88
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The gem-dimethyl CA4-BAPC was significantly more effective in hypoxic environments 

in vitro compared to the nor- and mono-methyl CA4-BAPCs, releasing approximately 

50% CA4 at 0.5% O2 with the aid of POR.
88

The mechanism of cleavage (under hypoxia) for the nitrothiophene trigger begins 

with a one electron reductase such as POR reducing the nitro group on the trigger (Figure 

2.2).
88

 Once the nitro group on the trigger has been reduced, an electron cascade through

the thiophene ring leads to trigger detachment, releasing the active VDA (CA4 in this 

example).
88

 In comparison, under normal oxygen tension, the species obtained after the

initial one-electron reduction is simply re-oxidized (by molecular oxygen) and thus does 

not lead to cleavage.
88

Figure 2.2. Gem-dimethyl Nitrothienyl Trigger Release from CA4
88

Although no BAPC has yet been approved by the FDA, two BAPCs that have 

reached advanced clinical trials are TH-302 and PR-104. TH-302 (from Threshold 

Pharmaceuticals) is a 2-nitroimidazole based BAPC attached to the DNA alkylating agent 
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bromo-isophosphoramide (Figure 2.3).
59,101

 The prodrug is activated by one electron

reductases such as POR, reducing the nitro group on the nitroimidazole trigger in a 

similar mechanistic pathway to the nitrothienyl trigger cleavage.
8
 Highly effective in in

vitro studies and early in vivo studies in mice with hypoxia cytotoxicity ratios (HCR) as 

high as 600, TH-302 has advanced to Phase III clinical trials after successful Phase I and 

II studies, although the results of the first Phase III trial were not statistically 

significant.
60-62

 PR-104 (Figure 2.3), synthesized and biologically evaluated by Wilson et

al. at the University of Auckland, is a nitroaromatic preprodrug of PR-104A, eventually 

being reduced to the active forms PR104H and PR-104M.
8,78-80

 The cytotoxicity of PR-

104M derives from its ability to form interstrand DNA crosslinks.
8 

PR-104 was taken into

Phase I and II clinical trials, yielding promising results in Phase I trials but stalled at 

Phase II due to dose-limiting toxicity and overall efficacy issues.
8,86,87 

Figure 2.3. TH-302, PR104, PR104A, PR104H, and PR104M
8

Intrigued by the concept of targeting tumor hypoxia with BAPCs, a series of such 

prodrugs were prepared by chemical synthesis based on the unique tubulin-active 

anticancer agent, phenstatin. Utilizing a combination of synthetic pathways previously 

described in the literature along with our modifications designed to improve yield and 

reaction efficiency, a selected subset of nor-, mono-, and gem-dimethyl nitrothiophene, 
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nitrobenzyl, nitroimidazole, and nitrofuran triggers were synthesized and linked to 

phenstatin.
88,89

 Preliminary biological assessment of these phenstatin BAPCs evaluated 

their ability to inhibit tubulin polymerization, and a subset were evaluated for their 

suitability as substrates for enzymatic-mediated cleavage to release the parent anticancer 

agent, phenstatin. 

 

Results and Discussion 

While each of the phenstatin-based BAPCs represents a new chemical entity, 

phenstatin and the prodrug triggers were synthesized utilizing methodology previously 

described (Scheme 2.1).
33,102

 Isovanillin was protected as its corresponding tert-

butyldimethylsilyl ether, aldehyde 2. 
33,102

 Halogen-metal exchange of aryl bromide 3, 

followed by the introduction of aldehyde 2, afforded the secondary alcohol 4, which, 

upon oxidation, generated phenstatin precursor 5.
33,102

 Removal of the TBS protecting 

group yielded phenstatin 6.
33,102

  

 

 

Scheme 2.1. Synthesis of Phenstatin 6
33,102
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The nor-methyl nitrothiophene trigger 8 was generated in excellent yield through 

reduction of aldehyde 7, as reported by Davis et al. (Scheme 2.2).
88

 The Davis route to

the gem-dimethyl nitrothiophene trigger 11 proved less effective in our hands, generating 

the product but only in low yield. This motivated us to consider a modified synthetic 

methodology toward the gem-dimethyl trigger 11. Methylation conditions described by 

Reetz et al. provided an improved synthetic route that generated both mono- and gem-

dimethyl nitrothiophene triggers from aldehyde 7 in good yield.
103

 Mono-methyl trigger 9

was synthesized through methylation of aldehyde 7 with methyllithium and titanium 

tetrachloride.
103

 Oxidation with Dess-Martin periodinane (DMP) generated ketone 10 in

high yield, and further methylation of ketone 10 furnished the gem-dimethyl trigger 11 

(Scheme 2.2).
103,104

 Further investigation determined that trimethyl aluminum was a more

effective methylating agent for the conversion of aldehyde 7 and ketone 10 to their 

corresponding mono- and gem- triggers 9 and 11, respectively, in comparison to the 

methyllithium / titanium tetrachloride method (see Supplementary data). 

Scheme 2.2. Synthesis of Nitrothiophene Triggers
88,103,104 

A Mitsunobu reaction was utilized to conjugate the bioreductive triggers to 

phenstatin to generate the requisite BAPCs (Scheme 2.3).
88,102,105,106

 Depending on the
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reactivity of the bioreductive triggers involved in each reaction, a combination of either 

diethyl azodicarboxylate (DEAD), diisopropyl azodicarboxylate (DIAD), or 1,1’-

(azodicarbonyl)dipiperidine (ADDP) and triphenylphosphine or tributylphosphine were 

employed to generate the ether linkage.
88,105,106

 Synthesis of the phenstatin nor-methyl

nitrothiophene BAPC 12 and its corresponding mono-methyl BAPC 13 involved the 

reaction of phenstatin with nitrothiophene 8 (or 9), DIAD, and triphenylphosphine.
88,102

The phenstatin gem-dimethyl BAPC 14 was synthesized in a Mitsunobu reaction utilizing 

ADDP, tributylphosphine, phenstatin, and nitrothiophene trigger 11.
88,102

Scheme 2.3. Synthesis of the Phenstatin Nitrothiophene BAPCs
88,102,105,106

The phenstatin nitrobenzyl BAPCs were synthesized in a similar fashion to the 

phenstatin nitrothiophene BAPCs, utilizing a Mitsunobu reaction to generate the critical 

ether linkage (Scheme A.1, Appendix A).
88,102,105,106

 Synthesis of the nor-methyl

nitrobenzyl BAPC 20 and the mono-methyl nitrobenzyl BAPC 21 was achieved through 

the reaction of phenstatin, DIAD, and triphenylphosphine, with the appropriate trigger (4-

nitrobenzyl alcohol 19 and mono-methyl trigger 16, respectively).
88,102

 A reaction of

tributylphosphine, ADDP, phenstatin, and the gem-dimethyl nitrobenzyl trigger 18 

furnished the gem-dimethyl nitrobenzyl BAPC 22.
88,102

  The synthetic route reported by
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Reetz and co-workers was utilized for the synthesis of the nitrobenzyl triggers 16 and 18 

(Scheme A.2, Appendix A).
103

The nitroimidazole phenstatin BAPCs (Scheme A.3, Appendix A) were generated 

through a  Mitsunobu reaction analogous to the chemistry described previously for the 

nitrobenzyl and nitrothiophene BAPCs.
88,102,105,106

 The nor-methyl nitroimidazole BAPC

31 was synthesized utilizing a Mitsunobu reaction with phenstatin, DIAD, 

triphenylphosphine, and nitroimidazole 28.
88,102

 Triphenylphosphine, DIAD, phenstatin,

and nitroimidazole 30 reacted to yield the mono-methyl nitroimidazole BAPC 32.
88,102

The synthesis of the nitroimidazole triggers followed a route developed by Conway et al. 

(Scheme A.4, Appendix A).
104,107,108

 Despite several attempts directed towards

methylation of the nitroimidazole ketone, the gem-dimethyl nitroimidazole trigger was 

not successfully synthesized in our hands (Scheme A.5, Appendix A).
103,104,55-63

The synthetic route for the nitrofuran bioreductive triggers (Scheme 2.4) was 

based on the new route to the nitrothiophene triggers shown in Scheme 2.2.
88,103,104,108

The nor-methyl nitrofuran trigger 34 was generated through the reduction of aldehyde 

33.
88

Aldehyde 33 was methylated to yield mono-methyl nitrofuran trigger 35.
103,104

 The

synthesis of the gem-dimethyl nitrofuran trigger 37 was achieved in high yield by 

oxidation of mono-methyl trigger 35 to its corresponding ketone 36, followed by 

methylation to generate the gem-dimethyl nitrofuran trigger 37.
103,104
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Scheme 2.4. Synthesis of the Nitrofuran Triggers
88,103,104,108 

    

Mitsunobu chemistry was once again employed to form the requisite ether linkage 

between the nitrofuran triggers and phenstatin, generating the nitrofuran BAPCs (Scheme 

2.5).
88,102,107,108

 The nor-methyl nitrofuran BAPC 38 and the mono-methyl nitrofuran 

BAPC 39 were generated through the reaction of phenstatin, DIAD, and 

triphenylphosphine with the appropriate trigger (nor-methyl nitrofuran 34 and mono-

methyl nitrofuran 35, respectively).
88,102

 The gem-dimethyl nitrofuran BAPC 40 was 

likewise synthesized via a Mitsunobu reaction with nitrofuran 37.
88,102

  

 

 

Scheme 2.5. Synthesis of the Phenstatin Nitrofuran BAPCs
88,102,107,108 
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Figure 2.4. Phenstatin BAPCs Prepared by Chemical Synthesis 

Biological Evaluation 

The phenstatin BAPCs (Figure 2.4), as well as phenstatin, were evaluated for their 

ability to inhibit tubulin polymerization and compete for the colchicine binding site 

(Table 2.1). In addition to the mono-methyl nitrothiophene BAPC 13 and the gem-

dimethyl nitrofuran BAPC 40, the entire nitrobenzyl series (20,21,22) and the 

nitroimidazole series (31,32) all proved to be inactive (IC50 >20 µM) as inhibitors of 

tubulin polymerization. This is an important and desirable attribute for these phenstatin-

based BAPCs, since they are designed to be biologically inactive until enzyme-mediated 

prodrug cleavage releases the active anticancer agent (phenstatin), which itself is a potent 

inhibitor of tubulin polymerization (IC50 = 1.0 µM). 

The other four BAPCs (12, 14, 38, 39) evaluated in this study demonstrated 

significantly reduced (IC50 range of 9-16 µM) inhibition of tubulin polymerization, in 

comparison to phenstatin. The limited activity of these four BAPCs might be attributed to 

partial trigger cleavage under the assay conditions, leading to generation of the tubulin-

active parent anticancer agent phenstatin. This hypothesis of partial cleavage has not been 

confirmed or further investigated to date. 
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Based on the pioneering work by Davis and co-workers with CA4-BAPCs, which 

demonstrated the potency of the gem-dimethyl variant (in comparison to the 

corresponding nor- and mono-methyl analogues), the three phenstatin-based gem-

dimethyl BAPCs prepared in this study were subjected to further initial evaluation. A 

stability study carried out in pH 7.4 potassium phosphate buffer solution on the three 

gem-dimethyl trigger BAPCs (14, 22, 40) demonstrated promising results, with each 

BAPC remaining structurally intact over a 24 h period with no observable (by HPLC 

analysis) cleavage or degradation. These same three BAPCs (14, 22, 40) were treated (in 

separate experiments) with NADPH cytochrome P450 oxidoreductase (POR) to evaluate 

them as substrates for this enzyme under anoxic conditions. 

The gem-dimethyl furan and thiophene compounds (14 and 40, respectively) were 

fully cleaved over the course of 24 h, while, interestingly, the gem-dimethyl benzyl 

compound 22 did not undergo cleavage in the 24 h assay (Table 2.2). The reduction 

potential for the nitrobenzyl trigger is less than the reduction potential (less electron-

philic) than that of the nitrofuran, nitroimidazole, and nitrothiophene triggers, possibly 

explaining its resistance to cleavage by POR under these assay conditions.
108 
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Table 2.1.  

Inhibition of Tubulin Polymerization  

and Percent Inhibition of Colchicine Binding 

Compd Inhibition of 

Tubulin 

Assembly IC50 

Inhibition of 

Colchicine Binding 

% Inhibition μM 

±SD 

(μM)±SD 5 μM 

42 

CA4 

0.73 ± 0.04 98 ± 0.1 

6 

Phenstatin

1.0 ± 0.2
a

85 ± 2 

12 16 ± 0.6 19 ± 2 

13 >20 15 ± 0.09 

14 9.0 ± 1 16 ± 3 

20 >20 11 ± 4 

21 >20 5.8 ± 5 

22 >20 8.8 ± 5 

31 >20 7.1 ± 0.01 

32 >20 11 ± 5 

38 15 ± 1 17 ± 0.01 

39 12 ± 0.5 16 ± 3 

40 >20 13 ± 5 
a
data from reference 23 

Table 2.2  

Bioreductive Trigger Hydrolysis (Untreated) 

and Cleavage of POR-Treated BAPCs 

Compd Hydrolysis 

Percentage in pH 7.4 

Phosphate Buffer for 

24 h 

Cleavage Percentage 

of POR-treated for 24 

h
a

14 0 100 

22 0 0 

40 0 100 
a
anoxic conditions 
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In conclusion, a series of eleven promising phenstatin-based BAPCs were 

prepared by chemical synthesis and had little to on activity as inhibitors of tubulin 

assembly or binding of colchicine to tubulin, in comparison to the parent anticancer agent 

phenstatin, a potent tubulin inhibitor. In preliminary studies, the three phenstatin-based 

gem-dimethyl BAPCs (14, 22, 40) demonstrated aqueous solution stability (over 24 h), 

and two of the BAPCs (14, 40) were suitable substrates for POR. These BAPCs have the 

potential to be therapeutic agents that target hypoxic tumor cells. 

Experimental Section 

Chemistry 

General Materials and Methods.
109,110

 CH2Cl2 and tetrahydrofuran (THF) were

used in their anhydrous forms, as obtained from the chemical suppliers. Reactions were 

performed under an inert atmosphere using N2. Thin-layer chromatography (TLC) plates 

(precoated glass plates with silica gel 60 F254, 0.25 mm thickness) were used to monitor 

reactions. Purification of intermediates and products was carried out with a flash 

purification system using silica gel (200-400 mesh, 60 Å) or RP-18 prepacked columns. 

Intermediates and products synthesized were characterized on the basis of their 
1
H NMR

(500 MHz) and 
13

C NMR (125 MHz) spectroscopic data. TMS was used as an internal

standard for spectra recorded in CDCl3. All the chemical shifts are expressed in ppm (δ), 

coupling constants (J) are presented in Hz, and peak patterns are reported as broad (br), 

singlet (s), doublet (d), doublet of doublets (dd) triplet (t), quartet (q), septet (sept), and 

multiplet (m). HRESIMS were obtained using positive or negative electrospray ionization 

(ESI) techniques using a Thermo Scientific LTQ OrbitrapDiscovery instrument. Purity of 
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the final compounds was further analyzed at 25 °C using an Agilent 1200 HPLC system 

with a diode-array detector (λ = 190-400 nm), a Zorbax XDB-C18 HPLC column (4.6 

mm x 150 mm, 5 μm), and a Zorbax reliance cartridge guard-column. Flow rate 1.0 

mL/min; injection volume 20 μL; monitored at 254 nm, 300 nm, 320 nm. Two different 

HPLC gradients were used for purity analysis; Method A: water/acetonitrile, gradient 

10:90 to 90:10 from 0 to 25 min and isocratic 90:10 from 25 to 30 min; Method B: 

water/acetonitrile, gradient 50:50 to 90:10 from 0 to 25 min and isocratic 90:10 from 25 

to 30 min (note: 4-dimethylaminopyridine is abbreviated DMAP, ethyl acetate is 

abbreviated EtOAc, N,N-dimethylformamide is abbreviated DMF, chloroform-d is 

abbreviated CDCl3] 

3-((tert-Butyldimethylsilyl)oxy)-4-methoxybenzaldehyde (2):
102

 Isovanillin (2.01 g,

13.2 mmol), triethylamine (4.00 mL, 28.5 mmol), and DMAP (0.045 g, 0.37 mmol) were 

dissolved in dry CH2Cl2 (60 mL). tert-Butyldimethylsilyl chloride (2.214 g, 14.7 mmol) 

was added to the reaction mixture, which was stirred for 12 h. The reaction was quenched 

with water, extracted with diethyl ether (Et2O), which was washed with water and brine, 

dried with Na2SO4, and evaporated under reduced pressure. Flash chromatography of the 

crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent 

B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B  27% A/73% B (10 CV), 

27% A/73% B over (2 CV); flow rate 40.0 mL/min; monitored at 254 and 280 nm] 

yielded 3-((tert-butyldimethylsilyl)oxy)-4-methoxybenzaldehyde (2) (3.17 g, 11.9 mmol, 

90%) as a yellow oil. 
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1
H NMR (500 MHz, CDCl3) δ 9.82 (1H, s), 7.49 (1H, dd, J = 8.5 Hz, J = 2 Hz), 7.37 

(1H, d, J = 2 Hz), 6.96 (1H, d, J = 8.5 Hz), 3.90 (3H, s), 1.00 (9H, s), 0.17 (6H, s).  

13
C NMR (125 MHz, CDCl3) δ 190.9, 156.6, 145.3, 130.2, 126.3, 120.0, 111.1, 55.6, 

25.6, 18.4, -4.6.  

(3-((tert-Butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5-

trimethoxyphenyl)methanol (4):
102

 1-Bromo-3,4,5-trimethoxybenzene (1.81 g, 7.31 

mmol) was dissolved in dry THF (60 mL) in a dry ice/acetone bath (-78 °C). n-

Butyllithium (2.8 mL, 7.0 mmol, 2.5 M) was added dropwise to the reaction mixture, 

which was stirred for 30 min. 3-((tert-Butyldimethylsilyl)oxy)-4-methoxybenzaldehyde 

(2.00 g, 7.50 mmol) dissolved in dry THF (20 mL) was added dropwise, and the reaction 

mixture was stirred for 5 h. The reaction was quenched with water, acidified to pH 7 with 

3 M HCl, extracted with Et2O, washed with water and brine, dried with Na2SO4, and 

evaporated under reduced pressure. Flash chromatography of the crude product using a 

prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 

10% A/90% B (1 CV), 10% A/90% B  80% A/20% B (10 CV), 80% A/20% B over (2 

CV); flow rate 40.0 mL/min; monitored at 254 and 280 nm] yielded (3-((tert-

butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5-trimethoxyphenyl)methanol (4) (2.02 g, 

4.65 mmol, 62%) as a pale yellow oil.  

1
H NMR (500 MHz, CDCl3)  δ 6.89 (2H, m), 6.80 (1H, d, J = 8.5 Hz), 6.57 (2H, d, J = 

4.5 Hz), 5.24 (1H, d, J = 4.5 Hz), 3.81 (3H, s), 3.77 (9H, s), 0.94 (9H, d, J = 3.5 Hz), 0.11 

(6H, d, J = 2.5 Hz).  
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13
C NMR (125 MHz, CDCl3) δ 153.0, 150.3, 144.7, 140.0, 136.5, 119.9, 119.4, 111.8, 

103.4, 75.5, 60.7, 55.9, 55.5, 25.7, 18.4, -4.6. 

(3-((tert-Butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5-

trimethoxyphenyl)methanone (5):
102

(3-((tert-Butyldimethylsilyl)oxy)-4-

methoxyphenyl)(3,4,5-trimethoxyphenyl)methanol (3.00 g, 6.90 mmol), Celite (2.45 g), 

and potassium carbonate [K2CO3] (2.46 g, 17.8 mmol) were dissolved in dry CH2Cl2 (130 

mL) in an ice bath (0 °C). Pyridinium chlorochromate [PCC] (1.52 g, 7.04 mmol) was 

added in small increments and the reaction mixture was stirred for 18 h. The reaction 

mixture was filtered with CH2Cl2 in a frit funnel containing a 50/50 mixture of Celite and 

silica gel and then evaporated under reduced pressure. Flash chromatography of the crude 

product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, 

hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B  45% A/55% B (10 CV), 45% 

A/55% B (2 CV); flow rate 40.0 mL/min; monitored at 254 and 280 nm] yielded (3-

((tert-butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone (5) 

(1.79 g, 4.14 mmol, 60%) as a yellow oil. 

1
H NMR (500 MHz, CDCl3)  δ 7.40 (1H, d, J = 8 Hz), 7.33 (1H, s), 6.99 (2H, s), 6.87 

(1H, d, J = 8.5 Hz), 3.88 (3H, s), 3.84 (3H, s), 3,83 (6H, s), 0.96 (9H, s), 0.14 (6H, s). 

13
C NMR (125 MHz, CDCl3) δ 194.5, 154.9, 152.7, 144.6, 141.5, 133.3, 130.4, 125.3, 

122.3, 110.7, 107.4, 60.9, 56.2, 55.5, 25.6, 18.4, -4.6. 

Phenstatin (6):
102

 (3-((tert-Butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5-

trimethoxyphenyl)methanone (3.59 g, 8.31 mmol) was dissolved in dry THF (100 mL). 

Tetrabutylammonium fluoride trihydrate (3.93 g, 12.5 mmol) was added, and the reaction 
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mixture was stirred for 18 h. The reaction was quenched with water, acidified to pH 7 

with 3 M HCl, and extracted with EtOAc, which was dried with Na2SO4, and evaporated 

under reduced pressure. Flash chromatography of the crude product using a prepacked 

100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 12% 

A/88% B over 1.19 min (1 CV), 12% A/88% B  99% A/1% B over 13.12 min (10 CV), 

99% A/1% B over 2.38 min (2 CV); flow rate 40.0 mL/min; monitored at 254 and 280 

nm] yielded phenstatin (6) (2.06 g, 6.47 mmol, 78%) as a white solid.  

1
H NMR (500 MHz, CDCl3) δ 7.42 (1H, s), 7.37 (1H, d, J = 8.5 Hz). 7.01 (2H, s), 6.90 

(1H, d, J = 8 Hz), 3.94 (3H, s), 3.90 (3H, s), 3.85 (6H, s).  

13
C NMR (125 MHz, CDCl3) δ 194.7, 152.8, 150.2, 145.3, 141.6, 133.1, 131.0, 123.7, 

116.2, 109.7, 107.5, 61.0, 56.3, 56.1.   

HRMS [M+Na]
+
: 341.0997 (calcd for [C17H18O6Na]

+
, 341.1103).  

HPLC retention time (Method A): 15.35 min. 

(5-Nitrothiophen-2-yl)methanol (8):
88 

5-Nitrothiophene-2-carboxaldehyde (1.00 g, 6.38 

mmol) was dissolved in dry methanol (20 mL) in an ice bath (0 °C). NaBH4 (0.270 g, 

7.14 mmol) was added, and the reaction mixture was stirred for 2 h. Ice was added and 

the solution was acidified to pH 7 with 3 M HCl. The reaction mixture was extracted with 

EtOAc, dried with Na2SO4, and evaporated under reduced pressure. Flash 

chromatography of the crude product using a prepacked 50 g silica column [eluents: 

solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B  

65% A/35% B (10 CV), 65% A/35% B (2 CV); flow rate 50.0 mL/min; monitored at 254 

and 280 nm] yielded alcohol 8 (0.914 g, 5.74 mmol, 90%) as a brown oil. 
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1
H NMR (500 MHz, CDCl3) δ 7.84 (1H, d, J = 4.1 Hz), 6.95 (1H, dt, J = 4.1, 1.0 Hz), 

4.90 (2H, d, J = 5.2 Hz), 2.15 (1H, t, J = 5.8 Hz).

13
C NMR (126 MHz, CDCl3) δ 154.0, 150.6, 129.0, 123.5, 60.2. 

1-(5-Nitrothiophen-2-yl)ethan-1-ol (9):
103

 TiCl4 (7.84 g, 41.3 mmol) was added slowly

dropwise into Et2O (80 mL) at -78 °C, after which methyllithium (1.6 M, 25.8 mL, 41 

mmol) was added drop-wise, and the reaction mixture was stirred for 1.5 h. 5-Nitro-2-

thiophenecarboxaldehyde (5.00g, 31.8 mmol) was dissolved in Et2O (120 mL) and added 

dropwise to the reaction mixture, which was stirred (12 h). H2O (50 mL) was used to 

quench the reaction. The layers were partitioned, and the residue was extracted with 

EtOAc (6 × 40 mL). The combined extracts were washed with brine, dried over Na2SO4, 

filtered, and concentrated under reduced pressure. The crude product was purified by 

flash column chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; 

solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B → 73%A / 27%B 

(13 CV), 73%A / 27%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] 

affording alcohol 9 (4.95 g, 28.6 mmol, 90%) as a dark brown oil. 

1
H NMR (600 MHz, CDCl3) δ 7.82 (1H, d, J = 4.2 Hz), 6.91 (1H, dd, J = 4.2, 1.0 Hz), 

5.14 (1H, qd, J = 6.4, 1.0 Hz), 2.14 (1H, s), 1.64 (3H, d, J = 6.5 Hz).

13
C NMR (125 MHz, CDCl3) δ 160.0, 149.9, 129.1, 122.2, 66.3, 25.1. 

1-(5-Nitrothiophen-2-yl)ethan-1-ol (9) [Alternate Route]: 5-Nitro-2-

thiophenecarboxaldehyde (1.00 g, 6.36 mmol) was dissolved in CH2Cl2 (50 mL) at 0 °C. 

Trimethylaluminum (2 M, 5.30 mL, 10.6 mmol) was added dropwise, and the reaction 

mixture was stirred for 2 h. The reaction was quenched with HCl (1 M, 40 mL) and the 
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layers were partitioned. The residue was extracted with CH2Cl2 (3 x 30 mL), and the 

combined organic phase was washed with brine (40 mL), dried over Na2SO4, and 

evaporated under reduced pressure. The crude product was purified by flash column 

chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B → 70%A / 30%B (13 CV), 

70%A / 30%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] affording 

alcohol 11 (1.01 g, 5.85 mmol, 92%) as yellow-orange crystals. 

1-(5-Nitrothiophen-2-yl)ethan-1-one (10): 2-(1-Hydroxyethyl)-5-nitrothiophene (1.04 

g, 6.00 mmol) was dissolved in 70 mL CH2Cl2 at rt. Dess-Martin periodinane (3.82 g, 

9.00mmol) was added in portions to the solution, and the reaction mixture was stirred (1 

h). Saturated solutions of sodium thiosulfate (50 mL) and NaHCO3 (50 mL) were used to 

quench the reaction mixture. The layers were partitioned, and the residue was extracted 

with EtOAc (4 x 30 mL). The combined extracts were washed with brine, dried over 

Na2SO4, filtered, and concentrated under reduced pressure. The crude product was 

purified by flash chromatography using a pre-packed 100 g silica column [solvent A: 

EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B → 80%A / 

20%B (13 CV), 80%A / 20%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 

nm] affording ketone 10 (0.873 g, 5.10 mmol, 90%) as yellow-orange crystals.  

1
H NMR (600 MHz, CDCl3) δ 7.89 (1H, d, J=4.3 Hz), 7.58 (1H, d, J=4.3 Hz), 2.60 (3H, 

s).  

13
C NMR (151 MHz, CDCl3) δ 190.35, 156.47, 148.16, 130.06, 128.28, 26.61. 
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2-(5-Nitrothiophen-2-yl)propan-2-ol (11):
103 

TiCl4 (3.62 g, 19.1 mmol) was slowly

added dropwise into Et2O (80 mL) at -78 °C, after which methyllithium (1.6 M, 11.9 mL, 

19 mmol) was added dropwise, and the reaction mixture was stirred for 1.5 h. 2-Acetyl-5-

nitrothiophene (2.50 g, 14.7 mmol) was dissolved in Et2O (140 mL) and added dropwise 

to the reaction mixture,  which was stirred (12 h). H2O (50 mL) was used to quench the 

reaction mixture. The layers were partitioned, and the residue was extracted with 

EtOAc (6 × 40 mL). The combined extracts were washed with brine, dried over Na2SO4, 

filtered, and concentrated under reduced pressure. The crude product was purified by 

flash column chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; 

solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B → 70%A / 30%B 

(13 CV), 70%A / 30%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] 

affording alcohol 11 (1.61 g, 8.60 mmol, 45%) as a dark orange oil. 

1
H NMR (600 MHz, CDCl3) δ 7.80 (1H, d, J = 4.2 Hz), 6.89 (1H, d, J = 4.2 Hz), 1.69 

(6H, s). 

13
C NMR (151 MHz, CDCl3) δ 163.46, 150.04, 128.76, 121.26, 71.92, 32.08. 

2-(5-Nitrothiophen-2-yl)propan-2-ol (11) [Alternate Route]: 2-Acetyl-5-

nitrothiophene (0.500 g, 2.92 mmol) was dissolved in CH2Cl2 (20 mL) at 0 °C. 

Trimethylaluminum (2 M, 2.42 mL, 4.85 mmol) was added dropwise, and the reaction 

mixture was stirred for 2 h. The reaction was quenched with HCl (1 M, 30 mL), and the 

layers were partitioned. The residue was extracted with CH2Cl2 (3 x 20 mL), and the 

combined organic extracts were washed with brine (20 mL), dried over Na2SO4, and 

evaporated under reduced pressure. The crude product was purified by flash column 
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chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B → 70%A / 30%B (13 CV), 

70%A / 30%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] affording 

alcohol 11 (0.365 g, 2.13 mmol, 73%) as bright orange crystals. 

(4-Methoxy-3-((5-nitrothiophen-2-yl)methoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (12):
88,102

 Phenstatin (0.405 g, 1.27 mmol), DIAD (0.289 

g, 1.43 mmol), and (5-nitrothiophen-2-yl)methanol (0.454 g, 2.85 mmol) were dissolved 

in dry CH2Cl2 (40 mL). Triphenylphosphine (0.574 g, 2.19 mmol) was added, and the 

reaction mixture was stirred for 2 d. The reaction was quenched with water (30 mL) and 

extracted with EtOAc (3 x 30 mL), which was dried with Na2SO4 and evaporated under 

reduced pressure. Flash chromatography of the crude product using a prepacked 50 g 

silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 17% A/83% B (1 

CV), 17% A/83% B  100% A/0% B (10 CV), 100% A/0% B (2 CV); flow rate 35.0 

mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-((5-nitrothiophen-2-

yl)methoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (12) (0.198 g, 0.431 mmol, 34%) 

as a brown solid.  

1
H NMR (500 MHz, CDCl3)  δ 7.83 (1H, d, J = 4.5 Hz), 7.51 (1H, d, J = 1.5 Hz), 7.49 

(1H, dd, J = 8 Hz, J = 1.5 Hz), 7.06 (1H, d, J = 4.5), 6.99 (2H, s), 6.97 (1H, d, J = 8.5 

Hz), 5.33 (2H, s), 3.98 (3H, s), 3.93 (3H, s), 3.87 (6H, s).  

13
C NMR (125 MHz, CDCl3) δ 194.3, 153.7, 152.8, 147.7, 146.9, 141.7, 133.0, 130.2, 

128.4, 126.6, 125.2, 115.5, 110.6, 107.4, 66.3, 61.0, 56.3, 56.2.  

HRMS [M+Na]
+
: 482.0880 (calcd for [C22H21NNaO8S]

+
, 482.0880).  
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HPLC retention time (Method B): 9.10 min. 

(4-Methoxy-3-(1-(5-nitrothiophen-2-yl)ethoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (13):
88,102

 Phenstatin (0.407 g, 1.28 mmol), DIAD (0.294

g, 1.45 mmol), and 1-(5-nitrothiophen-2-yl)ethanol (0.505 g, 2.92 mmol) were dissolved 

in dry CH2Cl2 (40 mL). Triphenylphosphine (0.558 g, 2.13 mmol) was added, and the 

reaction mixture was stirred for 2 d. The reaction was quenched with water and extracted 

with EtOAc, which was dried with Na2SO4 and evaporated under reduced pressure. Flash 

chromatography of the crude product using a prepacked 25 g silica column [eluents: 

solvent A, EtOAc; solvent B, hexanes; gradient, 15% A/85% B (1 CV), 15% A/85% B  

100% A/0% B (10 CV), 100% A/0% B (2 CV); flow rate 20.0 mL/min; monitored at 254 

and 280 nm] yielded (4-methoxy-3-(1-(5-nitrothiophen-2-yl)ethoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (13) (0.179 g, 0.378 mmol, 30%) as a tan yellow solid. 

1
H NMR (500 MHz, CDCl3) δ 7.77 (1H, d, J = 4.2 Hz), 7.48 (1H, dd, J = 8.4, 2.0 Hz), 

7.45 (1H, d, J = 2.0 Hz), 6.99 – 6.92 (4H, m), 5.60 (1H, q, J = 6.4 Hz), 3.96 (3H, s), 3.91 

(3H, s), 3.84 (6H, s), 1.77 (3H, d, J = 6.4 Hz). 

13
C NMR (125 MHz, CDCl3) δ 194.2, 154.8, 154.4, 152.8, 151.0, 145.9, 141.7, 133.0, 

130.2, 128.4, 126.8, 123.4, 118.4, 110.9, 107.4, 73.6, 61.0, 56.3, 56.1, 23.2. 

HRMS [M+Na]
+
: 496.1038 (calcd for [C23H23NNaO8S]

+
, 496.1037).

HPLC retention time (Method B): 10.33 min. 

 (4-Methoxy-3-((2-(5-nitrothiophen-2-yl)propan-2-yl)oxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (14):
88,102

 Phenstatin (0.581 g, 1.83 mmol), ADDP (0.597
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g, 2.38 mmol), and 2-(5-nitrothiophen-2-yl)propan-2-ol (0.410 g, 2.19 mmol) were 

dissolved in dry CH2Cl2 (80 mL). Tributylphosphine (0.752 mL, 3.06 mmol) was added 

dropwise, and the reaction mixture was stirred for 2 d. The reaction mixture was dried 

under reduced pressure. Flash chromatography of the crude product using a prepacked 25 

g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B 

(1 CV), 10% A/90% B  80% A/20% B (10 CV), 80% A/20% B (2 CV); flow rate 50.0 

mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-((2-(5-nitrothiophen-2-

yl)propan-2-yl)oxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (14) (0.062 g, 0.128 

mmol, 7%) as an orange gum.  

1
H NMR (600 MHz, acetone-d6) δ 7.93 (1H, d, J = 4.3 Hz), 7.67 (1H, dd, J = 8.5, 2.2 

Hz), 7.41 (1H, d, J = 2.1 Hz), 7.22 (1H, d, J = 8.5 Hz), 7.19 (1H, d, J = 4.3 Hz), 7.02 (2H, 

s), 3.95 (3H, s), 3.87 (6H, s), 3.84 (3H, s), 1.79 (6H, s).  

13
C NMR (151 MHz, acetone-d6) δ 192.94, 161.01, 157.41, 153.10, 150.43, 142.93, 

141.89, 133.12, 129.98, 128.83, 127.80, 125.38, 123.07, 111.83, 107.31, 80.82, 59.80, 

55.74, 55.44, 28.16.  

HRMS [M+Na]
+
: 510.1190 (calcd for [C24H25NNaO8S]

+
, 510.1193).  

HPLC retention time (Method B): 11.49 min. 

1-(4-Nitrophenyl)ethan-1-ol (16):
103

  TiCl4 (2.72 mL, 24.8 mmol) was added dropwise 

slowly to dry Et2O (100 mL) in an acetone / dry ice bath (-78 °C). Methyllithium (15.5 

mL, 25 mmol, 1.6 M) was then added dropwise slowly to the reaction mixture which was 

stirred for 1.5 h. 4-Nitrobenzaldehyde (2.88g, 19.1 mmol) dissolved in Et2O (140 mL) 

was added dropwise to the reaction mixture, which was stirred for 18 h. The reaction was 
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quenched with water and extracted with CH2Cl2 (3 x 50 mL), which was washed with 

water and brine and dried over Na2SO4, and evaporated under reduced pressure. Flash 

chromatography of the crude product using a prepacked 100 g silica column [eluents: 

solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B  

80% A/20% B over (10 CV), 80% A/20% B (2 CV); flow rate 100.0 mL/min; monitored 

at 254 and 280 nm] yielded 1-(4-nitrophenyl)ethan-1-ol (16) (2.49 g, 14.9 mmol, 78%) as 

a yellow-orange oil. 

1
H NMR (600 MHz, CDCl3) δ 8.17 (2H, d, J = 8.7 Hz), 7.53 (2H, d, J = 8.6 Hz), 5.01 

(1H, q, J = 6.5 Hz), 1.51 (3H, d, J = 6.6 Hz). 

13
C NMR (151 MHz, CDCl3) δ 153.22, 147.09, 126.13, 123.71, 69.43, 25.44. 

2-(4-Nitrophenyl)propan-2-ol (18):
103

TiCl4 (3.02 mL, 27.6 mmol) was added 

dropwise slowly to dry Et2O (100 mL) in an acetone / dry ice bath (-78 °C). 

Methyllithium (17.2 mL, 28 mmol, 1.6 M) was then added dropwise slowly to the 

reaction mixture, which was stirred for 1.5 h. 4-Nitroacetophenone (3.50g, 21.2 mmol) 

dissolved in Et2O (150 mL) was added dropwise to the reaction mixture, which was 

stirred for 18 h. The reaction was quenched with water, and the mixture was extracted 

with CH2Cl2 (3 x 50 mL), which was washed with water and brine, dried over Na2SO4, 

and evaporated under reduced pressure. Flash chromatography of the crude product using 

a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; 

gradient, 10% A/90% B (1 CV), 10% A/90% B  60% A/40% B (10 CV), 60% A/40% 

B (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded 2-(4-

nitrophenyl)propan-2-ol (18) (1.42 g, 7.84 mmol, 37%) as an orange oil. 
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1
H NMR (600 MHz, CDCl3) δ 8.16 (2H, d, J = 8.9 Hz), 7.65 (2H, d, J = 8.9 Hz), 1.61 

(7H, s).  

13
C NMR (151 MHz, CDCl3) δ 156.52, 146.64, 125.51, 123.45, 72.49, 31.69. 

(4-methoxy-3-((4-nitrobenzyl)oxy)phenyl)(3,4,5-trimethoxyphenyl)methanone 

(20):
88,102,105,106

 Phenstatin (0.500 g, 1.57 mmol), DIAD (0.35 mL, 1.9 mmol), and 4-

nitrobenzyl alcohol (0.481 g, 3.14 mmol) were dissolved in dry CH2Cl2 (60 mL). 

Triphenylphosphine (0.700 g, 2.67 mmol) was added, and the reaction mixture was 

stirred for 2 d. The reaction was quenched with water, and the reaction mixture was 

extracted with EtOAc, which was dried with Na2SO4 and evaporated under reduced 

pressure. Flash chromatography of the crude product using a prepacked 100 g silica 

column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 

10% A/90% B  80% A/20% B (10 CV), 80% A/20% B (2 CV); flow rate 100.0 

mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-((4-

nitrobenzyl)oxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (20) (0.462 g, 1.02 mmol, 

65%) as a yellow solid.  

1
H NMR (600 MHz, acetone-d6) δ 8.31 (2H, d, J = 8.7 Hz), 7.84 (2H, d, J = 9.0 Hz), 

7.54 (1H, d, J = 2.0 Hz), 7.52 (1H, dd, J = 8.3, 2.0 Hz), 7.18 (1H, d, J = 8.4 Hz), 7.04 

(2H, s), 5.40 (2H, s), 4.00 (3H, s), 3.87 (6H, s), 3.84 (3H, s).  

13
C NMR (151 MHz, acetone-d6) δ 193.21, 153.71, 153.10, 147.67, 145.12, 141.81, 

133.24, 130.25, 128.06, 125.41, 123.49, 114.93, 110.99, 107.37, 99.99, 69.45, 59.80, 

55.70, 55.54. HRMS [M+Na]
+
: 476.1315 (calcd for [C24H23NNaO8]

+
, 476.1316).  

HPLC retention time (Method B): 9.55 min. 
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(4-Methoxy-3-(1-(4-nitrophenyl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone 

(21):
88,102,105,106

 Phenstatin (0.500 g, 1.57 mmol), DIAD (0.348 mL, 1.88 mmol), and 1-

(4-nitrophenyl)ethan-1-ol (0.525 g, 3.14 mmol) were dissolved in dry CH2Cl2 (60 mL). 

Triphenylphosphine (0.700 g, 2.67 mmol) was added to the reaction mixture, which was 

stirred for 2 d. The reaction was quenched with water, and the reaction mixture was 

extracted with CH2Cl2 (3 x 40 mL), which was dried with Na2SO4 and evaporated under 

reduced pressure. Flash chromatography of the crude product using a prepacked 100 g 

silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 

CV), 10% A/90% B  80% A/20% B over (10 CV), 80% A/20% B (2 CV); flow rate 

100.0 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-(1-(4-

nitrophenyl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (21) (0.315 g, 0.675 

mmol, 43%) as white solid. 

1
H NMR (600 MHz, acetone-d6) δ 8.26 (2H, d, J = 8.8 Hz), 7.78 (2H, d, J = 8.4 Hz), 

7.46 (1H, dd, J = 8.4, 2.0 Hz), 7.34 (1H, d, J = 2.0 Hz), 7.15 (1H, d, J = 8.4 Hz), 6.93 

(2H, s), 5.72 (1H, q, J = 6.4 Hz), 4.00 (3H, s), 3.83 (3H, s), 3.81 (6H, s), 1.69 (3H, d, J = 

6.5 Hz). 

13
C NMR (151 MHz, CDCl3) δ 194.27, 153.96, 152.80, 150.05, 147.48, 146.57, 141.76, 

133.04, 130.14, 126.53, 125.83, 124.01, 116.93, 110.61, 107.50, 60.98, 56.36, 56.14, 

23.86, 21.95. HRMS [M+Na]
+
: 490.1471 (calcd for [C25H25NNaO8]

+
, 490.1472).

HPLC retention time (Method B): 10.05 min. 

(4-Methoxy-3-((2-(4-nitrophenyl)propan-2-yl)oxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (22):
88,102,105,106

  Phenstatin (0.500 g, 1.57 mmol), ADDP
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(0.475 g, 1.88 mmol), and 2-(4-nitrophenyl)propan-2-ol (0.569 g, 3.14 mmol) were 

dissolved in dry CH2Cl2 (70 mL). Tributylphosphine (0.66 mL, 2.67 mmol) was added 

dropwise to the reaction mixture, which was stirred for 2 d. The reaction was quenched 

with water, and the mixture was extracted with EtOAc, which was washed with water and 

brine, dried with Na2SO4, and evaporated under reduced pressure. Flash chromatography 

of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; 

solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B  80% A/20% B (10 

CV), 80% A/20% B (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] 

yielded (4-methoxy-3-((2-(4-nitrophenyl)propan-2-yl)oxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (22) (0.174 g, 0.361 mmol, 23%) as tan solid, 

 1H NMR (600 MHz, acetone-d6) δ 8.25 (2H, d, J = 8.9 Hz), 7.91 (2H, d, J = 8.9 Hz), 

7.57 (1H, dd, J = 8.5, 2.1 Hz), 7.18 (1H, d, J = 8.5 Hz), 7.12 (1H, d, J = 2.1 Hz), 6.92 

(2H, s), 3.96 (3H, s), 3.84 (6H, s), 3.83 (3H, s), 1.76 (6H, s).  

13
C NMR (151 MHz, acetone-d6) δ 193.05, 156.74, 154.53, 153.03, 147.02, 143.92, 

141.76, 133.21, 129.72, 126.62, 126.34, 123.48, 123.30, 111.62, 107.16, 81.28, 59.77, 

55.73, 55.43, 27.99.  

HRMS [M+Na]
+
: 504.1629 (calcd for [C26H27NNaO8]

+
, 504.1629).  

HPLC retention time (Method B): 10.82 min. 

Ethyl 2-amino-1-methyl-1H-imidazole-5-carboxylate (26):
104

 To a suspension of 

sarcosine ethyl ester (4.00 g, 0.026 mol) in THF (90 mL) and ethyl formate (90 mL) was 

added NaH (60 % dispersion in mineral oil, 10.0 g, 0.25 mol) in several portions at room 

temperature. The reaction mixture was stirred for 3 h, and, during this time, a yellow 
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suspension formed. The reaction mixture was concentrated and triturated with hexane (2 

x 150 mL). The hexane was decanted, and the resulting light tan solid was dried in vacuo. 

Ethanol (80 mL) and concentrated aqueous HCl (16 mL) were added to the solid, and the 

suspension was heated to reflux for 2 h. The reaction mixture was then filtered while hot, 

and the filter was rinsed with boiling ethanol (2 x 50 mL). The combined filtrate was 

concentrated to yield a brown oil. The oil was diluted with ethanol (140 mL) and water 

(60 mL), and the pH of the solution was adjusted to 3 by using NaOH solution (2 M). 

Cyanamide (2.18 g, 0.052 mol) was added, and the resulting solution was heated to reflux 

for 1.5 h. After being cooled to room temperature, the reaction mixture was concentrated 

to approximately 1/8 of its original volume. Solid K2CO3 was added to adjust the pH of 

the concentrated reaction mixture to 8-9, resulting in the formation of a yellow 

precipitate. The solid was removed by filtration, washed with a K2CO3 solution (1 M, 1 x 

20 mL) and water (2 x 20 mL) and dried to afford a pale yellow solid (1.97 g, 12.0 mmol, 

45%). 

1
H NMR (600 MHz, CDCl3) δ 7.45 (1H, s), 4.27 (2H, q, J = 7.1 Hz), 4.25 (2H, s), 3.68 

(3H, s), 1.34 (3H, t, J = 7.1 Hz). 

13
C NMR (151 MHz, CDCl3) δ 160.67, 151.89, 135.50, 119.05, 59.82, 30.55, 14.41. 

Ethyl 1-methyl-2-nitro-1H-imidazole-5-carboxylate (27):
104,107

 Aminoimidazole

(0.700 g, 4.14 mmol) in acetic acid (7.3 mL) was added dropwise to an aqueous solution 

of sodium nitrite (3.6 mL, 11 M). The solution was stirred at room temperature for 4 h 

until no more N2 was formed. The reaction mixture was extracted with CH2Cl2 (1 x 20 

mL), washed with brine (1 x 20 mL) and a saturated aqueous solution of Na2SO3 (1 x 20 
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mL). The organic layer was then dried over Na2SO4, filtered and concentrated to afford a 

crude yellow solid. Purification by flash chromatography using a prepacked 25 g silica 

column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (4 CV), 7%A / 

93%B → 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 70 mL/min; 

monitored at 254 and 280 nm] afforded the nitroimidazole analogue 27 (0.510 g, 2.60 

mmol, 63%) as a yellow solid.  

1
H NMR (600 MHz, CDCl3) δ 7.74 (1H, s), 4.40 (2H, q, J = 7.1 Hz), 4.35 (3H, s), 1.41 

(3H, t, J = 7.1 Hz). 

13
C NMR (151 MHz, CDCl3) δ 159.08, 147.46, 134.67, 126.29, 61.84, 35.39, 14.18. 

(1-Methyl-2-nitro-1H-imidazol-5-yl)methanol (28):
104,107

 A suspension of the 

nitroimidazole ethyl ester (0.796 g, 4.00 mmol) in 0.75 M NaOH solution (16 mL) was 

stirred at room temperature overnight to give a clear light yellow solution. The pH of the 

reaction mixture was adjusted to 1 by adding concentrated HCl. The resulting solution 

was extracted with EtOAc (5 x 20 mL). The combined organic layer was dried over 

Na2SO4 and concentrated to afford a light yellow solid. The solid was dissolved in THF 

(8 mL) with triethylamine (0.880 mL, 6.30 mmol). Isobutylchloroformate (0.820 mL, 

6.30 mmol) was added dropwise at -40 
o
C, and the reaction mixture was stirred at room 

temperature for 1 h. NaBH4 (0.794 g, 21.0 mmol) was added to the solution, followed by 

dropwise addition of water (7 mL) over 1 h while maintaining the temperature around 0 

o
C. The reaction mixture was extracted with Et2O (3 x 20 mL), which was dried over 

Na2SO4 and concentrated under reduced pressure. Purification by flash chromatography 

using a prepacked 25 g silica column [solvent A: methanol; solvent B: CH2Cl2; gradient: 
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1%A / 99%B (4 CV), 1%A / 99%B → 15%A / 85%B (10 CV), 15%A / 85%B (2 CV); 

flow rate: 75 mL/min; monitored at 254 and 280 nm] afforded the normethyl 

nitroimidazole trigger (28) (0.449 g, 2.86 mmol, 71%) as a pale yellow solid. 

1
H NMR (600 MHz, Methanol-d4) δ 7.11 (1H, s), 4.68 (2H, s), 4.06 (3H, s). 

13
C NMR (151 MHz, MeOD) δ 145.82, 137.93, 126.02, 53.16, 33.40. 

1-Methyl-2-nitro-1H-imidazole-5-carbaldehyde (29): Normethyl nitroimidazole trigger 

28 (359 mg, 2.28 mmol) was dissolved in CH2Cl2 (10 mL). Dess–Martin periodinane 

(1.16 g, 2.74 mmol) was added and the reaction mixture was stirred for 1 h at room 

temperature. Saturated solutions of NaHCO3 (20 mL) and sodium thiosulfate (20 mL) 

were added to the reaction mixture, which was extracted with EtOAc (3 x 25 mL). The 

combined organic layers were dried over Na2SO4 and filtered, and the solvent was 

removed under reduced pressure. Purification by flash chromatography using a prepacked 

25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 12%A / 88%B (1 

CV), 12%A / 88%B → 100%A / 0%B (10 CV), 100%A / 0%B (2 CV); flow rate: 75 

mL/min; monitored at 254 and 280 nm] afforded imidazole analogue (346 mg, 2.23 

mmol, 98%) as a yellow solid.

1
H NMR (600 MHz, CDCl3) δ 9.94 (1H, s), 7.82 (1H, s), 4.36 (3H, s). 

13
C NMR (151 MHz, CDCl3) δ 180.39, 148.35, 139.38, 132.38, 35.57. 

1-(1-Methyl-2-nitro-1H-imidazol-5-yl)ethan-1-ol (30):
103

 TiCl4 (1.3 mL, 11 mmol) in

Et2O (60 mL) was treated with methyllithium (7.1 mL, 1.6M, 11 mmol) at -78 
o
C, and the

resulting solution was stirred for 1 h. A THF (15 mL) solution of imidazole aldehyde 
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analogue (0.884 g, 5.70 mmol) was added dropwise and the reaction mixture was stirred 

for 24 h. Water (50 mL) was added and the resulting solution was extracted with EtOAc 

(3 x 50 mL), which was dried over Na2SO4 and concentrated to afford a crude brown oil. 

Purification by flash chromatography using a prepacked 50 g silica column [solvent A: 

EtOAc; solvent B: hexanes; gradient: 17%A / 83%B (1 CV), 17%A / 83%B → 100%A / 

0%B (7 CV), 100%A / 0%B (5 CV); flow rate: 100 mL/min; monitored at 254 and 280 

nm] afforded the monomethyl nitroimidazole trigger (30) (400 mg, 2.34 mmol, 41%) as a 

yellow solid.  

1
H NMR (600 MHz, acetone-d6) δ 7.07 (1H, s), 5.01 (1H, p, J = 6.2 Hz), 4.64 (1H, d, J = 

6.0 Hz), 4.09 (3H, s), 1.63 (3H, d, J = 6.6 Hz). 

13
C NMR (151 MHz, acetone-d6) δ 146.4, 141.6, 124.7, 60.4, 33.9, 21.1 

(4-Methoxy-3-((1-methyl-2-nitro-1H-imidazol-5-yl)methoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (31):
88,102,105,106

 Phenstatin (0.500 g, 1.57 mmol), (1-

methyl-2-nitro-1H-imidazol-5-yl)methanol (0.296 g, 1.89 mmol), and DIAD (0.40 mL, 

2.04 mmol) were dissolved in CH2Cl2. Triphenylphosphine (0.825 g, 3.14 mmol) was 

added to the mixture, and the reaction mixture was stirred for 24 h. The reaction mixture 

was then evaporated under reduced pressure. Flash chromatography of the crude product 

using a prepacked 100 g silica column [eluents: solvent A: EtOAc; solvent B: hexanes; 

gradient, 17%A/83%B over 1.19 min (1 CV), 17%A/83%B  100%A/0%B over 8.33 

min (7 CV), 100%A / 0%B over 5.95 min (5 CV); flow rate 100 mL/min; monitored at 

254 and 280 nm] yielded (4-methoxy-3-((1-methyl-2-nitro-1H-imidazol-5-
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yl)methoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (31) (0.346 g, 0.757 mmol, 48%) 

as a pale yellow-white solid. 

1
H NMR (600 MHz, CDCl3) δ 7.62 (1H, d, J = 1.7 Hz), 7.52 (1H, dd, J = 8.3, 1.7 Hz), 

7.24 (1H, s), 7.04 (2H, s), 6.97 (1H, d, J = 8.4 Hz), 5.18 (2H, s), 4.16 (3H, s), 3.97 (3H, 

s), 3.96 (3H, s), 3.91 (6H, s). 

13
C NMR (151 MHz, CDCl3) δ 194.16, 153.97, 152.91, 146.74, 141.88, 132.92, 132.30, 

130.43, 129.31, 127.00, 116.43, 110.61, 107.52, 99.98, 61.24, 61.01, 56.39, 56.05, 34.54. 

HRMS [M+Na]
+
: 480.1376 (calcd for [C22H23N3NaO8]

+
,480.1377).

HPLC retention time (Method B): 4.66 min. 

 (4-methoxy-3-(1-(1-methyl-2-nitro-1H-imidazol-5-yl)ethoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (32):
88,102,105,106

 Phenstatin (0.250 g, 0.786 mmol), DIAD

(0.19 mL, 1.02 mmol), and 1-(1-methyl-2-nitro-1H-imidazol-5-yl)ethan-1-ol (0.161 g, 

0.943 mmol) were added to dry CH2Cl2 (50 mL). Triphenylphosphine (0.412 g, 1.57 

mmol) was added, and the reaction mixture was stirred for 2 d. The reaction solvent was 

evaporated under reduced pressure. Flash chromatography of the crude product using a 

prepacked 100 g silica column [eluents: solvent A: EtOAc; solvent B: hexanes; gradient, 

15%A/85%B over 1.19 min (1 CV), 15%A/85%B  100%A/0%B over 8.33 min (7 

CV), 100%A / 0%B over 14.28 min (12 CV); flow rate 100 mL/min; monitored at 254 

and 280 nm] yielded (4-methoxy-3-(1-(1-methyl-2-nitro-1H-imidazol-5-

yl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (32) (0.119 g, 0.252 mmol, 32%) 

as a pale yellow-white solid. 
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1
H NMR (600 MHz, CDCl3) δ 7.57 (1H, d, J = 2.0 Hz), 7.55 (1H, dd, J = 8.3, 2.0 Hz), 

7.21 (1H, s), 7.02 (2H, s), 6.99 (1H, d, J = 8.4 Hz), 5.59 (1H, q, J = 6.5 Hz), 4.13 (3H, s), 

3.97 (3H, s), 3.96 (3H, s), 3.91 (6H, s), 1.81 (3H, d, J = 6.5 Hz).  

13
C NMR (151 MHz, CDCl3) δ 194.09, 154.63, 152.90, 145.23, 141.89, 137.09, 132.88, 

130.47, 127.15, 118.90, 110.95, 107.51, 99.98, 68.42, 61.01, 56.39, 56.04, 34.70, 18.55.  

HRMS [M+Na]
+
: 494.1533 (calcd for [C23H25N3NaO8]

+
 494.1534).  

HPLC retention time (Method B): 5.17 min. 

(5-Nitrofuran-2-yl)methanol (34):
88

 5-Nitrofuran-2-carbaldehyde (4.00 g, 28 mmol) 

was dissolved in anhydrous methanol (80 mL) and cooled to 0 
o
C. NaBH4 (1.17 g, 31 

mmol) was added to the reaction mixture, which was stirred for 2.5 h. The reaction was 

quenched with an HCl solution (1 M, 40 mL) and extracted with EtOAc (3 x 50 mL). The 

combined organic layer was dried over Na2SO4 and concentrated under reduced pressure 

to afford a crude yellow oil. Purification by flash chromatography using a prepacked 100 

g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 

7%A / 93%B → 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 100 mL/min; 

monitored at 254 and 280 nm] afforded (5-nitrofuran-2-yl)methanol (34) (3.23 g, 22.6 

mmol, 80%) as a pale yellow oil.  

1
H NMR (600 MHz, CDCl3) δ 7.31 (1H, d, J = 3.6 Hz), 6.58 (1H, d, J = 3.6 Hz), 4.74 

(2H, s), 2.09 (1H, s).  

13
C NMR (151 MHz, CDCl3) δ 157.37, 151.92, 112.40, 110.61, 57.45. 
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1-(5-Nitrofuran-2-yl)ethan-1-ol (35):
103

 TiCl4 (0.78 mL, 7.1 mmol) in Et2O (35 mL)

was treated with methyllithium (4.4 mL, 1.6 M, 7.1 mmol) at -78 
o
C. The resulting 

solution was stirred for 1 h. A THF (10 mL) solution of 5-nitrofuran-2-carbaldehyde 

(0.500 g, 3.5 mmol) was added dropwise, and the reaction mixture was stirred for 24 h. 

Water (30 mL) was added and the resulting solution was extracted with EtOAc (3 x 30 

mL), which was dried over Na2SO4 and concentrated to afford a crude brown oil. 

Purification by flash chromatography using a prepacked 25 g silica column [solvent A: 

EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B → 60%A / 

40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 75 mL/min; monitored at 254 and 280 

nm] afforded 1-(5-nitrofuran-2-yl)ethan-1-ol (35) (449 mg, 2.86 mmol, 81%) as a brown 

oil. 

1
H NMR (600 MHz, CDCl3) δ 7.29 (1H, d, J = 4.1 Hz), 6.52 (1H, d, J = 4.6 Hz), 4.96 

(1H, q, J = 7.1 Hz), 2.57 (1H, s), 1.61 (3H, d, J = 6.8 Hz). 

13
C NMR (151 MHz, CDCl3) δ 161.27, 151.59, 112.51, 108.57, 63.66, 21.38. 

1-(5-Nitrofuran-2-yl)ethan-1-one (36): Dess-Martin periodinane (8.62 g, 20.4 mmol) 

was added to 1-(5-nitrofuran-2-yl)ethan-1-ol (3.20 g, 20.4 mmol) dissolved in CH2Cl2 

(250 mL), and the reaction mixture was stirred for 1 h. The reaction was quenched with 

saturated solutions of sodium thiosulfate and NaHCO3, then extracted with CH2Cl2 (3 x 

50 mL), which was washed with water and brine, dried with Na2SO4, and evaporated 

under reduced pressure. Flash chromatography of the crude product using a prepacked 

100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 7% A/93% 

B over 1.19 min (1 CV), 7% A/93% B  50% A/50% B over 13.12 min (10 CV), 50% 
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A/50% B over 2.38 min (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] 

yielded 1-(5-nitrofuran-2-yl)ethan-1-one (36) (2.98 g, 19.2 mmol, 94%) as yellow solid. 

1
H NMR (600 MHz, CDCl3) δ 7.38 (1H, d, J = 3.8 Hz), 7.28 (1H, d, J = 3.7 Hz), 2.61 

(3H, s).  

13
C NMR (151 MHz, CDCl3) δ 186.73, 151.91, 151.48, 116.79, 111.94, 26.27. 

2-(5-Nitrofuran-2-yl)propan-2-ol (37): 1-(5-Nitrofuran-2-yl)ethan-1-one (3.00 g, 19.3 

mmol) in CH2CI2 (120 mL) was treated dropwise at 0 °C with trimethylaluminium (16.0 

mL, 2.0 M, 32 mmol), and the resulting yellow solution was stirred for 90 min at 0 °C. 

Sat. aq. NH4Cl was added to the reaction mixture, which was extracted with CH2Cl2 (3 x 

50 mL). The combined organic layers were dried over Na2SO4 and filtered, and the 

solvent was removed under reduced pressure to give a yellow oil. Purification by flash 

chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B → 60%A / 40%B (10 CV), 60%A 

/ 40%B (2 CV); flow rate: 1000mL/min; monitored at 254 and 280 nm] afforded 2-(5-

nitrofuran-2-yl)propan-2-ol (37) (2.75 g, 16.1 mmol, 83%) as a yellow oil.  

1
H NMR (600 MHz, CDCl3) δ 7.27 (1H, d, J = 3.7 Hz), 6.49 (1H, d, J = 3.7 Hz), 2.36 

(1H, s), 1.65 (7H, s).  

13
C NMR (151 MHz, CDCl3) δ 164.05, 151.36, 112.55, 107.37, 69.30, 28.67. 

(4-Methoxy-3-((5-nitrofuran-2-yl)methoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (38):
88,102,105,106

 Phenstatin (0.250 g, 0.786 mmol), DEAD 

(0.16 mL, 1.02 mmol), and (5-nitrofuran-2-yl)methanol (0.135 g, 0.943 mmol) were 
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dissolved in dry CH2Cl2 (60 mL). Triphenylphosphine (0.412 g, 1.57 mmol) was added, 

and the reaction mixture was stirred for 2 d. The solvent was evaporated under reduced 

pressure. Flash chromatography of the crude product using a prepacked 50 g silica 

column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B over 

1.19 min (1 CV), 10% A/90% B  80% A/20% B over 13.12 min (10 CV), 80% A/20% 

B over 2.38 min (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded 

(4-methoxy-3-((5-nitrofuran-2-yl)methoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone 

(38) (0.143 g, 0.322 mmol, 41%) as a white solid. 

1
H NMR (600 MHz, acetone-d6) δ 7.59 (1H, d, J = 2.0 Hz), 7.56 – 7.52 (2H, m), 7.17 

(1H, d, J = 8.4 Hz), 7.06 (2H, s), 6.95 (1H, d, J = 3.7 Hz), 5.32 (2H, s), 3.96 (3H, s), 3.88 

(6H, s), 3.85 (3H, s). 

13
C NMR (151 MHz, acetone-d6) δ 193.12, 154.11, 153.89, 153.12, 147.13, 141.85, 

133.19, 130.26, 126.00, 124.87, 116.00, 113.41, 112.45, 111.18, 107.39, 63.08, 59.80, 

55.72, 55.47. HRMS [M+Na]
+
: 466.1107 (calcd for [C22H21NNaO9]

+
, 466.1109).

HPLC retention time (Method B): 6.81 min. 

(4-Methoxy-3-(1-(5-nitrofuran-2-yl)ethoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (39):
88,102,105,106

  Phenstatin (0.250 g, 0.786 mmol), DIAD

(0.20 mL, 1.02 mmol), and 1-(5-nitrofuran-2-yl)ethan-1-ol (0.148 g, 0.943 mmol) were 

dissolved in dry CH2Cl2 (60 mL). Triphenylphosphine (0.412 g, 1.57 mmol) was added, 

and the reaction mixture was stirred for 2 d. The solvent was evaporated under reduced 

pressure. Flash chromatography of the crude product using a prepacked 50 g silica 

column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B over 
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1.19 min (1 CV), 10% A/90% B  80% A/20% B over 13.12 min (10 CV), 80% A/20% 

B over 2.38 min (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded 

(4-methoxy-3-(1-(5-nitrofuran-2-yl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone 

(39) (0.169 g, 0.369 mmol, 47%) as a white solid.  

1
H NMR (600 MHz, acetone-d6) δ 7.55 (1H, dd, J = 8.4, 2.1 Hz), 7.51 (1H, d, J = 2.1 

Hz), 7.49 (1H, d, J = 3.7 Hz), 7.17 (1H, d, J = 8.4 Hz), 7.02 (2H, s), 6.83 (1H, d, J = 3.5 

Hz), 5.65 (1H, q, J = 6.5 Hz), 3.97 (3H, s), 3.87 (6H, s), 3.84 (3H, s), 1.77 (3H, d, J = 6.6 

Hz).  

13
C NMR (151 MHz, acetone-d6) δ 193.05, 158.26, 154.84, 153.11, 151.79, 146.11, 

141.89, 133.16, 130.29, 126.49, 119.30, 112.44, 111.54, 111.02, 107.39, 70.96, 59.80, 

55.73, 55.52, 18.82.  

HRMS [M+Na]
+
: 480.1263 (calcd for [C23H23NNaO9]

+
, 480.1265).  

HPLC retention time (Method B): 7.86 min. 

(4-Methoxy-3-((2-(5-nitrofuran-2-yl)propan-2-yl)oxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (40):
88,102,105,106 

Phenstatin (1.00 g, 3.14 mmol), ADDP 

(1.03 g, 4.08 mmol), and 2-(5-nitrofuran-2-yl)propan-2-ol (0.646 g, 3.77 mmol) were 

dissolved in dry THF (80 mL). Tributylphosphine (1.55 mL, 6.28 mmol) was added 

dropwise, and the reaction mixture was stirred for 2 d. The solvent was evaporated under 

reduced pressure. Flash chromatography of the crude product using a prepacked 100 g 

silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 

CV), 10% A/90% B  80% A/20% B (10 CV), 80% A/20% B (0.2 CV); flow rate 100.0 

mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-((2-(5-nitrofuran-2-
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yl)propan-2-yl)oxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (40) (0.118 g, 0.251 

mmol, 8%) as a colorless solid. 

1
H NMR (600 MHz, acetone-d6) δ 7.58 (1H, dd, J = 8.5, 2.1 Hz), 7.40 (1H, d, J = 3.7 

Hz), 7.14 – 7.06 (2H, m), 6.94 (2H, s), 6.69 (1H, d, J = 3.7 Hz), 3.83 (6H, s), 3.81 (3H, 

s), 3.80 (3H, s), 1.75 (6H, s). 

13
C NMR (151 MHz, acetone-d6) δ 192.97, 160.47, 157.53, 153.09, 151.48, 143.09, 

141.85, 133.15, 129.94, 127.80, 125.96, 112.31, 111.61, 110.81, 107.25, 77.40, 59.80, 

55.74, 55.38, 25.03. 

HRMS [M+Na]
+
: 494.1422 (calcd for [C24H25NNaO9]

+
 494.1422 ).

HPLC retention time (Method B): 8.26 min 

Biological Evaluations 

Colchicine Binding Assay. Inhibition of [
3
H]colchicine binding to tubulin was determined

using 0.1 mL reaction mixtures. Each reaction mixture contained 1.0 µM tubulin, 5.0 µM 

[
3
H]colchicine (from Perkin–Elmer), 5% (v/v) dimethyl sulfoxide, potential inhibitors at

5.0 µM and components that were previously demonstrated to stabilize the colchicine 

binding activity of tubulin
111

 (1.0 M monosodium glutamate [adjusted to pH 6.6 with HCl

in a 2.0 M stock solution], 0.5 mg/mL bovine serum albumin, 0.1 M glucose-1-

phosphate, 1.0 mM MgCl2, and 1.0 mM GTP). Incubation was for 10 min at 37°C, a time 

point at which the binding reaction in the control is 40–60% complete. Reactions were 

stopped by adding 2.0 mL of ice-cold water and placing the samples on ice. Each sample 

was poured onto a stack of two DEAE-cellulose filters, followed immediately by 6 mL of 

ice-cold water, and the water was aspirated under reduced vacuum. The filters were 
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washed with 2 mL water X 3 and, following removal of excess water under a strong 

vacuum, placed into vials containing 5 mL of Biosafe II scintillation cocktail. Samples 

were counted the next day in a Beckman scintillation counter. Samples with potential 

inhibitors were compared to controls with no inhibitor to determine percent inhibition. 

All samples were corrected for the amount of colchicine that bound to the filters in the 

absence of tubulin. 

Inhibition of Tubulin Polymerization
113

 Tubulin assembly experiments were performed

using 0.25 mL reaction mixtures (final volume).
112

 The mixtures contained 1 mg/mL (10

µM) purified bovine brain tubulin, 0.8 M monosodium glutamate (pH 6.6, as above), 4% 

(v/v) dimethyl sulfoxide, 0.4 mM GTP, and varying compound concentrations. Initially, 

all components except GTP were preincubated for 15 min at 30 °C in 0.24 mL. After 

chilling the mixtures on ice, 10 µL of 10 mM GTP was added. The reaction mixtures 

were then transferred to cuvettes held at 0 °C in Beckman DU-7400 and DU-7500 

spectrophotometers equipped with electronic temperature controllers. The temperature 

was jumped to 30 °C over about 30 s, and polymerization was followed turbidimetrically 

at 350 nm for 20 min. Each reaction set included a reaction mixture without compound, 

and the IC50 was defined as the compound concentration that inhibited extent of 

assembly by 50% after 20 min at 30 °C. 

NADPH Cytochrome P450 Oxidoreductase Cleavage Assay
114,115 

Rat NADPH

cytochrome P450 oxidoreductase (POR) and protocatechuate 3,4-dioxygenase (PCD) 

were purchased from Corning
®
 and Sigma-Aldrich, respectively, and their enzymatic
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activities were determined in terms of enzyme units (U). All bioreductive prodrugs were 

dissolved in DMSO as 10 mM stock solutions. 

An aliquot (5 µL) of the 10 mM compound DMSO stock solution along with 0.5 

µL 0.1% Triton X-100  were added to 395.5 µl 200 mM pH 7.4 potassium phosphate 

buffer containing 400 µM freshly made protocatechuic acid (PCA). The components 

were fully mixed in a microvessel capped with a rubber septum stopper and subjected to 

three cycles of evacuation and flushing with N2 using a manifold, followed by sparging 

with N2 for an additional 20 min. PCD (0.08 units) was added by Hamilton syringe, and 

the solution was scrubbed for 10 min to allow for sufficient O2 digestion by PCA/PCD. 

POR stock (0.006 units) was introduced followed by NADPH (0.8 mM final 

concentration) into the vial followed by an additional round of N2 sparging. The reaction 

mixture was incubated for 24 h at 37 °C, cooled on ice and treated with an equal volume 

of acetonitrile. After centrifugation and filtration, the samples were analyzed by HPLC. 

Solutions without POR were used as controls. 
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Abstract 

Targeting tumor-associated hypoxia with small-molecule anticancer agents represents a 

promising strategy to potentially improve treatment efficacy and reduce patient side-

effect profiles. Bioreductively activatable prodrug conjugates (BAPCs), which 

incorporate a potent anticancer agent with a bioreductive trigger, are designed to be 

substrates for reductase enzymes operating in regions of tumor hypoxia. While inert 

under normoxic conditions, these BAPCs are intended to be cleaved in low oxygen 

environments (hypoxia) to release their parent anticancer agent. Synthetic pathways have 

been identified for the preparation of nitrothienyl prodrugs of the natural product 

combretastatin A-1 (CA1) that incorporate nor-methyl, mono-methyl, and gem-dimethyl 



62 
 

nitrothiophene triggers. A regioselective protecting group strategy (tosyl, isopropyl, and 

tert-butyldimethylsilyl) was utilized to establish regioselective control around the 

catechol functionality inherent to CA1, thus facilitating incorporation of these 

nitrothiophene triggers at the C-2 and C-3 positions of CA1. A related series of BAPCs 

based on the natural product combretastatin A-4 (CA4), which was originally reported by 

Davis and co-workers, were synthesized as comparison standards. CA4 and CA1 function 

biologically as potent inhibitors of tubulin polymerization and effective vascular 

disrupting agents (VDAs). These series of CA1 and CA4 BAPCs (15 compounds in total) 

were evaluated biologically for their ability to inhibit tubulin polymerization and for their 

differential cytotoxicity (normoxia versus hypoxia) against the A549 human lung cancer 

cell line. In addition, they were evaluated as substrates for the reductase enzyme NADPH 

cytochrome P450 oxidoreductase (POR). The CA4-gem-dimethylnitrothiophene BAPC 

(45) proved exemplary in comparison to its nor-methyl and mono-methyl CA4-BAPC 

cogeners (43 and 44, respectively). It was stable to hydrolysis conditions (24 h), was 

cleaved by POR (25% at 90 min), was inactive (desirable prodrug attribute) as an 

inhibitor of tubulin polymerization (IC50 > 20 µM), and demonstrated hypoxia-selective 

activation in the A549 cell line [hypoxia cytotoxicity ratio (HCR) = 40]. The related 

CA1-gem-dimethylnitrothiophene BAPC (41) was also promising with HCR = 30 and 

complete cleavage observed upon treatment with POR. However, BAPC 41 was also 

labile under hydrolysis conditions, suggesting that pharmacokinetic (PK) considerations 

may prove crucial for the successful future development of these (and related) BAPCs as 

therapeutic agents. 
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Introduction 

The tumor microenvironment exemplifies a number of unique attributes that 

distinguish it from the microenvironment associated with healthy tissue. One of these key 

differences centers on vascular architecture and associated blood flow dynamics.
1-3

 Solid

tumors, once they reach approximately 2-5 mm
3
 in size, must establish their own vascular

network in order to meet their rapidly accelerating demand for oxygen and nutrients.
116-

123
 This rapid angiogenic development of tumor-associated vasculature results in 

disorganized, fragile, and leaky vessels, thus providing a target for therapeutic 

intervention.
1-3,124-126

 Vascular disrupting agents (VDAs) are compounds that selectively

damage established tumor-associated vasculature, thus denying necessary oxygen and 

nutrients, and ultimately resulting in necrosis.
1,4-6

 The natural products combretastatin A-

1 (CA1, Figure 3.1) and combretastatin A-4 (CA4, Figure 3.1), isolated from the bark of 

the African bush willow tree Combretum caffrum Kuntze (Combretacae) by Pettit and co-

workers, are potent inhibitors of tubulin polymerization (binding at the colchicine site) 

and function biologically as VDAs.
22,23,25,32

 As tubulin binding inhibitors, they cause

rapid morphological changes to the endothelial cells lining tumor-associated blood 

vessels, causing vascular collapse, which leads to starvation of tumor cells from oxygen 

and nutrient depravation.
2,11,136

 The corresponding water-soluble phosphate prodrugs of

CA1 and CA4 [referred to as CA1P (also known as OXi4503) and CA4P (also known as 

Zybrestat
TM

) respectively, Fig. 1] have advanced through preclinical and clinical

trials.
4,18,19,27-32 
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Figure 3.1. Colchicine and Combretastatin Natural Products and their Corresponding 

Phosphate Prodrug Salts 

 

In addition to an aberrant vascular network and elevated interstitial pressure due 

to immature and leaky vasculature, the tumor microenvironment is further characterized 

by a pH gradient, with cells distant from blood vessels being acidic in nature.
3,9

 The high 

probability for existing tumor-associated capillaries to be kinked and distant leads to an 

increased average diffusion distance for oxygen and nutrients to reach tumor cells as well 

as poor blood flow in the central mass of the tumor.
38

 Furthermore, there is a distinct 

oxygen concentration gradient inherent to a significant percentage of solid tumors, 

varying from normoxic to hypoxic to anoxic.
3
 Tumor hypoxia is believed to be one of the 

significant contributing factors to treatment failure and relapse of solid tumors in cancer 

patients, as the tumor cells in the hypoxic region are considered to be resistant to many 

conventional anticancer therapies.
3,41-43

  

Importantly, the presence of low oxygen concentrations and cell necrosis are 

unique features of solid tumors, not naturally occurring in normal tissue.
3
 The presence of 

pronounced regions of hypoxia in tumors offers an opportunity for targeting through the 

selective delivery of potent anticancer agents utilizing appropriate prodrug 

strategies.
3,38,43

 These conjugates activate under hypoxic conditions, similar to those in 

the tumor microenvironment, releasing their accompanying potent anticancer agent in a 
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selective fashion. Such compounds include hypoxia-activated agents as well as 

prodrugs,
3,38,43,44

 which are also referred as bioreductively activated prodrug conjugates

(BAPCs).
137

 These hypoxia-selective agents undergo activation through either one- or

two-electron enzymes, principally NAD(P)H-dependent flavoproteins for one-electron 

processes and cytochrome P450s for two-electron processes.
3,38

Tirapazamine represents one type of hypoxia-selective therapeutic agent. 

Reduction of its triazine moiety to a free radical leads to DNA damage and poisoning of 

topoisomerase II (Figure 3.2).
51,52

 While Phase I and Phase II clinical trials for

tirapazamine had positive results, a Phase III clinical trial utilizing the combination of 

tirapazamine with the conventional anticancer agent cisplatin to treat advanced non-

small-cell lung cancer was unsuccessful,
3
 displaying dose-limiting toxicity.

128,138
 The

high degree of hypoxia-selective activation coupled with its performance in early clinical 

trials resulted in tirapazamine being viewed as a promising positive control against which 

new hypoxia-selective therapeutic agents are compared.
38

 TH-302,
101

 a 2-nitroimidazole-

based nitrogen mustard prodrug (Figure 3.2. B) that releases its parent drug 

bromoisophosphoramide mustard under hypoxic conditions, advanced to Phase III human 

clinical trials.
59,138

 Unlike the Phase I and II studies, the results of the Phase III clinical

trial showed no statistical significance for TH-302 against pancreatic adenocarcinoma 

and soft tissue sarcoma.
60-62
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Figure 3.2. A. The Mechanism by which Tirapazamine Selectively Kills Hypoxic Cells.  

B. Structure of TH-302. C. Structure of PR-104.
51,52 

     

Another class of BAPCs incorporates a bioreductive trigger, which can be cleaved 

to selectively release the active anticancer agent in hypoxic conditions. Once cleaved, the 

therapeutic agents are released and diffuse into the tumor microenvironment (Fig. 3.3). 

Since hypoxia is a condition that is commonly associated with solid tumors, it provides 

an excellent opportunity for selective targeting.
3,38

  

 
 

Figure 3.3. Selective Release of Cytotoxic Agent (CA4) from Non-Toxic BAPC under 

Tumor Hypoxia. BAPCs are designed to activate selectively in the hypoxic tumor 

microenvironment, thereby releasing their cytotoxic anticancer agent (payload).
139
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Davis and co-workers prepared a series of nor-, mono-, and gem-dimethyl-

nitrothienyl BAPCs that incorporate CA4, and demonstrated their ability to release CA4 

from the bioreductive triggers in A549 cells under hypoxic conditions.
88

Figure 3.4. Combretastatin A-4 (CA4 ) Incorporating Nitrothiophene-Based Bioreductive 

Triggers
88 

The efficacy of these BAPCs was evaluated by determining their cytotoxicity in 

normoxia and CA4 release under normoxia versus hypoxia, in the A549 human cancer 

cell line.
88

Scheme. 3.1. Biological Reduction and Cleavage of CA4 gem-Dimethyl Nitrothiophene 

Trigger Releasing CA4
88
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  It was determined that the gem-dimethyl-nitrothiophene trigger CA4 prodrug 

(Scheme 1) was the most resistant to aerobic metabolism (in comparison to the nor- and 

mono-methyl-nitrothiophene trigger CA4 prodrugs) and the gem-dimethyl CA4-BAPC 

remained intact in high oxygen environments.
88

 While the gem- and mono-substituted 

CA4-BAPCs were effective across a range of oxygen concentrations, the unsubstituted 

(nor-methyl) was specifically effective under extreme hypoxia (<0.01% O2).
88

  

Inspired by the promise of targeting tumor hypoxia for the selective delivery of 

tubulin-active VDAs, and building on the encouraging results reported for the CA4-

BAPCs, we have designed and synthesized a series of BAPCs that incorporate the natural 

product CA1,  and evaluated them in preliminary studies to access their efficacy as a new 

anticancer therapeutic regimen. A regioselective protecting group strategy (incorporating 

tert-butyldimethylsilyl, isopropyl, and tosyl groups) that we previously developed for 

another application was utilized to differentiate the catechol functionality (C-2 and C-3 

positions) inherent to CA1.
33,128,129,140 

The nitrothiophene triggers previously described by 

Davis and co-workers were synthesized using a new synthetic strategy.
88

 The resultant 

CA1 BAPCs were evaluated for their ability to inhibit tubulin polymerization and to 

function as substrates for the reductase enzyme cytochrome P450 oxidoreductase (POR). 

In addition, differential cytotoxicity studies (normoxia versus hypoxia) suggested which 

BAPCs held the most promise for the targeting of tumor hypoxia. 
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Results and Discussion 

Synthesis 

The CA1-BAPCs were synthesized by utilizing two key reactions- a Wittig 

olefination to generate regioselectively protected CA1, and a Mitsunobu reaction between 

the tosyl, isopropyl, and tert-butyldimethylsilyl protected CA1 analogues (20, 21, 27, and 

28 respectively, Schemes 3.4 and 3.6)  and the nitrothienyl triggers (16, 17 and 19, 

Scheme 3.3).
1,2

 Synthesis of the regioselectively protected Z-CA1 analogues (11-13,

Scheme 3.2) was successfully executed utilizing the Wittig olefination reaction between 

aldehydes 5-7 (Scheme 3.2) and the requisite triphenyl phosphonium salt 10.
1
 The Wittig

reaction produced both the Z- and E- isomers of the stilbene, but favored the Z- isomer 

(Scheme 3.2).
1-4,135

Selective demethoxylation of aldehyde 1 using boron trichloride yielded catechol 

2, which generated selectively protected aldehydes 3-7 (Scheme 3.2) using a previously 

reported synthetic strategy.
1,3,135

 Phosphonium salt 10 was generated after bromination of

benzyl alcohol 8 using phosphorous tribromide followed by a reaction with triphenyl 

phosphine. A Wittig reaction between the suitably protected aldehydes (5-7) with Wittig 

salt 10 yielded both Z- and E- stilbene isomers (11-13, favoring the Z- isomer), which 

were separated using flash column chromatography. Synthesis of the three nitrothiophene 

triggers utilized in the Mitsunobu reactions is detailed in Scheme 3.3. 
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Scheme 3.2. Synthesis of Regioselectively Protected CA1 Analogues 11-13
128,129 

 

The synthetic route reported by Davis and co-workers highlights the synthesis of 

the nor- and mono-methyl nitrothiophene triggers 16 and 17 in good yield through the 

reduction of aldehyde 14 and ketone 15 respectively (Scheme 3.3).
5,88

 However, in our 

hands (Scheme 3.3), the synthesis of the gem-dimethyl nitrothiophene trigger 19 suffered 

with two consecutive low yielding steps, which included methylation of the carbonyl 

group followed by nitration at the C5 position. In order to scale up the production of 

compound 19, it was imperative for us to develop an improved synthetic route. The new 

synthetic route provided all three triggers (nor-, mono- and gem-) from a single starting 

material 14. Methylation of aldehyde 14 furnished mono-methyl trigger 17, which on 

subsequent oxidation and methylation yielded gem-dimethyl trigger 19 in good yield 

(Scheme 3.3). 
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Scheme 3.3. Synthesis of Nitrothiophene Triggers Using Old Route (Proposed by Peter 

Davis and Co-Workers) and New Routes
88

Deprotection of regioselective CA1 analogues 11 and 12 using TBAF yielded 

their corresponding phenols 20 and 21 respectively, which were subjected to Mitsunobu 

conditions that further incorporated nitrothiophene triggers (16, 17 and 19), phosphine 

reagents (PPh3 or PBu3) and azo compounds (diethylazodicarboxylate [DEAD], 

diisopropylazodicarboxylate [DIAD] or 1,1’-(azodicarbonyl)-dipiperidine [ADDP]) to 

generate BAPCs 22-26 (Scheme 3.4). 

Scheme 3.4. Synthesis of Regioselectively Protected CA1-BAPCs 22-26
88,143 
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The attempted deprotection of compounds 22 and 23 with NaOH (2M) under 

either microwave or reflux conditions did not yield the desired product, but instead 

cleaved the nitrothiophene trigger from the starting material, regenerating compound 20 

(see Appendix B). Similarly, compound 24 regenerated compound 21 upon attempted 

deprotection using AlCl3 (see Appendix B). In an effort to solve this problem, we 

attempted to partially cleave the bis-TBS protected CA1 13 using a deficiency of TBAF, 

which resulted in a mixture of regioisomers 27 and 28 (Scheme 3.5), which proved 

inseparable, in our hands, by flash column chromatography. While the mixture of 

regioisomers 27 and 28 produced their respective Mitsunobu products 30-34, CA1 

analogue 29 was unreactive under these conditions. The protected CA1-BAPC 32 proved 

difficult to purify, in our hands, through column chromatography, so the crude product 

was taken to the next step. Interestingly, the conventional TBS-deprotection of 

compounds 30 and 31 using TBAF yielded ring-cyclized products 35 and 36 (proposed 

structures based on analysis of NMR and HRMS data) without producing any other 

discernable side products (Scheme 3.6). 
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Scheme 3.5. Synthesis of TBS-Protected CA1-BAPCs 30-34 

Scheme 3.6. TBS-Deprotection to Generate Ring-Cyclized Products 35 and 36 
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However, upon modification of the deprotection conditions [HCl (2M)/AcOH, 

instead of TBAF], the desired CA1-BAPCs 37-40 were obtained (regiochemistry was 

determined through 1D NOE NMR) (Scheme 3.7). Intrigued by this unusual cyclization 

(that produced 35 and 36), we investigated whether exposure of phenolic compounds 30 

and 31 to strong base would facilitate a similar cyclization reaction and this indeed 

proved to be the case (Scheme 3.8).  

 
 

Scheme 3.7. Synthesis of Nor- and Mono- Methyl CA1-BAPCs 37-40 

 

 
 

Scheme 3.8. Base Generating Ring-Cyclized Products 35 and 36 

 

Since purification of the TBS-protected gem-dimethyl CA1 BAPC 32 by column 

chromatography proved to be unsuccessful, it was taken directly to the deprotection step 
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(Scheme 3.9) to generate gem-dimethyl CA1 BAPC 41. As opposed to the previous use 

of HCl (2M)/AcOH in the deprotection of the silyl group (Scheme 3.7), TBAF was used 

as the reagent for the deprotection (regiochemistry was determined through 1D NOE 

NMR). While the overall yield for this deprotection was quite low, the remaining 

material balance included only starting material, and no cyclized byproducts or E- isomer 

were detected. 

Scheme 3.9. Synthesis of Gem-Dimethyl CA1-BAPC 41 

A series of CA4-BAPCs were synthesized under conditions similar to those 

previously reported
88

 by Davis et al but with some modifications (Scheme 3.10).
88

 CA4-

BAPC 43 was synthesized through a Mitsunobu reaction heated to 50 °C with 

nitrothiophene 16.
88

 CA4 and nitrothiophene 17 were reacted with DIAD and

triphenylphosphine to generate BAPC 44.
88

 The gem-dimethyl CA4-BAPC 45 was

synthesized from CA4, ADDP, nitrothiophene 19, and tributylphosphine.
88

 In order to

improve the yield for the gem-dimethyl CA4-BAPC, subsequent Mitsunobu reactions 

were performed in toluene.
88

 While the overall yield was improved, the new method

required a more intensive purification procedure to remove the remaining CA4 and gem-

dimethyl thiophene trigger which had nearly identical chromatographic retention times to 

the desired CA4-BAPC. The reaction mixture was subjected to chemical modification to 

facilitate chromatographic separation during purification. The phenolic moiety of CA4 

was converted to its corresponding silyl ether (TBS) and the unreacted gem-dimethyl 
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trigger was subsequently acetylated, allowing both of these compounds to be successfully 

separated chromatographically from the desired CA4 gem-dimethyl-nitrothiophene 

BAPC. 

 

 
 

Scheme 3.10. Synthesis of CA4-BAPCs
88 
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Figure 3.5. A. Compilation of Parent Anticancer Agents and their Corresponding BAPCs 

Utilized in this Study B. Parent CA1 and CA4 Anticancer Agents  
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Biological Evaluation 

Table 3.1.  

Inhibition of Tubulin Polymerization  

and Percent Inhibition of Colchicine Binding 

 

Compound Inhibition of 

Tubulin 

Polymerization 

IC50 

Inhibition of Colchicine 

Binding 

% Inhibition μM ±SD 

 (μM)±SD 1 μM 5 μM 

29 (CA1)
b 1.9

c
 ND 99.6±0.7 

CA4
d 0.64 84±2 97±0.7 

20 

KGP439 

0.84±0.1 50±5 84±1 

21 

KGP400 

0.82±0.04 72±4 94±0.7 

22 

KGP440 

>20 ND ND 

23 

KGP441 

>20 ND ND 

25 

KGP442 

12±1 ND ND 

26 

KGP443 

>20 ND ND 

27 

KGP444 

9.5±0.9 ND ND 

35 

KGP445 

1.7±0.2 ND 25±3 

36 

KGP446 

>20 ND ND 

37 

KGP455 

1.7±0.01 53±3 92±0.5 

38 

KGP457 

0.84±0.1 34±3 90±0.7 
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39 

KGP454 

4.3±0.4 ND 58±4 

40 

KGP456 

6.2±0.3 ND 72±3 

41 

KGP461 

1.3±0.08 ND 43±4 

43 

KGP 370 

>20 ND 26±1 

44 

KGP 371 

>20 ND 15±5 

45 

KGP 372 

>20 ND 33±3 

a
 Average of n ≥ 3 independent determinations 

b
 Data from ref. 110, see ref. 27 for additional data 

c
 Data from ref. 32, see ref. 27 for additional data 

d
 For additionl data, see ref. 27 

ND= Data not available 

The BAPCs and their parent anticancer agents (CA4 and CA1) were evaluated for 

their ability to inhibit tubulin polymerization and colchicine binding (Table 3.1). The 

parent anticancer agents [CA4, CA1, tosyl protected CA1 (20), and isopropyl protected 

CA1 (21)] utilized in this study were potent inhibitors of tubulin polymerization (IC50 =  

1.9, 0.64, 0.84 and 0.82 µM respectively) and strongly inhibited colchicine binding. The 

TBS-protected CA1 analogue 27 was only moderate as an inhibitor of tubulin 

polymerization (IC50 = 9.5 µM). Ideally, the BAPCs prepared from these parent 

anticancer agents would be protected from binding to tubulin until cleaved (in vivo) to 

generate their corresponding anticancer agents. Considering the collective group of 

fifteen BAPCs synthesized for this study, seven BAPCs (22, 23, 26, 36, 43, 44, 45) were 

inactive (IC50 > 20 µM) as inhibitors of tubulin polymerization while three BAPCs (25, 
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39, 40) were moderate inhibitors (IC50 > 3 µM but < 20 µM) and four BAPCs (35, 37, 38, 

41) proved to be potent inhibitors (IC50 < 3 µM). It is important to note that the BAPCs

that proved active as inhibitors of tubulin polymerization might have undergone partial 

cleavage to the parent anticancer agent in the buffered (cell-free) assay conditions, 

although a hydrolysis experiment (Table 3.2) demonstrated that only BAPC 41 

underwent significant cleavage (100% after 48 h). 

Table 3.2.  

Bioreductive Trigger Hydrolysis (Untreated)  

and Cleavage of Cytochrome P450 Reductase Treated BAPCs 

Compound Hydrolysis Percentage 

in pH 7.4 phosphate 

buffer for 48 hrs 

Cleavage Percentage 

of POR-treated for  90 

min 

20 

KGP439 

ND ND 

21 

KGP400 

ND ND 

22 

KGP440 

0.25 NC 

23 

KGP441 

0.84 13.5 

25 

KGP442 

1.59 1.1 

26 

KGP443 

0.69 3.8 

27 

KGP444 

4.03 7.6 

35 

KGP445 

0 NC 

36 

KGP446 

0 NC 

37 

KGP455 

0 14.2 

(23.8% cyclization of 455 to 

445) 

38 

KGP457 

ND 5.6 

(47.8% cyclization of 457 to 

446) 

39 

KGP454 

0 17.9 

(45.9% cyclization of 454 to 

445) 
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40 

KGP456 

0 25.5 

(34.8% cyclization of 456 to 

446) 

41 

KGP461 

100 100 

43 
KGP 370 

0.35 2.7 

44 

KGP 371 

ND 4.1 

45 

KGP 372 

0.69 25.4 

ND= Data not available 

NC= No cleavage 

In preliminary studies, the previously described CA4-BAPCs were treated with 

POR (Table 3.2). After incubation (90 min) in the presence of a PCA/PCD oxygen 

scrubbing system, 43 and 44 underwent minimal cleavage (2.7% and 4.1% respectively) 

while 45 was more efficiently cleaved (25.4%). These results are in accordance with the 

previously reported results from Davis and co-workers that utilized supersomal POR with 

compounds 43, 44, and 45, and demonstrated that 45 cleaved more readily (to release 

CA4) than 43 and 44.
49

 This trend of increased cleavage (from gem-dimethyl to mono-

methyl to nor-methyl) to generate the corresponding parent anticancer agent (CA4 in this 

case) was also observed in the POR treated CA1-BAPCs. The gem-dimethyl CA1-BAPC 

41 and the isopropyl-protected gem-dimethyl BAPC (27) were cleaved more extensively 

in comparison to their corresponding mono-methyl and nor-methyl BAPCs.  The mono-

methyl and nor-methyl CA1-BAPCs (37, 38, 39, 40) were cleaved by POR to differential 

extents, depending on the position of the nitrothiophene side chain (bioreductive trigger) 

and the hydroxyl group. It should be noted that under these assay conditions, these four 

BAPCs (37, 38, 39, 40) underwent cyclization to generate their corresponding cyclized 

analogues 35 or 36. While the mechanism of this cyclization is unknown, it appears to 
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depend, at least to some extent, on the pH of the buffer solution, and under these assay 

conditions cyclization that incorporates the bioreductive trigger was more favorable than 

the desired cleavage of the prodrug trigger. BAPC 41 was the only gem-dimethyl BAPC 

that was fully cleaved (100%) by POR (90 min) in this study, thus its hydrolytic stability 

was further evaluated in the pH 7.4 buffer. The BAPC 41 showed no apparent 

spontaneous hydrolysis at different time intervals for the first 150 min, but it was mostly 

decomposed if incubated in the buffer for 24-48 h. Therefore, the cleavage (100%) of 

BAPC 41 by POR (90 min) was not due to spontaneous hydrolysis in buffer. 

 

 

Table 3.3.  

In Vitro Potency and Hypoxia Cytotoxicity Ratio (HCR) of the CA4 and CA1-BAPCs in 

the A549 Human Cancer Cell Line 

Compound IC50 [oxic]
a
 

(μM)±SD 

IC50 [anoxic]
a
 

(μM)±SD  

HCR 

RB6145 >89.1 9.5±8.2 >9.4 

Tirapazamine 66.5±41.3 7.7±2.2 8.6 

29 

CA1
 

1.2±1.9 0.8±0.5 1.5 

CA4
 0.005±0.0004 0.006±0.0008 0.8 

22 

KGP440 

0.4±0.05 0.5±0.1 0.8 

23 

KGP441 

4.6±0.3 3.3±0.9 1.4 

25 

KGP442 

3.7±4.7 0.6±0.1 6.2 

26 

KGP443 

2.9±0.7 1.2±0.6 2.4 
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27 

KGP444 

1.6±1.5 0.5±0.1 3.2 

35 

KGP445 

ND ND ND 

36 

KGP446 

0.6±0.06 0.7±0.4 0.9 

37 

KGP455 

0.2±0.2 0.3±0.3 0.7 

38 

KGP457 

0.2±0.2 0.3±0.3 0.7 

39 

KGP454 

0.3±0.03 0.7±0.08 0.4 

40 

KGP456 

ND ND ND 

41 

KGP461 

6.0±11.1 0.2±0.1 30 

43 

KGP 370 

0.1±0.1 0.03±0.02 3.3 

44 

KGP 371 

0.2±0.1 0.03±0.01 6.7 

45 

KGP 372 

2.1±3.0 0.05±0.04 42 

a
 Average of n ≥ 3 independent determinations 

The initial cytotoxicity data for the CA1 and CA4 BAPCs showed promise for 

differential activity between oxic and hypoxic environments, with several BAPCs 

demonstrating a positive hypoxia cytotoxicity ratio (HCR). Utilizing an HCR of 6.0 as a 

benchmark to rank effective versus less effective BAPCs, a number of prodrugs stood 

out, notably compounds 25, 41, 44, and 45. The most active prodrugs in the series were 

the gem-dimethyl BAPCs of CA1 (41) and CA4 (45) with HCRs of 30 and 42 

respectively, which was consistent with previous studies by Davis and co-workers that 



84 
 

demonstrated the gem-dimethyl CA4-BAPC had greater resistance to cleavage in oxic 

environments, releasing the parent anticancer agent (CA4) selectively under hypoxic 

conditions.
88

 

 

Materials and Methods 

 

General Materials and Methods 

Acetic acid (AcOH), acetic anhydride, acetonitrile, dichloromethane, 

dimethylformamide (DMF), ethanol, methanol, nitric acid, sulfuric acid, and 

tetrahydrofuran (THF) were used in their anhydrous forms or as obtained from the 

chemical suppliers. Reactions were performed under nitrogen gas. Thin-layer 

chromatography (TLC) plates (precoated glass plates with silica gel 60 F254, 0.25 mm 

thickness) were used to monitor reactions. Purification of intermediates and products was 

carried out with a Biotage Isolera or Teledyne Combiflash flash purification system using 

silica gel (200−400 mesh, 60 Å) or RP-18 pre-packed columns or manually in glass 

columns.  

Intermediates and products synthesized were characterized on the basis of their 
1
H 

NMR (600 or 500 MHz), 
13

C NMR (150, 125 or 90 MHz) and 
31

P NMR (240 MHz) 

spectroscopic data using a Varian VNMRS 500 MHz or a Bruker DRX 600 MHz or a 

Bruker DPX 360 MHz instrument. Spectra were recorded in CDCl3, (CD3)2CO. All 

chemical shifts are expressed in ppm (δ), and peak patterns are reported as broad (br), 

singlet (s), doublet (d), triplet (t), quartet (q), pentet (p), sextet (sext), septet (sept), double 

doublet (dd), double double doublet (ddd), and multiplet (m). 
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Purity of the final compounds was further analyzed at 25 °C using an Agilent 

1200 HPLC system with a diode-array detector (λ = 190−400 nm), a Zorbax XDB-C18 

HPLC column (4.6 mm Å~ 150 mm, 5 μm), and a Zorbax reliance cartridge guard-

column; solvent A acetonitrile, solvent B H2O; Method A: H2O; gradient, 10% A/90% B 

to 100% A/0% B over 0 to 40 min; post-time 10 min, Method B: H2O; gradient, 50% 

A/50% B to 90% A/10% B over 0 to 30 min; post-time 10 min; flow rate 1.0 mL/min; 

injection volume 20 μL; monitored at wavelengths of 210, 230, 254, 280, and 320 nm. 

Mass spectrometry was carried out under either positive or negative ESI (electrospray 

ionization) or positive or negative atmospheric pressure photoionization using a Thermo 

Scientific LTQ OrbitrapDiscovery instrument. 

 

Experimental Section 

 

2,3-Dihydroxy-4-methoxybenzaldehyde (2)
128,129  

2,3,4-Trimethoxybenzaldehyde (4.00 g, 20.4 mmol) was added to dry CH2Cl2 (80 mL) in 

an ice bath (0 °C). Boron trichloride (45 mL, 45 mmol, 1.0 M) was added dropwise to the 

reaction and it was stirred for 18 hours. The reaction was then quenched with NaHCO3 

and acidified to pH 2 with conc. HCl, The product was then extracted with ethyl acetate, 

dried with sodium sulfate, and evaporated under reduced pressure. The crude mixture was 

then filtered through silica gel in a frit funnel with CH2Cl2 and evaporated under reduced 

pressure. Flash chromatography of the crude product using a prepacked 100 g silica 

column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B over 

1.19 min (1 CV), 10% A/90% B  69% A/31% B over 13.12 min (10 CV), 69% A/31% 
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B over 2.38 min (2 CV); flow rate 50.0 mL/min; monitored at λ 254 and 280 nm] yielded 

2,3-dihydroxy-4-methoxybenzaldehyde (2) (2.64 g, 15.7 mmol, 77%) as a yellow solid. 

1
H NMR (500 MHz, CDCl3) δ 11.12 (1H, s), 9.76 (1H, s), 7.15 (1H, d, J = 8.5 Hz), 6.63 

(1H, d, J = 8.5 Hz), 5.46 (1H, s), 3.99 (3H, s). 

13
C NMR (125 MHz, CDCl3) δ 195.2, 153.0, 149.0, 133.0, 126.1, 116.1, 103.6, 56.4. 

 

6-formyl-2-hydroxy-3-methoxyphenyl 4-methylbenzenesulfonate (3)
128,129 

To a solution of aldehyde 2 (1.15 g, 6.76 mmol), and DIPEA (2.50 mL, 14.3 mmol) in 

anhydrous DMF (10 mL) at, p-TSCl (1.29g , 6.73 mmol) was added in portions while 

stirring at room temperature. After stirring for 5 h, the reaction mixture was quenched 

with H2O (20 mL), and extracted with EtOAc (3 × 25 mL). The combined organic phase 

was washed with brine, dried over MgSO4, filtered, and evaporated under reduced 

pressure. Flash chromatography of the crude product using a prepacked 50 g silica 

column [eluents; solvent A, EtOAc, solvent B, hexanes; gradient, 40% A/60% B over 

1.19 min (1 CV), 40% A/60% B →100% A/0% B over 16.3 min (10 CV), 100% A/0% B 

over 3.18 min (2 CV); flow rate 40.0 mL/min; monitored at λ 254 and 280 nm] afforded 

aldehyde 3 (1.33 g, 4.3 mmol, 61% yield) as a white solid. 

1
H NMR (600 MHz, CDCl3) δ 9.85 (1H, s), 7.87 (2H, d, J = 8.3 Hz), 7.50 (1H, d, J = 8.6 

Hz), 7.36 (2H, d, J = 8.0 Hz), 6.90 (1H, d, J = 8.6 Hz), 5.91 (1H, s), 3.97 (3H, s), 2.47 

(3H, s). 

13
C NMR (151 MHz, CDCl3) δ 187.0, 153.2, 146.2, 139.2, 138.2, 132.0, 130.0, 128.7, 

124.1, 120.6, 109.2, 56.7, 21.8. 
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3-Hydroxy-2-isopropoxy-4-methoxybenzaldehyde (4)
128,129  

2,3-Dihydroxy-4-methoxybenzaldehyde (0.400 g, 2.34 mmol), potassium carbonate 

[K2CO3] (0.330 g, 2.38 mmol), and 2-bromopropane (0.21 mL, 2.3 mmol) were dissolved 

in dry DMF (5mL) in a 5 mL Biotage microwave vial. The reaction was run in a Biotage 

microwave reactor (2h, 90 °C, normal absorbance). The reaction was then quenched with 

water, then extracted with ethyl acetate, washed with water and brine, dried with sodium 

sulfate, and evaporated under reduced pressure. Flash column  chromatography of the 

crude product using a prepacked 50 g silica column [eluents: solvent A, EtOAc; solvent 

B, hexanes; gradient, 10% A/90% B over 1.19 min (1 CV), 10% A/90% B  54% 

A/46% B over 13.12 min (10 CV), 54% A/46% B over 2.38 min (2 CV); flow rate 40.0 

mL/min; monitored at λ 254 and 280 nm] yielded 3-hydroxy-2-isopropoxy-4-

methoxybenzaldehyde (4) (0.220 g, 1.05 mmol, 44%) as a tan solid. 

1
H NMR (CDCl3, 500 MHz) δ 10.25 (1H, s), 7.44 (1H, d, J = 8.7 Hz), 6.74 (1H, d, J = 

8.7 Hz), 5.65 (1H, s), 4.70 (1H, hept, J = 6.1 Hz), 3.96 (3H, s), 1.36 (7H, d, J = 6.1 Hz) 

13
C NMR (151 MHz, CDCl3) δ 189.7, 152.8, 147.9, 138.6, 124.3, 120.4, 106.2, 77.0, 

56.4, 22.4. 

 

2,3-bis((tert-butyldimethylsilyl)oxy)-4-methoxybenzaldehyde (5)
128,129 

To a solution of 2,3-dihydroxy-4-methoxybenzaldehyde (1.00 g, 5.95 mmol), Et3N (2.00 

mL, 14.3 mmol),  and DMAP (0.025 g,  0.200 mmol) in CH2Cl2 (30 mL), TBSCl (2.10 g, 

13.9 mmol) was dissolved in DMF and added drop-wise. The reaction was allowed to stir 

for 12 h at room temperature. H2O was used to quench the reaction and the residue was 

extracted with CH2Cl2 (3 × 20 mL). The combined extracts were washed with brine, dried 
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over Na2SO4, filtered, and concentrated under reduced pressure. The crude product was 

purified by flash chromatography using a pre-packed 25 g silica column [solvent A: 

EtOAc; solvent B: hexanes; gradient: 5%A / 95%B (1 CV), 5%A / 95%B → 40%A / 

60%B (10 CV), 40%A / 60%B (2 CV); flow rate: 75 mL/min; monitored at 254 and 280 

nm] affording 2,3-bis((tert-butyldimethylsilyl)oxy)-4-methoxybenzaldehyde (0.650 g, 

1.64 mmol, 65%) as a white solid. 

1
H NMR (600 MHz, CDCl3) δ 10.22 (1H, s), 7.48 (1H, d, J = 8.8 Hz), 6.62 (1H, d, J = 

8.8 Hz), 3.84 (3H, s), 1.04 (9H, s), 0.99 (9H, s), 0.13 (12H, s). 

13
C NMR (151 MHz, CDCl3) δ 189.6, 157.9, 151.3, 137.1, 123.6, 121.7, 105.7, 55.5, 

26.5, 26.4, 19.1, 18.9, -3.5. 

 

2-((tert-butyldimethylsilyl)oxy)-6-formyl-3-methoxyphenyl 4-

methylbenzenesulfonate (6)
128,129 

Aldehyde 3 (0.501 g, 1.77 mmol), Et3N (2.00 mL, 14.3 mmol), and DMAP (0.035 g, 0.28 

mmol) were dissolved in dry CH2Cl2 (45 mL). TBSCl (0.327 g, 2.17 mmol) was added 

and the reaction was stirred for 18 hours. The reaction was quenched with water, 

extracted with diethyl ether, washed with water and brine, dried with sodium sulfate, and 

evaporated under reduced pressure flash column chromatography of the crude product 

using a prepacked 50 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; 

gradient, 12% A/88% B over 1.19 min (1 CV), 12% A/88% B  54% A/46% B over 

13.12 min (10 CV), 54% A/46% B over 2.38 min (2 CV); flow rate 35.0 mL/min; 

monitored at λ 254 and 280 nm] yielded aldehyde 6 (0.610 g, 1.40 mmol, 79%) as a white 

solid. 
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1
H NMR (500 MHz, CDCl3) δ 9.60 (1H, d, J = 0.47 Hz), 7.71 (2H, d, J = 8.34 Hz), 7.52 

(1H, d, J = 8.70 Hz), 7.32 (2H, d, J = 8.05 Hz), 6.87 (1H, d, J = 8.63 Hz), 3.87 (3H, s), 

2.45 (3H, s), 0.97 (9H, s), 0.10 (6H, s). 

13
C NMR (126 MHz, CDCl3) δ 186.7, 157.3, 145.9, 143.0, 138.9, 132.1, 129.9, 128.5, 

124.0, 121.3, 109.8, 55.6, 25.7, 21.7, 18.6, -4.4. 

 

3-((tert-butyldimethylsilyl)oxy)-2-isopropoxy-4-methoxybenzaldehyde (7)
128,129 

Aldehyde 4 (1.39 g, 6.61 mmol), Et3N (1.40 mL, 9.91 mmol), and DMAP (0.050 g, 0.40 

mmol) were dissolved in dry CH2Cl2 (50 mL). TBSCl (1.50 g, 9.95 mmol) was added and 

the reaction was stirred for 18 hours. The reaction was quenched with water, extracted 

with diethyl ether, washed with water and brine, dried with sodium sulfate, and 

evaporated under reduced pressure. Flash column chromatography of the crude product 

using a prepacked 50 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; 

gradient, 12% A/88% B over 1.19 min (1 CV), 12% A/88% B  54% A/46% B over 

13.12 min (10 CV), 54% A/46% B over 2.38 min (2 CV); flow rate 35.0 mL/min; 

monitored at λ 254 and 280 nm] yielded aldehyde 7 (1.53 g, 4.71 mmol, 71%) as a white 

solid. 

1
H NMR (600 MHz, CDCl3) δ 10.11 (1H, s), 7.35 (1H, d, J = 8.7 Hz), 6.56 (1H, d, J = 

8.7 Hz), 4.60 – 4.45 (1H, m), 3.71 (3H, s), 1.11 (3H, s), 1.10 (3H, s), 0.86 (9H, d, J = 2.0 

Hz), 0.00 (6H, s). 

13
C NMR (151 MHz, CDCl3) δ 190.0, 157.4, 152.7, 138.4, 125.2, 121.4, 106.9, 75.5, 

55.5, 25.9, 22.3, 18.7, -4.3. 
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3,4,5-Trimethoxybenzylbromide (9)
128,129 

The mixture of 3,4,5-trimethoxybenzylalcolol (20.1g, 101.4 mmol) and PBr3 (4.8 mL, 

50.7 mmol) in anhydrous CH2Cl2 was stirred for 1 h at 0 
o
C under nitrogen. Water (10 

mL) was added, and the organic layer was separated and extracted with CH2Cl2 (2 x 100 

mL). The combined organic layer was washed with brine, dried over Na2SO4, filtered, 

and evaporated under reduced pressure. After the recrystallization of the crude solid with 

10% (EtOAc/hexane), the off-white solid of bromide 9 (23.6 g, 90.3 mmol, 89% yield) 

was obtained, which needed no further purification. 

1
H NMR (500 MHz, CDCl3) δ 6.62 (2H, s, H-2, H-6), 4.47 (2H, s, benzylic CH2), 3.87 

(6H, s, C-3, C-5 OCH3), 3.85 (3H, s, C-4 OCH3). 

13
C NMR (125 MHz, CDCl3) δ 153.3 (C, C-3, C-5), 138.2 (C, C-4), 133.2 (C, C-1), 

106.1 (CH, C-2, C-6), 60.9 (CH3, OCH3-4), 56.1 (CH3, OCH3-3, -5), 34.3 (CH2, -CH2Br). 

 

3,4,5-Trimethoxybenzyltriphenylphosphonium Bromide (10)
128,129 

A mixture of bromide 9 (11.00 g, 42.1 mmol), and PPh3 (12.1 g, 46.3 mmol) in acetone 

(100 mL, anhydrous) was stirred in a flask under N2. After 5 h, the resulting suspension 

was filtered through a Buchner funnel, and the solid was washed with acetone (100 mL) 

and hexanes (50 mL) to afford an off-white solid. The solid was dried in vacuo to obtain 

the phosphonium salt 10 (20.3 g, 38.2 mmol, 92% yield) as a white solid. 

1
H NMR (600 MHz, CDCl3) δ 7.74 – 7.64 (9H, m, ArH), 7.58 – 7.50 (6H, m, ArH), 6.43 

(2H, d, J = 2.6 Hz), 5.29 (2H, d, J = 14.1 Hz, benzylic CH2 ), 3.70 (3H, d, J = 3.4 Hz), 

3.43 (6H, d, J = 3.7 Hz)  
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13
C NMR (125 MHz, CDCl3): δ 153.0 (C, C-3, C-5), 137.6 (C, C-4), 134.8 [CH, Ph(C-

4)], 134.6 [CH, Ph(C-3, C-5)], 130.0 [CH, Ph(C-2, C-6)], 122.4 (C, C-1), 117.8 [C, Ph(C-

1)], 108.8 (CH, C-2, C-6), 60.8 (CH3, OCH3-4), 56.2 (CH3, OCH3-3, -5), 30.8 (CH2, -

CH2P). 
31

P NMR (243 MHz, CDCl3) δ 23.2. 

 

(Z)-2-((tert-butyldimethylsilyl)oxy)-3-methoxy-6-(3,4,5-trimethoxystyryl)phenyl 4-

methylbenzenesulfonate (11)
128,129 

Triphenyl(3,4,5-trimethoxybenzyl)phosphonium bromide (3.25 g, 6.20 mmol) was 

dissolved in dry THF (90 mL) in an ice/salt bath (-10 °C). n-Butyllithium (2.4 mL, 6.0 

mmol, 2.5 M) was added dropwise and the reaction was stirred for 30 minutes. The 

aldehyde 6 (2.01 g, 4.60 mmol) was dissolved in dry THF (30 mL), added dropwise to 

the reaction mixture, and stirred for 5 hours. The reaction was quenched with water, and 

the THF was evaporated under reduced pressure. The mixture was extracted with ethyl 

acetate, washed with water and brine, dried with sodium sulfate, and evaporated under 

reduced pressure. Flash chromatography of the crude product using a prepacked 100 g 

silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B 

over 1.19 min (1 CV), 10% A/90% B  80% A/20% B over 13.12 min (10 CV), 80% 

A/20% B over 2.38 min (2 CV); flow rate 35.0 mL/min; monitored at λ 254 and 280 nm] 

yielded Z-isomer 11 (1.11 g, 1.84 mmol, 40%) as a white solid. 

1
H NMR (500 MHz, CDCl3)  δ 7.82 (2H, d, J = 8.5 Hz), 7.25 (2H, d, J = 8 Hz), 6.77 

(1H, d, J = 8.5 Hz), 6.61 (1H, d, 8.5 Hz), 6.44 (2H, s), 6.19 (1H, d, J = 12 Hz), 6.16 (1H, 

d, J = 12 Hz), 3.82 (3H, s), 3.76 (3H, s), 3.67 (6H, s), 0.95 (9H, s), 0.04 (6H, s). 
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13
C NMR (125 MHz, CDCl3) δ 152.6, 151.3, 144.8, 140.2, 139.1, 134.5, 132.2, 130.4, 

129.5, 128.4, 125.3, 124.7, 122.1, 109.5, 106.1, 60.8, 55.8, 55.4, 25.8, 25.7, 25.6, 21.6, 

18.7, -4.5. 

 

(Z)-tert-butyl(2-isopropoxy-6-methoxy-3-(3,4,5-trimethoxystyryl)phenoxy)-

dimethylsilane (12)
128,129 

Triphenyl(3,4,5-trimethoxybenzyl)phosphonium bromide (1.94 g, 3.70 mmol) was 

dissolved in dry THF (50 mL) and cooled to -15 
o
C.  n-Butyllithium (2.5 M in hexane, 

1.78 mL, 4.44 mmol, 2.5 M) was added dropwise and the reaction was stirred for 25 

minutes. The reaction mixture was cooled to -78 
o
C, and a solution of aldehyde 7 in THF 

(30 mL) was added drop wise and the reaction was stirred for 5 hours. The reaction was 

quenched with water, and the THF was evaporated under reduced pressure. The mixture 

was extracted with ethyl acetate, washed with water and brine, dried with sodium sulfate, 

and evaporated under reduced pressure. The crude product was purified using flash 

column chromatography to yield Z-isomer (after separating it from E-isomer) (0.982 g, 

2.01 mmol, 65%) as a reddish/white solid. 

1
H NMR (600 MHz, CDCl3) δ 6.83 (1H, d, J=8.6 Hz), 6.62 (1H, d, J=12.1 Hz), 6.52 

(2H, s), 6.45 (1H, d, J=8.6 Hz), 6.41 (1H, d, J=12.1 Hz), 4.61 (1H, hept, J=6.1 Hz), 3.82 

(3H, s), 3.76 (3H, s), 3.65 (6H, s), 1.27 (6H, d, J=6.1 Hz), 1.02 (10H, s), 0.14 (6H, s). 

13
C NMR (151 MHz, CDCl3) δ 152.7, 151.4, 148.0, 138.6, 136.8, 132.9, 128.5, 126.9, 

125.1, 122.4, 106.0, 105.9, 74.2, 60.9, 55.8, 55.2, 25.9, 22.3, 18.7, -4.4. 
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(Z)-((3-methoxy-6-(3,4,5-trimethoxystyryl)-1,2-phenylene)bis(oxy))bis(tert-

butyldimethylsilane) (13)
128,129 

n-Butyllithium (11.4 mL, 2.5M) was added to a solution of phosphonium salt (11.2 g, 

21.4 mmol) in THF (350 mL). The resulting solution was allowed to stir for 15 min at -78 

°C. Aldehyde 5 (5.66 g, 14.3 mmol) was dissolved in THF and added drop-wise using a 

dropping funnel. The reaction was allowed to stir for 5 h. H2O was used to quench the 

reaction and the residue was extracted with Et2O. The combined extracts were washed 

with brine, dried over Na2SO4, filtered, and concentrated under reduced pressure. The 

crude product was purified by flash column chromatography using a pre-packed 340 g 

silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 5%A / 95%B (1 CV), 

5%A / 95%B → 30%A / 70%B (10 CV), 30%A / 70%B (2 CV); flow rate: 85 mL/min; 

monitored at 254 and 280 nm] affording compound 13 (2.89 g, 5.15 mmol, 51%) as a 

white solid. 

1
H NMR (500 MHz, CDCl3, ) δ 6.91 (1H, d, J=8.6 Hz), 6.62 (2H, s), 6.58 (1H, d, J=12.2 

Hz), 6.37 (1H, d, J=9.2 Hz), 6.37 (1H, d, J=12 Hz), 3.83 (3H, s), 3.74 (3H, s), 3.67 (6H, 

s), 1.04 (9H, s), 1.00 (9H, s), 0.19 (6H, s), 0.10 (6H, s). 

13
C NMR (151 MHz, CDCl3) δ 153.0, 152.0, 146.5, 137.1, 133.1, 128.0, 127.7, 123.5, 

122.5, 106.2, 104.5, 61.2, 56.1, 55.3, 26.7, 26.4, 19.1, -2.9, -3.6. 

 

 

Synthesis of Compounds 16, 17 and 19 using Old Route
144 

(5-nitrothiophen-2-yl)methanol (16)
144 
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5-Nitrothiophene-2-carboxaldehyde (1.00 g, 6.38 mmol) was dissolved in dry methanol 

(20 mL) in an ice bath (0 °C). Sodium borohydride (0.270 g, 7.14 mmol) was added and 

the reaction was stirred for two hours. Ice was added and the solution was acidified to pH 

7 with 3 M HCl. The reaction was extracted with ethyl acetate, dried with sodium sulfate, 

and evaporated under reduced pressure. Flash chromatography of the crude product using 

a prepacked 50 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 

10% A/90% B over 1.19 min (1 CV), 10% A/90% B  65% A/35% B over 13.12 min 

(10 CV), 65% A/35% B over 2.38 min (2 CV); flow rate 50.0 mL/min; monitored at λ 

254 and 280 nm] yielded alcohol 16 (0.914 g, 5.74 mmol, 90%) as a brown oil. 

1
H NMR (500 MHz, CDCl3) δ 7.84 (1H, d, J = 4 Hz), 6.96 (1H, d, J = 4 Hz), 4.91 (2H, 

d, J = 5.5), 2.20 (1H,s). 

13
C NMR (126 MHz, CDCl3) δ 153.4, 150.9, 128.9, 123.6, 60.4. 

 

1-(5-nitrothiophen-2-yl)ethan-1-ol (17)
144 

2-Acetyl-5-nitrothiophene (1.00 g, 5.85 mmol) was dissolved in dry methanol [MeOH] 

(20 mL) in an ice bath (0 °C). Sodium borohydride [NaBH4] (0.259 g, 6.71 mmol) was 

added and the reaction was stirred for two hours. Ice was added to the reaction and it was 

acidified to neutral pH with 3 M HCl. The solution was then extracted with ethyl acetate, 

dried with sodium sulfate, and evaporated under reduced pressure. Flash chromatography 

of the crude product using a prepacked 50 g silica column [eluents: solvent A, EtOAc; 

solvent B, hexanes; gradient, 10% A/90% B over 1.19 min (1 CV), 10% A/90% B  

64% A/36% B over 13.12 min (10 CV), 64% A/36% B over 2.38 min (2 CV); flow rate 
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50.0 mL/min; monitored at λ 254 and 280 nm] yielded mono methyl trigger 17 (0.932 g, 

5.38 mmol, 92%) as a brown oil. 

1
H NMR (500 MHz, CDCl3) δ 7.81 (1H, d, J = 4 Hz), 6.90 (1H, d, J = 4 Hz), 5.15 (1H, 

dq, J = 6 Hz, J = 5 Hz), 2.23 (1H, d, J = 5 Hz), 1.63 (3H, d, J = 6 Hz). 

13
C NMR (125 MHz, CDCl3) δ 160.0, 149.9, 129.1, 122.2, 66.3, 25.1. 

 

2-(Thiophen-2-yl)propan-2-ol (18)
88 

2-Acetylthiophene (10.0 g, 79.2 mmol) was dissolved in dry THF (100 mL) in an ice bath 

(0 °C). Methyllithium (64 mL, 103 mmol, 1.6 M) was added dropwise and the reaction 

was stirred for 18 hours. The reaction was quenched with water and evaporated under 

reduced pressure. The reaction was then extracted with ethyl acetate, dried with sodium 

sulfate, and evaporated under reduced pressure. Flash chromatography of the crude 

product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, 

hexanes; gradient, 12% A/88% B over 1.19 min (1 CV), 12% A/88% B  100% A/0% B 

over 13.12 min (10 CV), 100% A/0% B over 2.38 min (2 CV); flow rate 50.0 mL/min; 

monitored at λ 254 and 280 nm] yielded 2-(thiophen-2-yl)propan-2-ol (18) (3.60 g, 25.3 

mmol 32%) as a yellow oil. 

1
H NMR (500 MHz, CDCl3)  δ 7.20 (1H, dd, J = 5 Hz, J = 1.5 Hz), 6.97 (2H, m), 2.04 

(1H, s), 1.68 (6H, s). 

 

2-(5-nitrothiophen-2-yl)propan-2-ol (19)
144

 

The tertiary alcohol 18 (6.22 g, 4.37 mmol) was dissolved in Ac2O (67 mL) and cooled to 

-78 
o
C. Fuming nitric acid (25 mL) was added drop wise and the reaction mixture was 
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stirred for 2 h allowing the reaction mixture to warm to -15 
o
C. Ice (200 g) was added to 

the solution and stirred for 40 min. The reaction mixture was extracted with EtOAc (3×75 

mL) and washed repeadadly with brine, water and saturated sodium bicarbonate, dried 

over Na2SO4, filtered and concentrated under reduced pressure. The crude product was 

purified using flash column chromatography affording the alcohol product 19 (0.655 g, 

0.35 mmol, 8%) as an orange wax. 

1
H NMR (CDCl3, 600 MHz) δ 7.79 (1H, d, J=4.2 Hz), 6.87 (1H, d, J=4.2 Hz), 2.13 (1H, 

s), 1.67 (3H, s).
 

13
C NMR (151 MHz, CDCl3) δ 163.6, 133.9, 128.9, 121.4, 72.0, 32.2. 

 

Synthesis of Compounds 15, 17 and 19 using New Route 

1-(5-nitrothiophen-2-yl)ethan-1-ol (17)
144  

Titanium tetrachloride (7.84 g, 41.3 mmol) was added slowly dropwise into Et2O (80 

mL) at -78 °C, after which methyllithium (1.6 M, 25.8 mL, 41.3 mmol) was added 

dropwise and the reaction was stirred for 1.5 hours. 5-nitro-2-thiophenecarboxaldehyde 

(5.00g, 31.8 mmol) was dissolved in Et2O (120 mL) and added dropwise to the reaction.  

The reaction was stirred (12 hr) and H2O (50 mL) was used to quench the reaction. The 

layers were partitioned, and the residue was extracted with EtOAc (6 × 40 mL). The 

combined extracts were washed with brine, dried over Na2SO4, filtered, and concentrated 

under reduced pressure. The crude product was purified by flash column chromatography 

using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 

10%A / 90%B (1 CV), 10%A / 90%B → 73%A / 27%B (13 CV), 73%A / 27%B (2 CV); 
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flow rate: 100 mL/min; monitored at 254 and 280 nm] affording compound 17 (4.95 g, 

28.6 mmol, 90%) as a dark brown oil. 

1
H NMR (500 MHz, CDCl3)  δ 7.81 (1H, d, J = 4 Hz), 6.90 (1H, d, J = 4 Hz), 5.15 (1H, 

dq, J = 6 Hz, J = 5 Hz), 2.23 (1H, d, J = 5 Hz), 1.63 (3H, d, J = 6 Hz).  

13
C NMR (125 MHz, CDCl3) δ 160.0, 149.9, 129.1, 122.2, 66.3, 25.1. 

 

1-(5-nitrothiophen-2-yl)ethan-1-one (15) 

2-(1-hydroxyethyl)-5-nitrothiophene (1.04 g, 6.00 mmol) was dissolved in 70 mL CH2Cl2 

at rt. Dess-Martin periodinane (3.82 g, 9.00mmol) was added in portions to the solution 

and the reaction was stirred (1 hr). Saturated sodium thiosulfate solution (50 mL) and 

saturated sodium bicarbonate solution (50 mL) were used to quench the reaction. The 

layers were partitioned, and the residue was extracted with EtOAc (4 x 30 mL). The 

combined extracts were washed with brine, dried over Na2SO4, filtered, and concentrated 

under reduced pressure. The crude product was purified by flash chromatography using a 

pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 

90%B (1 CV), 10%A / 90%B → 80%A / 20%B (13 CV), 80%A / 20%B (2 CV); flow 

rate: 100 mL/min; monitored at 254 and 280 nm] affording compound 15 (0.873 g, 5.10 

mmol, 90%) as a yellow-orange crystals. 

1
H NMR (600 MHz, CDCl3) δ 7.89 (1H, d, J=4.3 Hz), 7.58 (1H, d, J=4.3 Hz), 2.60 (3H, 

s) 

13
C NMR (151 MHz, CDCl3) δ 190.5, 156.5, 148.2, 130.2, 128.4, 26.6. 
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2-(5-nitrothiophen-2-yl)propan-2-ol (19)
103  

Titanium tetrachloride (3.62 g, 19.1 mmol) was added slowly dropwise into Et2O (80 

mL) at -78 °C, after which methyllithium (1.6 M, 11.9 mL, 19.1 mmol) was added 

dropwise and the reaction was stirred for 1.5 hours. 2-acetyl-5-nitrothiophene (2.50 g, 

14.7 mmol) was dissolved in Et2O (140 mL) and added dropwise to the reaction.  The 

reaction was stirred (12 hr) and H2O (50 mL) was used to quench the reaction. The layers 

were partitioned, and the residue was extracted with EtOAc (6 × 40 mL). The combined 

extracts were washed with brine, dried over Na2SO4, filtered, and concentrated under 

reduced pressure. The crude product was purified by flash column chromatography using 

a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A 

/ 90%B (1 CV), 10%A / 90%B → 70%A / 30%B (13 CV), 70%A / 30%B (2 CV); flow 

rate: 100 mL/min; monitored at 254 and 280 nm] affording compound 19 (1.61 g, 8.60 

mmol, 45%) as a dark orange oil. 

1
H NMR (CDCl3, 600 MHz) δ 7.79 (1H, d, J=4.2 Hz), 6.87 (1H, d, J=4.2 Hz), 2.13 (1H, 

s), 1.67 (3H, s).
 

13
C NMR (151 MHz, CDCl3) δ 163.6, 133.9, 128.9, 121.4, 72.0, 32.2. 

 

(Z)-2-hydroxy-3-methoxy-6-(3,4,5-trimethoxystyryl)phenyl 4-methylbenzene-

sulfonate (20)
128,129 

To a solution of Z-stilbene 11 (0.754 g, 1.26 mmol) in dry THF (40 mL) at -15 °C, 

TBAF∙ 3H2O (3.8 mL, 3.8 mmol) was dissolved in THF (10 mL) and added drop-wise. 

The reaction was allowed to stir for 12 h. H2O (40 mL) was used to quench the reaction, 

THF was evaporated off completely, and the residue was extracted with EtOAc (3 × 20 
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mL). The combined extracts were washed with brine, dried over Na2SO4, filtered, and 

concentrated under reduced pressure. The crude product was purified by flash 

chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient: 12%A / 88%B (1 CV), 12%A / 88%B → 82%A / 18%B (10 CV), 

82%A / 18%B (2 CV); flow rate: 35 mL/min; monitored at 254 and 280 nm] afforded 

compound 20 (0.429 g, 0.882 mmol, 70%) as a dark green solid. 

1
H NMR (500 MHz, CDCl3) δ 7.91 (1H, d, J=8.1 Hz), 7.29 (1H, d, J=8.0 Hz), 6.71 (1H, 

d, J=8.6 Hz), 6.62 (1H, d, J=8.6 Hz), 6.42 (1H, s), 6.36 (1H, d, J=12.0 Hz), 6.32 (1H, d, 

J=12.0 Hz), 5.89 (1H, s), 3.86 (3H, s), 3.82 (3H, s), 3.66 (6H, s), 2.42 (2H, s). 

13
C NMR (126 MHz, CDCl3) δ 151.9, 146.6, 144.5, 138.5, 136.4, 134.5, 132.7, 131.2, 

130.5, 128.7, 127.7, 124.9, 123.4, 119.9, 108.3, 105.4, 75.9, 60.0, 55.6, 55.0, 20.9. 

 

(Z)-2-isopropoxy-6-methoxy-3-(3,4,5-trimethoxystyryl)phenol (21)
128,129 

To a solution of compound 12 (0.150 g, 0.251 mmol) in THF (5 mL) at room 

temperature, TBAF∙ 3H2O (0.0952 g, 0.302 mmol) was dissolved in THF and added 

drop-wise. The reaction was allowed to stir for 0.5 h. H2O (5 mL) was used to quench the 

reaction, THF was evaporated off completely, and the residue was extracted with EtOAc 

(3 × 10 mL). The combined extracts were washed with brine, dried over Na2SO4, filtered, 

and concentrated under reduced pressure. The crude product was purified by flash 

chromatography using a pre-packed 10 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B → 60%A / 40%B (13 CV), 60%A 

/ 40%B (2 CV); flow rate: 8 mL/min; monitored at 254 and 280 nm] affording compound 

21 (0.135 g, 0.361 mmol, 90%) as a white solid. 
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1
H NMR (500 MHz, CDCl3) δ 6.75 (1H, d, J=8.6 Hz), 6.59 (1H, d, J=12.1 Hz), 6.51 

(1H, d, J=8.7 Hz), 6.51 (2H, s), 6.46 (1H, d, J=12.1 Hz), 5.60 (1H, s), 4.56 (1H, hept, 

J=6.1 Hz), 3.86 (3H, s), 3.82 (3H, s), 3.66 (6H, s), 1.32 (6H, d, J=6.2 Hz). 

13
C NMR (126 MHz, CDCl3) δ 152.7, 146.9, 143.2, 138.9, 137.1, 132.5, 129.4, 125.8, 

124.1, 120.5, 106.3, 106.0, 75.7, 60.9, 56.2, 55.8, 22.5. 

HRMS: m/z: obsd 397.1713 [M+Na]
+
, calcd for C21H26O6

+
, 397.1713.  

HPLC (Method A): 14.7 min. 

 

(Z)-3-methoxy-2-((5-nitrothiophen-2-yl)methoxy)-6-(3,4,5-trimethoxystyryl)phenyl 

4-methylbenzenesulfonate (22) 

To a solution of compound 20 (0.700 g, 1.44 mmol), nor-methyl trigger 16 (0.191 g, 1.20 

mmol), and DIAD (0.32 mL) in CH2Cl2 (10 mL), PPh3 (0.610 g, 2.33 mmol) was 

dissolved in CH2Cl2 and added drop-wise. The reaction was allowed to stir for 12 h at 

room temperature. H2O was used to quench the reaction and the residue was extracted 

with CH2Cl2 (3 × 30 mL). The combined extracts were washed with brine, dried over 

Na2SO4, filtered, and concentrated under reduced pressure. The crude product was 

purified by flash chromatography using a pre-packed 25 g silica column [solvent A: 

EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B → 80%A / 

20%B (10 CV), 80%A / 20%B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 

nm] affording tosyl-protected CA1 nor-methyl BAPC 22 (0.125 g, 0.236 mmol, 47%) as 

a tan-white solid. 

1
H NMR (600 MHz, CDCl3) δ 7.84 (2H, d, J=8.2 Hz), 7.77 (1H, d, J=4.1 Hz), 7.24 (2H, 

d, J=8.1 Hz), 6.94 (1H, d, J=8.7 Hz), 6.90 (1H, d, J=4.1 Hz), 6.69 (1H, d, J=8.8 Hz), 6.46 



101 
 

(2H, s), 6.40 (1H, d, J=11.9 Hz), 6.33 (1H, d, J=11.9 Hz), 5.06 (2H, s), 3.85 (3H, s), 3.83 

(3H, s), 3.68 (6H, s), 2.40 (3H, s). 

13
C NMR (151 MHz, CDCl3) δ 152.8, 152.5, 151.8, 147.9, 145.2, 141.8, 140.3, 137.2, 

134.3, 132.0, 131.7, 129.6, 128.3, 128.1, 126.1, 125.9, 125.8, 124.0, 110.4, 106.1, 69.0, 

60.9, 56.2, 55.9, 21.7. 

HRMS: m/z: obsd 650.1120 [M+Na]
+
, calcd for C30H29NO10S2

+
, 627.1233.  

HPLC (Method A): 18.5 min. 

 

(Z)-3-Methoxy-2-(2-(5-nitrothiophen-2-yl)propoxy)-6-(3,4,5-trimethoxystyryl)-

phenyl-4-methylbenzenesulfonate (23) 

To a solution of compound 20 (0.200 g, 0.411 mmol), DIAD (0.100 g, 0.495 mmol), and 

1-(5-nitrothiophen-2-yl) ethanol (0.059 g, 0.34 mmol) in CH2Cl2 (25 mL), 

triphenylphosphine (0.216 g, 0.822 mmol) was added and the reaction was stirred for 24 

h. The reaction was quenched with water, extracted with ethyl acetate, dried with sodium 

sulfate, and evaporated under reduced pressure. Flash chromatography of the crude 

product using a prepacked 25 g silica column [eluents: solvent A, EtOAc; solvent B, 

hexanes; gradient, 12% A/88% B over 1.19 min (1 CV), 12% A/88% B  100% A/0% B 

over 13.12 min (10 CV), 100% A/0% B over 2.38 min (2 CV); flow rate 25.0 mL/min; 

monitored at λ 254 and 280 nm] yielded (Z)-3-methoxy-2-(2-(5-nitrothiophen-2-

yl)propoxy)-6-(3,4,5-trimethoxystyryl)phenyl-4-methylbenzenesulfonate (23) (0.160 g, 

0.249 mmol, 61%) as a yellow solid. 

1
H NMR (500 MHz, CDCl3) δ 7.90 (1H, d, J = 4.3 Hz), 7.86 (2H, d, J = 8.3 Hz), 7.44  

(2H, d, J = 8.3 Hz), 7.01 (1H, d, J = 8.8 Hz), 6.99 (2H, m), 6.57 (2H, s), 6.51 (1H, d, J = 
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12.0 Hz), 6.44 (1H, d, J = 11.9 Hz), 5.47 (1H, q, J = 6.5 Hz), 3.90 (3H, s), 3.73 (3H, s), 

3.66 (6H, s), 2.44 (3H, s), 1.43 (3H, d, J = 6.5 Hz). 

13
C NMR (125 MHz, CDCl3) δ 159.6, 158.2, 158.1, 150.5, 147.2, 144.2, 139.9, 137.2, 

136.8, 134.9, 133.5, 131.1, 130.9, 129.5, 129.1, 116.0, 111.7, 80.7, 73.4, 64.8, 60.9, 60.5, 

26.5, 26.0, 25.8.  

HRMS: m/z: obsd 642.1465 [M+H]
+
, calcd for C31H31NO10S2

+
, 641.1389.  

HPLC (Method A): 18.2 min. 

 

(Z)-2-((2-isopropoxy-6-methoxy-3-(3,4,5-trimethoxystyryl)phenoxy)methyl)-5-

nitrothiophene (24) 

To a solution of isopropyl protected CA1 21 (0.350 g, 0.843 mmol), nor-methyl trigger 

16 (0.162 g, 1.02 mmol), and DEAD (0.220 mL) in CH2Cl2 (10 mL), PPh3 (0.430 g, 1.64 

mmol) was dissolved in CH2Cl2 and added drop-wise. The reaction was allowed to stir for 

24 h at room temperature. H2O (40 mL) was used to quench the reaction and the residue 

was extracted with CH2Cl2 (3 × 20 mL). The combined extracts were washed with brine, 

dried over Na2SO4, filtered, and concentrated under reduced pressure. The crude product 

was purified by flash chromatography using a pre-packed 25 g silica column [solvent A: 

EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B → 80%A / 

20%B (10 CV), 80%A / 20%B (2 CV); flow rate: 17 mL/min; monitored at 254 and 280 

nm] affording CA1-BAPC 24 (0.0600 g, 0.116 mmol, 17%) as a yellow oil. 

1
H NMR (500 MHz, CDCl3) δ 7.82 (1H, d, J=4.1 Hz), 7.02 (1H, d, J=8.8 Hz), 7.00 (1H, 

d, J=4.2 Hz), 6.60 (1H, d, J=12.1 Hz), 6.53 (1H, d, J=8.7 Hz), 6.50 (2H, s), 6.47 (1H, d, 
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J=12.1 Hz), 5.17 (1H, s), 4.60 (1H, p, J=6.2 Hz), 3.83 (3H, s), 3.82 (3H, s), 3.67 (6H, s), 

1.32 (3H, s), 1.31 (3H, s). 

13
C NMR (126 MHz, CDCl3) δ 152.8, 152.8, 151.7, 149.9, 149.0, 140.6, 137.1, 132.6, 

129.3, 128.2, 125.9, 125.7, 125.3, 125.1, 106.8, 106.0, 76.0, 69.2, 60.9, 55.9, 55.8, 22.6. 

HRMS: m/z: obsd 538.1506 [M+23]
+
, calcd for C26H29NO8S

+
 515.1614.  

HPLC (Method A): 14.7 min. 

 

(Z)-2-(1-(2-isopropoxy-6-methoxy-3-(3,4,5-trimethoxystyryl)phenoxy)ethyl)-5-

nitrothiophene (25) 

To a solution of isopropyl protected CA1 21 (0.267 g, 0.715 mmol), mono-methyl trigger 

17 (0.136 g, 0.785 mmol), and DIAD (0.190 mL) in CH2Cl2 (10 mL), PPh3 (0.364 g, 1.39 

mmol) was dissolved in CH2Cl2 and added drop-wise. The reaction was allowed to stir for 

12 h at room temperature. H2O was used to quench the reaction and the residue was 

extracted with CH2Cl2 (3 × 20 mL). The combined extracts were washed with brine, dried 

over Na2SO4, filtered, and concentrated under reduced pressure. The crude product was 

purified by flash column chromatography using a pre-packed 25 g silica column [solvent 

A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B → 80%A 

/ 20%B (10 CV), 80%A / 20%B (2 CV); flow rate: 75 mL/min; monitored at 254 and 280 

nm] yielding CA1-BAPC 25 (0.125 g, 0.236 mmol, 47%) as a yellow oil. 

1
H NMR (600 MHz, CDCl3) δ 7.78 (1H, d, J=4.2 Hz), 6.99 (1H, d, J=8.7 Hz), 6.91 (1H, 

d, J=4.1 Hz), 6.59 (1H, d, J=12.1 Hz), 6.49 (1H, d, J=8.6 Hz), 6.47 (2H, s), 6.45 (1H, d, 

J=12.2 Hz), 5.49 (1H, q, J=6.4 Hz), 4.61 (1H, hept, J=6.1 Hz), 3.82 (3H, s), 3.75 (3H, s), 

3.65 (6H, s), 1.66 (3H, d, J=6.5 Hz), 1.30 (3H, d, J=6.1 Hz), 1.26 (3H, d, J=6.1 Hz). 
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13
C NMR (151 MHz, CDCl3) δ 155.2, 153.1, 152.8, 151.0, 150.2, 139.2, 137.0, 132.6, 

129.2, 128.1, 125.9, 125.9, 125.3, 123.5, 106.6, 105.9, 75.7, 75.4, 60.9, 55.9, 55.8, 22.6, 

22.5, 22.2. HRMS: m/z: obsd 552.1660 [M+23]
+
, calcd for C27H31NO8S

+
, 529.1766. 

HPLC (Method B): 20.5 min. 

 

(Z)-2-(2-(2-isopropoxy-6-methoxy-3-(3,4,5-trimethoxystyryl)phenoxy)propan-2-yl)-

5-nitrothiophene (26) 

To a solution of isopropyl protected CA1 21 (0.150 g, 0.402 mmol), gem-dimethyl trigger 

19 (0.091 g, 0.486 mmol), and ADDP (0.137 g, 0.543 mmol) in CH2Cl2 (10 mL), PBu3 

(0.199 mL) was added drop-wise. The reaction was allowed to stir for 24 h at room 

temperature. H2O was used to quench the reaction and the residue was extracted with 

CH2Cl2 (3 × 20 mL). The combined extracts were washed with brine, dried over Na2SO4, 

filtered, and concentrated under reduced pressure. The crude product was purified by 

flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent 

B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B → 60%A / 40%B (10 CV), 

60%A / 40%B (2 CV); flow rate: 75 mL/min; monitored at 254 and 280 nm] yielding 

CA1-BAPC 26 (0.020 g, 0.037 mmol, 13%) as an orange oil. 

1
H NMR (600 MHz,  CDCl3) δ 7.80 (1H, d, J=4.2 Hz), 7.01 (1H, d, J=8.7 Hz), 6.93 (1H, 

d, J=4.3 Hz), 6.58 (1H, d, J=12.1 Hz), 6.49 (2H, s), 6.47 (1H, d, J=8.6 Hz), 6.45 (1H, d, 

J=12.1 Hz), 4.60 (1H, hept, J=6.0 Hz), 3.82 (3H, s), 3.67 (3H, s), 3.66 (6H, s), 1.71 (6H, 

s), 1.23 (6H, d, J=6.1 Hz). 
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13
C NMR (151 MHz, CDCl3) δ 161.4, 154.6, 152.8, 151.6, 150.4, 137.1, 137.0, 132.7, 

129.0, 128.1, 126.4, 126.2, 125.3, 122.1, 106.4, 105.9, 81.7, 75.1, 60.9, 55.8, 55.5, 28.8, 

22.4. 

HRMS: m/z: obsd 566.1819 [M+23]
+
, calcd for C28H33NO8S

+
, 543.1927.  

HPLC (Method B): 22.3 min. 

 

Synthesis of Compounds 27, 28 and 29 

Deprotection of TBS group of compound 13 using TBAF (0.9 eq.) yielded an inseparable 

mixture of compound 27 and 28. At the same time, about 15% CA1 (compound 29) is 

also isolated. 

(Z)-2-((tert-butyldimethylsilyl)oxy)-3-methoxy-6-(3,4,5-trimethoxystyryl)phenol (27) 

and (Z)-2-((tert-butyldimethylsilyl)oxy)-6-methoxy-3-(3,4,5-trimethoxystyryl)phenol 

(28)
128,129 

To a solution of di-TBS CA1 13 (2.00 g, 3.57 mmol) in THF (150 mL) at -15 °C, TBAF∙ 

3H2O (1.01 g, 3.20 mmol) was dissolved in THF (10 mL) and added drop-wise. The 

reaction was allowed to stir for 0.5 h. H2O was used to quench the reaction, THF was 

evaporated off completely, and the residue was extracted with EtOAc (3 × 30 mL). The 

combined extracts were washed with brine, dried over Na2SO4, filtered, and concentrated 

under reduced pressure. The crude product was purified by flash chromatography using a 

pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 5%A / 

95%B (1 CV), 5%A / 95%B → 70%A / 30%B (13 CV), 70%A / 30%B (2 CV); flow 

rate: 100 mL/min; monitored at 254 and 280 nm] affording a mixture of compounds 27 

and 28 (0.860 g, 2.59 mmol, 43%) as a white solid. 
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1
H NMR (500 MHz, CDCl3) δ 6.80 (1H, d, J=8.7 Hz), 6.71 (1H, d, J=8.7 Hz), 6.58 (2H, 

d, J=12.0 Hz), 6.52 (4H, s), 6.47 (1H, d, J=12.1 Hz), 6.41 (1H, d, J=12.2 Hz), 6.36 (1H, 

d, J=8.5 Hz), 6.30 (1H, d, J=8.6 Hz), 5.66 (1H, s), 5.45 (1H, s), 3.81 (6H, s), 3.78 (3H, s), 

3.74 (3H, s), 3.64 (12H, d, J=2.2 Hz), 1.01 (9H, d, J=5.2 Hz), 1.00 (9H, s), 0.22 (6H, s), 

0.19 (6H, s). 

13
C NMR (126 MHz, CDCl3) δ 152.7, 152.7, 149.3, 146.9, 145.9, 141.2, 137.0, 137.0, 

136.8, 132.9, 132.8, 131.6, 129.6, 129.0, 126.8, 124.5, 123.2, 122.0, 120.1, 117.1, 106.1, 

106.0, 103.8, 103.0, 60.9, 60.8, 56.1, 55.8, 55.7, 55.2, 26.0, 26.0, 18.6, 18.6, -3.9, -4.4. 

(Z)-3-methoxy-6-(3,4,5-trimethoxystyryl)benzene-1,2-diol (29) 

The combretastatin A-1 (CA1) 29 (0.179 mg, 0.538 mmol, 15%) was isolated as a white 

solid. 

1
H NMR (500 MHz, CDCl3) δ 6.76 (1H, d, J=8.6 Hz), 6.59 (1H, d, J=12.1 Hz), 6.54 

(1H, d, J=11.9 Hz), 6.52 (2H, s), 6.39 (1H, d, J=8.6 Hz), 5.39 (2H, s), 3.86 (3H, s), 3.83 

(3H, s), 3.67 (6H, s). 

13
C NMR (126 MHz, CDCl3) δ 152.9, 146.5, 141.7, 137.4, 132.7, 132.6, 130.5, 124.2, 

120.5, 118.0, 106.1, 103.1, 76.9, 61.0, 56.3, 56.0. 

HRMS: m/z: obsd 355.154 [M+Na]
+
, calcd for C18H20O6

+
, 332.1260.  

HPLC (Method A): 11.3 min. 

 

Synthesis of Compounds 30 and 33 

To a solution of mixture of compounds 27 and 28 (1.00 g, 2.24 mmol), nor-methyl 

trigger 16 (0.428 g, 2.69 mmol), and DIAD (0.867 mL) in CH2Cl2 (50 mL), PPh3 (1.47 g, 

5.60 mmol) was added drop-wise. The reaction mixture was stirred (24 h) at room 
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temperature. H2O (40 mL) was added to quench the reaction and the residue was 

extracted with CH2Cl2 (3 × 20 mL). The combined extracts were washed with brine, dried 

over Na2SO4, filtered, and concentrated under reduced pressure. The crude product was 

purified by flash column chromatography using a pre-packed 25 g silica column [solvent 

A: EtOAc; solvent B: hexanes; gradient: 5%A / 95%B (1 CV), 5%A / 95%B → 40%A / 

60%B (10 CV), 40%A / 60%B (2 CV); flow rate: 75 mL/min; monitored at 254 and 280 

nm]. 

 

(Z)-tert-butyl(6-methoxy-2-((5-nitrothiophen-2-yl)methoxy)-3-(3,4,5-

trimethoxystyryl)-phenoxy)dimethylsilane (30) 

This isomer 30 (0.350 g, 0.739 mmol, 35%) was isolated as a brownish-yellow oil. 

1
H NMR (600 MHz, CDCl3) δ 7.76 (1H, d, J=4.1 Hz), 6.91 (1H, d, J=4.1 Hz), 6.87 (1H, 

dd, J=8.6, 0.8 Hz), 6.57 (1H, d, J=8.6 Hz), 6.50 (1H, d, J=12.0 Hz), 6.45 (1H, d, J=12.2 

Hz), 6.44 (1H, s), 5.12 (2H, s), 3.82 (3H, s), 3.79 (3H, s), 3.65 (6H, s), 0.99 (9H, s), 0.13 

(6H, s). 

13
C NMR (126 MHz, CDCl3) δ 152.7, 151.6, 151.4, 148.6, 147.6, 138.4, 137.1, 132.4, 

130.4, 128.2, 125.1, 124.9, 124.4, 122.3, 107.5, 105.9, 68.5, 60.9, 55.8, 55.4, 25.8, 18.6, -

4.6. 

 

(Z)-tert-butyl(3-methoxy-2-((5-nitrothiophen-2-yl)methoxy)-6-(3,4,5-

trimethoxystyryl)phenoxy)dimethylsilane (33) 

This isomer 33 (0.250 g, 0.425 mmol, 25%) was isolated as a brownish-yellow oil. 
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1
H NMR (600 MHz, CDCl3) δ 7.81 (1H, d, J=4.1 Hz), 7.00 (1H, d, J=8.7 Hz), 6.96 (1H, 

d, J=4.1 Hz), 6.56 (1H, d, J=12.2 Hz), 6.52 (2H, s), 6.44 (1H, d, J=11.6 Hz), 6.42 (1H, d, 

J=8.5 Hz), 5.30 (2H, s), 3.83 (3H, s), 3.80 (3H, s), 3.67 (6H, s), 1.01 (9H, s), 0.18 (6H, s). 

13
C NMR (151 MHz, CDCl3) δ 153.4, 152.8, 152.7, 148.8, 147.8, 138.4, 137.0, 132.6, 

129.1, 128.2, 126.3, 125.9, 125.4, 123.3, 105.9, 104.9, 68.8, 60.9, 55.9, 55.8, 26.1, 18.6, -

3.9. 

 

Synthesis of Compounds 31 and 34 

Mono TBS CA1 (0.680 g, 1.52 mmol), diisopropylazodicarboxylate (0.415 g, 2.05 

mmol), and monomethyl trigger (0.317 g, 1.82 mmol) were dissolved in THF (50 mL). 

Triphenylphosphine (0.793 g, 3.04 mmol) was added and the reaction was stirred (3 d). 

The reaction was concentrated under reduced pressure and the crude product was purified 

by flash column chromatography using a pre-packed 50 g silica column [solvent A: 

EtOAc; solvent B: hexanes; gradient: 5%A / 95%B (1 CV), 5%A / 95%B → 40%A / 

60%B (13 CV), 40%A / 60%B (2 CV); flow rate: 80 mL/min; monitored at 254 and 280 

nm]. 

 

(Z)-tert-butyl(6-methoxy-2-(1-(5-nitrothiophen-2-yl)ethoxy)-3-(3,4,5-

trimethoxystyryl)phenoxy)dimethylsilane (31) 

This isomer 31 (0.375 g, 0.623 mmol, 41%) was isolated as a yellow oil. 

1
H NMR (600 MHz, CDCl3) δ 7.60 (1H, d, J = 4.2 Hz), 6.76 – 6.69 (2H, m), 6.41 (1H, d, 

J = 8.2 Hz), 6.39 (1H, d, J = 11.9 Hz), 6.32 (2H, s), 6.29 (1H, d, J = 12.1 Hz), 5.58 (1H, 
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q, J = 6.4 Hz), 3.69 (3H, s), 3.65 (3H, s), 3.51 (6H, s), 1.48 (3H, d, J = 6.4 Hz), 0.85 (9H, 

s), 0.00 (3H, s), -0.02 (3H, s). 

13
C NMR (151 MHz, CDCl3) δ 155.0, 152.7, 151.4, 150.9, 146.1, 138.5, 137.2, 132.4, 

129.8, 128.1, 125.6, 124.9, 123.4, 122.5, 107.0, 106.0, 74.4, 60.9, 55.8, 55.3, 25.8, 22.3, 

18.6, -4.3, -4.4. 

 

(Z)-tert-butyl(3-methoxy-2-(1-(5-nitrothiophen-2-yl)ethoxy)-6-(3,4,5-

trimethoxystyryl)phenoxy)dimethylsilane (34) 

This isomer 34 (0.073 g, 0.122 mmol, 12%) was isolated as a yellow oil. 

1
H NMR (600 MHz, CDCl3) δ 7.61 (1H, d, J = 4.2 Hz), 6.84 (1H, d, J = 8.7 Hz), 6.71 

(1H, d, J = 4.2 Hz), 6.38 (1H, d, J = 12.0 Hz), 6.37 (2H, s), 6.26 (1H, d, J = 12.3 Hz), 

6.24 (1H, d, J = 8.6 Hz), 5.26 (1H, q, J = 6.5 Hz), 3.67 (3H, s), 3.61 (3H, s), 3.50 (6H, s), 

1.47 (3H, d, J = 6.5 Hz), 0.84 (9H, s), 0.03 (3H, s), 0.00 (3H, s). 

13
C NMR (151 MHz, CDCl3) δ 153.3, 151.1, 150.9, 149.1, 146.1, 135.5, 135.2, 130.7, 

126.9, 126.2, 124.6, 123.7, 121.5, 121.5, 104.1, 103.0, 73.1, 59.0, 53.9, 24.2, 24.2, 19.8, 

16.7, -5.2, -5.7. 

 

(Z)-tert-butyl(6-methoxy-2-((2-(5-nitrothiophen-2-yl)propan-2-yl)oxy)-3-(3,4,5-

trimethoxystyryl)phenoxy)dimethylsilane (32) 

Mono TBS CA1 (1.07 g, 2.40 mmol), gem-dimethyl trigger (0.540 g, 2.88 mmol), and 

ADDP (0.832 g, 3.30 mmol) were dissolved in CH2Cl2 (100 mL). Tributylphosphine 

(1.26 mL, 5.04 mmol) was added drop-wise and the reaction was stirred (2d). The 
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reaction was then concentrated under reduced pressure. Flash chromatography yielded 

the crude product which was taken to the next step for deprotection.  

 

(Z)-4-methoxy-2-(5-nitrothiophen-2-yl)-7-(3,4,5-trimethoxystyryl)-

benzo[d][1,3]dioxole (35) 

To a solution of 30 (0.095 g, 0.162 mmol) in THF (10 mL) at 0 °C, TBAF∙ 3H2O (0.0672 

g, 0.213 mmol) was dissolved in THF (10 mL) and added drop-wise. The reaction was 

stirred (30 min) and H2O (5 mL) was added. THF was evaporated off completely, and the 

residue was extracted with CH2Cl2 (3 × 20 mL). The combined extracts were washed with 

brine, dried over Na2SO4, filtered, and concentrated under reduced pressure. The crude 

organic product was purified by flash column chromatography using a pre-packed 10 g 

silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 

7%A / 93%B → 60%A / 40%B (13 CV), 60%A / 40%B (2 CV); flow rate: 20 mL/min; 

monitored at 254 and 280 nm] affording compound 35 (0.0510 g, 0.108 mmol, 54%) as a 

yellow oil. 

1
H NMR (600 MHz, CDCl3) δ 7.83 (1H, d, J=4.2 Hz), 7.15 (1H, d, J=4.2 Hz), 7.07 (1H, 

s), 6.86 (1H, d, J=8.8 Hz), 6.56 (1H, d, J=12.0 Hz), 6.50 (2H, s), 6.48 (1H, d, J=8.8 Hz), 

6.44 (1H, d, J=12.0 Hz), 3.90 (3H, s), 3.83 (3H, s), 3.69 (6H, s). 

13
C NMR (151 MHz, CDCl3) δ 152.9, 146.0, 145.2, 143.2, 137.3, 133.8, 132.6, 131.2, 

128.1, 126.0, 123.4, 121.7, 113.5, 107.8, 105.7, 105.6, 105.2, 60.9, 56.6, 55.9. 

13
C NMR DEPT (CDCl3, 151 MHz) δ 131.2, 128.1, 126.0, 123.4, 121.7, 107.8, 105.6, 

105.2, 60.9, 56.6, 55.9. 
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HRMS: m/z: obsd 494.0881 [M+23]
+
, calcd for C23H21NO8S

+
, 471.0988. HPLC 

(Method A): 17.2 min. 

 

(Z)-4-methoxy-2-(5-nitrothiophen-2-yl)-7-(3,4,5-trimethoxystyryl)-

benzo[d][1,3]dioxole (35) [Base cyclization method] 

Compound 37 (0.0380 g, 0.0803 mmol) was dissolved in THF (5 mL) at room 

temperature. Sodium hydroxide (1 mL, 2M) was added drop-wise and the reaction was 

then stirred (5 m). THF was rotovapped off completely, and the residue was extracted 

with CH2Cl2 (3 x 10 mL). The combined extracts were washed with brine, dried over 

Na2SO4, filtered, and concentrated under reduced pressure. The crude product was 

purified by flash chromatography using a pre-packed 10 g silica column [solvent A: 

EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B → 80%A / 

20%B (10 CV), 80%A / 20%B (2 CV); flow rate: 36 mL/min; monitored at 254 and 280 

nm] affording compound 35 (0.0090 g, 0.019 mmol, 23%)as a yellow oil. 

1
H NMR (600 MHz, CDCl3) δ 7.83 (1H, d, J=4.2 Hz), 7.15 (1H, d, J=4.2 Hz), 7.07 (1H, 

s), 6.86 (1H, d, J=8.8 Hz), 6.56 (1H, d, J=12.0 Hz), 6.50 (2H, s), 6.48 (1H, d, J=8.8 Hz), 

6.44 (1H, d, J=12.0 Hz), 3.90 (3H, s), 3.83 (3H, s), 3.69 (6H, s). 

13
C NMR (151 MHz, CDCl3) δ 152.9, 146.0, 145.2, 143.2, 137.3, 133.8, 132.6, 131.2, 

128.1, 126.0, 123.4, 121.7, 113.5, 107.8, 105.7, 105.6, 105.2, 60.9, 56.6, 55.9. 

 

(Z)-4-methoxy-2-methyl-2-(5-nitrothiophen-2-yl)-7-(3,4,5-trimethoxystyryl)-

benzo[d][1,3]dioxole (36) 
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Compound 31 (0.105 g, 0.174 mmol) was dissolved in CH2Cl2 (20 mL) at -10 
o
C.  Tert-

butylammonium fluoride trihydrate (0.0620 g, 0.191 mmol) was dissolved in CH2Cl2 (2 

mL) and added slowly drop wise to the reaction which was then stirred (18 min). H2O (5 

mL) was used to quench the reaction and the layers were partitioned. The residue was 

extracted with CH2Cl2 (3 x 10 mL), washed with brine, dried over Na2SO4, and 

concentrated under reduced pressure. The crude product was purified by flash column 

chromatography using a pre-packed 10 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient: 12%A / 88%B (1 CV), 12%A / 88%B → 100%A / 0%B (13 CV), 

100%A / 0%B (2 CV); flow rate: 10 mL/min; monitored at 254 and 280 nm] affording 

compound 36 (0.044 g, 0.0906 mmol, 52%) as a yellow oil. 

1
H NMR (500 MHz, acetone) δ 7.76 (1H, d, J = 4.3 Hz), 7.03 (1H, d, J = 4.2 Hz), 6.81 

(1H, d, J = 8.8 Hz), 6.56 (1H, d, J = 12.0 Hz), 6.48 (2H, s), 6.45 (1H, d, J = 8.8 Hz), 6.42 

(1H, d, J = 11.9 Hz), 3.88 (3H, s), 3.82 (3H, s), 3.67 (6H, s), 2.02 (3H, s). 

13
C NMR (126 MHz, acetone) δ 152.8, 151.5, 145.1, 143.1, 137.2, 133.8, 132.7, 131.1, 

128.3, 124.0, 123.0, 121.9, 113.8, 113.4, 107.4, 105.7, 60.9, 56.5, 55.9, 26.6. 

HRMS: m/z: obsd 486.1219 [M+H]
+
, calcd for C24H23NO8S

+
, 485.1144.  

HPLC (Method A): 14.9 min. 

 

(Z)-4-methoxy-2-methyl-2-(5-nitrothiophen-2-yl)-7-(3,4,5-trimethoxystyryl)-

benzo[d][1,3]dioxole (36)   [Base cyclization method] 

Compound 38 (0.0500 g, 0.103 mmol) was dissolved in THF (5 mL) at room 

temperature. Sodium hydroxide (1 mL, 2M) was added drop-wise and the reaction was 

then stirred (5 m). THF was rotovapped off completely, and the residue was extracted 
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with CH2Cl2 (3 x 10 mL). The combined extracts were washed with brine, dried over 

Na2SO4, filtered, and concentrated under reduced pressure. The crude product was 

purified by flash chromatography using a pre-packed 10 g silica column [solvent A: 

EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B → 80%A / 

20%B (10 CV), 80%A / 20%B (2 CV); flow rate: 36 mL/min; monitored at 254 and 280 

nm] affording compound 36 (0.0470 g, 0.0964 mmol, 93%) as a yellow oil. 

1
H NMR (500 MHz, acetone) δ 7.76 (1H, d, J = 4.3 Hz), 7.03 (1H, d, J = 4.2 Hz), 6.81 

(1H, d, J = 8.8 Hz), 6.56 (1H, d, J = 12.0 Hz), 6.48 (2H, s), 6.45 (1H, d, J = 8.8 Hz), 6.42 

(1H, d, J = 11.9 Hz), 3.88 (3H, s), 3.82 (3H, s), 3.67 (6H, s), 2.02 (3H, s). 

13
C NMR (126 MHz, acetone) δ 152.8, 151.5, 145.1, 143.1, 137.2, 133.8, 132.7, 131.1, 

128.3, 124.0, 123.0, 121.9, 113.8, 113.4, 107.4, 105.7, 60.9, 56.5, 55.9, 26.6. 

 

(Z)-6-methoxy-2-((5-nitrothiophen-2-yl)methoxy)-3-(3,4,5-trimethoxystyryl)phenol 

(37) 

AcOH (7 mL) and HCl (5 mL, 2M) was added drop-wise to a solution of compound 30 

(0.115 g, 0.196 mmol) in THF (30 mL). The reaction as allowed to stir for 8 h at room 

temperature. H2O (40 mL) was used to quench the reaction, THF was evaporated off 

completely, and the residue was extracted with CH2Cl2 (3 × 20 mL). The combined 

extracts were washed with brine, dried over Na2SO4, filtered, and concentrated under 

reduced pressure. The crude product was purified by flash chromatography using a pre-

packed 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 

90%B (1 CV), 10%A / 90%B → 80%A / 20%B (10 CV), 80%A / 20%B (2 CV); flow 
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rate: 20 mL/min; monitored at 254 and 280 nm] affording compound 37 (0.020 g, 0.0422 

mmol, 17%) as a brown oil. 

1
H NMR (600 MHz, CDCl3) δ 7.82 (1H, d, J=4.1 Hz), 7.00 (1H, d, J=4.1 Hz), 6.98 (1H, 

d, J=8.7 Hz), 6.53 (2H, s), 6.50 (2H, s), 6.39 (1H, d, J=8.8 Hz), 5.70 (1H, s), 5.24 (2H, s), 

3.87 (3H, s), 3.83 (3H, s), 3.68 (6H, s). 

1
H NMR (600 MHz, Acetone) δ 8.15 (1H, s), 7.93 (1H, d, J=4.2 Hz), 7.21 (1H, d, J=4.1 

Hz), 6.95 (1H, d, J=8.7 Hz), 6.58 (2H, s), 6.54 (1H, d, J=12.2 Hz), 6.49 (1H, d, J=8.7 

Hz), 6.44 (1H, d, J=12.2 Hz), 5.29 (2H, s), 3.86 (3H, s), 3.68 (3H, s), 3.62 (6H, s). 

13
C NMR (151 MHz, Acetone) δ 153.1, 152.3, 149.2, 148.6, 137.4, 134.1, 132.7, 129.0, 

128.6, 126.5, 125.1, 124.5, 124.5, 117.9, 106.2, 103.0, 68.5, 59.6, 55.4, 55.2. 

13
C NMR DEPT (151 MHz, Acetone) δ 129.0, 128.6, 126.5, 125.1, 124.5, 106.2, 103.0, 

68.5, 59.6, 55.4, 55.2. 

HRMS: m/z: obsd 496.1034 [M+Na]
+
, calcd for C23H23NO8S

+
, 473.1144. HPLC 

(Method B): 10.0 min. 

 

(Z)-6-methoxy-2-(1-(5-nitrothiophen-2-yl)ethoxy)-3-(3,4,5-trimethoxystyryl)phenol 

(38) 

Compound 31 (0.200 g, 0.333 mmol) was dissolved in THF (5 mL). Glacial acetic acid (7 

mL) and hydrochloric acid (2 M, 4 mL) were added dropwise and the reaction was stirred 

(30 min). Glacial acetic acid (4 mL) and hydrochloric acid (2 M, 2.5 mL) were added 

dropwise and the reaction was stirred (8 hr). H2O (30 mL) was used to quench the 

reaction and it was concentrated under reduced pressure. The residue was extracted with 

CH2Cl2 (3 x 30 mL), washed multiple times with brine, dried over Na2SO4, filtered, and 
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concentrated under reduced pressure. The crude product was purified by flash column 

chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient: 10%A / 90%B (1 CV), 10%A/ 90%B → 80%A / 20%B (13 CV), 

80%A / 20%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] affording 

compound 38 (0.094 g, 0.199 mmol, 60%) as a yellow oil. 

1
H NMR (600 MHz, CDCl3) δ 7.74 (1H, d, J = 4.2 Hz), 6.93 (1H, d, J = 4.2 Hz), 6.80 

(1H, d, J = 8.5 Hz), 6.55 (1H, d, J = 8.6 Hz), 6.53 (1H, d, J = 12.5 Hz), 6.47 (2H s), 6.45 

(1H, d, J = 12.2 Hz), 5.71 (1H, q, J = 6.4 Hz), 3.87 (3H, s), 3.84 (3H, s), 3.66 (6H, s), 

1.71 (3H, d, J = 6.4 Hz). 

13
C NMR (126 MHz, CDCl3) δ 153.6, 152.8, 151.4, 147.5, 137.1, 132.6, 132.2, 130.2, 

128.2, 125.4, 123.8, 123.8, 117.5, 105.8, 103.4, 75.2, 60.9, 55.9, 55.8, 29.7, 21.7. 

HRMS: m/z: obsd 488.1363 [M+H]
+
, calcd for C24H25NO8S

+
, 487.1301.  

HPLC (Method B): 10.1 min. 

 

(Z)-3-methoxy-2-((5-nitrothiophen-2-yl)methoxy)-6-(3,4,5-trimethoxystyryl)phenol 

(39) 

AcOH (10 mL) and HCl (10 mL, 2M) was added drop-wise to a solution of compound 33 

(0.250 g, 0.425 mmol) in THF (25 mL). The reaction as allowed to stir for 8 h at room 

temperature. H2O (40 mL) was used to quench the reaction, THF was evaporated off 

completely, and the residue was extracted with CH2Cl2 (3 × 20 mL). The combined 

extracts were washed with brine, dried over Na2SO4, filtered, and concentrated under 

reduced pressure. The crude product was purified by flash chromatography using a pre-

packed 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 
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90%B (1 CV), 10%A / 90%B → 80%A / 20%B (10 CV), 80%A / 20%B (2 CV); flow 

rate: 20 mL/min; monitored at 254 and 280 nm] affording compound 33 (0.030 g, 0.0634 

mmol, 12%) as a brown oil. 

1
H NMR (CDCl3, 600 MHz) δ 7.77 (1H, d, J=4.1 Hz), 6.97 (1H, d, J=4.1 Hz), 6.79 (1H, 

d, J= 8.4 Hz), 6.56 (1H, d, J= 8.4 Hz), 6.55 (1H, d, J=12.2 Hz), 6.50 (1H, d, J=12.2 Hz), 

6.45 (2H, s), 5.59 (1H, s), 5.24 (2H, s), 3.88 (3H, s), 3.82 (3H, s), 3.65 (6H, s). 

13
C NMR (CDCl3, 151 MHz) δ 152.8, 151.8, 148.5, 147.0, 142.6, 138.4, 137.2, 132.4, 

130.7, 128.2, 125.5, 124.6, 124.3, 120.5, 106.6, 106.0, 68.7, 60.9, 56.4, 55.8. 

HRMS: m/z: obsd 496.1033 [M+Na]
+
, calcd for C23H23NO8S

+
, 473.1144.  

HPLC (Method B): 12.5 min. 

 

(Z)-3-methoxy-2-(1-(5-nitrothiophen-2-yl)ethoxy)-6-(3,4,5-trimethoxystyryl)phenol 

(40) 

Compound 34 (0.100 g, 0.167 mmol) was dissolved in THF (3 mL). Glacial acetic acid 

(5.6 mL) and hydrochloric acid (2 M, 3.3 mL) were added dropwise and the reaction was 

stirred (8 hr). H2O (20 mL) was used to quench the reaction and it was concentrated 

under reduced pressure. The residue was extracted with CH2Cl2 (3 x 20 mL), washed 

multiple times with brine, dried over Na2SO4, filtered, and concentrated under reduced 

pressure. The crude product was purified by flash column chromatography using a pre-

packed 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 

90%B (1 CV), 10%A / 90%B → 80%A / 20%B (13 CV), 80%A / 20%B (2 CV); flow 

rate: 100 mL/min; monitored at 254 and 280 nm] affording compound 40 (0.026 g, 0.055 

mmol, 33%) as a yellow oil. 
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1
H NMR (600 MHz, CDCl3) δ 7.79 (1H, d, J = 4.2 Hz), 6.96 (1H, d, J = 8.7 Hz), 6.93 

(1H, d, J = 4.2 Hz), 6.53 (2H, d, J = 12.4 Hz), 6.49 (2H, s), 6.37 (1H, d, J = 8.8 Hz), 5.56 

(1H, q, J = 6.5 Hz), 3.84 (3H, s), 3.83 (3H, s), 3.67 (6H, s), 1.73 (3H, d, J = 6.5 Hz). 

13
C NMR (126 MHz, CDCl3) δ 153.6, 152.8, 151.4, 147.5, 132.6, 132.2, 130.2, 128.2, 

125.3, 123.8, 123.7, 117.5, 105.8, 103.4, 103.3, 75.2, 60.9, 55.9, 55.8, 29.7, 21.7. 

HRMS: m/z: obsd 488.1373 [M+H]
+
, calcd for C23H23NO8S

+
, 487.1301.  

HPLC (Method B): 11.1 min. 

 

(Z)-6-methoxy-2-((2-(5-nitrothiophen-2-yl)propan-2-yl)oxy)-3-(3,4,5-

trimethoxystyryl)phenol (41) 

To a solution of compound 32 (2.35 g, 3.82 mmol) in THF (250 mL) at -15 °C, TBAF∙ 

3H2O (1.32 g, 4.19 mmol) was dissolved in THF (10 mL) and added drop-wise. The 

reaction was allowed to stir for 1 h. H2O (40 mL) was used to quench the reaction, THF 

was evaporated off completely, and the residue was extracted with CH2Cl2 (3 × 20 mL). 

The combined extracts were washed with brine, dried over Na2SO4, filtered, and 

concentrated under reduced pressure. The crude product was purified by flash 

chromatography using a pre-packed 10 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B → 60%A / 40%B (13 CV), 60%A 

/ 40%B (2 CV); flow rate: 20 mL/min; monitored at 254 and 280 nm] affording 

compound 41 (0.050 g, 0.980 mmol, 2%) as a brownish-yellow solid. 

1
H NMR (CDCl3, 600 MHz) δ 7.77 (1H, d, J=4.2 Hz), 6.93 (1H, d, J=4.2 Hz), 6.84 (1H, 

d, J=8.6 Hz), 6.56 (1H, d, J=8.6 Hz), 6.52 (2H, s), 6.48 (1H, d, J=12.2 Hz), 6.30 (1H, d, 

J=12.2 Hz), 5.47 (1H, s), 3.86 (3H, s), 3.84 (3H, s), 3.67 (6H, s), 1.79 (6H, s). 
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13
C NMR (CDCl3, 151 MHz) δ 161.5, 152.9, 150.6, 147.1, 140.6, 140.2, 137.3, 132.5, 

129.3, 128.4, 127.2, 126.6, 122.2, 120.6, 106.9, 106.0, 81.9, 61.1, 56.4, 56.0, 29.5. 

HRMS: m/z: obsd 524.1352 [M+Na]
+
, calcd for C25H27NO8S

+
, 501.1457. HPLC 

(Method B): 12.3 min 

 

[(Z)-2-((2-Methoxy-5-(3,4,5-trimethoxystyryl)phenoxy)methyl)-5-nitrothiophene 

(43)
88

  

(5-Nitrothiophen-2-yl)methanol (0.100 g, 0.628 mmol), triphenylphosphine (0.336 g, 

1.28 mmol), and combretastatin A-4 (0.396 g, 1.25 mmol) were dissolved in 

tetrahydrofuran (2 mL). DEAD (0.218 g, 1.25 mmol) was added and the reaction was 

stirred for 4 hours at 50 °C. The reaction was then evaporated under reduced pressure. 

The product was then extracted with ethyl acetate, washed with water and brine, dried 

with sodium sulfate, and evaporated under reduced pressure. Flash chromatography of 

the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; 

solvent B, hexanes; gradient, 10% A/90% B over 1.19 min (1 CV), 10% A/90% B  

67% A/33% B over 13.12 min (10 CV), 67% A/33% B over 2.38 min (2 CV); flow rate 

50.0 mL/min; monitored at λ 254 and 280 nm] and recrystallization in ethyl acetate and 

hexanes yielded [(Z)-2-((2-methoxy-5-(3,4,5-trimethoxystyryl)phenoxy)methyl)-5-

nitrothiophene (43) (0.286 g, 0.625 mmol, 50%),  

1
H NMR (500 MHz, CDCl3) δ 7.80 (1H, d, J = 4 Hz), 6.97 (1H, dd, J = 8 Hz, J = 1.5 

Hz), 6.89 (1H, d, J = 4 Hz), 6.87 (1H, d, J = 2 Hz), 6.84 (1H, d, J = 8.5 Hz), 6.50 (2H, s), 

6.48 (2H, d, J = 12 Hz), 5.07 (2H, s), 3.89 (3H, s), 3.86 (3H, s), 3.72 (6H, s).  
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13
C NMR (125 MHz, CDCl3) δ 153.0, 149.1, 148.3, 146.4, 137.1, 132.9, 129.8, 129.2, 

128.4, 124.8, 124.0, 115.4, 111.7, 105.8, 66.4, 60.9, 56.0, 56.0. 

HRMS: m/z: obsd 480.1088 [M+Na]
+
, calcd for C23H23NO7S

+
, 457.1195. HPLC 

(Method A): 17.1 min. 

 

(Z)-2-(1-(2-Methoxy-5-(3,4,5-trimethoxystyryl)phenoxy)ethyl)-5-nitrothiophene 

(44)
88

  

Combretastatin A-4 (0.251 g, 0.79 mmol), triphenylphosphine (0.105 g, 0.400 mmol), 

and 1-(5-nitrothiophen-2-yl)ethanol (0.197 g, 1.14 mmol) were dissolved in dry THF (10 

mL). Diethyl azodicarboxylate [DEAD] (0.155 g, 0.890 mmol) was added dropwise and 

the reaction was stirred for 24 hours. The reaction was quenched with water, partitioned, 

extracted with ethyl acetate, dried with sodium sulfate, and evaporated under reduced 

pressure. Flash chromatography of the crude product using a prepacked 25 g silica 

column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 15% A/85% B over 

1.19 min (1 CV), 15% A/85% B  100% A/0% B over 13.12 min (10 CV), 100% A/0% 

B over 2.38 min (2 CV); flow rate 25.0 mL/min; monitored at λ 254 and 280 nm] to yield  

(Z)-2-(1-(2-methoxy-5-(3,4,5-trimethoxystyryl)phenoxy)ethyl)-5-nitrothiophene 44 

(0.090 g, 0.19 mmol, 24%),  

1
H NMR (500 MHz, CDCl3) δ 7.75 (1H, d, J = 4.5 Hz), 6.94 (1H, dd, J = 8 Hz, J = 2 

Hz), 6.81 (3H, m), 6.46 (1H, d, J = 12.5 Hz), 6.45 (2H, s), 6.44 (1H, d, J = 12 Hz), 5.25 

(1H, q, J = 6 Hz), 3.86 (3H, s), 3.84 (3H, s), 3.69 (6H, s), 1.63 (3H, d, J = 6.5)  

13
C NMR (125 MHz, CDCl3) δ 155.3, 153.0, 149.9, 145.7, 137.1, 132.9, 129.9, 129.2, 

129.1, 128.4, 124.4, 123.0, 118.2, 112.0, 105.8, 73.8, 60.9, 55.9, 55.9, 23.1.   
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HRMS: m/z: obsd 472.1428 [M+H]
+
, calcd for C24H25NO8S

+
, 471.1532. HPLC (Method 

A): 17.6 min. 

 

[(Z)-2-(2-(2-Methoxy-5-(3,4,5-trimethoxystyryl)phenoxy)propan-2-yl)-5-

nitrothiophene (45)
88

  

 Combretastatin A-4 (1.87 g, 5.91 mmol), 2-(5-Nitrothiophen-2-yl)propan-2-ol (1.17 g, 

6.25 mmol), and 1,1’-(azodicarbonyl)-dipiperdine [ADDP] (1.46 g, 5.79 mmol) were 

dissolved in benzene (15 mL). Tributylphosphine (1.43 mL, 5.91 mmol) was added 

dropwise and the reaction was stirred for 24 hours. The reaction was quenched with 

water, extracted with ethyl acetate, dried with sodium sulfate, and evaporated under 

reduced pressure. Flash chromatography of the crude product using a prepacked 25 g 

silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 15% A/85% B 

over 1.19 min (1 CV), 15% A/85% B  100% A/0% B over 13.12 min (10 CV), 100% 

A/0% B over 2.38 min (2 CV); flow rate 25.0 mL/min; monitored at λ 254 and 280 nm] 

yielded (Z)-2-(2-(2-methoxy-5-(3,4,5-trimethoxystyryl)phenoxy)propan-2-yl)-5-

nitrothiophene (45) (0.670 g, 1.38 mmol, 23%) as a dark red oil. 

1
H NMR (500 MHz, CDCl3)  δ 7.72 (1H, d, J = 4.2 Hz), 7.01 (1H, dd, J = 2.0 Hz, 8.4 

Hz), 6.83 (1H, d, J = 8.4 Hz), 6.77 (1H, d, J = 4.2 Hz), 6.72 (1H, d, J = 2.0 Hz), 6.43 (4H, 

d, J = 2.2 Hz), 3.85 (3H, s), 3.80 (3H, s), 3.71 (6H, s), 1.59 (6H, s).  

13
C NMR (125 MHz, CDCl3): δ 161.0, 152.9, 152.4, 150.3, 142.8, 136.8, 132.9, 129.5, 

129.2, 129.1, 128.3, 125.8, 124.0, 122.2, 111.8, 105.7, 79.9, 60.7, 55.8, 55.6, 28.6.   

HRMS: m/z: obsd 508.1399 [M+Na]
+
, calcd for C25H27NO8S

+
, 485.1508. HPLC 

(Method A): 18.7 min. 
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[(Z)-2-(2-(2-Methoxy-5-(3,4,5-trimethoxystyryl)phenoxy)propan-2-yl)-5-

nitrothiophene (45)
88

 (Alternate Purification Route)  

Combretastatin A-4 (1.61 g, 5.09 mmol), 2-(5-Nitrothiophen-2-yl)propan-2-ol (1.00 g, 

5.34 mmol), and 1,1’-(azodicarbonyl)-dipiperdine [ADDP] (1.35 g, 5.34 mmol) were 

dissolved in toluene (101 mL). Tributylphosphine (1.3 mL, 5.34 mmol) was added 

dropwisely and the reaction was stirred for 20 hours. Reaction mixture was diluted with 

EtOAc and quenched with water. The resulting mixture was extracted with ethyl acetate 

(30 mL X 3), dried with sodium sulfate, and evaporated under reduced pressure. Product 

was purified by flash using 5-20% EtOAc-hexane. Column purified product contains free 

alcohol, CA4 and BAPC (product) in the ratio of 1.0:2.4:3.0. Amount of BAPC is 921mg, 

1.90 mmol (calculated from NMR) (TY: 2.469 g). Amount of free alcohol is 118 mg, 

0.63 mmol. Amount of CA-4 is 480 mg, 1.52 mmol. To a solution of mixture of three 

compounds in DCM (30.0 mL), imidazole (1.03 g, 15.2 mmol) was added followed by 

TBSCl (2.52 g, 16.7 mmol) and stirred at room temperature for 4 h. Reaction was 

quenched with water, extracted with ethyl acetate (30 mL X 3), dried with sodium 

sulfate, and evaporated under reduced pressure. Product was purified by flash using 5-

20%. All CA-4 got removed. Now the isolated compound is mixture of BAPC and free 

alcohol in the ratio (3.0:1) by NMR. Amount of mixture is 910 mg. Amount of BAPC is 

807 mg, 1.66 mmol and free alcohol 103 mg, 0.55 mmol. A solution of mixture of BAPC, 

free alcohol, DMAP (67 mg, 0.55 mmol) and TEA (0.85 mL, 6.05 mmol) in DCM (11 

mL) was treated with acetic anhydride (0.52 mL, 5.5 mmol) and stirred at room 

temperature for 4.0 h. Reaction was quenched with water, extracted with ethyl acetate (30 

mL X 3), dried with sodium sulfate, and evaporated under reduced pressure. Product was 
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purified by flash using 5-15% EtOAc-hexane. (Z)-2-(2-(2-methoxy-5-(3,4,5-

trimethoxystyryl)phenoxy)propan-2-yl)-5-nitrothiophene (45) (0.760 g, 1.56 mmol, 31%) 

was isolated as a dark red oil. By NMR no more free alcohol was observed in the purified 

product. 

1
H NMR (500 MHz, CDCl3)  δ 7.72 (1H, d, J = 4.2 Hz), 7.01 (1H, dd, J = 2.0 Hz, 8.4 

Hz), 6.83 (1H, d, J = 8.4 Hz), 6.77 (1H, d, J = 4.2 Hz), 6.72 (1H, d, J = 2.0 Hz), 6.43 (4H, 

d, J = 2.2 Hz), 3.85 (3H, s), 3.80 (3H, s), 3.71 (6H, s), 1.59 (6H, s).  

13
C NMR (125 MHz, CDCl3): δ 161.0, 152.9, 152.4, 150.3, 142.8, 136.8, 132.9, 129.5, 

129.2, 129.1, 128.3, 125.8, 124.0, 122.2, 111.8, 105.7, 79.9, 60.7, 55.8, 55.6, 28.6.  

  

Biological Evaluation 

 

Cell Culture and SRB Cytotoxicity Assay
145-148

  

Three cancer cell lines ( DU-145, prostate; SK-OV-3, ovarian; and NCI-H460, 

lung cancer) were grown and passaged using DMEM media supplemented with 10% FBS 

(Gibco One Shot®) and 1% gentamycin sulfate (Teknova, Hollister, CA). Cells were 

maintained at 37 °C in a humidified atmosphere of 5% CO2, up to passage 15 for use in 

these experiments. The sulforhodamine B (SRB) assay was used to assess inhibition of 

human cell line growth as previously described.
145-148

 Briefly, cancer cells were plated at 

7500 cells/well using DMEM supplemented with 5% FBS and 1% gentamycin sulfate in 

96-well plates and incubated for 24 h. Subsequently, 10-fold serial dilutions of the 

compounds to be tested were then added to the wells. After 48 h, the cells were fixed 

with 10% trichloroacetic acid (final concentration), stained with sulforhodamine B (Acid 
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Red 52) (TKI, Tokyo), read at 540 nm, and normalized at 630 nm with an automated 

Biotek Elx800 plate reader (Biotek, Winooski, VT).  A growth inhibition of 50% (GI50 or 

the drug concentration causing a 50% reduction in the net protein staining relative to 

controls) was calculated from optical density data with Excel software.  

 

Inhibition of Tubulin Polymerization
131

  

Tubulin assembly experiments were performed using 0.25 mL reaction mixtures 

(final volume),
131

  which contained 1.0 mg/mL (10 μM) purified bovine brain tubulin, 0.8 

M monosodium glutamate (pH 6.6 in a 2 M stock solution) 4% (v/v) dimethyl sulfoxide, 

0.4 mM GTP, and varying compound concentrations. Initially, all components except 

GTP were preincuabted for 15 min at 30 °C in 0.24 mL. After chilling the mixtures on 

ice, 10 μL of 10 mM GTP was added. The reaction mixtures were placed in cuvettes held 

at 0 °C in Beckman DU-7400 and DU-7500 spectrophotometers equipped with electronic 

temperature controllers. The temperature was jumped to 30 °C over about 30 s, and 

polymerization was followed turbidimetrically at 350 nM for 20 min. Each reaction set 

included a reaction mixture without compound, and the IC50 was defined as the 

compound concentration that inhibited extent of assembly by 50% after 20 min at 30 °C.  

 

Colchicine Binding Assay
130 

Inhibition of [
3
H]colchicine binding to tubulin was determined using 100 µL 

reaction mixtures, each containing 1.0 μM tubulin, 5.0 μM [
3
H]colchicine (from Perkin-

Elmer), 5% (v/v) dimethyl sulfoxide, potential inhibitors at 1.0 or 5.0 μM and 

components demonstrated to stabilize the colchicine binding activity of tubulin
130 

(1.0 M 
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monosodium glutamate [adjusted to pH 6.6 with HCl in a 2.0 M stock solution], 0.5 

mg/mL bovine serum albumin, 0.1 M glucose-1-phosphate, 1.0 mM MgCl2, and 1.0 mM 

GTP). Incubation was for 10 min at 37 °C, a time point at which the binding reaction in 

the control is 40-60% complete. Reactions were stopped by adding 2.0 mL of ice-cold 

water and placing the samples on ice. Each sample was poured onto a stack of two 

DEAE-cellulose filters, followed immediately by 6 mL of ice-cold water, and the water 

was aspirated under reduced vacuum. The filters were washed three times with 2 mL of 

water and, following removal of excess water under a strong vacuum, placed into vials 

containing 5 mL of Biosafe II scintillation cocktail. Samples were counted the next day in 

a Beckman scintillation counter. Samples with potential inhibitors were compared to 

controls with no inhibitor to determine percent inhibition. All samples were corrected for 

the amount of colchicine that bound to the filters in the absence of tubulin. 

 

NADPH Cytochrome P450 Oxidoreductase Cleavage Assay
133,134  

Rat NADPH cytochrome P450 oxidoreductase (POR) and protocatechuate 3,4-

dioxygenase (PCD) were purchased from Corning
®
 and Sigma-Aldrich, respectively, and 

their enzymatic activities were determined in terms of enzyme units (U). All bioreductive 

prodrugs were dissolved in DMSO as 10 mM stock solutions.  

An aliquot (5 µL) of the 10 mM compound DMSO stock solution along with 0.5 µL 

0.1% Triton X-100  were added to 395.5 µl 200 mM pH 7.4 potassium phosphate buffer 

containing 400 µM freshly made protocatechuic acid (PCA). The components were fully 

mixed in a microvessel capped with a rubber septum stopper and subjected to three cycles 

of evacuation and flushing with N2 using a manifold, followed by sparging with N2 for an 
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additional 20 min. PCD (0.08 units) was added by Hamilton syringe, and the solution was 

scrubbed for 10 min to allow for sufficient O2 digestion by PCA/PCD. POR stock (0.006 

units) was introduced followed by NADPH (0.8 mM final concentration) into the vial 

followed by an additional round of N2 sparging. The reaction mixture was incubated for 

24 h at 37 °C, cooled on ice and treated with an equal volume of acetonitrile. After 

centrifugation and filtration, the samples were analyzed by HPLC. Solutions without 

POR were used as controls. 
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CHAPTER FOUR 

 

Synthesis of KGP18, KGP18 Bioreductively Activatable Prodrug Conjugates, OXi6196 

Bioreductively Activatable Prodrug Conjugates, and the Nitroimidazole Trigger 

 

 

With the successful generation of BAPCs that incorporate the anticancer agents 

phenstatin, CA1
136

, and CA4, the development of further BAPCs with other potent VDAs 

and inhibitors of tubulin assembly from the Pinney group was pursued.
149-154

 The 

dihydronaphthalene OXi6196 and the benzosuberene analogue VDA KGP18, both 

inhibitors of tubulin polymerization, are potent small-molecule cytotoxic agents inspired 

by the natural products colchicine, CA1 and CA4.
150-155

 KGP18 and OXi6196 were 

synthesized and BAPCs of each were generated through Mitsunobu reactions with 

nitrothiophene, nitrofuran, and nitroimidazole triggers. 

  

 

KGP18 and KGP18-BAPC Synthesis 

 

 The KGP18 synthesis developed by the Pinney Research Group utilizes two key 

reactions to generate the benzosuberene CA4 analogue- a cyclization employing Eaton’s 

reagent to form the seven membered ring and a lithium-halogen exchange to install the 

trimethoxy aryl ring system.
36

 The Wittig olefination reaction was used to generate 

alkene 3 from phosphonium salt 1 and aldehyde 2 (Scheme 4.1).
34-36

 Reduction of alkene 

3 yielded carboxylic acid 4, which was then cyclized, upon treatment with Eaton’s 

reagent, to produce benzosuberene 5.
34-36

 Benzosuberene 5 was demethylated to generate 

phenol 6, which was silylated to form the protected benzosuberene 7.
34-36
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A lithium-halogen exchange reaction was then performed with brominated 

coumpound 8, which was then reacted with protected benzosuberene 7 to yield tertiary 

alcohol 9 (Scheme 4.1).
34-36

 The tertiary alcohol 9 was then dehydrated to generate alkene 

10, which was then desilylated to yield KGP18.
34-36

  

A Mitsunobu reaction was used to synthesize the KGP18-BAPCs (Scheme 

4.2).
88,105,106

 KGP18, DEAD, triphenylphosphine, and nitroimidazole trigger 12 were 

used to synthesize the normethyl nitroimidazole KGP18-BAPC 13.
88,105,106

 KGP18 

BAPCs 15 and 17 were generated by reacting DIAD, triphenylphosphine, KGP18, and 

nitroimidazole trigger 14 and nitrothiophene trigger 16 respectively.
88,105,106

 The nor-

methyl and mono-methyl nitrofuran triggers 18 and 19 were reacted with DIAD, 

triphenylphosphine, and KGP18 to yield the BAPCs 20 and 21 respectively.
88,105,106

 The 

gem-dimethyl nitrofuran KGP18-BAPC was also attempted, but the reaction yielded only 

starting material.
88,105,106 
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Scheme 4.1.  KGP18 Synthesis
34-36
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Scheme 4.2.  KGP18-BAPC Synthesis
88,105,106 

 



130 
 

OXi6196-BAPC Synthesis 

  

 The OXi6196-BAPC syntheses were achieved through Mitsunobu reactions with 

OXi6196 generated by Casey Maguire, a graduate student in the Pinney Research Group 

who has developed efficient and novel routes to synthesize OXi6196.
34,37,156,157

 DIAD, 

OXi6196, triphenylphosphine, and nitroimidazole triggers 12 and 14 were reacted to 

yield BAPCs 23 and 24 respectively (Scheme 4.3).
88,105,106

 The gem-dimethyl 

nitrothiophene OXi6196 BAPC 26 was generated through the reaction of nitrothiophene 

trigger 25, ADDP, tributylphosphine, and OXi6196.
88,105,106 

  

 
 

Scheme 4.3.  OXi6196-BAPC Synthesis
88,105,106 
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Nitroimidazole Bioreductive Trigger Synthesis 

 The patent route
107

 to generate the nitroimidazole trigger was initially utilized to 

generate the cyclized aminoinidazole 30, but after poor yields, the Conway et. al route 

was adapted to generate the nitroimidazole trigger.
104

  

 The patent route to the aminoimidazole intermediate 30 (Scheme 4.4) began with 

the formylation of sarcosine methyl ester 27 to generate aldehyde 28.
107

 An enol group 

was attached to 28 to yield the organic salt 29, which was then deformylated and cyclized 

to generate aminoimidazole 30 in poor yield.
107 

 Once the Conway et. al route was successfully utilized to generate both the nor-

methyl nitroimidazole trigger and the mono-methyl nitroimidazole trigger 31,
104

 the next 

goal was to complete the series through the synthesis of the gem-dimethyl nitroimidazole 

trigger 33. The initial attempts were to generate the gem-dimethyl nitroimidazole trigger 

through the same route as the nitrofurans and the nitrothiophenes: oxidize the mono-

methyl trigger into the ketone, and then methylate the ketone to yield the gem-dimethyl 

trigger 33.
103,104

 The synthesis began with the successful oxidation of the mono-methyl 

nitroimidazole trigger 31 to ketone 32 (Scheme 4.5).
103,104

 The methylation step proved 

difficult, however, as none of the methylation methods attempted generated product or 

any byproduct, only returning starting material 32.
103,104 

 After attempting the methylation with five different reagents in six different ways 

(Scheme 4.5) with no success, a different approach was required. As the nitrothiophene 

ketone was available and easier to generate, the Wittig reaction was run with the 

nitrothiophene 35 in a test system. The generation of the terminal alkene was attempted 

next to no avail, as the reaction of nitrothiophene ketone 35 with phosphonium salt 34 in 
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Wittig conditions did not yield the alkene 36, returning only starting material (Scheme 

4.6). With the failure of the Wittig chemistry in the test system, the Wittig reaction was 

not attempted on the nitroimidazole ketone. 

 
 

Scheme 4.4.  Nitroimidazole Patent Route Synthesis
107 

 

 

 

 
 

Scheme 4.5.  Attempted Methylation of Nitroimidazole Ketone
103,104 
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Scheme 4.6.  Attempted Wittig with Nitrothiophene Ketone 

                                                                  

CA1 Tosyl BAPC Synthesis 

 The Mitsunobu reaction was attempted with the gem-dimethyl nitrothiophene 

trigger on the C2 tosyl / C3 OH CA1 analog, since the nor-methyl and mono-methyl 

nitrothiophene tosyl CA1 (C2 tosyl / C3 trigger) had been successfully synthesized. The 

reaction was attempted to complete the tosyl / nitrothiophene trigger CA1 series, but the 

reaction to generate the gem-dimethyl nitrothiophene tosyl CA1 BAPC 38 was ultimately 

unsuccessful after multiple attempts, all of which only returned starting material (Scheme 

4.7).
88,105,106

  

 

 
Scheme 4.7.  Tosyl Gem-dimethyl-CA1-BAPC Attempted Synthesis

88,105,106 

 

 

 

Conclusions 

 

In conclusion, several KGP18 and OXi6196-based BAPCs were synthesized 

utilizing the Mitsunobu reaction to covalently link KGP18 and OXi6196 to 

nitrothiophene, nitroimidazole, and nitrofuran triggers. This series of OXi6196 and 



134 
 

KGP18-BAPCs will undergo preliminary biological evaluation to determine their 

cytotoxicity in normoxic versus hypoxic conditions, hydrolysis in aqueous solution, 

bioreductive trigger cleavage upon treatment with POR, (in collaboration with Trawick 

Research Group, Baylor University) and their ability to inhibit tubulin polymerization 

and compete for the colchicine binding site (in collaboration with Ernest Hamel, NCI). 

The gem-dimethyl nitroimidazole trigger was not successfully synthesized, but a 

published route by Cavalleri and co-workers
127

 to the gem-dimethyl nitroimidazole 

trigger will be attempted to generate the trigger. 

 

 

Materials and Methods 
 

5-(2,3-dimethoxyphenyl)pent-4-enoic acid (3)
34-36 

(2-carboxyethyl)triphenylphosphonium bromide (16.7 g, 39.0 mmol) was dissolved in 

THF (400 mL). Potassium tert-butoxide (11.7 g, 104 mmol) was added to the reaction 

and it was stirred for 1 h at room temperature. 2,3-Dimethoxybenzaldehyde (5.39 g, 32.0 

mmol) was added to the reaction mixture and it was stirred for 8 h. The reaction was then 

quenched with HCl (2 M, 50 mL) and evaporated under reduced pressure. EtOAc (80 

mL) was added to the residue and the layers were partitioned. The aqueous layer was 

extracted with EtOAc (3 x 40 mL). The combined organic layers were washed with brine 

(50 mL), dried over Na2SO4, and evaporated under reduced pressure. The crude product 

was purified by flash chromatography using a pre-packed 100 g silica column [solvent A: 

EtOAc; solvent B: hexanes; gradient 10%A / 90%B (1 CV), 10%A / 90%B  50%A / 

50%B (13 CV), 50%A / 50%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 
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nm] to afford compound 3 (6.00 g, 25.4 mmol, 65%) as a light yellow solid.  NMR 

characterization was conducted after the next step. 

 

5-(2,3-dimethoxyphenyl)pentanoic acid (4)
34-36 

5-(2,3-dimethoxyphenyl)pent-4-enoic acid (5.39 g, 21.5 mmol) was added to an empty 

flask flushed under N2, followed by 10 % palladium on carbon (0.430 g, 0.404 mmol). 

Methanol (100 mL) was added slowly to the reagents, and then the flask was purged 

under N2. The flask was placed under vacuum, and then H2 was added and the reaction 

was stirred for 12 h at room temperature. The reaction was then filtered through Celite in 

a frit funnel, rinsed with EtOAc (3 x 50 mL), and the combined organic phases were 

evaporated under reduced pressure. The crude product was purified by flash 

chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient 7%A / 93%B (1 CV), 7%A / 93%B  40%A / 60%B (13 CV), 40%A / 

60%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] to afford 

compound 4 (6.00 g, 25.4 mmol, 77%) as a clear oil.     

1
H NMR (500 MHz, CDCl3) δ 6.97 (1H, t, J = 7.9 Hz), 6.76 (2H, m), 3.85 (3H, s), 3.81 

(3H, s), 2.64 (2H, t, J = 7.3 Hz), 2.38 (2H, t, J = 7.1 Hz), 1.74 – 1.60 (4H, m).
 

13
C NMR (125 MHz, CDCl3) δ 179.5, 152.7, 147.0, 135.9, 123.8, 121.8, 110.1, 60.6, 

55.6, 33.8, 30.1, 29.4, 24.5. 

 

1,2-dimethoxy-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (5)
34-36 

5-(2,3-dimethoxyphenyl)pentanoic acid (3.55 g, 14.9 mmol) was dissolved in Eaton’s 

reagent (29 mL, 3 g/mmol of compound 4) and stirred for 12 h at room temperature. The 

reaction was poured over ice and neutralized with saturated sodium bicarbonate. The 
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layers were partitioned, then the aqueous layer was extracted with EtOAc (3 x 50 mL). 

The combined organic layers were washed with brine (40 mL), dried over Na2SO4, and 

evaporated under reduced pressure. The crude product was purified by flash 

chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient 7%A / 93%B (1 CV), 7%A / 93%B  40%A / 60%B (13 CV), 40%A / 

60%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] to afford 

compound 5 (2.22 g, 10.1 mmol, 68%) as a yellow solid.  

1
H NMR (500 MHz, CDCl3) δ 7.53 (1H, d, J = 8.6 Hz), 6.84 (1H, d, J = 8.6 Hz), 3.90 

(3H, s), 3.79 (3H, s), 3.00 (2H, t, J = 6.1 Hz), 2.69 (2H, t, J = 6.1 Hz), 1.89 – 1.81 (2H, 

m), 1.81 – 1.72 (2H, m). 

13
C NMR (125 MHz, CDCl3) δ 204.9, 156.1, 145.9, 135.7, 132.8, 125.5, 109.7, 61.1, 

55.8, 40.6, 24.9, 23.2, 20.9. 

 

1-hydroxy-2-methoxy-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (6)
34-36 

[TMAH][Al2Cl7] (18.3 mL, 9.08 mmol) was added to 1,2-dimethoxy-6,7,8,9-tetrahydro-

5H-benzo[7]annulen-5-one (1.01 g, 4.54 mmol) in a 20 mL microwave vial. The reaction 

mixture was then exposed to microwave irradiation for 1 h on high absorbance at 80 °C. 

The reaction was then poured into water (50 mL) and EtOAc (40 mL) was added. The 

layers were partitioned and the aqueous layer was extracted (3 x 40 mL). The combined 

organic layers were washed with brine (50 mL), dried over Na2SO4, and evaporated 

under reduced pressure. The crude product was purified by flash chromatography using a 

pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient 7%A / 

93%B (1 CV), 7%A / 93%B  60%A / 40%B (13 CV), 60%A / 40%B (2 CV); flow 
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rate: 50 mL/min; monitored at 254 and 280 nm] to afford compound 6 (0.590 g, 2.86 

mmol, 63%) as a yellow solid.    

1
H NMR (500 MHz, CDCl3) δ 7.34 (1H, d, J = 8.5 Hz), 6.79 (1H, d, J = 8.5 Hz), 5.77 

(1H, s), 3.94 (3H, s), 3.01 (2H, dd, J = 7.2, 5.0 Hz), 2.76 – 2.66 (2H, m), 1.83 (4H, m). 

13
C NMR (125 MHz, CDCl3) δ 205.1, 149.2, 142.4, 133.3, 127.7, 120.8, 107.9, 56.1, 

40.8, 24.5, 23.0, 21.3. 

 

1-((tert-butyldimethylsilyl)oxy)-2-methoxy-6,7,8,9-tetrahydro-5H-benzo[7]annulen-

5-one (7)
34-36 

1-hydroxy-2-methoxy-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (2.00 g, 9.70 mmol) 

was dissolved in CH2Cl2 (80 mL). Triethylamine (1.64 mL, 11.6 mmol), tert-

butyldimethylsilyl chloride (1.61 g, 10.7 mmol) and DMAP (0.0650 g, 0.532 mmol) were 

added to the reaction mixture and it was stirred for 8 h. The reaction was quenched with 

water (40 mL) and the layers were partitioned. The aqueous layer was extracted with 

CH2Cl2 (3 x 40 mL). The combined organic layers were washed with brine (50 mL), 

dried over Na2SO4, and evaporated under reduced pressure. The crude product was 

purified by flash chromatography using a pre-packed 50 g silica column [solvent A: 

EtOAc; solvent B: hexanes; gradient 2%A / 98%B (1 CV), 2%A / 98%B  20%A / 

80%B (13 CV), 20%A / 80%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 

nm] to afford compound 7 (2.18 g, 6.79 mmol, 70%) as light tan crystals. 

1
H NMR (500 MHz, CDCl3) δ 7.37 (1H, d, J = 8.5 Hz), 6.76 (1H, d, J = 8.6 Hz), 3.82 

(3H, s), 3.00 (2H, dd, J = 7.0, 5.1 Hz), 2.69 (2H, dd, J = 7.3, 4.4 Hz), 1.84 – 1.73 (4H, 

m), 1.01 (9H, s), 0.18 (6H, s). 
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13
C NMR (125 MHz, CDCl3) δ 205.3, 153.2, 141.7, 133.1, 133.1, 122.3, 108.7, 54.8, 

40.7, 26.1, 25.6, 24.7, 23.9, 21.2, -3.9. 

 

1-((tert-butyldimethylsilyl)oxy)-2-methoxy-5-(3,4,5-trimethoxyphenyl)-6,7,8,9-

tetrahydro-5H-benzo[7]annulen-5-ol (9)
34-36 

3,4,5-trimethoxybromobenzene (4.13 g, 16.7 mmol) was dissolved in THF (80 mL) at -78 

°C. n-Butyllithium (1.6M, 7.06 mL, 16.8 mmol) was added dropwise to the reaction 

mixture and it was stirred for 1 h. 1-((tert-Butyldimethylsilyl)oxy)-2-methoxy-6,7,8,9-

tetrahydro-5H-benzo[7]annulen-5-one (3.99 g, 12.4 mmol) was added to the reaction 

mixture and it was stirred for 8 h while warming from -78 °C to room temperature. The 

reaction was quenched with water (50 mL) and the layers were partitioned. The aqueous 

layer was extracted with EtOAc (3 x 60 mL). The combined organic layers were washed 

with brine (60 mL), dried over Na2SO4, and evaporated under reduced pressure. The 

crude product was purified by flash chromatography using a pre-packed 100 g silica 

column [solvent A: EtOAc; solvent B: hexanes; gradient 7%A / 93%B (1 CV), 7%A / 

93%B  60%A / 40%B (13 CV), 60%A / 40%B (2 CV); flow rate: 100 mL/min; 

monitored at 254 and 280 nm] to afford compound 9 (4.57 g, 9.35 mmol, 56%) as a clear 

oil. NMR characterization was performed after the next step. 

 

tert-butyl((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-

4-yl)oxy)dimethylsilane (10)
34-36 

 1-((tert-Butyldimethylsilyl)oxy)-2-methoxy-5-(3,4,5-trimethoxyphenyl)-6,7,8,9-

tetrahydro-5H-benzo[7]annulen-5-ol (4.57 g, 9.35 mmol) was dissolved in glacial acetic 

acid (50 mL) and the reaction mixture was stirred for 12 h at room temperature. The 
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reaction was quenched with water (50 mL), the mixture was evaporated under reduced 

pressure, and the residue was dissolved in EtOAc (60 mL) and water (40 mL). The layers 

were partitioned, and then the aqueous layer was extracted with EtOAc (3 x 50 mL). The 

combined organic layers were washed with brine (50 mL), dried over Na2SO4, and 

evaporated under reduced pressure. The crude product was purified by flash 

chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient 7%A / 93%B (1 CV), 7%A / 93%B  60%A / 40%B (13 CV), 60%A / 

40%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] to afford 

compound 10 (3.61 g, 7.67 mmol, 82%) as a clear oil.  

1
H NMR (500 MHz, CDCl3) δ 6.69 (1H d, J = 8.5 Hz), 6.61 (1H, d, J = 8.4 Hz), 6.48 

(2H, s), 6.32 (1H, t, J = 7.3 Hz), 3.85 (3H, s), 3.80 (3H, s), 3.79 (6H, s), 2.76 (2H, t, J = 

6.9 Hz), 2.10 (2H, p, J = 7.1 Hz), 1.95 (2H, q, J = 7.2 Hz), 1.04 (9H, s), 0.23 (6H, s). 

13
C NMR (125 MHz, CDCl3) δ 152.8, 148.6, 143.0, 141.5, 138.6, 137.2, 133.8, 133.3, 

126.9, 122.4, 108.3, 105.2, 60.9, 56.1, 54.6, 33.9, 26.2, 25.6, 24.2, 19.0, 3.8. 

 

tert-butyl((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-

4-yl)oxy)dimethylsilane (11)
34-36 

 tert-Butyl((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-

yl)oxy)dimethylsilane (3.61 g, 7.67 mmol) was dissolved in THF (80 mL). TBAF (1M, 

9.00 mL, 9.00 mmol) was added dropwise to the reaction mixture and it was stirred for 

12 h at room temperature. The reaction was quenched with water (50 mL), the mixture 

was evaporated under reduced pressure, and the residue was dissolved in EtOAc (60 mL) 

and water (40 mL). The layers were partitioned, and then the aqueous layer was extracted 

with EtOAc (3 x 50 mL). The combined organic layers were washed with brine (50 mL), 
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dried over Na2SO4, and evaporated under reduced pressure. The crude product was 

purified by flash chromatography using a pre-packed 100 g silica column [solvent A: 

EtOAc; solvent B: hexanes; gradient 10%A / 90%B (1 CV), 10%A / 90%B  80%A / 

20%B (13 CV), 80%A / 20%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 

nm] to afford compound 11 (2.40 g, 6.73 mmol, 88%) as a white solid.  

1
H NMR (500 MHz, CDCl3) δ 6.71 (1H, d, J = 8.4 Hz), 6.57 (1H, d, J = 8.4 Hz), 6.50 

(2H, s), 6.33 (1H, t, J = 7.4 Hz), 3.91 (3H, s), 3.86 (3H, s), 3.80 (6H, s), 2.76 (2H, t, J = 

7.0 Hz), 2.14 (2H, p, J = 7.1 Hz), 1.96 (2H, q, J = 7.2 Hz). 

13
C NMR (125 MHz, CDCl3) δ 152.8, 145.0, 142.8, 142.3, 138.5, 137.2, 134.2, 127.7, 

127.2, 120.8, 107.6, 105.2, 60.9, 56.1, 55.9, 33.6, 25.7, 23.5. 

 

5-(((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-

yl)oxy)methyl)-1-methyl-2-nitro-1H-imidazole (13)
88,105,106 

KGP18 (0.250 g, 0.702 mmol), (1-methyl-2-nitro-1H-imidazol-5-yl)methanol (0.123 g, 

0.842 mmol), and DEAD (0.144 mL, 0.913 mmol) were dissolved in CH2Cl2 (60 mL) at 

room temperature. Triphenylphosphine (0.368 g, 1.40 mmol) was added to the mixture 

and the reaction was stirred for 2 d. The reaction was evaporated under reduced pressure. 

The crude product was purified by flash chromatography using a pre-packed 50 g silica 

column [solvent A: EtOAc; solvent B: hexanes; gradient 10%A / 90%B (1 CV), 10%A / 

90%B  80%A / 20%B (13 CV), 80%A / 20%B (2 CV); flow rate: 50 mL/min; 

monitored at 254 and 280 nm] to afford compound 13 (0.143 g, 0.288 mmol, 41%) as 

orange crystals.  
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1
H NMR (500 MHz, CDCl3) δ 6.71 (1H, d, J = 8.4 Hz), 6.57 (1H, d, J = 8.4 Hz), 6.50 

(2H, s), 6.33 (1H, t, J = 7.4 Hz), 3.91 (3H, s), 3.86 (3H, s), 3.80 (6H, s), 2.76 (2H, t, J = 

7.0 Hz), 2.14 (2H, p, J = 7.1 Hz), 1.96 (2H, q, J = 7.2 Hz). 

13
C NMR (125 MHz, CDCl3) δ 152.8, 145.0, 142.8, 142.3, 138.5, 137.2, 134.2, 127.7, 

127.2, 120.8, 107.6, 105.2, 60.9, 56.1, 55.9, 33.6, 25.7, 23.5. 

HRMS: m/z: obsd 518.1899 [M+Na]
+
, calcd for C26H29N3O7

+
, 495.2006.  

HPLC (Method A): 10.7 min. 

 

5-(1-((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-

yl)oxy)ethyl)-1-methyl-2-nitro-1H-imidazole (15)
88,105,106 

KGP18 (0.250, 0.702 mmol), 1-(1-methyl-2-nitro-1H-imidazol-5-yl)ethan-1-ol (0.144 g, 

0.842 mmol), and DIAD (0.179 g, 0.913 mmol) were dissolved in CH2Cl2 (60 mL) at 

room temperature. Triphenylphosphine (0.368 g, 1.40 mmol) was added to the mixture 

and the reaction was stirred for 2 d. The reaction was evaporated under reduced pressure. 

The crude product was purified by flash chromatography using a pre-packed 50 g silica 

column [solvent A: EtOAc; solvent B: hexanes; gradient 10%A / 90%B (1 CV), 10%A / 

90%B  80%A / 20%B (13 CV), 80%A / 20%B (2 CV); flow rate: 50 mL/min; 

monitored at 254 and 280 nm] to afford compound 15 (2.18 g, 0.239 mmol, 34%) as 

orange crystals. 

HRMS: m/z: obsd 532.2054 [M+Na]
+
, calcd for C27H31N3O7

+
, 509.2162.  

HPLC (Method A): 11.5 min. 

 

2-(((3-Methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-

yl)oxy)methyl)-5-nitrothiophene (17)
88,105,106 
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KGP18 (0.167 g, 0.469 mmol), 5-nitrothiophene-2-carboxaldehyde (0.0896 g, 0.563 

mmol), and DIAD (0.124 mL, 0.633 mmol) were dissolved in CH2Cl2 (50 mL) at room 

temperature. Triphenylphosphine (0.246 g, 0.938 mmol) was added to the mixture and 

the reaction mixture was stirred for 2 d. The reaction was evaporated under reduced 

pressure. The crude product was purified by flash chromatography using a pre-packed 25 

g silica column [solvent A: EtOAc; solvent B: hexanes; gradient 10%A / 90%B (1 CV), 

10%A / 90%B  80%A / 20%B (13 CV), 80%A / 20%B (2 CV); flow rate: 30 mL/min; 

monitored at 254 and 280 nm] to afford compound 7 (0.0866 g, 0.174 mmol, 37%) as an 

orange oil. The product is still in purification. 

 

(4-Methoxy-3-((5-nitrofuran-2-yl)methoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (20)
88,105,106 

KGP18 (0.300 g, 0.842 mmol), (5-nitrofuran-2-yl)methanol (0.143 g, 1.01 mmol), and 

DIAD (0.213 mL, 1.09 mmol) were dissolved in THF (50 mL) at room temperature. 

Triphenylphosphine (0.442 g, 1.68 mmol) was added to the mixture and the reaction was 

stirred for 3 d. The reaction was evaporated under reduced pressure. The crude product 

was purified by flash chromatography using a pre-packed 50 g silica column [solvent A: 

EtOAc; solvent B: hexanes; gradient 10%A / 90%B (1 CV), 10%A / 90%B  80%A / 

20%B (13 CV), 80%A / 20%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 

nm] to afford compound 20 as a crude yellow oil. 

 

(4-methoxy-3-(1-(5-nitrofuran-2-yl)ethoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (21)
88,105,106 
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KGP18 (0.300 g, 0.842 mmol), 1-(5-nitrofuran-2-yl)ethan-1-ol (0.159 g, 1.01 mmol), and 

DIAD (0.213 mL, 1.09 mmol) were dissolved in THF (50 mL) at room temperature. 

Triphenylphosphine (0.442 g, 1.68 mmol) was added to the mixture and the reaction was 

stirred for 3 d. The reaction was evaporated under reduced pressure. The crude product 

was purified by flash chromatography using a pre-packed 50 g silica column [solvent A: 

EtOAc; solvent B: hexanes; gradient 10%A / 90%B (1 CV), 10%A / 90%B  80%A / 

20%B (13 CV), 80%A / 20%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 

nm] to afford compound 21 as crude yellow crystals. 

 

2-(2-((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-

yl)oxy)propan-2-yl)-5-nitrofuran
88,105,106 

KGP18 (0.329 g, 0.925 mmol), 2-(5-nitrofuran-2-yl)propan-2-ol (0.190 g, 1.11 mmol), 

and ADDP (0.303 mL, 1.20 mmol) were dissolved in THF (50 mL) at room temperature. 

Tributylphosphine (0.228 mL, 1.85 mmol) was added to the mixture and the reaction was 

stirred for 3 d. The reaction was evaporated under reduced pressure. The crude product 

was purified by flash chromatography using a pre-packed 50 g silica column [solvent A: 

EtOAc; solvent B: hexanes; gradient 10%A / 90%B (1 CV), 10%A / 90%B  80%A / 

20%B (13 CV), 80%A / 20%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 

nm]. 
1
H and 

13
C NMR showed no product formation on the resulting fractions, only 

starting material. 

 

5-(((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-yl)oxy)methyl)-

1-methyl-2-nitro-1H-imidazole (23)
88,105,106 
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Oxi 6196 (0.363 g, 1.06 mmol), (1-methyl-2-nitro-1H-imidazol-5-yl)methanol (0.200 g, 

1.27 mmol), and DIAD (0.280 mL, 1.43 mmol) were dissolved in THF (70 mL) at room 

temperature. Triphenylphosphine (0.557 g, 2.12 mmol) was added and the reaction 

mixture was stirred for 2 d. The reaction was evaporated under reduced pressure. The 

crude product was purified by flash chromatography using a pre-packed 50 g silica 

column [solvent A: EtOAc; solvent B: hexanes; gradient 10%A / 90%B (1 CV), 10%A / 

90%B  80%A / 20%B (13 CV), 80%A / 20%B (2 CV); flow rate: 50 mL/min; 

monitored at 254 and 280 nm] to afford compound 23 (1.33 g, 0.371 mmol, 35%) as a 

yellow solid.    

1
H NMR (600 MHz, CDCl3) δ 7.14 (1H, s), 6.85 (1H, d, J = 8.5 Hz), 6.69 (1H, d, J = 8.5 

Hz), 6.54 (2H, s), 5.97 (1H, t, J = 4.6 Hz), 5.01 (2H, s), 4.24 (3H, s), 3.89 (3H, s), 3.85 

(3H, s), 3.85 (6H, s), 2.76 (2H, t, J = 7.9 Hz), 2.31 (2H, td, J = 7.8, 4.6 Hz). 

13
C NMR (151 MHz, acetone d-6) δ 153.3, 152.1, 143.3, 139.5, 137.7, 136.3, 134.5, 

130.7, 128.7, 128.5, 124.9, 122.2, 109.2, 106.1, 62.7, 59.7, 55.5, 55.1, 34.0, 22.6, 20.9. 

HRMS: m/z: obsd 482.1921 [M+H]
+
, calcd for C25H27N3O7

+
, 481.1849.  

HPLC (Method A): 7.3 min. 

5-(1-((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-yl)oxy)ethyl)-

1-methyl-2-nitro-1H-imidazole (24)
88,105,106 

Oxi6196 (0.200 g, 0.585 mmol), 1-(1-methyl-2-nitro-1H-imidazol-5-yl)ethan-1-ol (0.120 

g, 0.702 mmol), and DIAD (0.150 mL, 0.761 mmol) were dissolved in THF (60 mL) at 

room temperature. Triphenylphosphine (0.307 g, 1.17 mmol) was added to the reaction 

mixture and it was stirred for 2 d. The reaction was evaporated under reduced pressure. 

The crude product was purified by flash chromatography using a pre-packed 50 g silica 



145 
 

column [solvent A: EtOAc; solvent B: hexanes; gradient 10%A / 90%B (1 CV), 10%A / 

90%B  79%A / 21%B (13 CV), 79%A / 21%B (2 CV); flow rate: 50 mL/min; 

monitored at 254 and 280 nm] to afford compound 24 (0.0694 g, 0.140 mmol, 24%) as a 

yellow solid.  

1
H NMR (600 MHz, CDCl3) δ 7.14 (1H, s), 6.77 (1H, d, J = 8.5 Hz), 6.62 (1H, d, J = 8.6 

Hz), 6.47 (2H, s), 5.91 (1H, t, J = 4.6 Hz), 5.53 (1H, q, J = 6.6 Hz), 4.11 (3H, s), 3.82 

(3H, s), 3.79 (3H, s), 3.78 (6H, s), 2.69 (2H, td, J = 9.3, 8.9, 6.8 Hz), 2.27 – 2.14 (2H, m), 

1.61 (2H, d, J = 6.6 Hz). 

13
C NMR (126 MHz, acetone d-6) δ 153.3, 152.0, 141.6, 139.6, 138.8, 137.6, 136.3, 

131.6, 128.7, 126.3, 125.0, 122.0, 109.2, 106.0, 68.9, 59.7, 55.5, 55.1, 34.1, 22.6, 21.7, 

17.6. 

HRMS: m/z: obsd 496.2077 [M+H]
+
, calcd for C26H29N3O7

+
, 495.2006.  

HPLC (Method A): 10.0 min. 

 

2-(2-((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-

yl)oxy)propan-2-yl)-5-nitrothiophene (26)
88,105,106 

Oxi6196 (0.200 g, 0.584 mmol), 2-(5-nitrothiophen-2-yl)propan-2-ol (0.131 g, 0.701 

mmol), and ADDP (0.192 mmol, 0.759 mmol) were dissolved in THF (50 mL) at room 

temperature. Tributylphosphine (0.241 mL, 0.975 mmol) was added drop-wise and the 

reaction mixture was stirred for 2 d. The reaction was then evaporated under reduced 

pressure. The crude product was purified by flash chromatography using a pre-packed 25 

g silica column [solvent A: EtOAc; solvent B: hexanes; gradient 10%A / 90%B (1 CV), 

10%A / 90%B  80%A / 20%B (13 CV), 80%A / 20%B (2 CV); flow rate: 75 mL/min; 

monitored at 254 and 280 nm] to yield a crude product. The crude product was then 
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dissolved in CH2Cl2 (40 mL). Triethylamine (0.240 mL, 1.75 mmol), DMAP (0.0710 g, 

0.584 mmol), and tert-butyldimethylsilyl chloride (0.106 g, 0.701 mmol) were added to 

the reaction and it was stirred for 12 h. The reaction was quenched with water (40 mL) 

and then the layers were partitioned. The aqueous layer was extracted with CH2Cl2 (3 x 

30 mL). The combined organic layers were washed with brine (40 mL), dried over 

Na2SO4, and evaporated under reduced pressure. The crude product was purified by flash 

chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient 10%A / 90%B (1 CV), 10%A / 90%B  80%A / 20%B (13 CV), 

80%A / 20%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] to afford 

compound 26 (0.122 g, 0.239 mmol, 41%) as an orange solid. 

1
H NMR (600 MHz, acetoned-6) 7.87 (1H, d, J = 4.3 Hz), 7.03 (1H, d, J = 4.3 Hz), 6.70 

(1H, d, J = 8.4 Hz), 6.58 (2H, s), 6.54 (1H, d, J = 8.4 Hz), 5.95 (1H, t, J = 4.7 Hz), 3.82 

(3H, s), 3.80 (6H, s), 3.75 (3H, s), 2.81 (2H, t, J = 7.9 Hz), 2.30 (2H, td, J = 7.9, 4.7 Hz), 

1.63 (6H, s). 

13
C NMR (126 MHz, acetone d-6) δ 166.2, 153.1, 146.6, 142.5, 139.9, 137.5, 136.8, 

129.3, 128.6, 124.5, 122.4, 121.4, 117.1, 107.8, 106.1, 70.9, 59.7, 55.5, 55.3, 31.4, 31.3, 

22.7, 20.2.  

HPLC (Method A): 7.0 min. 

 

Methyl N-formyl-N-methylglycinate (28)
107

  

Sarcosine methyl ester • HCl (16.0 g, 155 mmol) and potassium carbonate (16.4 g, 119 

mmol) were dissolved in ethanol (80 mL) at room temperature. Ethyl formate (68 mL, 

842 mmol) was added and the reaction was stirred for 18 h. The reaction was filtered 

through a frit funnel, the residue was rinsed with EtOAc (3 x 70 mL), and the combined 
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organic layers were evaporated under reduced pressure. Water (70 mL) and EtOAc (100 

mL) were added to the residue and the layers were partitioned. The aqueous layer was 

extracted with EtOAc (3 x 60 mL). The combined organic fractions were washed with 

brine (80 mL), dried with Na2SO4, and evaporated under reduced pressure. After 

evaporation, methyl N-formyl-N-methylglycinate (24) (15.5 g, 118 mmol, 76%) was 

recovered as a pale tan oil. [product left in crude state, taken on to next reaction with no 

further purification]  

 

Sodium (E)-3-methoxy-2-(N-methylformamido)-3-oxoprop-1-en-1-olate (29)
107 

Methyl N-formyl-N-methylglycinate (22.0 g, 183 mmol) was dissolved in ethyl formate 

(106 mL, 1.08 mol) at 0 °C. Sodium hydride (60% in mineral oil, 9.07 g, 219 mmol) was 

added to the reaction mixture in several small aliquots over 30 minutes, and the reaction 

was stirred for 12 h. The reaction mixture was triturated with hexanes (2 x 100 mL) in a 

frit funnel, and then the solid was dried by vacuum overnight to yield sodium €-3-

methoxy-2-(N-methylformamido)-3-oxoprop-1-en-1-olate (29) (18.0 g, 117 mmol, 64%) 

as an off-white powder. [crude product taken to next step] 

 

Ethyl 2-amino-1-methyl-1H-imidazole-5-carboxylate (30)
107 

Sodium (E)-3-methoxy-2-(N-methylformamido)-3-oxoprop-1-en-1-olate (0.507 g, 3.29 

mmol) was dissolved in ethanol (8 mL) and concentrated HCl (3.5 mL). The reaction 

mixture was refluxed for 1 h. The reaction was then cooled to room temperature and the 

mixture was filtered through a frit funnel. The solid residue was rinsed with methanol (2 

x 40 mL) and the combined organic layers were evaporated under reduced pressure. 

Water (30 mL) and CH2Cl2 (30 mL) were added to the residue and the layers were 
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partitioned. The aqueous layer was extracted with CH2Cl2 (3 x 10 mL). The combined 

organic layers were then washed with saturated sodium bicarbonate (1 x 20 mL), dried 

over Na2SO4, and evaporated under reduced pressure to yield a thick brown oil. The oil 

was then dissolved in 10 % acetic acid in water (20 mL). Cyanamide ( 0.230 g, 5.47 

mmol) and sodium acetate (0.596 g, 7.26 mmol) were dissolved in the reaction mixture 

and it was refluxed for 1 h. The reaction was then allowed to cool to room temperature 

and evaporated under reduced pressure to one half of its original volume. The reaction 

was then neutralized to pH 9 with sodium carbonate. The layers were partitioned and the 

aqueous layer was extracted with EtOAc (5 x 20 mL). The combined organic layers were 

washed with brine (1 x 30 mL), dried over Na2SO4, and evaporated under reduced 

pressure. Recrystallization was attempted on the residue, but no product was obtained. 

 

1-(1-methyl-2-nitro-1H-imidazol-5-yl)ethan-1-one (32)
103,104 

1-(1-methyl-2-nitro-1H-imidazol-5-yl)ethan-1-ol (0.920 g, 5.38 mmol) was dissolved in 

CH2Cl2 (80 mL) at room temperature. DMP (2.74 g, 6.46 mmol) was added to the 

mixture and the reaction was stirred for 1 h. Saturated solutions of NaHCO3 (30 mL) and 

sodium thiosulfate (30 mL) were added to the reaction mixture, which was extracted with 

EtOAc (3 x 30 mL). The combined organic layers were dried over Na2SO4 and filtered, 

and the solvent was removed under reduced pressure. Purification by flash 

chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient: 12%A / 88%B (1 CV), 12%A / 88%B → 100%A / 0%B (10 CV), 

100%A / 0%B (2 CV); flow rate: 75 mL/min; monitored at 254 and 280 nm] afforded 

compound 32 (0.810 g, 4.79 mmol, 89%) as a yellow solid.  

1
H NMR (500 MHz, CDCl3) δ 7.76 (1H, s), 4.29 (3H, s), 2.57 (3H, s). 
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13
C NMR (125 MHz, CDCl3) δ 189.0, 135.5, 132.0, 68.5, 35.6, 28.4. 

 

 (Z)-3-methoxy-2-((2-(5-nitrothiophen-2-yl)propan-2-yl)oxy)-6-(3,4,5-

trimethoxystyryl)phenyl 4-methylbenzenesulfonate (38)
88,105,106 

(Z)-2-hydroxy-3-methoxy-6-(3,4,5-trimethoxystyryl)phenyl 4-methylbenzenesulfonate 

(0.480 g, 0.986 mmol), 2-(5-nitrothiophen-2-yl)propan-2-ol (0.222 g, 1.18 mmol), and 

ADDP (0.280 g, 1.11 mmol) were dissolved in THF (50 mL) at room temperature. 

Tributylphosphine (0.406 mL, 1.65 mmol) was added to the reaction mixture drop-wise 

and the reaction was stirred for 5 d. The reaction was evaporated under reduced pressure. 

TLC and crude NMR analysis confirmed no product was generated. 
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Activatable Prodrug Conjugates of Phenstatin Designed to Target Tumor Hypoxia. 
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The author Blake A. Winn contributed to this manuscript through the synthesis of all 

eleven final compounds including characterization, which included proton and carbon 

NMRs, HPLC, and HRMS. In addition, Blake A. Winn contributed a significant amount 

to the writing and editing of the manuscript, as well as the preparation of the supporting 

data. Zhe Shi contributed through the preparation of the supporting data as well as the 

synthesis of the nitroimidazole and nitrofuran triggers. Graham Carlson contributed 

through the synthesis of phenstatin and the phenstatin BAPCs 12, 13, 31, and 32. Evan 

Kelly contributed through the synthesis of phenstatin and the synthesis of phenstatin 

BAPCs 20-22. David Ross contributed through the synthesis of phenstatin. Benson 

Nguyen contributed through developing the original Pinney Research Group route to 

phenstatin and the initial synthesis of phenstatin BAPC 14. Ernest Hamel contributed 

through the preliminary biological evaluation of the phenstatin BAPCs ability to inhibit 

tubulin polymerization and compete for the colchicine binding site. Yifan Wang 

contributed through the preliminary biological evaluation of the enzymatic cleavage of 

the phenstatin BAPCs by POR and the hydrolysis of the phenstatin BAPCs.   
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Schemes 

Scheme S1. Synthesis of the Phenstatin Nitrobenzyl BAPCs
S2-S5

Scheme S2. Synthesis of the Nitrobenzyl Triggers
S1

Mono-methyl nitrobenzyl trigger 16 and gem-dimethyl trigger 18 were synthesized 

through methylation of aldehyde 15 and ketone 17, respectively.
S1

 

Scheme S3. Synthesis of the Phenstatin Nitroimidazole BAPCs
S2-S5
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Scheme S4. Synthesis of the Nitroimidazole Triggers
S1,S6,S7 

In a three step process, sarcosine ethyl ester HCl was first formylated, then deformylated, 

and cyclized in order to generate ester 26 in reasonable yield over the three steps.
S6,S7

 The amine 

26 was oxidized to nitro ester 27, which was hydrolyzed and then reacted with 

isobutylchloroformate to form a carbonate, which was subsequently reduced to the nor-methyl 

nitroimidazole trigger 28.
S6,S7

 Alcohol 28 was then oxidized to aldehyde 29 upon treatment with 

DMP.
S6,S7

 Finally, aldehyde 29 was methylated to yield the mono-methyl nitroimidazole trigger 

30.
S1,S6,S7
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Scheme S5.  Attempted Methylation of Nitroimidazole Ketone
S1,S6 

The oxidation of the mono-methyl nitroimidazole 30 yielded the ketone 41. Several 

methylation methods were attempted on the nitroimidazole ketone 41 to generate the gem-

dimethyl nitroimidazole 42, but each method attempted only returned starting material. While the 

gem-dimethyl nitroimidazole trigger has been previously reported in the literature, only one (to 

the best of our knowledge) of the known reports (from among a very limited sub-set) provided a 

synthetic protocol
S9

, and in an effort to avoid the large scale use of KCN and picric acid, we did 

not utilize this procedure.
S8-S17
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Experimental Procedure 

 

General Experimental Procedures.
S18,S19

 CH2Cl2 and tetrahydrofuran (THF) 

were used in their anhydrous forms, as obtained from the chemical suppliers. Reactions 

were performed under an inert atmosphere using N2. Thin-layer chromatography (TLC) 

plates (precoated glass plates with silica gel 60 F254, 0.25 mm thickness) were used to 

monitor reactions. Purification of intermediates and products was carried out with a flash 

purification system using silica gel (200-400 mesh, 60 Å) or RP-18 prepacked columns. 

Intermediates and products synthesized were characterized on the basis of their 
1
H NMR 

(500 MHz) and 
13

C NMR (125 MHz) spectroscopic data. TMS was used as an internal 

standard for spectra recorded in CDCl3. All the chemical shifts are expressed in ppm (δ), 

coupling constants (J) are presented in Hz, and peak patterns are reported as broad (br), 

singlet (s), doublet (d), doublet of doublets (dd) triplet (t), quartet (q), septet (sept), and 

multiplet (m). HRESIMS were obtained using positive or negative electrospray ionization 

(ESI) techniques using a Thermo Scientific LTQ OrbitrapDiscovery instrument. Purity of 

the final compounds was further analyzed at 25 °C using an Agilent 1200 HPLC system 

with a diode-array detector (λ = 190-400 nm), a Zorbax XDB-C18 HPLC column (4.6 

mm x 150 mm, 5 μm), and a Zorbax reliance cartridge guard-column. Flow rate 1.0 

mL/min; injection volume 20 μL; monitored at 254 nm, 300 nm, 320 nm. Two different 

HPLC gradients were used for purity analysis; Method A: water/acetonitrile, gradient 

10:90 to 90:10 from 0 to 25 min and isocratic 90:10 from 25 to 30 min; Method B: 

water/acetonitrile, gradient 50:50 to 90:10 from 0 to 25 min and isocratic 90:10 from 25 

to 30 min (note: 4-dimethylaminopyridine is abbreviated DMAP, ethyl acetate is 
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abbreviated EtOAc, N,N-dimethylformamide is abbreviated DMF, and chloroform-d is 

abbreviated CDCl3). 

3-((tert-Butyldimethylsilyl)oxy)-4-methoxybenzaldehyde (2):
S3

 Isovanillin (2.01 g,

13.2 mmol), triethylamine (4.00 mL, 28.5 mmol), and DMAP (0.045 g, 0.37 mmol) were 

dissolved in dry CH2Cl2 (60 mL). tert-Butyldimethylsilyl chloride (2.214 g, 14.7 mmol) 

was added to the reaction mixture, which was stirred for 12 h. The reaction was quenched 

with water, extracted with diethyl ether (Et2O), which was washed with water and brine, 

dried with Na2SO4, and evaporated under reduced pressure. Flash chromatography of the 

crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent 

B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B  27% A/73% B (10 CV), 

27% A/73% B over (2 CV); flow rate 40.0 mL/min; monitored at 254 and 280 nm] 

yielded 3-((tert-butyldimethylsilyl)oxy)-4-methoxybenzaldehyde (2) (3.17 g, 11.9 mmol, 

90%) as a yellow oil. 

1
H NMR (500 MHz, CDCl3) δ 9.82 (1H, s), 7.49 (1H, dd, J = 8.5 Hz, J = 2 Hz), 7.37 

(1H, d, J = 2 Hz), 6.96 (1H, d, J = 8.5 Hz), 3.90 (3H, s), 1.00 (9H, s), 0.17 (6H, s). 

13
C NMR (125 MHz, CDCl3) δ 190.9, 156.6, 145.3, 130.2, 126.3, 120.0, 111.1, 55.6, 

25.6, 18.4, -4.6. 

(3-((tert-Butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5-

trimethoxyphenyl)methanol (4):
S3

 1-Bromo-3,4,5-trimethoxybenzene (1.81 g, 7.31

mmol) was dissolved in dry THF (60 mL) in a dry ice/acetone bath (-78 °C). n-
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Butyllithium (2.8 mL, 7.0 mmol, 2.5 M) was added dropwise to the reaction mixture, 

which was stirred for 30 min. 3-((tert-Butyldimethylsilyl)oxy)-4-methoxybenzaldehyde 

(2.00 g, 7.50 mmol) dissolved in dry THF (20 mL) was added dropwise, and the reaction 

mixture was stirred for 5 h. The reaction was quenched with water, acidified to pH 7 with 

3 M HCl, extracted with Et2O, washed with water and brine, dried with Na2SO4, and 

evaporated under reduced pressure. Flash chromatography of the crude product using a 

prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 

10% A/90% B (1 CV), 10% A/90% B  80% A/20% B (10 CV), 80% A/20% B over (2 

CV); flow rate 40.0 mL/min; monitored at 254 and 280 nm] yielded (3-((tert-

butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5-trimethoxyphenyl)methanol (4) as a 

pale yellow oil (2.02 g, 4.65 mmol, 62%) [1.58 g, 3.63 mmol, 48%, corrected for 

EtOAc]. 

1
H NMR (500 MHz, CDCl3)  δ 6.89 (2H, m), 6.80 (1H, d, J = 8.5 Hz), 6.57 (2H, d, J = 

4.5 Hz), 5.24 (1H, d, J = 4.5 Hz), 3.81 (3H, s), 3.77 (9H, s), 0.94 (9H, d, J = 3.5 Hz), 0.11 

(6H, d, J = 2.5 Hz).  

13
C NMR (125 MHz, CDCl3) δ 153.0, 150.3, 144.7, 140.0, 136.5, 119.9, 119.4, 111.8, 

103.4, 75.5, 60.7, 55.9, 55.5, 25.7, 18.4, -4.6. 

 

(3-((tert-Butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5-

trimethoxyphenyl)methanone (5):
S3

 (3-((tert-Butyldimethylsilyl)oxy)-4-

methoxyphenyl)(3,4,5-trimethoxyphenyl)methanol (3.00 g, 6.90 mmol), Celite (2.45 g), 

and potassium carbonate [K2CO3] (2.46 g, 17.8 mmol) were dissolved in dry CH2Cl2 (130 

mL) in an ice bath (0 °C). Pyridinium chlorochromate [PCC] (1.52 g, 7.04 mmol) was 
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added in small increments and the reaction mixture was stirred for 18 h. The reaction 

mixture was filtered with CH2Cl2 in a frit funnel containing a 50/50 mixture of Celite and 

silica gel and then evaporated under reduced pressure. Flash chromatography of the crude 

product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, 

hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B  45% A/55% B (10 CV), 45% 

A/55% B (2 CV); flow rate 40.0 mL/min; monitored at 254 and 280 nm] yielded (3-

((tert-butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone (5) 

(1.79 g, 4.14 mmol, 60%) as a yellow oil. 

1
H NMR (500 MHz, CDCl3)  δ 7.40 (1H, d, J = 8 Hz), 7.33 (1H, s), 6.99 (2H, s), 6.87 

(1H, d, J = 8.5 Hz), 3.88 (3H, s), 3.84 (3H, s), 3,83 (6H, s), 0.96 (9H, s), 0.14 (6H, s). 

13
C NMR (125 MHz, CDCl3) δ 194.5, 154.9, 152.7, 144.6, 141.5, 133.3, 130.4, 125.3, 

122.3, 110.7, 107.4, 60.9, 56.2, 55.5, 25.6, 18.4, -4.6. 

Phenstatin (6):
S3

 (3-((tert-Butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5-

trimethoxyphenyl)methanone (3.59 g, 8.31 mmol) was dissolved in dry THF (100 mL). 

Tetrabutylammonium fluoride trihydrate (3.93 g, 12.5 mmol) was added, and the reaction 

mixture was stirred for 18 h. The reaction was quenched with water, acidified to pH 7 

with 3 M HCl, and extracted with EtOAc, which was dried with Na2SO4, and evaporated 

under reduced pressure. Flash chromatography of the crude product using a prepacked 

100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 12% 

A/88% B over 1.19 min (1 CV), 12% A/88% B  99% A/1% B over 13.12 min (10 CV), 

99% A/1% B over 2.38 min (2 CV); flow rate 40.0 mL/min; monitored at 254 and 280 

nm] yielded phenstatin (6) (2.06 g, 6.47 mmol, 78%) as a white solid. 
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1
H NMR (500 MHz, CDCl3) δ 7.42 (1H, s), 7.37 (1H, d, J = 8.5 Hz). 7.01 (2H, s), 6.90 

(1H, d, J = 8 Hz), 3.94 (3H, s), 3.90 (3H, s), 3.85 (6H, s).  

13
C NMR (125 MHz, CDCl3) δ 194.7, 152.8, 150.2, 145.3, 141.6, 133.1, 131.0, 123.7, 

116.2, 109.7, 107.5, 61.0, 56.3, 56.1.   

HRMS [M+Na]
+
: 341.0997 (calcd for [C17H18O6Na]

+
, 341.1103).  

HPLC retention time (Method A): 15.35 min [97.1% at 254 nm]. 

 

(5-Nitrothiophen-2-yl)methanol (8):
S2 

5-Nitrothiophene-2-carboxaldehyde (1.00 g, 6.38 

mmol) was dissolved in dry methanol (20 mL) in an ice bath (0 °C). NaBH4 (0.270 g, 

7.14 mmol) was added, and the reaction mixture was stirred for 2 h. Ice was added and 

the solution was acidified to pH 7 with 3 M HCl. The reaction mixture was extracted with 

EtOAc, dried with Na2SO4, and evaporated under reduced pressure. Flash 

chromatography of the crude product using a prepacked 50 g silica column [eluents: 

solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B  

65% A/35% B (10 CV), 65% A/35% B (2 CV); flow rate 50.0 mL/min; monitored at 254 

and 280 nm] yielded alcohol 8 (0.914 g, 5.74 mmol, 90%) as a brown oil. 

1
H NMR (500 MHz, CDCl3) δ 7.84 (1H, d, J = 4.1 Hz), 6.95 (1H, dt, J = 4.1, 1.0 Hz), 

4.90 (2H, d, J = 5.2 Hz), 2.15 (1H, t, J = 5.8 Hz).
  

13
C NMR (126 MHz, CDCl3) δ 154.0, 150.6, 129.0, 123.5, 60.2. 

 

1-(5-Nitrothiophen-2-yl)ethan-1-ol (9):
S1

 TiCl4 (7.84 g, 41.3 mmol) was added slowly 

dropwise into Et2O (80 mL) at -78 °C, after which methyllithium (1.6 M, 25.8 mL, 41 
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mmol) was added drop-wise, and the reaction mixture was stirred for 1.5 h. 5-Nitro-2-

thiophenecarboxaldehyde (5.00g, 31.8 mmol) was dissolved in Et2O (120 mL) and added 

dropwise to the reaction mixture, which was stirred (12 h). H2O (50 mL) was used to 

quench the reaction. The layers were partitioned, and the residue was extracted with 

EtOAc (6 × 40 mL). The combined extracts were washed with brine, dried over Na2SO4, 

filtered, and concentrated under reduced pressure. The crude product was purified by 

flash column chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; 

solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B → 73%A / 27%B 

(13 CV), 73%A / 27%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] 

affording alcohol 9 (4.95 g, 28.6 mmol, 90%) as a dark brown oil. 

1
H NMR (600 MHz, CDCl3) δ 7.82 (1H, d, J = 4.2 Hz), 6.91 (1H, dd, J = 4.2, 1.0 Hz), 

5.14 (1H, qd, J = 6.4, 1.0 Hz), 2.14 (1H, s), 1.64 (3H, d, J = 6.5 Hz).

13
C NMR (125 MHz, CDCl3) δ 160.0, 149.9, 129.1, 122.2, 66.3, 25.1. 

1-(5-Nitrothiophen-2-yl)ethan-1-ol (9) [Alternate Route]: 5-Nitro-2-

thiophenecarboxaldehyde (1.00 g, 6.36 mmol) was dissolved in CH2Cl2 (50 mL) at 0 °C. 

Trimethylaluminum (2 M, 5.30 mL, 10.6 mmol) was added dropwise, and the reaction 

mixture was stirred for 2 h. The reaction was quenched with HCl (1 M, 40 mL) and the 

layers were partitioned. The residue was extracted with CH2Cl2 (3 x 30 mL), and the 

combined organic phase was washed with brine (40 mL), dried over Na2SO4, and 

evaporated under reduced pressure. The crude product was purified by flash column 

chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B → 70%A / 30%B (13 CV), 
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70%A / 30%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] affording 

alcohol 11 (1.01 g, 5.85 mmol, 92%) as yellow-orange crystals. 

 

1-(5-Nitrothiophen-2-yl)ethan-1-one (10): 2-(1-Hydroxyethyl)-5-nitrothiophene (1.04 

g, 6.00 mmol) was dissolved in 70 mL CH2Cl2 at rt. Dess-Martin periodinane (3.82 g, 

9.00mmol) was added in portions to the solution, and the reaction mixture was stirred (1 

h). Saturated solutions of sodium thiosulfate (50 mL) and NaHCO3 (50 mL) were used to 

quench the reaction mixture. The layers were partitioned, and the residue was extracted 

with EtOAc (4 x 30 mL). The combined extracts were washed with brine, dried over 

Na2SO4, filtered, and concentrated under reduced pressure. The crude product was 

purified by flash chromatography using a pre-packed 100 g silica column [solvent A: 

EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B → 80%A / 

20%B (13 CV), 80%A / 20%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 

nm] affording ketone 10 (0.873 g, 5.10 mmol, 90%) as yellow-orange crystals.  

1
H NMR (600 MHz, CDCl3) δ 7.89 (1H, d, J=4.3 Hz), 7.58 (1H, d, J=4.3 Hz), 2.60 (3H, 

s).  

13
C NMR (151 MHz, CDCl3) δ 190.35, 156.47, 148.16, 130.06, 128.28, 26.61. 

 

2-(5-Nitrothiophen-2-yl)propan-2-ol (11):
S1 

TiCl4 (3.62 g, 19.1 mmol) was slowly 

added dropwise into Et2O (80 mL) at -78 °C, after which methyllithium (1.6 M, 11.9 mL, 

19 mmol) was added dropwise, and the reaction mixture was stirred for 1.5 h. 2-Acetyl-5-

nitrothiophene (2.50 g, 14.7 mmol) was dissolved in Et2O (140 mL) and added dropwise 

to the reaction mixture,  which was stirred (12 h). H2O (50 mL) was used to quench the 
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reaction mixture. The layers were partitioned, and the residue was extracted with 

EtOAc (6 × 40 mL). The combined extracts were washed with brine, dried over Na2SO4, 

filtered, and concentrated under reduced pressure. The crude product was purified by 

flash column chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; 

solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B → 70%A / 30%B 

(13 CV), 70%A / 30%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] 

affording alcohol 11 (1.61 g, 8.60 mmol, 45%) as a dark orange oil. 

1
H NMR (600 MHz, CDCl3) δ 7.80 (1H, d, J = 4.2 Hz), 6.89 (1H, d, J = 4.2 Hz), 1.69 

(6H, s). 

13
C NMR (151 MHz, CDCl3) δ 163.46, 150.04, 128.76, 121.26, 71.92, 32.08. 

2-(5-Nitrothiophen-2-yl)propan-2-ol (11) [Alternate Route]: 2-Acetyl-5-

nitrothiophene (0.500 g, 2.92 mmol) was dissolved in CH2Cl2 (20 mL) at 0 °C. 

Trimethylaluminum (2 M, 2.42 mL, 4.85 mmol) was added dropwise, and the reaction 

mixture was stirred for 2 h. The reaction was quenched with HCl (1 M, 30 mL), and the 

layers were partitioned. The residue was extracted with CH2Cl2 (3 x 20 mL), and the 

combined organic extracts were washed with brine (20 mL), dried over Na2SO4, and 

evaporated under reduced pressure. The crude product was purified by flash column 

chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B → 70%A / 30%B (13 CV), 

70%A / 30%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] affording 

alcohol 11 (0.365 g, 2.13 mmol, 73%) as bright orange crystals. 
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(4-Methoxy-3-((5-nitrothiophen-2-yl)methoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (12):
S2,S3

 Phenstatin (0.405 g, 1.27 mmol), DIAD (0.289 

g, 1.43 mmol), and (5-nitrothiophen-2-yl)methanol (0.454 g, 2.85 mmol) were dissolved 

in dry CH2Cl2 (40 mL). Triphenylphosphine (0.574 g, 2.19 mmol) was added, and the 

reaction mixture was stirred for 2 d. The reaction was quenched with water (30 mL) and 

extracted with EtOAc (3 x 30 mL), which was dried with Na2SO4 and evaporated under 

reduced pressure. Flash chromatography of the crude product using a prepacked 50 g 

silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 17% A/83% B (1 

CV), 17% A/83% B  100% A/0% B (10 CV), 100% A/0% B (2 CV); flow rate 35.0 

mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-((5-nitrothiophen-2-

yl)methoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (12) (0.198 g, 0.431 mmol, 34%) 

as a brown solid.  

1
H NMR (500 MHz, CDCl3)  δ 7.83 (1H, d, J = 4.5 Hz), 7.51 (1H, d, J = 1.5 Hz), 7.49 

(1H, dd, J = 8 Hz, J = 1.5 Hz), 7.06 (1H, d, J = 4.5), 6.99 (2H, s), 6.97 (1H, d, J = 8.5 

Hz), 5.33 (2H, s), 3.98 (3H, s), 3.93 (3H, s), 3.87 (6H, s).  

13
C NMR (125 MHz, CDCl3) δ 194.3, 153.7, 152.8, 147.7, 146.9, 141.7, 133.0, 130.2, 

128.4, 126.6, 125.2, 115.5, 110.6, 107.4, 66.3, 61.0, 56.3, 56.2.  

HRMS [M+Na]
+
: 482.0880 (calcd for [C22H21NNaO8S]

+
, 482.0880).  

HPLC retention time (Method B): 9.10 min [95.1% at 254 nm]. 

 

(4-Methoxy-3-(1-(5-nitrothiophen-2-yl)ethoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (13):
S2,S3

 Phenstatin (0.407 g, 1.28 mmol), DIAD (0.294 
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g, 1.45 mmol), and 1-(5-nitrothiophen-2-yl)ethanol (0.505 g, 2.92 mmol) were dissolved 

in dry CH2Cl2 (40 mL). Triphenylphosphine (0.558 g, 2.13 mmol) was added, and the 

reaction mixture was stirred for 2 d. The reaction was quenched with water and extracted 

with EtOAc, which was dried with Na2SO4 and evaporated under reduced pressure. Flash 

chromatography of the crude product using a prepacked 25 g silica column [eluents: 

solvent A, EtOAc; solvent B, hexanes; gradient, 15% A/85% B (1 CV), 15% A/85% B  

100% A/0% B (10 CV), 100% A/0% B (2 CV); flow rate 20.0 mL/min; monitored at 254 

and 280 nm] yielded (4-methoxy-3-(1-(5-nitrothiophen-2-yl)ethoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (13) (0.179 g, 0.378 mmol, 30%) as a tan yellow solid. 

1
H NMR (500 MHz, CDCl3) δ 7.77 (1H, d, J = 4.2 Hz), 7.48 (1H, dd, J = 8.4, 2.0 Hz), 

7.45 (1H, d, J = 2.0 Hz), 6.99 – 6.92 (4H, m), 5.60 (1H, q, J = 6.4 Hz), 3.96 (3H, s), 3.91 

(3H, s), 3.84 (6H, s), 1.77 (3H, d, J = 6.4 Hz). 

13
C NMR (125 MHz, CDCl3) δ 194.2, 154.8, 154.4, 152.8, 151.0, 145.9, 141.7, 133.0, 

130.2, 128.4, 126.8, 123.4, 118.4, 110.9, 107.4, 73.6, 61.0, 56.3, 56.1, 23.2. 

HRMS [M+Na]
+
: 496.1038 (calcd for [C23H23NNaO8S]

+
, 496.1037).

HPLC retention time (Method B): 10.33 min [98.1% at 254 nm]. 

 (4-Methoxy-3-((2-(5-nitrothiophen-2-yl)propan-2-yl)oxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (14):
S2.S3

 Phenstatin (0.581 g, 1.83 mmol), ADDP (0.597

g, 2.38 mmol), and 2-(5-nitrothiophen-2-yl)propan-2-ol (0.410 g, 2.19 mmol) were 

dissolved in dry CH2Cl2 (80 mL). Tributylphosphine (0.752 mL, 3.06 mmol) was added 
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dropwise, and the reaction mixture was stirred for 2 d. The reaction mixture was dried 

under reduced pressure. Flash chromatography of the crude product using a prepacked 25 

g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B 

(1 CV), 10% A/90% B  80% A/20% B (10 CV), 80% A/20% B (2 CV); flow rate 50.0 

mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-((2-(5-nitrothiophen-2-

yl)propan-2-yl)oxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (14) as an orange gum 

(0.062 g, 0.128 mmol, 7%) [0.050 g, 0.104 mmol, 6%, corrected for CH2Cl2].  

1
H NMR (600 MHz, acetone-d6) δ 7.93 (1H, d, J = 4.3 Hz), 7.67 (1H, dd, J = 8.5, 2.2 

Hz), 7.41 (1H, d, J = 2.1 Hz), 7.22 (1H, d, J = 8.5 Hz), 7.19 (1H, d, J = 4.3 Hz), 7.02 (2H, 

s), 3.95 (3H, s), 3.87 (6H, s), 3.84 (3H, s), 1.79 (6H, s).  

13
C NMR (151 MHz, acetone-d6) δ 192.94, 161.01, 157.41, 153.10, 150.43, 142.93, 

141.89, 133.12, 129.98, 128.83, 127.80, 125.38, 123.07, 111.83, 107.31, 80.82, 59.80, 

55.74, 55.44, 28.16.  

HRMS [M+Na]
+
: 510.1190 (calcd for [C24H25NNaO8S]

+
, 510.1193).  

HPLC retention time (Method B): 11.49 min [96.3% at 254 nm]. 

 

1-(4-Nitrophenyl)ethan-1-ol (16):
S1

  TiCl4 (2.72 mL, 24.8 mmol) was added dropwise 

slowly to dry Et2O (100 mL) in an acetone / dry ice bath (-78 °C). Methyllithium (15.5 

mL, 25 mmol, 1.6 M) was then added dropwise slowly to the reaction mixture which was 

stirred for 1.5 h. 4-Nitrobenzaldehyde (2.88g, 19.1 mmol) dissolved in Et2O (140 mL) 

was added dropwise to the reaction mixture, which was stirred for 18 h. The reaction was 

quenched with water and extracted with CH2Cl2 (3 x 50 mL), which was washed with 
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water and brine and dried over Na2SO4, and evaporated under reduced pressure. Flash 

chromatography of the crude product using a prepacked 100 g silica column [eluents: 

solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B  

80% A/20% B over (10 CV), 80% A/20% B (2 CV); flow rate 100.0 mL/min; monitored 

at 254 and 280 nm] yielded 1-(4-nitrophenyl)ethan-1-ol (16) (2.49 g, 14.9 mmol, 78%) as 

a yellow-orange oil. 

1
H NMR (600 MHz, CDCl3) δ 8.17 (2H, d, J = 8.7 Hz), 7.53 (2H, d, J = 8.6 Hz), 5.01 

(1H, q, J = 6.5 Hz), 1.51 (3H, d, J = 6.6 Hz). 

13
C NMR (151 MHz, CDCl3) δ 153.22, 147.09, 126.13, 123.71, 69.43, 25.44. 

2-(4-Nitrophenyl)propan-2-ol (18):
S1

   TiCl4 (3.02 mL, 27.6 mmol) was added dropwise

slowly to dry Et2O (100 mL) in an acetone / dry ice bath (-78 °C). Methyllithium (17.2 

mL, 28 mmol, 1.6 M) was then added dropwise slowly to the reaction mixture, which 

was stirred for 1.5 h. 4-Nitroacetophenone (3.50g, 21.2 mmol) dissolved in Et2O (150 

mL) was added dropwise to the reaction mixture, which was stirred for 18 h. The reaction 

was quenched with water, and the mixture was extracted with CH2Cl2 (3 x 50 mL), which 

was washed with water and brine, dried over Na2SO4, and evaporated under reduced 

pressure. Flash chromatography of the crude product using a prepacked 100 g silica 

column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 

10% A/90% B  60% A/40% B (10 CV), 60% A/40% B (2 CV); flow rate 100.0 

mL/min; monitored at 254 and 280 nm] yielded 2-(4-nitrophenyl)propan-2-ol (18) (1.42 

g, 7.84 mmol, 37%) as an orange oil. 
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1
H NMR (600 MHz, CDCl3) δ 8.16 (2H, d, J = 8.9 Hz), 7.65 (2H, d, J = 8.9 Hz), 1.61 

(7H, s).  

13
C NMR (151 MHz, CDCl3) δ 156.52, 146.64, 125.51, 123.45, 72.49, 31.69. 

 

(4-methoxy-3-((4-nitrobenzyl)oxy)phenyl)(3,4,5-trimethoxyphenyl)methanone 

(20):
S2-S5

 Phenstatin (0.500 g, 1.57 mmol), DIAD (0.35 mL, 1.9 mmol), and 4-nitrobenzyl 

alcohol (0.481 g, 3.14 mmol) were dissolved in dry CH2Cl2 (60 mL). Triphenylphosphine 

(0.700 g, 2.67 mmol) was added, and the reaction mixture was stirred for 2 d. The 

reaction was quenched with water, and the reaction mixture was extracted with EtOAc, 

which was dried with Na2SO4 and evaporated under reduced pressure. Flash 

chromatography of the crude product using a prepacked 100 g silica column [eluents: 

solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B  

80% A/20% B (10 CV), 80% A/20% B (2 CV); flow rate 100.0 mL/min; monitored at 

254 and 280 nm] yielded (4-methoxy-3-((4-nitrobenzyl)oxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (20) (0.462 g, 1.02 mmol, 65%) as a yellow solid.  

1
H NMR (600 MHz, acetone-d6) δ 8.31 (2H, d, J = 8.7 Hz), 7.84 (2H, d, J = 9.0 Hz), 

7.54 (1H, d, J = 2.0 Hz), 7.52 (1H, dd, J = 8.3, 2.0 Hz), 7.18 (1H, d, J = 8.4 Hz), 7.04 

(2H, s), 5.40 (2H, s), 4.00 (3H, s), 3.87 (6H, s), 3.84 (3H, s).  

13
C NMR (151 MHz, acetone-d6) δ 193.21, 153.71, 153.10, 147.67, 145.12, 141.81, 

133.24, 130.25, 128.06, 125.41, 123.49, 114.93, 110.99, 107.37, 99.99, 69.45, 59.80, 

55.70, 55.54. HRMS [M+Na]
+
: 476.1315 (calcd for [C24H23NNaO8]

+
, 476.1316).  

HPLC retention time (Method B): 9.55 min [100% at 254 nm]. 
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(4-Methoxy-3-(1-(4-nitrophenyl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone 

(21):
S2-S5

 Phenstatin (0.500 g, 1.57 mmol), DIAD (0.348 mL, 1.88 mmol), and 1-(4-

nitrophenyl)ethan-1-ol (0.525 g, 3.14 mmol) were dissolved in dry CH2Cl2 (60 mL). 

Triphenylphosphine (0.700 g, 2.67 mmol) was added to the reaction mixture, which was 

stirred for 2 d. The reaction was quenched with water, and the reaction mixture was 

extracted with CH2Cl2 (3 x 40 mL), which was dried with Na2SO4 and evaporated under 

reduced pressure. Flash chromatography of the crude product using a prepacked 100 g 

silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 

CV), 10% A/90% B  80% A/20% B over (10 CV), 80% A/20% B (2 CV); flow rate 

100.0 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-(1-(4-

nitrophenyl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (21) (0.315 g, 0.675 

mmol, 43%) as white solid. 

1
H NMR (600 MHz, acetone-d6) δ 8.26 (2H, d, J = 8.8 Hz), 7.78 (2H, d, J = 8.4 Hz), 

7.46 (1H, dd, J = 8.4, 2.0 Hz), 7.34 (1H, d, J = 2.0 Hz), 7.15 (1H, d, J = 8.4 Hz), 6.93 

(2H, s), 5.72 (1H, q, J = 6.4 Hz), 4.00 (3H, s), 3.83 (3H, s), 3.81 (6H, s), 1.69 (3H, d, J = 

6.5 Hz). 

13
C NMR (151 MHz, CDCl3) δ 194.27, 153.96, 152.80, 150.05, 147.48, 146.57, 141.76, 

133.04, 130.14, 126.53, 125.83, 124.01, 116.93, 110.61, 107.50, 60.98, 56.36, 56.14, 

23.86, 21.95. 

HRMS [M+Na]
+
: 490.1471 (calcd for [C25H25NNaO8]

+
, 490.1472).

HPLC retention time (Method B): 10.05 min [96.7% at 254 nm]. 
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(4-Methoxy-3-((2-(4-nitrophenyl)propan-2-yl)oxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (22):
S2-S5

 Phenstatin (0.500 g, 1.57 mmol), ADDP (0.475 

g, 1.88 mmol), and 2-(4-nitrophenyl)propan-2-ol (0.569 g, 3.14 mmol) were dissolved in 

dry CH2Cl2 (70 mL). Tributylphosphine (0.66 mL, 2.67 mmol) was added dropwise to 

the reaction mixture, which was stirred for 2 d. The reaction was quenched with water, 

and the mixture was extracted with EtOAc, which was washed with water and brine, 

dried with Na2SO4, and evaporated under reduced pressure. Flash chromatography of the 

crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent 

B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B  80% A/20% B (10 CV), 

80% A/20% B (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded 

(4-methoxy-3-((2-(4-nitrophenyl)propan-2-yl)oxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (22) (0.174 g, 0.361 mmol, 23%) as tan solid, 

 1H NMR (600 MHz, acetone-d6) δ 8.25 (2H, d, J = 8.9 Hz), 7.91 (2H, d, J = 8.9 Hz), 

7.57 (1H, dd, J = 8.5, 2.1 Hz), 7.18 (1H, d, J = 8.5 Hz), 7.12 (1H, d, J = 2.1 Hz), 6.92 

(2H, s), 3.96 (3H, s), 3.84 (6H, s), 3.83 (3H, s), 1.76 (6H, s).  

13
C NMR (151 MHz, acetone-d6) δ 193.05, 156.74, 154.53, 153.03, 147.02, 143.92, 

141.76, 133.21, 129.72, 126.62, 126.34, 123.48, 123.30, 111.62, 107.16, 81.28, 59.77, 

55.73, 55.43, 27.99.  

HRMS [M+Na]
+
: 504.1629 (calcd for [C26H27NNaO8]

+
, 504.1629).  

HPLC retention time (Method B): 10.82 min [97.1% at 254 nm]. 
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Ethyl 2-amino-1-methyl-1H-imidazole-5-carboxylate (26):
S6

 To a suspension of

sarcosine ethyl ester (4.00 g, 0.026 mol) in THF (90 mL) and ethyl formate (90 mL) was 

added NaH (60 % dispersion in mineral oil, 10.0 g, 0.25 mol) in several portions at room 

temperature. The reaction mixture was stirred for 3 h, and, during this time, a yellow 

suspension formed. The reaction mixture was concentrated and triturated with hexane (2 

x 150 mL). The hexane was decanted, and the resulting light tan solid was dried in vacuo. 

Ethanol (80 mL) and concentrated aqueous HCl (16 mL) were added to the solid, and the 

suspension was heated to reflux for 2 h. The reaction mixture was then filtered while hot, 

and the filter was rinsed with boiling ethanol (2 x 50 mL). The combined filtrate was 

concentrated to yield a brown oil. The oil was diluted with ethanol (140 mL) and water 

(60 mL), and the pH of the solution was adjusted to 3 by using NaOH solution (2 M). 

Cyanamide (2.18 g, 0.052 mol) was added, and the resulting solution was heated to reflux 

for 1.5 h. After being cooled to room temperature, the reaction mixture was concentrated 

to approximately 1/8 of its original volume. Solid K2CO3 was added to adjust the pH of 

the concentrated reaction mixture to 8-9, resulting in the formation of a yellow 

precipitate. The solid was removed by filtration, washed with a K2CO3 solution (1 M, 1 x 

20 mL) and water (2 x 20 mL) and dried to afford a pale yellow solid (1.97 g, 12.0 mmol, 

45%). 

1
H NMR (600 MHz, CDCl3) δ 7.45 (1H, s), 4.27 (2H, q, J = 7.1 Hz), 4.25 (2H, s), 3.68 

(3H, s), 1.34 (3H, t, J = 7.1 Hz). 

13
C NMR (151 MHz, CDCl3) δ 160.67, 151.89, 135.50, 119.05, 59.82, 30.55, 14.41. 
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Ethyl 1-methyl-2-nitro-1H-imidazole-5-carboxylate (27):
S6,S7

 Aminoimidazole (0.700 

g, 4.14 mmol) in acetic acid (7.3 mL) was added dropwise to an aqueous solution of 

sodium nitrite (3.6 mL, 11 M). The solution was stirred at room temperature for 4 h until 

no more N2 was formed. The reaction mixture was extracted with CH2Cl2 (1 x 20 mL), 

washed with brine (1 x 20 mL) and a saturated aqueous solution of Na2SO3 (1 x 20 mL). 

The organic layer was then dried over Na2SO4, filtered and concentrated to afford a crude 

yellow solid. Purification by flash chromatography using a prepacked 25 g silica column 

[solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (4 CV), 7%A / 93%B → 

60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 70 mL/min; monitored at 254 

and 280 nm] afforded the nitroimidazole analogue 27 (0.510 g, 2.60 mmol, 63%) as a 

yellow solid.  

1
H NMR (600 MHz, CDCl3) δ 7.74 (1H, s), 4.40 (2H, q, J = 7.1 Hz), 4.35 (3H, s), 1.41 

(3H, t, J = 7.1 Hz). 

13
C NMR (151 MHz, CDCl3) δ 159.08, 147.46, 134.67, 126.29, 61.84, 35.39, 14.18. 

 

(1-Methyl-2-nitro-1H-imidazol-5-yl)methanol (28):
S6,S7

 A suspension of the 

nitroimidazole ethyl ester (0.796 g, 4.00 mmol) in 0.75 M NaOH solution (16 mL) was 

stirred at room temperature overnight to give a clear light yellow solution. The pH of the 

reaction mixture was adjusted to 1 by adding concentrated HCl. The resulting solution 

was extracted with EtOAc (5 x 20 mL). The combined organic layer was dried over 

Na2SO4 and concentrated to afford a light yellow solid. The solid was dissolved in THF 

(8 mL) with triethylamine (0.880 mL, 6.30 mmol). Isobutylchloroformate (0.820 mL, 

6.30 mmol) was added dropwise at -40 
o
C, and the reaction mixture was stirred at room 
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temperature for 1 h. NaBH4 (0.794 g, 21.0 mmol) was added to the solution, followed by 

dropwise addition of water (7 mL) over 1 h while maintaining the temperature around 0 

o
C. The reaction mixture was extracted with Et2O (3 x 20 mL), which was dried over 

Na2SO4 and concentrated under reduced pressure. Purification by flash chromatography 

using a prepacked 25 g silica column [solvent A: methanol; solvent B: CH2Cl2; gradient: 

1%A / 99%B (4 CV), 1%A / 99%B → 15%A / 85%B (10 CV), 15%A / 85%B (2 CV); 

flow rate: 75 mL/min; monitored at 254 and 280 nm] afforded the normethyl 

nitroimidazole trigger (28) (0.449 g, 2.86 mmol, 71%) as a pale yellow solid. 

1
H NMR (600 MHz, Methanol-d4) δ 7.11 (1H, s), 4.68 (2H, s), 4.06 (3H, s). 

13
C NMR (151 MHz, MeOD) δ 145.82, 137.93, 126.02, 53.16, 33.40. 

1-Methyl-2-nitro-1H-imidazole-5-carbaldehyde (29): Normethyl nitroimidazole trigger 

28 (359 mg, 2.28 mmol) was dissolved in CH2Cl2 (10 mL). Dess–Martin periodinane 

(1.16 g, 2.74 mmol) was added and the reaction mixture was stirred for 1 h at room 

temperature. Saturated solutions of NaHCO3 (20 mL) and sodium thiosulfate (20 mL) 

were added to the reaction mixture, which was extracted with EtOAc (3 x 25 mL). The 

combined organic layers were dried over Na2SO4 and filtered, and the solvent was 

removed under reduced pressure. Purification by flash chromatography using a prepacked 

25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 12%A / 88%B (1 

CV), 12%A / 88%B → 100%A / 0%B (10 CV), 100%A / 0%B (2 CV); flow rate: 75 

mL/min; monitored at 254 and 280 nm] afforded imidazole analogue (346 mg, 2.23 

mmol, 98%) as a yellow solid.

1
H NMR (600 MHz, CDCl3) δ 9.94 (1H, s), 7.82 (1H, s), 4.36 (3H, s). 
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13
C NMR (151 MHz, CDCl3) δ 180.39, 148.35, 139.38, 132.38, 35.57. 

 

1-(1-Methyl-2-nitro-1H-imidazol-5-yl)ethan-1-ol (30):
S1

 TiCl4 (1.3 mL, 11 mmol) in 

Et2O (60 mL) was treated with methyllithium (7.1 mL, 1.6M, 11 mmol) at -78 
o
C, and the 

resulting solution was stirred for 1 h. A THF (15 mL) solution of imidazole aldehyde 

analogue (0.884 g, 5.70 mmol) was added dropwise and the reaction mixture was stirred 

for 24 h. Water (50 mL) was added and the resulting solution was extracted with EtOAc 

(3 x 50 mL), which was dried over Na2SO4 and concentrated to afford a crude brown oil. 

Purification by flash chromatography using a prepacked 50 g silica column [solvent A: 

EtOAc; solvent B: hexanes; gradient: 17%A / 83%B (1 CV), 17%A / 83%B → 100%A / 

0%B (7 CV), 100%A / 0%B (5 CV); flow rate: 100 mL/min; monitored at 254 and 280 

nm] afforded the monomethyl nitroimidazole trigger (30) (400 mg, 2.34 mmol, 41%) as a 

yellow solid.  

1
H NMR (600 MHz, acetone-d6) δ 7.07 (1H, s), 5.01 (1H, p, J = 6.2 Hz), 4.64 (1H, d, J = 

6.0 Hz), 4.09 (3H, s), 1.63 (3H, d, J = 6.6 Hz). 

13
C NMR (151 MHz, acetone-d6) δ 146.4, 141.6, 124.7, 60.4, 33.9, 21.1 

 

(4-Methoxy-3-((1-methyl-2-nitro-1H-imidazol-5-yl)methoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (31):
S2-S5

 Phenstatin (0.500 g, 1.57 mmol), (1-methyl-2-

nitro-1H-imidazol-5-yl)methanol (0.296 g, 1.89 mmol), and DIAD (0.40 mL, 2.04 mmol) 

were dissolved in CH2Cl2. Triphenylphosphine (0.825 g, 3.14 mmol) was added to the 

mixture, and the reaction mixture was stirred for 24 h. The reaction mixture was then 

evaporated under reduced pressure. Flash chromatography of the crude product using a 
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prepacked 100 g silica column [eluents: solvent A: EtOAc; solvent B: hexanes; gradient, 

17%A/83%B over 1.19 min (1 CV), 17%A/83%B  100%A/0%B over 8.33 min (7 

CV), 100%A / 0%B over 5.95 min (5 CV); flow rate 100 mL/min; monitored at 254 and 

280 nm] yielded (4-methoxy-3-((1-methyl-2-nitro-1H-imidazol-5-

yl)methoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (31) as a pale yellow-white solid 

(0.346 g, 0.757 mmol, 48%) [0.284 g, 0.621 mmol, 39%, corrected for EtOAc]. 

1
H NMR (600 MHz, CDCl3) δ 7.62 (1H, d, J = 1.7 Hz), 7.52 (1H, dd, J = 8.3, 1.7 Hz), 

7.24 (1H, s), 7.04 (2H, s), 6.97 (1H, d, J = 8.4 Hz), 5.18 (2H, s), 4.16 (3H, s), 3.97 (3H, 

s), 3.96 (3H, s), 3.91 (6H, s). 

13
C NMR (151 MHz, CDCl3) δ 194.16, 153.97, 152.91, 146.74, 141.88, 132.92, 132.30, 

130.43, 129.31, 127.00, 116.43, 110.61, 107.52, 99.98, 61.24, 61.01, 56.39, 56.05, 34.54. 

HRMS [M+Na]
+
: 480.1376 (calcd for [C22H23N3NaO8]

+
,480.1377).

HPLC retention time (Method B): 4.66 min [100% at 254 nm]. 

(4-methoxy-3-(1-(1-methyl-2-nitro-1H-imidazol-5-yl)ethoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (32):
S2-S5

 Phenstatin (0.250 g, 0.786 mmol), DIAD (0.19

mL, 1.02 mmol), and 1-(1-methyl-2-nitro-1H-imidazol-5-yl)ethan-1-ol (0.161 g, 0.943 

mmol) were added to dry CH2Cl2 (50 mL). Triphenylphosphine (0.412 g, 1.57 mmol) 

was added, and the reaction mixture was stirred for 2 d. The reaction solvent was 

evaporated under reduced pressure. Flash chromatography of the crude product using a 

prepacked 100 g silica column [eluents: solvent A: EtOAc; solvent B: hexanes; gradient, 

15%A/85%B over 1.19 min (1 CV), 15%A/85%B  100%A/0%B over 8.33 min (7 
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CV), 100%A / 0%B over 14.28 min (12 CV); flow rate 100 mL/min; monitored at 254 

and 280 nm] yielded (4-methoxy-3-(1-(1-methyl-2-nitro-1H-imidazol-5-

yl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (32) as a pale yellow-white solid 

(0.119 g, 0.252 mmol, 32%) [0.101 g, 0.214 mmol, 27%, corrected for EtOAc]. 

1
H NMR (600 MHz, CDCl3) δ 7.57 (1H, d, J = 2.0 Hz), 7.55 (1H, dd, J = 8.3, 2.0 Hz), 

7.21 (1H, s), 7.02 (2H, s), 6.99 (1H, d, J = 8.4 Hz), 5.59 (1H, q, J = 6.5 Hz), 4.13 (3H, s), 

3.97 (3H, s), 3.96 (3H, s), 3.91 (6H, s), 1.81 (3H, d, J = 6.5 Hz). 

13
C NMR (151 MHz, CDCl3) δ 194.09, 154.63, 152.90, 145.23, 141.89, 137.09, 132.88, 

130.47, 127.15, 118.90, 110.95, 107.51, 99.98, 68.42, 61.01, 56.39, 56.04, 34.70, 18.55. 

HRMS [M+Na]
+
: 494.1533 (calcd for [C23H25N3NaO8]

+
 494.1534).

HPLC retention time (Method B): 5.17 min [98.6% at 254 nm]. 

(5-Nitrofuran-2-yl)methanol (34):
S2

 5-Nitrofuran-2-carbaldehyde (4.00 g, 28 mmol)

was dissolved in anhydrous methanol (80 mL) and cooled to 0 
o
C. NaBH4 (1.17 g, 31

mmol) was added to the reaction mixture, which was stirred for 2.5 h. The reaction was 

quenched with an HCl solution (1 M, 40 mL) and extracted with EtOAc (3 x 50 mL). The 

combined organic layer was dried over Na2SO4 and concentrated under reduced pressure 

to afford a crude yellow oil. Purification by flash chromatography using a prepacked 100 

g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 

7%A / 93%B → 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 100 mL/min; 

monitored at 254 and 280 nm] afforded (5-nitrofuran-2-yl)methanol (34) (3.23 g, 22.6 

mmol, 80%) as a pale yellow oil. 
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1
H NMR (600 MHz, CDCl3) δ 7.31 (1H, d, J = 3.6 Hz), 6.58 (1H, d, J = 3.6 Hz), 4.74 

(2H, s), 2.09 (1H, s). 

13
C NMR (151 MHz, CDCl3) δ 157.37, 151.92, 112.40, 110.61, 57.45. 

1-(5-Nitrofuran-2-yl)ethan-1-ol (35):
S1

 TiCl4 (0.78 mL, 7.1 mmol) in Et2O (35 mL) was

treated with methyllithium (4.4 mL, 1.6 M, 7.1 mmol) at -78 
o
C. The resulting solution

was stirred for 1 h. A THF (10 mL) solution of 5-nitrofuran-2-carbaldehyde (0.500 g, 3.5 

mmol) was added dropwise, and the reaction mixture was stirred for 24 h. Water (30 mL) 

was added and the resulting solution was extracted with EtOAc (3 x 30 mL), which was 

dried over Na2SO4 and concentrated to afford a crude brown oil. Purification by flash 

chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B → 60%A / 40%B (10 CV), 60%A 

/ 40%B (2 CV); flow rate: 75 mL/min; monitored at 254 and 280 nm] afforded 1-(5-

nitrofuran-2-yl)ethan-1-ol (35) (449 mg, 2.86 mmol, 81%) as a brown oil. 

1
H NMR (600 MHz, CDCl3) δ 7.29 (1H, d, J = 4.1 Hz), 6.52 (1H, d, J = 4.6 Hz), 4.96 

(1H, q, J = 7.1 Hz), 2.57 (1H, s), 1.61 (3H, d, J = 6.8 Hz). 

13
C NMR (151 MHz, CDCl3) δ 161.27, 151.59, 112.51, 108.57, 63.66, 21.38. 

1-(5-Nitrofuran-2-yl)ethan-1-one (36): Dess-Martin periodinane (8.62 g, 20.4 mmol) 

was added to 1-(5-nitrofuran-2-yl)ethan-1-ol (3.20 g, 20.4 mmol) dissolved in CH2Cl2 

(250 mL), and the reaction mixture was stirred for 1 h. The reaction was quenched with 

saturated solutions of sodium thiosulfate and NaHCO3, then extracted with CH2Cl2 (3 x 
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50 mL), which was washed with water and brine, dried with Na2SO4, and evaporated 

under reduced pressure. Flash chromatography of the crude product using a prepacked 

100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 7% A/93% 

B over 1.19 min (1 CV), 7% A/93% B  50% A/50% B over 13.12 min (10 CV), 50% 

A/50% B over 2.38 min (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] 

yielded 1-(5-nitrofuran-2-yl)ethan-1-one (36) (2.98 g, 19.2 mmol, 94%) as yellow solid. 

1
H NMR (600 MHz, CDCl3) δ 7.38 (1H, d, J = 3.8 Hz), 7.28 (1H, d, J = 3.7 Hz), 2.61 

(3H, s).  

13
C NMR (151 MHz, CDCl3) δ 186.73, 151.91, 151.48, 116.79, 111.94, 26.27. 

 

2-(5-Nitrofuran-2-yl)propan-2-ol (37): 1-(5-Nitrofuran-2-yl)ethan-1-one (3.00 g, 19.3 

mmol) in CH2CI2 (120 mL) was treated dropwise at 0 °C with trimethylaluminium (16.0 

mL, 2.0 M, 32 mmol), and the resulting yellow solution was stirred for 90 min at 0 °C. 

Sat. aq. NH4Cl was added to the reaction mixture, which was extracted with CH2Cl2 (3 x 

50 mL). The combined organic layers were dried over Na2SO4 and filtered, and the 

solvent was removed under reduced pressure to give a yellow oil. Purification by flash 

chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B → 60%A / 40%B (10 CV), 60%A 

/ 40%B (2 CV); flow rate: 1000mL/min; monitored at 254 and 280 nm] afforded 2-(5-

nitrofuran-2-yl)propan-2-ol (37) (2.75 g, 16.1 mmol, 83%) as a yellow oil.  

1
H NMR (600 MHz, CDCl3) δ 7.27 (1H, d, J = 3.7 Hz), 6.49 (1H, d, J = 3.7 Hz), 2.36 

(1H, s), 1.65 (7H, s).  
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13
C NMR (151 MHz, CDCl3) δ 164.05, 151.36, 112.55, 107.37, 69.30, 28.67. 

(4-Methoxy-3-((5-nitrofuran-2-yl)methoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (38):
S2-S5

 Phenstatin (0.250 g, 0.786 mmol), DEAD (0.16

mL, 1.02 mmol), and (5-nitrofuran-2-yl)methanol (0.135 g, 0.943 mmol) were dissolved 

in dry CH2Cl2 (60 mL). Triphenylphosphine (0.412 g, 1.57 mmol) was added, and the 

reaction mixture was stirred for 2 d. The solvent was evaporated under reduced pressure. 

Flash chromatography of the crude product using a prepacked 50 g silica column 

[eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B over 1.19 min (1 

CV), 10% A/90% B  80% A/20% B over 13.12 min (10 CV), 80% A/20% B over 2.38 

min (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-

3-((5-nitrofuran-2-yl)methoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (38) (0.143 g, 

0.322 mmol, 41%) as a white solid. 

1
H NMR (600 MHz, acetone-d6) δ 7.59 (1H, d, J = 2.0 Hz), 7.56 – 7.52 (2H, m), 7.17 

(1H, d, J = 8.4 Hz), 7.06 (2H, s), 6.95 (1H, d, J = 3.7 Hz), 5.32 (2H, s), 3.96 (3H, s), 3.88 

(6H, s), 3.85 (3H, s). 

13
C NMR (151 MHz, acetone-d6) δ 193.12, 154.11, 153.89, 153.12, 147.13, 141.85, 

133.19, 130.26, 126.00, 124.87, 116.00, 113.41, 112.45, 111.18, 107.39, 63.08, 59.80, 

55.72, 55.47. HRMS [M+Na]
+
: 466.1107 (calcd for [C22H21NNaO9]

+
, 466.1109).

HPLC retention time (Method B): 6.81 min [99.1% at 254 nm]. 

(4-Methoxy-3-(1-(5-nitrofuran-2-yl)ethoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (39):
S2-S5

  Phenstatin (0.250 g, 0.786 mmol), DIAD (0.20
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mL, 1.02 mmol), and 1-(5-nitrofuran-2-yl)ethan-1-ol (0.148 g, 0.943 mmol) were 

dissolved in dry CH2Cl2 (60 mL). Triphenylphosphine (0.412 g, 1.57 mmol) was added, 

and the reaction mixture was stirred for 2 d. The solvent was evaporated under reduced 

pressure. Flash chromatography of the crude product using a prepacked 50 g silica 

column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B over 

1.19 min (1 CV), 10% A/90% B  80% A/20% B over 13.12 min (10 CV), 80% A/20% 

B over 2.38 min (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded 

(4-methoxy-3-(1-(5-nitrofuran-2-yl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone 

(39) (0.169 g, 0.369 mmol, 47%) as a white solid. 

1
H NMR (600 MHz, acetone-d6) δ 7.55 (1H, dd, J = 8.4, 2.1 Hz), 7.51 (1H, d, J = 2.1 

Hz), 7.49 (1H, d, J = 3.7 Hz), 7.17 (1H, d, J = 8.4 Hz), 7.02 (2H, s), 6.83 (1H, d, J = 3.5 

Hz), 5.65 (1H, q, J = 6.5 Hz), 3.97 (3H, s), 3.87 (6H, s), 3.84 (3H, s), 1.77 (3H, d, J = 6.6 

Hz). 

13
C NMR (151 MHz, acetone-d6) δ 193.05, 158.26, 154.84, 153.11, 151.79, 146.11, 

141.89, 133.16, 130.29, 126.49, 119.30, 112.44, 111.54, 111.02, 107.39, 70.96, 59.80, 

55.73, 55.52, 18.82. 

HRMS [M+Na]
+
: 480.1263 (calcd for [C23H23NNaO9]

+
, 480.1265).

HPLC retention time (Method B): 7.86 min [100% at 254 nm]. 

(4-Methoxy-3-((2-(5-nitrofuran-2-yl)propan-2-yl)oxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (40):
S2-S5 

Phenstatin (1.00 g, 3.14 mmol), ADDP (1.03 g,

4.08 mmol), and 2-(5-nitrofuran-2-yl)propan-2-ol (0.646 g, 3.77 mmol) were dissolved in 
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dry THF (80 mL). Tributylphosphine (1.55 mL, 6.28 mmol) was added dropwise, and the 

reaction mixture was stirred for 2 d. The solvent was evaporated under reduced pressure. 

Flash chromatography of the crude product using a prepacked 100 g silica column 

[eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% 

A/90% B  80% A/20% B (10 CV), 80% A/20% B (0.2 CV); flow rate 100.0 mL/min; 

monitored at 254 and 280 nm] yielded (4-methoxy-3-((2-(5-nitrofuran-2-yl)propan-2-

yl)oxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (40) as a colorless solid (0.118 g, 

0.251 mmol, 8%) [0.100 g, 0.213 mmol, 7%, corrected for CH2Cl2]. 

1
H NMR (600 MHz, acetone-d6) δ 7.58 (1H, dd, J = 8.5, 2.1 Hz), 7.40 (1H, d, J = 3.7 

Hz), 7.14 – 7.06 (2H, m), 6.94 (2H, s), 6.69 (1H, d, J = 3.7 Hz), 3.83 (6H, s), 3.81 (3H, 

s), 3.80 (3H, s), 1.75 (6H, s). 

13
C NMR (151 MHz, acetone-d6) δ 192.97, 160.47, 157.53, 153.09, 151.48, 143.09, 

141.85, 133.15, 129.94, 127.80, 125.96, 112.31, 111.61, 110.81, 107.25, 77.40, 59.80, 

55.74, 55.38, 25.03. 

HRMS [M+Na]
+
: 494.1422 (calcd for [C24H25NNaO9]

+
 494.1422 ).

HPLC retention time (Method B): 8.26 min [93.9% at 254 nm]. 
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Biology 

Colchicine Binding Assay
S22 

Inhibition of [
3
H]colchicine binding to tubulin was determined using 0.1 mL reaction 

mixtures. Each reaction mixture contained 1.0 µM tubulin, 5.0 µM [
3
H]colchicine (from 

Perkin–Elmer), 5% (v/v) dimethyl sulfoxide, potential inhibitors at 5.0 µM and 

components that were previously demonstrated to stabilize the colchicine binding activity 

of tubulin
S10

 (1.0 M monosodium glutamate [adjusted to pH 6.6 with HCl in a 2.0 M 

stock solution], 0.5 mg/mL bovine serum albumin, 0.1 M glucose-1-phosphate, 1.0 mM 

MgCl2, and 1.0 mM GTP). Incubation was for 10 min at 37°C, a time point at which the 

binding reaction in the control is 40–60% complete. Reactions were stopped by adding 

2.0 mL of ice-cold water and placing the samples on ice. Each sample was poured onto a 

stack of two DEAE-cellulose filters, followed immediately by 6 mL of ice-cold water, 

and the water was aspirated under reduced vacuum. The filters were washed with 2 mL 

water X 3 and, following removal of excess water under a strong vacuum, placed into 

vials containing 5 mL of Biosafe II scintillation cocktail. Samples were counted the next 

day in a Beckman scintillation counter. Samples with potential inhibitors were compared 

to controls with no inhibitor to determine percent inhibition. All samples were corrected 

for the amount of colchicine that bound to the filters in the absence of tubulin. 

 

Inhibition of Tubulin Polymerization
S22 

Tubulin assembly experiments were performed using 0.25 mL reaction mixtures (final 

volume).
S11

 The mixtures contained 1 mg/mL (10 µM) purified bovine brain tubulin, 0.8 
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M monosodium glutamate (pH 6.6, as above), 4% (v/v) dimethyl sulfoxide, 0.4 mM 

GTP, and varying compound concentrations. Initially, all components except GTP were 

preincubated for 15 min at 30 °C in 0.24 mL. After chilling the mixtures on ice, 10 µL of 

10 mM GTP was added. The reaction mixtures were then transferred to cuvettes held at 0 

°C in Beckman DU-7400 and DU-7500 spectrophotometers equipped with electronic 

temperature controllers. The temperature was jumped to 30 °C over about 30 s, and 

polymerization was followed turbidimetrically at 350 nm for 20 min. Each reaction set 

included a reaction mixture without compound, and the IC50 was defined as the 

compound concentration that inhibited extent of assembly by 50% after 20 min at 30 °C. 

NADPH Cytochrome P450 Oxidoreductase Cleavage Assay 
S23,S24 

Rat NADPH cytochrome P450 oxidoreductase (POR) and protocatechuate 3,4-

dioxygenase (PCD) were purchased from Corning
®
 and Sigma-Aldrich, respectively, and

their enzymatic activities were determined in terms of enzyme units (U). All bioreductive 

prodrugs were dissolved in DMSO as 10 mM stock solutions. 

An aliquot (5 µL) of the 10 mM compound DMSO stock solution along with 0.5 µL 

0.1% Triton X-100  were added to 395.5 µl 200 mM pH 7.4 potassium phosphate buffer 

containing 400 µM freshly made protocatechuic acid (PCA). The components were fully 

mixed in a microvessel capped with a rubber septum stopper and subjected to three cycles 

of evacuation and flushing with N2 using a manifold, followed by sparging with N2 for an 

additional 20 min. PCD (0.08 units) was added by Hamilton syringe, and the solution was 

scrubbed for 10 min to allow for sufficient O2 digestion by PCA/PCD. POR stock (0.006 

units) was introduced followed by NADPH (0.8 mM final concentration) into the vial 
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followed by an additional round of N2 sparging. The reaction mixture was incubated for 

24 h at 37 °C, cooled on ice and treated with an equal volume of acetonitrile. After 

centrifugation and filtration, the samples were analyzed by HPLC. Solutions without 

POR were used as controls. 
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1
H NMR (500 MHz, CDCl3) of 3-((tert-Butyldimethylsilyl)oxy)-4-methoxybenzaldehyde (2) 
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13
C NMR (500 MHz, CDCl3) of 3-((tert-Butyldimethylsilyl)oxy)-4-methoxybenzaldehyde (2) 
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1
H NMR (500 MHz, CDCl3) of (3-((tert-Butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5-trimethoxyphenyl)methanol (4) 
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13
C NMR (500 MHz, CDCl3) of (3-((tert-Butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5-trimethoxyphenyl)methanol (4) 
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1
H NMR (500 MHz, CDCl3) of (3-((tert-Butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone (5) 



194 

13
C NMR (500 MHz, CDCl3) of (3-((tert-Butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone (5) 



195 

1
H NMR (500 MHz, CDCl3) of Phenstatin (6) 



196 

13
C NMR (500 MHz, CDCl3) of Phenstatin (6) 



197 

HPLC trace of Phenstatin (6)



198 



199 



200 



201 



202 

Mass Spectrum of Phenstatin 6 
C:\Xcalibur\...\phestatin_160801120253 8/1/2016 12:03:19 PM
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203 

1
H NMR (500 MHz, CDCl3) of (5-nitrothiophen-2-yl)methanol (8) 



204 

13
C NMR (500 MHz, CDCl3) of (5-nitrothiophen-2-yl)methanol (8) 



205 

1
H NMR (500 MHz, CDCl3) of 1-(5-nitrothiophen-2-yl)ethan-1-ol (9) 



206 

13
C NMR (500 MHz, CDCl3) of 1-(5-nitrothiophen-2-yl)ethan-1-ol (9) 



207 

1
H NMR (500 MHz, CDCl3) of 1-(5-nitrothiophen-2-yl)ethan-1-one (10) 



208 

13
C NMR (500 MHz, CDCl3) of 1-(5-nitrothiophen-2-yl)ethan-1-one (10) 



209 

1
H NMR (500 MHz, CDCl3) of 2-(5-nitrothiophen-2-yl)propan-2-ol (11) 



210 

13
C NMR (500 MHz, CDCl3) of 2-(5-nitrothiophen-2-yl)propan-2-ol (11)



211 

1
H NMR (500 MHz, CDCl3) of (4-Methoxy-3-((5-nitrothiophen-2-yl)methoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (12) 



212 

13
C NMR (500 MHz, CDCl3) of (4-Methoxy-3-((5-nitrothiophen-2-yl)methoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (12)



213 

HPLC trace of compound 12 



214 



215 



216 

Mass Spectrum of Compound 12
C:\Xcalibur\...\nor thio_Orbi_+ESI 6/27/2016 3:12:15 PM

nor thio_Orbi_+ESI #2-8 RT: 0.02-0.09 AV: 7 NL: 4.39E5
T: FTMS + p ESI Full ms [120.00-1000.00]
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217 

1
H NMR (500 MHz, CDCl3) of (4-Methoxy-3-(1-(5-nitrothiophen-2-yl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (13)



218 
 

13
C NMR (500 MHz, CDCl3) of (4-Methoxy-3-(1-(5-nitrothiophen-2-yl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (13) 



219 

HPLC trace of compound 13



220 



221 



222 
 



223 

Mass Spectrum of Compound 13
C:\Xcalibur\...\mono thio_Orbi_+ESI 6/27/2016 3:22:29 PM

mono thio_Orbi_+ESI #2-20 RT: 0.01-0.16 AV: 19 NL: 3.02E7
T: FTMS + p ESI Full ms [120.00-1000.00]
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224 

1
H NMR (500 MHz, Acetone d-6) of (4-Methoxy-3-((2-(5-nitrothiophen-2-yl)propan-2-yl)oxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (14) 



225 

13
C NMR (500 MHz, Acetone d-6) of (4-Methoxy-3-((2-(5-nitrothiophen-2-yl)propan-2-yl)oxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (14) 



226 
 

HPLC trace of Compound 14



227 



228 



229 

Mass Spectrum of Compound 14
C:\Xcalibur\...\middle_con_Orbi_+ESI 6/24/2016 3:47:13 PM

middle_con_Orbi_+ESI #2-20 RT: 0.01-0.19 AV: 19 NL: 7.59E6
T: FTMS + p ESI Full ms [50.00-800.00]
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230 

1
H NMR (500 MHz, CDCl3) of 1-(4-nitrophenyl)ethan-1-ol (16)



231 

13
C NMR (500 MHz, CDCl3) of 1-(4-nitrophenyl)ethan-1-ol (16)



232 

1
H NMR (500 MHz, CDCl3) of 2-(4-nitrophenyl)propan-2-ol (18) 



233 

13
C NMR (500 MHz, CDCl3) of 2-(4-nitrophenyl)propan-2-ol (18) 



234 
 

1
H NMR (500 MHz, CDCl3) of (4-methoxy-3-((4-nitrobenzyl)oxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (20)

 



235 

13
C NMR (500 MHz, CDCl3) of (4-methoxy-3-((4-nitrobenzyl)oxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (20) 



236 

HPLC trace of Compound 20



237 



238 
 



239 

Mass Spectrum of Compound 20
C:\Xcalibur\...\nor benzyl_Orbi_+ESI 6/27/2016 3:35:19 PM

nor benzyl_Orbi_+ESI #1-20 RT: 0.01-0.20 AV: 20 NL: 5.15E5
T: FTMS + p ESI Full ms [120.00-1000.00]
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240 

1
H NMR (500 MHz, CDCl3) of (4-methoxy-3-(1-(4-nitrophenyl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (21)



241 

13
C NMR (500 MHz, CDCl3) of (4-methoxy-3-(1-(4-nitrophenyl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (21)



242 

HPLC trace of compound 21



243 
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245 

Mass Spectrum of Compound 21
C:\Xcalibur\...\mono benzyl_Orbi_+ESI 6/27/2016 3:46:17 PM

mono benzyl_Orbi_+ESI #1-20 RT: 0.01-0.16 AV: 20 NL: 5.76E7
T: FTMS + p ESI Full ms [120.00-1000.00]
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246 

1
H NMR (500 MHz, CDCl3) of (4-methoxy-3-((2-(4-nitrophenyl)propan-2-yl)oxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (22)



247 

13
C NMR (500 MHz, CDCl3) of (4-methoxy-3-((2-(4-nitrophenyl)propan-2-yl)oxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (22)



248 

HPLC trace of Compound 22
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252 

Mass Spectrum of Compound 22
C:\Xcalibur\...\gem benzyl_Orbi_+ESI 6/27/2016 3:58:29 PM

gem benzyl_Orbi_+ESI #2-20 RT: 0.01-0.19 AV: 19 NL: 7.47E6
T: FTMS + p ESI Full ms [120.00-1000.00]
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253 

1
H NMR (500 MHz, CDCl3) of Ethyl 2-amino-1-methyl-1H-imidazole-5-carboxylate (26) 



254 
 

13
C NMR (500 MHz, CDCl3) of Ethyl 2-amino-1-methyl-1H-imidazole-5-carboxylate (26) 

 



255 

1
H NMR (500 MHz, CDCl3) of Ethyl 1-methyl-2-nitro-1H-imidazole-5-carboxylate (27) 



256 
 

13
C NMR (500 MHz, CDCl3) of Ethyl 1-methyl-2-nitro-1H-imidazole-5-carboxylate (27) 

 



257 

1
H NMR (500 MHz, CDCl3) of (1-methyl-2-nitro-1H-imidazol-5-yl)methanol (28) 



258 

13
C NMR (500 MHz, CDCl3) of (1-methyl-2-nitro-1H-imidazol-5-yl)methanol (28) 



259 

1
H NMR (500 MHz, CDCl3) of 1-Methyl-2-nitro-1H-imidazole-5-carbaldehyde (29) 



260 
 

13
C NMR (500 MHz, CDCl3) of 1-Methyl-2-nitro-1H-imidazole-5-carbaldehyde (29) 

 



261 

1
H NMR (500 MHz, Acetone d-6) of 1-(1-Methyl-2-nitro-1H-imidazol-5-yl)ethan-1-ol (30) 



262 

13
C NMR (500 MHz, Acetone d-6) of 1-(1-Methyl-2-nitro-1H-imidazol-5-yl)ethan-1-ol (30) 



263 

1
H NMR (500 MHz, CDCl3) of (4-methoxy-3-((1-methyl-2-nitro-1H-imidazol-5-yl)methoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (31) 



264 
 

13
C NMR (500 MHz, CDCl3) of (4-methoxy-3-((1-methyl-2-nitro-1H-imidazol-5-yl)methoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (31) 

 



265 

HPLC trace of Compound 31
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267 



268 
 

Mass Spectrum of Compound 31 

 

C:\Xcalibur\...\nor imidazole_orbi+ESI 8/1/2016 11:49:48 AM

nor imidazole_orbi+ESI #1-20 RT: 0.01-0.23 AV: 20 NL: 3.16E6
T: FTMS + p ESI Full ms [150.00-700.00]
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269 

1
H NMR (500 MHz, CDCl3) of (4-methoxy-3-(1-(1-methyl-2-nitro-1H-imidazol-5-yl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (32) 



270 

13
C NMR (500 MHz, CDCl3) of (4-methoxy-3-(1-(1-methyl-2-nitro-1H-imidazol-5-yl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (32) 



271 

HPLC trace of compound 32
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274 

Mass Spectrum of Compound 32
C:\Xcalibur\...\mono imidazole_orbi+ESI 8/1/2016 11:57:46 AM

mono imidazole_orbi+ESI #2-20 RT: 0.01-0.20 AV: 19 NL: 4.91E6
T: FTMS + p ESI Full ms [150.00-700.00]
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275 

1
H NMR (500 MHz, CDCl3) of (5-nitrofuran-2-yl)methanol (34) 



276 
 

13
C NMR (500 MHz, CDCl3) of (5-nitrofuran-2-yl)methanol (34) 

 



277 

1
H NMR (500 MHz, CDCl3) of 1-(5-nitrofuran-2-yl)ethan-1-ol (35) 



278 

13
C NMR (500 MHz, CDCl3) of 1-(5-nitrofuran-2-yl)ethan-1-ol (35) 



279 

1
H NMR (500 MHz, CDCl3) of 1-(5-nitrofuran-2-yl)ethan-1-one (36) 



280 
 

13
C NMR (500 MHz, CDCl3) of 1-(5-nitrofuran-2-yl)ethan-1-one (36) 

 



281 

1
H NMR (500 MHz, CDCl3) of 2-(5-nitrofuran-2-yl)propan-2-ol (37) 



282 

13
C NMR (500 MHz, CDCl3) of 2-(5-nitrofuran-2-yl)propan-2-ol (37) 



283 

1
H NMR (500 MHz, CDCl3) of (4-methoxy-3-((5-nitrofuran-2-yl)methoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (38) 



284 
 

13
C NMR (500 MHz, CDCl3) of (4-methoxy-3-((5-nitrofuran-2-yl)methoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (38) 

 



285 

HPLC trace of compound 38
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288 
 

Mass Spectrum of Compound 38

 

C:\Xcalibur\...\nor furan_Orbi_+ESI 6/27/2016 4:06:54 PM

nor furan_Orbi_+ESI #2-20 RT: 0.01-0.18 AV: 19 NL: 4.49E6
T: FTMS + p ESI Full ms [120.00-1000.00]
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1
H NMR (500 MHz, CDCl3) of (4-methoxy-3-(1-(5-nitrofuran-2-yl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (39) 
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13
C NMR (500 MHz, CDCl3) of (4-methoxy-3-(1-(5-nitrofuran-2-yl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (39) 
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HPLC trace of compound 39
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Mass Spectrum of Compound 39
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1
H NMR (500 MHz, Acetone d-6) of (4-methoxy-3-((2-(5-nitrofuran-2-yl)propan-2-yl)oxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (40) 
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13
C NMR (500 MHz, Acetone d-6) (4-methoxy-3-((2-(5-nitrofuran-2-yl)propan-2-yl)oxy)phenyl)(3,4,5-trimethoxyphenyl)methanone 

(40) 
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HPLC trace of compound 40
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Mass Spectrum of Compound 40 
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NADPH Cytochrome P450 Oxidoreductase Cleavage Assay 

HPLC Conditions: 

Solvent: 62% Acetonitrile/water isocratic; detection wavelength: 310 nm; flow rate: 1 mL/min. 

[note: KGP493 is Compound 6] 

[note: KGP469 is Compound 14] 
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Chromatogram of  KGP469 Control (24Hr)
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[note: KGP470 is Compound 22] 

Chromatogram of 100uM KGP470
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[note: KGP492 is Compound 40] 
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Scheme S1. Attempted Deprotection of Compounds 22, 23 and 24 



312 
 

1
H NMR (600 MHz, CDCl3) for Compound 2 
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13
C NMR (151 MHz, CDCl3) for Compound 2 
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1
H NMR (600 MHz, CDCl3) for Compound 3 
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13
C NMR (151 MHz, CDCl3) for Compound 3
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1
H NMR (500 MHz, CDCl3) for Compound 4
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13
C NMR (151 MHz, CDCl3) for Compound 4
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1
H NMR (600 MHz, CDCl3) for Compound 5 
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13
C NMR (151 MHz, CDCl3) for Compound 5 
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1
H NMR (500 MHz, CDCl3) for Compound 6 
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13
C NMR (126 MHz, CDCl3) for Compound 6 
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1
H NMR (600 MHz, CDCl3) for Compound 7 
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13
C NMR (151 MHz, CDCl3) for Compound 7 
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1
H NMR (600 MHz, CDCl3) for Compound 10 
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31
P NMR (240 MHz, CDCl3) for Compound 10 



326 
 

1
H NMR (500 MHz, CDCl3) Compound 11 
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13
C NMR (126 MHz, CDCl3) for Compound 11 
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1
H NMR (600 MHz, CDCl3) Compound 12 
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13
C NMR (151 MHz, CDCl3) for Compound 12
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1
H NMR (500 MHz, CDCl3) for Compound 13 
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13
C NMR (125 MHz, CDCl3) for Compound 13 
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1
H NMR (500 MHz, CDCl3) for Compound 15 
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13
C NMR (500 MHz, CDCl3) for Compound 15 
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1
H NMR (500 MHz, CDCl3) for Compound 16 
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13
C NMR (500 MHz, CDCl3) of Compound 16 
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1
H NMR (500 MHz, CDCl3) of Compound 17 
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13
C NMR (500 MHz, CDCl3) for Compound 17
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1
H NMR (500 MHz, CDCl3) for Compound 19 
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13
C NMR (500 MHz, CDCl3) for Compound 19



340 

1
H NMR (500 MHz, CDCl3) for Compound 20 
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13
C NMR (125 MHz, CDCl3) for Compound 20 
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1
H NMR (500 MHz, CDCl3) for Compound 21 
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13
C NMR (125 MHz, CDCl3) for Compound 21 
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HPLC trace of Compound 21 
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HRMS Traces of Compound 21 
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1
H NMR (600 MHz, CDCl3) for Compound 22



351 

13
C NMR (151 MHz, CDCl3) for Compound 22
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HPLC Traces of Compound 22 
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Mass Spectrum of Compound 22 
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1
H NMR (500 MHz, CDCl3) of (Z)-3-Methoxy-2-(2-(5-nitrothiophen-2-yl)propoxy)-6-(3,4,5-trimethoxystyryl)-phenyl-4-

methylbenzenesulfonate (23)

 13
C 
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NMR (500 MHz, CDCl3) of (Z)-3-Methoxy-2-(2-(5-nitrothiophen-2-yl)propoxy)-6-(3,4,5-trimethoxystyryl)-phenyl-4-

methylbenzenesulfonate (23) 



360 

HPLC trace of compound 23
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363 

Mass Spectrum of Compound 23 
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1
H NMR (500 MHz, CDCl3) for Compound 24 



365 

13
C NMR (125 MHz, CDCl3) for Compound 24 
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HPLC Traces of Compound 24 
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371 

Mass Spectrum of Compound 24 
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1
H NMR (600 MHz, CDCl3) for Compound 25
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13
C NMR (151 MHz, CDCl3) for Compound 25 
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HPLC Traces for Compound 25 
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Mass Spectrum of Compound 25 
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1
H NMR (600 MHz, CDCl3) for Compound 26



379 

HPLC Traces of Compound 26 
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Mass Spectrum of Compound 26 
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1
H NMR (500 MHz, CDCl3) for Compound 27 and 28
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13
C NMR (125 MHz, CDCl3) for Compound 27 and 28 
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1
H NMR (500 MHz, CDCl3) for Compound 29 
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13
C NMR (125 MHz, CDCl3) for Compound 29 
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HPLC Traces of Compound 29 
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Mass Spectrum of Compound 29 
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1
H NMR (600 MHz, CDCl3) for Compound 30

 



395 

13
C NMR (125 MHz, CDCl3) for Compound 30
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1
H NMR (500 MHz, CDCl3) of Compound 31 



397 

13
C NMR (500 MHz, CDCl3) of Compound 31 
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1
H NMR (600 MHz, CDCl3) for Compound 33 
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13
C NMR (151 MHz, CDCl3) for Compound 33 
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1
H NMR (500 MHz, CDCl3) of Compound 34 
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13
C NMR (500 MHz, CDCl3) of Compound 34 
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1
H NMR (500 MHz, CDCl3) for Compound 35 
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13
C NMR (125 MHz, CDCl3) for Compound 35 
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13
C DEPT NMR (125 MHz, CDCl3) for Compound 35 
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HPLC Traces for Compound 35 
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Mass Spectrum for Compound 35 
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1
H NMR (500 MHz, CDCl3) of Compound 36
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13
C NMR (500 MHz, CDCl3) of Compound 36 
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HPLC trace of Compound 36
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Mass Spectrum of Compound 36
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1
H NMR (600 MHz, Acetone) for Compound 37
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13
C NMR (151 MHz, Acetone) for Compound 37

 



421 

13
C DEPT NMR (125 MHz, Acetone) for Compound 37 
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HPLC Traces for Compound 37 
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425 

Mass Spectrum of Compound 37 
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Mass Spectrum for Compound 41 

 

 

 

 

 

 

 

 

 

340 360 380 400 420 440 460 480 500 520 540 560
m/z

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

Re
la

tiv
e 

Ab
un

da
nc

e

0

20

40

60

80

100

524.1352
C 25 H27 O8 N Na S

354.1075
C 18 H19 O6 Na

477.1341
C 22 H27 O3 Na 6

540.1082
C 30 H24 O2 Na 4 S

455.1522
C 22 H28 O3 Na 5

387.0526
C 13 H20 O4 N Na 3 S 2

501.1452
C 25 H27 O8 N S

501.1452
C 25 H27 O8 N S

502.1530
C 25 H28 O8 N S

524.1350
C 25 H27 O8 N Na S

NL:
7.49E6
BW-5-27-Gem2-
product_Orbi+ESI#1-9  
RT: 0.01-0.09  AV: 9 T: 
FTMS + c ESI Full ms 
[200.00-1000.00] 

NL:
7.07E5

C 25 H27 NO8 S: 
C 25 H27 N1 O8 S 1
pa Chrg 1

NL:
7.07E5

C 25 H27 NO8 S +H: 
C 25 H28 N1 O8 S 1
pa Chrg 1

NL:
7.07E5

C 25 H27 NO8 S +Na: 
C 25 H27 N1 O8 S 1 Na 1
pa Chrg 1



453 

1
H NMR (500 MHz, CDCl3) of Compound 43



454 
 

13
C NMR (500 MHz, CDCl3) of Compound 43 

 



455 

HPLC trace of Compound 43
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Mass Spectrum of Compound 45 
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NADPH Cytochrome P450 Oxidoreductase Cleavage Assay 

HPLC Conditions: 

Solvent: 55% Acetonitrile/water isocratic; detection wavelength: 300 nm; flow rate: 1 mL/min. 
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