ABSTRACT

Synthesis, Characterization, and Biological Evaluation of Bioreductively Activatable Prodrug Conjugates (BAPCs) of Phenstatin, KGP18, OXi6196, Combretastatin A-1, and Combretastatin A-4

Blake A. Winn, Ph.D.

Mentor: Kevin G. Pinney, Ph.D.

Selective targeting of tumors with anticancer agents represents a universally important strategy to improve efficacy and reduce patient side effects. Targeting tumorassociated hypoxia (low oxygen tension) represents one type of promising therapeutic regimen. Bioreductively activatable prodrug conjugates (BAPCs) are designed to be biologically inert under normoxia, however in hypoxic environments they will selectively release their parent anticancer agent. Inhibitors of tubulin polymerization (assembly) are promising anticancer agents for functionalization as their corresponding BAPCs. Upon hypoxia-selective release, these compounds function biologically as antimitotic agents with a subset demonstrating dual mechanistic capability as potent vascular disrupting agents (VDAs), which selectively damage tumor-associated vasculature leading to enhanced tumor necrosis. Phenstatin, OXi6196, combretastatin A-1 (CA1), combretastatin A-4 (CA4), and KGP18 are promising anticancer agents for development as BAPCs. These compounds are effective inhibitors of tubulin assembly and demonstrate potent activity in vitro against human cancer cell lines. Synthetic pathways have been identified for the preparation of nitrothienyl prodrugs of CA1 and CA4 using the *nor*-methyl, *mono*-methyl, and *gem*-dimethyl nitrothiophene-based triggers. A regioselective protecting group strategy was utilized in order to synthesize the nitrothiophene triggers regioselectively to the C-2 and C-3 positions of CA1. Tosyl, isopropyl, and *tert*-butyldimethylsilyl protecting groups were important in establishing this CA1 regioselectivity. Several series of BAPCs were also developed based on phenstatin, KGP18, and Oxi6196 using *nor*-methyl, *mono*-methyl, and *gem*-dimethyl variants of the nitrothiophene, nitrobenzyl, nitroimidazole, and nitrofuran triggers. A selection of the CA1, CA4, and phenstatin BAPCs were evaluated biologically for their ability to inhibit tubulin assembly as well as their stability in aqueous conditions and their ability to undergo enzymatic cleavage in the presence of NADPH cytochrome P450 oxidoreductase.

Synthesis, Characterization, and Biological Evaluation of Bioreductively Activatable Prodrug Conjugates (BAPCs) of Phenstatin, KGP18, OXi6196, Combretastatin A-1, and Combretastatin A-4

by

Blake A. Winn, B.S.

A Dissertation

Approved by the Department of Chemistry and Biochemistry

Patrick J. Farmer, Ph.D., Chairperson

Submitted to the Graduate Faculty of Baylor University in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Approved by the Dissertation Committee

Kevin G. Pinney, Ph.D., Chairperson

Charles M. Garner, Ph.D.

Robert R. Kane, Ph.D.

Mary Lynn Trawick, Ph.D.

Christopher M. Kearney, Ph.D.

Accepted by the Graduate School May 2017

J. Larry Lyon, Ph.D., Dean

Page bearing signatures is kept on file in the Graduate School.

Copyright © 2017 by Blake A. Winn

All rights reserved

TABLE OF CONTENTS

LIST OF FIGURES	vii
LIST OF SCHEMES	ix
LIST OF TABLES	xi
ACKNOWLEDGMENTS	xii
DEDICATION	xiii
CHAPTER ONE	1
Introduction	1
Vascular Targeting Agents	2
Vascular Disrupting Agents	3
Combretastatin A-1 and Combretastatin A-4	4
Phenstatin	5
Structurally Modified Analogues of CA4	6
Tumor Vasculature	7
Tumor Hypoxia	9
Tirapazamine	10
<i>TH-302, AQ4N, and PR-104</i>	11
CA4-BAPCs	14
Nitrothiophene Triggers	15
CHAPTER TWO	17
Bioreductively Activatable Prodrug Conjugates of Phenstatin Designed to Target Tumor Hypoxia	17

Abstract	. 17
Introduction	. 18
Results and Discussion	. 24
Biological Evaluation	29
Experimental Section	32
Biological Evaluations	57
Acknowledgements	. 59
CHAPTER THREE	. 61
Bioreductively Activatable Prodrug Conjugates of Combretastatin A-1 and Combretastatin A-4 as Anticancer Agents Targeted towards Tumor Hypoxia	. 61
Abstract	. 61
Introduction	. 63
Results and Discussion	. 69
Biological Evaluation	78
Materials and Methods	84
Experimental Section	85
Biological Evaluation	122
Acknowledgements	. 125
CHAPTER FOUR	126
Synthesis of KGP18, KGP18-Bioreductively Activatable Prodrug Conjugates, OXi6196-Bioredictively Activatable Prodrug Conjugates, and the Nitroimidazole Trigger	126

KGP18 and KGP18-BAPC Synthesis	126
Oxi6196-BAPC Synthesis	130
Nitroimidazole Bioreductive Trigger Synthesis	131
CA1 Tosyl BAPC Synthesis	133
Conclusions	133
Materials and Methods	134
APPENDIX A	151
Supporting Information: Bioreductively Activatable Prodrug Conjugates of Phenstatin Designed to Target Tumor Hypoxia	152
APPENDIX B	306
Supporting Information: Bioreductively Activatable Prodrug Conjugates of Combretastatin A-1 and Combreatastatin A-4 as Anticancer Agents Targeted towards Tumor Hypoxia	308
APPENDIX C	507
Synthesis of KGP18, KGP18 Bioreductively Activatable Prodrug Conjugates, OXi6196 Bioreductively Activatable Prodrug Conjugates, and the Nitroimidazole Trigger	508
Permissions	555
REFERENCES	582

LIST OF FIGURES

Figure	1.1. Comparative Images of Vasculature in Healthy Tissue Versus Tumor-Associated Vasculature	1
Figure	1.2. Effects of Vascular Disrupting Agents and Angiogenesis-Inhibiting Agents on Tumor-Associated Vasculature	2
Figure	1.3. Comparison of Healthy Vasculature and Tumor-Associated Vasculature. Effects of Vascular Disrupting Agents on Tumor-Associated Vasculature	3
Figure	1.4. Results of Endothelial Cell Disruption by VDAs on Vasculature	4
Figure	1.5. Structures of CA1, CA4, Phenstatin, KGP18, and OXi6196 and their Phosphate Salts	5
Figure	1.6. Proposed Mechanism for the Formation of Phenstatin from CA4 during a Jacobsen Epoxidation Reaction	6
Figure	1.7. Microvascular Cast of Healthy Lung Tissue Versus Human Sigmoidal Adenocarcinoma [blind ends circled, abnormal bulges noted with arrows] as Seen Through Scanning Electron Microscopy	8
Figure	1.8. Characterization Displaying the Difference between Tumor Tissue Growing Around Standard Tumor Vasculature Versus Damaged Vasculature	8
Figure	1.9. Intrinsic Features of Tumor-Associated Vasculature and the Biological Consequences of Those Conditions	9
Figure	1.10. Reduction Pathway of Nitro to Amine for Bioreductively Activatable Prodrugs Via Cytochrome P450 Reductase	10
Figure	1.11. Bioreductive Activation of Tirapazamine	11
Figure	1.12. Bioreductive Trigger Release from TH-302	12
Figure	1.13. Bioreductive Activation of AQ4 from AQ4N	13
Figure	1.14. Bioreductive Activation of PR-104 to PR-104M	14

Figure	1.15. <i>Nor</i> -methyl, <i>Mono</i> -methyl, and <i>Gem</i> -dimethyl Nitrothienyl CA4-BAPCs	15
Figure	1.16. <i>Gem</i> -dimethyl Nitrothienyl CA4-BAPC Trigger Cleavage	15
Figure	2.1. Colchicine, Phenstatin, and Combretastatin Natural Products and their Corresponding Phosphate Salts	20
Figure	2.2. <i>Gem</i> -dimethyl Nitrothienyl Trigger Release from CA4	22
Figure	2.3 TH-302, PR104, PR104A, PR104H, and PR104M	23
Figure	2.4 Phenstatin BAPCs Prepared by Chemical Synthesis	29
Figure	3.1 Colchicine and Combretastatin Natural Products and their Corresponding Phosphate Salts	64
Figure	3.2 A. The Mechanism by which Tirapazamine Selectively Kills Hypoxic Cells. B. Structure of TH-302. C. Structure of PR-104	66
Figure	3.3 Selective Release of Cytotoxic Agent (CA4) from Non-Toxic BAPC under Tumor Hypoxia. BAPCs are designed to activate selectively in the hypoxic tumor microenvironment, thereby releasing their cytotoxic anticancer agent (payload).	66
Figure	3.4 Combretastatin A-4 Incorporating Nitrothiophene-Based Bioreductive Triggers.	67
Figure	3.5 A. Compilation of Parent Anticancer Agents and their Corresponding BA Utilized in this Study B. Parent CA1 and CA4 Anticancer Agents	APCs 77

LIST OF SCHEMES

Scheme 2.1 Synthesis of Phenstatin 6	24
Scheme 2.2 Synthesis of Nitrothiophene Triggers	25
Scheme 2.3 Synthesis of the Phenstatin Nitrothiophene BAPCs	26
Scheme 2.4 Synthesis of the Nitrofuran Triggers	28
Scheme 2.5 Synthesis of the Phenstatin Nitrofuran BAPCs	28
Scheme 3.1 Biological Reduction and Cleavage of CA4 <i>gem</i> -Dimethyl Nitrothiophene Trigger Releasing CA4	67
Scheme 3.2 Synthesis of Regioselectively Protected CA1 Analogues 11-13	70
Scheme 3.3 Synthesis of Nitrothiophene Triggers Using Old Route (Proposed by Peter Davis and Co-Workers) and New Route	71
Scheme 3.4 Synthesis of Regioselectively Protected CA1-BAPCs 22-26	71
Scheme 3.5 Synthesis of TBS-Protected CA1-BAPCs 30-34	73
Scheme 3.6 TBS-Deprotection to Generate Ring-Cyclized Products 35 and 36	73
Scheme 3.7 Synthesis of Nor- and Mono- Methyl CA1 BAPCs 37-40	74
Scheme 3.8 Base Generating Ring-Cyclized Products 35 and 36	74
Scheme 3.9 Synthesis of Gem-Dimethyl CA1-BAPC 41	75
Scheme 3.10 Synthesis of CA4-BAPCs	76
Scheme 4.1 KGP18 Synthesis	128
Scheme 4.2 KGP18-BAPC Synthesis	129
Scheme 4.3 OXi6196-BAPC Synthesis	130
Scheme 4.4 Nitroimidazole Patent Route Synthesis	132

Scheme 4.5 Attempted Methylation of Nitroimidazole Ketone	132
Scheme 4.6 Attempted Wittig with Nitroimidazole Ketone	133
Scheme 4.7 Tosyl Gem-dimethyl-CA1-BAPC Attempted Synthesis	133

LIST OF TABLES

Table 2.1 Inhibition of Tubulin Polymerization and Percent Inhibition of Colchicine Binding	31
Table 2.2 Bioreductive Trigger Hydrolysis (Untreated) and Cleavage of POR-Treated BAPCs.	31
Table 3.1 Inhibition of Tubulin Polymerization and Percent Inhibition of Colchicine Binding	78
Table 3.2 Bioreductive Trigger Hydrolysis (Untreated) and Cleavageof Cytochrome P450 Reductase Treated BAPCs	80
Table 3.3 In Vitro Potency and Hypoxia Cytotoxicity Ratio (HCR) of the CA4And CA1-BAPCs in the A549 Human Cancer Cell Line	82

ACKNOWLEDGMENTS

I would like to express my gratitude to my mentor, Dr. Kevin G. Pinney. His expertise and support was absolutely essential to advancing my research and completing the doctoral program.

I would like to express my appreciation to my committee members, Dr. Garner, Dr. Kane, and Dr. Trawick.

I am indeed grateful to the entire Pinney group, the graduate students, post docs, and undergraduates who assisted us in the lab.

I am especially appreciative of the university's former General Counsel, Charles Beckenhauer, who passed earlier this year, as well as to Baylor's Board of Regents, whose collective character and concern served to make Baylor a better place.

I would also like to express my gratitude to Baylor University, Cancer Prevention and Research Institute of Texas, Mateon Therapeutics, Inc., and the National Institutes of Health (NIH) for their financial support of these research projects as well as stipend and fellowship support.

None of this would have been possible without the loving support of my father, mother, and brother, all of whom encouraged me to follow my dreams. Thank you.

DEDICATION

Craig, Katharine, and Ryan Winn

In Memory of

Don and Patricia Brenner

CHAPTER ONE

Introduction

Healthy and structured vasculature is required to efficiently deliver nutrients to and eliminate waste products from cells throughout the body.¹⁻¹¹ Vasculature in healthy tissue is a well-organized system of vessels ranging in size from capillaries to arteries and veins (Figure 1.1).¹⁻¹¹ In contrast, tumor-associated vasculature is a disorganized system, spread in a more random fashion and is subject to weak and inconsistent blood flow, reducing the overall nutrient delivery to the tumor.¹⁻¹¹ Poorly structured tumor-associated vasculature offers an effective target to neutralize the nutrient-starved tumor, reducing or possibly eliminating blood flow to the tumor through vascular disruption or destruction.¹⁻

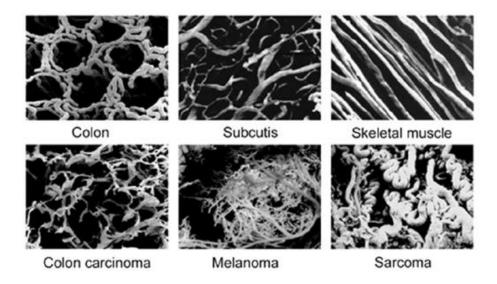


Figure 1.1. Comparative Images of Vasculature in Healthy Tissue Versus Tumor-Associated Vasculature.^{3,9}

Vascular Targeting Agents

One therapeutic option to target tumor-associated vasculature is the employment of vascular targeting agents (VTAs).¹⁻¹¹ Vascular targeting agents are divided into two distinct classes of compounds: angiogenesis-inhibiting agents (AIAs), which disrupt the formation of new vasculature in the tumor, and vascular disrupting agents (VDAs), which collapse and destroy existing tumor vasculature (Figure 1.2).¹⁻¹¹

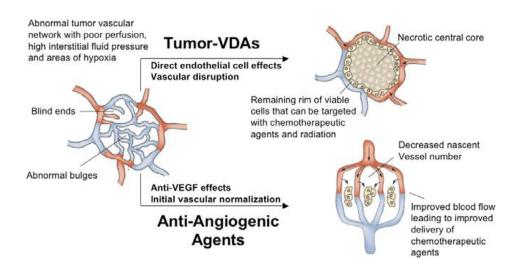


Figure 1.2. The Effects of Vascular Disrupting Agents and Angiogenesis-Inhibiting Agents on Tumor-Associated Vasculature.²

Tumor angiogenesis is the development of new vasculature within the tumor, which can be attributed to the presence of vascular endothelial growth factor-A (VGEF-A).^{2,12-13} As most of the new vasculature in the tumor is generated at the periphery, AIAs are most active inhibiting the newly forming vessels in that region.^{2,12-13} With fewer overall blood vessels forming in the tumor, the remaining vasculature has less competition for blood flow, enhancing overall blood flow and nutrient delivery in the tumor (Figure 1.2).¹⁻¹³ This enhanced blood flow allows for the improved delivery of cytotoxic agents and radiotherapy treatments.¹⁻¹³ Thus, AIAs are most effective in combination regimens, enhancing the efficacy of established cytotoxic agents such as carboplatin and paclitaxel in solid tumors, a difficult therapeutic target.^{2,12-13}

Vascular Disrupting Agents

Vascular disrupting agents represent another therapeutic option for targeting blood vessels in tumors, functioning by collapsing the existing vasculature.¹⁻¹¹ VDAs typically target the endothelial cells lining the vessel walls, subduing or eliminating blood flow through the damaged vessel (Figure 1.3).¹⁻¹¹ One subset of VDAs contains small molecules that act through microtubule disruption in the endothelial cells lining the vessel walls.¹⁻¹¹ The disruption of microtubule assembly causes the cells to lose shape and round up, removing the structural integrity of the endothelial layer inside the vessel walls and allowing the body's interstitial pressure to collapse the vessel (Figure 1.4).¹⁻¹¹ VDAs work well in concert with AIAs, as they only act on existing vasculature and cannot prevent vessel regrowth.¹⁴⁻¹⁹ Combinatorial therapies have shown promising results, reducing overall tumor growth.¹⁴⁻¹⁹

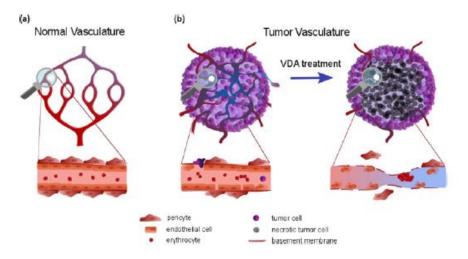


Figure 1.3. Comparison of Healthy Vasculature and Tumor-Associated Vasculature. Effects of Vascular Disrupting Agents on Tumor-Associated Vasculature.⁷

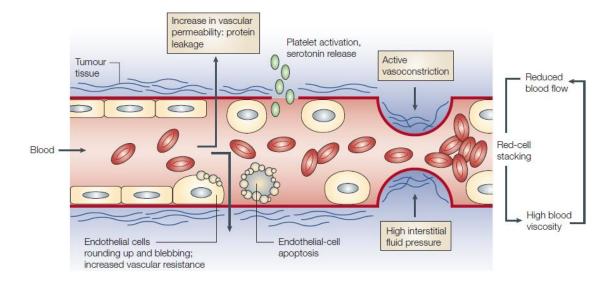


Figure 1.4. Results of Endothelial Cell Disruption by VDAs on Vasculature.¹¹

Combretastatin A-1 and Combretastatin A-4

Combretastatin A-1 (CA1) and combretastatin A-4 (CA4), natural products discovered by Pettit and co-workers, are two potent vascular disrupting agents that inhibit microtubule assembly.²⁰⁻²⁵ CA1 and CA4 (Figure 1.5) were first isolated and characterized by the Pettit group from the African bush willow tree *Combretum caffrum* Kuntze (Combretacae).²⁰⁻²⁵ *Combretum caffrum* bark has been historically utilized by the Zulu tribe as a charm to ward off enemies.²⁶ The two natural products, CA1 and CA4, have the same biological mechanism of action, interacting with the colchicine binding site on tubulin to disrupt microtubule assembly, leading to a loss a defined cellular structure and collapsing the vasculature.²⁰⁻²⁵ With the aid of enhanced solubility, the phosphate salt prodrugs of CA1 (OXi4503) and CA4 (ZybrestatTM) have shown potency in clinical trials, and ZybrestatTM has reached advanced clinical trials.^{18,19,27-32}

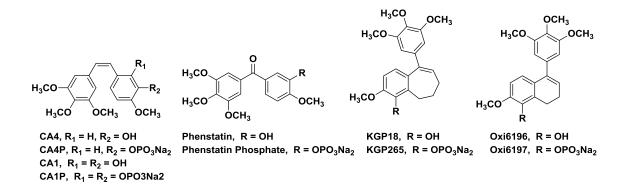


Figure 1.5. Structures of CA1, CA4, Phenstatin, KGP18, and OXi6196 and Their Phosphate Salts

Phenstatin

Phenstatin, first synthesized by Pettit and co-workers, is a potent cytotoxic agent and an inhibitor of tubulin polymerization, collapsing tumor vasculature (Figure **1.5**).^{28,33} Discovered serendipitously by the Pettit group during an attempt to synthesize an epoxide at the *Z*-stilbenoid bridge of CA4, phenstatin was first obtained as the surprising result of a Jacobsen epoxidation reaction (Figure 1.6).³³ A diarylacetaldehyde was formed after a phenyl shift during the epoxidation, and subsequent oxidative cleavage yielded the silylated phenstatin.³³ Phenstatin has the same biological mechanism of action as CA4, disrupting microtubule assembly through interactions with the colchicine binding site on tubulin.³³ In preliminary biological evaluations to determine the ability of phenstatin to inhibit tubulin polymerization activities of phenstatin and its corresponding phosphate prodrug in cell assays are very similar to those of CA4 and combretastatin A-4 phosphate (CA4P).^{28,33}

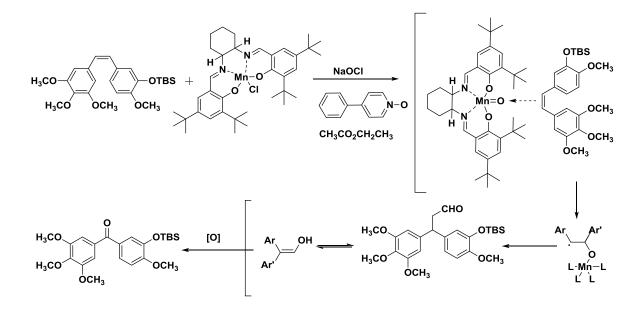


Figure 1.6. Proposed Mechanism for the Formation of Phenstatin from CA4 during a Jacobsen Epoxidation Reaction³³

Structurally Modified Analogues of CA4

The relative simplicity of the Z-stilbenoid molecular architecture inherent to CA4 had led to many structural modifications. The Pinney Research Group (Baylor University) has a well-established program that centers on the design and synthesis of new small-molecule inhibitors of tubulin polymerization that are inspired by natural products, including CA4, CA1, and colchicine. KGP18, for example, is a benzosuberene-based CA4 analogue that functions biologically with a similar mechanism of action to that inherent to CA1 and CA4, collapsing tumor-associated vasculature (Figure 1.5).³⁴⁻³⁶ In preliminary biological testing, KGP18 and its corresponding phosphate salt have been shown to be effective inhibitors of tubulin assembly and VDAs, displaying potent cytotoxicity across a number of human cancer cell lines such as SK-OV-3, NCI-H460, and DU-145.³⁴⁻³⁶

OXi6196, the 6-membered ring analog of KGP18, was first synthesized by the Pinney group in 2004 (Figure 1.5).^{34,37} Owing in part to a nearly identical structure to KGP18, OXi6196 is also a highly active inhibitor of tubulin assembly.^{34,37} The preliminary biological data for OXi6196 is promising, showing excellent inhibition of tubulin assembly and potent cytotoxicity against human cancer cell lines.³⁷

Tumor Vasculature

Tumor-associated vasculature is an attractive therapeutic target due to its distinct differences from blood vessels feeding healthy tissue.^{3,8,38-49} Due to the rapid growth of the tumor tissue in comparison to the cellular division rate of the endothelial cells of blood vessels, tumor-associated vasculature tends to be poorly formed.^{3,8,38-49} The tumor-associated vasculature not only lacks the overall structure and organization of vasculature feeding healthy tissue, but also can be irregularly shaped with inconsistent vessel diameter and wall thickness. The vessels in tumors can feature blind ends, occlusions, and bulges (Figure 1.7).^{3,8,38-49} Inconsistent vessel wall thickness, leading to thin spots in the walls, can cause increased interstitial pressure due to fluid permeability.^{3,8,38-49} Leaky vessel walls are common due to the disjointed nature of the endothelial cells and luminal laver.^{3,8,38-49}

All of these conditions in addition to irregular branching among the vessels causes the blood flow in tumor-associated vasculature to be inconsistent, sometimes even flowing in opposing directions within a blood vessel.^{3,8,38-49} Poor blood flow in addition to varying distances between tumor-associated vasculature leads to regions of pronounced hypoxia, as the vessel distance becomes greater than the diffusion distance of oxygen (Figure 1.8).^{3,8,38-49} Solid tumor microenvironments can also experience pH and

catabolite gradients as well as reduced cell proliferation. Hypoxic regions can become more acidic in nature than standard tissue.^{3,8,38-49}

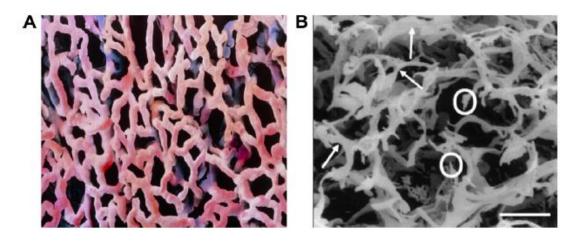


Figure 1.7. Microvascular Cast of Healthy Lung Tissue Versus Human Sigmoidal Adenocarcinoma [blind ends circled, abnormal bulges noted with arrows] as Seen Through Scanning Electron Microscopy^{2,50}

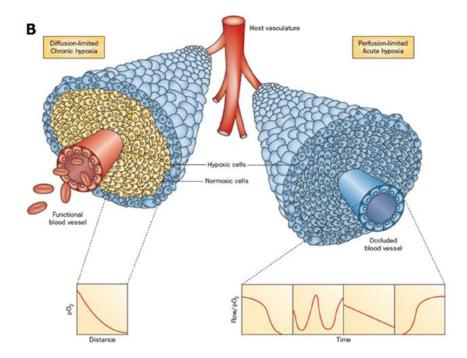


Figure 1.8. Characterization Displaying the Difference Between Tumor Tissue Growing Around Standard Tumor Vasculature Versus Damaged Vasculature.³

Tumor Hypoxia

Tumor heterogeneity, particularly due to hypoxia, poses a unique obstacle in the clinical management of neoplastic disease based on traditional interventions, provided divergent biological characteristics on which these are rationalized (Figure 1.9).^{8,38-49} Hypoxia in tumors incites a number of biological responses, ranging from increased metastasis and partial arrest of DNA repair mechanisms to aberrant genomic regulation of pro-apoptotic signaling, leading to suppression of apoptosis and an initiation of autophagy.^{8,38-49} By convention, the underlying mechanisms traditional therapies are targeted to cannot be relied on in normal solid tumor biology for comprehensive curative effects.^{8,38-49} Radiotherapy as well as a number of cytotoxic agents such as taxanes and platinum-based agents have been shown to be less effective against hypoxic tissues and solid tumors.^{8,38-49} Since hypoxia diminishes traditional therapeutic efficacy, it has become a tempting target for new anticancer agents and treatments.^{8,38-49}

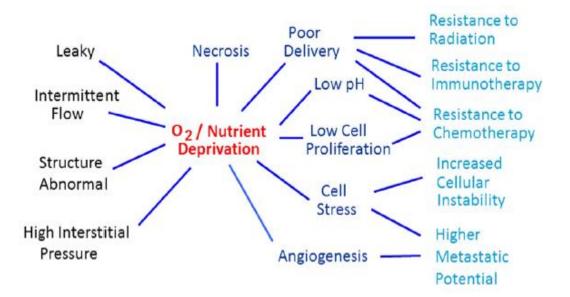


Figure 1.9. Intrinsic Features of Tumor-Associated Vasculature and the Biological Consequences of Those Conditions.³

Hypoxia activated prodrugs (HAPs) / bioreductively activatable prodrug conjugates (BAPCs) are a promising therapeutic option for targeting tumor hypoxia.^{8,38} HAPs and BAPCs utilize bioreductive initiation mechanisms through enzymatic activity, typically NADPH cytochrome P450 oxidoreductase (POR) and NAD(P)H dependent flavoproteins, activating selectively in low oxygen environments.^{8,38}

Ideally, HAPs and BAPCs have a number of requirements to ensure maximum effectiveness, from favored activation in low oxygen environments over normoxic conditions to cytotoxicity against non-proliferative cells in hypoxic regions and the capacity to diffuse to the low oxygen areas of the tumor while active.^{8,38} A number of HAPs and BAPCs have reached the point of clinical trials, including tirapazamine, TH-302, PR-104, and AQ4N.^{8,38} Although several of the BAPCs have displayed promising results in Phase I and Phase II trials, no BAPC has yet made it past Phase III trials.^{8,38}

Figure 1.10. Reduction Pathway of Nitro to Amine for Bioreductively Activatable Prodrugs Via NADPH Cytochrome P450 Oxidoreductase⁴⁹

Tirapazamine

Tirapazamine, an aromatic N-oxide synthesized by Zeman et al., was one of the trailblazers for the BAPC field.^{8,51-57} Activated by one electron reductases such as cytochrome P450 oxidoreductase, tirapazamine is first radicalized by POR, which splits into a hydroxyl radical and a benzotriazinyl radical (Figure 1.11).^{8,54-57} Both the hydroxyl radical and benzotriazinyl radical can oxidize DNA and damage the strand.^{8,54-57}

If tirapazamine reacts with a two electron reductase, it will be reduced into the mono N-oxide, rendering it effectively non-toxic.⁸ Since this reduction pathway eliminates the tirapazamine's toxicity, it can be viewed as a bioprotective step in the body.⁸ Due to promising results in cell line testing, tirapazamine has been taken into clinical trials.⁸ While Phase I and Phase II trials yielded positive results, multiple Phase III trials showed little to no benefit or increased survival duration in several cell lines.⁸

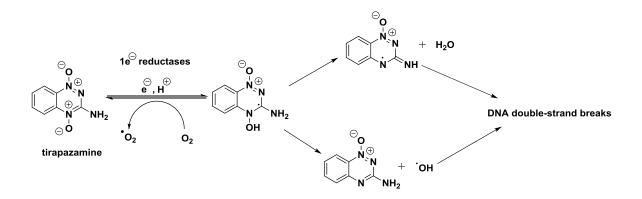


Figure 1.11. Bioreductive Activation of Tirapazamine⁸

TH-302, AQ4N, and PR-104

TH-302, synthesized and tested by Threshold Pharmaceuticals, is a 2nitroimidazole based BAPC attached to DNA alkylating agent bromoisophosphoramide.^{8,58,59} The prodrug is activated by one electron reductases such as cytochrome P450 reductase, reducing the nitro group on the nitroimidazole trigger to an amine (Figure 1.12).^{8,58,59}

The free electron pair on the amine can then push into the ring, causing an electron cascade that cleaves the trigger, releasing the active drug in the hypoxic regions of the tumor.^{8,58,59} Highly effective in *in vitro* studies and early *in vivo* studies in mice

with HCR ratios as high as 600, TH-302 has been taken into Phase III clinical trials.^{8,60-64} After showing promising results in Phase I and Phase II clinical trials, TH-302 was unsuccessful in a Phase III clinical trial, displaying no statistically significant anticancer activity against soft tissue sarcoma and pancreatic adenocarcinoma.^{8,60-64}

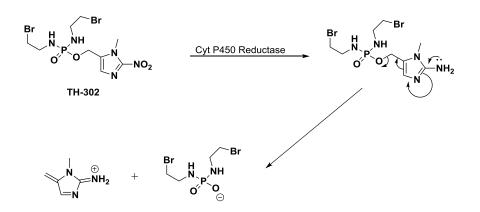


Figure 1.12. Bioreductive Trigger Release from TH-302⁸

AQ4N, synthesized by McKeown *et. al.*, is an aliphatic N-oxide prodrug that upon enzymatic activation is converted to the topoisomerase II inhibitor AQ4.^{8,65-75} AQ4N is first converted to the mono-N-oxide AQ4M via a two electron reduction.^{8,65-75} A subsequent two electron reduction of AQ4M generates the active form AQ4 (Figure 1.13).^{8,65-75} The activated drug AQ4 acts in the hypoxic regions by non-covalent binding to DNA, inhibiting topoisomerase activity as the cells attempt to replicate.^{8,65-75} In aerobic conditions, AQ4N also displays some anti-angiogenic properties, targeting endothelial cells.^{8,65-75}

In terms of its anti-angiogenic properties, the mechanism of action for the drug is currently unknown, although extensive microtubule network disruption was detected.^{8,65-}⁷⁵ The drug is only active in hypoxic regions due to its inability to compete with oxygen at the active site of cytochrome P450 reductase, preventing reduction in the normoxic regions of the body.^{8,65-75} AQ4N has progressed to Phase I and Phase II clinical trials, but has not as of yet progressed to Phase III trials.⁷⁶⁻⁷⁷

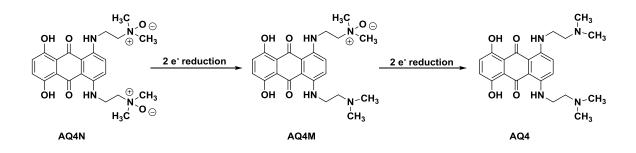


Figure 1.13. Bioreductive Activation of AQ4 from AQ4N⁸

PR-104, synthesized and tested by Wilson *et. al.* at the University of Auckland is a nitroaromatic preprodrug of PR-104A, eventually reducing to its active form PR-104M.^{8,78-85} PR-104 is first hydrolyzed by phosphatases to reveal prodrug PR-104A (Figure 1.14).^{8,78-85} One and two electron reductases reduce PR-104A into the active form PR-104M, which can then interact with DNA.^{8,78-85}

The cytotoxicity associated with PR-104M derives from its ability to form interstrand DNA crosslinks.^{8,78-85} PR-104 has been taken into Phase I and II clinical trials, yielding promising results in a Phase I/II trial against leukemia.^{8,86-87} The prodrug has some dose-limiting toxicity issues when paired with gemcitabine and docetaxel, possibly due to the glucuronidation of PR-104A that diminishes the clearance of the drug from the patient's system.^{8,86-87}

Figure 1.14. Bioreductive Activation of PR-104 to PR-104M⁸

CA4-BAPCs

In an attempt to generate a cytotoxic hypoxia-selective VDA, CA4 was linked to nitrothiophene triggers by Davis and co-workers.^{88,89} Davis and coworkers synthesized *nor*-methyl, *mono*-methyl, and *gem*-dimethyl nitrothiophene triggers (Figure 1.15) and utilized the Mitsunobu reaction to covalently attach them to CA4.^{88,89} The *gem*-dimethyl CA4 prodrug proved to be the most active of the trio, maintaining the highest HCR values.⁸⁸

The *gem*-dimethyl trigger provided the greatest resistance to cleavage under normoxic conditions, keeping the CA4-BAPC prodrug intact while the *nor*-methyl and *mono*-methyl trigger CA4-BAPCs underwent partial cleavage under normoxic conditions.⁸⁸ Also of note was the overall lack of activity of the CA4-*gem*-dimethyl trigger prodrug in normoxic conditions, as the compound only became active under hypoxic conditions, displaying high selectivity for low-oxygen environments.⁸⁸

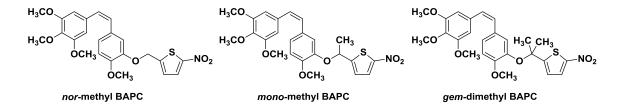


Figure 1.15. Nor-methyl, Mono-methyl, and Gem-dimethyl Nitrothienyl CA4-BAPCs⁸⁸

Nitrothiophene Triggers

The mechanism of cleavage for the nitrothiophene triggers is similar in nature to the cleavage of nitroimidazole triggers with a one electron reductase such as cytochrome P450 reductase reducing the nitro group on the trigger.^{88,90-100} Once the nitro has been reduced, an electron cascade through the thiophene ring will lead to the trigger cleaving from CA4, releasing the active drug (Figure 1.16).⁸⁸ Once released from the nitrothiophene trigger, CA4 acts in hypoxic regions as a VDA, interacting with the colchicine binding site on tubulin, disrupting the microtubules in endothelial cells which leads to the collapse of the tumor vasculature.⁸⁸

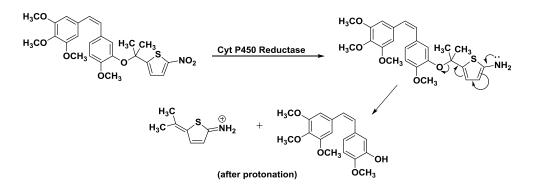


Figure 1.16. Gem-dimethyl Nitrothienyl CA4-BAPC Trigger Cleavage⁸⁸

For the research described herein, inspired by the BAPC tumor targeting strategy, we developed BAPCs for KGP18, Oxi6196, CA4, CA1, and phenstatin. The bioreductive triggers utilized in the BAPC synthesis varied from the nitrothiophene, nitroimidazole, nitrobenzyl, and nitrofuran. These four trigger sets were covalently linked to the anticancer agents through the use of the Mitsunobu reaction. The newly prepared CA4, CA1, KGP18, Oxi6196, and phenstatin BAPCs were evaluated under hypoxic and normoxic conditions in order to determine their differential from their respective base anticancer agent (collaboration with the Trawick Research Group, Baylor University).

CHAPTER TWO

Bioreductively Activatable Prodrug Conjugates of Phenstatin Designed to Target Tumor Hypoxia

This chapter published as: Blake A. Winn¹, Zhe Shi¹, Graham J. Carlson¹, Yifan Wang¹, Benson L. Nguyen¹, Evan M. Kelly¹, R. David Ross IV¹, Ernest Hamel², David J. Chaplin^{1,3}, Mary L. Trawick^{1*}, Kevin G. Pinney^{1*} Bioreductively Activatable Prodrug Conjugates of Phenstatin Designed to Target Tumor Hypoxia. *Bioorganic and Medicinal Chemistry Letters*, **2016** (available online): http://dx.doi.org/10.1016/j.bmcl.2016.11.093

The author Blake A. Winn contributed to this manuscript through the synthesis of all eleven final compounds including characterization, which included proton and carbon NMRs, HPLC, and HRMS. In addition, Blake A. Winn contributed a significant amount to the writing and editing of the manuscript, as well as the preparation of the supporting data.

Abstract

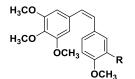
A variety of solid tumor cancers contain significant regions of hypoxia, which provide unique challenges for targeting by potent anticancer agents. Bioreductively activatable prodrug conjugates (BAPCs) represent a promising strategy for therapeutic intervention. BAPCs are designed to be biologically inert until they come into contact with low oxygen tension, at which point reductase enzyme mediated cleavage releases the parent anticancer agent in a tumor-specific manner. Phenstatin is a potent inhibitor of tubulin polymerization, mimicking the chemical structure and biological activity of the natural product combretastatin A-4. Synthetic approaches have been established for nitrobenzyl, nitroimidazole, nitrofuranyl, and nitrothienyl prodrugs of phenstatin

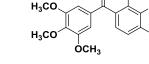
incorporating *nor*-methyl, *mono*-methyl, and *gem*-dimethyl variants of the attached nitro compounds. A series of BAPCs based on phenstatin have been prepared by chemical synthesis and evaluated against the tubulin-microtubule protein system. In a preliminary study using anaerobic conditions, the *gem*-dimethyl nitrothiophene and *gem*-dimethyl nitrofuran analogues were shown to undergo efficient enzymatic cleavage in the presence of NADPH cytochrome P450 oxidoreductase. Each of the eleven BAPCs evaluated in this study demonstrated significantly reduced inhibitory activity against tubulin in comparison to the parent anticancer agent phenstatin (IC₅₀ = 1.0 μ M). In fact, the majority of the BAPCs (seven of the eleven analogs) were not inhibitors of tubulin polymerization (IC₅₀ > 20 μ M), which represents an anticipated (and desirable) attribute for these prodrugs, since they are intended to be biologically inactive prior to enzymemediated cleavage to release phenstatin.

Introduction

Tumor-associated vasculature has emerged as a promising target for anticancer therapies due to its marked differences from vasculature feeding healthy tissue.^{1-8,10,11} Vasculature associated with healthy tissue forms a well-organized delivery network for oxygen and nutrients to cells.^{1-8,10,11} In contrast, tumor-associated vasculature is forced to develop rapidly to meet the enhanced demand for significant amounts of nutrients and oxygen required by tumors.^{1-8,10,11}

The rapid growth of tumor-associated vasculature results in compromised structural integrity, which is characterized by weakened vessel walls, increased interstitial pressure, blind ends, and bulges.^{1-8,10,11} Tumor-associated vasculature is generated rapidly, leading to groups of vessels spaced far apart from each other, and this results in


regions of hypoxia that develop when this distance is greater than the diffusion distance of oxygen.^{1-8,10,11}


One promising therapeutic option for targeting tumor-associated vasculature involves treatment with vascular targeting agents (VTAs), which include angiogenesisinhibiting agents (AIAs) and vascular disrupting agents (VDAs).^{1-8,10,11} AIAs, which represent a fairly well investigated therapeutic strategy, act by inhibiting angiogenesis, the formation of new tumor-associated vasculature, while leaving existing vessels intact.^{4,12-13}

Inhibition of angiogenesis limits tumor growth and also leads to increased blood flow in the remaining vasculature, allowing for increased delivery of chemotherapy and potentially enhanced tumor damage from radiotherapy to an otherwise difficult therapeutic target due to hypoxia.^{4,12-13} VDAs impact tumor vasculature from a mechanistic approach that is distinct from AIAs. One subset of VDAs is comprised of small-molecule inhibitors of tubulin polymerization that target existing tumor-associated vasculature by causing rapid morphology changes (flat to round) of the endothelial cells lining these vessels.^{1-8,10,11} This leads to irreversible vessel damage and tumor necrosis.¹⁻ ^{8,10,11}

A representative clinically relevant small-molecule VDA that disrupts microtubule formation is the natural product combretastatin A-4 (CA4) (Figure 2.1). First isolated from the African bush willow tree *Combretum caffrum Kuntze* by the Pettit group, CA4 is a potent inhibitor of tubulin polymerization, functioning through a binding interaction at the colchicine site on tubulin.^{20-23,30} Its corresponding water-soluble phosphate prodrug salt [combretastatin A-4P (CA4P)] has reached advanced clinical

trials as a promising VDA.^{14,15,24,27,31} However, no small-molecule VDA has yet been approved by the FDA.

H₃CO H₃CO H₃CO O OCH₃

Colchicine

Combretastatin A-4 and its Prodrug Combretastatin A-4 (CA4) : R = OHCombretastatin A-4P (CA4P) : $R = OPO_3Na_2$

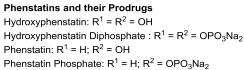


Figure 2.1. Colchicine, Phenstatin, and Combretastatin Natural Products and their Corresponding Phosphate Salts

Phenstatin, originally synthesized by the Pettit group in 1998, is another potent inhibitor of tubulin polymerization with pronounced anticancer activity against human cancer cell lines (Figure 1).^{28,33} Phenstatin was discovered serendipitously by the Pettit group during an attempt to prepare a CA4 analogue bearing an epoxide moiety as a replacement for the ethylene bridge.³³ The ketone functionality of phenstatin was the surprising result of a Jacobsen epoxidation reaction intended to form an epoxide from the corresponding olefin.³³ Phenstatin mirrors the biological mechanism of action of CA4, disrupting microtubule assembly through a binding interaction with the colchicine site on tubulin.²⁸ Phenstatin and its corresponding water-soluble phosphate salt prodrug counterpart demonstrate pronounced cytotoxicity against human cancer cell lines.²⁸ While hydroxyphenstatin, the diol analog of phenstatin, displays potent inhibition of tubulin polymerization, its diphosphate salt analog is less active against in vitro cancer cell lines and as an inhibitor of tubulin polymerization than its phenstatin phosphate counterpart.²⁸

Solid tumors represent inherently challenging therapeutic targets due, in part, to the significant differences between vasculature feeding healthy tissue versus tumorassociated vasculature, which is a contributing factor to the profound regions of hypoxia that often characterize tumors.^{3,8,38-49} A combination of blind ends, leaky vessel walls, occlusions, and kinked vessels, along with the increased average distance between capillaries, leads to hypoxic regions where many common radiotherapies and chemotherapeutic options are less effective.^{8,38-49} The challenges created by hypoxia and large diffusion distances offer a unique opportunity for targeted therapeutic intervention.^{8,38} Bioreductively activatable prodrug conjugates (BAPCs) represent a possible hypoxia-activated treatment method.^{8,38} BAPCs are designed to be activated by reductase enzymes, such as NADPH cytochrome P450 oxidoreductase (POR) in regions of hypoxia in the tumor microenvironment, releasing a potent anticancer agent in a tumor-specific manner.^{8,38}

A series of BAPCs utilizing CA4 as the parent anticancer agent and incorporating *nor-, mono-,* and *gem-*dimethyl nitrothiophene triggers was reported in 2006 by Davis and co-workers.⁸⁸⁻⁸⁹ The CA4-BAPC bearing the *gem-*dimethyl nitrothiophene trigger proved to be the most active of the trio, demonstrating the greatest resistance to cleavage under normoxic conditions *in vitro*, in effect displaying a high selectivity for low-oxygen tumor environments.⁸⁸ While the *nor*-methyl nitrothiophene BAPC was only activated at very low oxygen concentrations (<0.01% O₂), the bioreductive triggers for *mono-*methyl and *gem-*dimethyl BAPCs were cleaved over a greater range of oxygen concentrations.⁸⁸

The *gem*-dimethyl CA4-BAPC was significantly more effective in hypoxic environments in vitro compared to the *nor*- and *mono*-methyl CA4-BAPCs, releasing approximately 50% CA4 at 0.5% O_2 with the aid of POR.⁸⁸

The mechanism of cleavage (under hypoxia) for the nitrothiophene trigger begins with a one electron reductase such as POR reducing the nitro group on the trigger (Figure 2.2).⁸⁸ Once the nitro group on the trigger has been reduced, an electron cascade through the thiophene ring leads to trigger detachment, releasing the active VDA (CA4 in this example).⁸⁸ In comparison, under normal oxygen tension, the species obtained after the initial one-electron reduction is simply re-oxidized (by molecular oxygen) and thus does not lead to cleavage.⁸⁸

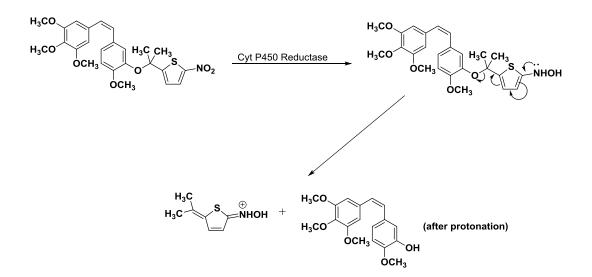
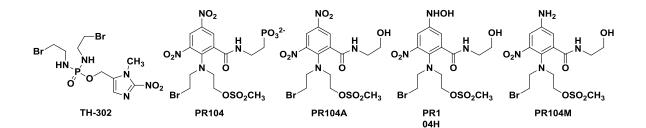
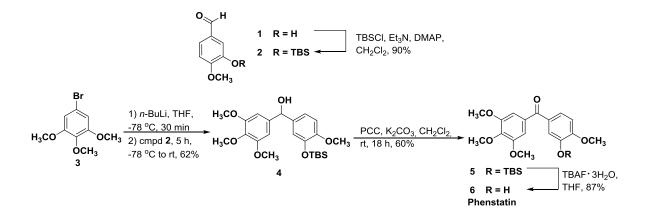


Figure 2.2. Gem-dimethyl Nitrothienyl Trigger Release from CA4⁸⁸

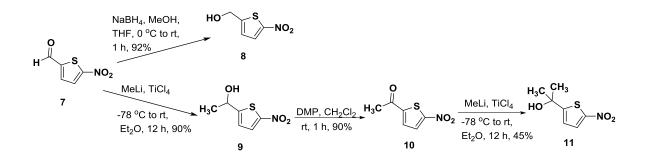
Although no BAPC has yet been approved by the FDA, two BAPCs that have reached advanced clinical trials are TH-302 and PR-104. TH-302 (from Threshold Pharmaceuticals) is a 2-nitroimidazole based BAPC attached to the DNA alkylating agent bromo-isophosphoramide (Figure 2.3).^{59,101} The prodrug is activated by one electron reductases such as POR, reducing the nitro group on the nitroimidazole trigger in a similar mechanistic pathway to the nitrothienyl trigger cleavage.⁸ Highly effective in *in vitro* studies and early *in vivo* studies in mice with hypoxia cytotoxicity ratios (HCR) as high as 600, TH-302 has advanced to Phase III clinical trials after successful Phase I and II studies, although the results of the first Phase III trial were not statistically significant.⁶⁰⁻⁶² PR-104 (Figure 2.3), synthesized and biologically evaluated by Wilson *et al.* at the University of Auckland, is a nitroaromatic preprodrug of PR-104A, eventually being reduced to the active forms PR104H and PR-104M.^{8,78-80} The cytotoxicity of PR-104M derives from its ability to form interstrand DNA crosslinks.⁸ PR-104 was taken into Phase I and II clinical trials, yielding promising results in Phase I trials but stalled at Phase II due to dose-limiting toxicity and overall efficacy issues.^{8,86,87}




Figure 2.3. TH-302, PR104, PR104A, PR104H, and PR104M⁸

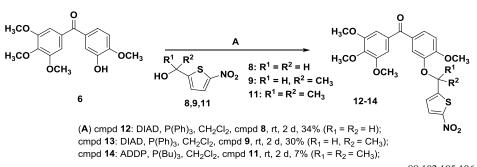
Intrigued by the concept of targeting tumor hypoxia with BAPCs, a series of such prodrugs were prepared by chemical synthesis based on the unique tubulin-active anticancer agent, phenstatin. Utilizing a combination of synthetic pathways previously described in the literature along with our modifications designed to improve yield and reaction efficiency, a selected subset of *nor-*, *mono-*, and *gem-*dimethyl nitrothiophene,

nitrobenzyl, nitroimidazole, and nitrofuran triggers were synthesized and linked to phenstatin.^{88,89} Preliminary biological assessment of these phenstatin BAPCs evaluated their ability to inhibit tubulin polymerization, and a subset were evaluated for their suitability as substrates for enzymatic-mediated cleavage to release the parent anticancer agent, phenstatin.


Results and Discussion

While each of the phenstatin-based BAPCs represents a new chemical entity, phenstatin and the prodrug triggers were synthesized utilizing methodology previously described (Scheme 2.1).^{33,102} Isovanillin was protected as its corresponding *tert*-butyldimethylsilyl ether, aldehyde **2**. ^{33,102} Halogen-metal exchange of aryl bromide **3**, followed by the introduction of aldehyde **2**, afforded the secondary alcohol **4**, which, upon oxidation, generated phenstatin precursor **5**.^{33,102} Removal of the TBS protecting group yielded phenstatin **6**.^{33,102}

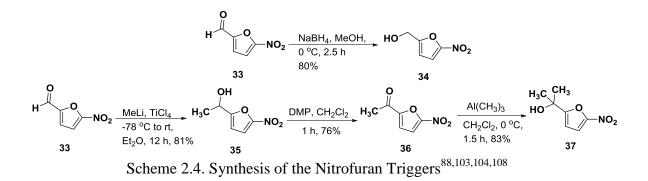
Scheme 2.1. Synthesis of Phenstatin $6^{33,102}$


The *nor*-methyl nitrothiophene trigger **8** was generated in excellent yield through reduction of aldehyde **7**, as reported by Davis *et al.* (Scheme 2.2).⁸⁸ The Davis route to the *gem*-dimethyl nitrothiophene trigger **11** proved less effective in our hands, generating the product but only in low yield. This motivated us to consider a modified synthetic methodology toward the *gem*-dimethyl trigger **11**. Methylation conditions described by Reetz *et al.* provided an improved synthetic route that generated both *mono*- and *gem*-dimethyl nitrothiophene triggers from aldehyde **7** in good yield.¹⁰³ *Mono*-methyl trigger **9** was synthesized through methylation of aldehyde **7** with methyllithium and titanium tetrachloride.¹⁰³ Oxidation with Dess-Martin periodinane (DMP) generated ketone **10** in high yield, and further methylation of ketone **10** furnished the *gem*-dimethyl trigger **11** (Scheme 2.2).^{103,104} Further investigation determined that trimethyl aluminum was a more effective methylating agent for the conversion of aldehyde **7** and ketone **10** to their corresponding *mono*- and *gem*- triggers **9** and **11**, respectively, in comparison to the methyllithium / titanium tetrachloride method (see Supplementary data).

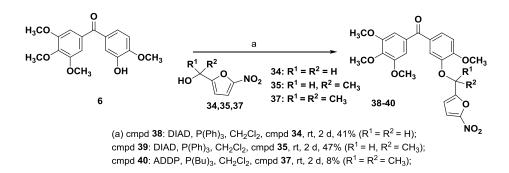
Scheme 2.2. Synthesis of Nitrothiophene Triggers^{88,103,104}

A Mitsunobu reaction was utilized to conjugate the bioreductive triggers to phenstatin to generate the requisite BAPCs (Scheme 2.3).^{88,102,105,106} Depending on the

reactivity of the bioreductive triggers involved in each reaction, a combination of either diethyl azodicarboxylate (DEAD), diisopropyl azodicarboxylate (DIAD), or 1,1'- (azodicarbonyl)dipiperidine (ADDP) and triphenylphosphine or tributylphosphine were employed to generate the ether linkage.^{88,105,106} Synthesis of the phenstatin *nor*-methyl nitrothiophene BAPC **12** and its corresponding *mono*-methyl BAPC **13** involved the reaction of phenstatin with nitrothiophene **8** (or **9**), DIAD, and triphenylphosphine.^{88,102} The phenstatin gem-dimethyl BAPC **14** was synthesized in a Mitsunobu reaction utilizing ADDP, tributylphosphine, phenstatin, and nitrothiophene trigger **11**.^{88,102}


Scheme 2.3. Synthesis of the Phenstatin Nitrothiophene BAPCs^{88,102,105,106}

The phenstatin nitrobenzyl BAPCs were synthesized in a similar fashion to the phenstatin nitrothiophene BAPCs, utilizing a Mitsunobu reaction to generate the critical ether linkage (Scheme A.1, Appendix A).^{88,102,105,106} Synthesis of the *nor*-methyl nitrobenzyl BAPC **20** and the *mono*-methyl nitrobenzyl BAPC **21** was achieved through the reaction of phenstatin, DIAD, and triphenylphosphine, with the appropriate trigger (4-nitrobenzyl alcohol **19** and *mono*-methyl trigger **16**, respectively).^{88,102} A reaction of tributylphosphine, ADDP, phenstatin, and the *gem*-dimethyl nitrobenzyl trigger **18** furnished the *gem*-dimethyl nitrobenzyl BAPC **22**.^{88,102} The synthetic route reported by


Reetz and co-workers was utilized for the synthesis of the nitrobenzyl triggers **16** and **18** (Scheme A.2, Appendix A).¹⁰³

The nitroimidazole phenstatin BAPCs (Scheme A.3, Appendix A) were generated through a Mitsunobu reaction analogous to the chemistry described previously for the nitrobenzyl and nitrothiophene BAPCs.^{88,102,105,106} The *nor*-methyl nitroimidazole BAPC **31** was synthesized utilizing a Mitsunobu reaction with phenstatin, DIAD, triphenylphosphine, and nitroimidazole **28**.^{88,102} Triphenylphosphine, DIAD, phenstatin, and nitroimidazole **30** reacted to yield the *mono*-methyl nitroimidazole BAPC **32**.^{88,102} The synthesis of the nitroimidazole triggers followed a route developed by Conway *et al.* (Scheme A.4, Appendix A).^{104,107,108} Despite several attempts directed towards methylation of the nitroimidazole ketone, the *gem*-dimethyl nitroimidazole trigger was not successfully synthesized in our hands (Scheme A.5, Appendix A).^{103,104,55-63}

The synthetic route for the nitrofuran bioreductive triggers (Scheme 2.4) was based on the new route to the nitrothiophene triggers shown in Scheme 2.2.^{88,103,104,108} The *nor*-methyl nitrofuran trigger **34** was generated through the reduction of aldehyde **33**.⁸⁸ Aldehyde **33** was methylated to yield *mono*-methyl nitrofuran trigger **35**.^{103,104} The synthesis of the *gem*-dimethyl nitrofuran trigger **37** was achieved in high yield by oxidation of *mono*-methyl trigger **35** to its corresponding ketone **36**, followed by methylation to generate the *gem*-dimethyl nitrofuran trigger **37**.^{103,104}

Mitsunobu chemistry was once again employed to form the requisite ether linkage between the nitrofuran triggers and phenstatin, generating the nitrofuran BAPCs (Scheme 2.5).^{88,102,107,108} The *nor*-methyl nitrofuran BAPC **38** and the *mono*-methyl nitrofuran BAPC **39** were generated through the reaction of phenstatin, DIAD, and triphenylphosphine with the appropriate trigger (*nor*-methyl nitrofuran **34** and *mono*methyl nitrofuran **35**, respectively).^{88,102} The *gem*-dimethyl nitrofuran BAPC **40** was likewise synthesized via a Mitsunobu reaction with nitrofuran **37**.^{88,102}

Scheme 2.5. Synthesis of the Phenstatin Nitrofuran BAPCs^{88,102,107,108}

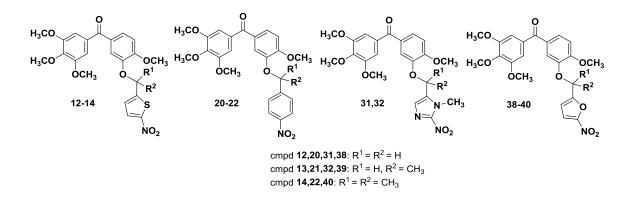


Figure 2.4. Phenstatin BAPCs Prepared by Chemical Synthesis

Biological Evaluation

The phenstatin BAPCs (Figure 2.4), as well as phenstatin, were evaluated for their ability to inhibit tubulin polymerization and compete for the colchicine binding site (Table 2.1). In addition to the *mono*-methyl nitrothiophene BAPC **13** and the *gem*-dimethyl nitrofuran BAPC **40**, the entire nitrobenzyl series (**20,21,22**) and the nitroimidazole series (**31,32**) all proved to be inactive (IC₅₀ >20 μ M) as inhibitors of tubulin polymerization. This is an important and desirable attribute for these phenstatin-based BAPCs, since they are designed to be biologically inactive until enzyme-mediated prodrug cleavage releases the active anticancer agent (phenstatin), which itself is a potent inhibitor of tubulin polymerization (IC₅₀ = 1.0 μ M).

The other four BAPCs (**12**, **14**, **38**, **39**) evaluated in this study demonstrated significantly reduced (IC₅₀ range of 9-16 μ M) inhibition of tubulin polymerization, in comparison to phenstatin. The limited activity of these four BAPCs might be attributed to partial trigger cleavage under the assay conditions, leading to generation of the tubulin-active parent anticancer agent phenstatin. This hypothesis of partial cleavage has not been confirmed or further investigated to date.

Based on the pioneering work by Davis and co-workers with CA4-BAPCs, which demonstrated the potency of the *gem*-dimethyl variant (in comparison to the corresponding *nor*- and *mono*-methyl analogues), the three phenstatin-based *gem*dimethyl BAPCs prepared in this study were subjected to further initial evaluation. A stability study carried out in pH 7.4 potassium phosphate buffer solution on the three *gem*-dimethyl trigger BAPCs (**14**, **22**, **40**) demonstrated promising results, with each BAPC remaining structurally intact over a 24 h period with no observable (by HPLC analysis) cleavage or degradation. These same three BAPCs (**14**, **22**, **40**) were treated (in separate experiments) with NADPH cytochrome P450 oxidoreductase (POR) to evaluate them as substrates for this enzyme under anoxic conditions.

The *gem*-dimethyl furan and thiophene compounds (**14** and **40**, respectively) were fully cleaved over the course of 24 h, while, interestingly, the *gem*-dimethyl benzyl compound **22** did not undergo cleavage in the 24 h assay (Table 2.2). The reduction potential for the nitrobenzyl trigger is less than the reduction potential (less electronphilic) than that of the nitrofuran, nitroimidazole, and nitrothiophene triggers, possibly explaining its resistance to cleavage by POR under these assay conditions.¹⁰⁸

30

Compd	Inhibition of	Inhibition of
	Tubulin	Colchicine Binding
	Assembly IC ₅₀	% Inhibition µM
		$\pm SD$
	(µM)±SD	5 μΜ
42	0.73 ± 0.04	98 ± 0.1
CA4		
6	$1.0\pm0.2^{\mathrm{a}}$	85 ± 2
Phenstatin		
12	16 ± 0.6	19 ± 2
13	>20	15 ± 0.09
14	9.0 ± 1	16 ± 3
20 >20		11 ± 4
21	>20	5.8 ± 5
22	>20	8.8 ± 5
31	>20	7.1 ± 0.01
32	>20	11 ± 5
38	15 ± 1	17 ± 0.01
39	12 ± 0.5	16 ± 3
40	>20	13 ± 5

Table 2.1.
Inhibition of Tubulin Polymerization
and Percent Inhibition of Colchicine Binding

^adata from reference 23

I auto 2.2	able 2.2	ab	Та	
------------	----------	----	----	--

Bioreductive Trigger Hydrolysis (Untreated) and Cleavage of POR-Treated BAPCs

Compd	Hydrolysis	Cleavage Percentage		
	Percentage in pH 7.4	of POR-treated for 24		
	Phosphate Buffer for	\mathbf{h}^{a}		
	24 h			
14	0	100		
22	0	0		
40	0	100		
^a anoxic conditions				

In conclusion, a series of eleven promising phenstatin-based BAPCs were prepared by chemical synthesis and had little to on activity as inhibitors of tubulin assembly or binding of colchicine to tubulin, in comparison to the parent anticancer agent phenstatin, a potent tubulin inhibitor. In preliminary studies, the three phenstatin-based *gem*-dimethyl BAPCs (**14**, **22**, **40**) demonstrated aqueous solution stability (over 24 h), and two of the BAPCs (**14**, **40**) were suitable substrates for POR. These BAPCs have the potential to be therapeutic agents that target hypoxic tumor cells.

Experimental Section

Chemistry

General Materials and Methods.^{109,110} CH₂Cl₂ and tetrahydrofuran (THF) were used in their anhydrous forms, as obtained from the chemical suppliers. Reactions were performed under an inert atmosphere using N₂. Thin-layer chromatography (TLC) plates (precoated glass plates with silica gel 60 F254, 0.25 mm thickness) were used to monitor reactions. Purification of intermediates and products was carried out with a flash purification system using silica gel (200-400 mesh, 60 Å) or RP-18 prepacked columns. Intermediates and products synthesized were characterized on the basis of their ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectroscopic data. TMS was used as an internal standard for spectra recorded in CDCl₃. All the chemical shifts are expressed in ppm (δ), coupling constants (J) are presented in Hz, and peak patterns are reported as broad (br), singlet (s), doublet (d), doublet of doublets (dd) triplet (t), quartet (q), septet (sept), and multiplet (m). HRESIMS were obtained using positive or negative electrospray ionization (ESI) techniques using a Thermo Scientific LTQ OrbitrapDiscovery instrument. Purity of the final compounds was further analyzed at 25 °C using an Agilent 1200 HPLC system with a diode-array detector (λ = 190-400 nm), a Zorbax XDB-C18 HPLC column (4.6 mm x 150 mm, 5 µm), and a Zorbax reliance cartridge guard-column. Flow rate 1.0 mL/min; injection volume 20 µL; monitored at 254 nm, 300 nm, 320 nm. Two different HPLC gradients were used for purity analysis; Method A: water/acetonitrile, gradient 10:90 to 90:10 from 0 to 25 min and isocratic 90:10 from 25 to 30 min; Method B: water/acetonitrile, gradient 50:50 to 90:10 from 0 to 25 min and isocratic 90:10 from 25 to 30 min (note: 4-dimethylaminopyridine is abbreviated DMAP, ethyl acetate is abbreviated EtOAc, *N,N*-dimethylformamide is abbreviated DMF, chloroform-d is abbreviated CDCl₃]

3-(*(tert***-Butyldimethylsilyl)oxy)-4-methoxybenzaldehyde** (**2**):¹⁰² Isovanillin (2.01 g, 13.2 mmol), triethylamine (4.00 mL, 28.5 mmol), and DMAP (0.045 g, 0.37 mmol) were dissolved in dry CH₂Cl₂ (60 mL). *tert*-Butyldimethylsilyl chloride (2.214 g, 14.7 mmol) was added to the reaction mixture, which was stirred for 12 h. The reaction was quenched with water, extracted with diethyl ether (Et₂O), which was washed with water and brine, dried with Na₂SO₄, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B \rightarrow 27% A/73% B (10 CV), 27% A/73% B over (2 CV); flow rate 40.0 mL/min; monitored at 254 and 280 nm] yielded 3-((*tert*-butyldimethylsilyl)oxy)-4-methoxybenzaldehyde (**2**) (3.17 g, 11.9 mmol, 90%) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 9.82 (1H, s), 7.49 (1H, dd, *J* = 8.5 Hz, *J* = 2 Hz), 7.37 (1H, d, *J* = 2 Hz), 6.96 (1H, d, *J* = 8.5 Hz), 3.90 (3H, s), 1.00 (9H, s), 0.17 (6H, s).

¹³C NMR (125 MHz, CDCl₃) δ 190.9, 156.6, 145.3, 130.2, 126.3, 120.0, 111.1, 55.6, 25.6, 18.4, -4.6.

(3-((tert-Butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5-

trimethoxyphenyl)methanol (4):¹⁰² 1-Bromo-3,4,5-trimethoxybenzene (1.81 g, 7.31 mmol) was dissolved in dry THF (60 mL) in a dry ice/acetone bath (-78 °C). *n*-Butyllithium (2.8 mL, 7.0 mmol, 2.5 M) was added dropwise to the reaction mixture, which was stirred for 30 min. 3-((*tert*-Butyldimethylsilyl)oxy)-4-methoxybenzaldehyde (2.00 g, 7.50 mmol) dissolved in dry THF (20 mL) was added dropwise, and the reaction mixture was stirred for 5 h. The reaction was quenched with water, acidified to pH 7 with 3 M HCl, extracted with Et₂O, washed with water and brine, dried with Na₂SO₄, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B \rightarrow 80% A/20% B (10 CV), 80% A/20% B over (2 CV); flow rate 40.0 mL/min; monitored at 254 and 280 nm] yielded (3-((*tert*-butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5-trimethoxyphenyl)methanol (4) (2.02 g, 4.65 mmol, 62%) as a pale yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 6.89 (2H, m), 6.80 (1H, d, *J* = 8.5 Hz), 6.57 (2H, d, *J* = 4.5 Hz), 5.24 (1H, d, *J* = 4.5 Hz), 3.81 (3H, s), 3.77 (9H, s), 0.94 (9H, d, *J* = 3.5 Hz), 0.11 (6H, d, *J* = 2.5 Hz).

¹³**C NMR** (125 MHz, CDCl₃) δ 153.0, 150.3, 144.7, 140.0, 136.5, 119.9, 119.4, 111.8, 103.4, 75.5, 60.7, 55.9, 55.5, 25.7, 18.4, -4.6.

(3-((tert-Butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5-

trimethoxyphenyl)methanone (5):¹⁰² (3-((*tert*-Butyldimethylsilyl)oxy)-4methoxyphenyl)(3,4,5-trimethoxyphenyl)methanol (3.00 g, 6.90 mmol), Celite (2.45 g), and potassium carbonate [K₂CO₃] (2.46 g, 17.8 mmol) were dissolved in dry CH₂Cl₂ (130 mL) in an ice bath (0 °C). Pyridinium chlorochromate [PCC] (1.52 g, 7.04 mmol) was added in small increments and the reaction mixture was stirred for 18 h. The reaction mixture was filtered with CH₂Cl₂ in a frit funnel containing a 50/50 mixture of Celite and silica gel and then evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B \rightarrow 45% A/55% B (10 CV), 45% A/55% B (2 CV); flow rate 40.0 mL/min; monitored at 254 and 280 nm] yielded (3-((*tert*-butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone (5) (1.79 g, 4.14 mmol, 60%) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.40 (1H, d, *J* = 8 Hz), 7.33 (1H, s), 6.99 (2H, s), 6.87 (1H, d, *J* = 8.5 Hz), 3.88 (3H, s), 3.84 (3H, s), 3,83 (6H, s), 0.96 (9H, s), 0.14 (6H, s).

¹³**C NMR** (125 MHz, CDCl₃) δ 194.5, 154.9, 152.7, 144.6, 141.5, 133.3, 130.4, 125.3, 122.3, 110.7, 107.4, 60.9, 56.2, 55.5, 25.6, 18.4, -4.6.

Phenstatin (6):¹⁰² (3-((*tert*-Butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5trimethoxyphenyl)methanone (3.59 g, 8.31 mmol) was dissolved in dry THF (100 mL). Tetrabutylammonium fluoride trihydrate (3.93 g, 12.5 mmol) was added, and the reaction mixture was stirred for 18 h. The reaction was quenched with water, acidified to pH 7 with 3 M HCl, and extracted with EtOAc, which was dried with Na₂SO₄, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 12% A/88% B over 1.19 min (1 CV), 12% A/88% B \rightarrow 99% A/1% B over 13.12 min (10 CV), 99% A/1% B over 2.38 min (2 CV); flow rate 40.0 mL/min; monitored at 254 and 280 nm] yielded phenstatin (6) (2.06 g, 6.47 mmol, 78%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.42 (1H, s), 7.37 (1H, d, *J* = 8.5 Hz). 7.01 (2H, s), 6.90 (1H, d, *J* = 8 Hz), 3.94 (3H, s), 3.90 (3H, s), 3.85 (6H, s).

¹³**C NMR** (125 MHz, CDCl₃) δ 194.7, 152.8, 150.2, 145.3, 141.6, 133.1, 131.0, 123.7, 116.2, 109.7, 107.5, 61.0, 56.3, 56.1.

HRMS $[M+Na]^+$: 341.0997 (calcd for $[C_{17}H_{18}O_6Na]^+$, 341.1103).

HPLC retention time (Method A): 15.35 min.

(5-Nitrothiophen-2-yl)methanol (8):⁸⁸ 5-Nitrothiophene-2-carboxaldehyde (1.00 g, 6.38 mmol) was dissolved in dry methanol (20 mL) in an ice bath (0 °C). NaBH₄ (0.270 g, 7.14 mmol) was added, and the reaction mixture was stirred for 2 h. Ice was added and the solution was acidified to pH 7 with 3 M HCl. The reaction mixture was extracted with EtOAc, dried with Na₂SO₄, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 50 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B \rightarrow 65% A/35% B (10 CV), 65% A/35% B (2 CV); flow rate 50.0 mL/min; monitored at 254 and 280 nm] yielded alcohol **8** (0.914 g, 5.74 mmol, 90%) as a brown oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.84 (1H, d, *J* = 4.1 Hz), 6.95 (1H, dt, *J* = 4.1, 1.0 Hz), 4.90 (2H, d, *J* = 5.2 Hz), 2.15 (1H, t, *J* = 5.8 Hz).

¹³C NMR (126 MHz, CDCl₃) δ 154.0, 150.6, 129.0, 123.5, 60.2.

1-(5-Nitrothiophen-2-yl)ethan-1-ol (9):¹⁰³ TiCl₄ (7.84 g, 41.3 mmol) was added slowly dropwise into Et₂O (80 mL) at -78 °C, after which methyllithium (1.6 M, 25.8 mL, 41 mmol) was added drop-wise, and the reaction mixture was stirred for 1.5 h. 5-Nitro-2-thiophenecarboxaldehyde (5.00g, 31.8 mmol) was dissolved in Et₂O (120 mL) and added dropwise to the reaction mixture, which was stirred (12 h). H₂O (50 mL) was used to quench the reaction. The layers were partitioned, and the residue was extracted with EtOAc (6×40 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 73%A / 27%B (13 CV), 73%A / 27%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] affording alcohol **9** (4.95 g, 28.6 mmol, 90%) as a dark brown oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.82 (1H, d, *J* = 4.2 Hz), 6.91 (1H, dd, *J* = 4.2, 1.0 Hz), 5.14 (1H, qd, *J* = 6.4, 1.0 Hz), 2.14 (1H, s), 1.64 (3H, d, *J* = 6.5 Hz).

¹³C NMR (125 MHz, CDCl₃) δ 160.0, 149.9, 129.1, 122.2, 66.3, 25.1.

1-(5-Nitrothiophen-2-yl)ethan-1-ol (9) [Alternate Route]: 5-Nitro-2-

thiophenecarboxaldehyde (1.00 g, 6.36 mmol) was dissolved in CH_2Cl_2 (50 mL) at 0 °C. Trimethylaluminum (2 M, 5.30 mL, 10.6 mmol) was added dropwise, and the reaction mixture was stirred for 2 h. The reaction was quenched with HCl (1 M, 40 mL) and the layers were partitioned. The residue was extracted with CH_2Cl_2 (3 x 30 mL), and the combined organic phase was washed with brine (40 mL), dried over Na_2SO_4 , and evaporated under reduced pressure. The crude product was purified by flash column chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 70%A / 30%B (13 CV), 70%A / 30%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] affording alcohol **11** (1.01 g, 5.85 mmol, 92%) as yellow-orange crystals.

1-(5-Nitrothiophen-2-yl)ethan-1-one (10): 2-(1-Hydroxyethyl)-5-nitrothiophene (1.04 g, 6.00 mmol) was dissolved in 70 mL CH₂Cl₂ at rt. Dess-Martin periodinane (3.82 g, 9.00mmol) was added in portions to the solution, and the reaction mixture was stirred (1 h). Saturated solutions of sodium thiosulfate (50 mL) and NaHCO₃ (50 mL) were used to quench the reaction mixture. The layers were partitioned, and the residue was extracted with EtOAc (4 x 30 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 80%A / 20%B (13 CV), 80%A / 20%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] affording ketone **10** (0.873 g, 5.10 mmol, 90%) as yellow-orange crystals.

¹**H NMR** (600 MHz, CDCl₃) δ 7.89 (1H, d, *J*=4.3 Hz), 7.58 (1H, d, *J*=4.3 Hz), 2.60 (3H, s).

¹³C NMR (151 MHz, CDCl₃) δ 190.35, 156.47, 148.16, 130.06, 128.28, 26.61.

2-(5-Nitrothiophen-2-yl)propan-2-ol (11):¹⁰³ TiCl₄ (3.62 g, 19.1 mmol) was slowly added dropwise into Et₂O (80 mL) at -78 °C, after which methyllithium (1.6 M, 11.9 mL, 19 mmol) was added dropwise, and the reaction mixture was stirred for 1.5 h. 2-Acetyl-5-nitrothiophene (2.50 g, 14.7 mmol) was dissolved in Et₂O (140 mL) and added dropwise to the reaction mixture, which was stirred (12 h). H₂O (50 mL) was used to quench the reaction mixture. The layers were partitioned, and the residue was extracted with EtOAc (6×40 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 70%A / 30%B (13 CV), 70%A / 30%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] affording alcohol **11** (1.61 g, 8.60 mmol, 45%) as a dark orange oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.80 (1H, d, *J* = 4.2 Hz), 6.89 (1H, d, *J* = 4.2 Hz), 1.69 (6H, s).

¹³C NMR (151 MHz, CDCl₃) δ 163.46, 150.04, 128.76, 121.26, 71.92, 32.08.

2-(5-Nitrothiophen-2-yl)propan-2-ol (11) [Alternate Route]: 2-Acetyl-5-

nitrothiophene (0.500 g, 2.92 mmol) was dissolved in CH_2Cl_2 (20 mL) at 0 °C. Trimethylaluminum (2 M, 2.42 mL, 4.85 mmol) was added dropwise, and the reaction mixture was stirred for 2 h. The reaction was quenched with HCl (1 M, 30 mL), and the layers were partitioned. The residue was extracted with CH_2Cl_2 (3 x 20 mL), and the combined organic extracts were washed with brine (20 mL), dried over Na₂SO₄, and evaporated under reduced pressure. The crude product was purified by flash column chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), $10\%A / 90\%B \rightarrow 70\%A / 30\%B (13 \text{ CV})$, 70%A / 30%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] affording alcohol **11** (0.365 g, 2.13 mmol, 73%) as bright orange crystals.

(4-Methoxy-3-((5-nitrothiophen-2-yl)methoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (12):^{88,102} Phenstatin (0.405 g, 1.27 mmol), DIAD (0.289 g, 1.43 mmol), and (5-nitrothiophen-2-yl)methanol (0.454 g, 2.85 mmol) were dissolved in dry CH₂Cl₂ (40 mL). Triphenylphosphine (0.574 g, 2.19 mmol) was added, and the reaction mixture was stirred for 2 d. The reaction was quenched with water (30 mL) and extracted with EtOAc (3 x 30 mL), which was dried with Na₂SO₄ and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 50 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 17% A/83% B (1 CV), 17% A/83% B \rightarrow 100% A/0% B (10 CV), 100% A/0% B (2 CV); flow rate 35.0 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-((5-nitrothiophen-2-yl)methoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (12) (0.198 g, 0.431 mmol, 34%) as a brown solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.83 (1H, d, *J* = 4.5 Hz), 7.51 (1H, d, *J* = 1.5 Hz), 7.49 (1H, dd, *J* = 8 Hz, *J* = 1.5 Hz), 7.06 (1H, d, *J* = 4.5), 6.99 (2H, s), 6.97 (1H, d, *J* = 8.5 Hz), 5.33 (2H, s), 3.98 (3H, s), 3.93 (3H, s), 3.87 (6H, s).

¹³**C NMR** (125 MHz, CDCl₃) δ 194.3, 153.7, 152.8, 147.7, 146.9, 141.7, 133.0, 130.2, 128.4, 126.6, 125.2, 115.5, 110.6, 107.4, 66.3, 61.0, 56.3, 56.2.

HRMS [M+Na]⁺: 482.0880 (calcd for [C₂₂H₂₁NNaO₈S]⁺, 482.0880).

HPLC retention time (Method B): 9.10 min.

(4-Methoxy-3-(1-(5-nitrothiophen-2-yl)ethoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (13):^{88,102} Phenstatin (0.407 g, 1.28 mmol), DIAD (0.294 g, 1.45 mmol), and 1-(5-nitrothiophen-2-yl)ethanol (0.505 g, 2.92 mmol) were dissolved in dry CH₂Cl₂ (40 mL). Triphenylphosphine (0.558 g, 2.13 mmol) was added, and the reaction mixture was stirred for 2 d. The reaction was quenched with water and extracted with EtOAc, which was dried with Na₂SO₄ and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 25 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 15% A/85% B (1 CV), 15% A/85% B \rightarrow 100% A/0% B (10 CV), 100% A/0% B (2 CV); flow rate 20.0 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-(1-(5-nitrothiophen-2-yl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (13) (0.179 g, 0.378 mmol, 30%) as a tan yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.77 (1H, d, *J* = 4.2 Hz), 7.48 (1H, dd, *J* = 8.4, 2.0 Hz), 7.45 (1H, d, *J* = 2.0 Hz), 6.99 – 6.92 (4H, m), 5.60 (1H, q, *J* = 6.4 Hz), 3.96 (3H, s), 3.91 (3H, s), 3.84 (6H, s), 1.77 (3H, d, *J* = 6.4 Hz).

¹³C NMR (125 MHz, CDCl₃) δ 194.2, 154.8, 154.4, 152.8, 151.0, 145.9, 141.7, 133.0, 130.2, 128.4, 126.8, 123.4, 118.4, 110.9, 107.4, 73.6, 61.0, 56.3, 56.1, 23.2.

HRMS [M+Na]⁺: 496.1038 (calcd for [C₂₃H₂₃NNaO₈S]⁺, 496.1037).

HPLC retention time (Method B): 10.33 min.

(4-Methoxy-3-((2-(5-nitrothiophen-2-yl)propan-2-yl)oxy)phenyl)(3,4,5trimethoxyphenyl)methanone (14):^{88,102} Phenstatin (0.581 g, 1.83 mmol), ADDP (0.597 g, 2.38 mmol), and 2-(5-nitrothiophen-2-yl)propan-2-ol (0.410 g, 2.19 mmol) were dissolved in dry CH₂Cl₂ (80 mL). Tributylphosphine (0.752 mL, 3.06 mmol) was added dropwise, and the reaction mixture was stirred for 2 d. The reaction mixture was dried under reduced pressure. Flash chromatography of the crude product using a prepacked 25 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B \rightarrow 80% A/20% B (10 CV), 80% A/20% B (2 CV); flow rate 50.0 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-((2-(5-nitrothiophen-2-yl)propan-2-yl)oxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (14) (0.062 g, 0.128 mmol, 7%) as an orange gum.

¹**H NMR** (600 MHz, acetone-*d*₆) δ 7.93 (1H, d, *J* = 4.3 Hz), 7.67 (1H, dd, *J* = 8.5, 2.2 Hz), 7.41 (1H, d, *J* = 2.1 Hz), 7.22 (1H, d, *J* = 8.5 Hz), 7.19 (1H, d, *J* = 4.3 Hz), 7.02 (2H, s), 3.95 (3H, s), 3.87 (6H, s), 3.84 (3H, s), 1.79 (6H, s).

¹³C NMR (151 MHz, acetone-d₆) δ 192.94, 161.01, 157.41, 153.10, 150.43, 142.93, 141.89, 133.12, 129.98, 128.83, 127.80, 125.38, 123.07, 111.83, 107.31, 80.82, 59.80, 55.74, 55.44, 28.16.

HRMS [M+Na]⁺: 510.1190 (calcd for [C₂₄H₂₅NNaO₈S]⁺, 510.1193).

HPLC retention time (Method B): 11.49 min.

1-(4-Nitrophenyl)ethan-1-ol (**16**):¹⁰³ TiCl₄ (2.72 mL, 24.8 mmol) was added dropwise slowly to dry Et₂O (100 mL) in an acetone / dry ice bath (-78 °C). Methyllithium (15.5 mL, 25 mmol, 1.6 M) was then added dropwise slowly to the reaction mixture which was stirred for 1.5 h. 4-Nitrobenzaldehyde (2.88g, 19.1 mmol) dissolved in Et₂O (140 mL) was added dropwise to the reaction mixture, which was stirred for 18 h. The reaction was

quenched with water and extracted with CH₂Cl₂ (3 x 50 mL), which was washed with water and brine and dried over Na₂SO₄, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B \rightarrow 80% A/20% B over (10 CV), 80% A/20% B (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded 1-(4-nitrophenyl)ethan-1-ol (**16**) (2.49 g, 14.9 mmol, 78%) as a yellow-orange oil.

¹**H NMR** (600 MHz, CDCl₃) δ 8.17 (2H, d, *J* = 8.7 Hz), 7.53 (2H, d, *J* = 8.6 Hz), 5.01 (1H, q, *J* = 6.5 Hz), 1.51 (3H, d, *J* = 6.6 Hz).

¹³C NMR (151 MHz, CDCl₃) δ 153.22, 147.09, 126.13, 123.71, 69.43, 25.44.

2-(4-Nitrophenyl)propan-2-ol (**18**):¹⁰³ TiCl₄ (3.02 mL, 27.6 mmol) was added dropwise slowly to dry Et₂O (100 mL) in an acetone / dry ice bath (-78 °C). Methyllithium (17.2 mL, 28 mmol, 1.6 M) was then added dropwise slowly to the reaction mixture, which was stirred for 1.5 h. 4-Nitroacetophenone (3.50g, 21.2 mmol) dissolved in Et₂O (150 mL) was added dropwise to the reaction mixture, which was stirred for 18 h. The reaction was quenched with water, and the mixture was extracted with CH₂Cl₂ (3 x 50 mL), which was washed with water and brine, dried over Na₂SO₄, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B \rightarrow 60% A/40% B (10 CV), 60% A/40% B (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded 2-(4-nitrophenyl)propan-2-ol (**18**) (1.42 g, 7.84 mmol, 37%) as an orange oil.

¹**H NMR** (600 MHz, CDCl₃) δ 8.16 (2H, d, *J* = 8.9 Hz), 7.65 (2H, d, *J* = 8.9 Hz), 1.61 (7H, s).

¹³C NMR (151 MHz, CDCl₃) δ 156.52, 146.64, 125.51, 123.45, 72.49, 31.69.

(4-methoxy-3-((4-nitrobenzyl)oxy)phenyl)(3,4,5-trimethoxyphenyl)methanone

(20):^{88,102,105,106} Phenstatin (0.500 g, 1.57 mmol), DIAD (0.35 mL, 1.9 mmol), and 4nitrobenzyl alcohol (0.481 g, 3.14 mmol) were dissolved in dry CH₂Cl₂ (60 mL). Triphenylphosphine (0.700 g, 2.67 mmol) was added, and the reaction mixture was stirred for 2 d. The reaction was quenched with water, and the reaction mixture was extracted with EtOAc, which was dried with Na₂SO₄ and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B \rightarrow 80% A/20% B (10 CV), 80% A/20% B (2 CV); flow rate 100.0 mL/min; monitored 254 280 at and nm] vielded (4-methoxy-3-((4nitrobenzyl)oxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (20) (0.462 g, 1.02 mmol, 65%) as a yellow solid.

¹**H NMR** (600 MHz, acetone-*d*₆) δ 8.31 (2H, d, *J* = 8.7 Hz), 7.84 (2H, d, *J* = 9.0 Hz), 7.54 (1H, d, *J* = 2.0 Hz), 7.52 (1H, dd, *J* = 8.3, 2.0 Hz), 7.18 (1H, d, *J* = 8.4 Hz), 7.04 (2H, s), 5.40 (2H, s), 4.00 (3H, s), 3.87 (6H, s), 3.84 (3H, s).

¹³**C NMR** (151 MHz, acetone-*d*₆) δ 193.21, 153.71, 153.10, 147.67, 145.12, 141.81, 133.24, 130.25, 128.06, 125.41, 123.49, 114.93, 110.99, 107.37, 99.99, 69.45, 59.80, 55.70, 55.54. **HRMS** [M+Na]⁺: 476.1315 (calcd for [C₂₄H₂₃NNaO₈]⁺, 476.1316).

HPLC retention time (Method B): 9.55 min.

(4-Methoxy-3-(1-(4-nitrophenyl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (21):^{88,102,105,106} Phenstatin (0.500 g, 1.57 mmol), DIAD (0.348 mL, 1.88 mmol), and 1-(4-nitrophenyl)ethan-1-ol (0.525 g, 3.14 mmol) were dissolved in dry CH₂Cl₂ (60 mL). Triphenylphosphine (0.700 g, 2.67 mmol) was added to the reaction mixture, which was stirred for 2 d. The reaction was quenched with water, and the reaction mixture was extracted with CH₂Cl₂ (3 x 40 mL), which was dried with Na₂SO₄ and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B \rightarrow 80% A/20% B over (10 CV), 80% A/20% B (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-(1-(4nitrophenyl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (21) (0.315 g, 0.675 mmol, 43%) as white solid.

¹**H NMR** (600 MHz, acetone-*d*₆) δ 8.26 (2H, d, *J* = 8.8 Hz), 7.78 (2H, d, *J* = 8.4 Hz), 7.46 (1H, dd, *J* = 8.4, 2.0 Hz), 7.34 (1H, d, *J* = 2.0 Hz), 7.15 (1H, d, *J* = 8.4 Hz), 6.93 (2H, s), 5.72 (1H, q, *J* = 6.4 Hz), 4.00 (3H, s), 3.83 (3H, s), 3.81 (6H, s), 1.69 (3H, d, *J* = 6.5 Hz).

¹³C NMR (151 MHz, CDCl₃) δ 194.27, 153.96, 152.80, 150.05, 147.48, 146.57, 141.76, 133.04, 130.14, 126.53, 125.83, 124.01, 116.93, 110.61, 107.50, 60.98, 56.36, 56.14, 23.86, 21.95. HRMS [M+Na]⁺: 490.1471 (calcd for [C₂₅H₂₅NNaO₈]⁺, 490.1472).

HPLC retention time (Method B): 10.05 min.

(4-Methoxy-3-((2-(4-nitrophenyl)propan-2-yl)oxy)phenyl)(3,4,5trimethoxyphenyl)methanone (22):^{88,102,105,106} Phenstatin (0.500 g, 1.57 mmol), ADDP (0.475 g, 1.88 mmol), and 2-(4-nitrophenyl)propan-2-ol (0.569 g, 3.14 mmol) were dissolved in dry CH₂Cl₂ (70 mL). Tributylphosphine (0.66 mL, 2.67 mmol) was added dropwise to the reaction mixture, which was stirred for 2 d. The reaction was quenched with water, and the mixture was extracted with EtOAc, which was washed with water and brine, dried with Na₂SO₄, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B \rightarrow 80% A/20% B (10 CV), 80% A/20% B (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-((2-(4-nitrophenyl)propan-2-yl)oxy)phenyl)(3,4,5trimethoxyphenyl)methanone (**22**) (0.174 g, 0.361 mmol, 23%) as tan solid,

¹**H NMR** (600 MHz, acetone-*d*₆) δ 8.25 (2H, d, *J* = 8.9 Hz), 7.91 (2H, d, *J* = 8.9 Hz), 7.57 (1H, dd, *J* = 8.5, 2.1 Hz), 7.18 (1H, d, *J* = 8.5 Hz), 7.12 (1H, d, *J* = 2.1 Hz), 6.92 (2H, s), 3.96 (3H, s), 3.84 (6H, s), 3.83 (3H, s), 1.76 (6H, s).

¹³C NMR (151 MHz, acetone-d₆) δ 193.05, 156.74, 154.53, 153.03, 147.02, 143.92, 141.76, 133.21, 129.72, 126.62, 126.34, 123.48, 123.30, 111.62, 107.16, 81.28, 59.77, 55.73, 55.43, 27.99.

HRMS [M+Na]⁺: 504.1629 (calcd for [C₂₆H₂₇NNaO₈]⁺, 504.1629).

HPLC retention time (Method B): 10.82 min.

Ethyl 2-amino-1-methyl-1*H***-imidazole-5-carboxylate (26):**¹⁰⁴ To a suspension of sarcosine ethyl ester (4.00 g, 0.026 mol) in THF (90 mL) and ethyl formate (90 mL) was added NaH (60 % dispersion in mineral oil, 10.0 g, 0.25 mol) in several portions at room temperature. The reaction mixture was stirred for 3 h, and, during this time, a yellow

suspension formed. The reaction mixture was concentrated and triturated with hexane (2 x 150 mL). The hexane was decanted, and the resulting light tan solid was dried in *vacuo*. Ethanol (80 mL) and concentrated aqueous HCl (16 mL) were added to the solid, and the suspension was heated to reflux for 2 h. The reaction mixture was then filtered while hot, and the filter was rinsed with boiling ethanol (2 x 50 mL). The combined filtrate was concentrated to yield a brown oil. The oil was diluted with ethanol (140 mL) and water (60 mL), and the pH of the solution was adjusted to 3 by using NaOH solution (2 M). Cyanamide (2.18 g, 0.052 mol) was added, and the resulting solution was heated to reflux for 1.5 h. After being cooled to room temperature, the reaction mixture was concentrated to approximately 1/8 of its original volume. Solid K₂CO₃ was added to adjust the pH of the concentrated reaction mixture to 8-9, resulting in the formation of a yellow precipitate. The solid was removed by filtration, washed with a K₂CO₃ solution (1 M, 1 x 20 mL) and water (2 x 20 mL) and dried to afford a pale yellow solid (1.97 g, 12.0 mmol, 45%).

¹**H NMR** (600 MHz, CDCl₃) δ 7.45 (1H, s), 4.27 (2H, q, *J* = 7.1 Hz), 4.25 (2H, s), 3.68 (3H, s), 1.34 (3H, t, *J* = 7.1 Hz).

¹³C NMR (151 MHz, CDCl₃) δ 160.67, 151.89, 135.50, 119.05, 59.82, 30.55, 14.41.

Ethyl 1-methyl-2-nitro-1*H*-imidazole-5-carboxylate (27):^{104,107} Aminoimidazole (0.700 g, 4.14 mmol) in acetic acid (7.3 mL) was added dropwise to an aqueous solution of sodium nitrite (3.6 mL, 11 M). The solution was stirred at room temperature for 4 h until no more N_2 was formed. The reaction mixture was extracted with CH_2Cl_2 (1 x 20 mL), washed with brine (1 x 20 mL) and a saturated aqueous solution of Na_2SO_3 (1 x 20

mL). The organic layer was then dried over Na₂SO₄, filtered and concentrated to afford a crude yellow solid. Purification by flash chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (4 CV), $7\%A / 93\%B \rightarrow 60\%A / 40\%B$ (10 CV), 60%A / 40%B (2 CV); flow rate: 70 mL/min; monitored at 254 and 280 nm] afforded the nitroimidazole analogue **27** (0.510 g, 2.60 mmol, 63%) as a yellow solid.

¹**H NMR** (600 MHz, CDCl₃) δ 7.74 (1H, s), 4.40 (2H, q, *J* = 7.1 Hz), 4.35 (3H, s), 1.41 (3H, t, *J* = 7.1 Hz).

¹³C NMR (151 MHz, CDCl₃) δ 159.08, 147.46, 134.67, 126.29, 61.84, 35.39, 14.18.

(1-Methyl-2-nitro-1*H*-imidazol-5-yl)methanol (28):^{104,107} A suspension of the nitroimidazole ethyl ester (0.796 g, 4.00 mmol) in 0.75 M NaOH solution (16 mL) was stirred at room temperature overnight to give a clear light yellow solution. The pH of the reaction mixture was adjusted to 1 by adding concentrated HCl. The resulting solution was extracted with EtOAc (5 x 20 mL). The combined organic layer was dried over Na₂SO₄ and concentrated to afford a light yellow solid. The solid was dissolved in THF (8 mL) with triethylamine (0.880 mL, 6.30 mmol). Isobutylchloroformate (0.820 mL, 6.30 mmol) was added dropwise at -40 °C, and the reaction mixture was stirred at room temperature for 1 h. NaBH₄ (0.794 g, 21.0 mmol) was added to the solution, followed by dropwise addition of water (7 mL) over 1 h while maintaining the temperature around 0 °C. The reaction mixture was extracted with Et₂O (3 x 20 mL), which was dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash chromatography using a prepacked 25 g silica column [solvent A: methanol; solvent B: CH₂Cl₂; gradient:

48

1% A / 99% B (4 CV), 1% A / 99% B \rightarrow 15% A / 85% B (10 CV), 15% A / 85% B (2 CV); flow rate: 75 mL/min; monitored at 254 and 280 nm] afforded the normethyl nitroimidazole trigger (**28**) (0.449 g, 2.86 mmol, 71%) as a pale yellow solid.

¹**H NMR** (600 MHz, Methanol- d_4) δ 7.11 (1H, s), 4.68 (2H, s), 4.06 (3H, s).

¹³C NMR (151 MHz, MeOD) δ 145.82, 137.93, 126.02, 53.16, 33.40.

1-Methyl-2-nitro-1*H***-imidazole-5-carbaldehyde (29):** Normethyl nitroimidazole trigger **28** (359 mg, 2.28 mmol) was dissolved in CH₂Cl₂ (10 mL). Dess–Martin periodinane (1.16 g, 2.74 mmol) was added and the reaction mixture was stirred for 1 h at room temperature. Saturated solutions of NaHCO₃ (20 mL) and sodium thiosulfate (20 mL) were added to the reaction mixture, which was extracted with EtOAc (3 x 25 mL). The combined organic layers were dried over Na₂SO₄ and filtered, and the solvent was removed under reduced pressure. Purification by flash chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 12%A / 88%B (1 CV), 12%A / 88%B \rightarrow 100%A / 0%B (10 CV), 100%A / 0%B (2 CV); flow rate: 75 mL/min; monitored at 254 and 280 nm] afforded imidazole analogue (346 mg, 2.23 mmol, 98%) as a yellow solid.

¹**H NMR** (600 MHz, CDCl₃) δ 9.94 (1H, s), 7.82 (1H, s), 4.36 (3H, s).

¹³C NMR (151 MHz, CDCl₃) δ 180.39, 148.35, 139.38, 132.38, 35.57.

1-(1-Methyl-2-nitro-1*H***-imidazol-5-yl)ethan-1-ol (30):**¹⁰³ TiCl₄ (1.3 mL, 11 mmol) in Et_2O (60 mL) was treated with methyllithium (7.1 mL, 1.6M, 11 mmol) at -78 °C, and the resulting solution was stirred for 1 h. A THF (15 mL) solution of imidazole aldehyde

analogue (0.884 g, 5.70 mmol) was added dropwise and the reaction mixture was stirred for 24 h. Water (50 mL) was added and the resulting solution was extracted with EtOAc (3 x 50 mL), which was dried over Na₂SO₄ and concentrated to afford a crude brown oil. Purification by flash chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 17%A / 83%B (1 CV), 17%A / 83%B \rightarrow 100%A / 0%B (7 CV), 100%A / 0%B (5 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] afforded the monomethyl nitroimidazole trigger (**30**) (400 mg, 2.34 mmol, 41%) as a yellow solid.

¹**H NMR** (600 MHz, acetone-*d*₆) δ 7.07 (1H, s), 5.01 (1H, p, *J* = 6.2 Hz), 4.64 (1H, d, *J* = 6.0 Hz), 4.09 (3H, s), 1.63 (3H, d, *J* = 6.6 Hz).

¹³**C NMR** (151 MHz, acetone- d_6) δ 146.4, 141.6, 124.7, 60.4, 33.9, 21.1

(4-Methoxy-3-((1-methyl-2-nitro-1*H*-imidazol-5-yl)methoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (**31**):^{88,102,105,106} Phenstatin (0.500 g, 1.57 mmol), (1methyl-2-nitro-1*H*-imidazol-5-yl)methanol (0.296 g, 1.89 mmol), and DIAD (0.40 mL, 2.04 mmol) were dissolved in CH₂Cl₂. Triphenylphosphine (0.825 g, 3.14 mmol) was added to the mixture, and the reaction mixture was stirred for 24 h. The reaction mixture was then evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A: EtOAc; solvent B: hexanes; gradient, 17%A/83%B over 1.19 min (1 CV), 17%A/83%B \rightarrow 100%A/0%B over 8.33 min (7 CV), 100%A / 0%B over 5.95 min (5 CV); flow rate 100 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-((1-methyl-2-nitro-1*H*-imidazol-5yl)methoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (**31**) (0.346 g, 0.757 mmol, 48%) as a pale yellow-white solid.

¹**H NMR** (600 MHz, CDCl₃) δ 7.62 (1H, d, *J* = 1.7 Hz), 7.52 (1H, dd, *J* = 8.3, 1.7 Hz), 7.24 (1H, s), 7.04 (2H, s), 6.97 (1H, d, *J* = 8.4 Hz), 5.18 (2H, s), 4.16 (3H, s), 3.97 (3H, s), 3.96 (3H, s), 3.91 (6H, s).

¹³C NMR (151 MHz, CDCl₃) δ 194.16, 153.97, 152.91, 146.74, 141.88, 132.92, 132.30, 130.43, 129.31, 127.00, 116.43, 110.61, 107.52, 99.98, 61.24, 61.01, 56.39, 56.05, 34.54.

HRMS $[M+Na]^+$: 480.1376 (calcd for $[C_{22}H_{23}N_3NaO_8]^+$,480.1377).

HPLC retention time (Method B): 4.66 min.

(4-methoxy-3-(1-(1-methyl-2-nitro-1*H*-imidazol-5-yl)ethoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (32):^{88,102,105,106} Phenstatin (0.250 g, 0.786 mmol), DIAD (0.19 mL, 1.02 mmol), and 1-(1-methyl-2-nitro-1*H*-imidazol-5-yl)ethan-1-ol (0.161 g, 0.943 mmol) were added to dry CH₂Cl₂ (50 mL). Triphenylphosphine (0.412 g, 1.57 mmol) was added, and the reaction mixture was stirred for 2 d. The reaction solvent was evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A: EtOAc; solvent B: hexanes; gradient, 15%A/85%B over 1.19 min (1 CV), 15%A/85%B \rightarrow 100%A/0%B over 8.33 min (7 CV), 100%A / 0%B over 14.28 min (12 CV); flow rate 100 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-(1-(1-methyl-2-nitro-1*H*-imidazol-5-yl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (**32**) (0.119 g, 0.252 mmol, 32%) as a pale yellow-white solid.

¹**H NMR** (600 MHz, CDCl₃) δ 7.57 (1H, d, *J* = 2.0 Hz), 7.55 (1H, dd, *J* = 8.3, 2.0 Hz), 7.21 (1H, s), 7.02 (2H, s), 6.99 (1H, d, *J* = 8.4 Hz), 5.59 (1H, q, *J* = 6.5 Hz), 4.13 (3H, s), 3.97 (3H, s), 3.96 (3H, s), 3.91 (6H, s), 1.81 (3H, d, *J* = 6.5 Hz).

¹³C NMR (151 MHz, CDCl₃) δ 194.09, 154.63, 152.90, 145.23, 141.89, 137.09, 132.88, 130.47, 127.15, 118.90, 110.95, 107.51, 99.98, 68.42, 61.01, 56.39, 56.04, 34.70, 18.55.

HRMS $[M+Na]^+$: 494.1533 (calcd for $[C_{23}H_{25}N_3NaO_8]^+$ 494.1534).

HPLC retention time (Method B): 5.17 min.

(5-Nitrofuran-2-yl)methanol (34):⁸⁸ 5-Nitrofuran-2-carbaldehyde (4.00 g, 28 mmol) was dissolved in anhydrous methanol (80 mL) and cooled to 0 °C. NaBH₄ (1.17 g, 31 mmol) was added to the reaction mixture, which was stirred for 2.5 h. The reaction was quenched with an HCl solution (1 M, 40 mL) and extracted with EtOAc (3 x 50 mL). The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure to afford a crude yellow oil. Purification by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] afforded (5-nitrofuran-2-yl)methanol (34) (3.23 g, 22.6 mmol, 80%) as a pale yellow oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.31 (1H, d, *J* = 3.6 Hz), 6.58 (1H, d, *J* = 3.6 Hz), 4.74 (2H, s), 2.09 (1H, s).

¹³C NMR (151 MHz, CDCl₃) δ 157.37, 151.92, 112.40, 110.61, 57.45.

1-(5-Nitrofuran-2-yl)ethan-1-ol (**35**):¹⁰³ TiCl₄ (0.78 mL, 7.1 mmol) in Et₂O (35 mL) was treated with methyllithium (4.4 mL, 1.6 M, 7.1 mmol) at -78 °C. The resulting solution was stirred for 1 h. A THF (10 mL) solution of 5-nitrofuran-2-carbaldehyde (0.500 g, 3.5 mmol) was added dropwise, and the reaction mixture was stirred for 24 h. Water (30 mL) was added and the resulting solution was extracted with EtOAc (3 x 30 mL), which was dried over Na₂SO₄ and concentrated to afford a crude brown oil. Purification by flash chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 75 mL/min; monitored at 254 and 280 nm] afforded 1-(5-nitrofuran-2-yl)ethan-1-ol (**35**) (449 mg, 2.86 mmol, 81%) as a brown oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.29 (1H, d, *J* = 4.1 Hz), 6.52 (1H, d, *J* = 4.6 Hz), 4.96 (1H, q, *J* = 7.1 Hz), 2.57 (1H, s), 1.61 (3H, d, *J* = 6.8 Hz).

¹³C NMR (151 MHz, CDCl₃) δ 161.27, 151.59, 112.51, 108.57, 63.66, 21.38.

1-(5-Nitrofuran-2-yl)ethan-1-one (36): Dess-Martin periodinane (8.62 g, 20.4 mmol) was added to 1-(5-nitrofuran-2-yl)ethan-1-ol (3.20 g, 20.4 mmol) dissolved in CH₂Cl₂ (250 mL), and the reaction mixture was stirred for 1 h. The reaction was quenched with saturated solutions of sodium thiosulfate and NaHCO₃, then extracted with CH₂Cl₂ (3 x 50 mL), which was washed with water and brine, dried with Na₂SO₄, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 7% A/93% B → 50% A/50% B over 13.12 min (10 CV), 50%

A/50% B over 2.38 min (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded 1-(5-nitrofuran-2-yl)ethan-1-one (**36**) (2.98 g, 19.2 mmol, 94%) as yellow solid.

¹**H NMR** (600 MHz, CDCl₃) δ 7.38 (1H, d, *J* = 3.8 Hz), 7.28 (1H, d, *J* = 3.7 Hz), 2.61 (3H, s).

¹³C NMR (151 MHz, CDCl₃) δ 186.73, 151.91, 151.48, 116.79, 111.94, 26.27.

2-(5-Nitrofuran-2-yl)propan-2-ol (37): 1-(5-Nitrofuran-2-yl)ethan-1-one (3.00 g, 19.3 mmol) in CH₂CI₂ (120 mL) was treated dropwise at 0 °C with trimethylaluminium (16.0 mL, 2.0 M, 32 mmol), and the resulting yellow solution was stirred for 90 min at 0 °C. Sat. aq. NH₄Cl was added to the reaction mixture, which was extracted with CH₂Cl₂ (3 x 50 mL). The combined organic layers were dried over Na₂SO₄ and filtered, and the solvent was removed under reduced pressure to give a yellow oil. Purification by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 1000mL/min; monitored at 254 and 280 nm] afforded 2-(5-nitrofuran-2-yl)propan-2-ol (**37**) (2.75 g, 16.1 mmol, 83%) as a yellow oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.27 (1H, d, J = 3.7 Hz), 6.49 (1H, d, J = 3.7 Hz), 2.36 (1H, s), 1.65 (7H, s).

¹³C NMR (151 MHz, CDCl₃) δ 164.05, 151.36, 112.55, 107.37, 69.30, 28.67.

(4-Methoxy-3-((5-nitrofuran-2-yl)methoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (**38**):^{88,102,105,106} Phenstatin (0.250 g, 0.786 mmol), DEAD (0.16 mL, 1.02 mmol), and (5-nitrofuran-2-yl)methanol (0.135 g, 0.943 mmol) were

dissolved in dry CH₂Cl₂ (60 mL). Triphenylphosphine (0.412 g, 1.57 mmol) was added, and the reaction mixture was stirred for 2 d. The solvent was evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 50 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B over 1.19 min (1 CV), 10% A/90% B \rightarrow 80% A/20% B over 13.12 min (10 CV), 80% A/20% B over 2.38 min (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-((5-nitrofuran-2-yl)methoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (**38**) (0.143 g, 0.322 mmol, 41%) as a white solid.

¹**H NMR** (600 MHz, acetone-*d*₆) δ 7.59 (1H, d, *J* = 2.0 Hz), 7.56 – 7.52 (2H, m), 7.17 (1H, d, *J* = 8.4 Hz), 7.06 (2H, s), 6.95 (1H, d, *J* = 3.7 Hz), 5.32 (2H, s), 3.96 (3H, s), 3.88 (6H, s), 3.85 (3H, s).

¹³C NMR (151 MHz, acetone-d₆) δ 193.12, 154.11, 153.89, 153.12, 147.13, 141.85, 133.19, 130.26, 126.00, 124.87, 116.00, 113.41, 112.45, 111.18, 107.39, 63.08, 59.80, 55.72, 55.47. HRMS [M+Na]⁺: 466.1107 (calcd for [C₂₂H₂₁NNaO₉]⁺, 466.1109).

HPLC retention time (Method B): 6.81 min.

(4-Methoxy-3-(1-(5-nitrofuran-2-yl)ethoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (**39**):^{88,102,105,106} Phenstatin (0.250 g, 0.786 mmol), DIAD (0.20 mL, 1.02 mmol), and 1-(5-nitrofuran-2-yl)ethan-1-ol (0.148 g, 0.943 mmol) were dissolved in dry CH_2Cl_2 (60 mL). Triphenylphosphine (0.412 g, 1.57 mmol) was added, and the reaction mixture was stirred for 2 d. The solvent was evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 50 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B over

1.19 min (1 CV), 10% A/90% B \rightarrow 80% A/20% B over 13.12 min (10 CV), 80% A/20% B over 2.38 min (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-(1-(5-nitrofuran-2-yl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (**39**) (0.169 g, 0.369 mmol, 47%) as a white solid.

¹**H NMR** (600 MHz, acetone-*d*₆) δ 7.55 (1H, dd, *J* = 8.4, 2.1 Hz), 7.51 (1H, d, *J* = 2.1 Hz), 7.49 (1H, d, *J* = 3.7 Hz), 7.17 (1H, d, *J* = 8.4 Hz), 7.02 (2H, s), 6.83 (1H, d, *J* = 3.5 Hz), 5.65 (1H, q, *J* = 6.5 Hz), 3.97 (3H, s), 3.87 (6H, s), 3.84 (3H, s), 1.77 (3H, d, *J* = 6.6 Hz).

¹³C NMR (151 MHz, acetone-d₆) δ 193.05, 158.26, 154.84, 153.11, 151.79, 146.11, 141.89, 133.16, 130.29, 126.49, 119.30, 112.44, 111.54, 111.02, 107.39, 70.96, 59.80, 55.73, 55.52, 18.82.

HRMS [M+Na]⁺: 480.1263 (calcd for [C₂₃H₂₃NNaO₉]⁺, 480.1265).

HPLC retention time (Method B): 7.86 min.

(4-Methoxy-3-((2-(5-nitrofuran-2-yl)propan-2-yl)oxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (40):^{88,102,105,106} Phenstatin (1.00 g, 3.14 mmol), ADDP (1.03 g, 4.08 mmol), and 2-(5-nitrofuran-2-yl)propan-2-ol (0.646 g, 3.77 mmol) were dissolved in dry THF (80 mL). Tributylphosphine (1.55 mL, 6.28 mmol) was added dropwise, and the reaction mixture was stirred for 2 d. The solvent was evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B \rightarrow 80% A/20% B (10 CV), 80% A/20% B (0.2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-((2-(5-nitrofuran-2-

yl)propan-2-yl)oxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (**40**) (0.118 g, 0.251 mmol, 8%) as a colorless solid.

¹**H NMR** (600 MHz, acetone-d6) δ 7.58 (1H, dd, J = 8.5, 2.1 Hz), 7.40 (1H, d, J = 3.7 Hz), 7.14 – 7.06 (2H, m), 6.94 (2H, s), 6.69 (1H, d, J = 3.7 Hz), 3.83 (6H, s), 3.81 (3H, s), 3.80 (3H, s), 1.75 (6H, s).

¹³C NMR (151 MHz, acetone-d₆) δ 192.97, 160.47, 157.53, 153.09, 151.48, 143.09, 141.85, 133.15, 129.94, 127.80, 125.96, 112.31, 111.61, 110.81, 107.25, 77.40, 59.80, 55.74, 55.38, 25.03.

HRMS $[M+Na]^+$: 494.1422 (calcd for $[C_{24}H_{25}NNaO_9]^+$ 494.1422).

HPLC retention time (Method B): 8.26 min

Biological Evaluations

Colchicine Binding Assay. Inhibition of [³H]colchicine binding to tubulin was determined using 0.1 mL reaction mixtures. Each reaction mixture contained 1.0 μ M tubulin, 5.0 μ M [³H]colchicine (from Perkin–Elmer), 5% (v/v) dimethyl sulfoxide, potential inhibitors at 5.0 μ M and components that were previously demonstrated to stabilize the colchicine binding activity of tubulin¹¹¹ (1.0 M monosodium glutamate [adjusted to pH 6.6 with HCl in a 2.0 M stock solution], 0.5 mg/mL bovine serum albumin, 0.1 M glucose-1-phosphate, 1.0 mM MgCl₂, and 1.0 mM GTP). Incubation was for 10 min at 37°C, a time point at which the binding reaction in the control is 40–60% complete. Reactions were stopped by adding 2.0 mL of ice-cold water and placing the samples on ice. Each sample was poured onto a stack of two DEAE-cellulose filters, followed immediately by 6 mL of ice-cold water, and the water was aspirated under reduced vacuum. The filters were

washed with 2 mL water X 3 and, following removal of excess water under a strong vacuum, placed into vials containing 5 mL of Biosafe II scintillation cocktail. Samples were counted the next day in a Beckman scintillation counter. Samples with potential inhibitors were compared to controls with no inhibitor to determine percent inhibition. All samples were corrected for the amount of colchicine that bound to the filters in the absence of tubulin.

Inhibition of Tubulin Polymerization¹¹³ Tubulin assembly experiments were performed using 0.25 mL reaction mixtures (final volume).¹¹² The mixtures contained 1 mg/mL (10 μ M) purified bovine brain tubulin, 0.8 M monosodium glutamate (pH 6.6, as above), 4% (v/v) dimethyl sulfoxide, 0.4 mM GTP, and varying compound concentrations. Initially, all components except GTP were preincubated for 15 min at 30 °C in 0.24 mL. After chilling the mixtures on ice, 10 μ L of 10 mM GTP was added. The reaction mixtures were then transferred to cuvettes held at 0 °C in Beckman DU-7400 and DU-7500 spectrophotometers equipped with electronic temperature controllers. The temperature was jumped to 30 °C over about 30 s, and polymerization was followed turbidimetrically at 350 nm for 20 min. Each reaction set included a reaction mixture without compound, and the IC50 was defined as the compound concentration that inhibited extent of assembly by 50% after 20 min at 30 °C.

NADPH Cytochrome P450 Oxidoreductase Cleavage Assay^{114,115} Rat NADPH cytochrome P450 oxidoreductase (POR) and protocatechuate 3,4-dioxygenase (PCD) were purchased from Corning[®] and Sigma-Aldrich, respectively, and their enzymatic

activities were determined in terms of enzyme units (U). All bioreductive prodrugs were dissolved in DMSO as 10 mM stock solutions.

An aliquot (5 μ L) of the 10 mM compound DMSO stock solution along with 0.5 μ L 0.1% Triton X-100 were added to 395.5 μ l 200 mM pH 7.4 potassium phosphate buffer containing 400 μ M freshly made protocatechuic acid (PCA). The components were fully mixed in a microvessel capped with a rubber septum stopper and subjected to three cycles of evacuation and flushing with N₂ using a manifold, followed by sparging with N₂ for an additional 20 min. PCD (0.08 units) was added by Hamilton syringe, and the solution was scrubbed for 10 min to allow for sufficient O₂ digestion by PCA/PCD. POR stock (0.006 units) was introduced followed by NADPH (0.8 mM final concentration) into the vial followed by an additional round of N₂ sparging. The reaction mixture was incubated for 24 h at 37 °C, cooled on ice and treated with an equal volume of acetonitrile. After centrifugation and filtration, the samples were analyzed by HPLC. Solutions without POR were used as controls.

Acknowledgements

The authors are grateful to the Cancer Prevention and Research Institute of Texas (CPRIT, Grant No. RP140399 to K.G.P. and M.L.T.), the National Cancer Institute of the National Institutes of Health (Grant No. 5R01CA140674 to K.G.P. and M.L.T.), and Mateon Therapeutics, Inc. (grant to K.G.P. and M.L.T.) for their financial support of this project. The content of this paper is solely the responsibility of the authors and does not necessarily reflect the official views of the National Institutes of Health. The authors also thank Dr. Michelle Nemec (Director) for the use of the shared Molecular Biosciences

59

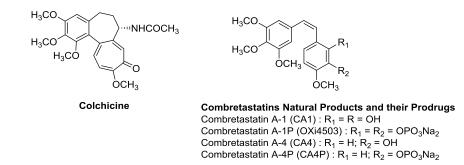
Center at Baylor University and Dr. Alejandro Ramirez (Mass Spectrometry Core Facility, Baylor University). The authors are grateful to Ms. Taylor Deushane, Mr. Bunnarack Kuch, Mr. Raj Patel, Mr. Matthew Parsons, and Ms. Evelyn Le for their contributions to the synthesis of advanced intermediates.

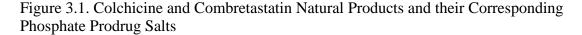
CHAPTER THREE

Bioreductively Activatable Prodrug Conjugates of Combretastatin A-1 and Combretastatin A-4 as Anticancer Agents Targeted towards Tumor Hypoxia

This chapter will be submitted to a peer reviewed journal with the following author list and title: Blake A. Winn^{1†}, Laxman Devkota^{1†}, Bunnarack Kuch¹, Matthew T. MacDonough¹, Yifan Wang¹, Tracy E. Strecker¹, Zhe Shi¹, Jeni Gerberich², Deboprosad Mondal¹, Rajeswari Mukherjee¹, Ernest Hamel³, David J. Chaplin^{1,4}, Peter Davis, Ralph Mason,² Mary L. Trawick^{1*}, Kevin G. Pinney^{1*} Bioreductively Activatable Prodrug Conjugates of Combretastatin A-1 and Combretastatin A-4 as Anticancer Agents Targeted towards Tumor Hypoxia

The author Blake A. Winn contributed to this manuscript through the synthesis of six of the final compounds including full characterization, which included proton and carbon NMRs, HPLC, and HRMS. In addition, Blake A. Winn significantly contributed to the writing and editing of the manuscript, as well as the preparation of the supporting data.


Abstract


Targeting tumor-associated hypoxia with small-molecule anticancer agents represents a promising strategy to potentially improve treatment efficacy and reduce patient sideeffect profiles. Bioreductively activatable prodrug conjugates (BAPCs), which incorporate a potent anticancer agent with a bioreductive trigger, are designed to be substrates for reductase enzymes operating in regions of tumor hypoxia. While inert under normoxic conditions, these BAPCs are intended to be cleaved in low oxygen environments (hypoxia) to release their parent anticancer agent. Synthetic pathways have been identified for the preparation of nitrothienyl prodrugs of the natural product combretastatin A-1 (CA1) that incorporate *nor*-methyl, *mono*-methyl, and *gem*-dimethyl

nitrothiophene triggers. A regioselective protecting group strategy (tosyl, isopropyl, and tert-butyldimethylsilyl) was utilized to establish regioselective control around the catechol functionality inherent to CA1, thus facilitating incorporation of these nitrothiophene triggers at the C-2 and C-3 positions of CA1. A related series of BAPCs based on the natural product combretastatin A-4 (CA4), which was originally reported by Davis and co-workers, were synthesized as comparison standards. CA4 and CA1 function biologically as potent inhibitors of tubulin polymerization and effective vascular disrupting agents (VDAs). These series of CA1 and CA4 BAPCs (15 compounds in total) were evaluated biologically for their ability to inhibit tubulin polymerization and for their differential cytotoxicity (normoxia versus hypoxia) against the A549 human lung cancer cell line. In addition, they were evaluated as substrates for the reductase enzyme NADPH cytochrome P450 oxidoreductase (POR). The CA4-gem-dimethylnitrothiophene BAPC (45) proved exemplary in comparison to its nor-methyl and mono-methyl CA4-BAPC cogeners (43 and 44, respectively). It was stable to hydrolysis conditions (24 h), was cleaved by POR (25% at 90 min), was inactive (desirable prodrug attribute) as an inhibitor of tubulin polymerization (IC₅₀ > 20 μ M), and demonstrated hypoxia-selective activation in the A549 cell line [hypoxia cytotoxicity ratio (HCR) = 40]. The related CA1-gem-dimethylnitrothiophene BAPC (41) was also promising with HCR = 30 and complete cleavage observed upon treatment with POR. However, BAPC 41 was also labile under hydrolysis conditions, suggesting that pharmacokinetic (PK) considerations may prove crucial for the successful future development of these (and related) BAPCs as therapeutic agents.

Introduction

The tumor microenvironment exemplifies a number of unique attributes that distinguish it from the microenvironment associated with healthy tissue. One of these key differences centers on vascular architecture and associated blood flow dynamics.¹⁻³ Solid tumors, once they reach approximately 2-5 mm³ in size, must establish their own vascular network in order to meet their rapidly accelerating demand for oxygen and nutrients.¹¹⁶⁻ ¹²³ This rapid angiogenic development of tumor-associated vasculature results in disorganized, fragile, and leaky vessels, thus providing a target for therapeutic intervention.^{1-3,124-126} Vascular disrupting agents (VDAs) are compounds that selectively damage established tumor-associated vasculature, thus denying necessary oxygen and nutrients, and ultimately resulting in necrosis.^{1,4-6} The natural products combretastatin A-1 (CA1, Figure 3.1) and combretastatin A-4 (CA4, Figure 3.1), isolated from the bark of the African bush willow tree Combretum caffrum Kuntze (Combretacae) by Pettit and coworkers, are potent inhibitors of tubulin polymerization (binding at the colchicine site) and function biologically as VDAs.^{22,23,25,32} As tubulin binding inhibitors, they cause rapid morphological changes to the endothelial cells lining tumor-associated blood vessels, causing vascular collapse, which leads to starvation of tumor cells from oxygen and nutrient depravation.^{2,11,136} The corresponding water-soluble phosphate prodrugs of CA1 and CA4 [referred to as CA1P (also known as OXi4503) and CA4P (also known as ZybrestatTM) respectively, Fig. 1] have advanced through preclinical and clinical trials.^{4,18,19,27-32}

In addition to an aberrant vascular network and elevated interstitial pressure due to immature and leaky vasculature, the tumor microenvironment is further characterized by a pH gradient, with cells distant from blood vessels being acidic in nature.^{3,9} The high probability for existing tumor-associated capillaries to be kinked and distant leads to an increased average diffusion distance for oxygen and nutrients to reach tumor cells as well as poor blood flow in the central mass of the tumor.³⁸ Furthermore, there is a distinct oxygen concentration gradient inherent to a significant percentage of solid tumors, varying from normoxic to hypoxic to anoxic.³ Tumor hypoxia is believed to be one of the significant contributing factors to treatment failure and relapse of solid tumors in cancer patients, as the tumor cells in the hypoxic region are considered to be resistant to many conventional anticancer therapies.^{3,41-43}

Importantly, the presence of low oxygen concentrations and cell necrosis are unique features of solid tumors, not naturally occurring in normal tissue.³ The presence of pronounced regions of hypoxia in tumors offers an opportunity for targeting through the selective delivery of potent anticancer agents utilizing appropriate prodrug strategies.^{3,38,43} These conjugates activate under hypoxic conditions, similar to those in the tumor microenvironment, releasing their accompanying potent anticancer agent in a selective fashion. Such compounds include hypoxia-activated agents as well as prodrugs,^{3,38,43,44} which are also referred as bioreductively activated prodrug conjugates (BAPCs).¹³⁷ These hypoxia-selective agents undergo activation through either one- or two-electron enzymes, principally NAD(P)H-dependent flavoproteins for one-electron processes and cytochrome P450s for two-electron processes.^{3,38}

Tirapazamine represents one type of hypoxia-selective therapeutic agent. Reduction of its triazine moiety to a free radical leads to DNA damage and poisoning of topoisomerase II (Figure 3.2).^{51,52} While Phase I and Phase II clinical trials for tirapazamine had positive results, a Phase III clinical trial utilizing the combination of tirapazamine with the conventional anticancer agent cisplatin to treat advanced non-small-cell lung cancer was unsuccessful,³ displaying dose-limiting toxicity.^{128,138} The high degree of hypoxia-selective activation coupled with its performance in early clinical trials resulted in tirapazamine being viewed as a promising positive control against which new hypoxia-selective therapeutic agents are compared.³⁸ TH-302,¹⁰¹ a 2-nitroimidazole-based nitrogen mustard prodrug (Figure 3.2. B) that releases its parent drug bromoisophosphoramide mustard under hypoxic conditions, advanced to Phase III human clinical trials.^{59,138} Unlike the Phase I and II studies, the results of the Phase III clinical trial showed no statistical significance for TH-302 against pancreatic adenocarcinoma and soft tissue sarcoma.⁶⁰⁻⁶²

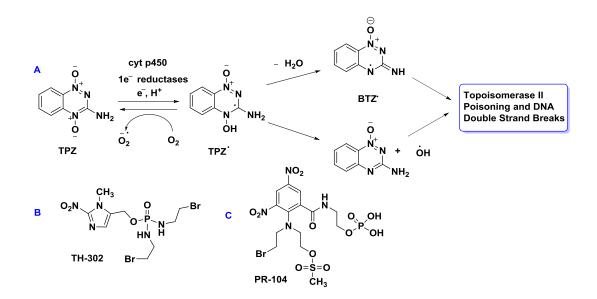


Figure 3.2. A. The Mechanism by which Tirapazamine Selectively Kills Hypoxic Cells. **B**. Structure of TH-302. **C.** Structure of PR-104.^{51,52}

Another class of BAPCs incorporates a bioreductive trigger, which can be cleaved to selectively release the active anticancer agent in hypoxic conditions. Once cleaved, the therapeutic agents are released and diffuse into the tumor microenvironment (Fig. 3.3). Since hypoxia is a condition that is commonly associated with solid tumors, it provides an excellent opportunity for selective targeting.^{3,38}

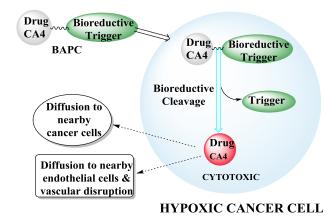
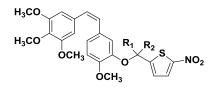



Figure 3.3. Selective Release of Cytotoxic Agent (CA4) from Non-Toxic BAPC under Tumor Hypoxia. BAPCs are designed to activate selectively in the hypoxic tumor microenvironment, thereby releasing their cytotoxic anticancer agent (payload).¹³⁹

Davis and co-workers prepared a series of nor-, mono-, and gem-dimethyl-

nitrothienyl BAPCs that incorporate CA4, and demonstrated their ability to release CA4 from the bioreductive triggers in A549 cells under hypoxic conditions.⁸⁸

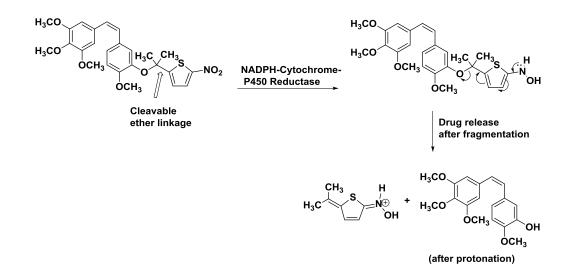

Normethyl; $R_1=R_2=H$ Monomethyl; $R_1=H$, $R_2=CH_3$ Gem-dimethyl; $R_1=R_2=CH_3$

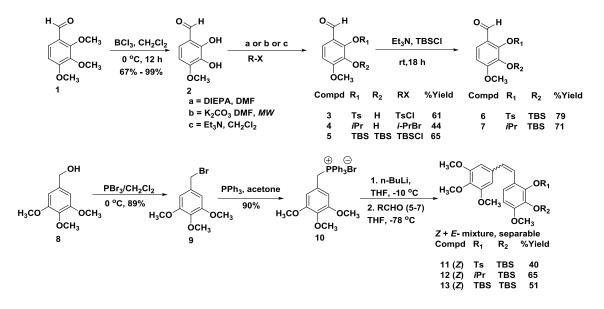
Figure 3.4. Combretastatin A-4 (CA4) Incorporating Nitrothiophene-Based Bioreductive Triggers⁸⁸

The efficacy of these BAPCs was evaluated by determining their cytotoxicity in

normoxia and CA4 release under normoxia versus hypoxia, in the A549 human cancer

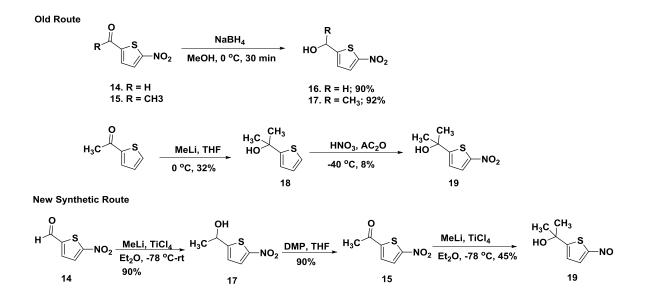
cell line.88

Scheme. 3.1. Biological Reduction and Cleavage of CA4 *gem*-Dimethyl Nitrothiophene Trigger Releasing CA4⁸⁸

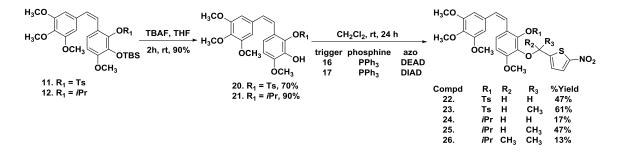

It was determined that the *gem*-dimethyl-nitrothiophene trigger CA4 prodrug (Scheme 1) was the most resistant to aerobic metabolism (in comparison to the *nor*- and *mono*-methyl-nitrothiophene trigger CA4 prodrugs) and the *gem*-dimethyl CA4-BAPC remained intact in high oxygen environments.⁸⁸ While the *gem*- and *mono*-substituted CA4-BAPCs were effective across a range of oxygen concentrations, the unsubstituted (*nor*-methyl) was specifically effective under extreme hypoxia (<0.01% O₂).⁸⁸

Inspired by the promise of targeting tumor hypoxia for the selective delivery of tubulin-active VDAs, and building on the encouraging results reported for the CA4-BAPCs, we have designed and synthesized a series of BAPCs that incorporate the natural product CA1, and evaluated them in preliminary studies to access their efficacy as a new anticancer therapeutic regimen. A regioselective protecting group strategy (incorporating *tert*-butyldimethylsilyl, isopropyl, and tosyl groups) that we previously developed for another application was utilized to differentiate the catechol functionality (C-2 and C-3 positions) inherent to CA1.^{33,128,129,140} The nitrothiophene triggers previously described by Davis and co-workers were synthesized using a new synthetic strategy.⁸⁸ The resultant CA1 BAPCs were evaluated for their ability to inhibit tubulin polymerization and to function as substrates for the reductase enzyme cytochrome P450 oxidoreductase (POR). In addition, differential cytotoxicity studies (normoxia versus hypoxia) suggested which BAPCs held the most promise for the targeting of tumor hypoxia.

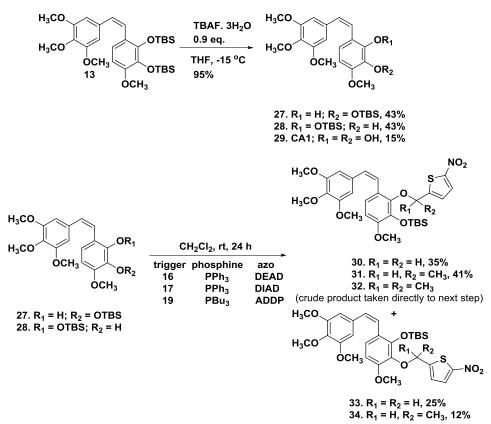
Synthesis


The CA1-BAPCs were synthesized by utilizing two key reactions- a Wittig olefination to generate regioselectively protected CA1, and a Mitsunobu reaction between the tosyl, isopropyl, and *tert*-butyldimethylsilyl protected CA1 analogues (**20**, **21**, **27**, and **28** respectively, Schemes 3.4 and 3.6) and the nitrothienyl triggers (**16**, **17** and **19**, Scheme 3.3).^{1,2} Synthesis of the regioselectively protected *Z*-CA1 analogues (**11-13**, Scheme 3.2) was successfully executed utilizing the Wittig olefination reaction between aldehydes **5-7** (Scheme 3.2) and the requisite triphenyl phosphonium salt **10**.¹ The Wittig reaction produced both the *Z*- and *E*- isomers of the stilbene, but favored the *Z*- isomer (Scheme 3.2).^{1-4,135}

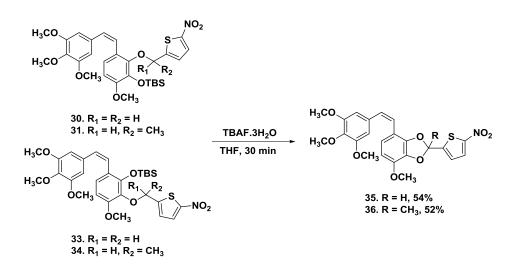
Selective demethoxylation of aldehyde **1** using boron trichloride yielded catechol **2**, which generated selectively protected aldehydes **3-7** (Scheme 3.2) using a previously reported synthetic strategy.^{1,3,135} Phosphonium salt **10** was generated after bromination of benzyl alcohol **8** using phosphorous tribromide followed by a reaction with triphenyl phosphine. A Wittig reaction between the suitably protected aldehydes (**5-7**) with Wittig salt **10** yielded both *Z*- and *E*- stilbene isomers (**11-13**, favoring the *Z*- isomer), which were separated using flash column chromatography. Synthesis of the three nitrothiophene triggers utilized in the Mitsunobu reactions is detailed in Scheme 3.3.


Scheme 3.2. Synthesis of Regioselectively Protected CA1 Analogues 11-13^{128,129}

The synthetic route reported by Davis and co-workers highlights the synthesis of the *nor-* and *mono-*methyl nitrothiophene triggers **16** and **17** in good yield through the reduction of aldehyde **14** and ketone **15** respectively (Scheme 3.3).^{5,88} However, in our hands (Scheme 3.3), the synthesis of the *gem-*dimethyl nitrothiophene trigger **19** suffered with two consecutive low yielding steps, which included methylation of the carbonyl group followed by nitration at the C5 position. In order to scale up the production of compound **19**, it was imperative for us to develop an improved synthetic route. The new synthetic route provided all three triggers (*nor-*, *mono-* and *gem-*) from a single starting material **14**. Methylation of aldehyde **14** furnished *mono-*methyl trigger **17**, which on subsequent oxidation and methylation yielded *gem-*dimethyl trigger **19** in good yield (Scheme 3.3).

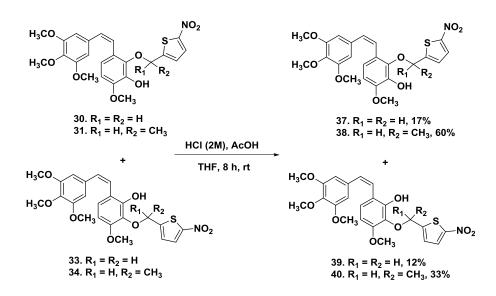

Scheme 3.3. Synthesis of Nitrothiophene Triggers Using Old Route (Proposed by Peter Davis and Co-Workers) and New Routes⁸⁸

Deprotection of regioselective CA1 analogues **11** and **12** using TBAF yielded their corresponding phenols **20** and **21** respectively, which were subjected to Mitsunobu conditions that further incorporated nitrothiophene triggers (**16**, **17** and **19**), phosphine reagents (PPh₃ or PBu₃) and azo compounds (diethylazodicarboxylate [DEAD], diisopropylazodicarboxylate [DIAD] or 1,1'-(azodicarbonyl)-dipiperidine [ADDP]) to generate BAPCs **22-26** (Scheme 3.4).

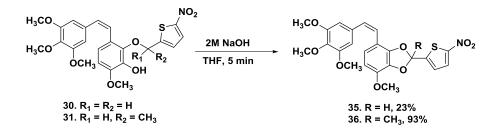


Scheme 3.4. Synthesis of Regioselectively Protected CA1-BAPCs 22-26^{88,143}

The attempted deprotection of compounds 22 and 23 with NaOH (2M) under either microwave or reflux conditions did not yield the desired product, but instead cleaved the nitrothiophene trigger from the starting material, regenerating compound 20 (see Appendix B). Similarly, compound 24 regenerated compound 21 upon attempted deprotection using AlCl₃ (see Appendix B) In an effort to solve this problem, we attempted to partially cleave the bis-TBS protected CA1 13 using a deficiency of TBAF, which resulted in a mixture of regioisomers 27 and 28 (Scheme 3.5), which proved inseparable, in our hands, by flash column chromatography. While the mixture of regioisomers 27 and 28 produced their respective Mitsunobu products 30-34, CA1 analogue 29 was unreactive under these conditions. The protected CA1-BAPC 32 proved difficult to purify, in our hands, through column chromatography, so the crude product was taken to the next step. Interestingly, the conventional TBS-deprotection of compounds 30 and 31 using TBAF yielded ring-cyclized products 35 and 36 (proposed structures based on analysis of NMR and HRMS data) without producing any other discernable side products (Scheme 3.6).

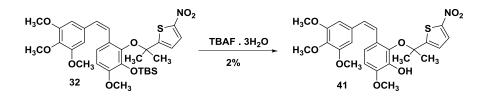


Scheme 3.5. Synthesis of TBS-Protected CA1-BAPCs 30-34



Scheme 3.6. TBS-Deprotection to Generate Ring-Cyclized Products 35 and 36

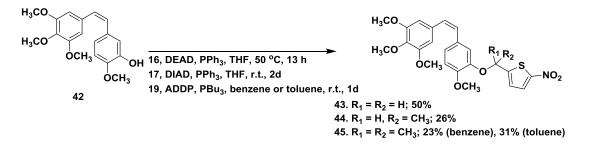
However, upon modification of the deprotection conditions [HCl (2M)/AcOH, instead of TBAF], the desired CA1-BAPCs **37-40** were obtained (regiochemistry was determined through 1D NOE NMR) (Scheme 3.7). Intrigued by this unusual cyclization (that produced **35** and **36**), we investigated whether exposure of phenolic compounds **30** and **31** to strong base would facilitate a similar cyclization reaction and this indeed proved to be the case (Scheme 3.8).


Scheme 3.7. Synthesis of Nor- and Mono- Methyl CA1-BAPCs 37-40

Scheme 3.8. Base Generating Ring-Cyclized Products 35 and 36

Since purification of the TBS-protected *gem*-dimethyl CA1 BAPC **32** by column chromatography proved to be unsuccessful, it was taken directly to the deprotection step

(Scheme 3.9) to generate *gem*-dimethyl CA1 BAPC **41**. As opposed to the previous use of HCl (2M)/AcOH in the deprotection of the silyl group (Scheme 3.7), TBAF was used as the reagent for the deprotection (regiochemistry was determined through 1D NOE NMR). While the overall yield for this deprotection was quite low, the remaining material balance included only starting material, and no cyclized byproducts or *E*- isomer were detected.



Scheme 3.9. Synthesis of Gem-Dimethyl CA1-BAPC 41

A series of CA4-BAPCs were synthesized under conditions similar to those previously reported⁸⁸ by Davis *et al* but with some modifications (Scheme 3.10).⁸⁸ CA4-BAPC **43** was synthesized through a Mitsunobu reaction heated to 50 °C with nitrothiophene **16**.⁸⁸ CA4 and nitrothiophene **17** were reacted with DIAD and triphenylphosphine to generate BAPC **44**.⁸⁸ The *gem*-dimethyl CA4-BAPC **45** was synthesized from CA4, ADDP, nitrothiophene **19**, and tributylphosphine.⁸⁸ In order to improve the yield for the *gem*-dimethyl CA4-BAPC, subsequent Mitsunobu reactions were performed in toluene.⁸⁸ While the overall yield was improved, the new method required a more intensive purification procedure to remove the remaining CA4 and *gem*dimethyl thiophene trigger which had nearly identical chromatographic retention times to the desired CA4-BAPC. The reaction mixture was subjected to chemical modification to facilitate chromatographic separation during purification. The phenolic moiety of CA4 was converted to its corresponding silyl ether (TBS) and the unreacted *gem*-dimethyl

75

trigger was subsequently acetylated, allowing both of these compounds to be successfully separated chromatographically from the desired CA4 *gem*-dimethyl-nitrothiophene BAPC.

Scheme 3.10. Synthesis of CA4-BAPCs⁸⁸

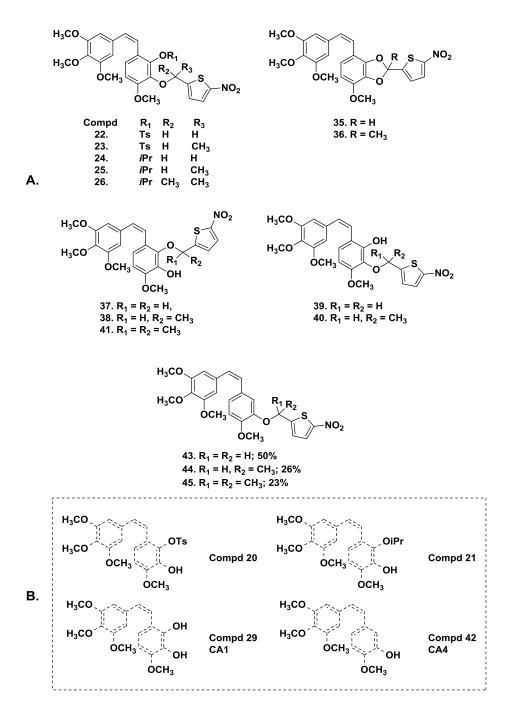


Figure 3.5. A. Compilation of Parent Anticancer Agents and their Corresponding BAPCs Utilized in this Study B. Parent CA1 and CA4 Anticancer Agents

Biological Evaluation

Table 3.1. Inhibition of Tubulin Polymerization and Percent Inhibition of Colchicine Binding

Compound	Inhibition of Tubulin Polymerization IC ₅₀	Inhibition of Colchicine Binding % Inhibition µM ±SD	
	(µM)±SD	1 µM	5 μΜ
29 (CA1) ^b	1.9 ^c	ND	99.6±0.7
CA4 ^d	0.64	84±2	97±0.7
20 KGP439	0.84±0.1	50±5	84±1
21 KGP400	0.82 ± 0.04	72±4	94±0.7
22 KGP440	>20	ND	ND
23 KGP441	>20	ND	ND
25 KGP442	12±1	ND	ND
26 KGP443	>20	ND	ND
27 KGP444	9.5±0.9	ND	ND
35 KGP445	1.7±0.2	ND	25±3
36 KGP446	>20	ND	ND
37 KGP455	1.7±0.01	53±3	92±0.5
38 KGP457	$0.84{\pm}0.1$	34±3	90±0.7

39 KGP454	4.3±0.4	ND	58±4
40 KGP456	6.2±0.3	ND	72±3
41 KGP461	1.3±0.08	ND	43±4
43 KGP 370	>20	ND	26±1
44 KGP 371	>20	ND	15±5
45 KGP 372	>20	ND	33±3

^a Average of $n \ge 3$ independent determinations

^b Data from ref. 110, see ref. 27 for additional data

^c Data from ref. 32, see ref. 27 for additional data

^d For additionl data, see ref. 27

ND= Data not available

The BAPCs and their parent anticancer agents (CA4 and CA1) were evaluated for their ability to inhibit tubulin polymerization and colchicine binding (Table 3.1). The parent anticancer agents [CA4, CA1, tosyl protected CA1 (**20**), and isopropyl protected CA1 (**21**)] utilized in this study were potent inhibitors of tubulin polymerization (IC₅₀ = 1.9, 0.64, 0.84 and 0.82 μ M respectively) and strongly inhibited colchicine binding. The TBS-protected CA1 analogue **27** was only moderate as an inhibitor of tubulin polymerization (IC₅₀ = 9.5 μ M). Ideally, the BAPCs prepared from these parent anticancer agents would be protected from binding to tubulin until cleaved (*in vivo*) to generate their corresponding anticancer agents. Considering the collective group of fifteen BAPCs synthesized for this study, seven BAPCs (**22, 23, 26, 36, 43, 44, 45**) were inactive (IC₅₀ > 20 μ M) as inhibitors of tubulin polymerization while three BAPCs (**25**, **39**, **40**) were moderate inhibitors (IC₅₀ > 3 μ M but < 20 μ M) and four BAPCs (**35**, **37**, **38**, 41) proved to be potent inhibitors (IC₅₀ < 3 μ M). It is important to note that the BAPCs that proved active as inhibitors of tubulin polymerization might have undergone partial cleavage to the parent anticancer agent in the buffered (cell-free) assay conditions, although a hydrolysis experiment (Table 3.2) demonstrated that only BAPC 41 underwent significant cleavage (100% after 48 h).

Bioreductive Trigger Hydrolysis (Untreated)				
and Cleavage of Cytochrome P450 Reductase Treated BAPCs				
Compound	Hydrolysis Perc	entage	Cleavage Percentage	
	in pH 7.4 phosp	hate	of POR-treated for 90	
	buffer for 48 hrs	5	min	
20	ND	ND		
KGP439				
21	ND	ND		
KGP400				
22	0.25	NC		
KGP440				
23	0.84	13.5		
KGP441				
25	1.59	1.1		
KGP442				
26	0.69	3.8		
KGP443				
27	4.03	7.6		
KGP444				
35	0	NC		
KGP445				
36	0	NC		
KGP446				
37	0	14.2		
KGP455			o cyclization of 455 to	
		445)		
38	ND	5.6		
KGP457		(47.8%	o cyclization of 457 to	
		446)		
39	0	17.9		
KGP454			o cyclization of 454 to	
		445)		

Table 3.2.				
Bioreductive Trigger Hydrolysis (Untreated)				
nd Cleavage of Cytochrome P450 Reductase Treated BAP				
ompound	Hydrolysis Percentage	Cleavage Percentag		
	in nH 7 / phosphate	of POR-treated for		

	40	0	25.5
	KGP456		(34.8% cyclization of 456 to 446)
	41 KGP461	100	100
	43 KGP 370	0.35	2.7
	44 KGP 371	ND	4.1
-	45 KGP 372	0.69	25.4
1	not available		

ND= Data not available

NC= No cleavage

In preliminary studies, the previously described CA4-BAPCs were treated with POR (Table 3.2). After incubation (90 min) in the presence of a PCA/PCD oxygen scrubbing system, 43 and 44 underwent minimal cleavage (2.7% and 4.1% respectively) while 45 was more efficiently cleaved (25.4%). These results are in accordance with the previously reported results from Davis and co-workers that utilized supersonal POR with compounds 43, 44, and 45, and demonstrated that 45 cleaved more readily (to release CA4) than 43 and 44.⁴⁹ This trend of increased cleavage (from gem-dimethyl to monomethyl to nor-methyl) to generate the corresponding parent anticancer agent (CA4 in this case) was also observed in the POR treated CA1-BAPCs. The gem-dimethyl CA1-BAPC 41 and the isopropyl-protected gem-dimethyl BAPC (27) were cleaved more extensively in comparison to their corresponding mono-methyl and nor-methyl BAPCs. The monomethyl and nor-methyl CA1-BAPCs (37, 38, 39, 40) were cleaved by POR to differential extents, depending on the position of the nitrothiophene side chain (bioreductive trigger) and the hydroxyl group. It should be noted that under these assay conditions, these four BAPCs (37, 38, 39, 40) underwent cyclization to generate their corresponding cyclized analogues 35 or 36. While the mechanism of this cyclization is unknown, it appears to

81

depend, at least to some extent, on the pH of the buffer solution, and under these assay conditions cyclization that incorporates the bioreductive trigger was more favorable than the desired cleavage of the prodrug trigger. BAPC **41** was the only *gem*-dimethyl BAPC that was fully cleaved (100%) by POR (90 min) in this study, thus its hydrolytic stability was further evaluated in the pH 7.4 buffer. The BAPC **41** showed no apparent spontaneous hydrolysis at different time intervals for the first 150 min, but it was mostly decomposed if incubated in the buffer for 24-48 h. Therefore, the cleavage (100%) of BAPC **41** by POR (90 min) was not due to spontaneous hydrolysis in buffer.

Tal	ble	: 3	.3.
1	010		

In Vitro Potency and Hypoxia Cytotoxicity Ratio (HCR) of the CA4 and CA1-BAPCs in the A549 Human Cancer Cell Line

	the A549 Human Cancer Cell Line				
Compound	IC_{50} [oxic] ^a	IC_{50} [anoxic] ^a	HCR		
	(µM)±SD	(µM)±SD			
RB6145	>89.1	9.5±8.2	>9.4		
Tirapazamine	66.5±41.3	7.7±2.2	8.6		
29 CA1	1.2±1.9	0.8±0.5	1.5		
CA4	0.005±0.0004	0.006±0.0008	0.8		
22 KGP440	0.4±0.05	0.5±0.1	0.8		
23 KGP441	4.6±0.3	3.3±0.9	1.4		
25 KGP442	3.7±4.7	0.6±0.1	6.2		
26 KGP443	2.9±0.7	1.2±0.6	2.4		

27 KGP444	1.6±1.5	0.5±0.1	3.2
35 KGP445	ND	ND	ND
36 KGP446	0.6±0.06	0.7±0.4	0.9
37 KGP455	0.2±0.2	0.3±0.3	0.7
38 KGP457	0.2±0.2	0.3±0.3	0.7
39 KGP454	0.3±0.03	0.7 ± 0.08	0.4
40 KGP456	ND	ND	ND
41 KGP461	6.0±11.1	0.2±0.1	30
43 KGP 370	0.1±0.1	0.03±0.02	3.3
44 KGP 371	0.2±0.1	0.03±0.01	6.7
45 KGP 372	2.1±3.0	0.05±0.04	42

^a Average of $n \ge 3$ independent determinations

The initial cytotoxicity data for the CA1 and CA4 BAPCs showed promise for differential activity between oxic and hypoxic environments, with several BAPCs demonstrating a positive hypoxia cytotoxicity ratio (HCR). Utilizing an HCR of 6.0 as a benchmark to rank effective versus less effective BAPCs, a number of prodrugs stood out, notably compounds **25**, **41**, **44**, and **45**. The most active prodrugs in the series were the *gem*-dimethyl BAPCs of CA1 (**41**) and CA4 (**45**) with HCRs of 30 and 42 respectively, which was consistent with previous studies by Davis and co-workers that

demonstrated the *gem*-dimethyl CA4-BAPC had greater resistance to cleavage in oxic environments, releasing the parent anticancer agent (CA4) selectively under hypoxic conditions.⁸⁸

Materials and Methods

General Materials and Methods

Acetic acid (AcOH), acetic anhydride, acetonitrile, dichloromethane, dimethylformamide (DMF), ethanol, methanol, nitric acid, sulfuric acid, and tetrahydrofuran (THF) were used in their anhydrous forms or as obtained from the chemical suppliers. Reactions were performed under nitrogen gas. Thin-layer chromatography (TLC) plates (precoated glass plates with silica gel 60 F254, 0.25 mm thickness) were used to monitor reactions. Purification of intermediates and products was carried out with a Biotage Isolera or Teledyne Combiflash flash purification system using silica gel (200–400 mesh, 60 Å) or RP-18 pre-packed columns or manually in glass columns.

Intermediates and products synthesized were characterized on the basis of their ¹H NMR (600 or 500 MHz), ¹³C NMR (150, 125 or 90 MHz) and ³¹P NMR (240 MHz) spectroscopic data using a Varian VNMRS 500 MHz or a Bruker DRX 600 MHz or a Bruker DPX 360 MHz instrument. Spectra were recorded in CDCl₃, (CD₃)₂CO. All chemical shifts are expressed in ppm (δ), and peak patterns are reported as broad (br), singlet (s), doublet (d), triplet (t), quartet (q), pentet (p), sextet (sext), septet (sept), double doublet (dd), and multiplet (m).

84

Purity of the final compounds was further analyzed at 25 °C using an Agilent 1200 HPLC system with a diode-array detector ($\lambda = 190-400$ nm), a Zorbax XDB-C18 HPLC column (4.6 mm Å~ 150 mm, 5 µm), and a Zorbax reliance cartridge guard-column; solvent A acetonitrile, solvent B H₂O; Method A: H₂O; gradient, 10% A/90% B to 100% A/0% B over 0 to 40 min; post-time 10 min, Method B: H₂O; gradient, 50% A/50% B to 90% A/10% B over 0 to 30 min; post-time 10 min; flow rate 1.0 mL/min; injection volume 20 µL; monitored at wavelengths of 210, 230, 254, 280, and 320 nm. Mass spectrometry was carried out under either positive or negative ESI (electrospray ionization) or positive or negative atmospheric pressure photoionization using a Thermo Scientific LTQ OrbitrapDiscovery instrument.

Experimental Section

2,3-Dihydroxy-4-methoxybenzaldehyde (2)^{128,129}

2,3,4-Trimethoxybenzaldehyde (4.00 g, 20.4 mmol) was added to dry CH_2Cl_2 (80 mL) in an ice bath (0 °C). Boron trichloride (45 mL, 45 mmol, 1.0 M) was added dropwise to the reaction and it was stirred for 18 hours. The reaction was then quenched with NaHCO₃ and acidified to pH 2 with conc. HCl, The product was then extracted with ethyl acetate, dried with sodium sulfate, and evaporated under reduced pressure. The crude mixture was then filtered through silica gel in a frit funnel with CH_2Cl_2 and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B over 1.19 min (1 CV), 10% A/90% B \rightarrow 69% A/31% B over 13.12 min (10 CV), 69% A/31%

85

B over 2.38 min (2 CV); flow rate 50.0 mL/min; monitored at λ 254 and 280 nm] yielded 2,3-dihydroxy-4-methoxybenzaldehyde (2) (2.64 g, 15.7 mmol, 77%) as a yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 11.12 (1H, s), 9.76 (1H, s), 7.15 (1H, d, *J* = 8.5 Hz), 6.63 (1H, d, *J* = 8.5 Hz), 5.46 (1H, s), 3.99 (3H, s).

¹³C NMR (125 MHz, CDCl₃) δ 195.2, 153.0, 149.0, 133.0, 126.1, 116.1, 103.6, 56.4.

6-formyl-2-hydroxy-3-methoxyphenyl 4-methylbenzenesulfonate (3)^{128,129}

To a solution of aldehyde **2** (1.15 g, 6.76 mmol), and DIPEA (2.50 mL, 14.3 mmol) in anhydrous DMF (10 mL) at, p-TSCl (1.29g, 6.73 mmol) was added in portions while stirring at room temperature. After stirring for 5 h, the reaction mixture was quenched with H2O (20 mL), and extracted with EtOAc (3 × 25 mL). The combined organic phase was washed with brine, dried over MgSO4, filtered, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 50 g silica column [eluents; solvent A, EtOAc, solvent B, hexanes; gradient, 40% A/60% B over 1.19 min (1 CV), 40% A/60% B \rightarrow 100% A/0% B over 16.3 min (10 CV), 100% A/0% B over 3.18 min (2 CV); flow rate 40.0 mL/min; monitored at λ 254 and 280 nm] afforded aldehyde **3** (1.33 g, 4.3 mmol, 61% yield) as a white solid.

¹**H NMR** (600 MHz, CDCl₃) δ 9.85 (1H, s), 7.87 (2H, d, *J* = 8.3 Hz), 7.50 (1H, d, *J* = 8.6 Hz), 7.36 (2H, d, *J* = 8.0 Hz), 6.90 (1H, d, *J* = 8.6 Hz), 5.91 (1H, s), 3.97 (3H, s), 2.47 (3H, s).

¹³C NMR (151 MHz, CDCl₃) δ 187.0, 153.2, 146.2, 139.2, 138.2, 132.0, 130.0, 128.7, 124.1, 120.6, 109.2, 56.7, 21.8.

3-Hydroxy-2-isopropoxy-4-methoxybenzaldehyde (4)^{128,129}

2,3-Dihydroxy-4-methoxybenzaldehyde (0.400 g, 2.34 mmol), potassium carbonate $[K_2CO_3]$ (0.330 g, 2.38 mmol), and 2-bromopropane (0.21 mL, 2.3 mmol) were dissolved in dry DMF (5mL) in a 5 mL Biotage microwave vial. The reaction was run in a Biotage microwave reactor (2h, 90 °C, normal absorbance). The reaction was then quenched with water, then extracted with ethyl acetate, washed with water and brine, dried with sodium sulfate, and evaporated under reduced pressure. Flash column chromatography of the crude product using a prepacked 50 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B over 1.19 min (1 CV), 10% A/90% B \rightarrow 54% A/46% B over 13.12 min (10 CV), 54% A/46% B over 2.38 min (2 CV); flow rate 40.0 mL/min; monitored at λ 254 and 280 nm] yielded 3-hydroxy-2-isopropoxy-4-methoxybenzaldehyde (**4**) (0.220 g, 1.05 mmol, 44%) as a tan solid.

¹H NMR (CDCl₃, 500 MHz) δ 10.25 (1H, s), 7.44 (1H, d, J = 8.7 Hz), 6.74 (1H, d, J = 8.7 Hz), 5.65 (1H, s), 4.70 (1H, hept, J = 6.1 Hz), 3.96 (3H, s), 1.36 (7H, d, J = 6.1 Hz)
¹³C NMR (151 MHz, CDCl₃) δ 189.7, 152.8, 147.9, 138.6, 124.3, 120.4, 106.2, 77.0, 56.4, 22.4.

2,3-bis((tert-butyldimethylsilyl)oxy)-4-methoxybenzaldehyde (5)^{128,129}

To a solution of 2,3-dihydroxy-4-methoxybenzaldehyde (1.00 g, 5.95 mmol), Et₃N (2.00 mL, 14.3 mmol), and DMAP (0.025 g, 0.200 mmol) in CH₂Cl₂ (30 mL), TBSCl (2.10 g, 13.9 mmol) was dissolved in DMF and added drop-wise. The reaction was allowed to stir for 12 h at room temperature. H₂O was used to quench the reaction and the residue was extracted with CH₂Cl₂ (3×20 mL). The combined extracts were washed with brine, dried

over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 5%A / 95%B (1 CV), $5\%A / 95\%B \rightarrow 40\%A /$ 60%B (10 CV), 40%A / 60%B (2 CV); flow rate: 75 mL/min; monitored at 254 and 280 nm] affording 2,3-bis((tert-butyldimethylsilyl)oxy)-4-methoxybenzaldehyde (0.650 g, 1.64 mmol, 65%) as a white solid.

¹H NMR (600 MHz, CDCl₃) δ 10.22 (1H, s), 7.48 (1H, d, J = 8.8 Hz), 6.62 (1H, d, J = 8.8 Hz), 3.84 (3H, s), 1.04 (9H, s), 0.99 (9H, s), 0.13 (12H, s).
¹³C NMR (151 MHz, CDCl₃) δ 189.6, 157.9, 151.3, 137.1, 123.6, 121.7, 105.7, 55.5, 26.5, 26.4, 19.1, 18.9, -3.5.

2-((tert-butyldimethylsilyl)oxy)-6-formyl-3-methoxyphenyl 4-

methylbenzenesulfonate (6)^{128,129}

Aldehyde **3** (0.501 g, 1.77 mmol), Et₃N (2.00 mL, 14.3 mmol), and DMAP (0.035 g, 0.28 mmol) were dissolved in dry CH₂Cl₂ (45 mL). TBSCI (0.327 g, 2.17 mmol) was added and the reaction was stirred for 18 hours. The reaction was quenched with water, extracted with diethyl ether, washed with water and brine, dried with sodium sulfate, and evaporated under reduced pressure flash column chromatography of the crude product using a prepacked 50 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 12% A/88% B over 1.19 min (1 CV), 12% A/88% B \rightarrow 54% A/46% B over 13.12 min (10 CV), 54% A/46% B over 2.38 min (2 CV); flow rate 35.0 mL/min; monitored at λ 254 and 280 nm] yielded aldehyde **6** (0.610 g, 1.40 mmol, 79%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 9.60 (1H, d, *J* = 0.47 Hz), 7.71 (2H, d, *J* = 8.34 Hz), 7.52 (1H, d, *J* = 8.70 Hz), 7.32 (2H, d, *J* = 8.05 Hz), 6.87 (1H, d, *J* = 8.63 Hz), 3.87 (3H, s), 2.45 (3H, s), 0.97 (9H, s), 0.10 (6H, s).

¹³C NMR (126 MHz, CDCl₃) δ 186.7, 157.3, 145.9, 143.0, 138.9, 132.1, 129.9, 128.5, 124.0, 121.3, 109.8, 55.6, 25.7, 21.7, 18.6, -4.4.

3-((tert-butyldimethylsilyl)oxy)-2-isopropoxy-4-methoxybenzaldehyde (7)^{128,129} Aldehyde **4** (1.39 g, 6.61 mmol), Et₃N (1.40 mL, 9.91 mmol), and DMAP (0.050 g, 0.40 mmol) were dissolved in dry CH₂Cl₂ (50 mL). TBSCl (1.50 g, 9.95 mmol) was added and the reaction was stirred for 18 hours. The reaction was quenched with water, extracted with diethyl ether, washed with water and brine, dried with sodium sulfate, and evaporated under reduced pressure. Flash column chromatography of the crude product using a prepacked 50 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 12% A/88% B over 1.19 min (1 CV), 12% A/88% B → 54% A/46% B over 13.12 min (10 CV), 54% A/46% B over 2.38 min (2 CV); flow rate 35.0 mL/min; monitored at λ 254 and 280 nm] yielded aldehyde **7** (1.53 g, 4.71 mmol, 71%) as a white solid.

¹**H NMR** (600 MHz, CDCl₃) δ 10.11 (1H, s), 7.35 (1H, d, *J* = 8.7 Hz), 6.56 (1H, d, *J* = 8.7 Hz), 4.60 – 4.45 (1H, m), 3.71 (3H, s), 1.11 (3H, s), 1.10 (3H, s), 0.86 (9H, d, *J* = 2.0 Hz), 0.00 (6H, s).

¹³C NMR (151 MHz, CDCl₃) δ 190.0, 157.4, 152.7, 138.4, 125.2, 121.4, 106.9, 75.5, 55.5, 25.9, 22.3, 18.7, -4.3.

3,4,5-Trimethoxybenzylbromide (9)^{128,129}

The mixture of 3,4,5-trimethoxybenzylalcolol (20.1g, 101.4 mmol) and PBr₃ (4.8 mL, 50.7 mmol) in anhydrous CH_2Cl_2 was stirred for 1 h at 0 °C under nitrogen. Water (10 mL) was added, and the organic layer was separated and extracted with CH_2Cl_2 (2 x 100 mL). The combined organic layer was washed with brine, dried over Na_2SO_4 , filtered, and evaporated under reduced pressure. After the recrystallization of the crude solid with 10% (EtOAc/hexane), the off-white solid of bromide **9** (23.6 g, 90.3 mmol, 89% yield) was obtained, which needed no further purification.

¹H NMR (500 MHz, CDCl₃) δ 6.62 (2H, s, H-2, H-6), 4.47 (2H, s, benzylic CH₂), 3.87 (6H, s, C-3, C-5 OCH₃), 3.85 (3H, s, C-4 OCH₃).
¹³C NMR (125 MHz, CDCl₃) δ 153.3 (C, C-3, C-5), 138.2 (C, C-4), 133.2 (C, C-1),

106.1 (CH, C-2, C-6), 60.9 (CH₃, OCH₃-4), 56.1 (CH₃, OCH₃-3, -5), 34.3 (CH₂, -CH₂Br).

3,4,5-Trimethoxybenzyltriphenylphosphonium Bromide (10)^{128,129}

A mixture of bromide **9** (11.00 g, 42.1 mmol), and PPh₃ (12.1 g, 46.3 mmol) in acetone (100 mL, anhydrous) was stirred in a flask under N₂. After 5 h, the resulting suspension was filtered through a Buchner funnel, and the solid was washed with acetone (100 mL) and hexanes (50 mL) to afford an off-white solid. The solid was dried in vacuo to obtain the phosphonium salt **10** (20.3 g, 38.2 mmol, 92% yield) as a white solid.

¹H NMR (600 MHz, CDCl₃) δ 7.74 – 7.64 (9H, m, Ar*H*), 7.58 – 7.50 (6H, m, Ar*H*), 6.43 (2H, d, J = 2.6 Hz), 5.29 (2H, d, J = 14.1 Hz, benzylic CH₂), 3.70 (3H, d, J = 3.4 Hz), 3.43 (6H, d, J = 3.7 Hz)

¹³C NMR (125 MHz, CDCl₃): δ 153.0 (C, C-3, C-5), 137.6 (C, C-4), 134.8 [CH, Ph(C-4)], 134.6 [CH, Ph(C-3, C-5)], 130.0 [CH, Ph(C-2, C-6)], 122.4 (C, C-1), 117.8 [C, Ph(C-1)], 108.8 (CH, C-2, C-6), 60.8 (CH₃, OCH₃-4), 56.2 (CH₃, OCH₃-3, -5), 30.8 (CH₂, -CH₂P). ³¹P NMR (243 MHz, CDCl₃) δ 23.2.

(Z)-2-((tert-butyldimethylsilyl)oxy)-3-methoxy-6-(3,4,5-trimethoxystyryl)phenyl 4methylbenzenesulfonate (11)^{128,129}

Triphenyl(3,4,5-trimethoxybenzyl)phosphonium bromide (3.25 g, 6.20 mmol) was dissolved in dry THF (90 mL) in an ice/salt bath (-10 °C). *n*-Butyllithium (2.4 mL, 6.0 mmol, 2.5 M) was added dropwise and the reaction was stirred for 30 minutes. The aldehyde **6** (2.01 g, 4.60 mmol) was dissolved in dry THF (30 mL), added dropwise to the reaction mixture, and stirred for 5 hours. The reaction was quenched with water, and the THF was evaporated under reduced pressure. The mixture was extracted with ethyl acetate, washed with water and brine, dried with sodium sulfate, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B over 1.19 min (1 CV), 10% A/90% B \rightarrow 80% A/20% B over 13.12 min (10 CV), 80% A/20% B over 2.38 min (2 CV); flow rate 35.0 mL/min; monitored at λ 254 and 280 nm] yielded Z-isomer **11** (1.11 g, 1.84 mmol, 40%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.82 (2H, d, *J* = 8.5 Hz), 7.25 (2H, d, *J* = 8 Hz), 6.77 (1H, d, *J* = 8.5 Hz), 6.61 (1H, d, 8.5 Hz), 6.44 (2H, s), 6.19 (1H, d, *J* = 12 Hz), 6.16 (1H, d, *J* = 12 Hz), 3.82 (3H, s), 3.76 (3H, s), 3.67 (6H, s), 0.95 (9H, s), 0.04 (6H, s).

¹³**C NMR** (125 MHz, CDCl₃) δ 152.6, 151.3, 144.8, 140.2, 139.1, 134.5, 132.2, 130.4, 129.5, 128.4, 125.3, 124.7, 122.1, 109.5, 106.1, 60.8, 55.8, 55.4, 25.8, 25.7, 25.6, 21.6, 18.7, -4.5.

(Z)-tert-butyl(2-isopropoxy-6-methoxy-3-(3,4,5-trimethoxystyryl)phenoxy)dimethylsilane (12)^{128,129}

Triphenyl(3,4,5-trimethoxybenzyl)phosphonium bromide (1.94 g, 3.70 mmol) was dissolved in dry THF (50 mL) and cooled to -15 °C. *n*-Butyllithium (2.5 M in hexane, 1.78 mL, 4.44 mmol, 2.5 M) was added dropwise and the reaction was stirred for 25 minutes. The reaction mixture was cooled to -78 °C, and a solution of aldehyde **7** in THF (30 mL) was added drop wise and the reaction was stirred for 5 hours. The reaction was quenched with water, and the THF was evaporated under reduced pressure. The mixture was extracted with ethyl acetate, washed with water and brine, dried with sodium sulfate, and evaporated under reduced pressure. The crude product was purified using flash column chromatography to yield *Z*-isomer (after separating it from *E*-isomer) (0.982 g, 2.01 mmol, 65%) as a reddish/white solid.

¹H NMR (600 MHz, CDCl₃) δ 6.83 (1H, d, *J*=8.6 Hz), 6.62 (1H, d, *J*=12.1 Hz), 6.52 (2H, s), 6.45 (1H, d, *J*=8.6 Hz), 6.41 (1H, d, *J*=12.1 Hz), 4.61 (1H, hept, *J*=6.1 Hz), 3.82 (3H, s), 3.76 (3H, s), 3.65 (6H, s), 1.27 (6H, d, *J*=6.1 Hz), 1.02 (10H, s), 0.14 (6H, s).
¹³C NMR (151 MHz, CDCl₃) δ 152.7, 151.4, 148.0, 138.6, 136.8, 132.9, 128.5, 126.9, 125.1, 122.4, 106.0, 105.9, 74.2, 60.9, 55.8, 55.2, 25.9, 22.3, 18.7, -4.4.

(Z)-((3-methoxy-6-(3,4,5-trimethoxystyryl)-1,2-phenylene)bis(oxy))bis(tertbutyldimethylsilane) (13)^{128,129}

n-Butyllithium (11.4 mL, 2.5M) was added to a solution of phosphonium salt (11.2 g, 21.4 mmol) in THF (350 mL). The resulting solution was allowed to stir for 15 min at -78 °C. Aldehyde **5** (5.66 g, 14.3 mmol) was dissolved in THF and added drop-wise using a dropping funnel. The reaction was allowed to stir for 5 h. H₂O was used to quench the reaction and the residue was extracted with Et₂O. The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography using a pre-packed 340 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 5%A / 95%B (1 CV), 5%A / 95%B \rightarrow 30%A / 70%B (10 CV), 30%A / 70%B (2 CV); flow rate: 85 mL/min; monitored at 254 and 280 nm] affording compound **13** (2.89 g, 5.15 mmol, 51%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃,) δ 6.91 (1H, d, *J*=8.6 Hz), 6.62 (2H, s), 6.58 (1H, d, *J*=12.2 Hz), 6.37 (1H, d, *J*=9.2 Hz), 6.37 (1H, d, *J*=12 Hz), 3.83 (3H, s), 3.74 (3H, s), 3.67 (6H, s), 1.04 (9H, s), 1.00 (9H, s), 0.19 (6H, s), 0.10 (6H, s).

¹³C NMR (151 MHz, CDCl₃) δ 153.0, 152.0, 146.5, 137.1, 133.1, 128.0, 127.7, 123.5, 122.5, 106.2, 104.5, 61.2, 56.1, 55.3, 26.7, 26.4, 19.1, -2.9, -3.6.

Synthesis of Compounds 16, 17 and 19 using Old Route¹⁴⁴

(5-nitrothiophen-2-yl)methanol (16)¹⁴⁴

5-Nitrothiophene-2-carboxaldehyde (1.00 g, 6.38 mmol) was dissolved in dry methanol (20 mL) in an ice bath (0 °C). Sodium borohydride (0.270 g, 7.14 mmol) was added and the reaction was stirred for two hours. Ice was added and the solution was acidified to pH 7 with 3 M HCl. The reaction was extracted with ethyl acetate, dried with sodium sulfate, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 50 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B over 1.19 min (1 CV), 10% A/90% B \rightarrow 65% A/35% B over 13.12 min (10 CV), 65% A/35% B over 2.38 min (2 CV); flow rate 50.0 mL/min; monitored at λ 254 and 280 nm] yielded alcohol **16** (0.914 g, 5.74 mmol, 90%) as a brown oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.84 (1H, d, *J* = 4 Hz), 6.96 (1H, d, *J* = 4 Hz), 4.91 (2H, d, *J* = 5.5), 2.20 (1H,s).

¹³C NMR (126 MHz, CDCl₃) δ 153.4, 150.9, 128.9, 123.6, 60.4.

1-(5-nitrothiophen-2-yl)ethan-1-ol (17)¹⁴⁴

2-Acetyl-5-nitrothiophene (1.00 g, 5.85 mmol) was dissolved in dry methanol [MeOH] (20 mL) in an ice bath (0 °C). Sodium borohydride [NaBH₄] (0.259 g, 6.71 mmol) was added and the reaction was stirred for two hours. Ice was added to the reaction and it was acidified to neutral pH with 3 M HCl. The solution was then extracted with ethyl acetate, dried with sodium sulfate, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 50 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B over 1.19 min (1 CV), 10% A/90% B \rightarrow 64% A/36% B over 13.12 min (10 CV), 64% A/36% B over 2.38 min (2 CV); flow rate 50.0 mL/min; monitored at λ 254 and 280 nm] yielded mono methyl trigger **17** (0.932 g, 5.38 mmol, 92%) as a brown oil.

¹H NMR (500 MHz, CDCl₃) δ 7.81 (1H, d, J = 4 Hz), 6.90 (1H, d, J = 4 Hz), 5.15 (1H, dq, J = 6 Hz, J = 5 Hz), 2.23 (1H, d, J = 5 Hz), 1.63 (3H, d, J = 6 Hz).
¹³C NMR (125 MHz, CDCl₃) δ 160.0, 149.9, 129.1, 122.2, 66.3, 25.1.

2-(Thiophen-2-yl)propan-2-ol (18)⁸⁸

2-Acetylthiophene (10.0 g, 79.2 mmol) was dissolved in dry THF (100 mL) in an ice bath (0 °C). Methyllithium (64 mL, 103 mmol, 1.6 M) was added dropwise and the reaction was stirred for 18 hours. The reaction was quenched with water and evaporated under reduced pressure. The reaction was then extracted with ethyl acetate, dried with sodium sulfate, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 12% A/88% B over 1.19 min (1 CV), 12% A/88% B \rightarrow 100% A/0% B over 13.12 min (10 CV), 100% A/0% B over 2.38 min (2 CV); flow rate 50.0 mL/min; monitored at λ 254 and 280 nm] yielded 2-(thiophen-2-yl)propan-2-ol (**18**) (3.60 g, 25.3 mmol 32%) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.20 (1H, dd, *J* = 5 Hz, *J* = 1.5 Hz), 6.97 (2H, m), 2.04 (1H, s), 1.68 (6H, s).

2-(5-nitrothiophen-2-yl)propan-2-ol (19)¹⁴⁴

The tertiary alcohol **18** (6.22 g, 4.37 mmol) was dissolved in Ac_2O (67 mL) and cooled to -78 °C. Fuming nitric acid (25 mL) was added drop wise and the reaction mixture was

stirred for 2 h allowing the reaction mixture to warm to -15 °C. Ice (200 g) was added to the solution and stirred for 40 min. The reaction mixture was extracted with EtOAc (3×75 mL) and washed repeadadly with brine, water and saturated sodium bicarbonate, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified using flash column chromatography affording the alcohol product **19** (0.655 g, 0.35 mmol, 8%) as an orange wax.

¹**H NMR** (CDCl₃, 600 MHz) δ 7.79 (1H, d, *J*=4.2 Hz), 6.87 (1H, d, *J*=4.2 Hz), 2.13 (1H, s), 1.67 (3H, s).

¹³C NMR (151 MHz, CDCl₃) δ 163.6, 133.9, 128.9, 121.4, 72.0, 32.2.

Synthesis of Compounds 15, 17 and 19 using New Route

1-(5-nitrothiophen-2-yl)ethan-1-ol (17)¹⁴⁴

Titanium tetrachloride (7.84 g, 41.3 mmol) was added slowly dropwise into Et₂O (80 mL) at -78 °C, after which methyllithium (1.6 M, 25.8 mL, 41.3 mmol) was added dropwise and the reaction was stirred for 1.5 hours. 5-nitro-2-thiophenecarboxaldehyde (5.00g, 31.8 mmol) was dissolved in Et₂O (120 mL) and added dropwise to the reaction. The reaction was stirred (12 hr) and H₂O (50 mL) was used to quench the reaction. The layers were partitioned, and the residue was extracted with EtOAc (6 × 40 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 73%A / 27%B (13 CV), 73%A / 27%B (2 CV);

flow rate: 100 mL/min; monitored at 254 and 280 nm] affording compound **17** (4.95 g, 28.6 mmol, 90%) as a dark brown oil.

¹H NMR (500 MHz, CDCl₃) δ 7.81 (1H, d, J = 4 Hz), 6.90 (1H, d, J = 4 Hz), 5.15 (1H, dq, J = 6 Hz, J = 5 Hz), 2.23 (1H, d, J = 5 Hz), 1.63 (3H, d, J = 6 Hz).
¹³C NMR (125 MHz, CDCl₃) δ 160.0, 149.9, 129.1, 122.2, 66.3, 25.1.

1-(5-nitrothiophen-2-yl)ethan-1-one (15)

2-(1-hydroxyethyl)-5-nitrothiophene (1.04 g, 6.00 mmol) was dissolved in 70 mL CH₂Cl₂ at rt. Dess-Martin periodinane (3.82 g, 9.00mmol) was added in portions to the solution and the reaction was stirred (1 hr). Saturated sodium thiosulfate solution (50 mL) and saturated sodium bicarbonate solution (50 mL) were used to quench the reaction. The layers were partitioned, and the residue was extracted with EtOAc (4 x 30 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10% A / 90% B (1 CV), 10% A / 90% B \rightarrow 80% A / 20% B (13 CV), 80% A / 20% B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] affording compound **15** (0.873 g, 5.10 mmol, 90%) as a yellow-orange crystals.

¹**H NMR** (600 MHz, CDCl₃) δ 7.89 (1H, d, *J*=4.3 Hz), 7.58 (1H, d, *J*=4.3 Hz), 2.60 (3H, s)

¹³C NMR (151 MHz, CDCl₃) δ 190.5, 156.5, 148.2, 130.2, 128.4, 26.6.

2-(5-nitrothiophen-2-yl)propan-2-ol (19)¹⁰³

Titanium tetrachloride (3.62 g, 19.1 mmol) was added slowly dropwise into Et₂O (80 mL) at -78 °C, after which methyllithium (1.6 M, 11.9 mL, 19.1 mmol) was added dropwise and the reaction was stirred for 1.5 hours. 2-acetyl-5-nitrothiophene (2.50 g, 14.7 mmol) was dissolved in Et₂O (140 mL) and added dropwise to the reaction. The reaction was stirred (12 hr) and H₂O (50 mL) was used to quench the reaction. The layers were partitioned, and the residue was extracted with EtOAc (6 × 40 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10% A / 90%B (1 CV), 10%A / 90%B \rightarrow 70%A / 30%B (13 CV), 70%A / 30%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] affording compound **19** (1.61 g, 8.60 mmol, 45%) as a dark orange oil.

¹**H NMR** (CDCl₃, 600 MHz) δ 7.79 (1H, d, *J*=4.2 Hz), 6.87 (1H, d, *J*=4.2 Hz), 2.13 (1H, s), 1.67 (3H, s).

¹³C NMR (151 MHz, CDCl₃) δ 163.6, 133.9, 128.9, 121.4, 72.0, 32.2.

(Z)-2-hydroxy-3-methoxy-6-(3,4,5-trimethoxystyryl)phenyl 4-methylbenzenesulfonate (20)^{128,129}

To a solution of Z-stilbene **11** (0.754 g, 1.26 mmol) in dry THF (40 mL) at -15 °C, TBAF· $3H_2O$ (3.8 mL, 3.8 mmol) was dissolved in THF (10 mL) and added drop-wise. The reaction was allowed to stir for 12 h. H_2O (40 mL) was used to quench the reaction, THF was evaporated off completely, and the residue was extracted with EtOAc (3 × 20 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 12%A / 88%B (1 CV), $12\%A / 88\%B \rightarrow 82\%A / 18\%B (10 \text{ CV})$, 82%A / 18%B (2 CV); flow rate: 35 mL/min; monitored at 254 and 280 nm] afforded compound **20** (0.429 g, 0.882 mmol, 70%) as a dark green solid.

¹H NMR (500 MHz, CDCl₃) δ 7.91 (1H, d, *J*=8.1 Hz), 7.29 (1H, d, *J*=8.0 Hz), 6.71 (1H, d, *J*=8.6 Hz), 6.62 (1H, d, *J*=8.6 Hz), 6.42 (1H, s), 6.36 (1H, d, *J*=12.0 Hz), 6.32 (1H, d, *J*=12.0 Hz), 5.89 (1H, s), 3.86 (3H, s), 3.82 (3H, s), 3.66 (6H, s), 2.42 (2H, s).
¹³C NMR (126 MHz, CDCl₃) δ 151.9, 146.6, 144.5, 138.5, 136.4, 134.5, 132.7, 131.2, 130.5, 128.7, 127.7, 124.9, 123.4, 119.9, 108.3, 105.4, 75.9, 60.0, 55.6, 55.0, 20.9.

(Z)-2-isopropoxy-6-methoxy-3-(3,4,5-trimethoxystyryl)phenol (21)^{128,129}

To a solution of compound **12** (0.150 g, 0.251 mmol) in THF (5 mL) at room temperature, TBAF· $3H_2O$ (0.0952 g, 0.302 mmol) was dissolved in THF and added drop-wise. The reaction was allowed to stir for 0.5 h. H₂O (5 mL) was used to quench the reaction, THF was evaporated off completely, and the residue was extracted with EtOAc (3 × 10 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40%B (13 CV), 60%A / 40%B (2 CV); flow rate: 8 mL/min; monitored at 254 and 280 nm] affording compound **21** (0.135 g, 0.361 mmol, 90%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 6.75 (1H, d, *J*=8.6 Hz), 6.59 (1H, d, *J*=12.1 Hz), 6.51 (1H, d, *J*=8.7 Hz), 6.51 (2H, s), 6.46 (1H, d, *J*=12.1 Hz), 5.60 (1H, s), 4.56 (1H, hept, *J*=6.1 Hz), 3.86 (3H, s), 3.82 (3H, s), 3.66 (6H, s), 1.32 (6H, d, *J*=6.2 Hz).
¹³C NMR (126 MHz, CDCl₃) δ 152.7, 146.9, 143.2, 138.9, 137.1, 132.5, 129.4, 125.8, 124.1, 120.5, 106.3, 106.0, 75.7, 60.9, 56.2, 55.8, 22.5.
HRMS: *m/z*: obsd 397.1713 [M+Na]⁺, calcd for C₂₁H₂₆O₆⁺, 397.1713.

HPLC (Method A): 14.7 min.

(Z)-3-methoxy-2-((5-nitrothiophen-2-yl)methoxy)-6-(3,4,5-trimethoxystyryl)phenyl 4-methylbenzenesulfonate (22)

To a solution of compound **20** (0.700 g, 1.44 mmol), *nor*-methyl trigger **16** (0.191 g, 1.20 mmol), and DIAD (0.32 mL) in CH₂Cl₂ (10 mL), PPh₃ (0.610 g, 2.33 mmol) was dissolved in CH₂Cl₂ and added drop-wise. The reaction was allowed to stir for 12 h at room temperature. H₂O was used to quench the reaction and the residue was extracted with CH₂Cl₂ (3×30 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 80%A / 20%B (10 CV), 80%A / 20%B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] affording tosyl-protected CA1 nor-methyl BAPC **22** (0.125 g, 0.236 mmol, 47%) as a tan-white solid.

¹**H NMR** (600 MHz, CDCl₃) δ 7.84 (2H, d, *J*=8.2 Hz), 7.77 (1H, d, *J*=4.1 Hz), 7.24 (2H, d, *J*=8.1 Hz), 6.94 (1H, d, *J*=8.7 Hz), 6.90 (1H, d, *J*=4.1 Hz), 6.69 (1H, d, *J*=8.8 Hz), 6.46

(2H, s), 6.40 (1H, d, *J*=11.9 Hz), 6.33 (1H, d, *J*=11.9 Hz), 5.06 (2H, s), 3.85 (3H, s), 3.83 (3H, s), 3.68 (6H, s), 2.40 (3H, s).

¹³C NMR (151 MHz, CDCl₃) δ 152.8, 152.5, 151.8, 147.9, 145.2, 141.8, 140.3, 137.2, 134.3, 132.0, 131.7, 129.6, 128.3, 128.1, 126.1, 125.9, 125.8, 124.0, 110.4, 106.1, 69.0, 60.9, 56.2, 55.9, 21.7.

HRMS: m/z: obsd 650.1120 [M+Na]⁺, calcd for C₃₀H₂₉NO₁₀S₂⁺, 627.1233. **HPLC** (Method A): 18.5 min.

(Z)-3-Methoxy-2-(2-(5-nitrothiophen-2-yl)propoxy)-6-(3,4,5-trimethoxystyryl)phenyl-4-methylbenzenesulfonate (23)

To a solution of compound **20** (0.200 g, 0.411 mmol), DIAD (0.100 g, 0.495 mmol), and 1-(5-nitrothiophen-2-yl) ethanol (0.059 g, 0.34 mmol) in CH₂Cl₂ (25 mL),

triphenylphosphine (0.216 g, 0.822 mmol) was added and the reaction was stirred for 24 h. The reaction was quenched with water, extracted with ethyl acetate, dried with sodium sulfate, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 25 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 12% A/88% B over 1.19 min (1 CV), 12% A/88% B \rightarrow 100% A/0% B over 13.12 min (10 CV), 100% A/0% B over 2.38 min (2 CV); flow rate 25.0 mL/min; monitored at λ 254 and 280 nm] yielded (*Z*)-3-methoxy-2-(2-(5-nitrothiophen-2yl)propoxy)-6-(3,4,5-trimethoxystyryl)phenyl-4-methylbenzenesulfonate (**23**) (0.160 g, 0.249 mmol, 61%) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.90 (1H, d, *J* = 4.3 Hz), 7.86 (2H, d, *J* = 8.3 Hz), 7.44 (2H, d, *J* = 8.3 Hz), 7.01 (1H, d, *J* = 8.8 Hz), 6.99 (2H, m), 6.57 (2H, s), 6.51 (1H, d, *J* =

101

12.0 Hz), 6.44 (1H, d, *J* = 11.9 Hz), 5.47 (1H, q, *J* = 6.5 Hz), 3.90 (3H, s), 3.73 (3H, s), 3.66 (6H, s), 2.44 (3H, s), 1.43 (3H, d, *J* = 6.5 Hz).

¹³C NMR (125 MHz, CDCl₃) δ 159.6, 158.2, 158.1, 150.5, 147.2, 144.2, 139.9, 137.2, 136.8, 134.9, 133.5, 131.1, 130.9, 129.5, 129.1, 116.0, 111.7, 80.7, 73.4, 64.8, 60.9, 60.5, 26.5, 26.0, 25.8.

HRMS: m/z: obsd 642.1465 [M+H]⁺, calcd for C₃₁H₃₁NO₁₀S₂⁺, 641.1389.

HPLC (Method A): 18.2 min.

(Z)-2-((2-isopropoxy-6-methoxy-3-(3,4,5-trimethoxystyryl)phenoxy)methyl)-5nitrothiophene (24)

To a solution of isopropyl protected CA1 **21** (0.350 g, 0.843 mmol), *nor*-methyl trigger **16** (0.162 g, 1.02 mmol), and DEAD (0.220 mL) in CH₂Cl₂ (10 mL), PPh₃ (0.430 g, 1.64 mmol) was dissolved in CH₂Cl₂ and added drop-wise. The reaction was allowed to stir for 24 h at room temperature. H₂O (40 mL) was used to quench the reaction and the residue was extracted with CH₂Cl₂ (3×20 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 80%A / 20%B (10 CV), 80%A / 20%B (2 CV); flow rate: 17 mL/min; monitored at 254 and 280 nm] affording CA1-BAPC **24** (0.0600 g, 0.116 mmol, 17%) as a yellow oil.

¹**H NMR** (500 MHz, CDCl3) δ 7.82 (1H, d, *J*=4.1 Hz), 7.02 (1H, d, *J*=8.8 Hz), 7.00 (1H, d, *J*=4.2 Hz), 6.60 (1H, d, *J*=12.1 Hz), 6.53 (1H, d, *J*=8.7 Hz), 6.50 (2H, s), 6.47 (1H, d,

J=12.1 Hz), 5.17 (1H, s), 4.60 (1H, p, *J*=6.2 Hz), 3.83 (3H, s), 3.82 (3H, s), 3.67 (6H, s), 1.32 (3H, s), 1.31 (3H, s).

¹³C NMR (126 MHz, CDCl₃) δ 152.8, 152.8, 151.7, 149.9, 149.0, 140.6, 137.1, 132.6, 129.3, 128.2, 125.9, 125.7, 125.3, 125.1, 106.8, 106.0, 76.0, 69.2, 60.9, 55.9, 55.8, 22.6.
HRMS: *m/z*: obsd 538.1506 [M+23]⁺, calcd for C₂₆H₂₉NO₈S⁺ 515.1614.

HPLC (Method A): 14.7 min.

(Z)-2-(1-(2-isopropoxy-6-methoxy-3-(3,4,5-trimethoxystyryl)phenoxy)ethyl)-5nitrothiophene (25)

To a solution of isopropyl protected CA1 **21** (0.267 g, 0.715 mmol), *mono*-methyl trigger **17** (0.136 g, 0.785 mmol), and DIAD (0.190 mL) in CH₂Cl₂ (10 mL), PPh₃ (0.364 g, 1.39 mmol) was dissolved in CH₂Cl₂ and added drop-wise. The reaction was allowed to stir for 12 h at room temperature. H₂O was used to quench the reaction and the residue was extracted with CH₂Cl₂ (3×20 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 80%A / 20%B (10 CV), 80%A / 20%B (2 CV); flow rate: 75 mL/min; monitored at 254 and 280 nm] yielding CA1-BAPC **25** (0.125 g, 0.236 mmol, 47%) as a yellow oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.78 (1H, d, *J*=4.2 Hz), 6.99 (1H, d, *J*=8.7 Hz), 6.91 (1H, d, *J*=4.1 Hz), 6.59 (1H, d, *J*=12.1 Hz), 6.49 (1H, d, *J*=8.6 Hz), 6.47 (2H, s), 6.45 (1H, d, *J*=12.2 Hz), 5.49 (1H, q, *J*=6.4 Hz), 4.61 (1H, hept, *J*=6.1 Hz), 3.82 (3H, s), 3.75 (3H, s), 3.65 (6H, s), 1.66 (3H, d, *J*=6.5 Hz), 1.30 (3H, d, *J*=6.1 Hz), 1.26 (3H, d, *J*=6.1 Hz).

¹³C NMR (151 MHz, CDCl₃) δ 155.2, 153.1, 152.8, 151.0, 150.2, 139.2, 137.0, 132.6, 129.2, 128.1, 125.9, 125.9, 125.3, 123.5, 106.6, 105.9, 75.7, 75.4, 60.9, 55.9, 55.8, 22.6, 22.5, 22.2. HRMS: *m/z*: obsd 552.1660 [M+23]⁺, calcd for C₂₇H₃₁NO₈S⁺, 529.1766.
HPLC (Method B): 20.5 min.

(Z)-2-(2-(2-isopropoxy-6-methoxy-3-(3,4,5-trimethoxystyryl)phenoxy)propan-2-yl)-5-nitrothiophene (26)

To a solution of isopropyl protected CA1 **21** (0.150 g, 0.402 mmol), gem-dimethyl trigger **19** (0.091 g, 0.486 mmol), and ADDP (0.137 g, 0.543 mmol) in CH₂Cl₂ (10 mL), PBu₃ (0.199 mL) was added drop-wise. The reaction was allowed to stir for 24 h at room temperature. H₂O was used to quench the reaction and the residue was extracted with CH₂Cl₂ (3×20 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 75 mL/min; monitored at 254 and 280 nm] yielding CA1-BAPC **26** (0.020 g, 0.037 mmol, 13%) as an orange oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.80 (1H, d, *J*=4.2 Hz), 7.01 (1H, d, *J*=8.7 Hz), 6.93 (1H, d, *J*=4.3 Hz), 6.58 (1H, d, *J*=12.1 Hz), 6.49 (2H, s), 6.47 (1H, d, *J*=8.6 Hz), 6.45 (1H, d, *J*=12.1 Hz), 4.60 (1H, hept, *J*=6.0 Hz), 3.82 (3H, s), 3.67 (3H, s), 3.66 (6H, s), 1.71 (6H, s), 1.23 (6H, d, *J*=6.1 Hz).

¹³C NMR (151 MHz, CDCl₃) δ 161.4, 154.6, 152.8, 151.6, 150.4, 137.1, 137.0, 132.7, 129.0, 128.1, 126.4, 126.2, 125.3, 122.1, 106.4, 105.9, 81.7, 75.1, 60.9, 55.8, 55.5, 28.8, 22.4.

HRMS: m/z: obsd 566.1819 [M+23]⁺, calcd for C₂₈H₃₃NO₈S⁺, 543.1927.

HPLC (Method B): 22.3 min.

Synthesis of Compounds 27, 28 and 29

Deprotection of TBS group of compound 13 using TBAF (0.9 eq.) yielded an inseparable mixture of compound **27** and **28**. At the same time, about 15% CA1 (compound **29**) is also isolated.

(Z)-2-((tert-butyldimethylsilyl)oxy)-3-methoxy-6-(3,4,5-trimethoxystyryl)phenol (27) and (Z)-2-((tert-butyldimethylsilyl)oxy)-6-methoxy-3-(3,4,5-trimethoxystyryl)phenol (28)^{128,129}

To a solution of di-TBS CA1 **13** (2.00 g, 3.57 mmol) in THF (150 mL) at -15 °C, TBAF-3H₂O (1.01 g, 3.20 mmol) was dissolved in THF (10 mL) and added drop-wise. The reaction was allowed to stir for 0.5 h. H₂O was used to quench the reaction, THF was evaporated off completely, and the residue was extracted with EtOAc (3×30 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 5%A / 95%B (1 CV), 5%A / 95%B \rightarrow 70%A / 30%B (13 CV), 70%A / 30%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] affording a mixture of compounds **27** and **28** (0.860 g, 2.59 mmol, 43%) as a white solid.

105

¹**H NMR** (500 MHz, CDCl₃) δ 6.80 (1H, d, *J*=8.7 Hz), 6.71 (1H, d, *J*=8.7 Hz), 6.58 (2H, d, *J*=12.0 Hz), 6.52 (4H, s), 6.47 (1H, d, *J*=12.1 Hz), 6.41 (1H, d, *J*=12.2 Hz), 6.36 (1H, d, *J*=8.5 Hz), 6.30 (1H, d, *J*=8.6 Hz), 5.66 (1H, s), 5.45 (1H, s), 3.81 (6H, s), 3.78 (3H, s), 3.74 (3H, s), 3.64 (12H, d, *J*=2.2 Hz), 1.01 (9H, d, *J*=5.2 Hz), 1.00 (9H, s), 0.22 (6H, s), 0.19 (6H, s).

¹³C NMR (126 MHz, CDCl₃) δ 152.7, 152.7, 149.3, 146.9, 145.9, 141.2, 137.0, 137.0, 136.8, 132.9, 132.8, 131.6, 129.6, 129.0, 126.8, 124.5, 123.2, 122.0, 120.1, 117.1, 106.1, 106.0, 103.8, 103.0, 60.9, 60.8, 56.1, 55.8, 55.7, 55.2, 26.0, 26.0, 18.6, 18.6, -3.9, -4.4.

(Z)-3-methoxy-6-(3,4,5-trimethoxystyryl)benzene-1,2-diol (29)

The combretastatin A-1 (CA1) **29** (0.179 mg, 0.538 mmol, 15%) was isolated as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 6.76 (1H, d, *J*=8.6 Hz), 6.59 (1H, d, *J*=12.1 Hz), 6.54 (1H, d, *J*=11.9 Hz), 6.52 (2H, s), 6.39 (1H, d, *J*=8.6 Hz), 5.39 (2H, s), 3.86 (3H, s), 3.83 (3H, s), 3.67 (6H, s).

¹³C NMR (126 MHz, CDCl₃) δ 152.9, 146.5, 141.7, 137.4, 132.7, 132.6, 130.5, 124.2, 120.5, 118.0, 106.1, 103.1, 76.9, 61.0, 56.3, 56.0.

HRMS: m/z: obsd 355.154 [M+Na]⁺, calcd for C₁₈H₂₀O₆⁺, 332.1260.

HPLC (Method A): 11.3 min.

Synthesis of Compounds 30 and 33

To a solution of mixture of compounds **27 and 28** (1.00 g, 2.24 mmol), *nor*-methyl

trigger 16 (0.428 g, 2.69 mmol), and DIAD (0.867 mL) in CH₂Cl₂ (50 mL), PPh₃ (1.47 g,

5.60 mmol) was added drop-wise. The reaction mixture was stirred (24 h) at room

temperature. H₂O (40 mL) was added to quench the reaction and the residue was extracted with CH₂Cl₂ (3 × 20 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 5%A / 95%B (1 CV), 5%A / 95%B \rightarrow 40%A / 60%B (10 CV), 40%A / 60%B (2 CV); flow rate: 75 mL/min; monitored at 254 and 280 nm].

(Z)-tert-butyl(6-methoxy-2-((5-nitrothiophen-2-yl)methoxy)-3-(3,4,5-

trimethoxystyryl)-phenoxy)dimethylsilane (30)

This isomer **30** (0.350 g, 0.739 mmol, 35%) was isolated as a brownish-yellow oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.76 (1H, d, *J*=4.1 Hz), 6.91 (1H, d, *J*=4.1 Hz), 6.87 (1H, d, *J*=8.6, 0.8 Hz), 6.57 (1H, d, *J*=8.6 Hz), 6.50 (1H, d, *J*=12.0 Hz), 6.45 (1H, d, *J*=12.2 Hz), 6.44 (1H, s), 5.12 (2H, s), 3.82 (3H, s), 3.79 (3H, s), 3.65 (6H, s), 0.99 (9H, s), 0.13 (6H, s).

¹³C NMR (126 MHz, CDCl₃) δ 152.7, 151.6, 151.4, 148.6, 147.6, 138.4, 137.1, 132.4, 130.4, 128.2, 125.1, 124.9, 124.4, 122.3, 107.5, 105.9, 68.5, 60.9, 55.8, 55.4, 25.8, 18.6, -4.6.

(Z)-tert-butyl(3-methoxy-2-((5-nitrothiophen-2-yl)methoxy)-6-(3,4,5-

trimethoxystyryl)phenoxy)dimethylsilane (33)

This isomer 33 (0.250 g, 0.425 mmol, 25%) was isolated as a brownish-yellow oil.

¹H NMR (600 MHz, CDCl₃) δ 7.81 (1H, d, *J*=4.1 Hz), 7.00 (1H, d, *J*=8.7 Hz), 6.96 (1H, d, *J*=4.1 Hz), 6.56 (1H, d, *J*=12.2 Hz), 6.52 (2H, s), 6.44 (1H, d, *J*=11.6 Hz), 6.42 (1H, d, *J*=8.5 Hz), 5.30 (2H, s), 3.83 (3H, s), 3.80 (3H, s), 3.67 (6H, s), 1.01 (9H, s), 0.18 (6H, s).
¹³C NMR (151 MHz, CDCl₃) δ 153.4, 152.8, 152.7, 148.8, 147.8, 138.4, 137.0, 132.6, 129.1, 128.2, 126.3, 125.9, 125.4, 123.3, 105.9, 104.9, 68.8, 60.9, 55.9, 55.8, 26.1, 18.6, -3.9.

Synthesis of Compounds 31 and 34

Mono TBS CA1 (0.680 g, 1.52 mmol), diisopropylazodicarboxylate (0.415 g, 2.05 mmol), and monomethyl trigger (0.317 g, 1.82 mmol) were dissolved in THF (50 mL). Triphenylphosphine (0.793 g, 3.04 mmol) was added and the reaction was stirred (3 d). The reaction was concentrated under reduced pressure and the crude product was purified by flash column chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 5%A / 95%B (1 CV), 5%A / 95%B \rightarrow 40%A / 60%B (13 CV), 40%A / 60%B (2 CV); flow rate: 80 mL/min; monitored at 254 and 280 nm].

(Z)-tert-butyl(6-methoxy-2-(1-(5-nitrothiophen-2-yl)ethoxy)-3-(3,4,5trimethoxystyryl)phenoxy)dimethylsilane (31)

This isomer **31** (0.375 g, 0.623 mmol, 41%) was isolated as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.60 (1H, d, *J* = 4.2 Hz), 6.76 – 6.69 (2H, m), 6.41 (1H, d, *J* = 8.2 Hz), 6.39 (1H, d, *J* = 11.9 Hz), 6.32 (2H, s), 6.29 (1H, d, *J* = 12.1 Hz), 5.58 (1H,

q, *J* = 6.4 Hz), 3.69 (3H, s), 3.65 (3H, s), 3.51 (6H, s), 1.48 (3H, d, *J* = 6.4 Hz), 0.85 (9H, s), 0.00 (3H, s), -0.02 (3H, s).

¹³**C NMR** (151 MHz, CDCl₃) δ 155.0, 152.7, 151.4, 150.9, 146.1, 138.5, 137.2, 132.4, 129.8, 128.1, 125.6, 124.9, 123.4, 122.5, 107.0, 106.0, 74.4, 60.9, 55.8, 55.3, 25.8, 22.3, 18.6, -4.3, -4.4.

(Z)-tert-butyl(3-methoxy-2-(1-(5-nitrothiophen-2-yl)ethoxy)-6-(3,4,5trimethoxystyryl)phenoxy)dimethylsilane (34)

This isomer 34 (0.073 g, 0.122 mmol, 12%) was isolated as a yellow oil.

¹H NMR (600 MHz, CDCl₃) δ 7.61 (1H, d, *J* = 4.2 Hz), 6.84 (1H, d, *J* = 8.7 Hz), 6.71 (1H, d, *J* = 4.2 Hz), 6.38 (1H, d, *J* = 12.0 Hz), 6.37 (2H, s), 6.26 (1H, d, *J* = 12.3 Hz), 6.24 (1H, d, *J* = 8.6 Hz), 5.26 (1H, q, *J* = 6.5 Hz), 3.67 (3H, s), 3.61 (3H, s), 3.50 (6H, s), 1.47 (3H, d, *J* = 6.5 Hz), 0.84 (9H, s), 0.03 (3H, s), 0.00 (3H, s).
¹³C NMR (151 MHz, CDCl₃) δ 153.3, 151.1, 150.9, 149.1, 146.1, 135.5, 135.2, 130.7, 126.9, 126.2, 124.6, 123.7, 121.5, 121.5, 104.1, 103.0, 73.1, 59.0, 53.9, 24.2, 24.2, 19.8, 16.7, -5.2, -5.7.

(Z)-tert-butyl(6-methoxy-2-((2-(5-nitrothiophen-2-yl)propan-2-yl)oxy)-3-(3,4,5trimethoxystyryl)phenoxy)dimethylsilane (32)

Mono TBS CA1 (1.07 g, 2.40 mmol), *gem*-dimethyl trigger (0.540 g, 2.88 mmol), and ADDP (0.832 g, 3.30 mmol) were dissolved in CH_2Cl_2 (100 mL). Tributylphosphine (1.26 mL, 5.04 mmol) was added drop-wise and the reaction was stirred (2d). The

reaction was then concentrated under reduced pressure. Flash chromatography yielded the crude product which was taken to the next step for deprotection.

(Z)-4-methoxy-2-(5-nitrothiophen-2-yl)-7-(3,4,5-trimethoxystyryl)-

benzo[d][1,3]dioxole (35)

To a solution of **30** (0.095 g, 0.162 mmol) in THF (10 mL) at 0 °C, TBAF· 3H₂O (0.0672 g, 0.213 mmol) was dissolved in THF (10 mL) and added drop-wise. The reaction was stirred (30 min) and H₂O (5 mL) was added. THF was evaporated off completely, and the residue was extracted with CH₂Cl₂ (3 × 20 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude organic product was purified by flash column chromatography using a pre-packed 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40%B (13 CV), 60%A / 40%B (2 CV); flow rate: 20 mL/min; monitored at 254 and 280 nm] affording compound **35** (0.0510 g, 0.108 mmol, 54%) as a yellow oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.83 (1H, d, *J*=4.2 Hz), 7.15 (1H, d, *J*=4.2 Hz), 7.07 (1H, s), 6.86 (1H, d, *J*=8.8 Hz), 6.56 (1H, d, *J*=12.0 Hz), 6.50 (2H, s), 6.48 (1H, d, *J*=8.8 Hz), 6.44 (1H, d, *J*=12.0 Hz), 3.90 (3H, s), 3.83 (3H, s), 3.69 (6H, s).

¹³C NMR (151 MHz, CDCl₃) δ 152.9, 146.0, 145.2, 143.2, 137.3, 133.8, 132.6, 131.2, 128.1, 126.0, 123.4, 121.7, 113.5, 107.8, 105.7, 105.6, 105.2, 60.9, 56.6, 55.9.

¹³C NMR DEPT (CDCl₃, 151 MHz) δ 131.2, 128.1, 126.0, 123.4, 121.7, 107.8, 105.6, 105.2, 60.9, 56.6, 55.9.

HRMS: m/z: obsd 494.0881 [M+23]⁺, calcd for C₂₃H₂₁NO₈S⁺, 471.0988. **HPLC** (Method A): 17.2 min.

(Z)-4-methoxy-2-(5-nitrothiophen-2-yl)-7-(3,4,5-trimethoxystyryl)-

benzo[d][1,3]dioxole (35) [Base cyclization method]

Compound **37** (0.0380 g, 0.0803 mmol) was dissolved in THF (5 mL) at room temperature. Sodium hydroxide (1 mL, 2M) was added drop-wise and the reaction was then stirred (5 m). THF was rotovapped off completely, and the residue was extracted with CH₂Cl₂ (3 x 10 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 80%A / 20%B (10 CV), 80%A / 20%B (2 CV); flow rate: 36 mL/min; monitored at 254 and 280 nm] affording compound **35** (0.0090 g, 0.019 mmol, 23%)as a yellow oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.83 (1H, d, *J*=4.2 Hz), 7.15 (1H, d, *J*=4.2 Hz), 7.07 (1H, s), 6.86 (1H, d, *J*=8.8 Hz), 6.56 (1H, d, *J*=12.0 Hz), 6.50 (2H, s), 6.48 (1H, d, *J*=8.8 Hz), 6.44 (1H, d, *J*=12.0 Hz), 3.90 (3H, s), 3.83 (3H, s), 3.69 (6H, s).

¹³C NMR (151 MHz, CDCl₃) δ 152.9, 146.0, 145.2, 143.2, 137.3, 133.8, 132.6, 131.2, 128.1, 126.0, 123.4, 121.7, 113.5, 107.8, 105.7, 105.6, 105.2, 60.9, 56.6, 55.9.

(Z)-4-methoxy-2-methyl-2-(5-nitrothiophen-2-yl)-7-(3,4,5-trimethoxystyryl)benzo[d][1,3]dioxole (36) Compound **31** (0.105 g, 0.174 mmol) was dissolved in CH₂Cl₂ (20 mL) at -10 °C. Tertbutylammonium fluoride trihydrate (0.0620 g, 0.191 mmol) was dissolved in CH₂Cl₂ (2 mL) and added slowly drop wise to the reaction which was then stirred (18 min). H₂O (5 mL) was used to quench the reaction and the layers were partitioned. The residue was extracted with CH₂Cl₂ (3 x 10 mL), washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by flash column chromatography using a pre-packed 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 12%A / 88%B (1 CV), 12%A / 88%B \rightarrow 100%A / 0%B (13 CV), 100%A / 0%B (2 CV); flow rate: 10 mL/min; monitored at 254 and 280 nm] affording compound **36** (0.044 g, 0.0906 mmol, 52%) as a yellow oil.

¹H NMR (500 MHz, acetone) δ 7.76 (1H, d, J = 4.3 Hz), 7.03 (1H, d, J = 4.2 Hz), 6.81 (1H, d, J = 8.8 Hz), 6.56 (1H, d, J = 12.0 Hz), 6.48 (2H, s), 6.45 (1H, d, J = 8.8 Hz), 6.42 (1H, d, J = 11.9 Hz), 3.88 (3H, s), 3.82 (3H, s), 3.67 (6H, s), 2.02 (3H, s).
¹³C NMR (126 MHz, acetone) δ 152.8, 151.5, 145.1, 143.1, 137.2, 133.8, 132.7, 131.1, 128.3, 124.0, 123.0, 121.9, 113.8, 113.4, 107.4, 105.7, 60.9, 56.5, 55.9, 26.6.
HRMS: *m/z*: obsd 486.1219 [M+H]⁺, calcd for C₂₄H₂₃NO₈S⁺, 485.1144.
HPLC (Method A): 14.9 min.

(Z) - 4 - methoxy - 2 - methyl - 2 - (5 - nitrothiophen - 2 - yl) - 7 - (3, 4, 5 - trimethoxy styryl) - 2 - (5 - nitrothiophen - 2 - yl) - 7 - (3, 4, 5 - trimethoxy styryl) - 2 - (5 - nitrothiophen - 2 - yl) - 7 - (3, 4, 5 - trimethoxy styryl) - 2 - (5 - nitrothiophen - 2 - yl) - 7 - (3, 4, 5 - trimethoxy styryl) - 2 - (5 - nitrothiophen - 2 - yl) - 7 - (3, 4, 5 - trimethoxy styryl) - 2 - (5 - nitrothiophen - 2 - yl) - 7 - (3, 4, 5 - trimethoxy styryl) - 2 - (5 - nitrothiophen - 2 - yl) - 7 - (3, 4, 5 - trimethoxy styryl) - 2 - (5 - nitrothiophen - 2 - yl) - 7 - (3, 4, 5 - trimethoxy styryl) - 2 - (5 - nitrothiophen - 2 - yl) - 7 - (3, 4, 5 - trimethoxy styryl) - 2 - (5 - nitrothiophen - 2 - yl) - 7 - (3, 4, 5 - trimethoxy styryl) - 2 - (5 - nitrothiophen - 2 - yl) - 7 - (3, 4, 5 - trimethoxy styryl) - 2 - (5 - nitrothiophen - 2 - yl) - 7 - (3, 4, 5 - trimethoxy styryl) - 2 - (5 - nitrothiophen - 2 - yl) - 7 - (3, 4, 5 - trimethoxy styryl) - 2 - (5 - nitrothiophen - 2 - yl) - 7 - (3, 4, 5 - trimethoxy styryl) - 2 - (5 - nitrothiophen - 2 - yl) - 7 - (3, 4, 5 - trimethoxy styryl) - 2 - (5 - nitrothiophen - 2 - yl) - 7 - (3, 4, 5 - trimethoxy styryl) - 2 - (5 - nitrothiophen - 2 - yl) - 7 - (3, 4, 5 - trimethoxy styryl) - 2 - (5 - nitrothiophen - 2 - yl) - 7 - (3, 4, 5 - trimethoxy styryl) - 2 - (5 - nitrothiophen - 2 - yl) - 7 - (3, 4 - 1) - 2 - (3 - nitrothiophen - 2 - yl) - 2 - (3 - nitrothiophen - 2 - yl) - 2 - (3 - nitrothiophen - 2 - yl) - 2 - (3 - nitrothiophen - 2 - yl) - 2 - (3 - nitrothiophen - 2 - yl) - 2 - (3 - nitrothiophen - 2 - yl) - 2 - (3 - nitrothiophen - 2 - yl) - 2 - (3 - nitrothiophen - 2 - yl) - 2 - (3 - nitrothiophen - 2 - yl) - 2 - (3 - nitrothiophen - 2 - yl) - 2 - (3 - nitrothiophen - 2 - yl) - 2 - (3 - nitrothiophen - 2 - yl) - 2 - (3 - nitrothiophen - 2 - yl) - 2 - (3 - nitrothiophen - 2 - yl) - 2 - (3 - nitrothiophen - 2 - yl) - 2 - (3 - nitrothiophen - 2 - yl) - 2 - (3 - nitrothiophen - 2 - yl) - 2 - (3 - nitrothiophen - 2 - yl) - 2 - (3 - nitrothiophen - 2 - yl) - 2 - (3 - nitrot

benzo[d][1,3]dioxole (36) [Base cyclization method]

Compound **38** (0.0500 g, 0.103 mmol) was dissolved in THF (5 mL) at room temperature. Sodium hydroxide (1 mL, 2M) was added drop-wise and the reaction was then stirred (5 m). THF was rotovapped off completely, and the residue was extracted

with CH_2Cl_2 (3 x 10 mL). The combined extracts were washed with brine, dried over Na_2SO_4 , filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 80%A / 20%B (10 CV), 80%A / 20%B (2 CV); flow rate: 36 mL/min; monitored at 254 and 280 nm] affording compound **36** (0.0470 g, 0.0964 mmol, 93%) as a yellow oil.

¹H NMR (500 MHz, acetone) δ 7.76 (1H, d, J = 4.3 Hz), 7.03 (1H, d, J = 4.2 Hz), 6.81 (1H, d, J = 8.8 Hz), 6.56 (1H, d, J = 12.0 Hz), 6.48 (2H, s), 6.45 (1H, d, J = 8.8 Hz), 6.42 (1H, d, J = 11.9 Hz), 3.88 (3H, s), 3.82 (3H, s), 3.67 (6H, s), 2.02 (3H, s).
¹³C NMR (126 MHz, acetone) δ 152.8, 151.5, 145.1, 143.1, 137.2, 133.8, 132.7, 131.1,

128.3, 124.0, 123.0, 121.9, 113.8, 113.4, 107.4, 105.7, 60.9, 56.5, 55.9, 26.6.

(Z)-6-methoxy-2-((5-nitrothiophen-2-yl)methoxy)-3-(3,4,5-trimethoxystyryl)phenol (37)

AcOH (7 mL) and HCl (5 mL, 2M) was added drop-wise to a solution of compound **30** (0.115 g, 0.196 mmol) in THF (30 mL). The reaction as allowed to stir for 8 h at room temperature. H₂O (40 mL) was used to quench the reaction, THF was evaporated off completely, and the residue was extracted with CH_2Cl_2 (3 × 20 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography using a prepacked 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 80%A / 20%B (10 CV), 80%A / 20%B (2 CV); flow

rate: 20 mL/min; monitored at 254 and 280 nm] affording compound **37** (0.020 g, 0.0422 mmol, 17%) as a brown oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.82 (1H, d, *J*=4.1 Hz), 7.00 (1H, d, *J*=4.1 Hz), 6.98 (1H, d, *J*=8.7 Hz), 6.53 (2H, s), 6.50 (2H, s), 6.39 (1H, d, *J*=8.8 Hz), 5.70 (1H, s), 5.24 (2H, s), 3.87 (3H, s), 3.83 (3H, s), 3.68 (6H, s).

¹H NMR (600 MHz, Acetone) δ 8.15 (1H, s), 7.93 (1H, d, *J*=4.2 Hz), 7.21 (1H, d, *J*=4.1 Hz), 6.95 (1H, d, *J*=8.7 Hz), 6.58 (2H, s), 6.54 (1H, d, *J*=12.2 Hz), 6.49 (1H, d, *J*=8.7 Hz), 6.44 (1H, d, *J*=12.2 Hz), 5.29 (2H, s), 3.86 (3H, s), 3.68 (3H, s), 3.62 (6H, s).
¹³C NMR (151 MHz, Acetone) δ 153.1, 152.3, 149.2, 148.6, 137.4, 134.1, 132.7, 129.0, 128.6, 126.5, 125.1, 124.5, 124.5, 117.9, 106.2, 103.0, 68.5, 59.6, 55.4, 55.2.
¹³C NMR DEPT (151 MHz, Acetone) δ 129.0, 128.6, 126.5, 125.1, 124.5, 106.2, 103.0, 68.5, 126.5, 125.1, 124.5, 106.2, 103.0, 68.5, 126.5, 125.1, 124.5, 106.2, 103.0, 68.5, 126.5, 125.1, 124.5, 106.2, 103.0, 68.5, 126.5, 125.1, 124.5, 106.2, 103.0, 128.6, 126.5, 125.1, 124.5, 106.2, 103.0, 68.5, 126.5, 125.1, 124.5, 106.2, 103.0, 126.5, 125.1, 124.5, 106.2, 103.0, 126.5, 126.5, 125.1, 124.5, 106.2, 103.0, 126.5, 126.5, 125.1, 124.5, 106.2, 103.0, 126.5, 126.5, 125.1, 124.5, 126.5, 125.1, 124.5, 126.5, 125.1, 124.5, 126.5, 125.1, 124.5, 126.5, 125.1, 124.5, 126.5, 125.1, 126.5, 125.1, 126.5, 125.5, 125.1, 126.5, 125.5, 125.5, 125.5, 125.5, 125.5, 125.5, 125.5, 125.5, 125.5, 125.5, 125.5, 125.5, 125.5, 125.5, 1

68.5, 59.6, 55.4, 55.2.

HRMS: *m*/*z*: obsd 496.1034 [M+Na]⁺, calcd for C₂₃H₂₃NO₈S⁺, 473.1144. **HPLC** (Method B): 10.0 min.

(Z)-6-methoxy-2-(1-(5-nitrothiophen-2-yl)ethoxy)-3-(3,4,5-trimethoxystyryl)phenol (38)

Compound **31** (0.200 g, 0.333 mmol) was dissolved in THF (5 mL). Glacial acetic acid (7 mL) and hydrochloric acid (2 M, 4 mL) were added dropwise and the reaction was stirred (30 min). Glacial acetic acid (4 mL) and hydrochloric acid (2 M, 2.5 mL) were added dropwise and the reaction was stirred (8 hr). H₂O (30 mL) was used to quench the reaction and it was concentrated under reduced pressure. The residue was extracted with CH_2Cl_2 (3 x 30 mL), washed multiple times with brine, dried over Na₂SO₄, filtered, and

concentrated under reduced pressure. The crude product was purified by flash column chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A/ 90%B \rightarrow 80%A / 20%B (13 CV), 80%A / 20%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] affording compound **38** (0.094 g, 0.199 mmol, 60%) as a yellow oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.74 (1H, d, *J* = 4.2 Hz), 6.93 (1H, d, *J* = 4.2 Hz), 6.80 (1H, d, *J* = 8.5 Hz), 6.55 (1H, d, *J* = 8.6 Hz), 6.53 (1H, d, *J* = 12.5 Hz), 6.47 (2H s), 6.45 (1H, d, *J* = 12.2 Hz), 5.71 (1H, q, *J* = 6.4 Hz), 3.87 (3H, s), 3.84 (3H, s), 3.66 (6H, s), 1.71 (3H, d, *J* = 6.4 Hz).

¹³C NMR (126 MHz, CDCl₃) δ 153.6, 152.8, 151.4, 147.5, 137.1, 132.6, 132.2, 130.2, 128.2, 125.4, 123.8, 123.8, 117.5, 105.8, 103.4, 75.2, 60.9, 55.9, 55.8, 29.7, 21.7.
HRMS: *m/z*: obsd 488.1363 [M+H]⁺, calcd for C₂₄H₂₅NO₈S⁺, 487.1301.
HPLC (Method B): 10.1 min.

(Z)-3-methoxy-2-((5-nitrothiophen-2-yl)methoxy)-6-(3,4,5-trimethoxystyryl)phenol (39)

AcOH (10 mL) and HCl (10 mL, 2M) was added drop-wise to a solution of compound **33** (0.250 g, 0.425 mmol) in THF (25 mL). The reaction as allowed to stir for 8 h at room temperature. H₂O (40 mL) was used to quench the reaction, THF was evaporated off completely, and the residue was extracted with CH_2Cl_2 (3 × 20 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10% A /

115

90%B (1 CV), 10%A / 90%B \rightarrow 80%A / 20%B (10 CV), 80%A / 20%B (2 CV); flow rate: 20 mL/min; monitored at 254 and 280 nm] affording compound **33** (0.030 g, 0.0634 mmol, 12%) as a brown oil.

¹H NMR (CDCl₃, 600 MHz) δ 7.77 (1H, d, *J*=4.1 Hz), 6.97 (1H, d, *J*=4.1 Hz), 6.79 (1H, d, *J*= 8.4 Hz), 6.56 (1H, d, *J*= 8.4 Hz), 6.55 (1H, d, *J*=12.2 Hz), 6.50 (1H, d, *J*=12.2 Hz), 6.45 (2H, s), 5.59 (1H, s), 5.24 (2H, s), 3.88 (3H, s), 3.82 (3H, s), 3.65 (6H, s).
¹³C NMR (CDCl₃, 151 MHz) δ 152.8, 151.8, 148.5, 147.0, 142.6, 138.4, 137.2, 132.4, 130.7, 128.2, 125.5, 124.6, 124.3, 120.5, 106.6, 106.0, 68.7, 60.9, 56.4, 55.8.
HRMS: *m*/*z*: obsd 496.1033 [M+Na]⁺, calcd for C₂₃H₂₃NO₈S⁺, 473.1144.
HPLC (Method B): 12.5 min.

(Z)-3-methoxy-2-(1-(5-nitrothiophen-2-yl)ethoxy)-6-(3,4,5-trimethoxystyryl)phenol (40)

Compound **34** (0.100 g, 0.167 mmol) was dissolved in THF (3 mL). Glacial acetic acid (5.6 mL) and hydrochloric acid (2 M, 3.3 mL) were added dropwise and the reaction was stirred (8 hr). H₂O (20 mL) was used to quench the reaction and it was concentrated under reduced pressure. The residue was extracted with CH₂Cl₂ (3 x 20 mL), washed multiple times with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography using a prepacked 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10% A / 90% B (1 CV), 10% A / 90% B \rightarrow 80% A / 20% B (13 CV), 80% A / 20% B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] affording compound **40** (0.026 g, 0.055 mmol, 33%) as a yellow oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.79 (1H, d, J = 4.2 Hz), 6.96 (1H, d, J = 8.7 Hz), 6.93 (1H, d, J = 4.2 Hz), 6.53 (2H, d, J = 12.4 Hz), 6.49 (2H, s), 6.37 (1H, d, J = 8.8 Hz), 5.56 (1H, q, J = 6.5 Hz), 3.84 (3H, s), 3.83 (3H, s), 3.67 (6H, s), 1.73 (3H, d, J = 6.5 Hz). ¹³**C NMR** (126 MHz, CDCl₃) δ 153.6, 152.8, 151.4, 147.5, 132.6, 132.2, 130.2, 128.2, 125.3, 123.8, 123.7, 117.5, 105.8, 103.4, 103.3, 75.2, 60.9, 55.9, 55.8, 29.7, 21.7. **HRMS:** m/z: obsd 488.1373 [M+H]⁺, calcd for C₂₃H₂₃NO₈S⁺, 487.1301. **HPLC** (Method B): 11.1 min.

$(Z) \hbox{-} 6-methoxy \hbox{-} 2-((2-(5-nitrothiophen-2-yl)propan-2-yl)oxy) \hbox{-} 3-(3,4,5-yl) \hbox{-} 3-(3,5,5-yl) \hbox{-} 3-(3,5,$

trimethoxystyryl)phenol (41)

To a solution of compound **32** (2.35 g, 3.82 mmol) in THF (250 mL) at -15 °C, TBAF-3H₂O (1.32 g, 4.19 mmol) was dissolved in THF (10 mL) and added drop-wise. The reaction was allowed to stir for 1 h. H₂O (40 mL) was used to quench the reaction, THF was evaporated off completely, and the residue was extracted with CH₂Cl₂ (3 × 20 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40%B (13 CV), 60%A / 40%B (2 CV); flow rate: 20 mL/min; monitored at 254 and 280 nm] affording compound **41** (0.050 g, 0.980 mmol, 2%) as a brownish-yellow solid.

¹**H NMR** (CDCl₃, 600 MHz) δ 7.77 (1H, d, *J*=4.2 Hz), 6.93 (1H, d, *J*=4.2 Hz), 6.84 (1H, d, *J*=8.6 Hz), 6.56 (1H, d, *J*=8.6 Hz), 6.52 (2H, s), 6.48 (1H, d, *J*=12.2 Hz), 6.30 (1H, d, *J*=12.2 Hz), 5.47 (1H, s), 3.86 (3H, s), 3.84 (3H, s), 3.67 (6H, s), 1.79 (6H, s).

¹³C NMR (CDCl₃, 151 MHz) δ 161.5, 152.9, 150.6, 147.1, 140.6, 140.2, 137.3, 132.5, 129.3, 128.4, 127.2, 126.6, 122.2, 120.6, 106.9, 106.0, 81.9, 61.1, 56.4, 56.0, 29.5.
HRMS: *m/z*: obsd 524.1352 [M+Na]⁺, calcd for C₂₅H₂₇NO₈S⁺, 501.1457. HPLC (Method B): 12.3 min

[(Z)-2-((2-Methoxy-5-(3,4,5-trimethoxystyryl)phenoxy)methyl)-5-nitrothiophene (43)⁸⁸

(5-Nitrothiophen-2-yl)methanol (0.100 g, 0.628 mmol), triphenylphosphine (0.336 g, 1.28 mmol), and combretastatin A-4 (0.396 g, 1.25 mmol) were dissolved in tetrahydrofuran (2 mL). DEAD (0.218 g, 1.25 mmol) was added and the reaction was stirred for 4 hours at 50 °C. The reaction was then evaporated under reduced pressure. The product was then extracted with ethyl acetate, washed with water and brine, dried with sodium sulfate, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B over 1.19 min (1 CV), 10% A/90% B \rightarrow 67% A/33% B over 13.12 min (10 CV), 67% A/33% B over 2.38 min (2 CV); flow rate 50.0 mL/min; monitored at λ 254 and 280 nm] and recrystallization in ethyl acetate and hexanes yielded [(*Z*)-2-((2-methoxy-5-(3,4,5-trimethoxystyryl)phenoxy)methyl)-5-nitrothiophene (**43**) (0.286 g, 0.625 mmol, 50%),

¹**H NMR** (500 MHz, CDCl₃) δ 7.80 (1H, d, *J* = 4 Hz), 6.97 (1H, dd, *J* = 8 Hz, *J* = 1.5 Hz), 6.89 (1H, d, *J* = 4 Hz), 6.87 (1H, d, *J* = 2 Hz), 6.84 (1H, d, *J* = 8.5 Hz), 6.50 (2H, s), 6.48 (2H, d, *J* = 12 Hz), 5.07 (2H, s), 3.89 (3H, s), 3.86 (3H, s), 3.72 (6H, s).

¹³C NMR (125 MHz, CDCl₃) δ 153.0, 149.1, 148.3, 146.4, 137.1, 132.9, 129.8, 129.2, 128.4, 124.8, 124.0, 115.4, 111.7, 105.8, 66.4, 60.9, 56.0, 56.0.
HRMS: *m/z*: obsd 480.1088 [M+Na]⁺, calcd for C₂₃H₂₃NO₇S⁺, 457.1195. HPLC (Method A): 17.1 min.

(Z)-2-(1-(2-Methoxy-5-(3,4,5-trimethoxystyryl)phenoxy)ethyl)-5-nitrothiophene (44)⁸⁸

Combretastatin A-4 (0.251 g, 0.79 mmol), triphenylphosphine (0.105 g, 0.400 mmol), and 1-(5-nitrothiophen-2-yl)ethanol (0.197 g, 1.14 mmol) were dissolved in dry THF (10 mL). Diethyl azodicarboxylate [DEAD] (0.155 g, 0.890 mmol) was added dropwise and the reaction was stirred for 24 hours. The reaction was quenched with water, partitioned, extracted with ethyl acetate, dried with sodium sulfate, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 25 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 15% A/85% B over 1.19 min (1 CV), 15% A/85% B \rightarrow 100% A/0% B over 13.12 min (10 CV), 100% A/0% B over 2.38 min (2 CV); flow rate 25.0 mL/min; monitored at λ 254 and 280 nm] to yield (*Z*)-2-(1-(2-methoxy-5-(3,4,5-trimethoxystyryl)phenoxy)ethyl)-5-nitrothiophene **44** (0.090 g, 0.19 mmol, 24%),

¹H NMR (500 MHz, CDCl₃) δ 7.75 (1H, d, J = 4.5 Hz), 6.94 (1H, dd, J = 8 Hz, J = 2 Hz), 6.81 (3H, m), 6.46 (1H, d, J = 12.5 Hz), 6.45 (2H, s), 6.44 (1H, d, J = 12 Hz), 5.25 (1H, q, J = 6 Hz), 3.86 (3H, s), 3.84 (3H, s), 3.69 (6H, s), 1.63 (3H, d, J = 6.5)
¹³C NMR (125 MHz, CDCl₃) δ 155.3, 153.0, 149.9, 145.7, 137.1, 132.9, 129.9, 129.2, 129.1, 128.4, 124.4, 123.0, 118.2, 112.0, 105.8, 73.8, 60.9, 55.9, 55.9, 23.1.

HRMS: *m*/*z*: obsd 472.1428 [M+H]⁺, calcd for C₂₄H₂₅NO₈S⁺, 471.1532. **HPLC** (Method A): 17.6 min.

[(Z)-2-(2-(2-Methoxy-5-(3,4,5-trimethoxystyryl)phenoxy)propan-2-yl)-5nitrothiophene (45)⁸⁸

Combretastatin A-4 (1.87 g, 5.91 mmol), 2-(5-Nitrothiophen-2-yl)propan-2-ol (1.17 g, 6.25 mmol), and 1,1'-(azodicarbonyl)-dipiperdine [ADDP] (1.46 g, 5.79 mmol) were dissolved in benzene (15 mL). Tributylphosphine (1.43 mL, 5.91 mmol) was added dropwise and the reaction was stirred for 24 hours. The reaction was quenched with water, extracted with ethyl acetate, dried with sodium sulfate, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 25 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 15% A/85% B over 1.19 min (1 CV), 15% A/85% B \rightarrow 100% A/0% B over 13.12 min (10 CV), 100% A/0% B over 2.38 min (2 CV); flow rate 25.0 mL/min; monitored at λ 254 and 280 nm] yielded (*Z*)-2-(2-(2-methoxy-5-(3,4,5-trimethoxystyryl)phenoxy)propan-2-yl)-5-nitrothiophene (**45**) (0.670 g, 1.38 mmol, 23%) as a dark red oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.72 (1H, d, *J* = 4.2 Hz), 7.01 (1H, dd, *J* = 2.0 Hz, 8.4 Hz), 6.83 (1H, d, *J* = 8.4 Hz), 6.77 (1H, d, *J* = 4.2 Hz), 6.72 (1H, d, *J* = 2.0 Hz), 6.43 (4H, d, *J* = 2.2 Hz), 3.85 (3H, s), 3.80 (3H, s), 3.71 (6H, s), 1.59 (6H, s).

¹³C NMR (125 MHz, CDCl₃): δ 161.0, 152.9, 152.4, 150.3, 142.8, 136.8, 132.9, 129.5, 129.2, 129.1, 128.3, 125.8, 124.0, 122.2, 111.8, 105.7, 79.9, 60.7, 55.8, 55.6, 28.6.
HRMS: *m*/*z*: obsd 508.1399 [M+Na]⁺, calcd for C₂₅H₂₇NO₈S⁺, 485.1508. HPLC (Method A): 18.7 min.

[(Z)-2-(2-(2-Methoxy-5-(3,4,5-trimethoxystyryl)phenoxy)propan-2-yl)-5-

nitrothiophene (**45**)⁸⁸ (Alternate Purification Route)

Combretastatin A-4 (1.61 g, 5.09 mmol), 2-(5-Nitrothiophen-2-yl)propan-2-ol (1.00 g, 5.34 mmol), and 1,1'-(azodicarbonyl)-dipiperdine [ADDP] (1.35 g, 5.34 mmol) were dissolved in toluene (101 mL). Tributylphosphine (1.3 mL, 5.34 mmol) was added dropwisely and the reaction was stirred for 20 hours. Reaction mixture was diluted with EtOAc and quenched with water. The resulting mixture was extracted with ethyl acetate (30 mL X 3), dried with sodium sulfate, and evaporated under reduced pressure. Product was purified by flash using 5-20% EtOAc-hexane. Column purified product contains free alcohol, CA4 and BAPC (product) in the ratio of 1.0:2.4:3.0. Amount of BAPC is 921mg, 1.90 mmol (calculated from NMR) (TY: 2.469 g). Amount of free alcohol is 118 mg, 0.63 mmol. Amount of CA-4 is 480 mg, 1.52 mmol. To a solution of mixture of three compounds in DCM (30.0 mL), imidazole (1.03 g, 15.2 mmol) was added followed by TBSCl (2.52 g, 16.7 mmol) and stirred at room temperature for 4 h. Reaction was quenched with water, extracted with ethyl acetate (30 mL X 3), dried with sodium sulfate, and evaporated under reduced pressure. Product was purified by flash using 5-20%. All CA-4 got removed. Now the isolated compound is mixture of BAPC and free alcohol in the ratio (3.0:1) by NMR. Amount of mixture is 910 mg. Amount of BAPC is 807 mg, 1.66 mmol and free alcohol 103 mg, 0.55 mmol. A solution of mixture of BAPC, free alcohol, DMAP (67 mg, 0.55 mmol) and TEA (0.85 mL, 6.05 mmol) in DCM (11 mL) was treated with acetic anhydride (0.52 mL, 5.5 mmol) and stirred at room temperature for 4.0 h. Reaction was quenched with water, extracted with ethyl acetate (30 mL X 3), dried with sodium sulfate, and evaporated under reduced pressure. Product was

purified by flash using 5-15% EtOAc-hexane. (Z)-2-(2-(2-methoxy-5-(3,4,5-

trimethoxystyryl)phenoxy)propan-2-yl)-5-nitrothiophene (**45**) (0.760 g, 1.56 mmol, 31%) was isolated as a dark red oil. By NMR no more free alcohol was observed in the purified product.

¹H NMR (500 MHz, CDCl₃) δ 7.72 (1H, d, J = 4.2 Hz), 7.01 (1H, dd, J = 2.0 Hz, 8.4 Hz), 6.83 (1H, d, J = 8.4 Hz), 6.77 (1H, d, J = 4.2 Hz), 6.72 (1H, d, J = 2.0 Hz), 6.43 (4H, d, J = 2.2 Hz), 3.85 (3H, s), 3.80 (3H, s), 3.71 (6H, s), 1.59 (6H, s).
¹³C NMR (125 MHz, CDCl₃): δ 161.0, 152.9, 152.4, 150.3, 142.8, 136.8, 132.9, 129.5, 129.2, 129.1, 128.3, 125.8, 124.0, 122.2, 111.8, 105.7, 79.9, 60.7, 55.8, 55.6, 28.6.

Biological Evaluation

Cell Culture and SRB Cytotoxicity Assay¹⁴⁵⁻¹⁴⁸

Three cancer cell lines (DU-145, prostate; SK-OV-3, ovarian; and NCI-H460, lung cancer) were grown and passaged using DMEM media supplemented with 10% FBS (Gibco One Shot®) and 1% gentamycin sulfate (Teknova, Hollister, CA). Cells were maintained at 37 °C in a humidified atmosphere of 5% CO₂, up to passage 15 for use in these experiments. The sulforhodamine B (SRB) assay was used to assess inhibition of human cell line growth as previously described.¹⁴⁵⁻¹⁴⁸ Briefly, cancer cells were plated at 7500 cells/well using DMEM supplemented with 5% FBS and 1% gentamycin sulfate in 96-well plates and incubated for 24 h. Subsequently, 10-fold serial dilutions of the compounds to be tested were then added to the wells. After 48 h, the cells were fixed with 10% trichloroacetic acid (final concentration), stained with sulforhodamine B (Acid

Red 52) (TKI, Tokyo), read at 540 nm, and normalized at 630 nm with an automated Biotek Elx800 plate reader (Biotek, Winooski, VT). A growth inhibition of 50% (GI₅₀ or the drug concentration causing a 50% reduction in the net protein staining relative to controls) was calculated from optical density data with Excel software.

Inhibition of Tubulin Polymerization¹³¹

Tubulin assembly experiments were performed using 0.25 mL reaction mixtures (final volume),¹³¹ which contained 1.0 mg/mL (10 μ M) purified bovine brain tubulin, 0.8 M monosodium glutamate (pH 6.6 in a 2 M stock solution) 4% (v/v) dimethyl sulfoxide, 0.4 mM GTP, and varying compound concentrations. Initially, all components except GTP were preincuabted for 15 min at 30 °C in 0.24 mL. After chilling the mixtures on ice, 10 μ L of 10 mM GTP was added. The reaction mixtures were placed in cuvettes held at 0 °C in Beckman DU-7400 and DU-7500 spectrophotometers equipped with electronic temperature controllers. The temperature was jumped to 30 °C over about 30 s, and polymerization was followed turbidimetrically at 350 nM for 20 min. Each reaction set included a reaction mixture without compound, and the IC₅₀ was defined as the compound concentration that inhibited extent of assembly by 50% after 20 min at 30 °C.

Colchicine Binding Assay¹³⁰

Inhibition of $[{}^{3}$ H]colchicine binding to tubulin was determined using 100 µL reaction mixtures, each containing 1.0 µM tubulin, 5.0 µM $[{}^{3}$ H]colchicine (from Perkin-Elmer), 5% (v/v) dimethyl sulfoxide, potential inhibitors at 1.0 or 5.0 µM and components demonstrated to stabilize the colchicine binding activity of tubulin¹³⁰ (1.0 M

monosodium glutamate [adjusted to pH 6.6 with HCl in a 2.0 M stock solution], 0.5 mg/mL bovine serum albumin, 0.1 M glucose-1-phosphate, 1.0 mM MgCl₂, and 1.0 mM GTP). Incubation was for 10 min at 37 °C, a time point at which the binding reaction in the control is 40-60% complete. Reactions were stopped by adding 2.0 mL of ice-cold water and placing the samples on ice. Each sample was poured onto a stack of two DEAE-cellulose filters, followed immediately by 6 mL of ice-cold water, and the water was aspirated under reduced vacuum. The filters were washed three times with 2 mL of water and, following removal of excess water under a strong vacuum, placed into vials containing 5 mL of Biosafe II scintillation cocktail. Samples were counted the next day in a Beckman scintillation to determine percent inhibition. All samples were corrected for the amount of colchicine that bound to the filters in the absence of tubulin.

NADPH Cytochrome P450 Oxidoreductase Cleavage Assay^{133,134}

Rat NADPH cytochrome P450 oxidoreductase (POR) and protocatechuate 3,4dioxygenase (PCD) were purchased from Corning[®] and Sigma-Aldrich, respectively, and their enzymatic activities were determined in terms of enzyme units (U). All bioreductive prodrugs were dissolved in DMSO as 10 mM stock solutions.

An aliquot (5 μ L) of the 10 mM compound DMSO stock solution along with 0.5 μ L 0.1% Triton X-100 were added to 395.5 μ l 200 mM pH 7.4 potassium phosphate buffer containing 400 μ M freshly made protocatechuic acid (PCA). The components were fully mixed in a microvessel capped with a rubber septum stopper and subjected to three cycles of evacuation and flushing with N₂ using a manifold, followed by sparging with N₂ for an additional 20 min. PCD (0.08 units) was added by Hamilton syringe, and the solution was scrubbed for 10 min to allow for sufficient O_2 digestion by PCA/PCD. POR stock (0.006 units) was introduced followed by NADPH (0.8 mM final concentration) into the vial followed by an additional round of N_2 sparging. The reaction mixture was incubated for 24 h at 37 °C, cooled on ice and treated with an equal volume of acetonitrile. After centrifugation and filtration, the samples were analyzed by HPLC. Solutions without POR were used as controls.

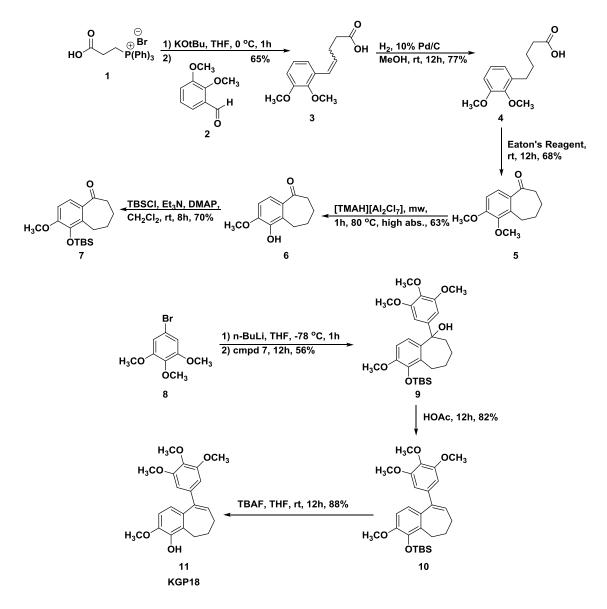
Acknowledgements

The authors are grateful to the Cancer Prevention and Research Institute of Texas (CPRIT, Grant No. RP140399 to K.G.P., M.L.T., and R.P.M.), the National Cancer Institute of the National Institutes of Health (Grant No. 5R01CA140674 to K.G.P., M.L.T., and R.P.M.), and R.P.M.), and Mateon Therapeutics, Inc. (grant to K.G.P. and M.L.T.) for their financial support of this project. The content is solely the responsibility of the authors and does not necessarily reflect the official views of the National Institutes of Health. The authors also thank Dr. Michelle Nemec (Director) for the use of the shared Molecular Biosciences Center at Baylor University and Dr. Alejandro Ramirez (Mass Spectrometry Core Facility, Baylor University). The authors are grateful to Mr. David Ross IV (Baylor University), Ms. Taylor Deushane (Baylor University), Mr. Benji Gomez (Baylor University), and Ms. Evelyn Le (Baylor University) for their contributions to the synthesis of advanced intermediates.

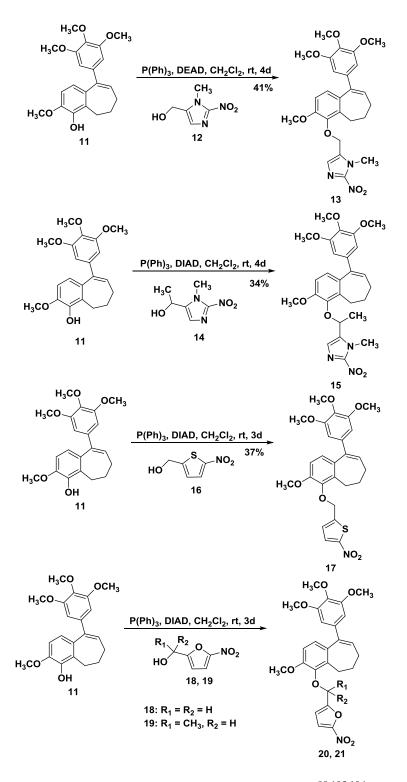
CHAPTER FOUR

Synthesis of KGP18, KGP18 Bioreductively Activatable Prodrug Conjugates, OXi6196 Bioreductively Activatable Prodrug Conjugates, and the Nitroimidazole Trigger

With the successful generation of BAPCs that incorporate the anticancer agents phenstatin, CA1¹³⁶, and CA4, the development of further BAPCs with other potent VDAs and inhibitors of tubulin assembly from the Pinney group was pursued.¹⁴⁹⁻¹⁵⁴ The dihydronaphthalene OXi6196 and the benzosuberene analogue VDA KGP18, both inhibitors of tubulin polymerization, are potent small-molecule cytotoxic agents inspired by the natural products colchicine, CA1 and CA4.¹⁵⁰⁻¹⁵⁵ KGP18 and OXi6196 were synthesized and BAPCs of each were generated through Mitsunobu reactions with nitrothiophene, nitrofuran, and nitroimidazole triggers.

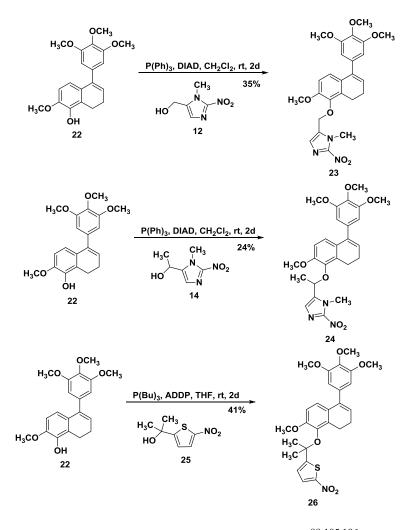

KGP18 and KGP18-BAPC Synthesis

The KGP18 synthesis developed by the Pinney Research Group utilizes two key reactions to generate the benzosuberene CA4 analogue- a cyclization employing Eaton's reagent to form the seven membered ring and a lithium-halogen exchange to install the trimethoxy aryl ring system.³⁶ The Wittig olefination reaction was used to generate alkene **3** from phosphonium salt **1** and aldehyde **2** (Scheme 4.1).³⁴⁻³⁶ Reduction of alkene **3** yielded carboxylic acid **4**, which was then cyclized, upon treatment with Eaton's reagent, to produce benzosuberene **5**.³⁴⁻³⁶ Benzosuberene **5** was demethylated to generate phenol **6**, which was silylated to form the protected benzosuberene **7**.³⁴⁻³⁶


126

A lithium-halogen exchange reaction was then performed with brominated coumpound **8**, which was then reacted with protected benzosuberene **7** to yield tertiary alcohol **9** (Scheme 4.1).³⁴⁻³⁶ The tertiary alcohol **9** was then dehydrated to generate alkene **10**, which was then desilylated to yield KGP18.³⁴⁻³⁶

A Mitsunobu reaction was used to synthesize the KGP18-BAPCs (Scheme 4.2).^{88,105,106} KGP18, DEAD, triphenylphosphine, and nitroimidazole trigger **12** were used to synthesize the normethyl nitroimidazole KGP18-BAPC **13**.^{88,105,106} KGP18 BAPCs **15** and **17** were generated by reacting DIAD, triphenylphosphine, KGP18, and nitroimidazole trigger **14** and nitrothiophene trigger **16** respectively.^{88,105,106} The *nor*-methyl and *mono*-methyl nitrofuran triggers **18** and **19** were reacted with DIAD, triphenylphosphine, and KGP18 to yield the BAPCs **20** and **21** respectively.^{88,105,106} The *gem*-dimethyl nitrofuran KGP18-BAPC was also attempted, but the reaction yielded only starting material.^{88,105,106}


Scheme 4.1. KGP18 Synthesis³⁴⁻³⁶

Scheme 4.2. KGP18-BAPC Synthesis^{88,105,106}

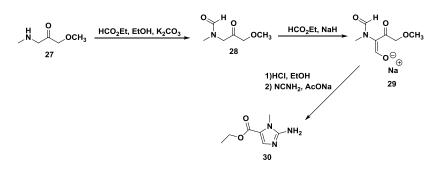
OXi6196-BAPC Synthesis

The OXi6196-BAPC syntheses were achieved through Mitsunobu reactions with OXi6196 generated by Casey Maguire, a graduate student in the Pinney Research Group who has developed efficient and novel routes to synthesize OXi6196.^{34,37,156,157} DIAD, OXi6196, triphenylphosphine, and nitroimidazole triggers **12** and **14** were reacted to yield BAPCs **23** and **24** respectively (Scheme 4.3).^{88,105,106} The *gem*-dimethyl nitrothiophene OXi6196 BAPC **26** was generated through the reaction of nitrothiophene trigger **25**, ADDP, tributylphosphine, and OXi6196.^{88,105,106}

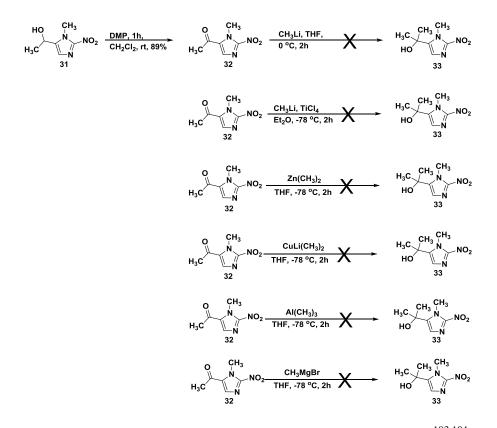
Scheme 4.3. OXi6196-BAPC Synthesis^{88,105,106}

Nitroimidazole Bioreductive Trigger Synthesis

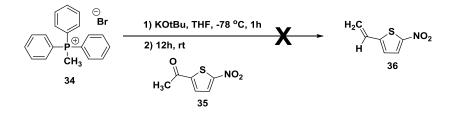
The patent route¹⁰⁷ to generate the nitroimidazole trigger was initially utilized to generate the cyclized aminoinidazole **30**, but after poor yields, the Conway *et. al* route was adapted to generate the nitroimidazole trigger.¹⁰⁴


The patent route to the aminoimidazole intermediate **30** (Scheme 4.4) began with the formylation of sarcosine methyl ester **27** to generate aldehyde **28**.¹⁰⁷ An enol group was attached to **28** to yield the organic salt **29**, which was then deformylated and cyclized to generate aminoimidazole **30** in poor yield.¹⁰⁷

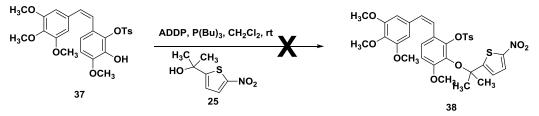
Once the Conway *et. al* route was successfully utilized to generate both the *nor*methyl nitroimidazole trigger and the *mono*-methyl nitroimidazole trigger **31**,¹⁰⁴ the next goal was to complete the series through the synthesis of the *gem*-dimethyl nitroimidazole trigger **33**. The initial attempts were to generate the *gem*-dimethyl nitroimidazole trigger through the same route as the nitrofurans and the nitrothiophenes: oxidize the *mono*methyl trigger into the ketone, and then methylate the ketone to yield the *gem*-dimethyl trigger **33**.^{103,104} The synthesis began with the successful oxidation of the *mono*-methyl nitroimidazole trigger **31** to ketone **32** (Scheme 4.5).^{103,104} The methylation step proved difficult, however, as none of the methylation methods attempted generated product or any byproduct, only returning starting material **32**.^{103,104}


After attempting the methylation with five different reagents in six different ways (Scheme 4.5) with no success, a different approach was required. As the nitrothiophene ketone was available and easier to generate, the Wittig reaction was run with the nitrothiophene **35** in a test system. The generation of the terminal alkene was attempted next to no avail, as the reaction of nitrothiophene ketone **35** with phosphonium salt **34** in

131


Wittig conditions did not yield the alkene **36**, returning only starting material (Scheme 4.6). With the failure of the Wittig chemistry in the test system, the Wittig reaction was not attempted on the nitroimidazole ketone.

Scheme 4.4. Nitroimidazole Patent Route Synthesis¹⁰⁷


Scheme 4.5. Attempted Methylation of Nitroimidazole Ketone^{103,104}

Scheme 4.6. Attempted Wittig with Nitrothiophene Ketone

CA1 Tosyl BAPC Synthesis

The Mitsunobu reaction was attempted with the *gem*-dimethyl nitrothiophene trigger on the C2 tosyl / C3 OH CA1 analog, since the *nor*-methyl and *mono*-methyl nitrothiophene tosyl CA1 (C2 tosyl / C3 trigger) had been successfully synthesized. The reaction was attempted to complete the tosyl / nitrothiophene trigger CA1 series, but the reaction to generate the *gem*-dimethyl nitrothiophene tosyl CA1 BAPC **38** was ultimately unsuccessful after multiple attempts, all of which only returned starting material (Scheme 4.7).^{88,105,106}

Scheme 4.7. Tosyl Gem-dimethyl-CA1-BAPC Attempted Synthesis^{88,105,106}

Conclusions

In conclusion, several KGP18 and OXi6196-based BAPCs were synthesized utilizing the Mitsunobu reaction to covalently link KGP18 and OXi6196 to nitrothiophene, nitroimidazole, and nitrofuran triggers. This series of OXi6196 and KGP18-BAPCs will undergo preliminary biological evaluation to determine their cytotoxicity in normoxic versus hypoxic conditions, hydrolysis in aqueous solution, bioreductive trigger cleavage upon treatment with POR, (in collaboration with Trawick Research Group, Baylor University) and their ability to inhibit tubulin polymerization and compete for the colchicine binding site (in collaboration with Ernest Hamel, NCI). The *gem*-dimethyl nitroimidazole trigger was not successfully synthesized, but a published route by Cavalleri and co-workers¹²⁷ to the *gem*-dimethyl nitroimidazole trigger.

Materials and Methods

5-(2,3-dimethoxyphenyl)pent-4-enoic acid (3)³⁴⁻³⁶

(2-carboxyethyl)triphenylphosphonium bromide (16.7 g, 39.0 mmol) was dissolved in THF (400 mL). Potassium *tert*-butoxide (11.7 g, 104 mmol) was added to the reaction and it was stirred for 1 h at room temperature. 2,3-Dimethoxybenzaldehyde (5.39 g, 32.0 mmol) was added to the reaction mixture and it was stirred for 8 h. The reaction was then quenched with HCl (2 M, 50 mL) and evaporated under reduced pressure. EtOAc (80 mL) was added to the residue and the layers were partitioned. The aqueous layer was extracted with EtOAc (3 x 40 mL). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄, and evaporated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 50%A / 50%B (13 CV), 50%A / 50%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280

nm] to afford compound 3 (6.00 g, 25.4 mmol, 65%) as a light yellow solid. NMR characterization was conducted after the next step.

5-(2,3-dimethoxyphenyl)pentanoic acid (4)³⁴⁻³⁶

5-(2,3-dimethoxyphenyl)pent-4-enoic acid (5.39 g, 21.5 mmol) was added to an empty flask flushed under N₂, followed by 10 % palladium on carbon (0.430 g, 0.404 mmol). Methanol (100 mL) was added slowly to the reagents, and then the flask was purged under N₂. The flask was placed under vacuum, and then H₂ was added and the reaction was stirred for 12 h at room temperature. The reaction was then filtered through Celite in a frit funnel, rinsed with EtOAc (3 x 50 mL), and the combined organic phases were evaporated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 40%A / 60%B (13 CV), 40%A / 60%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] to afford compound **4** (6.00 g, 25.4 mmol, 77%) as a clear oil.

¹**H NMR** (500 MHz, CDCl₃) δ 6.97 (1H, t, *J* = 7.9 Hz), 6.76 (2H, m), 3.85 (3H, s), 3.81 (3H, s), 2.64 (2H, t, *J* = 7.3 Hz), 2.38 (2H, t, *J* = 7.1 Hz), 1.74 – 1.60 (4H, m).

¹³C NMR (125 MHz, CDCl₃) δ 179.5, 152.7, 147.0, 135.9, 123.8, 121.8, 110.1, 60.6, 55.6, 33.8, 30.1, 29.4, 24.5.

1,2-dimethoxy-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (5)³⁴⁻³⁶

5-(2,3-dimethoxyphenyl)pentanoic acid (3.55 g, 14.9 mmol) was dissolved in Eaton's reagent (29 mL, 3 g/mmol of compound **4**) and stirred for 12 h at room temperature. The reaction was poured over ice and neutralized with saturated sodium bicarbonate. The

layers were partitioned, then the aqueous layer was extracted with EtOAc (3 x 50 mL). The combined organic layers were washed with brine (40 mL), dried over Na₂SO₄, and evaporated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 40%A / 60%B (13 CV), 40%A / 60%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] to afford compound **5** (2.22 g, 10.1 mmol, 68%) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.53 (1H, d, *J* = 8.6 Hz), 6.84 (1H, d, *J* = 8.6 Hz), 3.90 (3H, s), 3.79 (3H, s), 3.00 (2H, t, *J* = 6.1 Hz), 2.69 (2H, t, *J* = 6.1 Hz), 1.89 – 1.81 (2H, m), 1.81 – 1.72 (2H, m).

¹³C NMR (125 MHz, CDCl₃) δ 204.9, 156.1, 145.9, 135.7, 132.8, 125.5, 109.7, 61.1, 55.8, 40.6, 24.9, 23.2, 20.9.

1-hydroxy-2-methoxy-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (6)³⁴⁻³⁶

[TMAH][Al₂Cl₇] (18.3 mL, 9.08 mmol) was added to 1,2-dimethoxy-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (1.01 g, 4.54 mmol) in a 20 mL microwave vial. The reaction mixture was then exposed to microwave irradiation for 1 h on high absorbance at 80 °C. The reaction was then poured into water (50 mL) and EtOAc (40 mL) was added. The layers were partitioned and the aqueous layer was extracted (3 x 40 mL). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄, and evaporated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40%B (13 CV), 60%A / 40%B (2 CV); flow

136

rate: 50 mL/min; monitored at 254 and 280 nm] to afford compound **6** (0.590 g, 2.86 mmol, 63%) as a yellow solid.

¹H NMR (500 MHz, CDCl₃) δ 7.34 (1H, d, J = 8.5 Hz), 6.79 (1H, d, J = 8.5 Hz), 5.77 (1H, s), 3.94 (3H, s), 3.01 (2H, dd, J = 7.2, 5.0 Hz), 2.76 – 2.66 (2H, m), 1.83 (4H, m).
¹³C NMR (125 MHz, CDCl₃) δ 205.1, 149.2, 142.4, 133.3, 127.7, 120.8, 107.9, 56.1, 40.8, 24.5, 23.0, 21.3.

1-((*tert*-butyldimethylsilyl)oxy)-2-methoxy-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (7)³⁴⁻³⁶

1-hydroxy-2-methoxy-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (2.00 g, 9.70 mmol) was dissolved in CH₂Cl₂ (80 mL). Triethylamine (1.64 mL, 11.6 mmol), *tert*-butyldimethylsilyl chloride (1.61 g, 10.7 mmol) and DMAP (0.0650 g, 0.532 mmol) were added to the reaction mixture and it was stirred for 8 h. The reaction was quenched with water (40 mL) and the layers were partitioned. The aqueous layer was extracted with CH₂Cl₂ (3 x 40 mL). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄, and evaporated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient 2%A / 98%B (1 CV), 2%A / 98%B \rightarrow 20%A / 80%B (13 CV), 20%A / 80%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford compound **7** (2.18 g, 6.79 mmol, 70%) as light tan crystals.

¹**H NMR** (500 MHz, CDCl₃) δ 7.37 (1H, d, *J* = 8.5 Hz), 6.76 (1H, d, *J* = 8.6 Hz), 3.82 (3H, s), 3.00 (2H, dd, *J* = 7.0, 5.1 Hz), 2.69 (2H, dd, *J* = 7.3, 4.4 Hz), 1.84 – 1.73 (4H, m), 1.01 (9H, s), 0.18 (6H, s).

¹³**C NMR** (125 MHz, CDCl₃) δ 205.3, 153.2, 141.7, 133.1, 133.1, 122.3, 108.7, 54.8, 40.7, 26.1, 25.6, 24.7, 23.9, 21.2, -3.9.

1-((*tert*-butyldimethylsilyl)oxy)-2-methoxy-5-(3,4,5-trimethoxyphenyl)-6,7,8,9tetrahydro-5H-benzo[7]annulen-5-ol (9)³⁴⁻³⁶

3,4,5-trimethoxybromobenzene (4.13 g, 16.7 mmol) was dissolved in THF (80 mL) at -78 °C. n-Butyllithium (1.6M, 7.06 mL, 16.8 mmol) was added dropwise to the reaction mixture and it was stirred for 1 h. 1-((*tert*-Butyldimethylsilyl)oxy)-2-methoxy-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (3.99 g, 12.4 mmol) was added to the reaction mixture and it was stirred for 8 h while warming from -78 °C to room temperature. The reaction was quenched with water (50 mL) and the layers were partitioned. The aqueous layer was extracted with EtOAc (3 x 60 mL). The combined organic layers were washed with brine (60 mL), dried over Na₂SO₄, and evaporated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40%B (13 CV), 60%A / 40%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] to afford compound **9** (4.57 g, 9.35 mmol, 56%) as a clear oil. NMR characterization was performed after the next step.

tert-butyl((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-yl)oxy)dimethylsilane (10)³⁴⁻³⁶

1-((*tert*-Butyldimethylsilyl)oxy)-2-methoxy-5-(3,4,5-trimethoxyphenyl)-6,7,8,9tetrahydro-5H-benzo[7]annulen-5-ol (4.57 g, 9.35 mmol) was dissolved in glacial acetic acid (50 mL) and the reaction mixture was stirred for 12 h at room temperature. The reaction was quenched with water (50 mL), the mixture was evaporated under reduced pressure, and the residue was dissolved in EtOAc (60 mL) and water (40 mL). The layers were partitioned, and then the aqueous layer was extracted with EtOAc (3 x 50 mL). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄, and evaporated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40%B (13 CV), 60%A / 40%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] to afford compound **10** (3.61 g, 7.67 mmol, 82%) as a clear oil.

¹H NMR (500 MHz, CDCl₃) δ 6.69 (1H d, J = 8.5 Hz), 6.61 (1H, d, J = 8.4 Hz), 6.48 (2H, s), 6.32 (1H, t, J = 7.3 Hz), 3.85 (3H, s), 3.80 (3H, s), 3.79 (6H, s), 2.76 (2H, t, J = 6.9 Hz), 2.10 (2H, p, J = 7.1 Hz), 1.95 (2H, q, J = 7.2 Hz), 1.04 (9H, s), 0.23 (6H, s).
¹³C NMR (125 MHz, CDCl₃) δ 152.8, 148.6, 143.0, 141.5, 138.6, 137.2, 133.8, 133.3, 126.9, 122.4, 108.3, 105.2, 60.9, 56.1, 54.6, 33.9, 26.2, 25.6, 24.2, 19.0, 3.8.

tert-butyl((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-yl)oxy)dimethylsilane (11)³⁴⁻³⁶

tert-Butyl((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4yl)oxy)dimethylsilane (3.61 g, 7.67 mmol) was dissolved in THF (80 mL). TBAF (1M, 9.00 mL, 9.00 mmol) was added dropwise to the reaction mixture and it was stirred for 12 h at room temperature. The reaction was quenched with water (50 mL), the mixture was evaporated under reduced pressure, and the residue was dissolved in EtOAc (60 mL) and water (40 mL). The layers were partitioned, and then the aqueous layer was extracted with EtOAc (3 x 50 mL). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄, and evaporated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient 10% A / 90% B (1 CV), 10% A / 90% B \rightarrow 80% A / 20% B (13 CV), 80% A / 20% B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] to afford compound **11** (2.40 g, 6.73 mmol, 88%) as a white solid.

¹H NMR (500 MHz, CDCl₃) δ 6.71 (1H, d, J = 8.4 Hz), 6.57 (1H, d, J = 8.4 Hz), 6.50 (2H, s), 6.33 (1H, t, J = 7.4 Hz), 3.91 (3H, s), 3.86 (3H, s), 3.80 (6H, s), 2.76 (2H, t, J = 7.0 Hz), 2.14 (2H, p, J = 7.1 Hz), 1.96 (2H, q, J = 7.2 Hz).
¹³C NMR (125 MHz, CDCl₃) δ 152.8, 145.0, 142.8, 142.3, 138.5, 137.2, 134.2, 127.7, 127.2, 120.8, 107.6, 105.2, 60.9, 56.1, 55.9, 33.6, 25.7, 23.5.

5-(((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4yl)oxy)methyl)-1-methyl-2-nitro-1H-imidazole (13)^{88,105,106}

KGP18 (0.250 g, 0.702 mmol), (1-methyl-2-nitro-1H-imidazol-5-yl)methanol (0.123 g, 0.842 mmol), and DEAD (0.144 mL, 0.913 mmol) were dissolved in CH₂Cl₂ (60 mL) at room temperature. Triphenylphosphine (0.368 g, 1.40 mmol) was added to the mixture and the reaction was stirred for 2 d. The reaction was evaporated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 80%A / 20%B (13 CV), 80%A / 20%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford compound **13** (0.143 g, 0.288 mmol, 41%) as orange crystals.

¹H NMR (500 MHz, CDCl₃) δ 6.71 (1H, d, J = 8.4 Hz), 6.57 (1H, d, J = 8.4 Hz), 6.50 (2H, s), 6.33 (1H, t, J = 7.4 Hz), 3.91 (3H, s), 3.86 (3H, s), 3.80 (6H, s), 2.76 (2H, t, J = 7.0 Hz), 2.14 (2H, p, J = 7.1 Hz), 1.96 (2H, q, J = 7.2 Hz).
¹³C NMR (125 MHz, CDCl₃) δ 152.8, 145.0, 142.8, 142.3, 138.5, 137.2, 134.2, 127.7, 127.2, 120.8, 107.6, 105.2, 60.9, 56.1, 55.9, 33.6, 25.7, 23.5.

HRMS: m/z: obsd 518.1899 [M+Na]⁺, calcd for C₂₆H₂₉N₃O₇⁺, 495.2006.

HPLC (Method A): 10.7 min.

5-(1-((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4yl)oxy)ethyl)-1-methyl-2-nitro-1H-imidazole (15)^{88,105,106}

KGP18 (0.250, 0.702 mmol), 1-(1-methyl-2-nitro-1H-imidazol-5-yl)ethan-1-ol (0.144 g, 0.842 mmol), and DIAD (0.179 g, 0.913 mmol) were dissolved in CH₂Cl₂ (60 mL) at room temperature. Triphenylphosphine (0.368 g, 1.40 mmol) was added to the mixture and the reaction was stirred for 2 d. The reaction was evaporated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 80%A / 20%B (13 CV), 80%A / 20%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford compound **15** (2.18 g, 0.239 mmol, 34%) as orange crystals.

HRMS: m/z: obsd 532.2054 [M+Na]⁺, calcd for C₂₇H₃₁N₃O₇⁺, 509.2162.

HPLC (Method A): 11.5 min.

2-(((3-Methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4yl)oxy)methyl)-5-nitrothiophene (17)^{88,105,106} KGP18 (0.167 g, 0.469 mmol), 5-nitrothiophene-2-carboxaldehyde (0.0896 g, 0.563 mmol), and DIAD (0.124 mL, 0.633 mmol) were dissolved in CH_2Cl_2 (50 mL) at room temperature. Triphenylphosphine (0.246 g, 0.938 mmol) was added to the mixture and the reaction mixture was stirred for 2 d. The reaction was evaporated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient 10% A / 90% B \rightarrow 80% A / 20% B (13 CV), 80% A / 20% B (2 CV); flow rate: 30 mL/min; monitored at 254 and 280 nm] to afford compound **7** (0.0866 g, 0.174 mmol, 37%) as an orange oil. The product is still in purification.

(4-Methoxy-3-((5-nitrofuran-2-yl)methoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (20)^{88,105,106}

KGP18 (0.300 g, 0.842 mmol), (5-nitrofuran-2-yl)methanol (0.143 g, 1.01 mmol), and DIAD (0.213 mL, 1.09 mmol) were dissolved in THF (50 mL) at room temperature. Triphenylphosphine (0.442 g, 1.68 mmol) was added to the mixture and the reaction was stirred for 3 d. The reaction was evaporated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 80%A / 20%B (13 CV), 80%A / 20%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford compound **20** as a crude yellow oil.

(4-methoxy-3-(1-(5-nitrofuran-2-yl)ethoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (21)^{88,105,106}

KGP18 (0.300 g, 0.842 mmol), 1-(5-nitrofuran-2-yl)ethan-1-ol (0.159 g, 1.01 mmol), and DIAD (0.213 mL, 1.09 mmol) were dissolved in THF (50 mL) at room temperature. Triphenylphosphine (0.442 g, 1.68 mmol) was added to the mixture and the reaction was stirred for 3 d. The reaction was evaporated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 80%A / 20%B (13 CV), 80%A / 20%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford compound **21** as crude yellow crystals.

2-(2-((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4yl)oxy)propan-2-yl)-5-nitrofuran^{88,105,106}

KGP18 (0.329 g, 0.925 mmol), 2-(5-nitrofuran-2-yl)propan-2-ol (0.190 g, 1.11 mmol), and ADDP (0.303 mL, 1.20 mmol) were dissolved in THF (50 mL) at room temperature. Tributylphosphine (0.228 mL, 1.85 mmol) was added to the mixture and the reaction was stirred for 3 d. The reaction was evaporated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 80%A / 20%B (13 CV), 80%A / 20%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm]. ¹H and ¹³C NMR showed no product formation on the resulting fractions, only starting material.

5-(((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-yl)oxy)methyl)-1-methyl-2-nitro-1H-imidazole (23)^{88,105,106}

Oxi 6196 (0.363 g, 1.06 mmol), (1-methyl-2-nitro-1H-imidazol-5-yl)methanol (0.200 g, 1.27 mmol), and DIAD (0.280 mL, 1.43 mmol) were dissolved in THF (70 mL) at room temperature. Triphenylphosphine (0.557 g, 2.12 mmol) was added and the reaction mixture was stirred for 2 d. The reaction was evaporated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 80%A / 20%B (13 CV), 80%A / 20%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford compound **23** (1.33 g, 0.371 mmol, 35%) as a yellow solid.

¹**H NMR** (600 MHz, CDCl₃) δ 7.14 (1H, s), 6.85 (1H, d, J = 8.5 Hz), 6.69 (1H, d, J = 8.5 Hz), 6.54 (2H, s), 5.97 (1H, t, J = 4.6 Hz), 5.01 (2H, s), 4.24 (3H, s), 3.89 (3H, s), 3.85 (3H, s), 3.85 (6H, s), 2.76 (2H, t, J = 7.9 Hz), 2.31 (2H, td, J = 7.8, 4.6 Hz). ¹³**C NMR** (151 MHz, acetone *d*-6) δ 153.3, 152.1, 143.3, 139.5, 137.7, 136.3, 134.5, 130.7, 128.7, 128.5, 124.9, 122.2, 109.2, 106.1, 62.7, 59.7, 55.5, 55.1, 34.0, 22.6, 20.9. **HRMS**: m/z: obsd 482.1921 [M+H]⁺, calcd for C₂₅H₂₇N₃O₇⁺, 481.1849. **HPLC** (Method A): 7.3 min.

5-(1-((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-yl)oxy)ethyl)-1-methyl-2-nitro-1H-imidazole (24)^{88,105,106}

Oxi6196 (0.200 g, 0.585 mmol), 1-(1-methyl-2-nitro-1H-imidazol-5-yl)ethan-1-ol (0.120 g, 0.702 mmol), and DIAD (0.150 mL, 0.761 mmol) were dissolved in THF (60 mL) at room temperature. Triphenylphosphine (0.307 g, 1.17 mmol) was added to the reaction mixture and it was stirred for 2 d. The reaction was evaporated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 50 g silica

column [solvent A: EtOAc; solvent B: hexanes; gradient 10% A / 90% B (1 CV), 10% A / 90% B \rightarrow 79% A / 21% B (13 CV), 79% A / 21% B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford compound **24** (0.0694 g, 0.140 mmol, 24%) as a yellow solid.

¹H NMR (600 MHz, CDCl₃) δ 7.14 (1H, s), 6.77 (1H, d, J = 8.5 Hz), 6.62 (1H, d, J = 8.6 Hz), 6.47 (2H, s), 5.91 (1H, t, J = 4.6 Hz), 5.53 (1H, q, J = 6.6 Hz), 4.11 (3H, s), 3.82 (3H, s), 3.79 (3H, s), 3.78 (6H, s), 2.69 (2H, td, J = 9.3, 8.9, 6.8 Hz), 2.27 - 2.14 (2H, m), 1.61 (2H, d, J = 6.6 Hz).
¹³C NMR (126 MHz, acetone *d*-6) δ 153.3, 152.0, 141.6, 139.6, 138.8, 137.6, 136.3,

131.6, 128.7, 126.3, 125.0, 122.0, 109.2, 106.0, 68.9, 59.7, 55.5, 55.1, 34.1, 22.6, 21.7, 17.6.

HRMS: m/z: obsd 496.2077 [M+H]⁺, calcd for C₂₆H₂₉N₃O₇⁺, 495.2006.

HPLC (Method A): 10.0 min.

$\label{eq:2-(2-(2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-dihydronaphthalen-1-2-(2-methoxyphenyl)-7,8-2-(2-methoxyphenyl)-7,8-2-(2-methoxyphenyl)-7,8-2-(2-methoxyphenyl)-7,8-2-(2-methoxyphenyl)-7,8-2-(2-meth$

yl)oxy)propan-2-yl)-5-nitrothiophene (26)^{88,105,106}

Oxi6196 (0.200 g, 0.584 mmol), 2-(5-nitrothiophen-2-yl)propan-2-ol (0.131 g, 0.701 mmol), and ADDP (0.192 mmol, 0.759 mmol) were dissolved in THF (50 mL) at room temperature. Tributylphosphine (0.241 mL, 0.975 mmol) was added drop-wise and the reaction mixture was stirred for 2 d. The reaction was then evaporated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 80%A / 20%B (13 CV), 80%A / 20%B (2 CV); flow rate: 75 mL/min; monitored at 254 and 280 nm] to yield a crude product. The crude product was then

dissolved in CH₂Cl₂ (40 mL). Triethylamine (0.240 mL, 1.75 mmol), DMAP (0.0710 g, 0.584 mmol), and *tert*-butyldimethylsilyl chloride (0.106 g, 0.701 mmol) were added to the reaction and it was stirred for 12 h. The reaction was quenched with water (40 mL) and then the layers were partitioned. The aqueous layer was extracted with CH₂Cl₂ (3 x 30 mL). The combined organic layers were washed with brine (40 mL), dried over Na₂SO₄, and evaporated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 80%A / 20%B (13 CV), 80%A / 20%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] to afford compound **26** (0.122 g, 0.239 mmol, 41%) as an orange solid.

¹**H NMR** (600 MHz, acetone*d*-6) 7.87 (1H, d, *J* = 4.3 Hz), 7.03 (1H, d, *J* = 4.3 Hz), 6.70 (1H, d, *J* = 8.4 Hz), 6.58 (2H, s), 6.54 (1H, d, *J* = 8.4 Hz), 5.95 (1H, t, *J* = 4.7 Hz), 3.82 (3H, s), 3.80 (6H, s), 3.75 (3H, s), 2.81 (2H, t, *J* = 7.9 Hz), 2.30 (2H, td, *J* = 7.9, 4.7 Hz), 1.63 (6H, s).

¹³C NMR (126 MHz, acetone *d*-6) δ 166.2, 153.1, 146.6, 142.5, 139.9, 137.5, 136.8, 129.3, 128.6, 124.5, 122.4, 121.4, 117.1, 107.8, 106.1, 70.9, 59.7, 55.5, 55.3, 31.4, 31.3, 22.7, 20.2.

HPLC (Method A): 7.0 min.

Methyl N-formyl-N-methylglycinate (28)¹⁰⁷

Sarcosine methyl ester • HCl (16.0 g, 155 mmol) and potassium carbonate (16.4 g, 119 mmol) were dissolved in ethanol (80 mL) at room temperature. Ethyl formate (68 mL, 842 mmol) was added and the reaction was stirred for 18 h. The reaction was filtered through a frit funnel, the residue was rinsed with EtOAc (3 x 70 mL), and the combined

organic layers were evaporated under reduced pressure. Water (70 mL) and EtOAc (100 mL) were added to the residue and the layers were partitioned. The aqueous layer was extracted with EtOAc (3 x 60 mL). The combined organic fractions were washed with brine (80 mL), dried with Na₂SO₄, and evaporated under reduced pressure. After evaporation, methyl N-formyl-N-methylglycinate (**24**) (15.5 g, 118 mmol, 76%) was recovered as a pale tan oil. [product left in crude state, taken on to next reaction with no further purification]

Sodium (E)-3-methoxy-2-(N-methylformamido)-3-oxoprop-1-en-1-olate (29)¹⁰⁷

Methyl N-formyl-N-methylglycinate (22.0 g, 183 mmol) was dissolved in ethyl formate (106 mL, 1.08 mol) at 0 °C. Sodium hydride (60% in mineral oil, 9.07 g, 219 mmol) was added to the reaction mixture in several small aliquots over 30 minutes, and the reaction was stirred for 12 h. The reaction mixture was triturated with hexanes (2 x 100 mL) in a frit funnel, and then the solid was dried by vacuum overnight to yield sodium \in -3-methoxy-2-(N-methylformamido)-3-oxoprop-1-en-1-olate (**29**) (18.0 g, 117 mmol, 64%) as an off-white powder. [crude product taken to next step]

Ethyl 2-amino-1-methyl-1H-imidazole-5-carboxylate (30)¹⁰⁷

Sodium (*E*)-3-methoxy-2-(N-methylformamido)-3-oxoprop-1-en-1-olate (0.507 g, 3.29 mmol) was dissolved in ethanol (8 mL) and concentrated HCl (3.5 mL). The reaction mixture was refluxed for 1 h. The reaction was then cooled to room temperature and the mixture was filtered through a frit funnel. The solid residue was rinsed with methanol (2 x 40 mL) and the combined organic layers were evaporated under reduced pressure. Water (30 mL) and CH₂Cl₂ (30 mL) were added to the residue and the layers were

partitioned. The aqueous layer was extracted with CH_2Cl_2 (3 x 10 mL). The combined organic layers were then washed with saturated sodium bicarbonate (1 x 20 mL), dried over Na₂SO₄, and evaporated under reduced pressure to yield a thick brown oil. The oil was then dissolved in 10 % acetic acid in water (20 mL). Cyanamide (0.230 g, 5.47 mmol) and sodium acetate (0.596 g, 7.26 mmol) were dissolved in the reaction mixture and it was refluxed for 1 h. The reaction was then allowed to cool to room temperature and evaporated under reduced pressure to one half of its original volume. The reaction was then neutralized to pH 9 with sodium carbonate. The layers were partitioned and the aqueous layer was extracted with EtOAc (5 x 20 mL). The combined organic layers were washed with brine (1 x 30 mL), dried over Na₂SO₄, and evaporated under reduced pressure. Recrystallization was attempted on the residue, but no product was obtained.

1-(1-methyl-2-nitro-1H-imidazol-5-yl)ethan-1-one (32)^{103,104}

1-(1-methyl-2-nitro-1H-imidazol-5-yl)ethan-1-ol (0.920 g, 5.38 mmol) was dissolved in CH_2Cl_2 (80 mL) at room temperature. DMP (2.74 g, 6.46 mmol) was added to the mixture and the reaction was stirred for 1 h. Saturated solutions of NaHCO₃ (30 mL) and sodium thiosulfate (30 mL) were added to the reaction mixture, which was extracted with EtOAc (3 x 30 mL). The combined organic layers were dried over Na₂SO₄ and filtered, and the solvent was removed under reduced pressure. Purification by flash chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 12%A / 88%B (1 CV), 12%A / 88%B \rightarrow 100%A / 0%B (10 CV), 100%A / 0%B (2 CV); flow rate: 75 mL/min; monitored at 254 and 280 nm] afforded compound **32** (0.810 g, 4.79 mmol, 89%) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.76 (1H, s), 4.29 (3H, s), 2.57 (3H, s).

¹³C NMR (125 MHz, CDCl₃) δ 189.0, 135.5, 132.0, 68.5, 35.6, 28.4.

(Z)-3-methoxy-2-((2-(5-nitrothiophen-2-yl)propan-2-yl)oxy)-6-(3,4,5trimethoxystyryl)phenyl 4-methylbenzenesulfonate (38)^{88,105,106}

(Z)-2-hydroxy-3-methoxy-6-(3,4,5-trimethoxystyryl)phenyl 4-methylbenzenesulfonate

(0.480 g, 0.986 mmol), 2-(5-nitrothiophen-2-yl)propan-2-ol (0.222 g, 1.18 mmol), and

ADDP (0.280 g, 1.11 mmol) were dissolved in THF (50 mL) at room temperature.

Tributylphosphine (0.406 mL, 1.65 mmol) was added to the reaction mixture drop-wise

and the reaction was stirred for 5 d. The reaction was evaporated under reduced pressure.

TLC and crude NMR analysis confirmed no product was generated.

APPENDICES

APPENDIX A

Supporting Information: Bioreductively Activatable Prodrug Conjugates of Phenstatin Designed to Target Tumor Hypoxia

This appendix is published as supporting information: Blake A. Winn¹, Zhe Shi¹, Graham J. Carlson¹, Yifan Wang¹, Benson L. Nguyen¹, Evan M. Kelly¹, R. David Ross IV¹, Ernest Hamel², David J. Chaplin^{1,3}, Mary L. Trawick^{1*}, Kevin G. Pinney^{1*} Bioreductively Activatable Prodrug Conjugates of Phenstatin Designed to Target Tumor Hypoxia. *Bioorganic and Medicinal Chemistry Letters*, **2016** (available online): http://dx.doi.org/10.1016/j.bmcl.2016.11.093

The author Blake A. Winn contributed to this manuscript through the synthesis of all eleven final compounds including characterization, which included proton and carbon NMRs, HPLC, and HRMS. In addition, Blake A. Winn contributed a significant amount to the writing and editing of the manuscript, as well as the preparation of the supporting data. Zhe Shi contributed through the preparation of the supporting data as well as the synthesis of the nitroimidazole and nitrofuran triggers. Graham Carlson contributed through the synthesis of phenstatin and the phenstatin BAPCs 12, 13, 31, and 32. Evan Kelly contributed through the synthesis of phenstatin and the synthesis of phenstatin BAPCs **20-22**. David Ross contributed through the synthesis of phenstatin. Benson Nguyen contributed through developing the original Pinney Research Group route to phenstatin and the initial synthesis of phenstatin BAPC 14. Ernest Hamel contributed through the preliminary biological evaluation of the phenstatin BAPCs ability to inhibit tubulin polymerization and compete for the colchicine binding site. Yifan Wang contributed through the preliminary biological evaluation of the enzymatic cleavage of the phenstatin BAPCs by POR and the hydrolysis of the phenstatin BAPCs.

151

Supplementary Data

Bioreductively Activatable Prodrug Conjugates of Phenstatin Designed to Target Tumor Hypoxia

Blake A. Winn^a, Zhe Shi^a, Graham J. Carlson^a, Yifan Wang^a, Benson L. Nguyen^a, Evan M. Kelly^a, R. David Ross IV^a, Ernest Hamel^b, David J. Chaplin^{a,c}, Mary L. Trawick^{a*}, Kevin G. Pinney^{a*}

^aDepartment of Chemistry and Biochemistry, Baylor University, One Bear Place #97348,

Waco, Texas 76798-7348, United States

^bScreening Technologies Branch, Developmental Therapeutics Program, Division of

Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National

Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702,

United States

^cMateon Pharmaceuticals, 701 Gateway Boulevard, Suite 210, South San Francisco, California 94080, United States

*Corresponding authors. Tel.: +1 254 710 4117.

E-mail address: Kevin_Pinney@baylor.edu (K.G. Pinney).

Tel.: +1 254 710 6857.

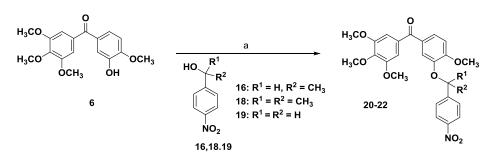
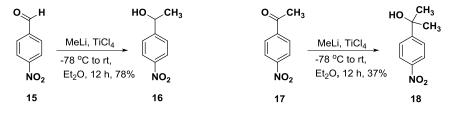
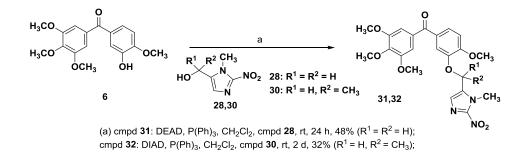

E-mail address: Mary_Lynn_Trawick@baylor.edu (M.L. Trawick)

Table of Contents

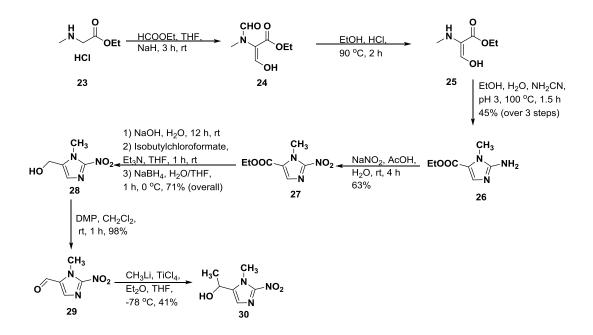
Schemes	155-157
Experimental Section for Compounds 2 - 45	158-183
Biological Evaluation Experimental Procedures	184-188
NMR, HPLC, HRMS Data:	
Compound 2	189-190
Compound 4	191-192
Compound 5	193-194
Compound 6	195-202
Compound 8	203-204
Compound 9	205-206
Compound 10	207-208
Compound 11	209-210
Compound 12	211-216
Compound 13	217-223
Compound 14	224-229
Compound 16	230-231
Compound 18	232-233
Compound 20	234-239
Compound 21	240-245
Compound 22	246-252
Compound 26	253-254
Compound 27	255-256
Compound 28	257-258
Compound 29	259-260
Compound 30	261-262


Compound 31	263-268
Compound 32	269-274
Compound 34	275-276
Compound 35	277-278
Compound 36	279-280
Compound 37	281-282
Compound 38	283-288
Compound 39	289-295
Compound 40	296-300
HPLC Chromatograms for Enzymatic Cleavage Assay	
Compound 6	301-301
Compound 14	302-303
Compound 22	303-304
Compound 40	304-305

Schemes

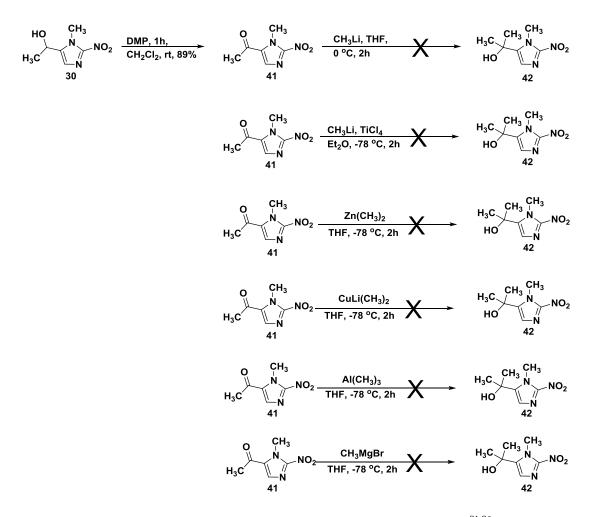

(a) cmpd **20**: DIAD, P(Ph)₃, CH₂Cl₂, cmpd **19**, rt, 2 d, 65% (R¹ = R² = H); cmpd **21**: DIAD, P(Ph)₃, CH₂Cl₂, cmpd **16**, rt, 2 d, 43% (R¹ = H, R² = CH₃); cmpd **22**: ADDP, P(Bu)₃, CH₂Cl₂, cmpd **18**, rt, 2 d, 23% (R¹ = R² = CH₃);

Scheme S1. Synthesis of the Phenstatin Nitrobenzyl BAPCs^{S2-S5}



Scheme S2. Synthesis of the Nitrobenzyl Triggers^{S1}

Mono-methyl nitrobenzyl trigger **16** and *gem*-dimethyl trigger **18** were synthesized through methylation of aldehyde **15** and ketone **17**, respectively.^{S1}



Scheme S3. Synthesis of the Phenstatin Nitroimidazole BAPCs^{S2-S5}

Scheme S4. Synthesis of the Nitroimidazole Triggers^{S1,S6,S7}

In a three step process, sarcosine ethyl ester HCl was first formylated, then deformylated, and cyclized in order to generate ester **26** in reasonable yield over the three steps.^{S6,S7} The amine **26** was oxidized to nitro ester **27**, which was hydrolyzed and then reacted with isobutylchloroformate to form a carbonate, which was subsequently reduced to the *nor*-methyl nitroimidazole trigger **28**.^{S6,S7} Alcohol **28** was then oxidized to aldehyde **29** upon treatment with DMP.^{S6,S7} Finally, aldehyde **29** was methylated to yield the *mono*-methyl nitroimidazole trigger **30**.^{S1,S6,S7}

Scheme S5. Attempted Methylation of Nitroimidazole Ketone^{S1,S6}

The oxidation of the *mono*-methyl nitroimidazole **30** yielded the ketone **41**. Several methylation methods were attempted on the nitroimidazole ketone **41** to generate the *gem*-dimethyl nitroimidazole **42**, but each method attempted only returned starting material. While the *gem*-dimethyl nitroimidazole trigger has been previously reported in the literature, only one (to the best of our knowledge) of the known reports (from among a very limited sub-set) provided a synthetic protocol^{\$9}, and in an effort to avoid the large scale use of KCN and picric acid, we did not utilize this procedure.^{\$8-\$17}

Experimental Procedure

General Experimental Procedures. ^{S18,S19} CH₂Cl₂ and tetrahydrofuran (THF) were used in their anhydrous forms, as obtained from the chemical suppliers. Reactions were performed under an inert atmosphere using N_2 . Thin-layer chromatography (TLC) plates (precoated glass plates with silica gel 60 F254, 0.25 mm thickness) were used to monitor reactions. Purification of intermediates and products was carried out with a flash purification system using silica gel (200-400 mesh, 60 Å) or RP-18 prepacked columns. Intermediates and products synthesized were characterized on the basis of their ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectroscopic data. TMS was used as an internal standard for spectra recorded in CDCl₃. All the chemical shifts are expressed in ppm (δ), coupling constants (J) are presented in Hz, and peak patterns are reported as broad (br), singlet (s), doublet (d), doublet of doublets (dd) triplet (t), quartet (q), septet (sept), and multiplet (m). HRESIMS were obtained using positive or negative electrospray ionization (ESI) techniques using a Thermo Scientific LTQ OrbitrapDiscovery instrument. Purity of the final compounds was further analyzed at 25 °C using an Agilent 1200 HPLC system with a diode-array detector ($\lambda = 190-400$ nm), a Zorbax XDB-C18 HPLC column (4.6 mm x 150 mm, 5 µm), and a Zorbax reliance cartridge guard-column. Flow rate 1.0 mL/min; injection volume 20 µL; monitored at 254 nm, 300 nm, 320 nm. Two different HPLC gradients were used for purity analysis; Method A: water/acetonitrile, gradient 10:90 to 90:10 from 0 to 25 min and isocratic 90:10 from 25 to 30 min; Method B: water/acetonitrile, gradient 50:50 to 90:10 from 0 to 25 min and isocratic 90:10 from 25 to 30 min (note: 4-dimethylaminopyridine is abbreviated DMAP, ethyl acetate is

abbreviated EtOAc, *N*,*N*-dimethylformamide is abbreviated DMF, and chloroform-d is abbreviated CDCl₃).

3-((*tert*-Butyldimethylsilyl)oxy)-4-methoxybenzaldehyde (2):^{S3} Isovanillin (2.01 g, 13.2 mmol), triethylamine (4.00 mL, 28.5 mmol), and DMAP (0.045 g, 0.37 mmol) were dissolved in dry CH₂Cl₂ (60 mL). *tert*-Butyldimethylsilyl chloride (2.214 g, 14.7 mmol) was added to the reaction mixture, which was stirred for 12 h. The reaction was quenched with water, extracted with diethyl ether (Et₂O), which was washed with water and brine, dried with Na₂SO₄, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B \rightarrow 27% A/73% B (10 CV), 27% A/73% B over (2 CV); flow rate 40.0 mL/min; monitored at 254 and 280 nm] yielded 3-((*tert*-butyldimethylsilyl)oxy)-4-methoxybenzaldehyde (2) (3.17 g, 11.9 mmol, 90%) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 9.82 (1H, s), 7.49 (1H, dd, *J* = 8.5 Hz, *J* = 2 Hz), 7.37 (1H, d, *J* = 2 Hz), 6.96 (1H, d, *J* = 8.5 Hz), 3.90 (3H, s), 1.00 (9H, s), 0.17 (6H, s).

¹³C NMR (125 MHz, CDCl₃) δ 190.9, 156.6, 145.3, 130.2, 126.3, 120.0, 111.1, 55.6, 25.6, 18.4, -4.6.

(3-((*tert*-Butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5trimethoxyphenyl)methanol (4):^{S3} 1-Bromo-3,4,5-trimethoxybenzene (1.81 g, 7.31 mmol) was dissolved in dry THF (60 mL) in a dry ice/acetone bath (-78 °C). *n*- Butyllithium (2.8 mL, 7.0 mmol, 2.5 M) was added dropwise to the reaction mixture, which was stirred for 30 min. 3-((*tert*-Butyldimethylsilyl)oxy)-4-methoxybenzaldehyde (2.00 g, 7.50 mmol) dissolved in dry THF (20 mL) was added dropwise, and the reaction mixture was stirred for 5 h. The reaction was quenched with water, acidified to pH 7 with 3 M HCl, extracted with Et₂O, washed with water and brine, dried with Na₂SO₄, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B \rightarrow 80% A/20% B (10 CV), 80% A/20% B over (2 CV); flow rate 40.0 mL/min; monitored at 254 and 280 nm] yielded (3-((*tert*butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5-trimethoxyphenyl)methanol (**4**) as a pale yellow oil (2.02 g, 4.65 mmol, 62%) [1.58 g, 3.63 mmol, 48%, corrected for EtOAc].

¹**H NMR** (500 MHz, CDCl₃) δ 6.89 (2H, m), 6.80 (1H, d, *J* = 8.5 Hz), 6.57 (2H, d, *J* = 4.5 Hz), 5.24 (1H, d, *J* = 4.5 Hz), 3.81 (3H, s), 3.77 (9H, s), 0.94 (9H, d, *J* = 3.5 Hz), 0.11 (6H, d, *J* = 2.5 Hz).

¹³C NMR (125 MHz, CDCl₃) δ 153.0, 150.3, 144.7, 140.0, 136.5, 119.9, 119.4, 111.8, 103.4, 75.5, 60.7, 55.9, 55.5, 25.7, 18.4, -4.6.

(3-((tert-Butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5-

trimethoxyphenyl)methanone (5):^{S3} (3-((*tert*-Butyldimethylsilyl)oxy)-4methoxyphenyl)(3,4,5-trimethoxyphenyl)methanol (3.00 g, 6.90 mmol), Celite (2.45 g), and potassium carbonate [K₂CO₃] (2.46 g, 17.8 mmol) were dissolved in dry CH₂Cl₂ (130 mL) in an ice bath (0 °C). Pyridinium chlorochromate [PCC] (1.52 g, 7.04 mmol) was added in small increments and the reaction mixture was stirred for 18 h. The reaction mixture was filtered with CH_2Cl_2 in a frit funnel containing a 50/50 mixture of Celite and silica gel and then evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B \rightarrow 45% A/55% B (10 CV), 45% A/55% B (2 CV); flow rate 40.0 mL/min; monitored at 254 and 280 nm] yielded (3-((*tert*-butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone (**5**) (1.79 g, 4.14 mmol, 60%) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 7.40 (1H, d, J = 8 Hz), 7.33 (1H, s), 6.99 (2H, s), 6.87 (1H, d, J = 8.5 Hz), 3.88 (3H, s), 3.84 (3H, s), 3,83 (6H, s), 0.96 (9H, s), 0.14 (6H, s).

¹³C NMR (125 MHz, CDCl₃) δ 194.5, 154.9, 152.7, 144.6, 141.5, 133.3, 130.4, 125.3, 122.3, 110.7, 107.4, 60.9, 56.2, 55.5, 25.6, 18.4, -4.6.

Phenstatin (6):^{S3} (3-((*tert*-Butyldimethylsilyl)oxy)-4-methoxyphenyl)(3,4,5trimethoxyphenyl)methanone (3.59 g, 8.31 mmol) was dissolved in dry THF (100 mL). Tetrabutylammonium fluoride trihydrate (3.93 g, 12.5 mmol) was added, and the reaction mixture was stirred for 18 h. The reaction was quenched with water, acidified to pH 7 with 3 M HCl, and extracted with EtOAc, which was dried with Na₂SO₄, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 12% A/88% B over 1.19 min (1 CV), 12% A/88% B \rightarrow 99% A/1% B over 13.12 min (10 CV), 99% A/1% B over 2.38 min (2 CV); flow rate 40.0 mL/min; monitored at 254 and 280 nm] yielded phenstatin (6) (2.06 g, 6.47 mmol, 78%) as a white solid. ¹**H NMR** (500 MHz, CDCl₃) δ 7.42 (1H, s), 7.37 (1H, d, *J* = 8.5 Hz). 7.01 (2H, s), 6.90 (1H, d, *J* = 8 Hz), 3.94 (3H, s), 3.90 (3H, s), 3.85 (6H, s).

¹³**C NMR** (125 MHz, CDCl₃) δ 194.7, 152.8, 150.2, 145.3, 141.6, 133.1, 131.0, 123.7, 116.2, 109.7, 107.5, 61.0, 56.3, 56.1.

HRMS $[M+Na]^+$: 341.0997 (calcd for $[C_{17}H_{18}O_6Na]^+$, 341.1103).

HPLC retention time (Method A): 15.35 min [97.1% at 254 nm].

(5-Nitrothiophen-2-yl)methanol (8):^{S2} 5-Nitrothiophene-2-carboxaldehyde (1.00 g, 6.38 mmol) was dissolved in dry methanol (20 mL) in an ice bath (0 °C). NaBH₄ (0.270 g, 7.14 mmol) was added, and the reaction mixture was stirred for 2 h. Ice was added and the solution was acidified to pH 7 with 3 M HCl. The reaction mixture was extracted with EtOAc, dried with Na₂SO₄, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 50 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B \rightarrow 65% A/35% B (10 CV), 65% A/35% B (2 CV); flow rate 50.0 mL/min; monitored at 254 and 280 nm] yielded alcohol **8** (0.914 g, 5.74 mmol, 90%) as a brown oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.84 (1H, d, *J* = 4.1 Hz), 6.95 (1H, dt, *J* = 4.1, 1.0 Hz), 4.90 (2H, d, *J* = 5.2 Hz), 2.15 (1H, t, *J* = 5.8 Hz).

¹³C NMR (126 MHz, CDCl₃) δ 154.0, 150.6, 129.0, 123.5, 60.2.

1-(5-Nitrothiophen-2-yl)ethan-1-ol (9):^{S1} TiCl₄ (7.84 g, 41.3 mmol) was added slowly dropwise into Et_2O (80 mL) at -78 °C, after which methyllithium (1.6 M, 25.8 mL, 41

mmol) was added drop-wise, and the reaction mixture was stirred for 1.5 h. 5-Nitro-2thiophenecarboxaldehyde (5.00g, 31.8 mmol) was dissolved in Et₂O (120 mL) and added dropwise to the reaction mixture, which was stirred (12 h). H₂O (50 mL) was used to quench the reaction. The layers were partitioned, and the residue was extracted with EtOAc (6×40 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 73%A / 27%B (13 CV), 73%A / 27%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] affording alcohol **9** (4.95 g, 28.6 mmol, 90%) as a dark brown oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.82 (1H, d, *J* = 4.2 Hz), 6.91 (1H, dd, *J* = 4.2, 1.0 Hz), 5.14 (1H, qd, *J* = 6.4, 1.0 Hz), 2.14 (1H, s), 1.64 (3H, d, *J* = 6.5 Hz).

¹³C NMR (125 MHz, CDCl₃) δ 160.0, 149.9, 129.1, 122.2, 66.3, 25.1.

1-(5-Nitrothiophen-2-yl)ethan-1-ol (9) [Alternate Route]: 5-Nitro-2-

thiophenecarboxaldehyde (1.00 g, 6.36 mmol) was dissolved in CH₂Cl₂ (50 mL) at 0 °C. Trimethylaluminum (2 M, 5.30 mL, 10.6 mmol) was added dropwise, and the reaction mixture was stirred for 2 h. The reaction was quenched with HCl (1 M, 40 mL) and the layers were partitioned. The residue was extracted with CH₂Cl₂ (3 x 30 mL), and the combined organic phase was washed with brine (40 mL), dried over Na₂SO₄, and evaporated under reduced pressure. The crude product was purified by flash column chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 70%A / 30%B (13 CV),

163

70% A / 30% B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] affording alcohol **11** (1.01 g, 5.85 mmol, 92%) as yellow-orange crystals.

1-(5-Nitrothiophen-2-yl)ethan-1-one (10): 2-(1-Hydroxyethyl)-5-nitrothiophene (1.04 g, 6.00 mmol) was dissolved in 70 mL CH₂Cl₂ at rt. Dess-Martin periodinane (3.82 g, 9.00mmol) was added in portions to the solution, and the reaction mixture was stirred (1 h). Saturated solutions of sodium thiosulfate (50 mL) and NaHCO₃ (50 mL) were used to quench the reaction mixture. The layers were partitioned, and the residue was extracted with EtOAc (4 x 30 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 80%A / 20%B (13 CV), 80%A / 20%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] affording ketone **10** (0.873 g, 5.10 mmol, 90%) as yellow-orange crystals.

¹**H NMR** (600 MHz, CDCl₃) δ 7.89 (1H, d, *J*=4.3 Hz), 7.58 (1H, d, *J*=4.3 Hz), 2.60 (3H, s).

¹³C NMR (151 MHz, CDCl₃) δ 190.35, 156.47, 148.16, 130.06, 128.28, 26.61.

2-(5-Nitrothiophen-2-yl)propan-2-ol (11):^{S1} TiCl₄ (3.62 g, 19.1 mmol) was slowly added dropwise into Et_2O (80 mL) at -78 °C, after which methyllithium (1.6 M, 11.9 mL, 19 mmol) was added dropwise, and the reaction mixture was stirred for 1.5 h. 2-Acetyl-5nitrothiophene (2.50 g, 14.7 mmol) was dissolved in Et_2O (140 mL) and added dropwise to the reaction mixture, which was stirred (12 h). H_2O (50 mL) was used to quench the reaction mixture. The layers were partitioned, and the residue was extracted with EtOAc ($6 \times 40 \text{ mL}$). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 70%A / 30%B (13 CV), 70%A / 30%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] affording alcohol **11** (1.61 g, 8.60 mmol, 45%) as a dark orange oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.80 (1H, d, *J* = 4.2 Hz), 6.89 (1H, d, *J* = 4.2 Hz), 1.69 (6H, s).

¹³C NMR (151 MHz, CDCl₃) δ 163.46, 150.04, 128.76, 121.26, 71.92, 32.08.

2-(5-Nitrothiophen-2-yl)propan-2-ol (11) [Alternate Route]: 2-Acetyl-5-

nitrothiophene (0.500 g, 2.92 mmol) was dissolved in CH₂Cl₂ (20 mL) at 0 °C. Trimethylaluminum (2 M, 2.42 mL, 4.85 mmol) was added dropwise, and the reaction mixture was stirred for 2 h. The reaction was quenched with HCl (1 M, 30 mL), and the layers were partitioned. The residue was extracted with CH₂Cl₂ (3 x 20 mL), and the combined organic extracts were washed with brine (20 mL), dried over Na₂SO₄, and evaporated under reduced pressure. The crude product was purified by flash column chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B \rightarrow 70%A / 30%B (13 CV), 70%A / 30%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] affording alcohol **11** (0.365 g, 2.13 mmol, 73%) as bright orange crystals.

(4-Methoxy-3-((5-nitrothiophen-2-yl)methoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (12):^{S2,S3} Phenstatin (0.405 g, 1.27 mmol), DIAD (0.289 g, 1.43 mmol), and (5-nitrothiophen-2-yl)methanol (0.454 g, 2.85 mmol) were dissolved in dry CH₂Cl₂ (40 mL). Triphenylphosphine (0.574 g, 2.19 mmol) was added, and the reaction mixture was stirred for 2 d. The reaction was quenched with water (30 mL) and extracted with EtOAc (3 x 30 mL), which was dried with Na₂SO₄ and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 50 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 17% A/83% B (1 CV), 17% A/83% B \rightarrow 100% A/0% B (10 CV), 100% A/0% B (2 CV); flow rate 35.0 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-((5-nitrothiophen-2-yl)methoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (12) (0.198 g, 0.431 mmol, 34%) as a brown solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.83 (1H, d, *J* = 4.5 Hz), 7.51 (1H, d, *J* = 1.5 Hz), 7.49 (1H, dd, *J* = 8 Hz, *J* = 1.5 Hz), 7.06 (1H, d, *J* = 4.5), 6.99 (2H, s), 6.97 (1H, d, *J* = 8.5 Hz), 5.33 (2H, s), 3.98 (3H, s), 3.93 (3H, s), 3.87 (6H, s).

¹³**C NMR** (125 MHz, CDCl₃) δ 194.3, 153.7, 152.8, 147.7, 146.9, 141.7, 133.0, 130.2, 128.4, 126.6, 125.2, 115.5, 110.6, 107.4, 66.3, 61.0, 56.3, 56.2.

HRMS [M+Na]⁺: 482.0880 (calcd for [C₂₂H₂₁NNaO₈S]⁺, 482.0880).

HPLC retention time (Method B): 9.10 min [95.1% at 254 nm].

(4-Methoxy-3-(1-(5-nitrothiophen-2-yl)ethoxy)phenyl)(3,4,5trimethoxyphenyl)methanone (13):^{S2,S3} Phenstatin (0.407 g, 1.28 mmol), DIAD (0.294 g, 1.45 mmol), and 1-(5-nitrothiophen-2-yl)ethanol (0.505 g, 2.92 mmol) were dissolved in dry CH₂Cl₂ (40 mL). Triphenylphosphine (0.558 g, 2.13 mmol) was added, and the reaction mixture was stirred for 2 d. The reaction was quenched with water and extracted with EtOAc, which was dried with Na₂SO₄ and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 25 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 15% A/85% B (1 CV), 15% A/85% B \rightarrow 100% A/0% B (10 CV), 100% A/0% B (2 CV); flow rate 20.0 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-(1-(5-nitrothiophen-2-yl)ethoxy)phenyl)(3,4,5trimethoxyphenyl)methanone (**13**) (0.179 g, 0.378 mmol, 30%) as a tan yellow solid.

¹H NMR (500 MHz, CDCl₃) δ 7.77 (1H, d, J = 4.2 Hz), 7.48 (1H, dd, J = 8.4, 2.0 Hz),
7.45 (1H, d, J = 2.0 Hz), 6.99 - 6.92 (4H, m), 5.60 (1H, q, J = 6.4 Hz), 3.96 (3H, s), 3.91 (3H, s), 3.84 (6H, s), 1.77 (3H, d, J = 6.4 Hz).

¹³C NMR (125 MHz, CDCl₃) δ 194.2, 154.8, 154.4, 152.8, 151.0, 145.9, 141.7, 133.0, 130.2, 128.4, 126.8, 123.4, 118.4, 110.9, 107.4, 73.6, 61.0, 56.3, 56.1, 23.2.

HRMS [M+Na]⁺: 496.1038 (calcd for [C₂₃H₂₃NNaO₈S]⁺, 496.1037).

HPLC retention time (Method B): 10.33 min [98.1% at 254 nm].

(4-Methoxy-3-((2-(5-nitrothiophen-2-yl)propan-2-yl)oxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (14):^{S2.S3} Phenstatin (0.581 g, 1.83 mmol), ADDP (0.597 g, 2.38 mmol), and 2-(5-nitrothiophen-2-yl)propan-2-ol (0.410 g, 2.19 mmol) were dissolved in dry CH_2Cl_2 (80 mL). Tributylphosphine (0.752 mL, 3.06 mmol) was added

dropwise, and the reaction mixture was stirred for 2 d. The reaction mixture was dried under reduced pressure. Flash chromatography of the crude product using a prepacked 25 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B \rightarrow 80% A/20% B (10 CV), 80% A/20% B (2 CV); flow rate 50.0 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-((2-(5-nitrothiophen-2yl)propan-2-yl)oxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (14) as an orange gum (0.062 g, 0.128 mmol, 7%) [0.050 g, 0.104 mmol, 6%, corrected for CH₂Cl₂].

¹**H NMR** (600 MHz, acetone-*d*₆) δ 7.93 (1H, d, *J* = 4.3 Hz), 7.67 (1H, dd, *J* = 8.5, 2.2 Hz), 7.41 (1H, d, *J* = 2.1 Hz), 7.22 (1H, d, *J* = 8.5 Hz), 7.19 (1H, d, *J* = 4.3 Hz), 7.02 (2H, s), 3.95 (3H, s), 3.87 (6H, s), 3.84 (3H, s), 1.79 (6H, s).

¹³C NMR (151 MHz, acetone-d₆) δ 192.94, 161.01, 157.41, 153.10, 150.43, 142.93, 141.89, 133.12, 129.98, 128.83, 127.80, 125.38, 123.07, 111.83, 107.31, 80.82, 59.80, 55.74, 55.44, 28.16.

HRMS [M+Na]⁺: 510.1190 (calcd for [C₂₄H₂₅NNaO₈S]⁺, 510.1193).

HPLC retention time (Method B): 11.49 min [96.3% at 254 nm].

1-(4-Nitrophenyl)ethan-1-ol (**16**):^{S1} TiCl₄ (2.72 mL, 24.8 mmol) was added dropwise slowly to dry Et₂O (100 mL) in an acetone / dry ice bath (-78 °C). Methyllithium (15.5 mL, 25 mmol, 1.6 M) was then added dropwise slowly to the reaction mixture which was stirred for 1.5 h. 4-Nitrobenzaldehyde (2.88g, 19.1 mmol) dissolved in Et₂O (140 mL) was added dropwise to the reaction mixture, which was stirred for 18 h. The reaction was quenched with water and extracted with CH_2Cl_2 (3 x 50 mL), which was washed with water and brine and dried over Na₂SO₄, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B \rightarrow 80% A/20% B over (10 CV), 80% A/20% B (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded 1-(4-nitrophenyl)ethan-1-ol (**16**) (2.49 g, 14.9 mmol, 78%) as a yellow-orange oil.

¹**H NMR** (600 MHz, CDCl₃) δ 8.17 (2H, d, *J* = 8.7 Hz), 7.53 (2H, d, *J* = 8.6 Hz), 5.01 (1H, q, *J* = 6.5 Hz), 1.51 (3H, d, *J* = 6.6 Hz).

¹³C NMR (151 MHz, CDCl₃) δ 153.22, 147.09, 126.13, 123.71, 69.43, 25.44.

2-(4-Nitrophenyl)propan-2-ol (**18**):^{S1} TiCl₄ (3.02 mL, 27.6 mmol) was added dropwise slowly to dry Et₂O (100 mL) in an acetone / dry ice bath (-78 °C). Methyllithium (17.2 mL, 28 mmol, 1.6 M) was then added dropwise slowly to the reaction mixture, which was stirred for 1.5 h. 4-Nitroacetophenone (3.50g, 21.2 mmol) dissolved in Et₂O (150 mL) was added dropwise to the reaction mixture, which was stirred for 18 h. The reaction was quenched with water, and the mixture was extracted with CH₂Cl₂ (3 x 50 mL), which was washed with water and brine, dried over Na₂SO₄, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B → 60% A/40% B (10 CV), 60% A/40% B (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded 2-(4-nitrophenyl)propan-2-ol (**18**) (1.42 g, 7.84 mmol, 37%) as an orange oil. ¹**H NMR** (600 MHz, CDCl₃) δ 8.16 (2H, d, *J* = 8.9 Hz), 7.65 (2H, d, *J* = 8.9 Hz), 1.61 (7H, s).

¹³C NMR (151 MHz, CDCl₃) δ 156.52, 146.64, 125.51, 123.45, 72.49, 31.69.

(4-methoxy-3-((4-nitrobenzyl)oxy)phenyl)(3,4,5-trimethoxyphenyl)methanone

(20):^{S2-S5} Phenstatin (0.500 g, 1.57 mmol), DIAD (0.35 mL, 1.9 mmol), and 4-nitrobenzyl alcohol (0.481 g, 3.14 mmol) were dissolved in dry CH₂Cl₂ (60 mL). Triphenylphosphine (0.700 g, 2.67 mmol) was added, and the reaction mixture was stirred for 2 d. The reaction was quenched with water, and the reaction mixture was extracted with EtOAc, which was dried with Na₂SO₄ and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B \Rightarrow 80% A/20% B (10 CV), 80% A/20% B (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-((4-nitrobenzyl)oxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (**20**) (0.462 g, 1.02 mmol, 65%) as a yellow solid.

¹**H NMR** (600 MHz, acetone-*d*₆) δ 8.31 (2H, d, *J* = 8.7 Hz), 7.84 (2H, d, *J* = 9.0 Hz), 7.54 (1H, d, *J* = 2.0 Hz), 7.52 (1H, dd, *J* = 8.3, 2.0 Hz), 7.18 (1H, d, *J* = 8.4 Hz), 7.04 (2H, s), 5.40 (2H, s), 4.00 (3H, s), 3.87 (6H, s), 3.84 (3H, s).

¹³C NMR (151 MHz, acetone-*d₆*) δ 193.21, 153.71, 153.10, 147.67, 145.12, 141.81, 133.24, 130.25, 128.06, 125.41, 123.49, 114.93, 110.99, 107.37, 99.99, 69.45, 59.80, 55.70, 55.54. HRMS [M+Na]⁺: 476.1315 (calcd for [C₂₄H₂₃NNaO₈]⁺, 476.1316).

HPLC retention time (Method B): 9.55 min [100% at 254 nm].

(4-Methoxy-3-(1-(4-nitrophenyl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (21):^{S2-S5} Phenstatin (0.500 g, 1.57 mmol), DIAD (0.348 mL, 1.88 mmol), and 1-(4nitrophenyl)ethan-1-ol (0.525 g, 3.14 mmol) were dissolved in dry CH₂Cl₂ (60 mL). Triphenylphosphine (0.700 g, 2.67 mmol) was added to the reaction mixture, which was stirred for 2 d. The reaction was quenched with water, and the reaction mixture was extracted with CH₂Cl₂ (3 x 40 mL), which was dried with Na₂SO₄ and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B \rightarrow 80% A/20% B over (10 CV), 80% A/20% B (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-(1-(4nitrophenyl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (21) (0.315 g, 0.675 mmol, 43%) as white solid.

¹**H NMR** (600 MHz, acetone-*d*₆) δ 8.26 (2H, d, *J* = 8.8 Hz), 7.78 (2H, d, *J* = 8.4 Hz), 7.46 (1H, dd, *J* = 8.4, 2.0 Hz), 7.34 (1H, d, *J* = 2.0 Hz), 7.15 (1H, d, *J* = 8.4 Hz), 6.93 (2H, s), 5.72 (1H, q, *J* = 6.4 Hz), 4.00 (3H, s), 3.83 (3H, s), 3.81 (6H, s), 1.69 (3H, d, *J* = 6.5 Hz).

¹³C NMR (151 MHz, CDCl₃) δ 194.27, 153.96, 152.80, 150.05, 147.48, 146.57, 141.76, 133.04, 130.14, 126.53, 125.83, 124.01, 116.93, 110.61, 107.50, 60.98, 56.36, 56.14, 23.86, 21.95.

HRMS [M+Na]⁺: 490.1471 (calcd for [C₂₅H₂₅NNaO₈]⁺, 490.1472).

HPLC retention time (Method B): 10.05 min [96.7% at 254 nm].

(4-Methoxy-3-((2-(4-nitrophenyl)propan-2-yl)oxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (22):^{S2-S5} Phenstatin (0.500 g, 1.57 mmol), ADDP (0.475 g, 1.88 mmol), and 2-(4-nitrophenyl)propan-2-ol (0.569 g, 3.14 mmol) were dissolved in dry CH₂Cl₂ (70 mL). Tributylphosphine (0.66 mL, 2.67 mmol) was added dropwise to the reaction mixture, which was stirred for 2 d. The reaction was quenched with water, and the mixture was extracted with EtOAc, which was washed with water and brine, dried with Na₂SO₄, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B \rightarrow 80% A/20% B (10 CV), 80% A/20% B (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-((2-(4-nitrophenyl)propan-2-yl)oxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (22) (0.174 g, 0.361 mmol, 23%) as tan solid,

¹H NMR (600 MHz, acetone-d₆) δ 8.25 (2H, d, J = 8.9 Hz), 7.91 (2H, d, J = 8.9 Hz),
7.57 (1H, dd, J = 8.5, 2.1 Hz), 7.18 (1H, d, J = 8.5 Hz), 7.12 (1H, d, J = 2.1 Hz), 6.92 (2H, s), 3.96 (3H, s), 3.84 (6H, s), 3.83 (3H, s), 1.76 (6H, s).

¹³C NMR (151 MHz, acetone-d₆) δ 193.05, 156.74, 154.53, 153.03, 147.02, 143.92, 141.76, 133.21, 129.72, 126.62, 126.34, 123.48, 123.30, 111.62, 107.16, 81.28, 59.77, 55.73, 55.43, 27.99.

HRMS [M+Na]⁺: 504.1629 (calcd for [C₂₆H₂₇NNaO₈]⁺, 504.1629).

HPLC retention time (Method B): 10.82 min [97.1% at 254 nm].

Ethyl 2-amino-1-methyl-1*H*-imidazole-5-carboxylate (26):^{S6} To a suspension of sarcosine ethyl ester (4.00 g, 0.026 mol) in THF (90 mL) and ethyl formate (90 mL) was added NaH (60 % dispersion in mineral oil, 10.0 g, 0.25 mol) in several portions at room temperature. The reaction mixture was stirred for 3 h, and, during this time, a yellow suspension formed. The reaction mixture was concentrated and triturated with hexane (2 x 150 mL). The hexane was decanted, and the resulting light tan solid was dried in *vacuo*. Ethanol (80 mL) and concentrated aqueous HCl (16 mL) were added to the solid, and the suspension was heated to reflux for 2 h. The reaction mixture was then filtered while hot, and the filter was rinsed with boiling ethanol (2 x 50 mL). The combined filtrate was concentrated to yield a brown oil. The oil was diluted with ethanol (140 mL) and water (60 mL), and the pH of the solution was adjusted to 3 by using NaOH solution (2 M). Cyanamide (2.18 g, 0.052 mol) was added, and the resulting solution was heated to reflux for 1.5 h. After being cooled to room temperature, the reaction mixture was concentrated to approximately 1/8 of its original volume. Solid K₂CO₃ was added to adjust the pH of the concentrated reaction mixture to 8-9, resulting in the formation of a yellow precipitate. The solid was removed by filtration, washed with a K_2CO_3 solution (1 M, 1 x 20 mL) and water (2 x 20 mL) and dried to afford a pale yellow solid (1.97 g, 12.0 mmol, 45%).

¹**H NMR** (600 MHz, CDCl₃) δ 7.45 (1H, s), 4.27 (2H, q, *J* = 7.1 Hz), 4.25 (2H, s), 3.68 (3H, s), 1.34 (3H, t, *J* = 7.1 Hz).

¹³C NMR (151 MHz, CDCl₃) δ 160.67, 151.89, 135.50, 119.05, 59.82, 30.55, 14.41.

Ethyl 1-methyl-2-nitro-1*H*-imidazole-5-carboxylate (27):^{S6,S7} Aminoimidazole (0.700 g, 4.14 mmol) in acetic acid (7.3 mL) was added dropwise to an aqueous solution of sodium nitrite (3.6 mL, 11 M). The solution was stirred at room temperature for 4 h until no more N₂ was formed. The reaction mixture was extracted with CH₂Cl₂ (1 x 20 mL), washed with brine (1 x 20 mL) and a saturated aqueous solution of Na₂SO₃ (1 x 20 mL). The organic layer was then dried over Na₂SO₄, filtered and concentrated to afford a crude yellow solid. Purification by flash chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (4 CV), 7%A / 93%B \rightarrow 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 70 mL/min; monitored at 254 and 280 nm] afforded the nitroimidazole analogue **27** (0.510 g, 2.60 mmol, 63%) as a yellow solid.

¹**H NMR** (600 MHz, CDCl₃) δ 7.74 (1H, s), 4.40 (2H, q, *J* = 7.1 Hz), 4.35 (3H, s), 1.41 (3H, t, *J* = 7.1 Hz).

¹³C NMR (151 MHz, CDCl₃) δ 159.08, 147.46, 134.67, 126.29, 61.84, 35.39, 14.18.

(1-Methyl-2-nitro-1*H*-imidazol-5-yl)methanol (28):^{S6,S7} A suspension of the nitroimidazole ethyl ester (0.796 g, 4.00 mmol) in 0.75 M NaOH solution (16 mL) was stirred at room temperature overnight to give a clear light yellow solution. The pH of the reaction mixture was adjusted to 1 by adding concentrated HCl. The resulting solution was extracted with EtOAc (5 x 20 mL). The combined organic layer was dried over Na_2SO_4 and concentrated to afford a light yellow solid. The solid was dissolved in THF (8 mL) with triethylamine (0.880 mL, 6.30 mmol). Isobutylchloroformate (0.820 mL, 6.30 mmol) was added dropwise at -40 °C, and the reaction mixture was stirred at room

temperature for 1 h. NaBH₄ (0.794 g, 21.0 mmol) was added to the solution, followed by dropwise addition of water (7 mL) over 1 h while maintaining the temperature around 0 °C. The reaction mixture was extracted with Et₂O (3 x 20 mL), which was dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash chromatography using a prepacked 25 g silica column [solvent A: methanol; solvent B: CH₂Cl₂; gradient: 1%A / 99%B (4 CV), 1%A / 99%B \rightarrow 15%A / 85%B (10 CV), 15%A / 85%B (2 CV); flow rate: 75 mL/min; monitored at 254 and 280 nm] afforded the normethyl nitroimidazole trigger (**28**) (0.449 g, 2.86 mmol, 71%) as a pale yellow solid. ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.11 (1H, s), 4.68 (2H, s), 4.06 (3H, s).

¹³C NMR (151 MHz, MeOD) δ 145.82, 137.93, 126.02, 53.16, 33.40.

1-Methyl-2-nitro-1*H***-imidazole-5-carbaldehyde (29):** Normethyl nitroimidazole trigger **28** (359 mg, 2.28 mmol) was dissolved in CH₂Cl₂ (10 mL). Dess–Martin periodinane (1.16 g, 2.74 mmol) was added and the reaction mixture was stirred for 1 h at room temperature. Saturated solutions of NaHCO₃ (20 mL) and sodium thiosulfate (20 mL) were added to the reaction mixture, which was extracted with EtOAc (3 x 25 mL). The combined organic layers were dried over Na₂SO₄ and filtered, and the solvent was removed under reduced pressure. Purification by flash chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 12% A / 88% B (1 CV), 12%A / 88% B \rightarrow 100%A / 0%B (10 CV), 100%A / 0%B (2 CV); flow rate: 75 mL/min; monitored at 254 and 280 nm] afforded imidazole analogue (346 mg, 2.23 mmol, 98%) as a yellow solid.

¹**H NMR** (600 MHz, CDCl₃) δ 9.94 (1H, s), 7.82 (1H, s), 4.36 (3H, s).

¹³C NMR (151 MHz, CDCl₃) δ 180.39, 148.35, 139.38, 132.38, 35.57.

1-(1-Methyl-2-nitro-1*H***-imidazol-5-yl)ethan-1-ol (30):**^{S1} TiCl₄ (1.3 mL, 11 mmol) in Et₂O (60 mL) was treated with methyllithium (7.1 mL, 1.6M, 11 mmol) at -78 °C, and the resulting solution was stirred for 1 h. A THF (15 mL) solution of imidazole aldehyde analogue (0.884 g, 5.70 mmol) was added dropwise and the reaction mixture was stirred for 24 h. Water (50 mL) was added and the resulting solution was extracted with EtOAc (3 x 50 mL), which was dried over Na₂SO₄ and concentrated to afford a crude brown oil. Purification by flash chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 17%A / 83%B (1 CV), 17%A / 83%B \rightarrow 100%A / 0%B (7 CV), 100%A / 0%B (5 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] afforded the monomethyl nitroimidazole trigger (30) (400 mg, 2.34 mmol, 41%) as a yellow solid.

¹**H NMR** (600 MHz, acetone-*d*₆) δ 7.07 (1H, s), 5.01 (1H, p, *J* = 6.2 Hz), 4.64 (1H, d, *J* = 6.0 Hz), 4.09 (3H, s), 1.63 (3H, d, *J* = 6.6 Hz).

¹³**C NMR** (151 MHz, acetone- d_6) δ 146.4, 141.6, 124.7, 60.4, 33.9, 21.1

(4-Methoxy-3-((1-methyl-2-nitro-1*H*-imidazol-5-yl)methoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (**31**):^{S2-S5} Phenstatin (0.500 g, 1.57 mmol), (1-methyl-2nitro-1*H*-imidazol-5-yl)methanol (0.296 g, 1.89 mmol), and DIAD (0.40 mL, 2.04 mmol) were dissolved in CH_2Cl_2 . Triphenylphosphine (0.825 g, 3.14 mmol) was added to the mixture, and the reaction mixture was stirred for 24 h. The reaction mixture was then evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A: EtOAc; solvent B: hexanes; gradient, 17%A/83%B over 1.19 min (1 CV), 17%A/83%B \rightarrow 100%A/0%B over 8.33 min (7 CV), 100%A / 0%B over 5.95 min (5 CV); flow rate 100 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-((1-methyl-2-nitro-1*H*-imidazol-5yl)methoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (**31**) as a pale yellow-white solid (0.346 g, 0.757 mmol, 48%) [0.284 g, 0.621 mmol, 39%, corrected for EtOAc].

¹**H NMR** (600 MHz, CDCl₃) δ 7.62 (1H, d, *J* = 1.7 Hz), 7.52 (1H, dd, *J* = 8.3, 1.7 Hz), 7.24 (1H, s), 7.04 (2H, s), 6.97 (1H, d, *J* = 8.4 Hz), 5.18 (2H, s), 4.16 (3H, s), 3.97 (3H, s), 3.96 (3H, s), 3.91 (6H, s).

¹³C NMR (151 MHz, CDCl₃) δ 194.16, 153.97, 152.91, 146.74, 141.88, 132.92, 132.30, 130.43, 129.31, 127.00, 116.43, 110.61, 107.52, 99.98, 61.24, 61.01, 56.39, 56.05, 34.54.
HRMS [M+Na]⁺: 480.1376 (calcd for [C₂₂H₂₃N₃NaO₈]⁺,480.1377).

HPLC retention time (Method B): 4.66 min [100% at 254 nm].

(4-methoxy-3-(1-(1-methyl-2-nitro-1*H*-imidazol-5-yl)ethoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (32):^{S2-S5} Phenstatin (0.250 g, 0.786 mmol), DIAD (0.19 mL, 1.02 mmol), and 1-(1-methyl-2-nitro-1*H*-imidazol-5-yl)ethan-1-ol (0.161 g, 0.943 mmol) were added to dry CH_2Cl_2 (50 mL). Triphenylphosphine (0.412 g, 1.57 mmol) was added, and the reaction mixture was stirred for 2 d. The reaction solvent was evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A: EtOAc; solvent B: hexanes; gradient, 15%A/85%B over 1.19 min (1 CV), 15%A/85%B \rightarrow 100%A/0%B over 8.33 min (7

CV), 100%A / 0%B over 14.28 min (12 CV); flow rate 100 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-(1-(1-methyl-2-nitro-1*H*-imidazol-5-yl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (**32**) as a pale yellow-white solid (0.119 g, 0.252 mmol, 32%) [0.101 g, 0.214 mmol, 27%, corrected for EtOAc].

¹H NMR (600 MHz, CDCl₃) δ 7.57 (1H, d, J = 2.0 Hz), 7.55 (1H, dd, J = 8.3, 2.0 Hz),
7.21 (1H, s), 7.02 (2H, s), 6.99 (1H, d, J = 8.4 Hz), 5.59 (1H, q, J = 6.5 Hz), 4.13 (3H, s),
3.97 (3H, s), 3.96 (3H, s), 3.91 (6H, s), 1.81 (3H, d, J = 6.5 Hz).

¹³C NMR (151 MHz, CDCl₃) δ 194.09, 154.63, 152.90, 145.23, 141.89, 137.09, 132.88, 130.47, 127.15, 118.90, 110.95, 107.51, 99.98, 68.42, 61.01, 56.39, 56.04, 34.70, 18.55.

HRMS $[M+Na]^+$: 494.1533 (calcd for $[C_{23}H_{25}N_3NaO_8]^+$ 494.1534).

HPLC retention time (Method B): 5.17 min [98.6% at 254 nm].

(5-Nitrofuran-2-yl)methanol (34):⁵² 5-Nitrofuran-2-carbaldehyde (4.00 g, 28 mmol) was dissolved in anhydrous methanol (80 mL) and cooled to 0 °C. NaBH₄ (1.17 g, 31 mmol) was added to the reaction mixture, which was stirred for 2.5 h. The reaction was quenched with an HCl solution (1 M, 40 mL) and extracted with EtOAc (3 x 50 mL). The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure to afford a crude yellow oil. Purification by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] afforded (5-nitrofuran-2-yl)methanol (34) (3.23 g, 22.6 mmol, 80%) as a pale yellow oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.31 (1H, d, *J* = 3.6 Hz), 6.58 (1H, d, *J* = 3.6 Hz), 4.74 (2H, s), 2.09 (1H, s).

¹³C NMR (151 MHz, CDCl₃) δ 157.37, 151.92, 112.40, 110.61, 57.45.

1-(5-Nitrofuran-2-yl)ethan-1-ol (35):^{S1} TiCl₄ (0.78 mL, 7.1 mmol) in Et₂O (35 mL) was treated with methyllithium (4.4 mL, 1.6 M, 7.1 mmol) at -78 °C. The resulting solution was stirred for 1 h. A THF (10 mL) solution of 5-nitrofuran-2-carbaldehyde (0.500 g, 3.5 mmol) was added dropwise, and the reaction mixture was stirred for 24 h. Water (30 mL) was added and the resulting solution was extracted with EtOAc (3 x 30 mL), which was dried over Na₂SO₄ and concentrated to afford a crude brown oil. Purification by flash chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B → 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 75 mL/min; monitored at 254 and 280 nm] afforded 1-(5-nitrofuran-2-yl)ethan-1-ol (**35**) (449 mg, 2.86 mmol, 81%) as a brown oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.29 (1H, d, *J* = 4.1 Hz), 6.52 (1H, d, *J* = 4.6 Hz), 4.96 (1H, q, *J* = 7.1 Hz), 2.57 (1H, s), 1.61 (3H, d, *J* = 6.8 Hz).

¹³C NMR (151 MHz, CDCl₃) δ 161.27, 151.59, 112.51, 108.57, 63.66, 21.38.

1-(5-Nitrofuran-2-yl)ethan-1-one (**36**): Dess-Martin periodinane (8.62 g, 20.4 mmol) was added to 1-(5-nitrofuran-2-yl)ethan-1-ol (3.20 g, 20.4 mmol) dissolved in CH_2Cl_2 (250 mL), and the reaction mixture was stirred for 1 h. The reaction was quenched with saturated solutions of sodium thiosulfate and NaHCO₃, then extracted with CH_2Cl_2 (3 x

50 mL), which was washed with water and brine, dried with Na₂SO₄, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 7% A/93% B over 1.19 min (1 CV), 7% A/93% B \rightarrow 50% A/50% B over 13.12 min (10 CV), 50% A/50% B over 2.38 min (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded 1-(5-nitrofuran-2-yl)ethan-1-one (**36**) (2.98 g, 19.2 mmol, 94%) as yellow solid.

¹**H NMR** (600 MHz, CDCl₃) δ 7.38 (1H, d, *J* = 3.8 Hz), 7.28 (1H, d, *J* = 3.7 Hz), 2.61 (3H, s).

¹³C NMR (151 MHz, CDCl₃) δ 186.73, 151.91, 151.48, 116.79, 111.94, 26.27.

2-(5-Nitrofuran-2-yl)propan-2-ol (37): 1-(5-Nitrofuran-2-yl)ethan-1-one (3.00 g, 19.3 mmol) in CH₂CI₂ (120 mL) was treated dropwise at 0 °C with trimethylaluminium (16.0 mL, 2.0 M, 32 mmol), and the resulting yellow solution was stirred for 90 min at 0 °C. Sat. aq. NH₄Cl was added to the reaction mixture, which was extracted with CH₂Cl₂ (3 x 50 mL). The combined organic layers were dried over Na₂SO₄ and filtered, and the solvent was removed under reduced pressure to give a yellow oil. Purification by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B \rightarrow 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 1000mL/min; monitored at 254 and 280 nm] afforded 2-(5-nitrofuran-2-yl)propan-2-ol (**37**) (2.75 g, 16.1 mmol, 83%) as a yellow oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.27 (1H, d, J = 3.7 Hz), 6.49 (1H, d, J = 3.7 Hz), 2.36 (1H, s), 1.65 (7H, s).

¹³C NMR (151 MHz, CDCl₃) δ 164.05, 151.36, 112.55, 107.37, 69.30, 28.67.

(4-Methoxy-3-((5-nitrofuran-2-yl)methoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (38):^{S2-S5} Phenstatin (0.250 g, 0.786 mmol), DEAD (0.16 mL, 1.02 mmol), and (5-nitrofuran-2-yl)methanol (0.135 g, 0.943 mmol) were dissolved in dry CH₂Cl₂ (60 mL). Triphenylphosphine (0.412 g, 1.57 mmol) was added, and the reaction mixture was stirred for 2 d. The solvent was evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 50 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B over 1.19 min (1 CV), 10% A/90% B \rightarrow 80% A/20% B over 13.12 min (10 CV), 80% A/20% B over 2.38 min (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-((5-nitrofuran-2-yl)methoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (38) (0.143 g, 0.322 mmol, 41%) as a white solid.

¹**H NMR** (600 MHz, acetone-*d*₆) δ 7.59 (1H, d, *J* = 2.0 Hz), 7.56 – 7.52 (2H, m), 7.17 (1H, d, *J* = 8.4 Hz), 7.06 (2H, s), 6.95 (1H, d, *J* = 3.7 Hz), 5.32 (2H, s), 3.96 (3H, s), 3.88 (6H, s), 3.85 (3H, s).

¹³C NMR (151 MHz, acetone-d₆) δ 193.12, 154.11, 153.89, 153.12, 147.13, 141.85, 133.19, 130.26, 126.00, 124.87, 116.00, 113.41, 112.45, 111.18, 107.39, 63.08, 59.80, 55.72, 55.47. HRMS [M+Na]⁺: 466.1107 (calcd for [C₂₂H₂₁NNaO₉]⁺, 466.1109).

HPLC retention time (Method B): 6.81 min [99.1% at 254 nm].

(4-Methoxy-3-(1-(5-nitrofuran-2-yl)ethoxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (39):^{S2-S5} Phenstatin (0.250 g, 0.786 mmol), DIAD (0.20

mL, 1.02 mmol), and 1-(5-nitrofuran-2-yl)ethan-1-ol (0.148 g, 0.943 mmol) were dissolved in dry CH₂Cl₂ (60 mL). Triphenylphosphine (0.412 g, 1.57 mmol) was added, and the reaction mixture was stirred for 2 d. The solvent was evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 50 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B over 1.19 min (1 CV), 10% A/90% B \rightarrow 80% A/20% B over 13.12 min (10 CV), 80% A/20% B over 2.38 min (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-(1-(5-nitrofuran-2-yl)ethoxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (**39**) (0.169 g, 0.369 mmol, 47%) as a white solid.

¹**H NMR** (600 MHz, acetone-*d*₆) δ 7.55 (1H, dd, *J* = 8.4, 2.1 Hz), 7.51 (1H, d, *J* = 2.1 Hz), 7.49 (1H, d, *J* = 3.7 Hz), 7.17 (1H, d, *J* = 8.4 Hz), 7.02 (2H, s), 6.83 (1H, d, *J* = 3.5 Hz), 5.65 (1H, q, *J* = 6.5 Hz), 3.97 (3H, s), 3.87 (6H, s), 3.84 (3H, s), 1.77 (3H, d, *J* = 6.6 Hz).

¹³C NMR (151 MHz, acetone-d₆) δ 193.05, 158.26, 154.84, 153.11, 151.79, 146.11, 141.89, 133.16, 130.29, 126.49, 119.30, 112.44, 111.54, 111.02, 107.39, 70.96, 59.80, 55.73, 55.52, 18.82.

HRMS $[M+Na]^+$: 480.1263 (calcd for $[C_{23}H_{23}NNaO_9]^+$, 480.1265).

HPLC retention time (Method B): 7.86 min [100% at 254 nm].

(4-Methoxy-3-((2-(5-nitrofuran-2-yl)propan-2-yl)oxy)phenyl)(3,4,5-

trimethoxyphenyl)methanone (**40**):^{S2-S5} Phenstatin (1.00 g, 3.14 mmol), ADDP (1.03 g, 4.08 mmol), and 2-(5-nitrofuran-2-yl)propan-2-ol (0.646 g, 3.77 mmol) were dissolved in

dry THF (80 mL). Tributylphosphine (1.55 mL, 6.28 mmol) was added dropwise, and the reaction mixture was stirred for 2 d. The solvent was evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 100 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B \rightarrow 80% A/20% B (10 CV), 80% A/20% B (0.2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded (4-methoxy-3-((2-(5-nitrofuran-2-yl)propan-2-yl)oxy)phenyl)(3,4,5-trimethoxyphenyl)methanone (**40**) as a colorless solid (0.118 g, 0.251 mmol, 8%) [0.100 g, 0.213 mmol, 7%, corrected for CH₂Cl₂].

¹**H NMR** (600 MHz, acetone-d6) δ 7.58 (1H, dd, J = 8.5, 2.1 Hz), 7.40 (1H, d, J = 3.7 Hz), 7.14 – 7.06 (2H, m), 6.94 (2H, s), 6.69 (1H, d, J = 3.7 Hz), 3.83 (6H, s), 3.81 (3H, s), 3.80 (3H, s), 1.75 (6H, s).

¹³C NMR (151 MHz, acetone-d₆) δ 192.97, 160.47, 157.53, 153.09, 151.48, 143.09, 141.85, 133.15, 129.94, 127.80, 125.96, 112.31, 111.61, 110.81, 107.25, 77.40, 59.80, 55.74, 55.38, 25.03.

HRMS $[M+Na]^+$: 494.1422 (calcd for $[C_{24}H_{25}NNaO_9]^+$ 494.1422).

HPLC retention time (Method B): 8.26 min [93.9% at 254 nm].

Biology

Colchicine Binding Assay^{S22}

Inhibition of [³H]colchicine binding to tubulin was determined using 0.1 mL reaction mixtures. Each reaction mixture contained 1.0 μ M tubulin, 5.0 μ M [³H]colchicine (from Perkin-Elmer), 5% (v/v) dimethyl sulfoxide, potential inhibitors at 5.0 µM and components that were previously demonstrated to stabilize the colchicine binding activity of tubulin^{S10} (1.0 M monosodium glutamate [adjusted to pH 6.6 with HCl in a 2.0 M stock solution], 0.5 mg/mL bovine serum albumin, 0.1 M glucose-1-phosphate, 1.0 mM MgCl₂, and 1.0 mM GTP). Incubation was for 10 min at 37°C, a time point at which the binding reaction in the control is 40–60% complete. Reactions were stopped by adding 2.0 mL of ice-cold water and placing the samples on ice. Each sample was poured onto a stack of two DEAE-cellulose filters, followed immediately by 6 mL of ice-cold water, and the water was aspirated under reduced vacuum. The filters were washed with 2 mL water X 3 and, following removal of excess water under a strong vacuum, placed into vials containing 5 mL of Biosafe II scintillation cocktail. Samples were counted the next day in a Beckman scintillation counter. Samples with potential inhibitors were compared to controls with no inhibitor to determine percent inhibition. All samples were corrected for the amount of colchicine that bound to the filters in the absence of tubulin.

Inhibition of Tubulin Polymerization^{S22}

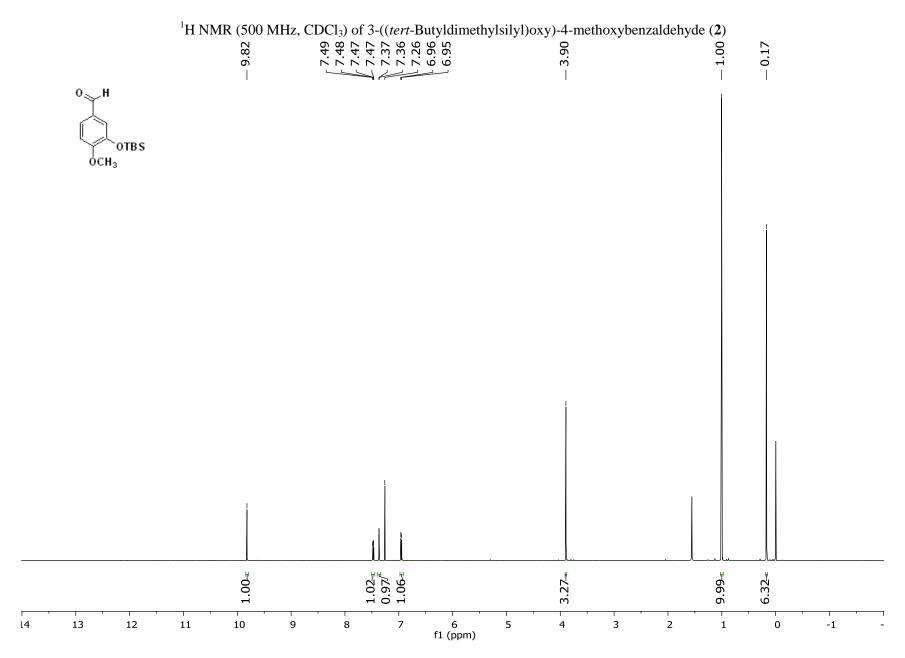
Tubulin assembly experiments were performed using 0.25 mL reaction mixtures (final volume).^{S11} The mixtures contained 1 mg/mL (10 μ M) purified bovine brain tubulin, 0.8

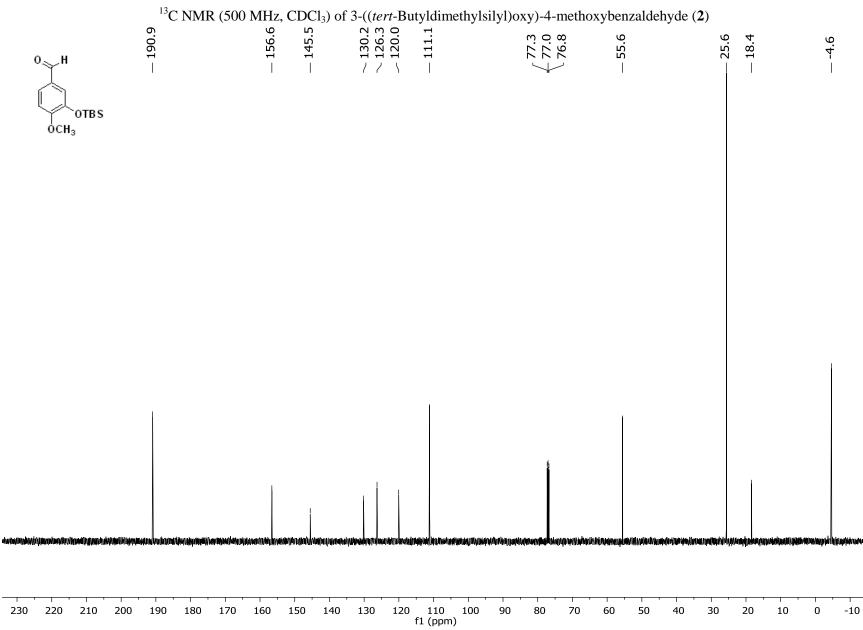
M monosodium glutamate (pH 6.6, as above), 4% (v/v) dimethyl sulfoxide, 0.4 mM GTP, and varying compound concentrations. Initially, all components except GTP were preincubated for 15 min at 30 °C in 0.24 mL. After chilling the mixtures on ice, 10 μ L of 10 mM GTP was added. The reaction mixtures were then transferred to cuvettes held at 0 °C in Beckman DU-7400 and DU-7500 spectrophotometers equipped with electronic temperature controllers. The temperature was jumped to 30 °C over about 30 s, and polymerization was followed turbidimetrically at 350 nm for 20 min. Each reaction set included a reaction mixture without compound, and the IC50 was defined as the compound concentration that inhibited extent of assembly by 50% after 20 min at 30 °C.

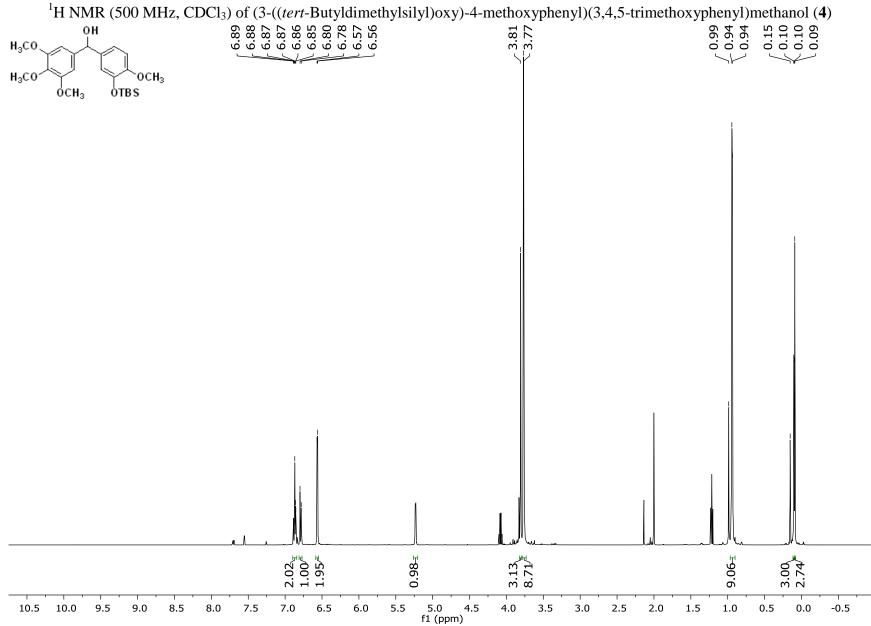
NADPH Cytochrome P450 Oxidoreductase Cleavage Assay S23,S24

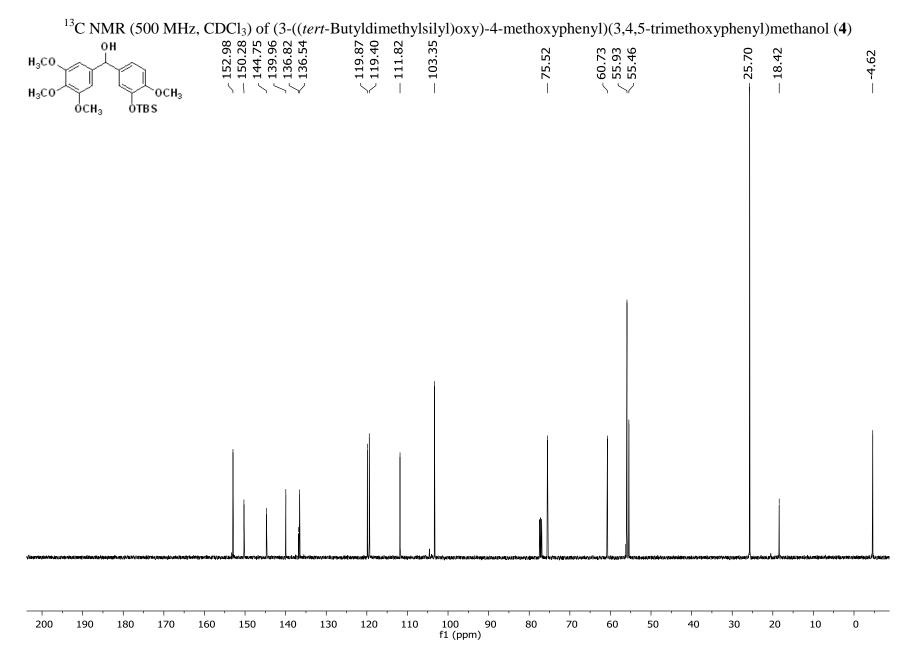
Rat NADPH cytochrome P450 oxidoreductase (POR) and protocatechuate 3,4dioxygenase (PCD) were purchased from Corning[®] and Sigma-Aldrich, respectively, and their enzymatic activities were determined in terms of enzyme units (U). All bioreductive prodrugs were dissolved in DMSO as 10 mM stock solutions.

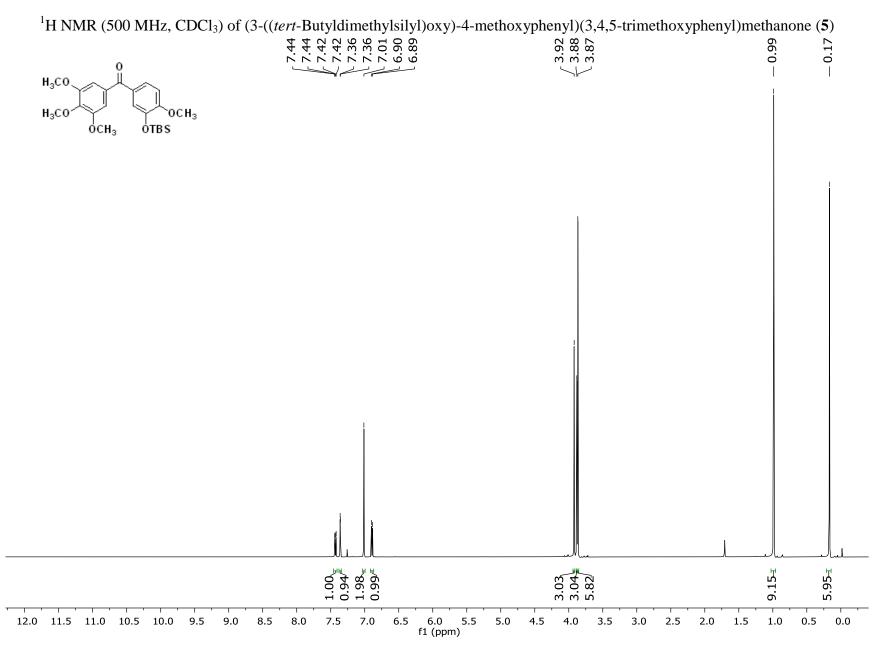
An aliquot (5 μ L) of the 10 mM compound DMSO stock solution along with 0.5 μ L 0.1% Triton X-100 were added to 395.5 μ l 200 mM pH 7.4 potassium phosphate buffer containing 400 μ M freshly made protocatechuic acid (PCA). The components were fully mixed in a microvessel capped with a rubber septum stopper and subjected to three cycles of evacuation and flushing with N₂ using a manifold, followed by sparging with N₂ for an additional 20 min. PCD (0.08 units) was added by Hamilton syringe, and the solution was scrubbed for 10 min to allow for sufficient O₂ digestion by PCA/PCD. POR stock (0.006 units) was introduced followed by NADPH (0.8 mM final concentration) into the vial

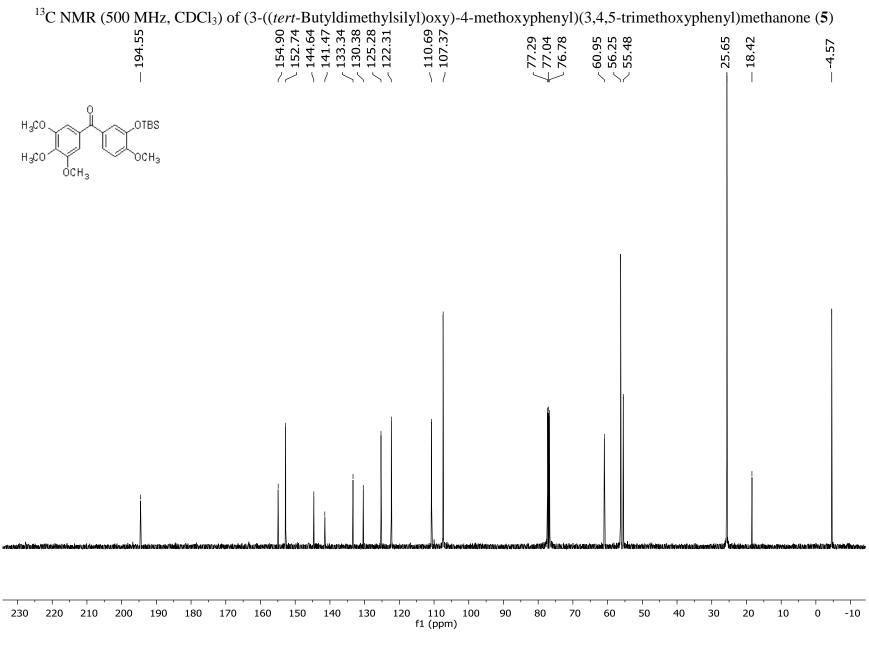

followed by an additional round of N_2 sparging. The reaction mixture was incubated for 24 h at 37 °C, cooled on ice and treated with an equal volume of acetonitrile. After centrifugation and filtration, the samples were analyzed by HPLC. Solutions without POR were used as controls.

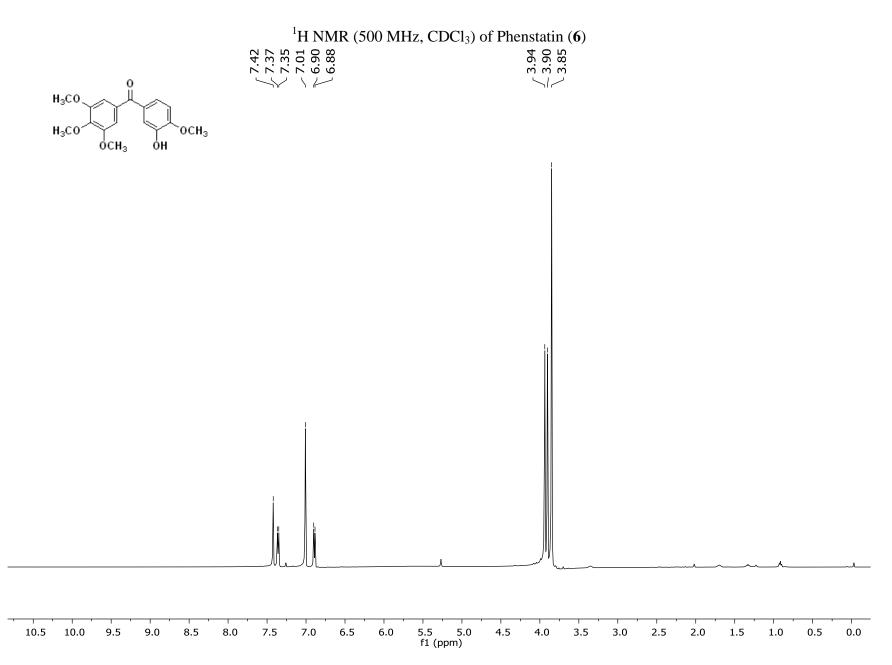

References:

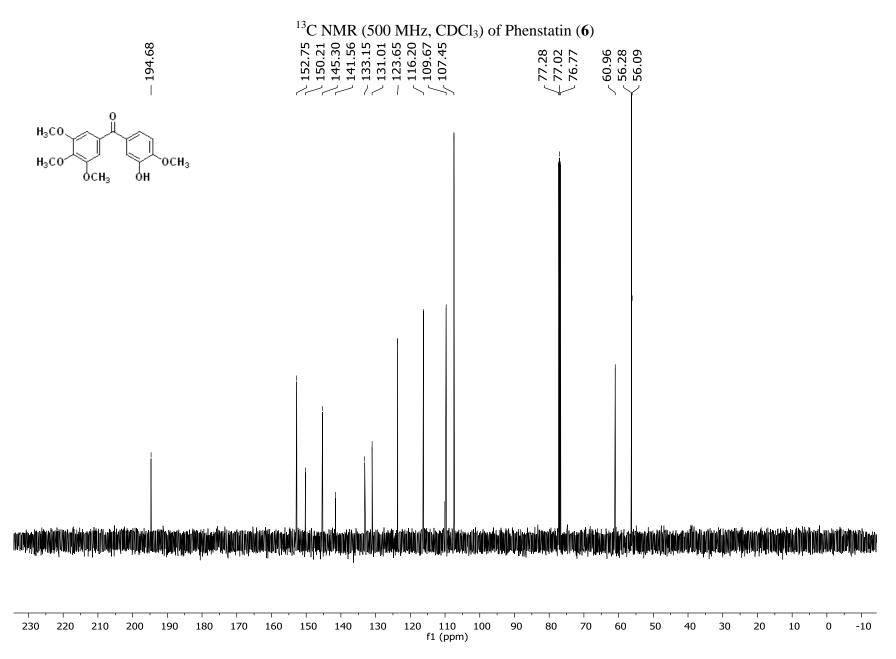

- S1. Reetz, M. T., Kyung, S. H. & Hüllmann, M. CH3Li/TiCl4: A Non-Basic and Highly Selective Grignard analogue. *Tetrahedron* 42, 2931–2935 (1986).
- S2. Thomson, P. *et al.* Synthesis and Biological Properties of Bioreductively Targeted Nitrothienyl Prodrugs of Combretastatin A-4. *Mol. Cancer Ther.* 5, 2886–2894 (2006).
- S3. Nguyen, B. L. Design and Synthesis of Combretastatin A-1 Analogs, Small Molecule Vascular Disrupting Agents, and Bioreductive Triggers as Potential Therapeutic Agents for the Treatment of Cancer. Ph.D Dissertation, Baylor University. Waco, TX, (2010).
- S4. Swamy, K. C. K., Kumar, N. N. B., Balaraman, E. & Kumar, K. V. P. P. Mitsunobu and Related Reactions: Advances and Applications. *Chem. Rev.* 109, 2551–2651 (2009).
- S5. Zhirov, A. M. & Aksenov, A. V. Azodicarboxylates: Synthesis and Functionalization of Organic Compounds. *Russ. Chem. Rev.* 83, 502–522 (2014).

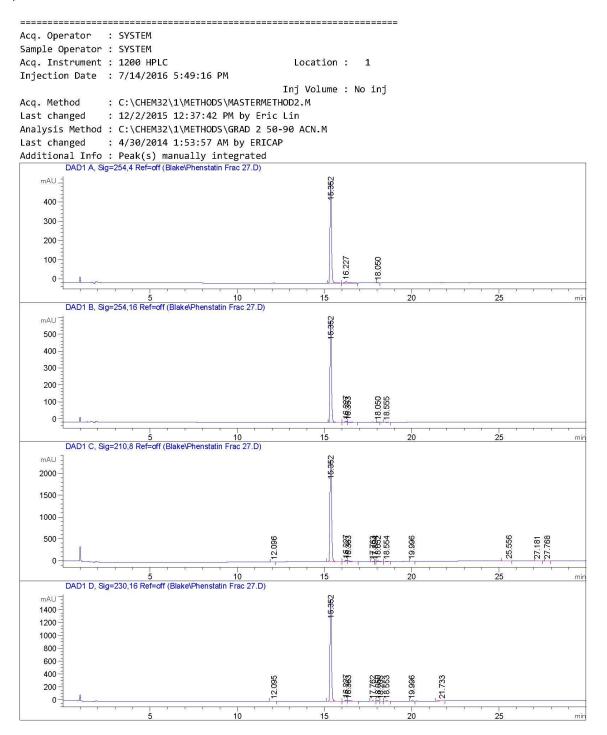

- S6. O'Connor, L. J. *et al.* Efficient Synthesis of 2-Nitroimidazole Derivatives and the Bioreductive Clinical Candidate Evofosfamide (TH-302). *Org. Chem.* 2, 1026–1029 (2015).
- S7. Matteucci, M., Duan, J.-X., Jiao, H., Kaizerman, J. & Ammons, S. Phosphoramidate Alkylator Prodrugs. International Patent PCT/US2006/025881. (2009).
- S8. Davis, P.; Naylor, M. A.; Thomson, P.; Everett, S. A.; Stratford, M. R. L.; Wardman,
 P. Bioreductively-Activated Prodrugs. International Patent PCT/GB2004/001330.
 October 7, 2004.
- S9. Cavalleri, B.; Volpe, G.; Arioli, V.; Lancini, G. J. Med. Chem. 1977, 20, 1522-1525.
- S10. Long, W.; Liu, P. J. Radiat. Res. 2010, 51, 563-572.
- S11. Adams, G. E.; Clarke, E. D.; Gray, P.; Jacobs, R. S.; Stratford, I. J.; Wardman, P.; Watts, M. E.; Patrick, J.; Wallace, R. G.; Smithen, C. E. Int. J. Radiat. Biol. And Related Stud. Phys. Chem. Med. 1979, 35, 151-160.
- S12. Adams, G. E.; Clarke, E. D.; Gray, P.; Jacobs, R. S.; Stratford, I. J.; Wardman, P.;
 Watts, M. E.; Patrick, J.; Wallace, R. G.; Smithen, C. E. Int. J. Radiat. Biol. And
 Related Stud. Phys. Chem. Med. 1979, 35, 151-160.
- S13. Assandri, A.; Perazzi, A.; Zerilli, L. F.; Ferrari, P.; Martinelli, E. Drug Metabolism and Disposition 1978, 6, 109-113.
- S14. Cavalleri, B.; Volpe, V.; Arioli, V.; Pizzocheri, F.; Diena, A. J. Med. Chem. 1978, 21, 781-784.
- S15. Goldstein, B. P.; Vidal-Plana, R. R., Cavalleri, B.; Zerilli, L.; Carniti, G.; Silvestri,
 L. G. Journal of General Microbiology 1977, 100, 283-298.

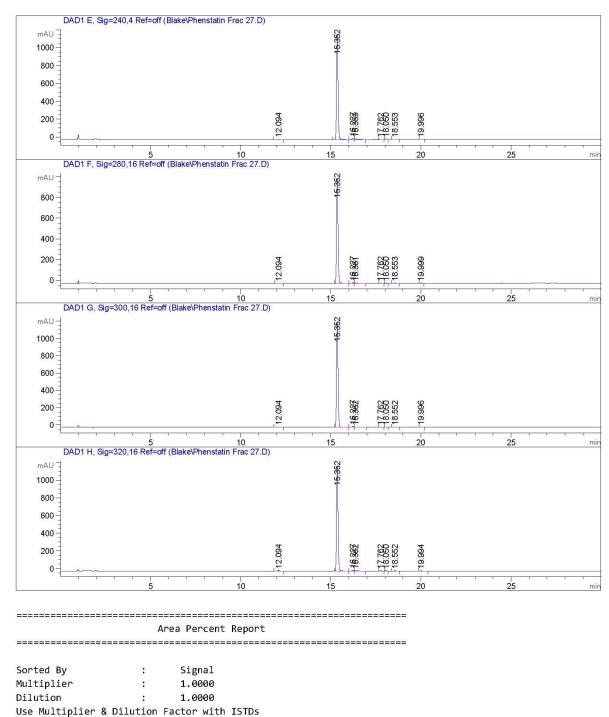

- S16. Cavalleri, B.; Volpe, G. α,α,1-Trimethyl-2-Nitroimidazolemethanol Esters. International Patent DE19772700346 19770105. July 28, 1977.
- S17. Assandri, A.; Lancini, G.; Volpe, G.; Cavalleri, B. 5-[(1-Hydroxy-1-methyl)ethyl]1-methyl-2-nitroimidazole. International Patent DE19762600538 19760108. July 22, 1976.
- S18. Tanpure, R. P. *et al.* Regio- and Stereospecific Synthesis of Mono-β-d-Glucuronic Acid Derivatives of Combretastatin A-1. *J. Nat. Prod.* **73**, 1093–1101 (2010).
- S19. Tanpure, R. P. *et al.* Regioselective Synthesis of Water-Soluble Monophosphate Derivatives of Combretastatin A-1. *J. Nat. Prod.* 74, 1568–1574 (2011).
- S20. Hamel, E. & Lin, C. M. Stabilization of the Colchicine-Binding Activity of Tubulin by Organic Acids. *Biochim. Biophys. Acta BBA Gen. Subj.* **675**, 226–231 (1981).
- S21. Hamel, E. Evaluation of Antimitotic Agents by Quantitative Comparisons of their Effects on the Polymerization of Purified Tubulin. *Cell Biochem. Biophys.* 38, 1–21
- S22. Herdman, C. A.; Devkota, L.; Lin, C.; Niu, H.; Strecker, T. E.; Lopez, R.; Liu, L.;
 George, C. S.; Tanpure, R. P.; Hamel, E.; Chaplin, D. J.; Mason, R. P.; Trawick, M.
 L.; Pinney, K. G. Structural Interrogation of Benzosuberene-Based Inhibitors of
 Tubulin Polymerization. *Bioorg. Med. Chem.* 2015, *23*, 7497-7520.
- S23. Guengerich, F. P., Martin, M. V., Sohl, C. D. & Cheng, Q. Measurement of Cytochrome P450 and NADPH–Cytochrome P450 Reductase. *Nat. Protoc.* 4, (2009).
- S24. Patil, P. V. & Ballou, D. P. The Use of Protocatechuate Dioxygenase for Maintaining Anaerobic Conditions in Biochemical Experiments. *Anal. Biochem.* 286, 187–192 (2000).










HPLC trace of Phenstatin (6)

Data File C:\Chem32\1\Data\Blake\Phenstatin Frac 27.D Sample Name: Phenstatin Frac 27

1200 HPLC 7/28/2016 11:35:13 AM SYSTEM

Page 1 of 5

Data File C:\Chem32\1\Data\Blake\Phenstatin Frac 27.D Sample Name: Phenstatin Frac 27

1200 HPLC 7/28/2016 11:35:13 AM SYSTEM

Data File C:\Chem32\1\Data\Blake\Phenstatin Frac 27.D Sample Name: Phenstatin Frac 27

Signal 1: DAD1 A, Sig=254,4 Ref=off

%
.0908
.6227
.2865

Totals :	3088.06446	536.93238

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
[]				
1	15.352	BB	0.0882	3405.82935	599.99316	97.1155
2	16.227	BV	0.1020	51.16637	7.46052	1.4590
3	16.353	VB	0.1415	31.42821	2.96785	0.8962
4	18.050	BB	0.0799	9.80479	1.91018	0.2796
5	18.555	BB	0.1243	8.75974	1.10709	0.2498
Total	s :			3506.98845	613.43880	

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
]						
1	12.096	BB	0.0949	9.64612	1.58789	0.0596
2	15.352	BB	0.1061	1.55548e4	2323.01147	96.1075
3	16.227	BV	0.0988	178.61842	27.14570	1.1036
4	16.363	VB	0.1623	172.26620	14.12024	1.0644
5	17.763	BV	0.0889	31.45477	5.32568	0.1943
6	17.894	VV	0.0683	6.48385	1.39280	0.0401
7	18.052	VB	0.1191	105.30116	12.65261	0.6506
8	18.554	BB	0.1161	46.81201	6.34585	0.2892
9	19.996	BV	0.1214	27.42125	3.21699	0.1694
10	25.556	BB	0.1151	21.76441	2.91681	0.1345
11	27.181	BB	0.2071	15.59067	1.17250	0.0963
12	27.768	BB	0.1430	14.63652	1.62679	0.0904
Total	s:			1.61848e4	2400.51533	

Signal 4: DAD1 D, Sig=230,16 Ref=off

1200 HPLC 7/28/2016 11:35:13 AM SYSTEM

Data File C:\Chem32\1\Data\Blake\Phenstatin Frac 27.D Sample Name: Phenstatin Frac 27

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.095	BB	0.0966	8.57315	1.37859	0.0918
2	15.352	BB	0.0890	9038.75781	1574.79211	96.7403
3	16.227	BV	0.0997	95.78050	14.37671	1.0251
4	16.363	VB	0.1708	92.87306	7.18653	0.9940
5	17.762	BV	0.0948	17.57367	2.73993	0.1881
6	18.050	VV	0.0871	33.97832	5.91144	0.3637
7	18.205	VB	0.0882	6.12776	1.04777	0.0656
8	18.553	BB	0.1149	24.83188	3.33253	0.2658
9	19.996	BV	0.1195	14.76467	1.76638	0.1580
10	21.733	BB	0.1416	10.06033	1.01494	0.1077

Totals :

9343.32115 1613.54694

Signal 5: DAD1 E, Sig=240,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
]						
1	12.094	BB	0.1019	8.27689	1.23929	0.1207
2	15.352	BB	0.0883	6674.82422	1175.24585	97.3737
3	16.227	BV	0.0998	65.54812	9.82930	0.9562
4	16.359	VB	0.1528	50.34048	4.35634	0.7344
5	17.762	BB	0.0916	12.16266	1.98189	0.1774
6	18.050	BB	0.0800	18.94939	3.68454	0.2764
7	18.553	BB	0.1149	17.23790	2.31336	0.2515
8	19.996	BB	0.1039	7.51576	1.07042	0.1096
- 2 3 4 5 6 7	15.352 16.227 16.359 17.762 18.050 18.553	BB BV VB BB BB BB	0.0883 0.0998 0.1528 0.0916 0.0800 0.1149	6674.82422 65.54812 50.34048 12.16266 18.94939 17.23790	1175.24585 9.82930 4.35634 1.98189 3.68454 2.31336	97.373 0.956 0.734 0.177 0.276 0.251

Totals :

6854.85542 1199.72099

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		[]				
1	12.094	BB	0.0992	6.63490	1.02998	0.1126
2	15.352	BB	0.0882	5749.51270	1013.11633	97.5483
3	16.227	BV	0.0990	46.42280	7.03225	0.7876
4	16.361	VB	0.1538	38.99524	3.39929	0.6616
5	17.762	BB	0.0927	9.66788	1.55119	0.1640
6	18.050	BB	0.0798	15.40553	3.00338	0.2614
7	18.553	BB	0.1146	14.79325	1.99385	0.2510
8	19.999	BV	0.1144	12.58604	1.58908	0.2135

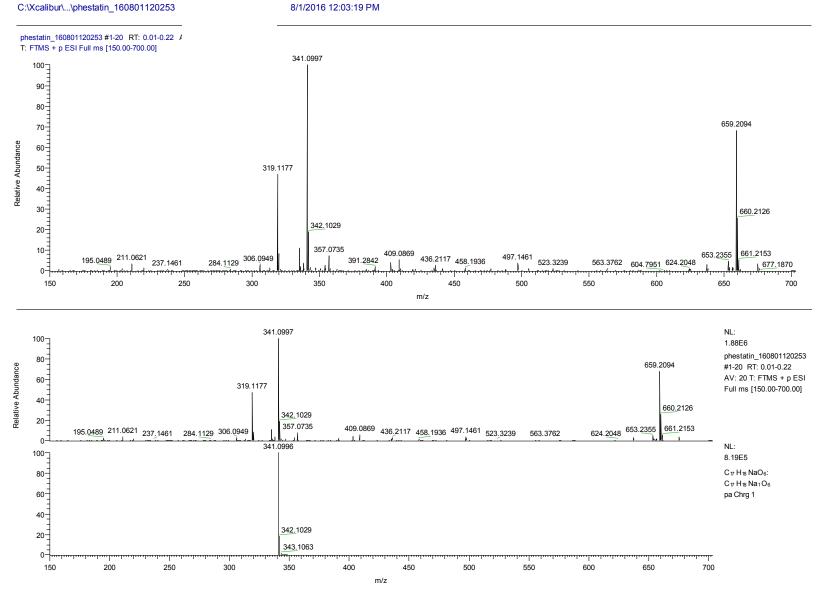
Totals :

5894.01833 1032.71536

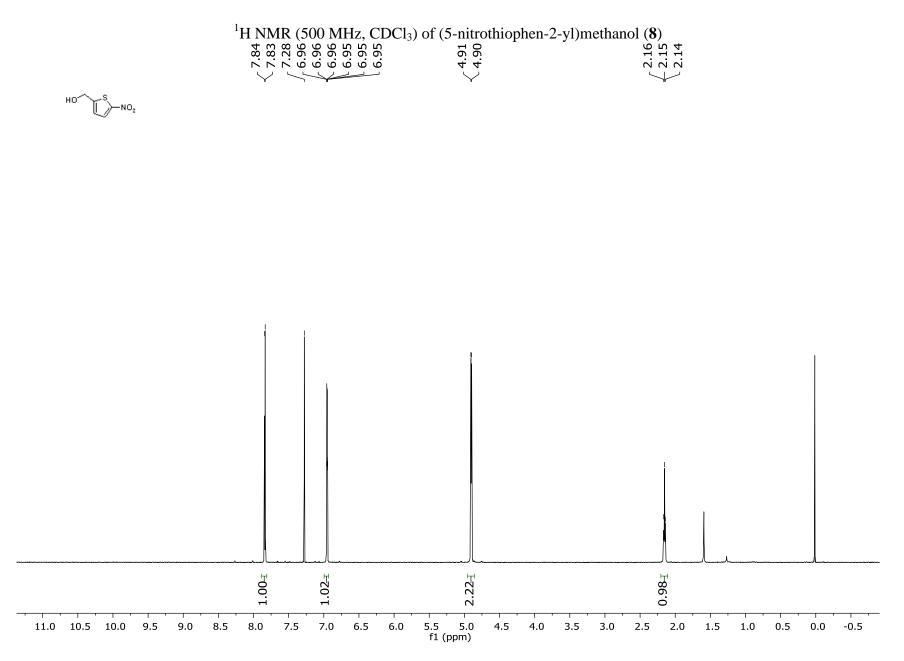
1200 HPLC 7/28/2016 11:35:13 AM SYSTEM

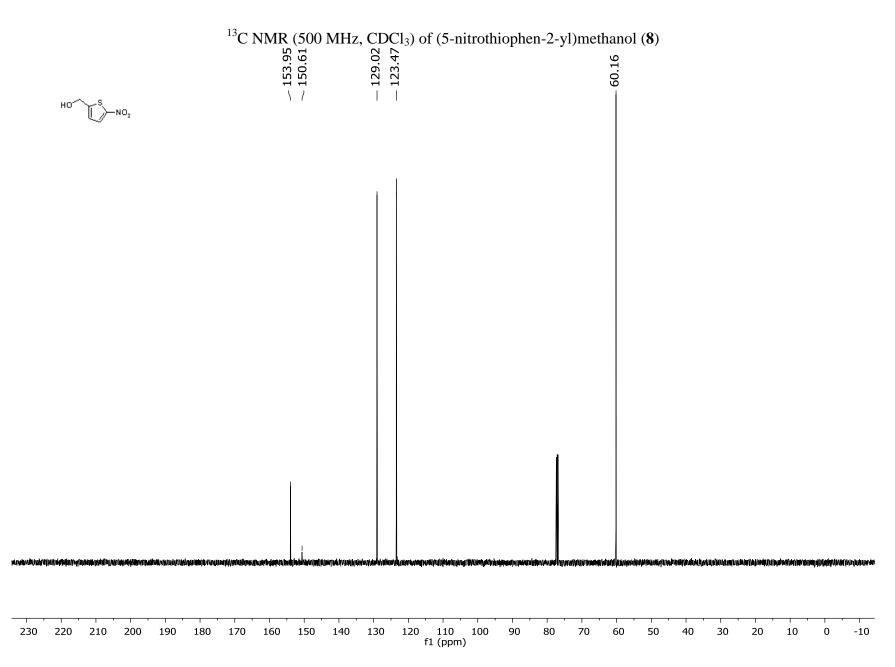
Data File C:\Chem32\1\Data\Blake\Phenstatin Frac 27.D Sample Name: Phenstatin Frac 27

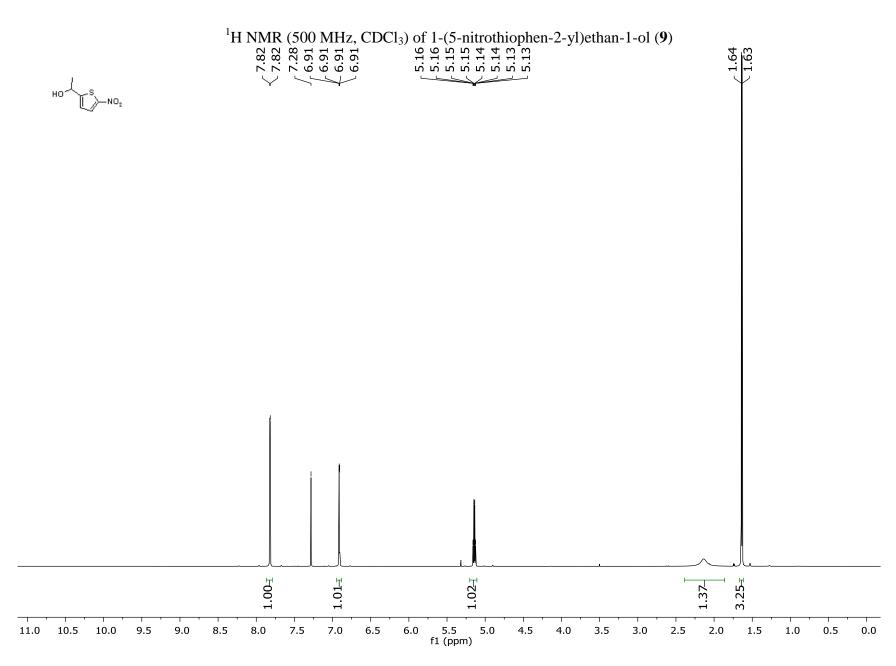
Signal 7: DAD1 G, Sig=300,16 Ref=off

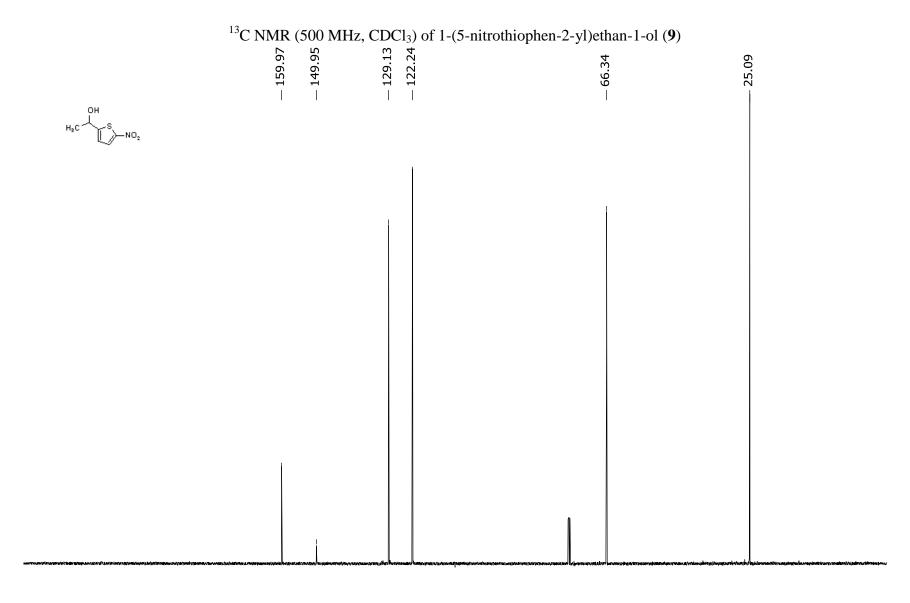

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.094	BB	0.0965	17.44289	2.80617	0.2470
2	15.352	BB	0.0883	6885.30078	1211.84802	97.4829
3	16.227	BV	0.0987	51.85132	7.88619	0.7341
4	16.362	VB	0.1552	46.17934	3.98537	0.6538
5	17.762	BB	0.0923	11.81466	1.90724	0.1673
6	18.050	BB	0.0818	19.25880	3.75469	0.2727
7	18.552	BB	0.1134	18.33415	2.50517	0.2596
8	19.996	BB	0.1034	12.90264	1.84833	0.1827
Total	s :			7063.08459	1236.54119	

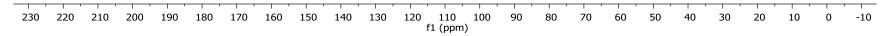
Signal 8: DAD1 H, Sig=320,16 Ref=off

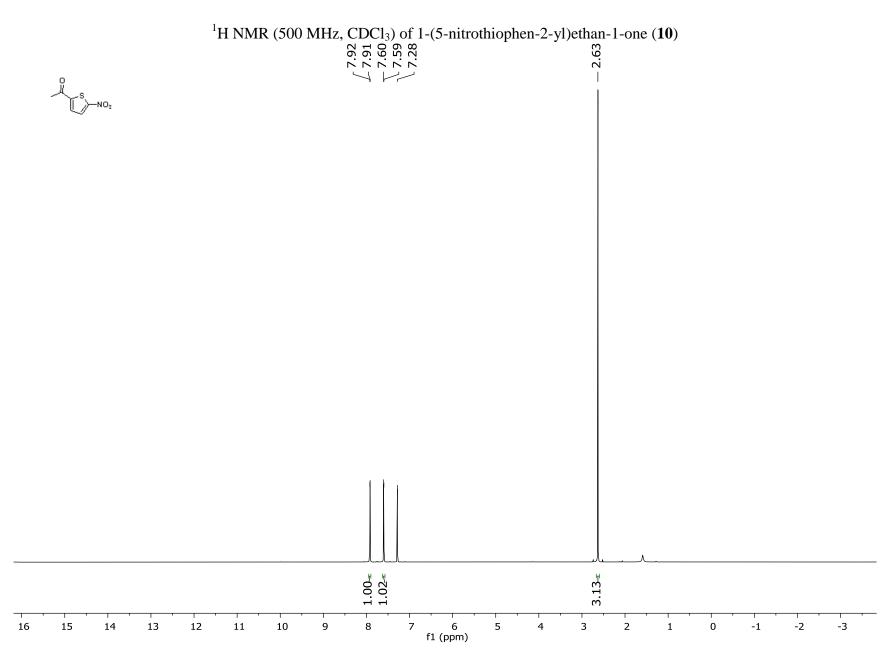

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		[]				
1	12.094	BB	0.0961	29.14829	4.71398	0.4211
2	15.352	BB	0.0883	6756.80127	1189.29700	97.6206
3	16.227	BV	0.0983	42.30829	6.47003	0.6113
4	16.362	VB	0.1544	37.17588	3.22716	0.5371
5	17.762	BB	0.0935	11.34051	1.85076	0.1638
6	18.050	BB	0.0819	15.76419	3.07128	0.2278
7	18.552	BB	0.1103	15.57444	2.15592	0.2250
8	19.994	BB	0.1216	13.38015	1.56657	0.1933

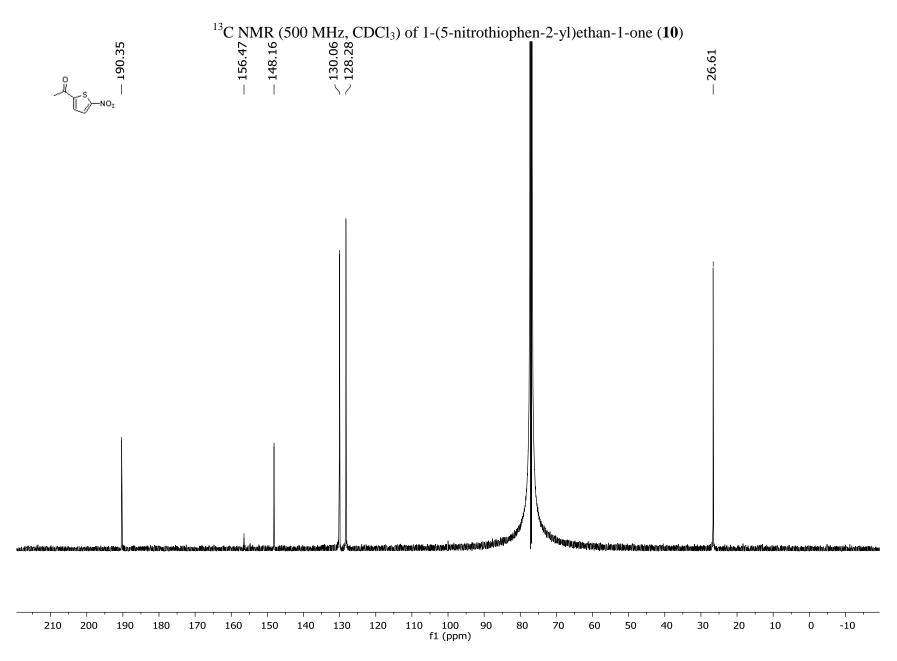

Totals : 6921.49302 1212.35270

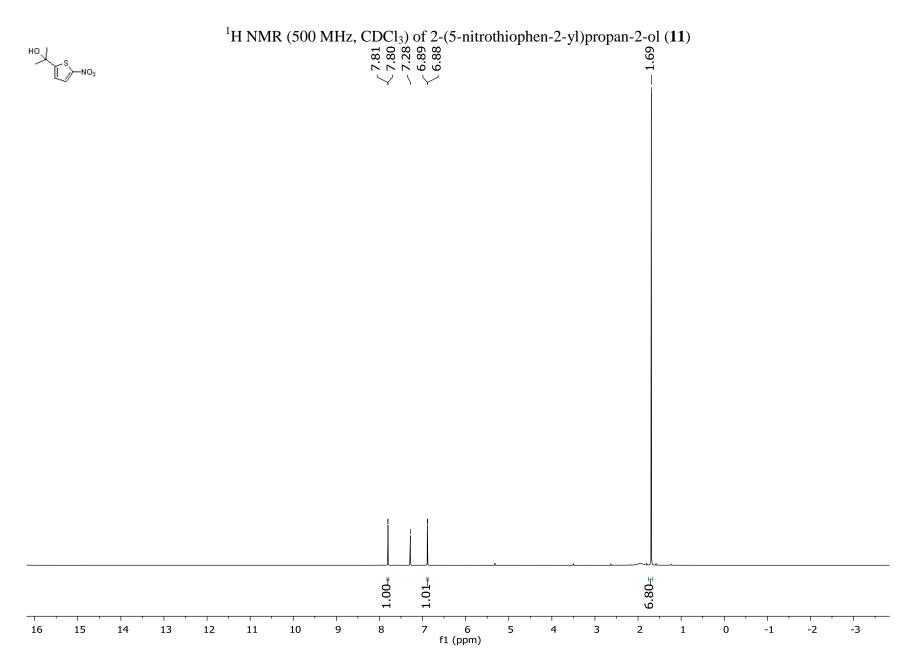

------*** End of Report ***

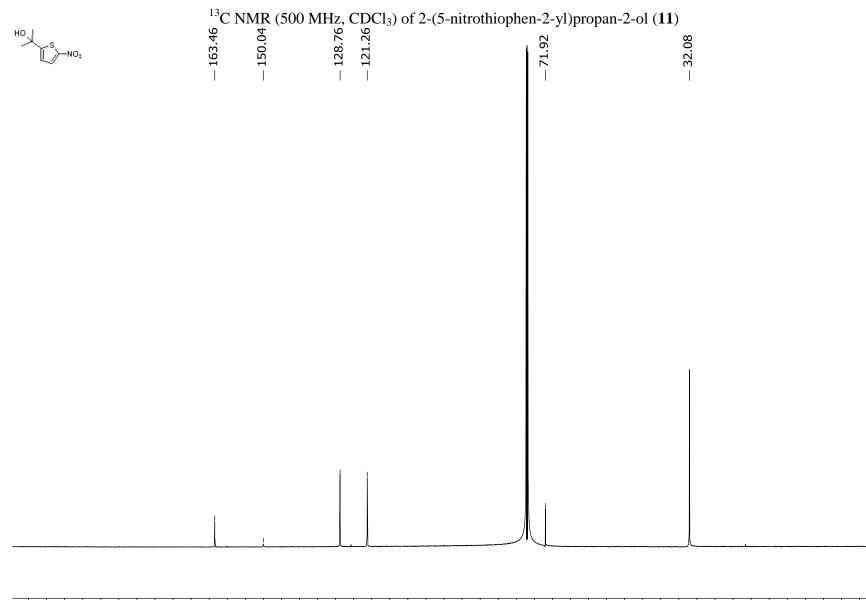


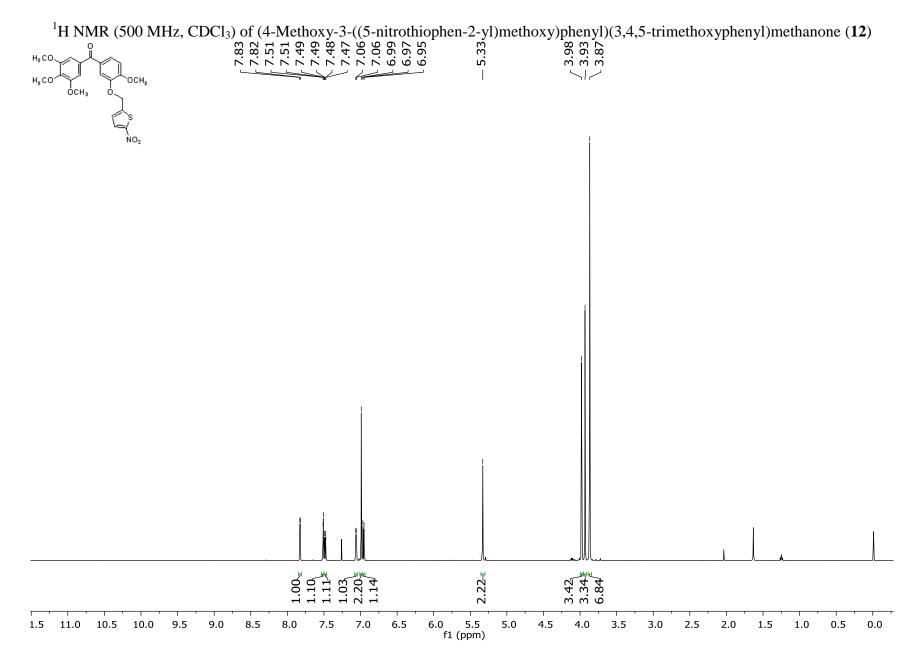

Mass Spectrum of Phenstatin 6

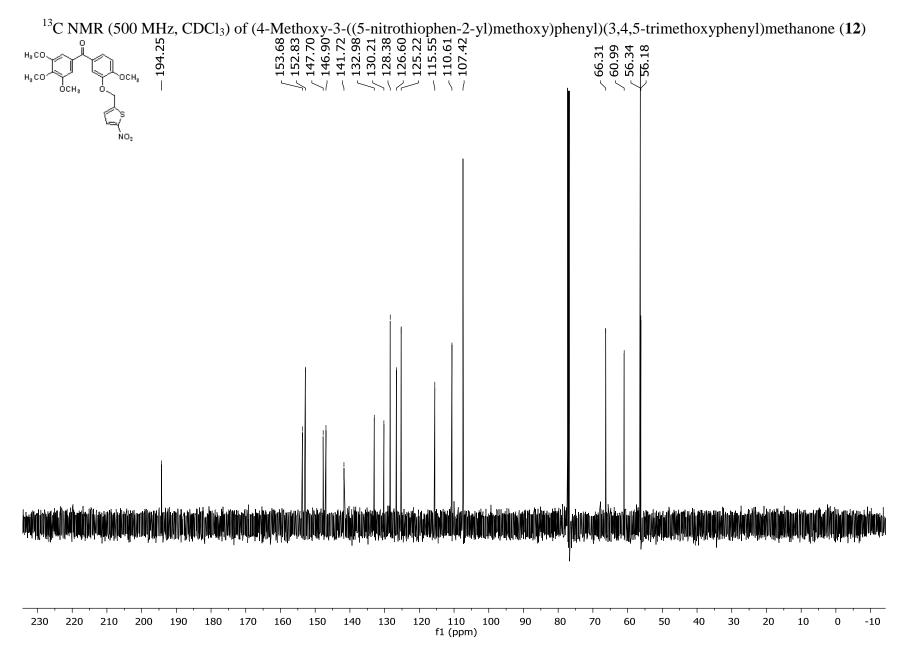


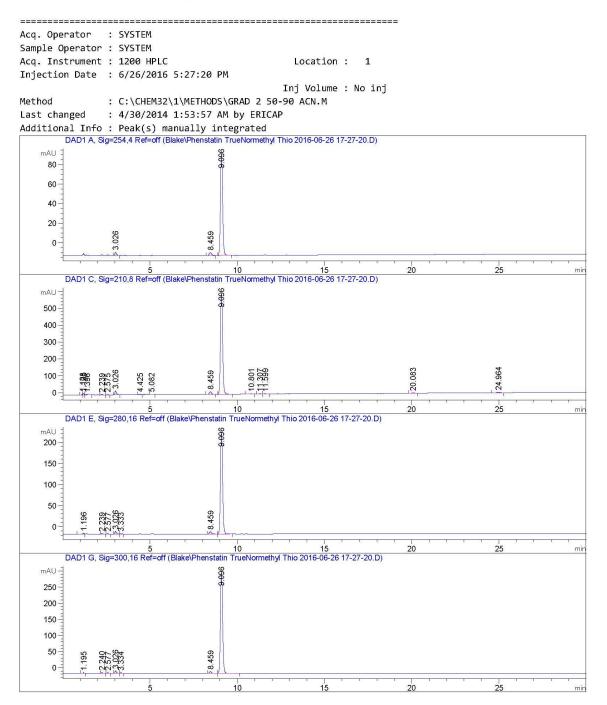


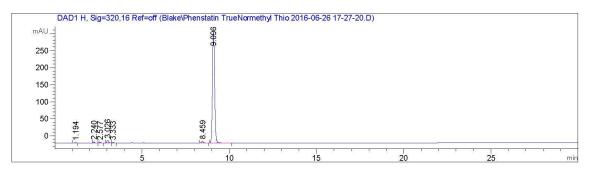









	1 1							1 1		1 1										1		
210	200	190	180	170	160	150	140	130	120			80	70	60	50	40	30	20	10	0	-10	
f1 (ppm)																						


HPLC trace of compound 12

Data File C:\Chem32\1\Data\Blake\Phenstatin TrueNormethyl Thio 2016-06-26 17-27-20.D Sample Name: Phenstatin TrueNormethyl Thio

1200 HPLC 7/27/2016 3:03:33 PM SYSTEM

Data File C:\Chem32\1\Data\Blake\Phenstatin TrueNormethyl Thio 2016-06-26 17-27-20.D Sample Name: Phenstatin TrueNormethyl Thio

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier 8	Dilution	Factor with IS	STDS

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.026	BB	0.0949	21.20730	3.39320	2.2973
2	8.459	BB	0.1262	24.35077	2.95249	2.6378
3	9.096	BB	0.1304	877.57184	104.09017	95.0648

Totals : 923.12991 110.43585

Signal 2: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		[]		[]		
1	1.128	BV	0.0548	17.71029	4.83216	0.3212
2	1.195	VV	0.0619	28.47927	6.65998	0.5165
3	1.396	VB	0.1287	26.71319	2.67025	0.4845
4	2.239	BB	0.0673	7.55711	1.71990	0.1371
5	2.575	BB	0.0661	5.67737	1.32215	0.1030
6	3.026	BV	0.0961	142.63956	22.44806	2.5870
7	4.425	BB	0.0954	14.30667	2.33626	0.2595
8	5.082	BB	0.1200	14.31204	1.73992	0.2596
9	8.459	BB	0.1250	115.74354	14.21608	2.0992
10	9.096	BB	0.1305	5048.74268	598.24670	91.5667
11	10.801	BB	0.1971	18.62814	1.33238	0.3378
12	11.307	BV	0.1543	14.42214	1.47258	0.2616
13	11.599	VB	0.1482	12.39582	1.26680	0.2248
14	20.083	BB	0.1788	11.77514	1.03427	0.2136
15	24.964	BB	0.1962	34.62818	2.68930	0.6280

1200 HPLC 7/27/2016 3:03:33 PM SYSTEM

Data File C:\Chem32\1\Data\Blake\Phenstatin TrueNormethyl Thio 2016-06-26 17-27-20.D Sample Name: Phenstatin TrueNormethyl Thio

Totals : 5513.73112 663.98679

Signal 3: DAD1 E, Sig=280,16 Ref=off

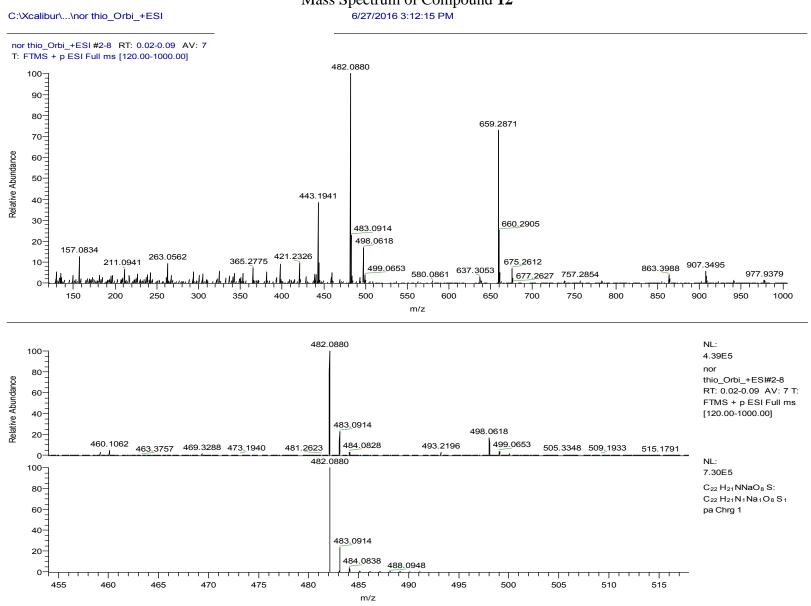
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
[[]				
1	1.196	BB	0.0649	9.62400	2.12148	0.4471
2	2.239	BB	0.0674	7.57322	1.71800	0.3518
3	2.577	BB	0.0717	6.89039	1.44361	0.3201
4	3.026	BV	0.0956	41.57518	6.59008	1.9315
5	3.333	VB	0.0797	5.72017	1.08077	0.2658
6	8.459	BV	0.1276	46.38280	5.54183	2.1549
7	9.096	VB	0.1303	2034.68677	241.40295	94.5288

Signal 4: DAD1 G, Sig=300,16 Ref=off

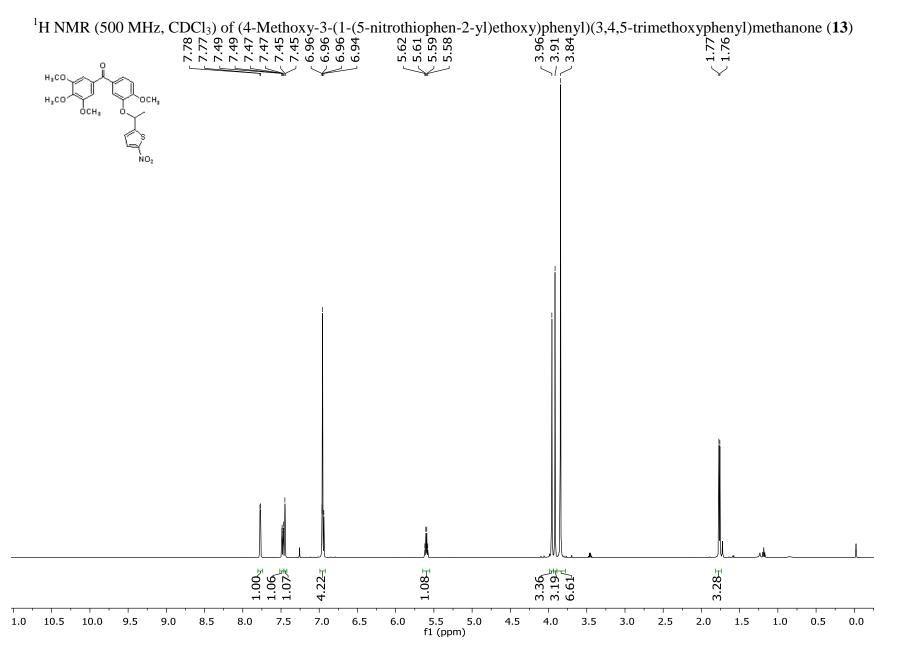
Totals: 2152.45254 259.89872

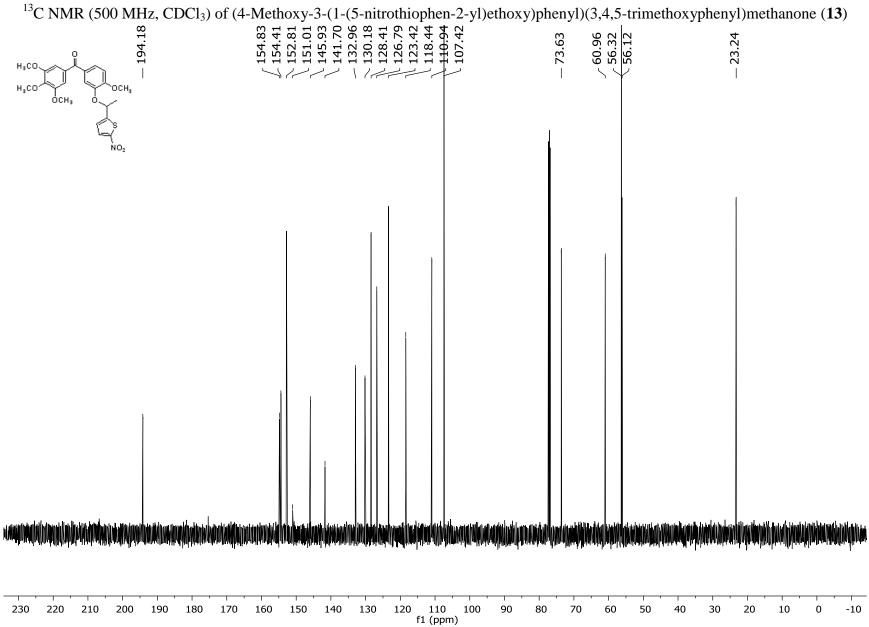
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.195	BB	0.0675	8.49393	1.85242	0.3024
2	2.240	BB	0.0682	11.51104	2.57334	0.4098
3	2.577	BB	0.0716	10.29631	2.16045	0.3666
4	3.026	BV	0.0958	49.71453	7.86376	1.7699
5	3.334	VB	0.0793	10.78817	2.05226	0.3841
6	8.459	BV	0.1275	46.46970	5.55905	1.6544
7	9.096	VB	0.1305	2671.54370	316.35538	95.1128

Totals : 2808.81739 338.41667

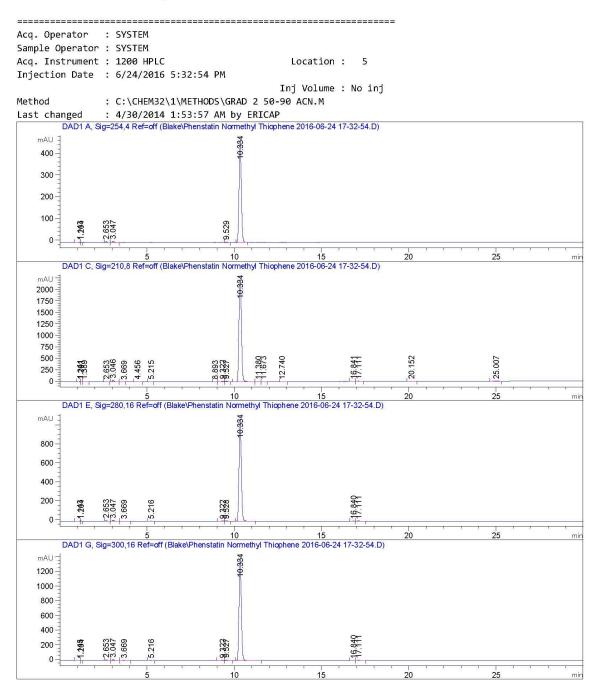

Signal 5: DAD1 H, Sig=320,16 Ref=off

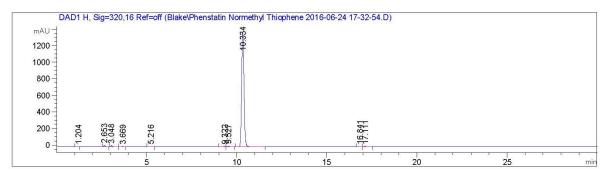
Peak Re #	etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
]		[]				
1	1.194	BB	0.0700	6.73554	1.40302	0.2340
2	2.240	BB	0.0686	17.09729	3.79214	0.5941
3	2.577	BB	0.0719	13.32974	2.78342	0.4632
4	3.026	BV	0.0960	48.87596	7.70904	1.6983
5	3.333	VB	0.0798	11.42673	2.15557	0.3970
6	8.459	BB	0.1272	37.23368	4.46768	1.2937
7	9.096	BB	0.1305	2743.29541	324.87579	95.3197
Totals				2877.99436	347.18666	


*** End of Report ***


1200 HPLC 7/27/2016 3:03:33 PM SYSTEM

Page 3 of 3


Mass Spectrum of Compound 12


HPLC trace of compound 13

Data File C:\Chem32\1\Data\Blake\Phenstatin Normethyl Thiophene 2016-06-24 17-32-54.D Sample Name: Phenstatin Normethyl Thiophene

1200 HPLC 7/27/2016 3:05:39 PM SYSTEM

Data File C:\Chem32\1\Data\Blake\Phenstatin Normethyl Thiophene 2016-06-24 17-32-54.D Sample Name: Phenstatin Normethyl Thiophene

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier 8	Dilution	Factor with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.143	BV	0.0600	8.58213	2.08675	0.2039
2	1.204	VB	0.0545	7.41947	2.13649	0.1763
3	2.653	BB	0.0745	19.34395	3.99119	0.4595
4	3.047	BB	0.0990	33.57935	5.08965	0.7977
5	9.529	VB	0.1380	13.11411	1.44370	0.3115
6	10.334	BB	0.1366	4127.41455	469.37863	98.0511

Totals :	4209.45357	484.12642

Signal 2: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.141	BV	0.0633	43.73419	9.94480	0.1963
2	1.201	vv	0.0535	26.91598	7.21480	0.1208
3	1.389	VB	0.1294	32.97990	3.51567	0.1480
4	2.653	BB	0.0740	35.44312	7.38718	0.1591
5	3.046	BB	0.0988	215.30690	32.68957	0.9665
6	3.669	BB	0.1041	8.01449	1.11129	0.0360
7	4.456	BB	0.1097	19.01512	2.58725	0.0854
8	5.215	BV	0.1157	37.60667	4.78377	0.1688
9	8.893	BV	0.1182	16.32542	2.15833	0.0733
10	9.322	VV	0.1420	63.16067	6.69659	0.2835
11	9.527	VB	0.1380	102.39282	11.26775	0.4596
12	10.334	BV	0.1534	2.14802e4	2210.79102	96.4232
13	11.380	VV	0.1657	20.20461	1.84608	0.0907

1200 HPLC 7/27/2016 3:05:39 PM SYSTEM

Data File C:\Chem32\1\Data\Blake\Phenstatin Normethyl Thiophene 2016-06-24 17-32-54.D Sample Name: Phenstatin Normethyl Thiophene

Peak I #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
14	11.673	VB	0.1434	13.54844	1.47139	0.0608
15	12.740	BB	0.1591	13.56217	1.22604	0.0609
16	16.841	BV	0.1456	26.25587	2.79532	0.1179
17	17.111	VB	0.1507	55.89478	5.68751	0.2509
18	20.152	BB	0.1787	20.39025	1.76636	0.0915
19	25.007	BB	0.1970	46.04347	3.55750	0.2067

Totals :	2.22770e4	2318.49823
----------	-----------	------------

Signal 3: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.143	BV	0.0596	6.53655	1.60214	0.0674
2	1.204	VB	0.0552	6.66955	1.89072	0.0687
3	2.653	BB	0.0745	34.21731	7.06578	0.3526
4	3.047	BB	0.0983	64.12563	9.80002	0.6608
5	3.669	BB	0.0935	8.80327	1.39808	0.0907
6	5.216	BB	0.1159	13.75031	1.74597	0.1417
7	9.322	BV	0.1463	19.20857	1.92744	0.1979
8	9.528	VB	0.1379	32.43538	3.57494	0.3342
9	10.334	BB	0.1369	9488.83789	1075.78284	97.7831
10	16.840	BV	0.1428	9.43340	1.01169	0.0972
11	17.111	VB	0.1522	19.94340	2.00216	0.2055

Totals : 9703.96125 1107.80177

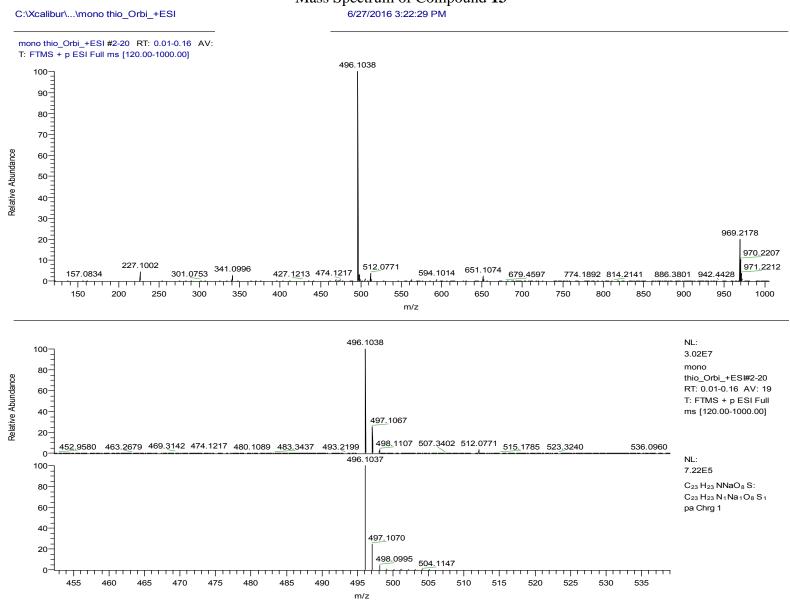
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.145	BV	0.0589	5.11084	1.27143	0.0406
2	1.204	VB	0.0561	6.30989	1.74947	0.0501
3	2.653	BB	0.0746	51.72796	10.66139	0.4106
4	3.047	BB	0.0982	76.94297	11.77816	0.6107
5	3.669	BB	0.0885	14.61334	2.48778	0.1160
6	5.216	BB	0.1149	17.59590	2.25759	0.1397
7	9.322	BV	0.1466	25.10475	2.46867	0.1993
8	9.527	VB	0.1390	48.79895	5.32161	0.3873
9	10.334	BB	0.1374	1.23120e4	1389.67432	97.7275
10	16.840	BV	0.1447	12.81279	1.37492	0.1017
11	17.111	VB	0.1516	27.28168	2.75248	0.2166
Total	s :			1.25983e4	1431.79783	

Signal 4: DAD1 G, Sig=300,16 Ref=off

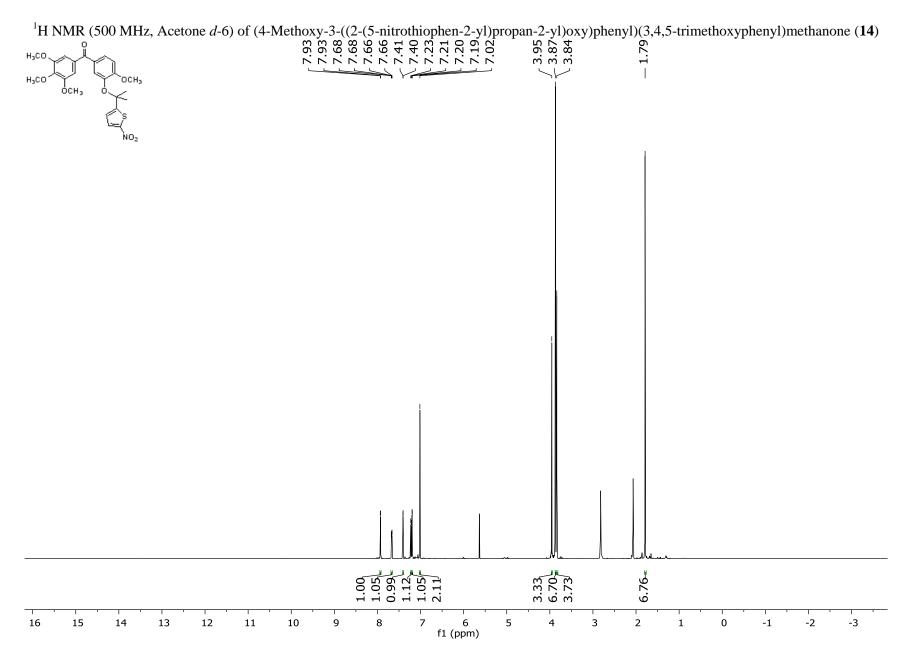
1200 HPLC 7/27/2016 3:05:39 PM SYSTEM

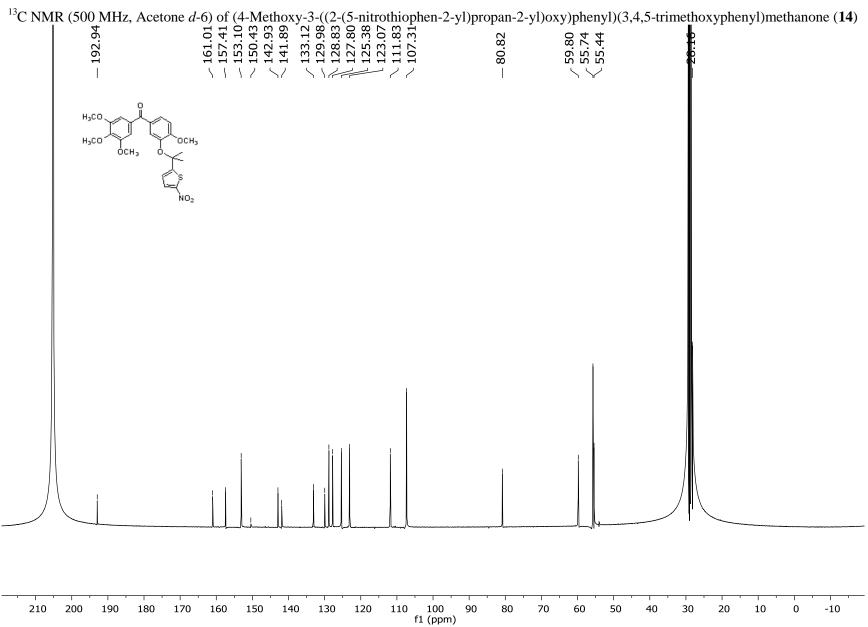
Page 3 of 4

Data File C:\Chem32\1\Data\Blake\Phenstatin Normethyl Thiophene 2016-06-24 17-32-54.D Sample Name: Phenstatin Normethyl Thiophene

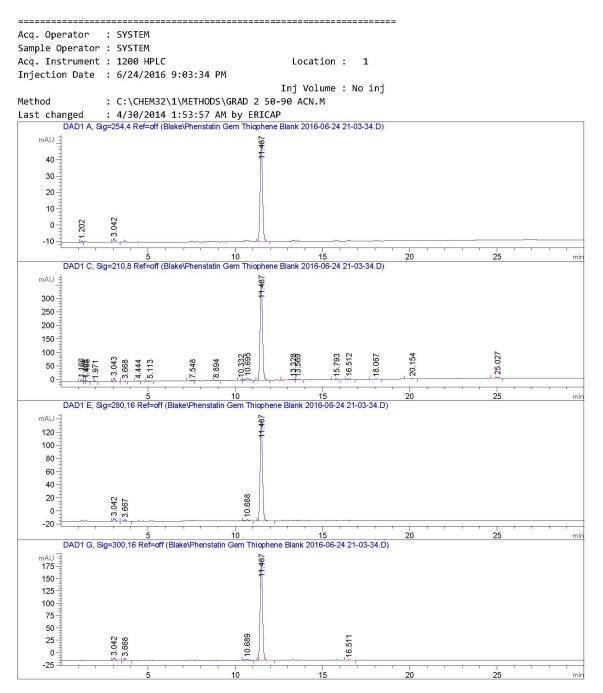

Signal 5: DAD1 H, Sig=320,16 Ref=off

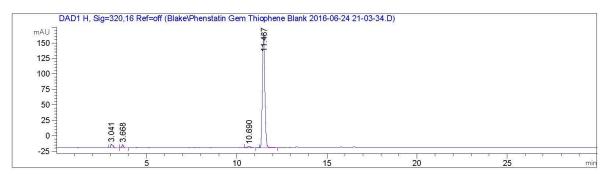
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		[]]
1	1.204	BB	0.0733	8.29830	1.57813	0.0660
2	2.653	BB	0.0747	78.90384	16.22612	0.6276
3	3.048	BB	0.0982	76.45702	11.70042	0.6082
4	3.669	BB	0.0846	14.34650	2.59015	0.1141
5	5.216	BB	0.1126	12.35557	1.62760	0.0983
6	9.322	BV	0.1481	24.54387	2.38473	0.1952
7	9.527	VB	0.1390	48.20722	5.25499	0.3835
8	10.334	BB	0.1375	1.22687e4	1383.28394	97.5908
9	16.841	BV	0.1445	12.23663	1.31579	0.0973
10	17.111	VB	0.1512	27.52718	2.78858	0.2190
Total	s :			1.25716e4	1428.75044	


*** End of Report ***


1200 HPLC 7/27/2016 3:05:39 PM SYSTEM

Page 4 of 4


Mass Spectrum of Compound 13


HPLC trace of Compound 14

Data File C:\Chem32\1\Data\Blake\Phenstatin Gem Thiophene Blank 2016-06-24 21-03-34.D Sample Name: Phenstatin Gem Thiophene Blank

1200 HPLC 7/27/2016 3:04:33 PM SYSTEM

Data File C:\Chem32\1\Data\Blake\Phenstatin Gem Thiophene Blank 2016-06-24 21-03-34.D Sample Name: Phenstatin Gem Thiophene Blank

Area Percent Report

Sorted By	:	Signal
Multiplier	1	1.0000
Dilution	1	1.0000
Use Multiplier	& Dilution	Factor with ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.202	BB	0.0857	5.33667	1.04275	0.8958
2	3.042	BB	0.1101	16.95223	2.19617	2.8454
3	11.487	BB	0.1420	573.47900	61.97279	96.2588

Totals :	595.76790	65.21172

Signal 2: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.166	BV	0.0850	44.55954	7.31982	1.0974
2	1.405	vv	0.0847	20.22405	3.15720	0.4981
3	1.468	VB	0.0751	18.11991	3.35221	0.4463
4	1.971	BB	0.0663	9.28121	2.15234	0.2286
5	3.043	BB	0.1037	92.63680	13.22735	2.2815
6	3.668	BB	0.0852	9.84668	1.71010	0.2425
7	4.444	BB	0.1046	10.00656	1.48508	0.2464
8	5.113	BB	0.1511	16.65965	1.50521	0.4103
9	7.548	BV	0.1487	20.27444	1.96016	0.4993
10	8.894	VB	0.1489	15.76609	1.62993	0.3883
11	10.332	BV	0.1426	17.45869	1.87600	0.4300
12	10.695	VB	0.2301	120.72125	7.10826	2.9732
13	11.487	BB	0.1441	3449.42578	372.38168	84.9533
14	13.328	BV	0.2266	49.34008	2.98908	1.2152
15	13.569	VB	0.1593	22.95136	2.13762	0.5653
16	15.793	BB	0.1609	23.96850	2.31205	0.5903

1200 HPLC 7/27/2016 3:04:33 PM SYSTEM

Data File C:\Chem32\1\Data\Blake\Phenstatin Gem Thiophene Blank 2016-06-24 21-03-34.D Sample Name: Phenstatin Gem Thiophene Blank

4060.37847 436.25907

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
17	16.512	BB	0.1592	27.70535	2.66782	0.6823
18	18.067	BB	0.1889	13.71129	1.07445	0.3377
19	20.154	BB	0.1812	20.82122	1.77091	0.5128
20	25.027	BB	0.1975	56.90002	4.44180	1.4013

Signal 3: DAD1 E, Sig=280,16 Ref=off

Totals :

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	3.042	BB	0.1081	31.74127	4.20423	2.1287
2	3.667	BB	0.0900	14.44893	2.40980	0.9690
3	10.688	VB	0.1976	23.67714	1.68805	1.5879
4	11.487	BB	0.1410	1421.26025	154.94855	95.3145

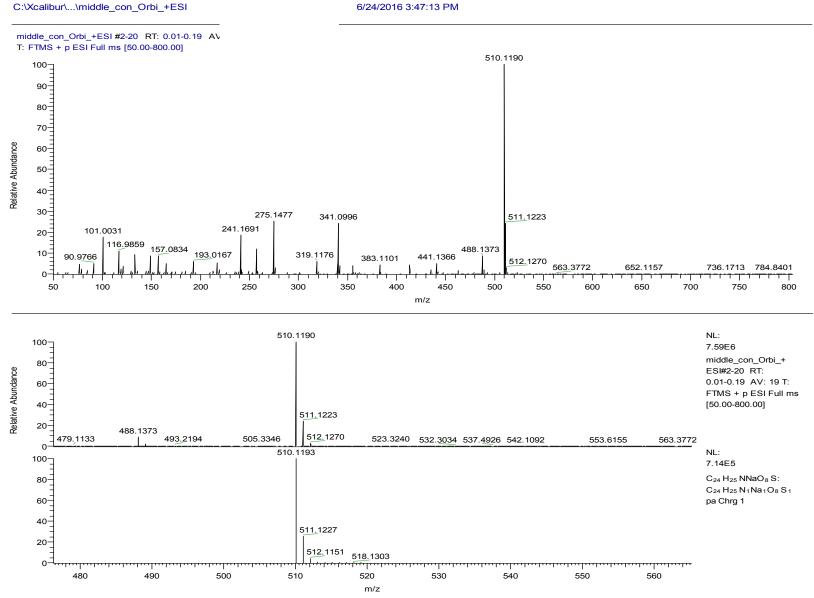
Signal 4: DAD1 G, Sig=300,16 Ref=off

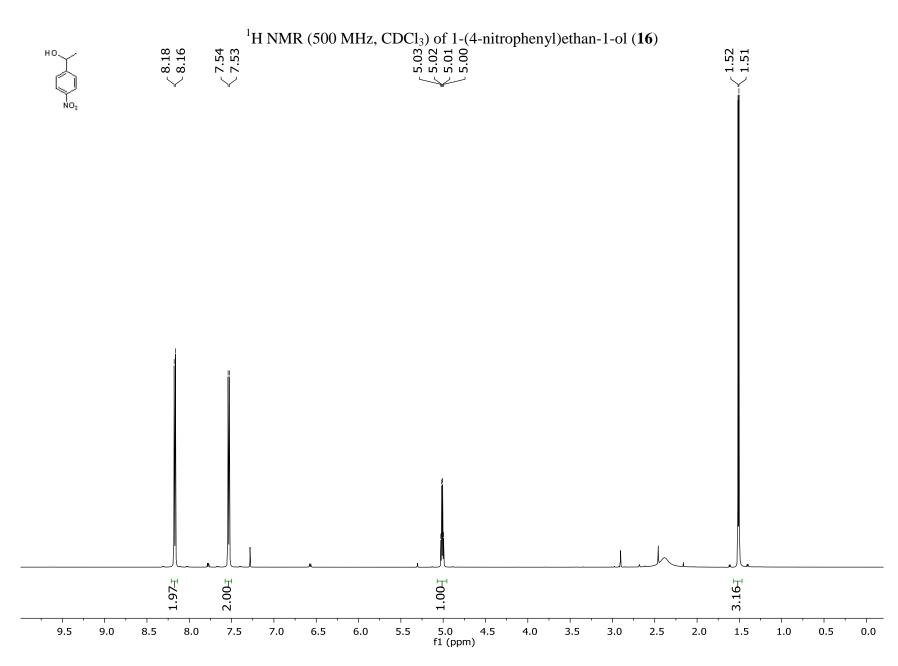
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.042	BB	0.1090	40.59677	5.20452	2.0351
2	3.668	BB	0.0877	25.26894	4.35773	1.2667
3	10.689	VB	0.1918	27.81913	2.00638	1.3946
4	11.487	BB	0.1410	1890.40027	206.06499	94.7647
5	16.511	BB	0.1622	10.75020	1.02629	0.5389

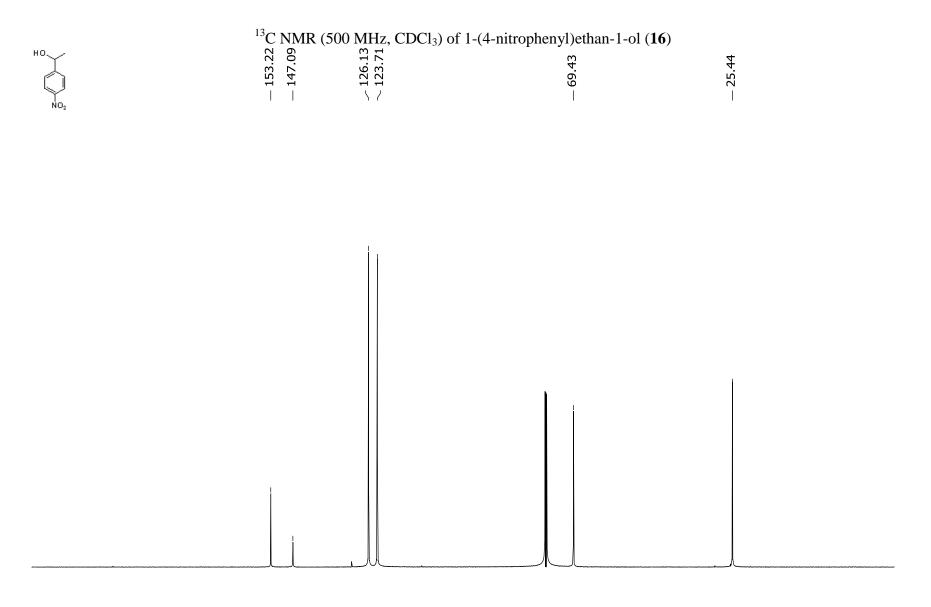
Totals : 1994.83530 218.65992

Signal 5: DAD1 H, Sig=320,16 Ref=off

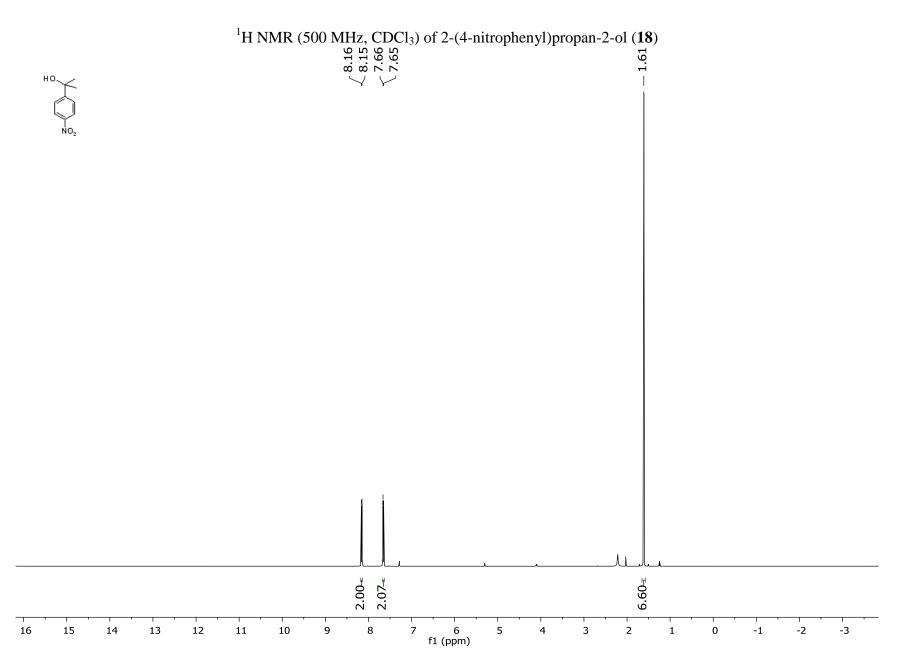
Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	3.041	BB	0.1163	46.65141	5.53500	2.6037
2	3.668	BB	0.0883	27.14539	4.63966	1.5150
3	10.690	VB	0.1811	23.42678	1.80868	1.3075
4	11.487	BB	0.1410	1694.52991	184.68036	94.5738

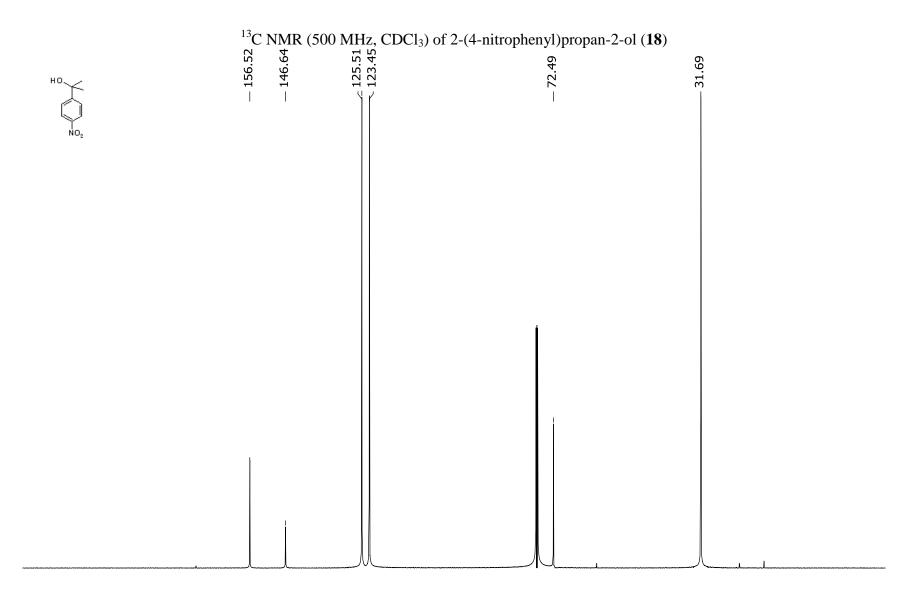

Totals : 1791.75348 196.66370

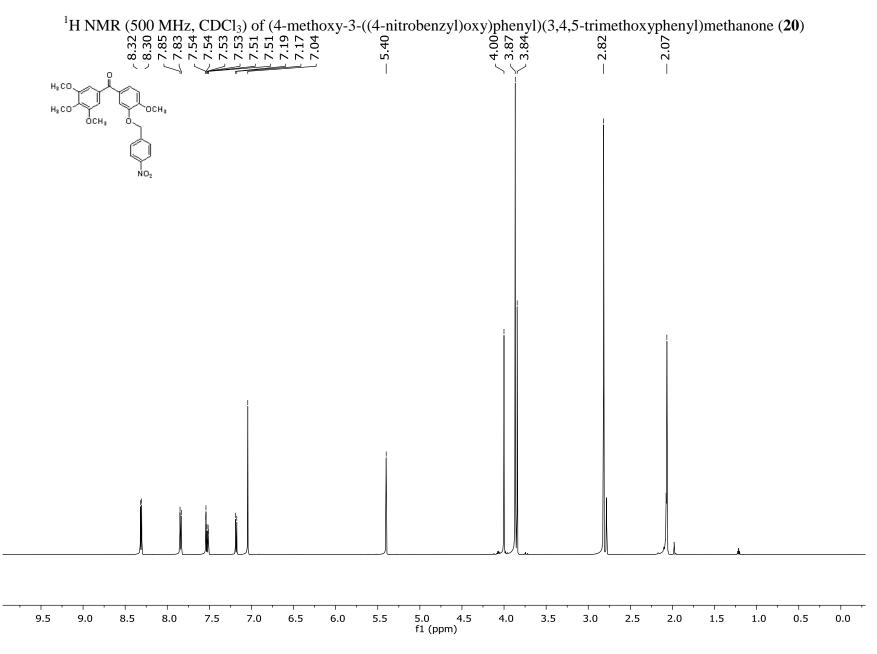

*** End of Report ***

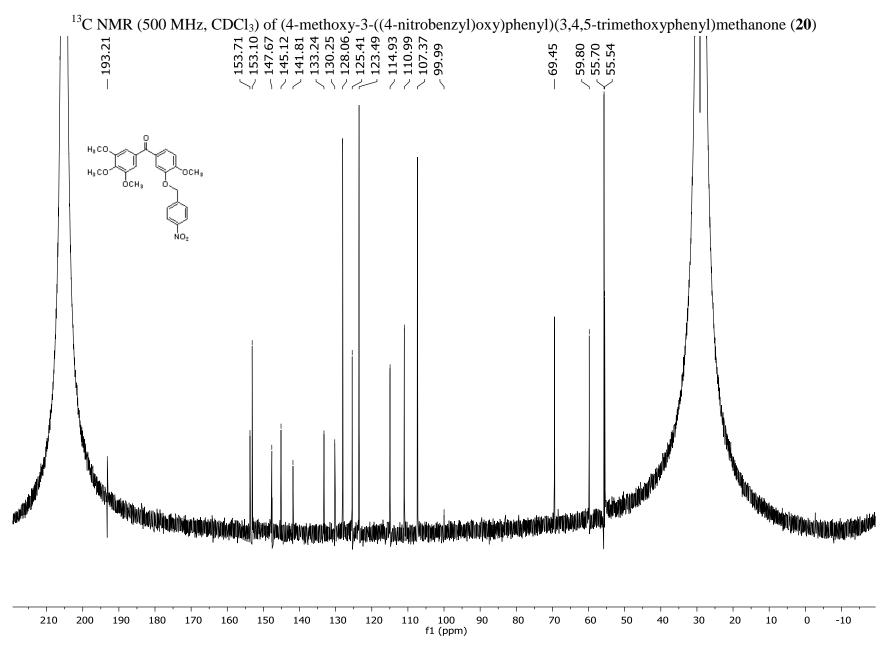

1200 HPLC 7/27/2016 3:04:33 PM SYSTEM

Page 3 of 3

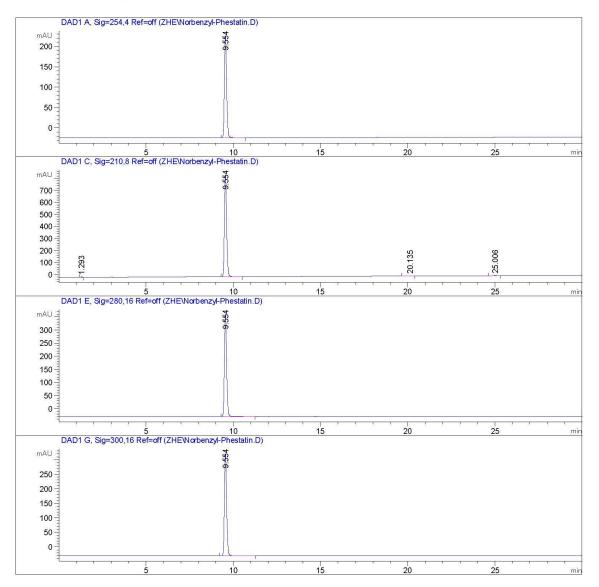



Mass Spectrum of Compound 14 6/24/2016 3:47:13 PM

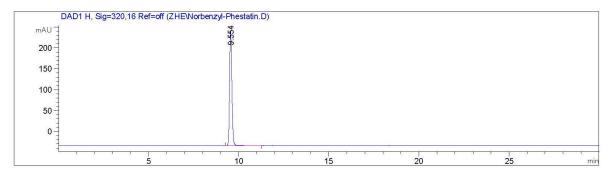



				· · ·			1 1							1 1				1 1	1 1			1 1	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
f1 (ppm)																							

 1 1	1 1	1 1	1 1	1 1				1 1			1 1				1 1							1 1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
f1 (ppm)																						



HPLC trace of Compound 20


Data File C:\Chem32\1\Data\ZHE\Norbenzyl-Phestatin.D Sample Name: Norbenzyl-Phestatin

	==:		.=====	==:	====		
Acq. Operator		SYSTEM					
Sample Operator	:	SYSTEM					
Acq. Instrument	:	1200 HPLC Loc	ation	:		-	
Injection Date		7/7/2016 2:48:11 PM					
		Inj V	/olume		No	inj	
Method	:	C:\CHEM32\1\METHODS\GRAD 2 50-90 AC	N.M				
Last changed		4/30/2014 1:53:57 AM by ERICAP					
Sample Info	:	Norbenzyl-Phestatin					
		GRAD 2 50-90 ACN					
		20160707					

1200 HPLC 7/27/2016 2:58:59 PM SYSTEM

Data File C:\Chem32\1\Data\ZHE\Norbenzyl-Phestatin.D
Sample Name: Norbenzyl-Phestatin

Area Percent Report

Sorted By	3	Signal	

Joi ccu by	•	Dignar
Multiplier	:	1.0000
Dilution	:	1.0000
Use Multiplier	& Dilution	Factor with ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.554	BB	0.1339	2177.75610	249.31061	100.0000

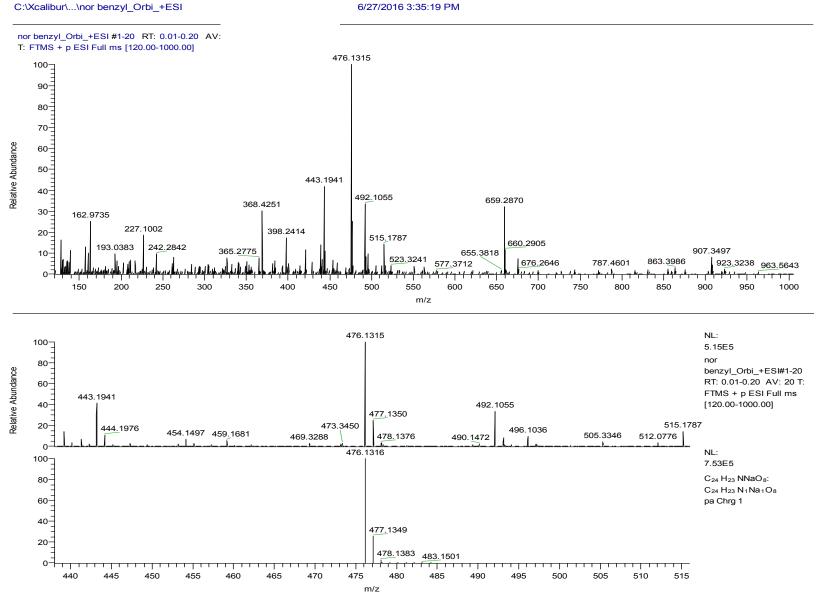
Totals : 2177.75610 249.31061

Signal 2: DAD1 C, Sig=210,8 Ref=off

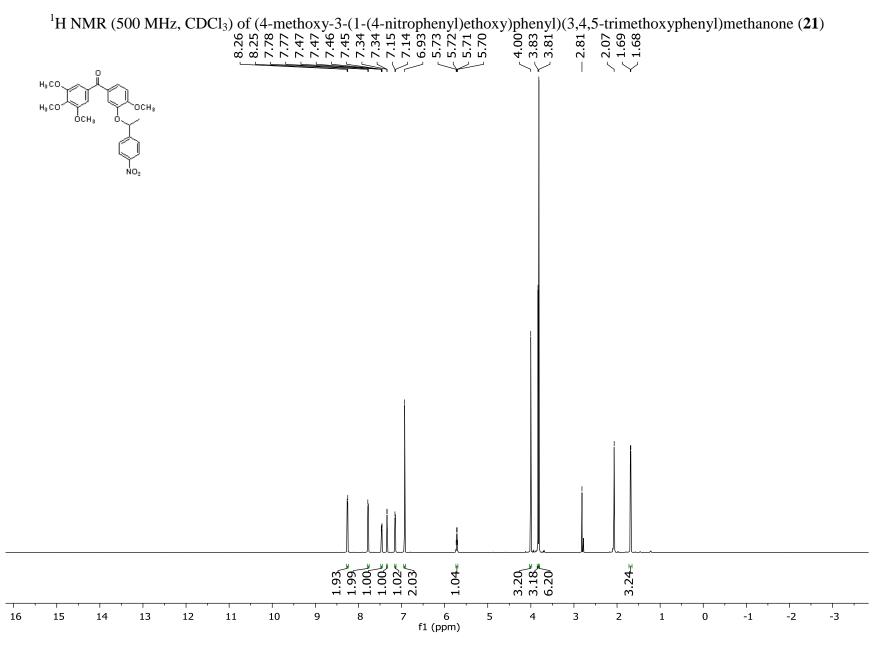
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
]						
1	1.293	BV	0.0727	19.11470	3.67168	0.2548
2	9.554	BB	0.1363	7414.29053	845.71783	98.8449
3	20.135	BB	0.1791	27.84004	2.40504	0.3712
4	25.006	BB	0.1964	39.68525	3.11932	0.5291

Totals : 7500.93052 854.91388

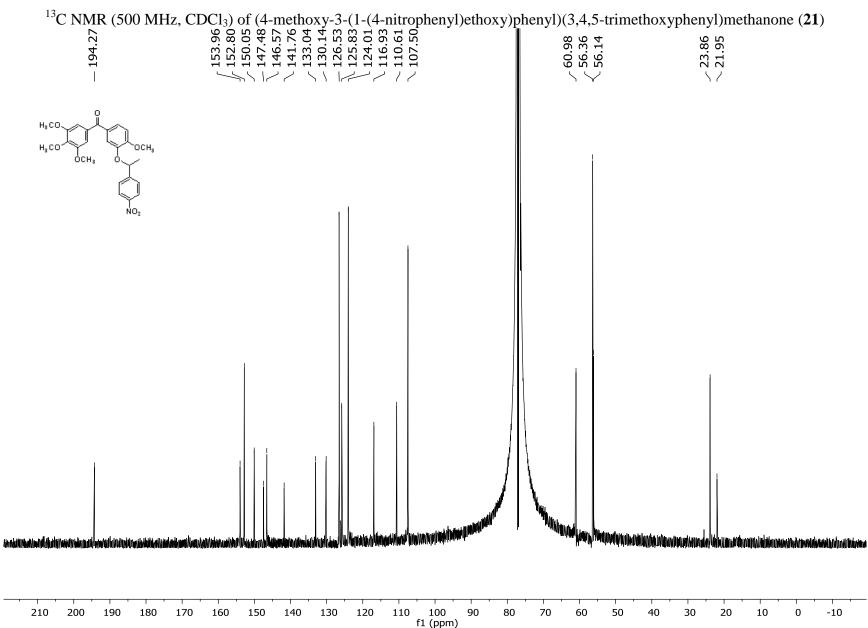
Signal 3: DAD1 E, Sig=280,16 Ref=off


1200 HPLC 7/27/2016 2:58:59 PM SYSTEM

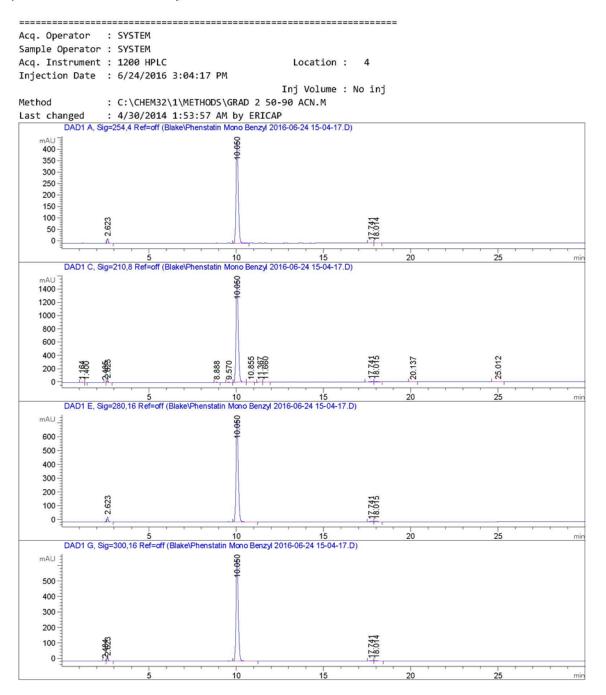
Data File C:\Chem32\1\Data\ZHE\Norbenzyl-Phestatin.D Sample Name: Norbenzyl-Phestatin


Signal 4: DAD1 G, Sig=300,16 Ref=off

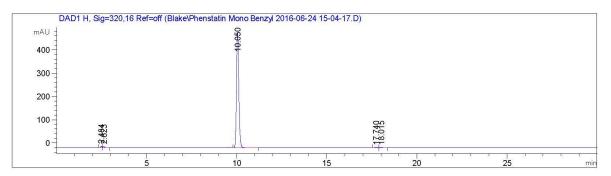
Peak RetTime Type Width # [min] [min] 1 9.554 BB 0.1341	[mAU*s] 	[mAU]	% 	
Totals :	3069.21484	350.57813		
Signal 5: DAD1 H, Sig=320	,16 Ref=off			
Peak RetTime Type Width # [min] [min] 1 9.554 BB 0.1342	[mAU*s] 	[mAU]	% 	
Totals :	2399.73413	274.06729		
				==


*** End of Report ***

Mass Spectrum of Compound 20 6/27/2016 3:35:19 PM



HPLC trace of compound **21**


Data File C:\Chem32\1\Data\Blake\Phenstatin Mono Benzyl 2016-06-24 15-04-17.D Sample Name: Phenstatin Mono Benzyl

1200 HPLC 7/27/2016 3:06:06 PM SYSTEM

Page 1 of 3

Data File C:\Chem32\1\Data\Blake\Phenstatin Mono Benzyl 2016-06-24 15-04-17.D Sample Name: Phenstatin Mono Benzyl

Area Percent Report

Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000
Use Multiplier	Dilution	Factor with ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	2.623	VB	0.0705	97.26770	20.82153	2.3829
2	10.050	BB	0.1355	3948.82544	445.16821	96.7381
3	17.741	BV	0.1500	18.17998	1.89374	0.4454
4	18.014	VB	0.1521	17.70173	1.77931	0.4337

Totals : 4081.97484 469.66279

Signal 2: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
]		[]				
1	1.164	BV	0.0694	33.68466	6.85008	0.2351
2	1.400	VV	0.0721	12.71162	2.55051	0.0887
3	2.485	BV	0.0637	7.93202	1.94075	0.0554
4	2.623	VB	0.0704	125.16396	26.84341	0.8735
5	8.888	BB	0.1209	15.13440	1.94245	0.1056
6	9.570	BB	0.1334	17.91170	2.02143	0.1250
7	10.050	BB	0.1415	1.38537e4	1531.66199	96.6844
8	10.855	BB	0.1800	21.19083	1.69345	0.1479
9	11.367	BV	0.1523	19.79466	2.02063	0.1381
10	11.660	VB	0.1551	16.72773	1.66669	0.1167
11	17.741	BV	0.1504	74.01029	7.68025	0.5165
12	18.015	VB	0.1550	75.58664	7.41189	0.5275
13	20.137	BB	0.1881	14.42555	1.21834	0.1007
14	25.012	BB	0.2047	40.80371	3.07725	0.2848

1200 HPLC 7/27/2016 3:06:06 PM SYSTEM

Data File C:\Chem32\1\Data\Blake\Phenstatin Mono Benzyl 2016-06-24 15-04-17.D Sample Name: Phenstatin Mono Benzyl

6808.16114 781.93966

Area

Totals : 1.43287e4 1598.57912

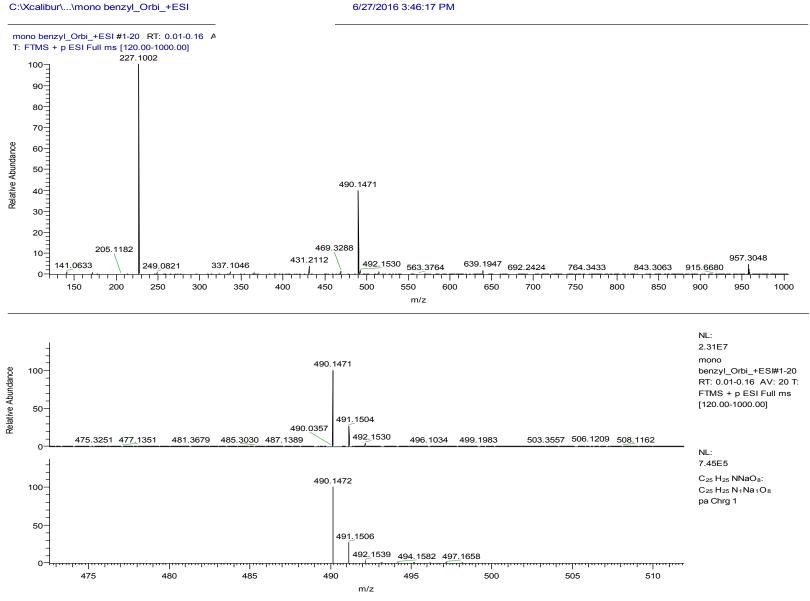
Signal 3: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		[]				
1	2.623	VB	0.0706	166.48155	35.57878	2.4453
2	10.050	VB	0.1357	6572.88330	739.32458	96.5442
3	17.741	BV	0.1502	33.93770	3.52851	0.4985
4	18.015	VB	0.1519	34.85859	3.50779	0.5120

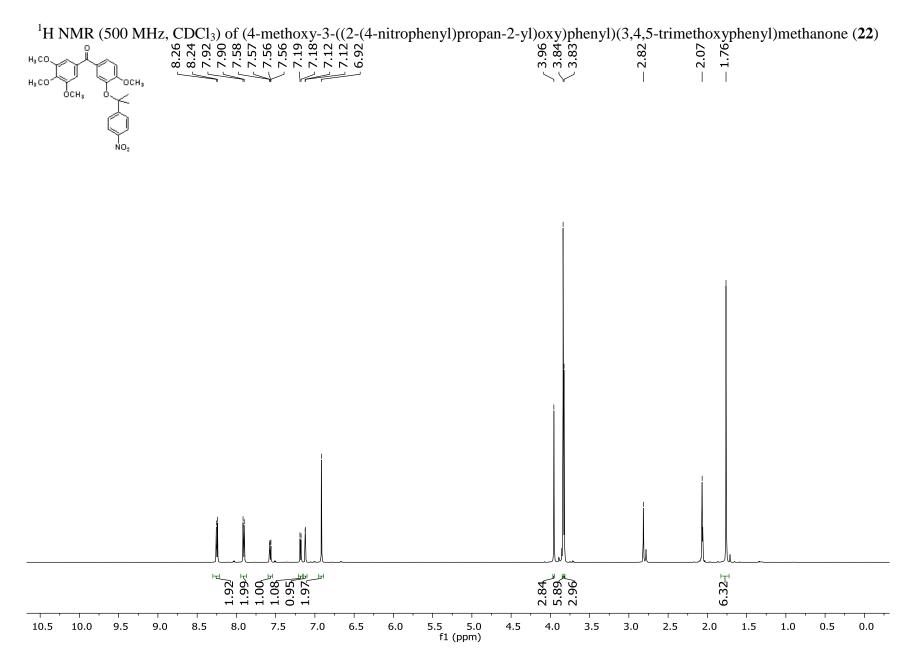
Totals :

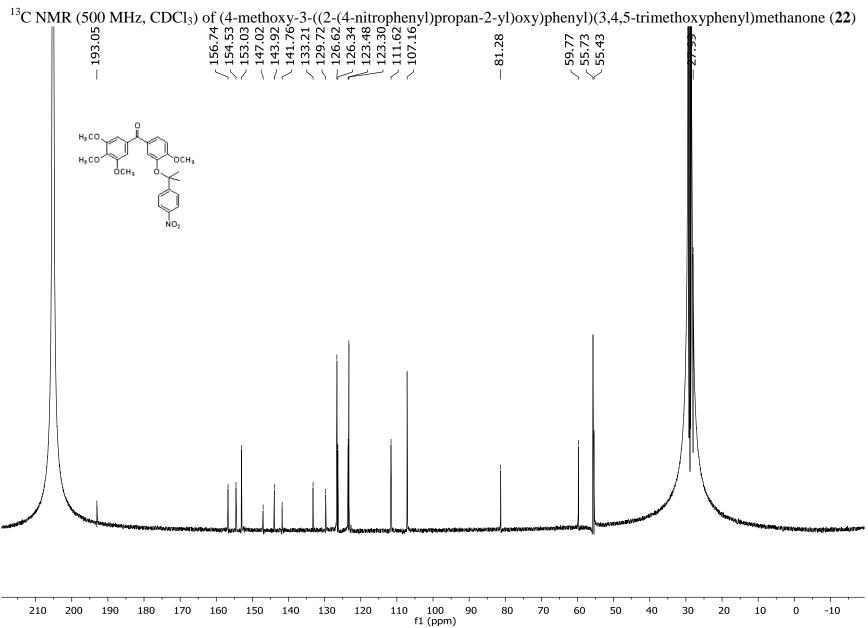
Peak RetTime Type Width Area Height

Signal 4: DAD1 G, Sig=300,16 Ref=off

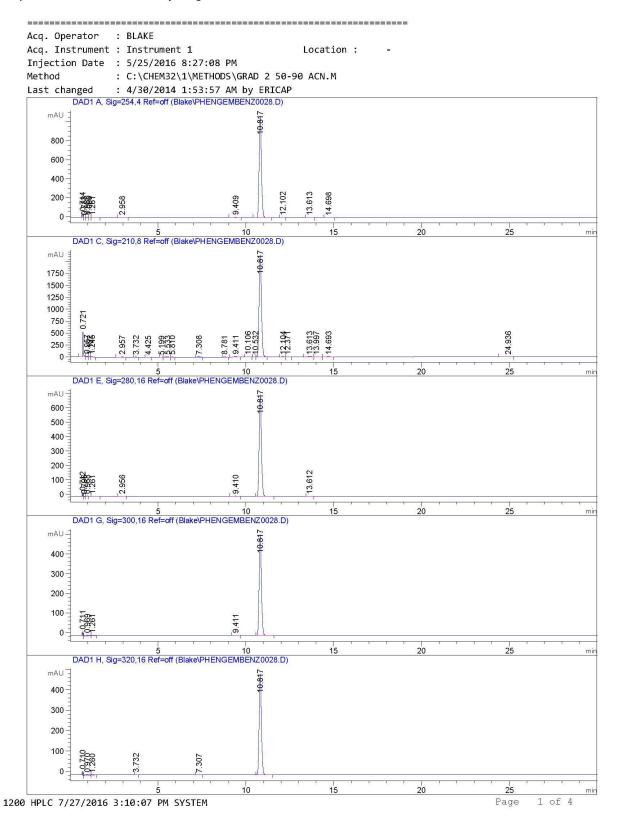

#	[min]		[min]	[mAU*s]	[mAU]	%
1	2.484	BV	0.0650	13.30461	3.16819	0.2212
2	2.623	VB	0.0709	97.07500	20.62395	1.6139
3	10.050	VB	0.1357	5846.73633	657.68555	97.2065
4	17.741	BV	0.1502	28.39500	2.95145	0.4721
5	18.014	VB	0.1519	29.24918	2.94428	0.4863

Totals : 6014.76011 687.37341


Signal 5: DAD1 H, Sig=320,16 Ref=off


Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	2.484	BV	0.0668	27.32641	6.27228	0.6116
2	2.623	VB	0.0722	28.46769	5.90924	0.6372
3	10.050	VB	0.1357	4383.14844	493.09454	98.1016
4	17.740	BV	0.1504	14.43601	1.49873	0.3231
5	18.015	VB	0.1524	14.59014	1.46198	0.3265
Total	s :			4467.96868	508.23677	

*** End of Report ***


Mass Spectrum of Compound 21 6/27/2016 3:46:17 PM

HPLC trace of Compound 22

Data File C:\Chem32\1\Data\Blake\PHENGEMBENZ0028.D
Sample Name: PhenstatinGembenzyltrig

Data File C:\Chem32\1\Data\Blake\PHENGEMBENZ0028.D
Sample Name: PhenstatinGembenzyltrig

Area Percent Report

Sorted By	:	Signal	
Multiplier	1	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		[]				
1	0.714	BB	0.0395	102.19965	43.34666	1.0177
2	0.788	BV	0.0756	11.59024	2.19634	0.1154
3	0.966	VV	0.0785	23.34126	4.22338	0.2324
4	1.066	VB	0.0945	8.40134	1.47398	0.0837
5	1.261	BB	0.1233	14.02321	1.55368	0.1396
6	2.958	BB	0.1362	18.88556	2.11404	0.1881
7	9.409	BB	0.1514	48.99464	4.95399	0.4879
8	10.817	BB	0.1399	9753.58301	1074.87256	97.1235
9	12.102	BV	0.1431	19.73879	2.14927	0.1966
10	13.613	BB	0.1765	24.62234	2.10450	0.2452
11	14.698	BB	0.1917	17.07420	1.40602	0.1700

Totals :

1.00425e4 1140.39442

Signal 2: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		[]				
1	0.721	BV	0.0447	1461.52954	521.25201	6.5254
2	0.957	VB	0.0674	64.74452	14.14843	0.2891
3	1.102	BB	0.0571	15.24200	4.12479	0.0681
4	1.245	BB	0.0672	51.74103	11.34311	0.2310
5	2.957	BB	0.1593	54.75251	4.94014	0.2445
6	3.732	BB	0.1021	22.23397	3.40823	0.0993
7	4.425	BB	0.1374	10.97531	1.21530	0.0490
8	5.199	BV	0.1054	6.87328	1.01010	0.0307
9	5.533	VV	0.1920	37.97945	2.73436	0.1696
10	5.810	VB	0.1214	14.23922	1.81732	0.0636
11	7.308	BB	0.1311	62.97500	7.41682	0.2812
12	8.781	BB	0.1254	10.26077	1.28221	0.0458
13	9.411	BB	0.1549	112.26086	11.20404	0.5012
14	10.106	BB	0.1466	11.22099	1.18407	0.0501
15	10.532	BV	0.1069	18.19983	2.68996	0.0813
16	10.817	VB	0.1487	2.02327e4	2132.34351	90.3351
17	12.104	BV	0.1433	44.72208	4.86408	0.1997
18	12.371	VB	0.1659	11.08892	1.02774	0.0495
19	13.613	BV	0.1889	70.74862	5.54352	0.3159
20	13.997	VB	0.1912	17.23422	1.27911	0.0769
21	14.693	BB	0.1903	41.92006	3.43787	0.1872

1200 HPLC 7/27/2016 3:10:07 PM SYSTEM

Data File C:\Chem32\1\Data\Blake\PHENGEMBENZ0028.D Sample Name: PhenstatinGembenzyltrig

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
[
22	24.936	BB	0.1983	23.75110	1.84351	0.1060

Totals : 2.23974e4 2740.11024

Signal 3: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	0.712	BB	0.0393	61.94859	26.47076	0.9453
2	0.796	BV	0.0805	16.87462	3.05010	0.2575
3	0.968	VB	0.0748	18.17283	3.48493	0.2773
4	1.261	BB	0.1265	10.94446	1.17680	0.1670
5	2.956	BB	0.1265	11.04522	1.30888	0.1685
6	9.410	BB	0.1523	31.17676	3.12741	0.4757
7	10.817	BB	0.1397	6391.30029	705.65088	97.5262
8	13.612	BB	0.1755	11.95675	1.02930	0.1825

Totals: 6553.41952 745.29

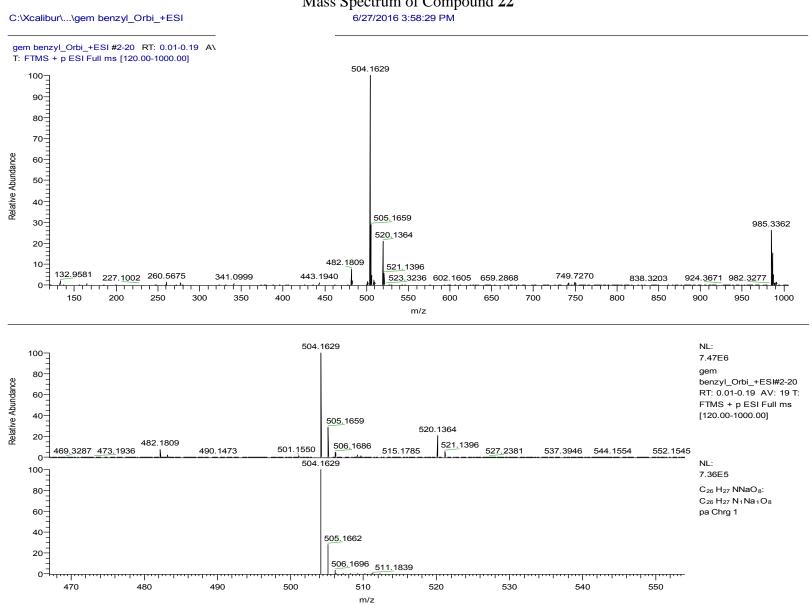
Signal 4: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
					[
1	0.711	BB	0.0393	51.22318	21.89296	1.0584
2	0.969	BV	0.2164	85.29426	4.91742	1.7624
3	1.261	VB	0.1406	22.31900	2.05697	0.4612
4	9.411	BB	0.1509	13.82055	1.40350	0.2856
5	10.817	BB	0.1396	4667.10986	515.53510	96.4325

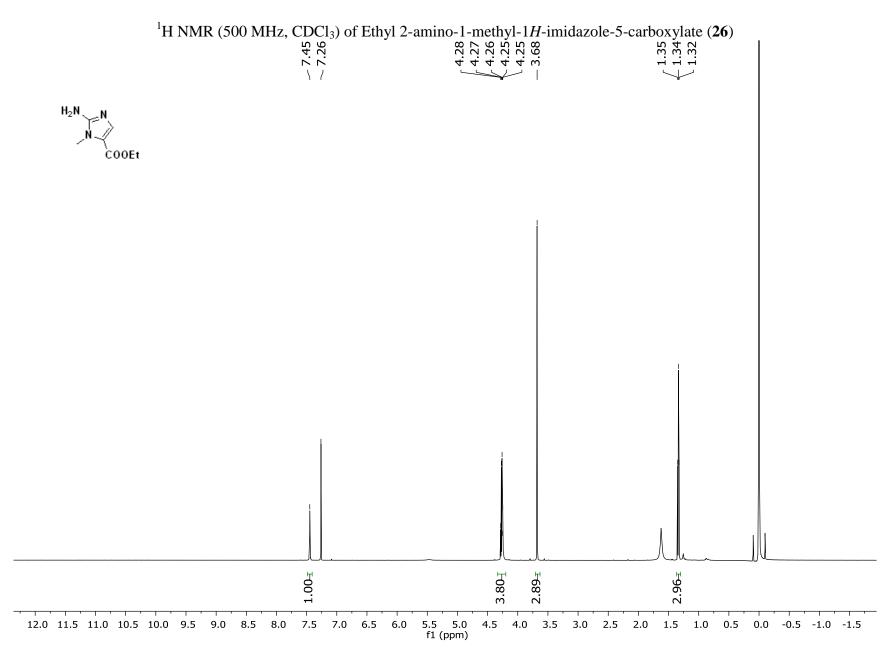
Totals : 4839.76686 545.80594

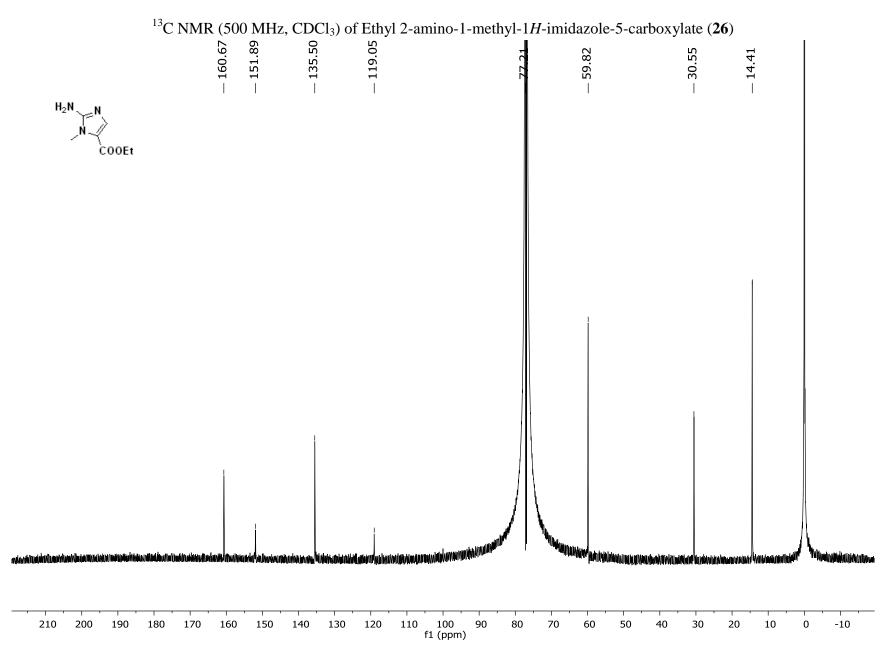
Signal 5: DAD1 H, Sig=320,16 Ref=off

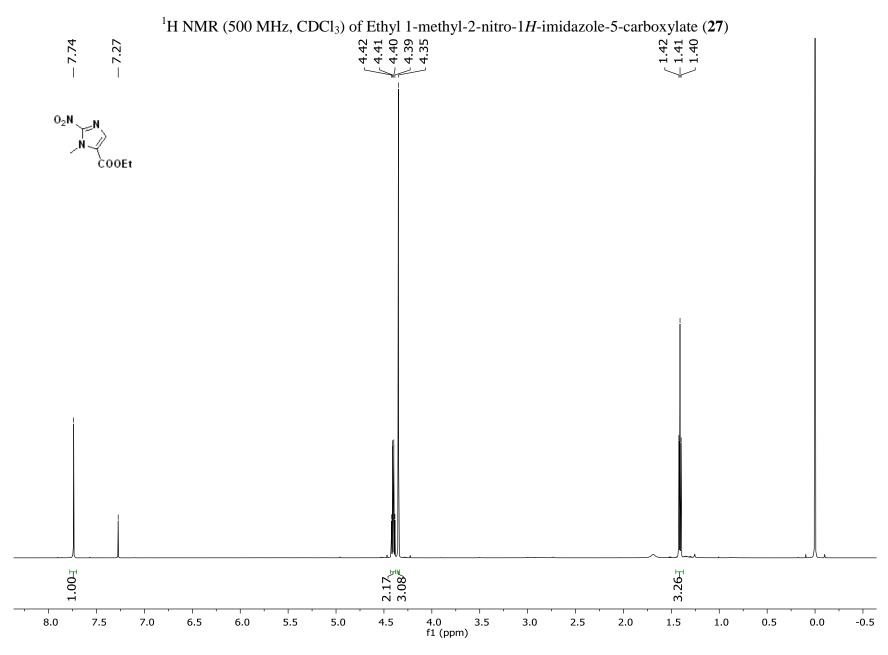
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	0.710	BB	0.0391	45.33421	19.50666	0.9726
2	0.970	BV	0.2400	94.89272	4.89924	2.0358
3	1.260	VB	0.1407	23.02846	2.12033	0.4941
4	3.732	VB	0.1022	7.11667	1.06216	0.1527
5	7.307	BB	0.1299	8.64792	1.03083	0.1855
6	10.817	BB	0.1395	4482.10010	495.50699	96.1593
Total	s :			4661.12007	524.12621	

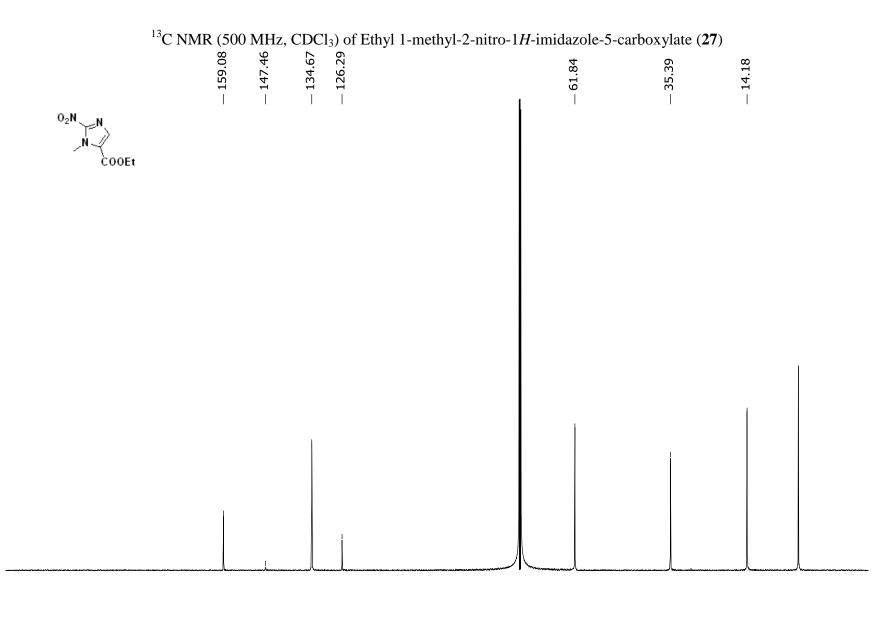

1200 HPLC 7/27/2016 3:10:07 PM SYSTEM

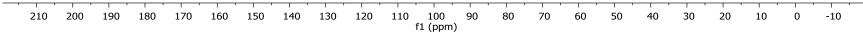
Data File C:\Chem32\1\Data\Blake\PHENGEMBENZ0028.D
Sample Name: PhenstatinGembenzyltrig

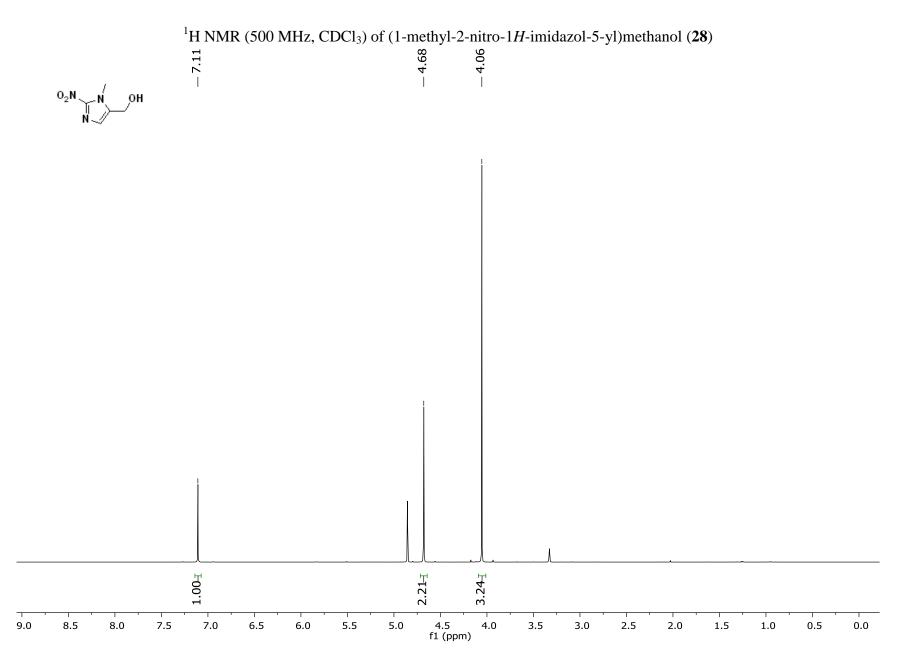

*** End of Report ***

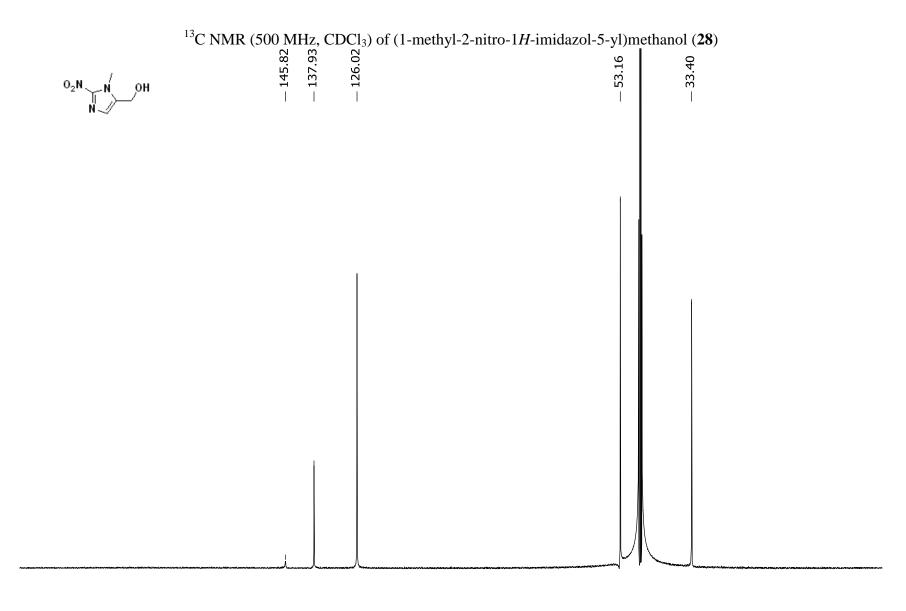

1200 HPLC 7/27/2016 3:10:07 PM SYSTEM

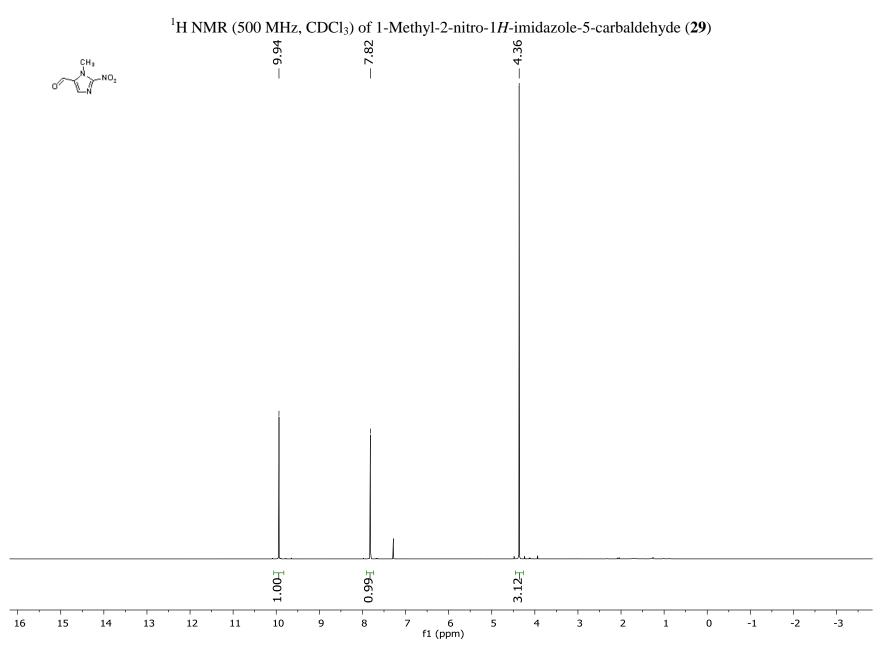

Page 4 of 4

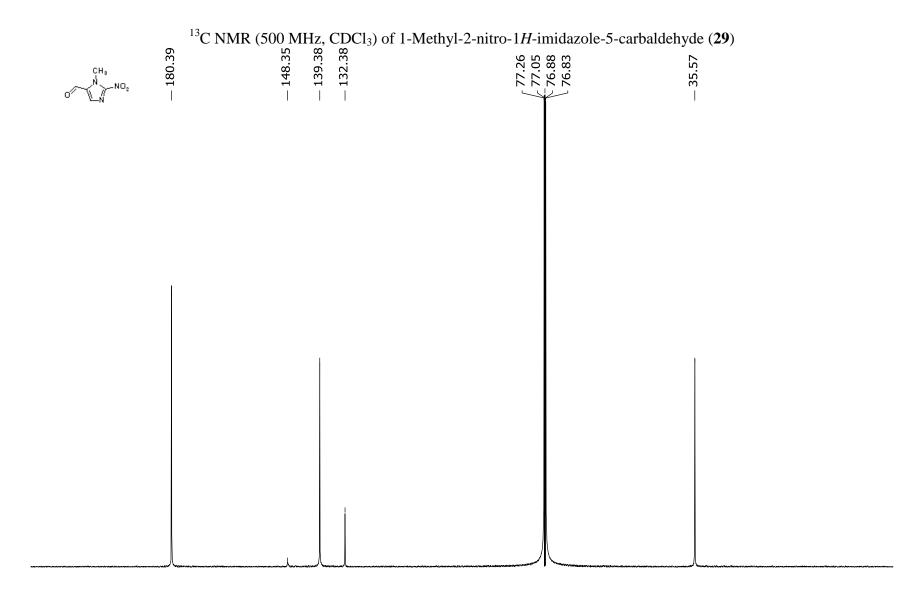


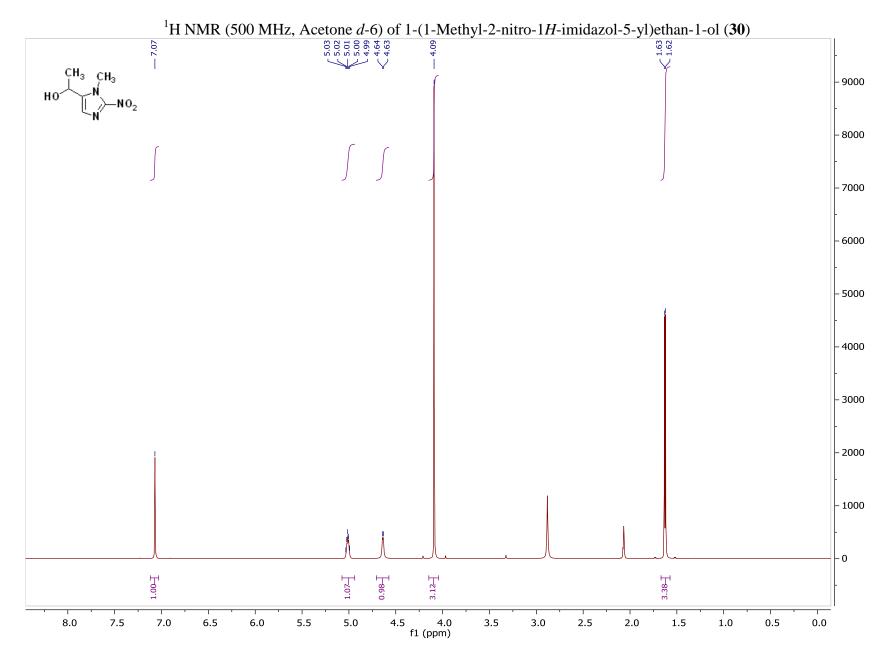

Mass Spectrum of Compound 22

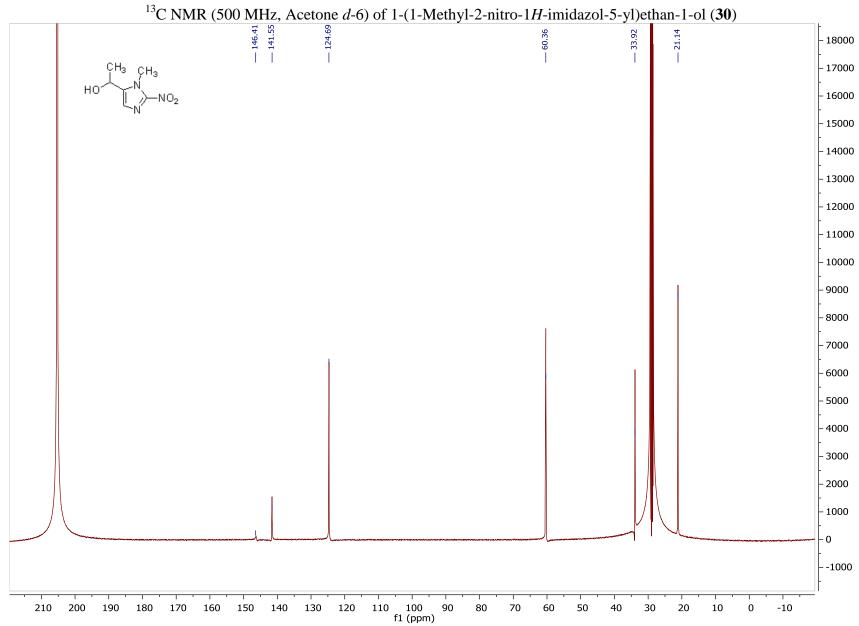


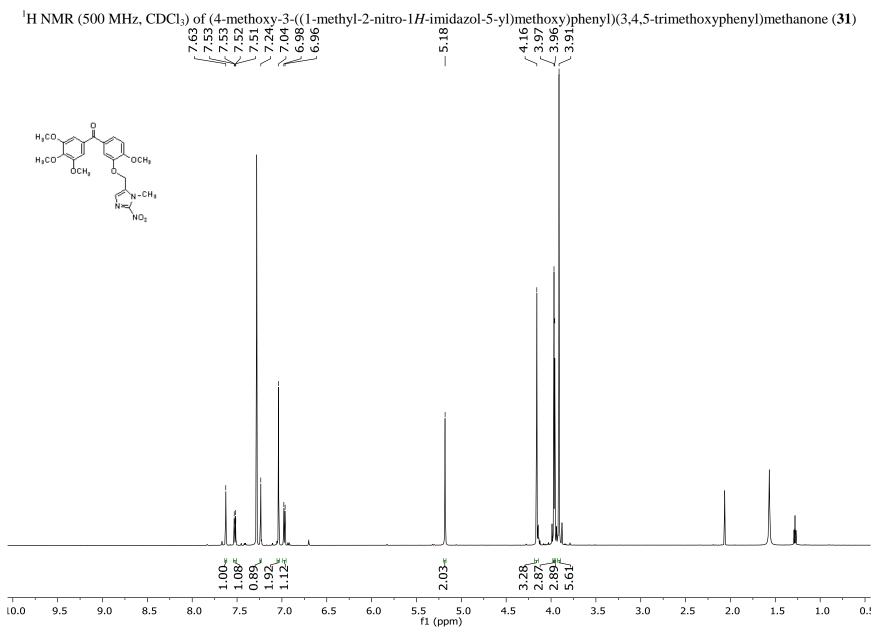


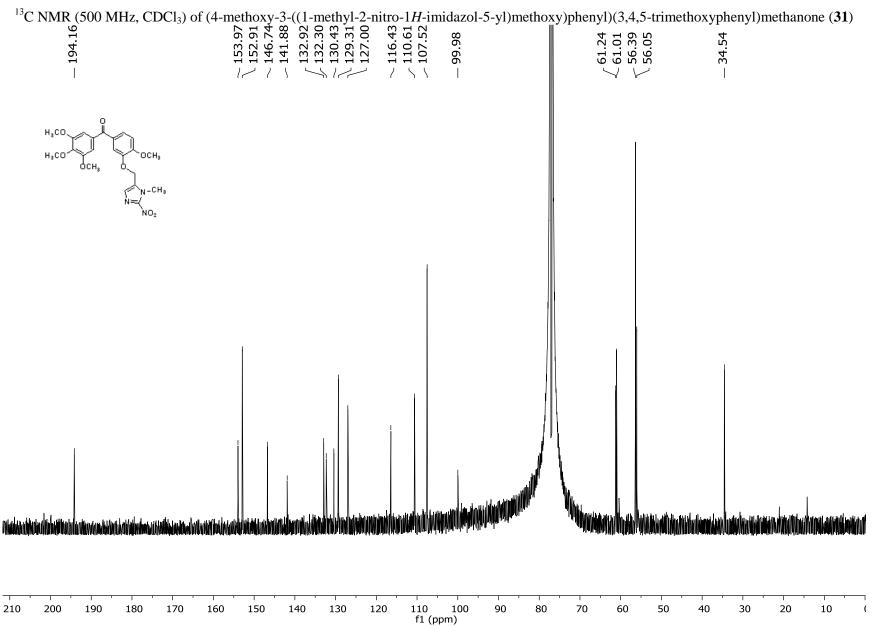




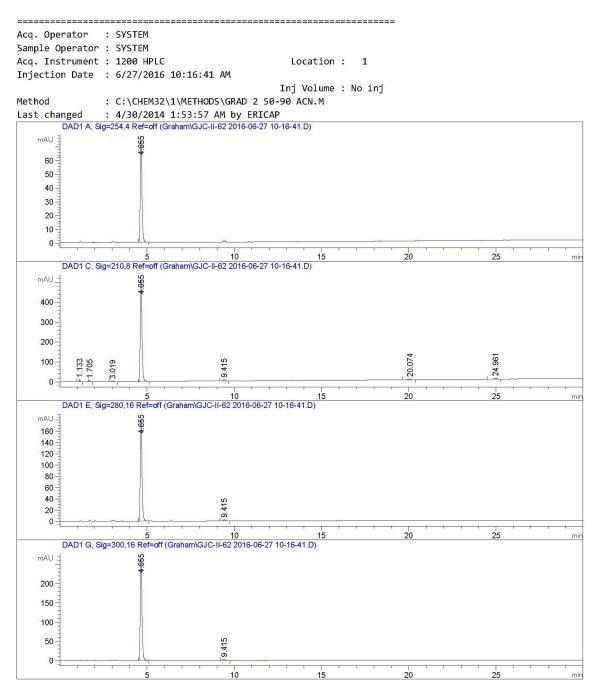



			1 1	1 1		1 1		1 1	1 1		1 1												
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
										f	f1 (ppm))											

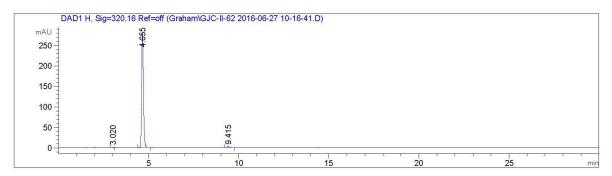




								1 1				- I								1 1	1		
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
f1 (ppm)																							



HPLC trace of Compound **31**


Data File C:\Chem32\1\Data\Graham\GJC-II-62 2016-06-27 10-16-41.D Sample Name: GJC-II-62

1200 HPLC 7/27/2016 3:11:33 PM SYSTEM

Page 1 of 3

Data File C:\Chem32\1\Data\Graham\GJC-II-62 2016-06-27 10-16-41.D Sample Name: GJC-II-62

Area Percent Report

Sorted By		:	Sign	nal	
Multiplier		:	1.00	900	
Dilution		:	1.00	900	
Use Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

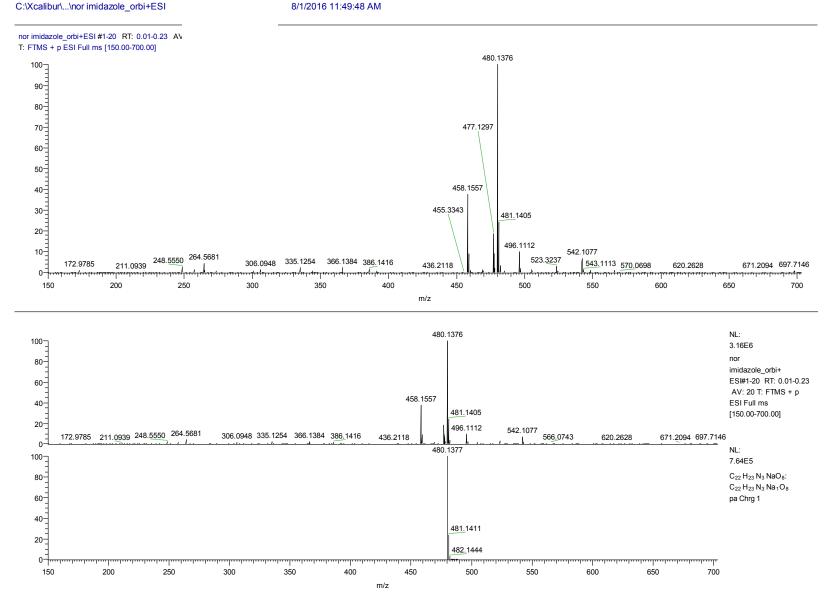
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		[]				
1	4.655	BB	0.1037	492.90375	73.97382	100.0000

Totals : 492.90375 73.97382

Signal 2: DAD1 C, Sig=210,8 Ref=off

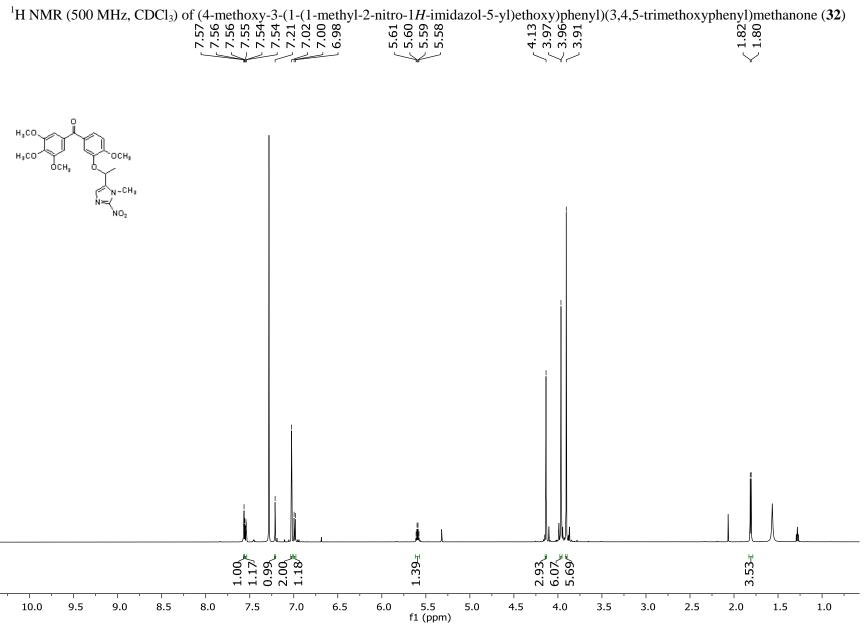
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.133	BB	0.0631	45.22847	10.32059	1.2369
2	1.705	BB	0.0687	26.42975	5.85398	0.7228
3	3.019	BB	0.1103	25.94071	3.35139	0.7094
4	4.655	BB	0.1038	3395.83325	509.36142	92.8674
5	9.415	BB	0.1376	60.64553	6.82763	1.6585
6	20.074	BB	0.1800	41.57561	3.56745	1.1370
7	24.961	BB	0.1989	60.99513	4.65493	1.6681
Total	.s :			3656.64845	543.93739	

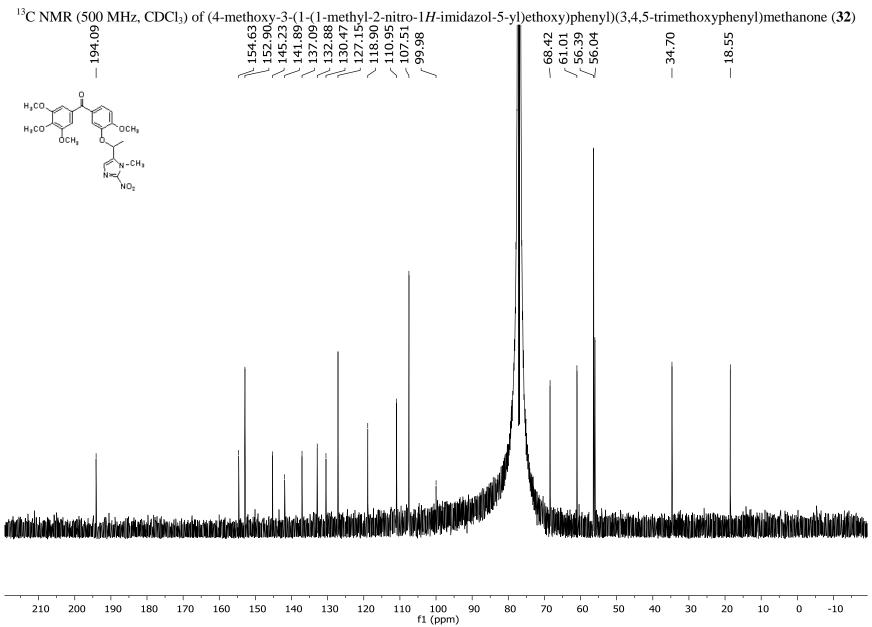
Signal 3: DAD1 E, Sig=280,16 Ref=off


1200 HPLC 7/27/2016 3:11:33 PM SYSTEM

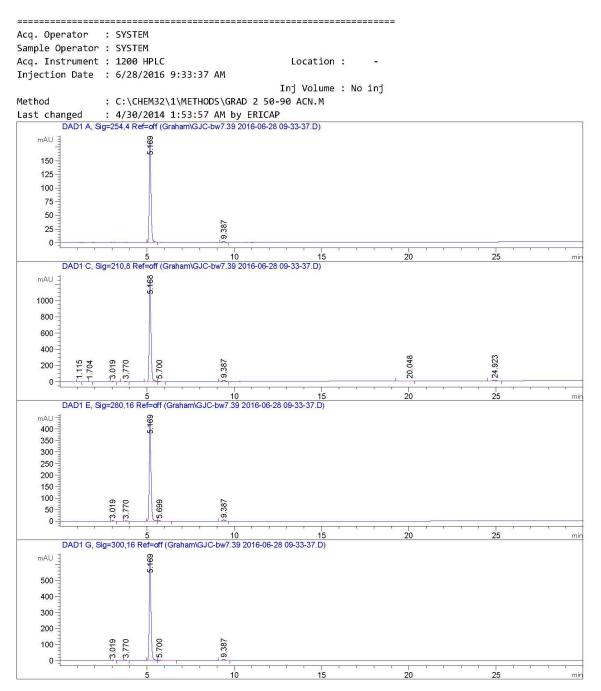
Data File C:\Chem32\1\Data\Graham\GJC-II-62 2016-06-27 10-16-41.D Sample Name: GJC-II-62

Peak RetTime Type Width Area Height Area % # [min] [min] [mAU*s] [mAU] -----1 4.655 BB 0.1017 1203.02307 180.74945 98.3370 2 9.415 BB 0.1378 20.34402 2.28747 1.6630 1223.36709 183.03692 Totals : Signal 4: DAD1 G, Sig=300,16 Ref=off Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] % [mAU] 1 4.655 BB 0.1016 1759.79248 264.55835 98.5151 2 9.415 BB 0.1385 26.52550 2.96211 1.4849 1786.31798 267.52046 Totals : Signal 5: DAD1 H, Sig=320,16 Ref=off Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 3.020 BV 0.0863 6.43352 1.13186 0.3403 2 4.655 BB 0.1017 1863.36987 279.61612 98.5610 3 9.415 BB 0.1386 20.77160 2.31634 1.0987 Totals : 1890.57500 283.06432

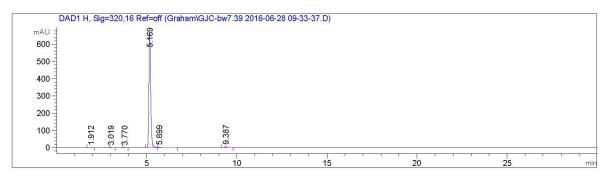

*** End of Report ***


1200 HPLC 7/27/2016 3:11:33 PM SYSTEM

Mass Spectrum of Compound **31** 8/1/2016 11:49:48 AM


268

HPLC trace of compound 32


Data File C:\Chem32\1\Data\Graham\GJC-bw7.39 2016-06-28 09-33-37.D Sample Name: GJC-bw7.39

1200 HPLC 7/27/2016 3:11:02 PM SYSTEM

Page 1 of 3

Data File C:\Chem32\1\Data\Graham\GJC-bw7.39 2016-06-28 09-33-37.D Sample Name: GJC-bw7.39

Area Percent Report

Sorted By	:	Signal
Multiplier	1	1.0000
Dilution	1	1.0000
Use Multiplier	& Dilution	Factor with ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak I	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.169	BB	0.1079	1308.11023	186.41667	98.6448
2	9.387	BB	0.1370	17.97061	1.99658	1.3552
Total	5:			1326.08084	188.41325	

Signal 2: DAD1 C, Sig=210,8 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1.115	BB	0.0636	20.10123	4.73168	0.2177
2	1.704	BV	0.0693	8.56182	1.87530	0.0927
3	3.019	BB	0.0982	41.66935	6.21576	0.4512
4	3.770	BB	0.1098	35.03053	4.87756	0.3793
5	5.168	BV	0.1083	8845.59863	1254.06128	95.7801
6	5.700	VB	0.1295	45.40988	5.11972	0.4917
7	9.387	BB	0.1394	138.76819	15.35983	1.5026
8	20.048	BB	0.1804	40.14570	3.43492	0.4347
9	24.923	BB	0.1998	60.03884	4.61281	0.6501

Totals :

9235.32416 1300.28885

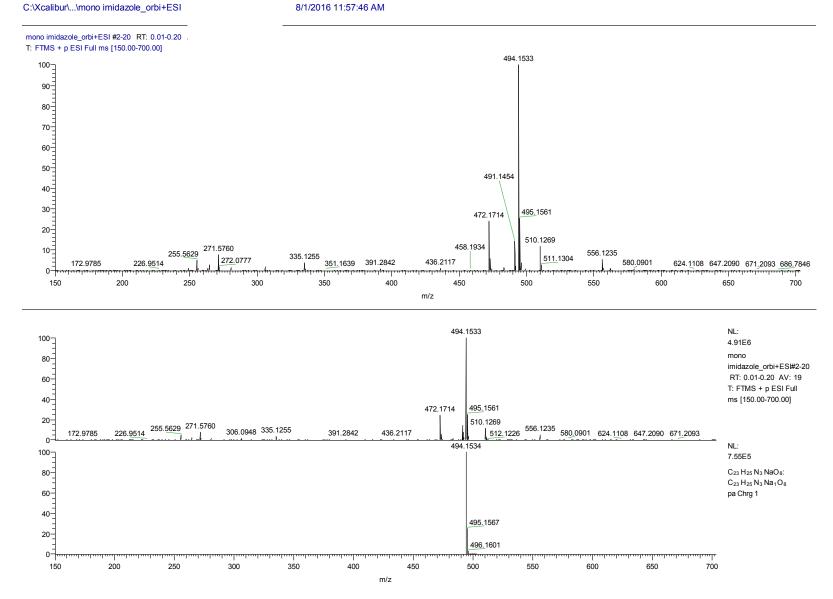
1200 HPLC 7/27/2016 3:11:02 PM SYSTEM

Data File C:\Chem32\1\Data\Graham\GJC-bw7.39 2016-06-28 09-33-37.D Sample Name: GJC-bw7.39

Signal 3: DAD1 E, Sig=280,16 Ref=off

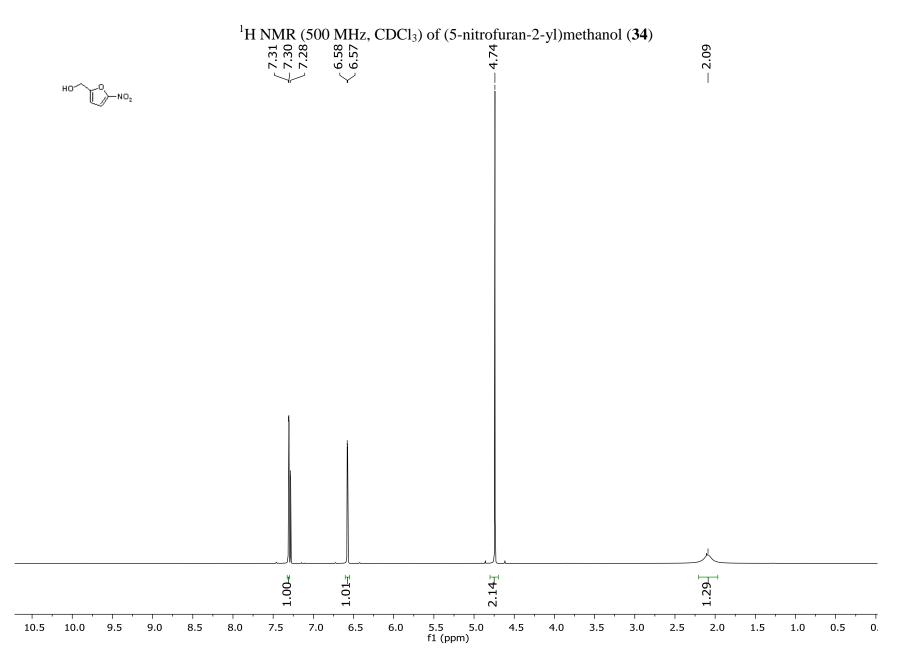
Peak Re #	etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	3.019	BB	0.0922	11.24072	1.81736	0.3528
2	3.770	BB	0.1068	8.59604	1.24050	0.2698
3	5.169	BV	0.1080	3104.03003	441.85226	97.4361
4	5.699	VB	0.1433	15.31075	1.52331	0.4806
5	9.387	BB	0.1395	46.52958	5.14450	1.4606
Totals	:			3185.70712	451.57793	

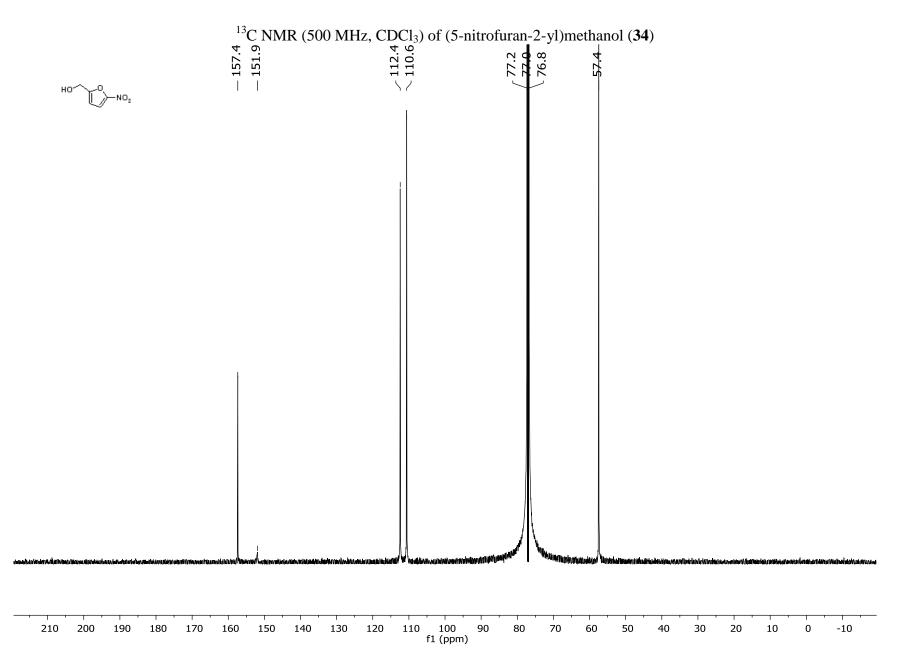
Signal 4: DAD1 G, Sig=300,16 Ref=off

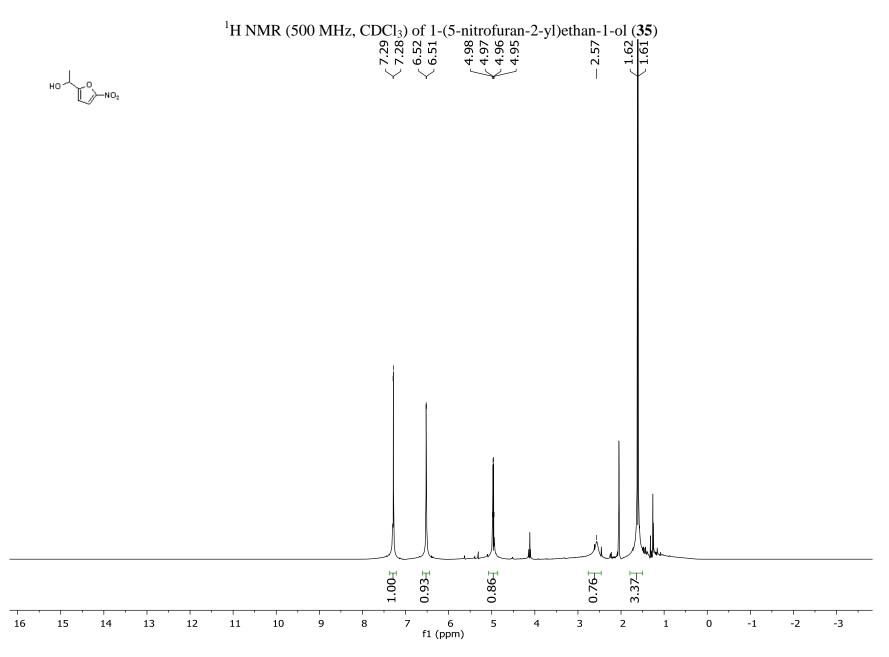

Peak Re #	etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		[]				
1	3.019	BB	0.0916	13.27996	2.16508	0.2894
2	3.770	BB	0.1061	11.34777	1.65200	0.2473
3	5.169	BV	0.1080	4477.59424	637.43597	97.5884
4	5.700	VB	0.1506	25.92229	2.42757	0.5650
5	9.387	BB	0.1397	60.09922	6.63421	1.3099
Totals	1			4588.24348	650.31484	

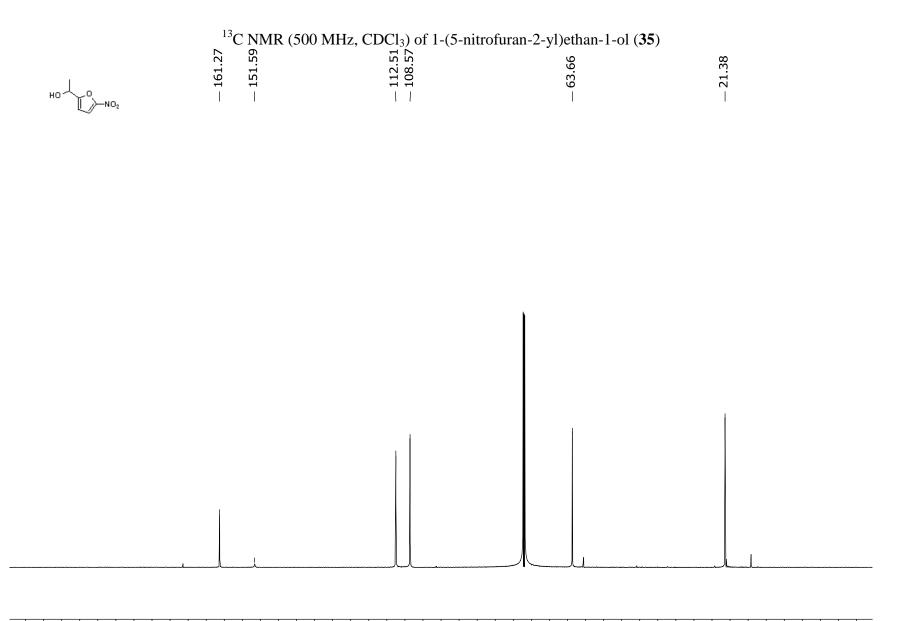
Signal 5: DAD1 H, Sig=320,16 Ref=off

Peak R #	etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
[-						
1	1.912	BB	0.0793	5.62801	1.03708	0.1181
2	3.019	BB	0.0924	13.15536	2.12034	0.2762
3	3.770	BB	0.1030	8.79059	1.29828	0.1845
4	5.169	BV	0.1080	4662.22168	663.61096	97.8683
5	5.699	VB	0.1514	26.86522	2.49865	0.5639
6	9.387	BB	0.1379	47.10875	5.18836	0.9889
Totals	:			4763.76961	675.75368	

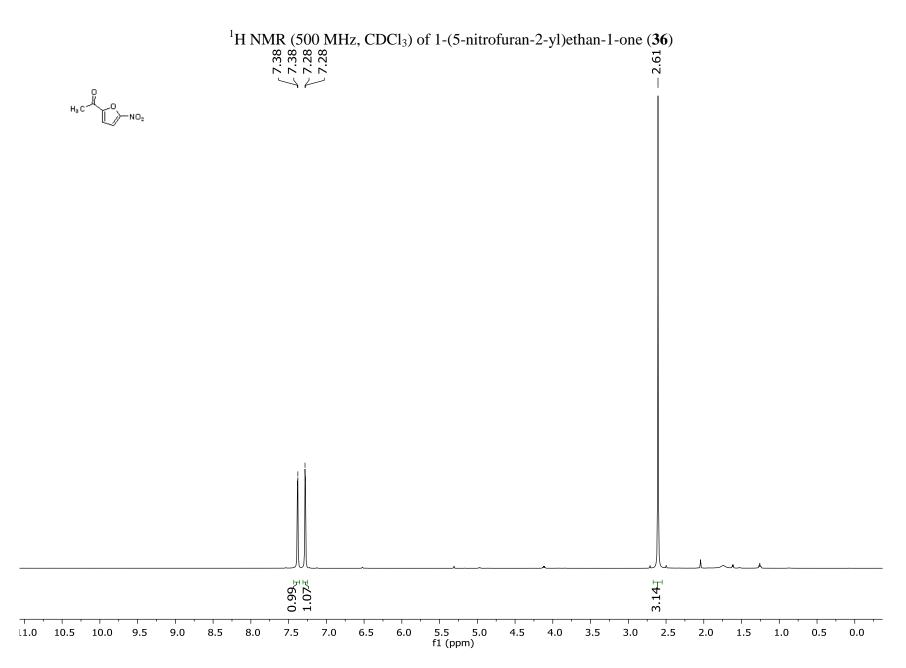

*** End of Report ***

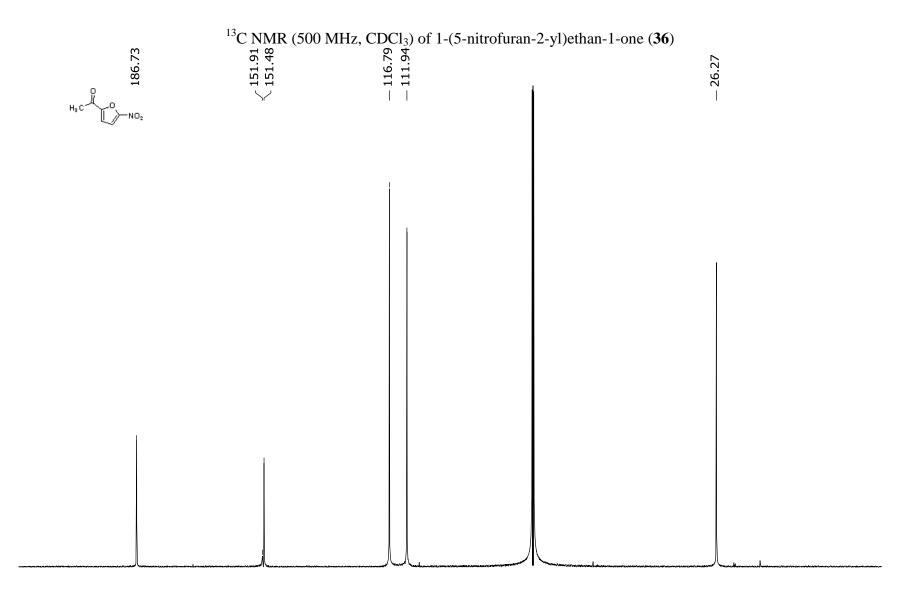

1200 HPLC 7/27/2016 3:11:02 PM SYSTEM

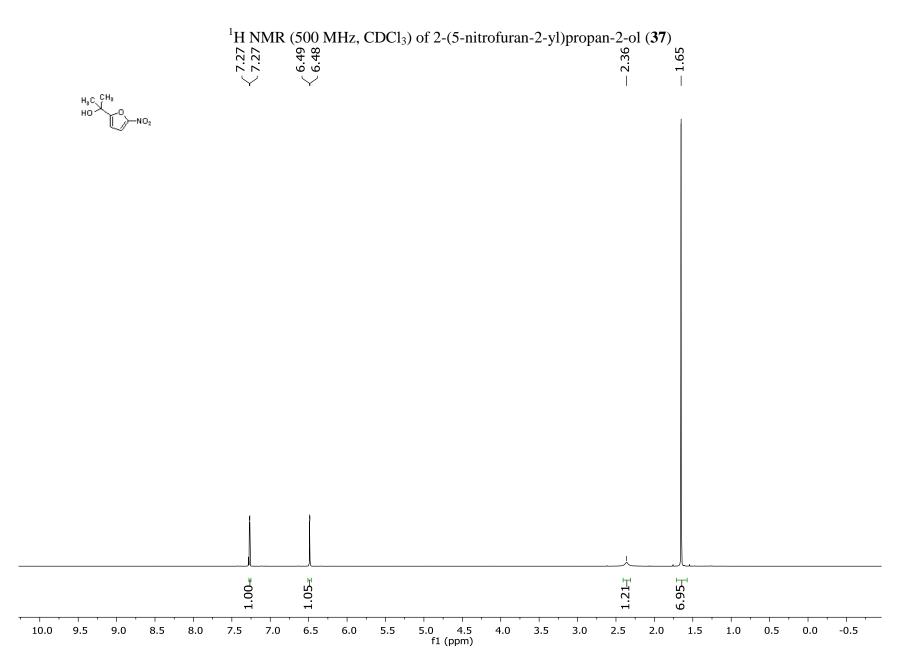


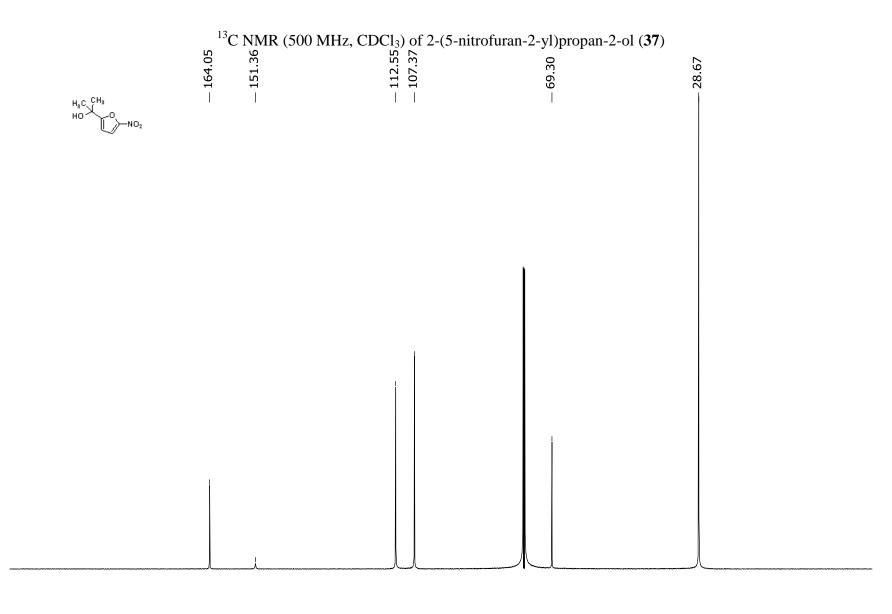

Mass Spectrum of Compound **32**

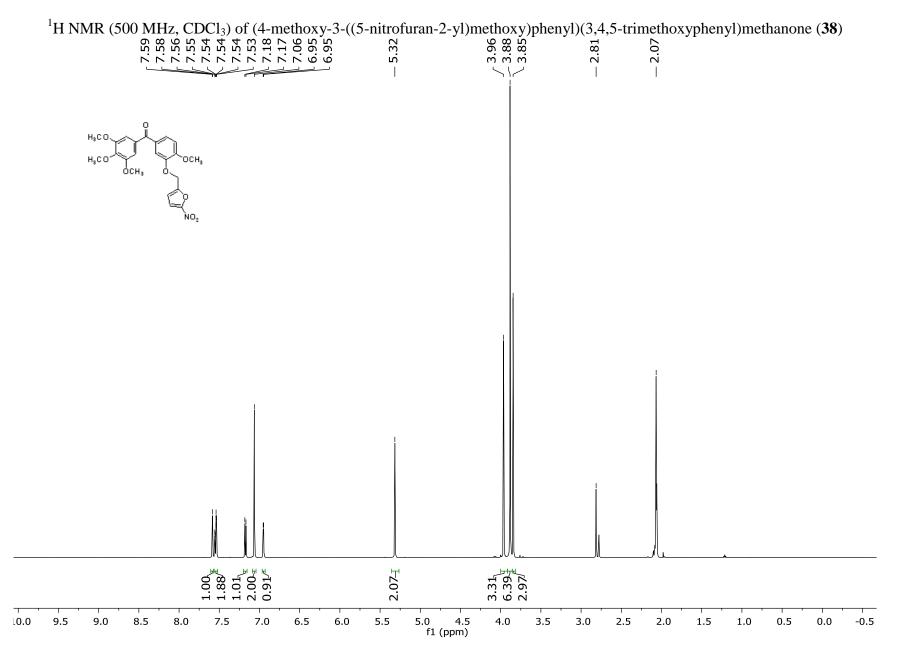
Relative Abundance

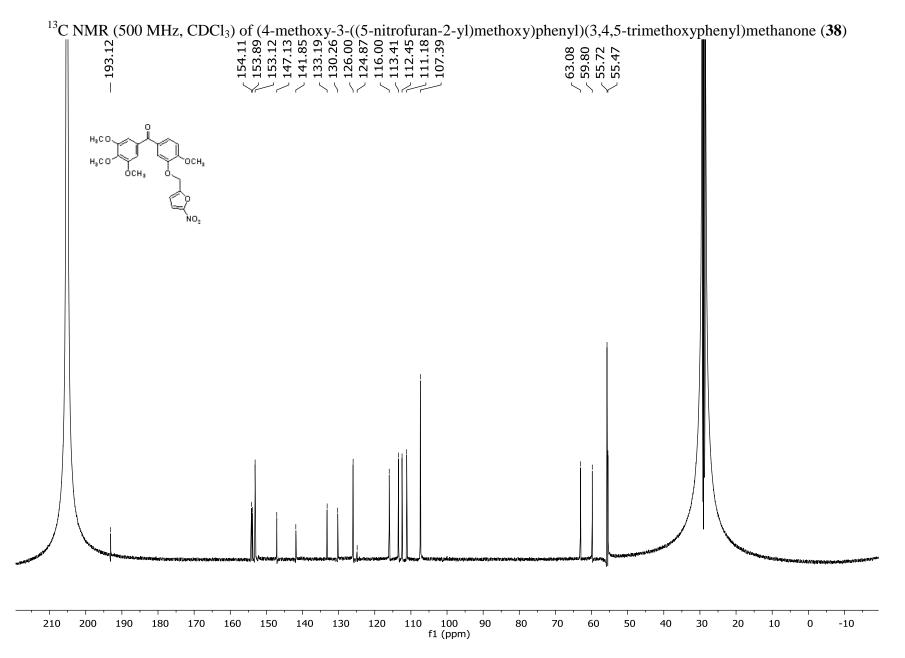


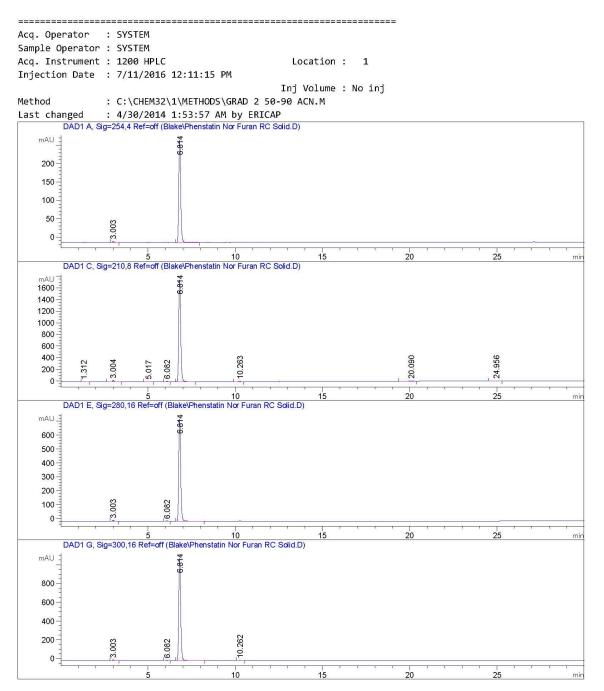




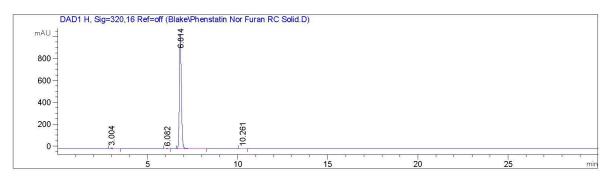

				' '															1 1		1		
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
										1	f1 (ppm))											




								1 1			1 1		' '					1 1			1		
210	200	190	180	170	160	150	140	130	120				80	70	60	50	40	30	20	10	0	-10	
										f	⁻ 1 (ppm))											


		1 1	1 1	1 1		1 1		1 1			1 1	1 1		1 1	1 1	1 1							
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
										f	f1 (ppm))											

HPLC trace of compound 38


Data File C:\Chem32\1\Data\Blake\Phenstatin Nor Furan RC Solid.D Sample Name: Phenstatin Nor Furan RC Solid

1200 HPLC 7/27/2016 2:56:09 PM SYSTEM

Page 1 of 3

Data File C:\Chem32\1\Data\Blake\Phenstatin Nor Furan RC Solid.D Sample Name: Phenstatin Nor Furan RC Solid

Area Percent Report

Sorted By	:	Signal
Multiplier	1	1.0000
Dilution	:	1.0000
Use Multiplier	& Dilution	Factor with ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak F	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
[-				[
1	3.003 BB	0.0861	19.43468	3.42946	0.9099
2	6.814 BB	0.1169	2116.50854	277.77905	99.0901
Totals	5:		2135.94322	281.20851	

Signal 2: DAD1 C, Sig=210,8 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
						[]
1	1.312	BB	0.1514	38.18913	3.99850	0.2715
2	3.004	BB	0.0917	139.60963	22.71666	0.9926
3	5.017	BB	0.1257	19.12942	2.23739	0.1360
4	6.082	BB	0.1129	42.63132	5.85598	0.3031
5	6.814	BB	0.1213	1.36771e4	1748.27014	97.2408
6	10.263	BB	0.1351	19.30628	2.18430	0.1373
7	20.090	BB	0.1801	54.73910	4.69318	0.3892
8	24.956	BB	0.1972	74.47594	5.82237	0.5295

Totals :

1.40652e4 1795.77851

1200 HPLC 7/27/2016 2:56:09 PM SYSTEM

Data File C:\Chem32\1\Data\Blake\Phenstatin Nor Furan RC Solid.D Sample Name: Phenstatin Nor Furan RC Solid

Signal 3: DAD1 E, Sig=280,16 Ref=off

	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.003	BB	0.0860	37.46567	6.62766	0.6635
2	6.082	BB	0.1126	13.18989	1.81989	0.2336
3	6.814	BB	0.1168	5595.62842	734.84283	99.1029

Totals :	5646.28397	743.29039

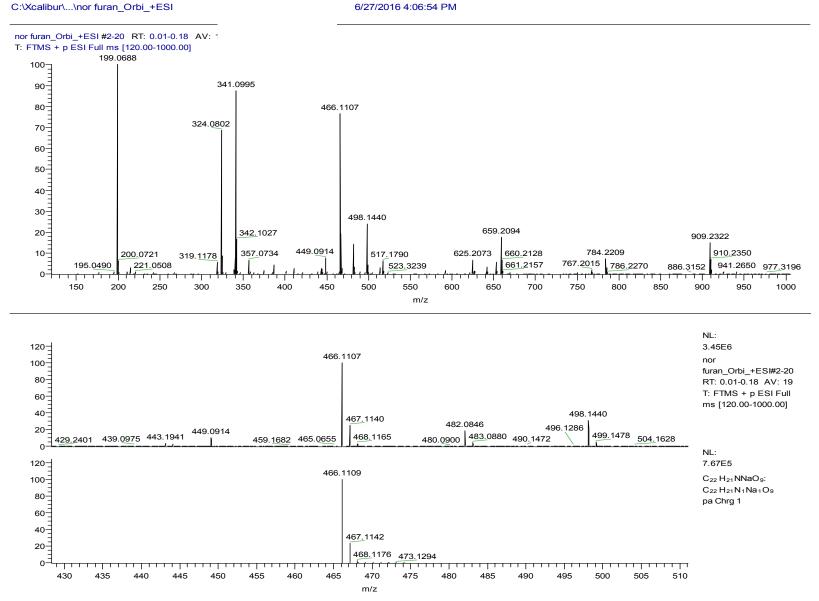
Signal 4: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.003	BB	0.0862	44.83185	7.90127	0.5356
2	6.082	BB	0.1122	16.83401	2.33198	0.2011
3	6.814	BB	0.1170	8296.80371	1087.12134	99.1219
4	10.262	BB	0.1325	11.83290	1.37401	0.1414

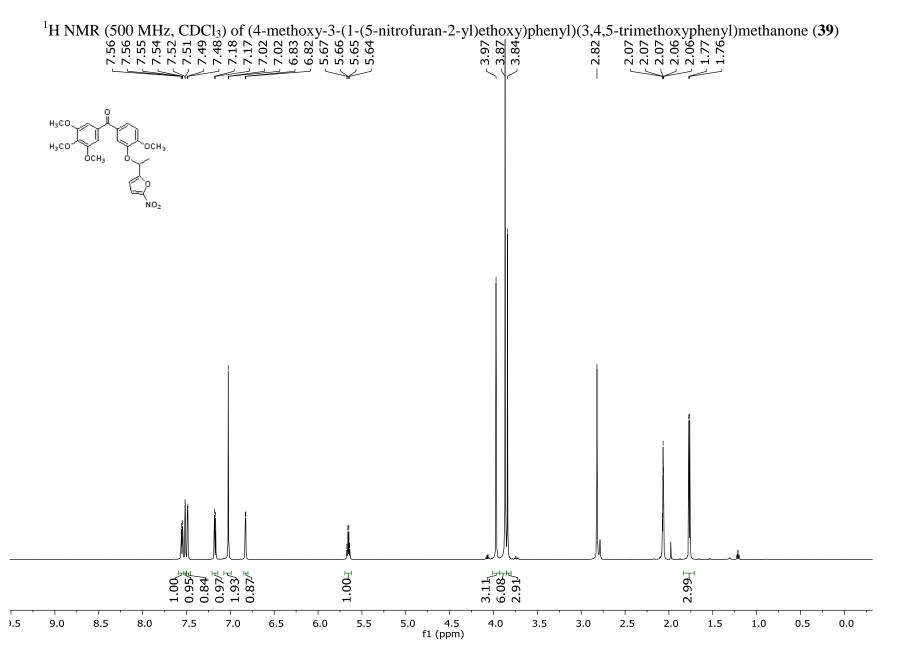
Totals :

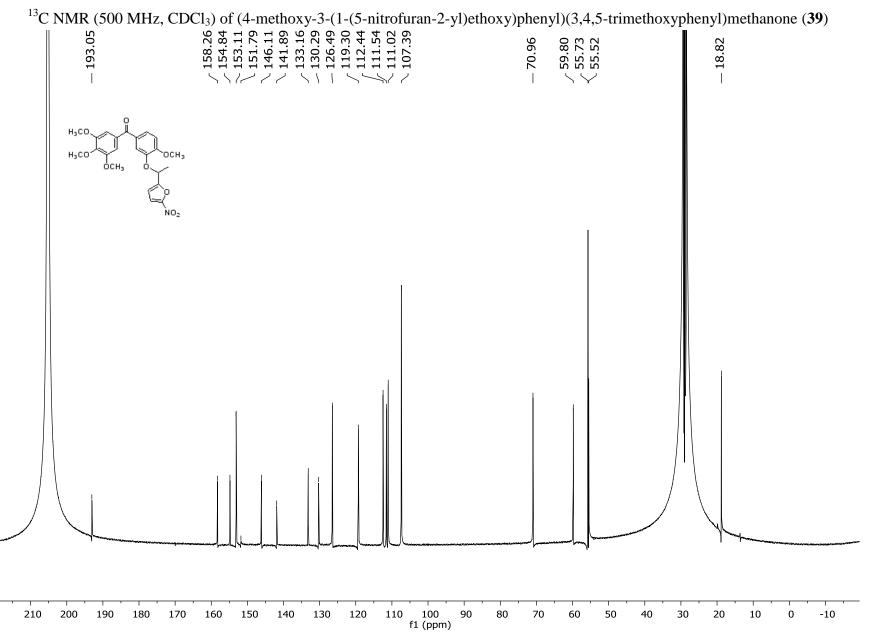
8370.30247 1098.72860

Signal 5: DAD1 H, Sig=320,16 Ref=off

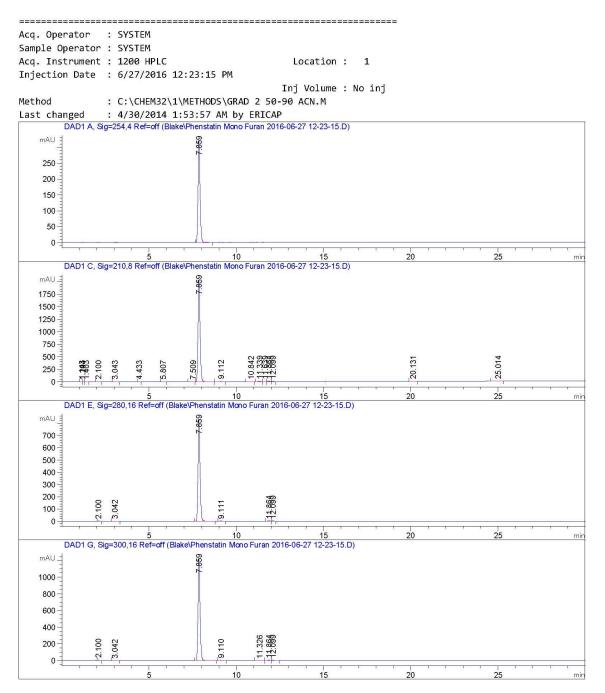

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
]		[]				
1	3.004	BB	0.0873	44.69609	7.74583	0.5544
2	6.082	BB	0.1122	14.82649	2.05433	0.1839
3	6.814	BB	0.1170	7991.61816	1047.00903	99.1334
4	10.261	BB	0.1325	10.33726	1.20055	0.1282
2 3	6.082 6.814	BB BB	0.1122 0.1170	14.82649 7991.61816	2.05433 1047.00903	0.1839 99.1334

Totals : 8061.47800 1058.00974

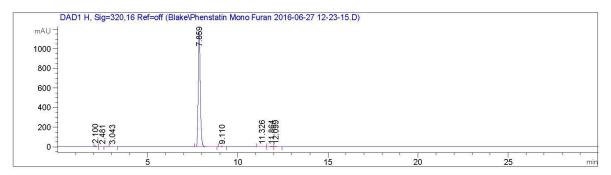

*** End of Report ***


1200 HPLC 7/27/2016 2:56:09 PM SYSTEM

Page 3 of 3


Mass Spectrum of Compound **38** 6/27/2016 4:06:54 PM

HPLC trace of compound **39**


Data File C:\Chem32\1\Data\Blake\Phenstatin Mono Furan 2016-06-27 12-23-15.D Sample Name: Phenstatin Mono Furan

1200 HPLC 7/27/2016 2:57:58 PM SYSTEM

Page 1 of 3

Data File C:\Chem32\1\Data\Blake\Phenstatin Mono Furan 2016-06-27 12-23-15.D Sample Name: Phenstatin Mono Furan

Area Percent Report

Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000
Use Multiplier	& Dilution	Factor with ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.859	BB	0.1215	2570.55176	320.66025	100.0000

Totals : 2570.55176 320.66025

Signal 2: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
]		[]		[Ì
1	1.143	BV	0.0608	29.18751	7.28058	0.1716
2	1.204	VV	0.0563	16.28708	4.28681	0.0957
3	1.403	VV	0.1110	24.16215	2.84804	0.1420
4	2.100	BB	0.0761	14.81390	2.87721	0.0871
5	3.043	BB	0.1038	24.08342	3.43290	0.1416
6	4.433	BB	0.0990	9.47919	1.51485	0.0557
7	5.807	BB	0.1557	12.29721	1.10599	0.0723
8	7.509	BV	0.1404	9.60507	1.03346	0.0565
9	7.859	VV	0.1272	1.66029e4	2033.62903	97.5913
10	9.112	VB	0.1640	41.80635	3.69494	0.2457
11	10.842	BB	0.1713	23.59030	2.00501	0.1387
12	11.339	BB	0.1653	46.23188	4.23744	0.2718
13	11.639	BV	0.1197	11.18849	1.48851	0.0658
14	11.864	VV	0.1333	56.25783	6.60982	0.3307
15	12.099	VV	0.1291	36.92906	4.43911	0.2171
16	20.131	BB	0.1803	16.98117	1.45313	0.0998
17	25.014	BB	0.2001	36.88857	2.82995	0.2168

1200 HPLC 7/27/2016 2:57:58 PM SYSTEM

Page 2 of 3

Data File C:\Chem32\1\Data\Blake\Phenstatin Mono Furan 2016-06-27 12-23-15.D Sample Name: Phenstatin Mono Furan

Totals : 1.70126e4 2084.76680

Signal 3: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	2.100	BB	0.0656	8.17356	1.92110	0.1216
2	3.042	BB	0.1141	8.31909	1.03149	0.1238
3	7.859	BB	0.1213	6659.09961	832.68286	99.1019
4	9.111	BB	0.1340	11.07225	1.26691	0.1648
5	11.864	BV	0.1343	20.66961	2.40442	0.3076
6	12.099	VB	0.1294	12.11073	1.45069	0.1802
Total	s :			6719.44486	840.75747	

Signal 4: DAD1 G, Sig=300,16 Ref=off

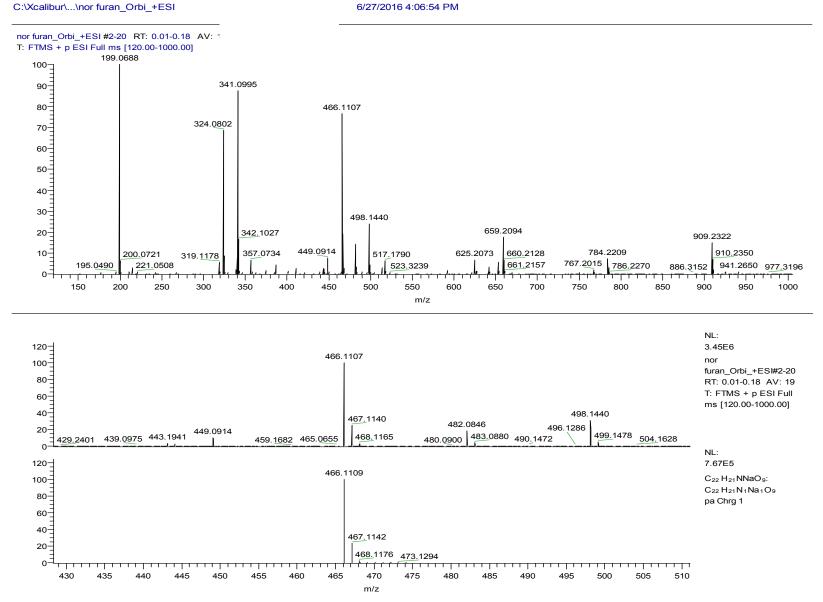
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	2.100	BB	0.0656	21.83418	5.13122	0.2203
2	3.042	BB	0.1077	9.10506	1.21092	0.0919
3	7.859	BB	0.1234	9787.00977	1222.91431	98.7672
4	9.110	BB	0.1339	16.66832	1.90752	0.1682
5	11.326	BB	0.1861	18.04028	1.36554	0.1821
6	11.864	BV	0.1363	32.98869	3.76236	0.3329
7	12.099	VB	0.1416	23.52586	2.50489	0.2374

Totals : 9909.17215 1238.79676

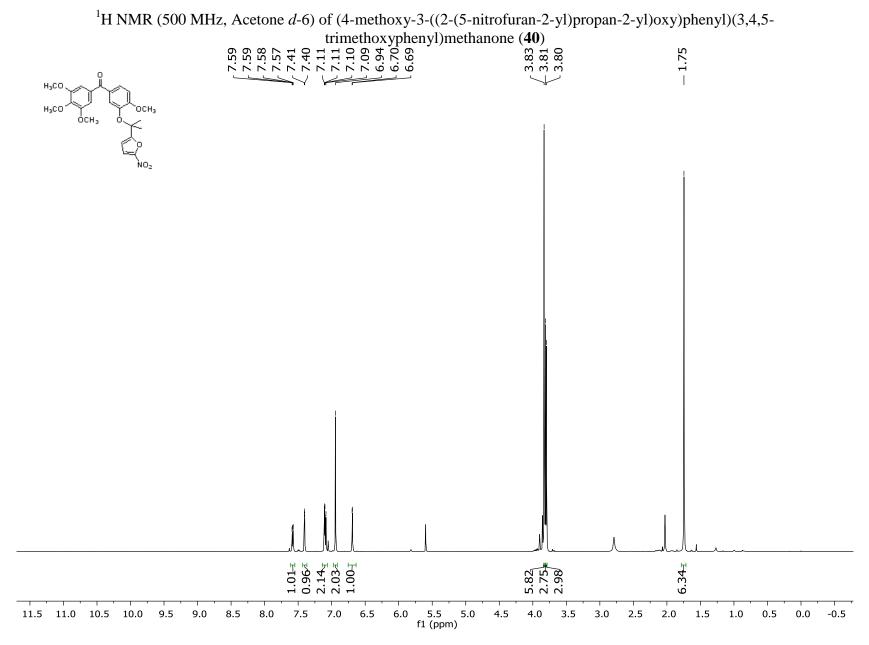
Signal 5: DAD1 H, Sig=320,16 Ref=off

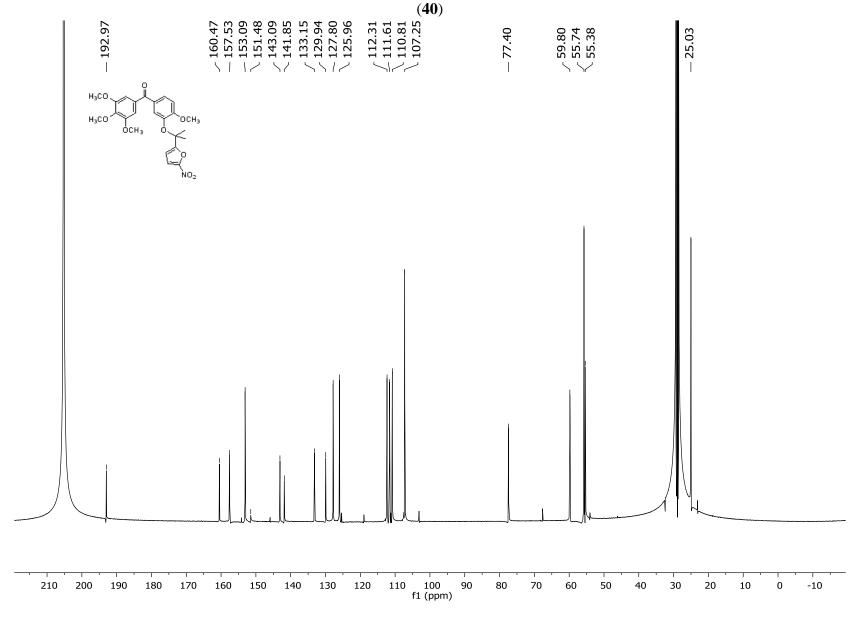
Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		[]		[[
1	2.100	BV	0.0662	34.07635	7.91467	0.3584
2	2.481	VV	0.0843	6.13857	1.08086	0.0646
3	3.043	BB	0.1147	9.55276	1.17748	0.1005
4	7.859	BB	0.1234	9371.85645	1170.53589	98.5760
5	9.110	BB	0.1330	16.96758	1.95958	0.1785
6	11.326	BB	0.1880	18.39752	1.37558	0.1935
7	11.864	BV	0.1360	27.99903	3.20390	0.2945
8	12.099	VB	0.1417	22.25044	2.40969	0.2340

Totals :


9507.23871 1189.65765

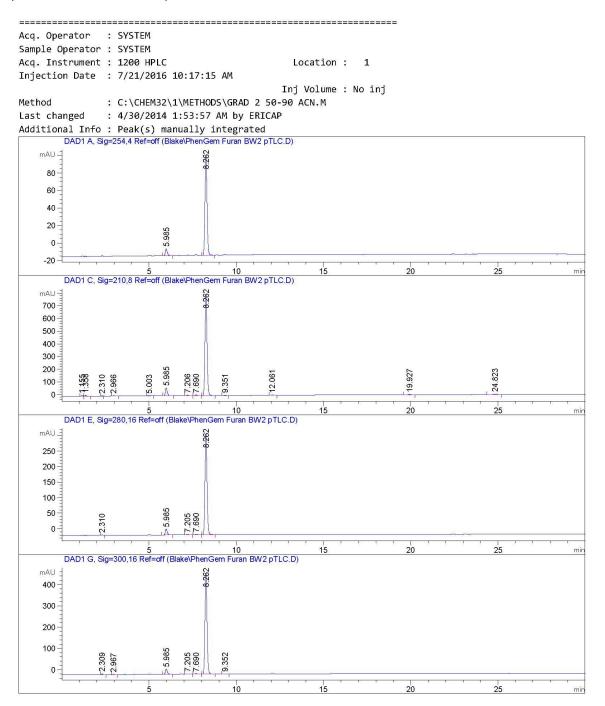
*** End of Report ***


1200 HPLC 7/27/2016 2:57:58 PM SYSTEM


Page 3 of 3

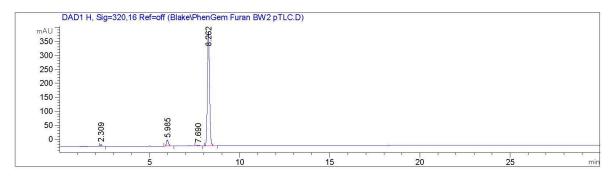
Mass Spectrum of Compound **39** 6/27/2016 4:06:54 PM

Relative Abundance



¹³C NMR (500 MHz, Acetone *d*-6) (4-methoxy-3-((2-(5-nitrofuran-2-yl)propan-2-yl)oxy)phenyl)(3,4,5-trimethoxyphenyl)methanone

HPLC trace of compound 40


Data File C:\Chem32\1\Data\Blake\PhenGem Furan BW2 pTLC.D Sample Name: PhenGem Furan BW2 pTLC

1200 HPLC 7/27/2016 2:55:18 PM SYSTEM

Page 1 of 3

Data File C:\Chem32\1\Data\Blake\PhenGem Furan BW2 pTLC.D Sample Name: PhenGem Furan BW2 pTLC

Area Percent Report

Sorted By	:	Signal
Multiplier	1	1.0000
Dilution	:	1.0000
Use Multiplier	& Dilution	Factor with ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.985	BB	0.1196	60.40719	7.86837	6.0992
2	8.262	BB	0.1267	930.00806	114.54267	93.9008
Total	s:			990.41525	122.41104	

Signal 2: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.155	BV	0.0858	33.61111	5.45906	0.4613
2	1.358	VB	0.0709	37.84983	7.76701	0.5194
3	2.310	BV	0.0666	9.73679	2.24574	0.1336
4	2.966	BB	0.0929	18.28416	2.92426	0.2509
5	5.003	BB	0.1275	15.05728	1.66511	0.2066
6	5.985	BB	0.1178	467.81430	60.77405	6.4201
7	7.206	BV	0.1310	37.89943	4.37922	0.5201
8	7.690	VB	0.1262	40.15192	4.86780	0.5510
9	8.262	BB	0.1267	6484.05371	798.85181	88.9842
10	9.351	BB	0.1343	16.43881	1.91213	0.2256
11	12.061	BB	0.1437	14.32438	1.52408	0.1966
12	19.927	BB	0.1889	45.66555	3.72825	0.6267
13	24.823	BB	0.2168	65.85779	4.66276	0.9038
Total	s :			7286.74504	900.76130	

1200 HPLC 7/27/2016 2:55:18 PM SYSTEM

Page 2 of 3

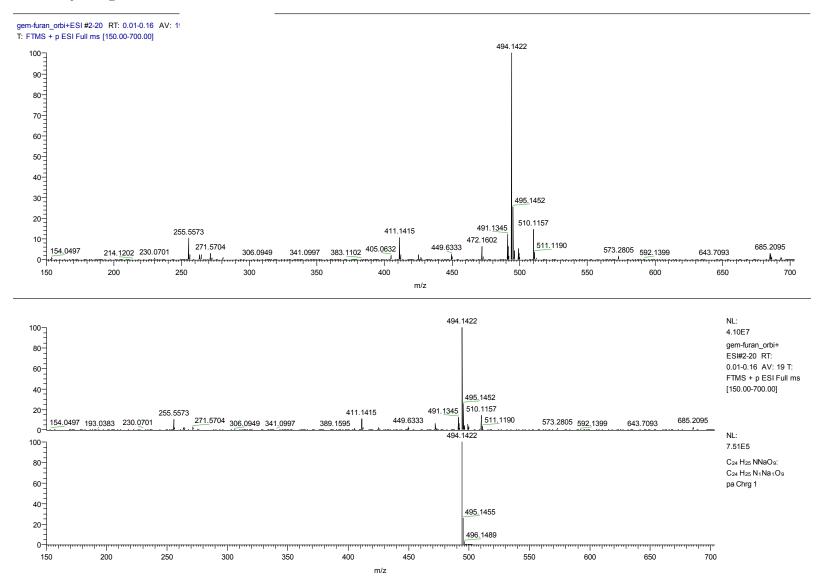
Data File C:\Chem32\1\Data\Blake\PhenGem Furan BW2 pTLC.D Sample Name: PhenGem Furan BW2 pTLC

Signal 3: DAD1 E, Sig=280,16 Ref=off

Peak Re	etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.310	BB	0.0688	6.98924	1.54292	0.2483
2	5.985	BB	0.1175	144.75246	18.86642	5.1419
3	7.205	BB	0.1274	8.80737	1.05459	0.3129
4	7.690	BB	0.1237	15.07421	1.87737	0.5355
5	8.262	BB	0.1265	2639.51001	325.73743	93.7615
Totals	1			2815.13329	349.07873	

Signal 4: DAD1 G, Sig=300,16 Ref=off

Peak Ro #	etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	[]		[]	[[[[[]]]]]	[mAO]	<i>7</i> 0
1-				[]		
1	2.309	BB	0.0697	19.67340	4.27634	0.4790
2	2.967	BB	0.0890	5.96967	1.00962	0.1454
3	5.985	BB	0.1175	186.14351	24.25467	4.5325
4	7.205	BB	0.1267	10.81214	1.30512	0.2633
5	7.690	BB	0.1239	22.29101	2.77088	0.5428
6	8.262	BB	0.1265	3852.99243	475.58429	93.8181
7	9.352	BB	0.1334	8.99324	1.03437	0.2190
Totals	8			4106.87539	510.23530	


Signal 5: DAD1 H, Sig=320,16 Ref=off

Peak Re # [tTime min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.309	BB	0.0698	32.03522	6.94673	0.9125
2	5.985	BB	0.1175	165.23119	21.53300	4.7063
3	7.690	BB	0.1229	21.17863	2.66083	0.6032
4	8.262	BB	0.1265	3292.44238	406.37106	93.7781
Totals	:			3510.88742	437.51163	

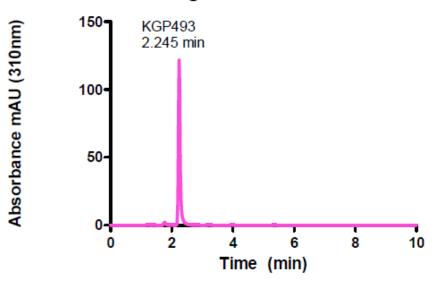
*** End of Report ***

1200 HPLC 7/27/2016 2:55:18 PM SYSTEM

Page 3 of 3

Mass Spectrum of Compound 40 8/1/2016 11:35:39 AM

C:\Xcalibur\...\gem-furan_orbi+ESI

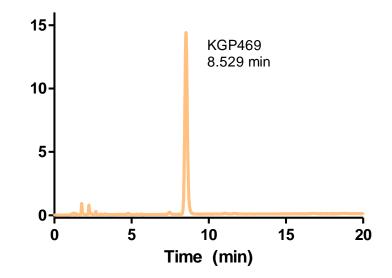

300

NADPH Cytochrome P450 Oxidoreductase Cleavage Assay

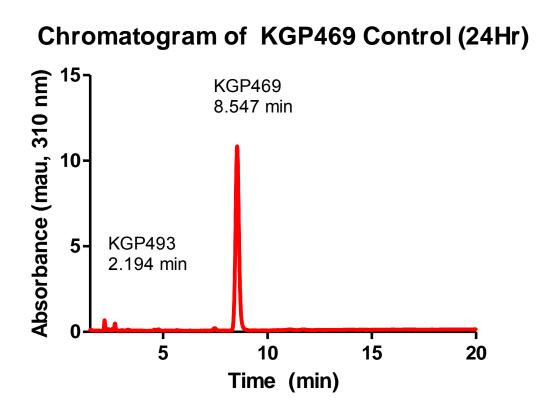
HPLC Conditions:

Solvent: 62% Acetonitrile/water isocratic; detection wavelength: 310 nm; flow rate: 1 mL/min.

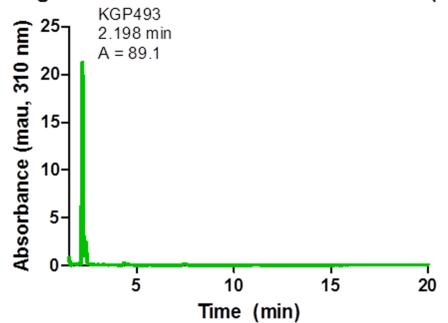
[note: KGP493 is Compound 6]

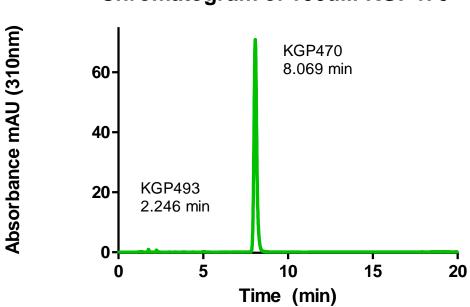


Chromatogram of 100uM KGP493

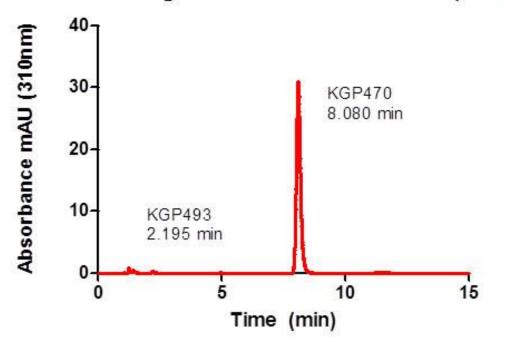

[note: KGP469 is Compound 14]

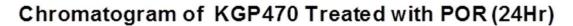
Chromatogram of 100uM KGP469

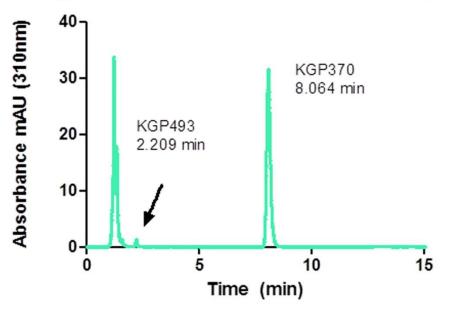



301

Chromatogram of KGP469 Treated with POR (24Hr)

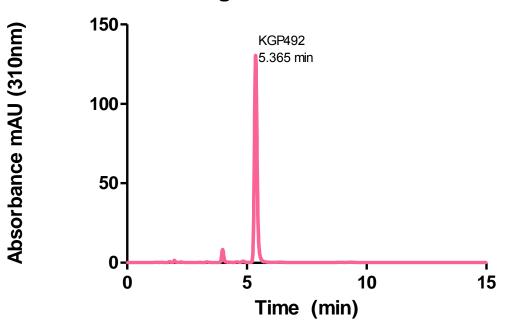


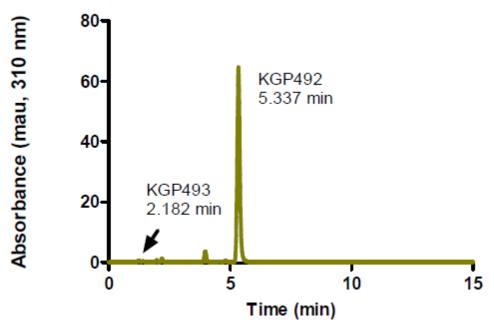

[note: KGP470 is Compound 22]



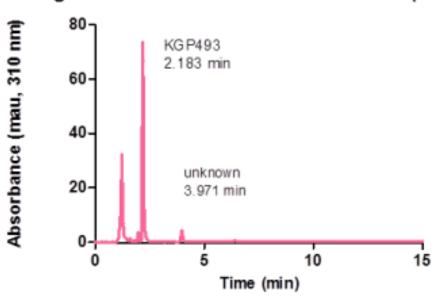
Chromatogram of 100uM KGP470

Chromatogram of KGP470 Control (24Hr)





[note: KGP492 is Compound 40]


Chromatogram of 100uM KGP492

Chromatogram of KGP492 Control (24Hr)

Chromatogram of KGP492 Treated with POR (24Hr)

APPENDIX B

Supporting Information: Bioreductively Activatable Prodrug Conjugates of Combretastatin A-1 and Combretastatin A-4 as Anticancer Agents Targeted towards Tumor Hypoxia

This appendix will be submitted to a peer reviewed journal with the following author list and title: Laxman Devkota^{1†}, Blake A. Winn^{1†}, Bunnarack Kuch¹, Matthew T. MacDonough¹, Tracy E. Strecker¹, Yifan Wang¹, Zhe Shi¹, Jeni Gerberich², Deboprosad Mondal¹, Rajeswari Mukherjee¹, Ernest Hamel³, David J. Chaplin,^{1,4} Peter Davis, Ralph P. Mason,² Mary L. Trawick^{1*}, Kevin G. Pinney^{1*} Bioreductively Activatable Prodrug Conjugates of Combretastatin A-1 and Combretastatin A-4 as Anticancer Agents Targeted towards Tumor Hypoxia

The author Blake A. Winn contributed to this manuscript through the synthesis of six of the final compounds (23, 35, 38, 40, 41, 44) including full characterization, which included proton and carbon NMRs, HPLC, and HRMS. In addition, Blake A. Winn significantly contributed to the writing and editing of the manuscript, as well as the preparation of the supporting data. Laxman Devkota contributed to this manuscript through the synthesis of nine of the final compounds (22, 24, 25, 26, 35, 37, 39, 41, 43) including full characterization, which included proton and carbon NMRs, HPLC, and HRMS. In addition, Laxman Devkota significantly contributed to the writing and editing of the manuscript, as well as the preparation of the supporting data. Bunnarack Kuch contributed through the synthesis of advanced intermediates and the CA1-BAPC 41. Matthew MacDonough, Deboprosad Mondal, and Rajeswari Mukherjee contributed through the synthesis of the CA4 BAPC 45. Zhe Shi and Deboprosad Mondal contributed to the spectral analysis of the CA1 BAPCs (1D NOE, HRMS). Ralph Mason and Jeni Gerberich contributed through the in vivo preliminary biological testing of the CA4-BAPC 45 in mice. Ernest Hamel contributed through the preliminary biological evaluation of the CA1 and CA4-BAPCs ability to inhibit tubulin polymerization and compete for the colchicine binding site. Tracy Strecker contributed

through the *in vitro* preliminary biological testing of the CA1 and CA4-BAPCs in normoxic and hypoxic environments in addition to SRB assays.

Supporting Information

Bioreductively Activatable Prodrug Conjugates of Combretastatin A-1 and Combretastatin A-4 as Anticancer Agents Targeted towards Tumor Hypoxia

Laxman Devkota^{1†}, Blake A. Winn^{1†}, Bunnarack Kuch¹, Matthew T. MacDonough¹, Tracy E. Strecker¹, Yifan Wang¹, Zhe Shi¹, Jeni Gerberich², Deboprosad Mondal¹, Rajeswari Mukherjee¹, Ernest Hamel³, David J. Chaplin,^{1,4} Peter Davis, Ralph P. Mason², Mary L. Trawick^{1*}, Kevin G. Pinney^{1*}

¹Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco,

Texas 76798-7348, United States

²Prognostic Imaging Research Laboratory, Department of Radiology, The University of Texas

Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9058, United

States

³Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer

Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer

Research, National Institutes of Health, Frederick, MD 21702, United States

⁴OXiGENE Inc., 701 Gateway Boulevard, Suite 210, South San Francisco, California 94080,

United States

[†]Authors with equal contribution

*Corresponding authors. Tel.: +1 254 710 4117.

E-mail address: Kevin_Pinney@baylor.edu (K.G. Pinney).

Tel.: +1 254 710 6857.

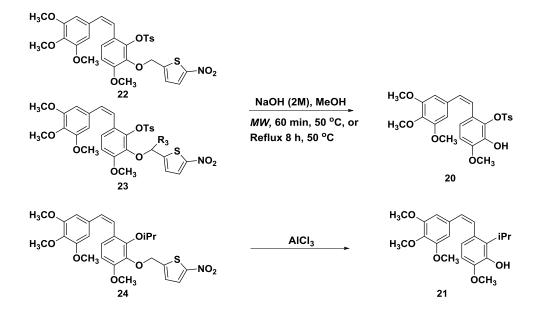
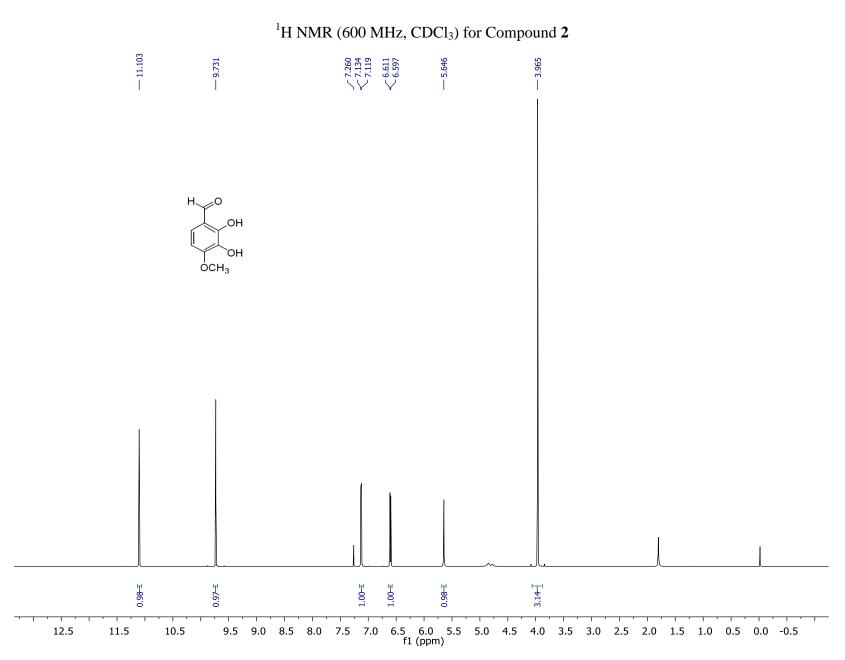
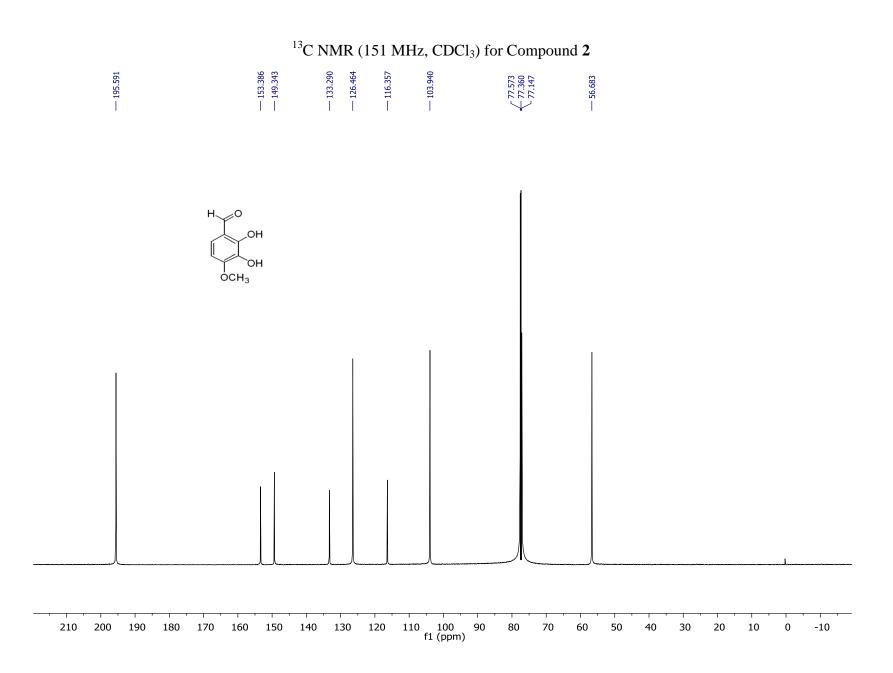
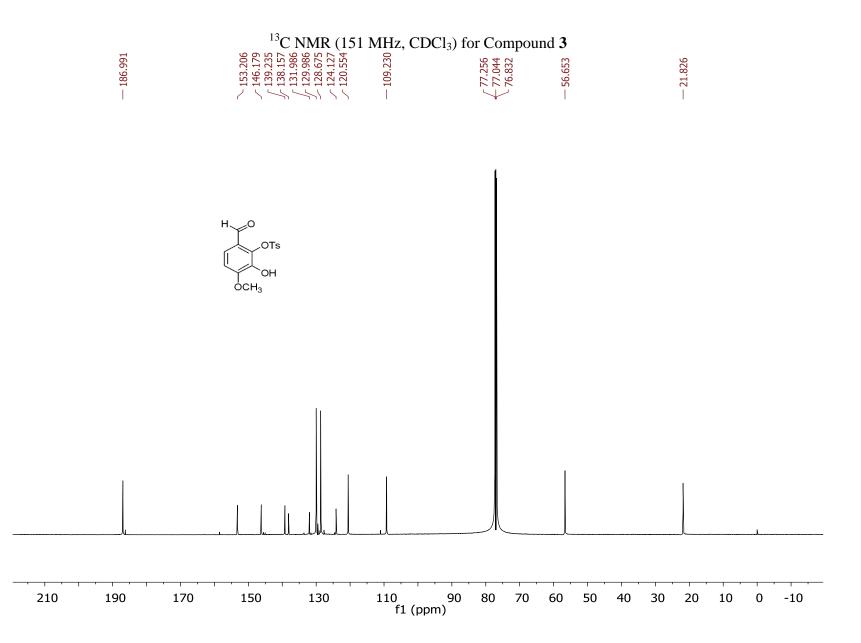

E-mail address: Mary_Lynn_Trawick@baylor.edu (M.L. Trawick)

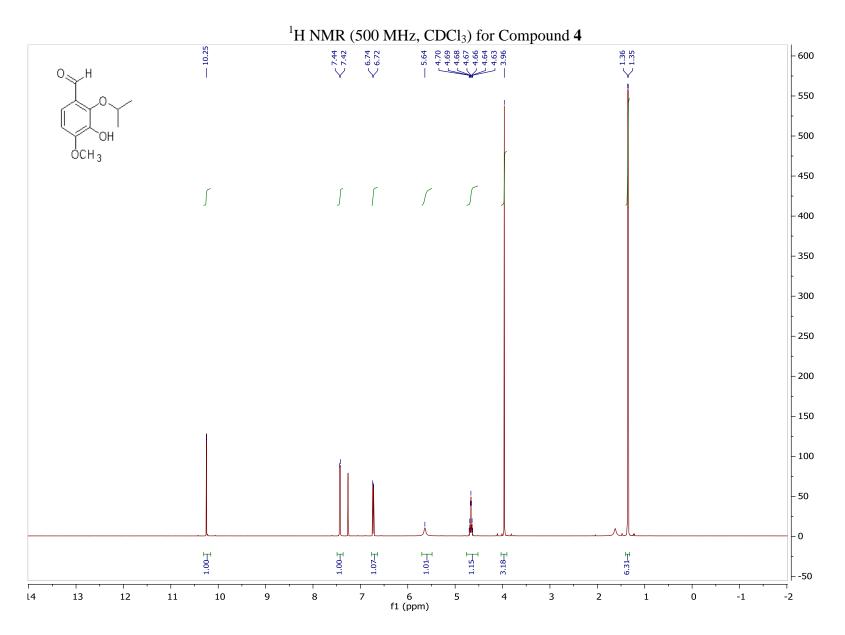
Table of Contents

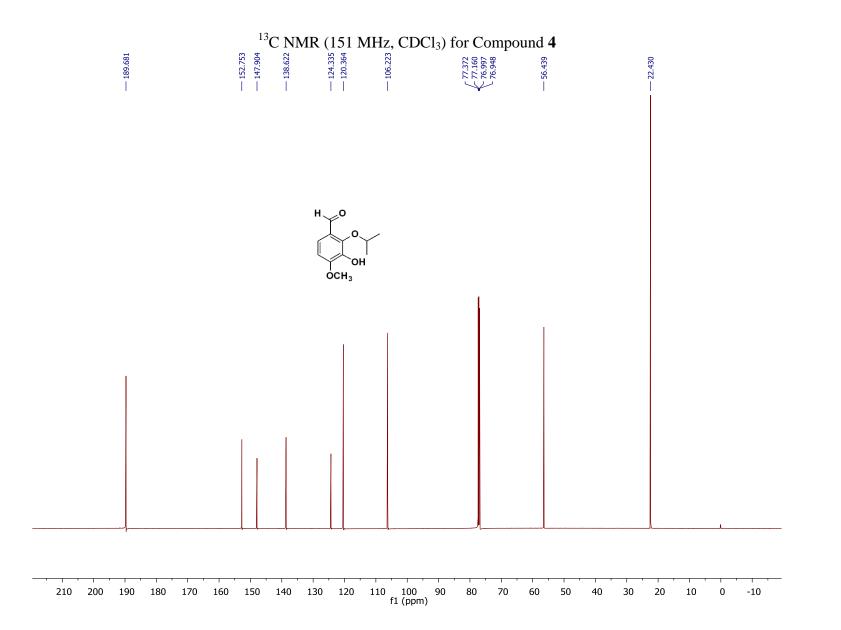

Schemes	311
NMR, HPLC, HRMS, X-Ray Data:	
Compound 2	312-313
Compound 3	314-315
Compound 4	316-317
Compound 5	318-319
Compound 6	320-321
Compound 7	322-323
Compound 10	324-325
Compound 11	326-327
Compound 12	328-329
Compound 13	330-331
Compound 15	332-333
Compound 16	334-335
Compound 17	336-337
Compound 19	338-339
Compound 20	340-341
Compound 21	342-349
Compound 22	350-357
Compound 23	358-363
Compound 24	364-371
Compound 25	372-377
Compound 26	378-383
Compound 27/28	384-385
Compound 29	386-393

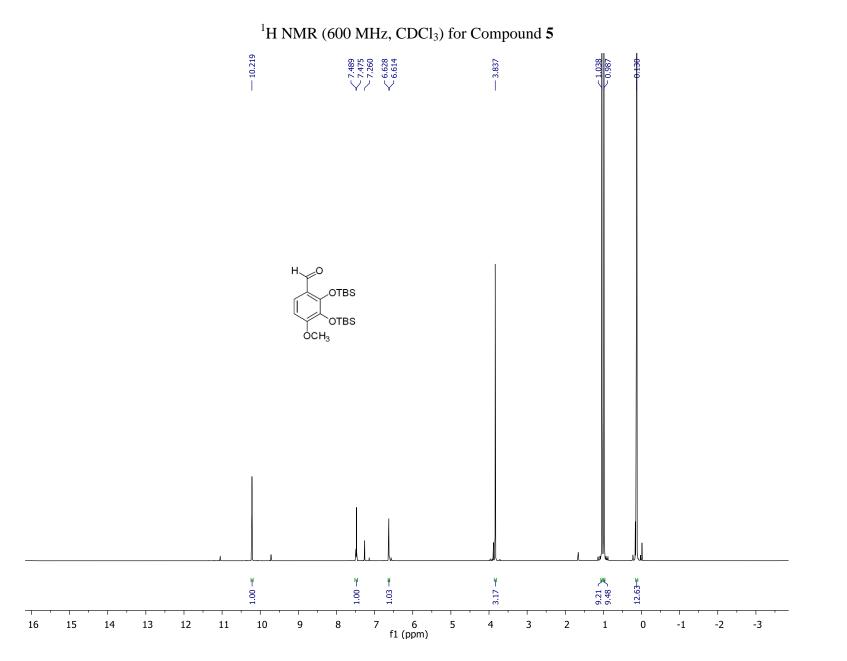

Compound 30	394-395
Compound 31	396-397
Compound 33	398-399
Compound 34	400-401
Compound 35	402-410
Compound 36	411-418
Compound 37	419-425
Compound 38	426-433
Compound 39	434-439
Compound 40	440-445
Compound 41	446-452
Compound 43	453-458
Compound 44	459-474
Compound 45	475-482
HPLC Chromatograms for Enzymatic Cleavage Assay	483-506

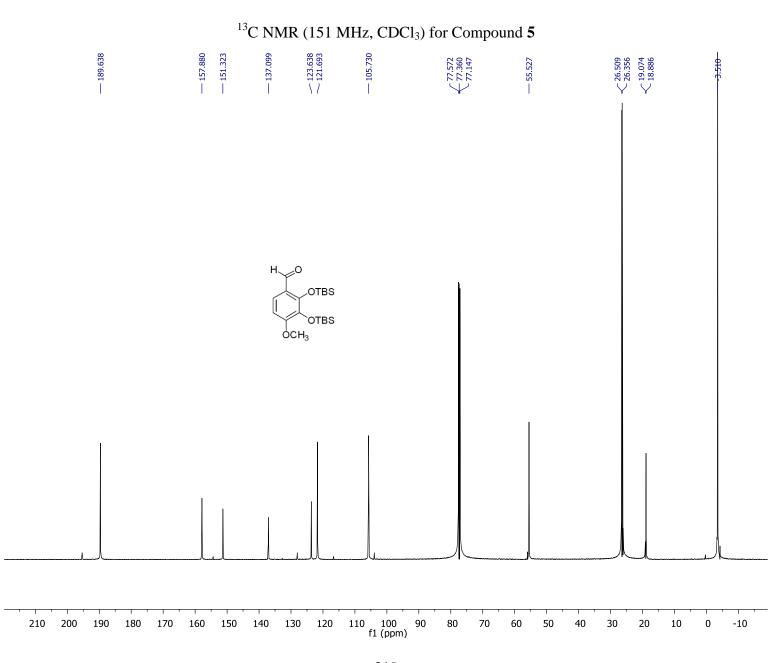

Schemes

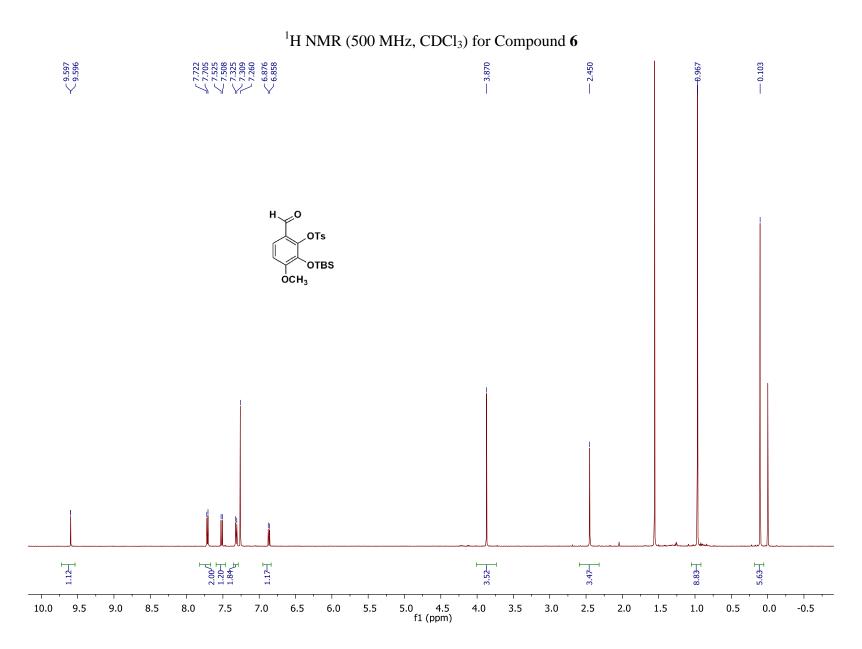


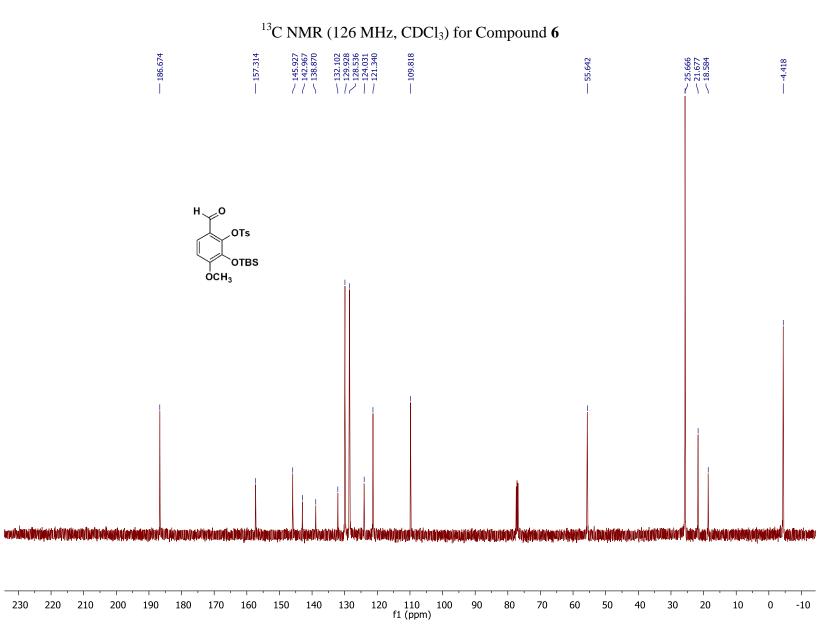

Scheme S1. Attempted Deprotection of Compounds 22, 23 and 24

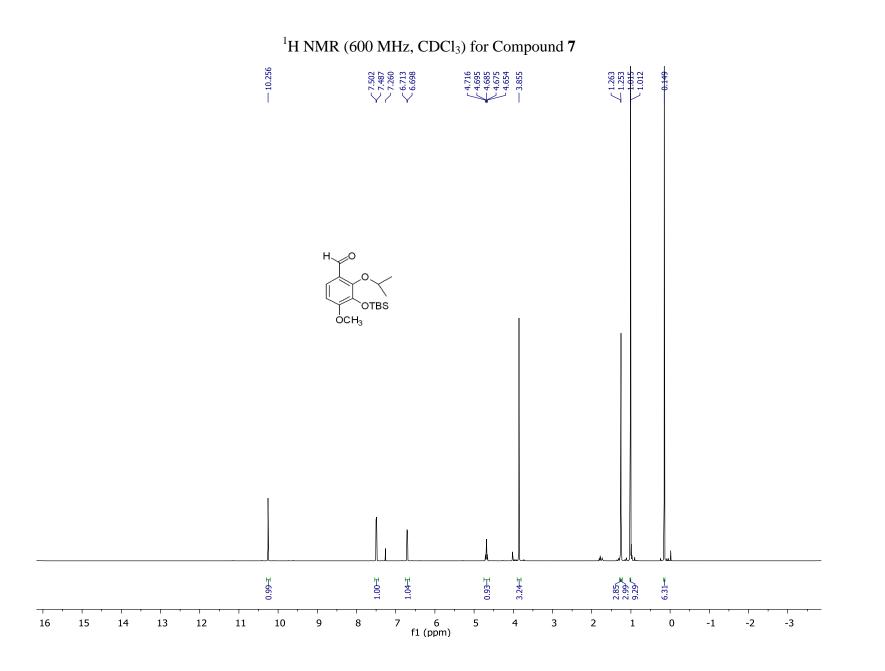


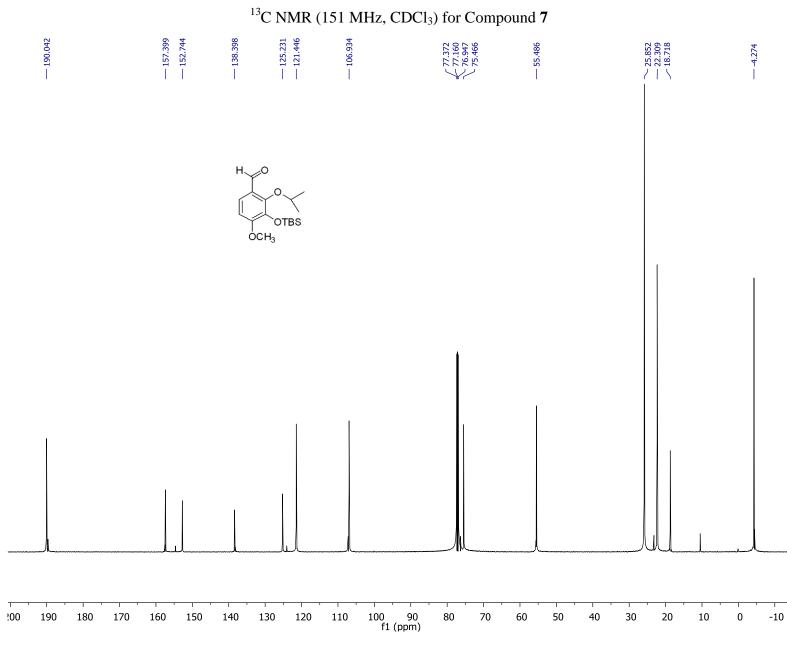


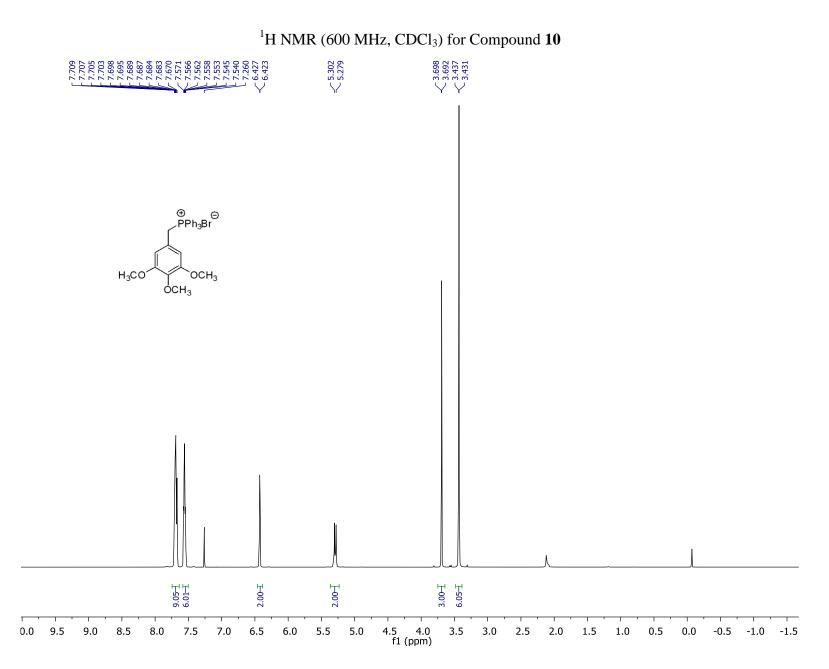


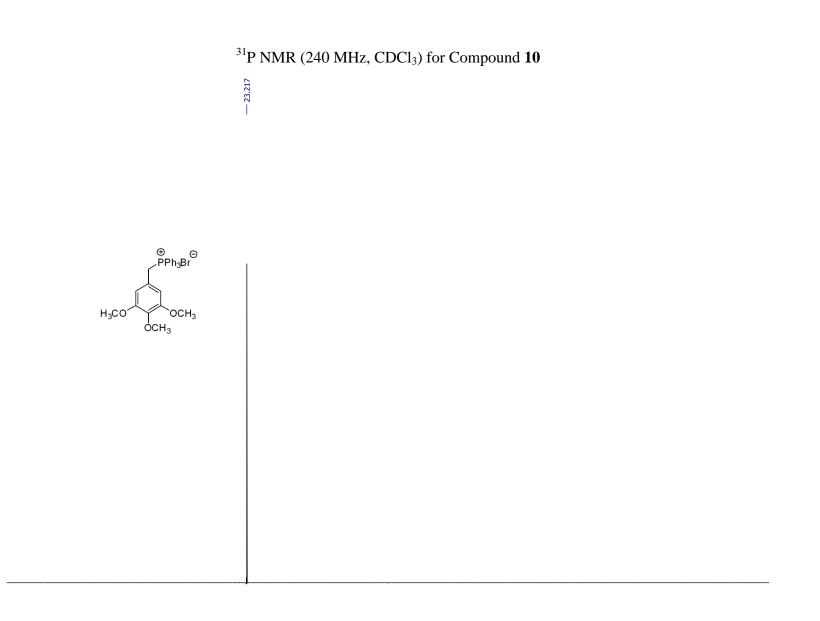


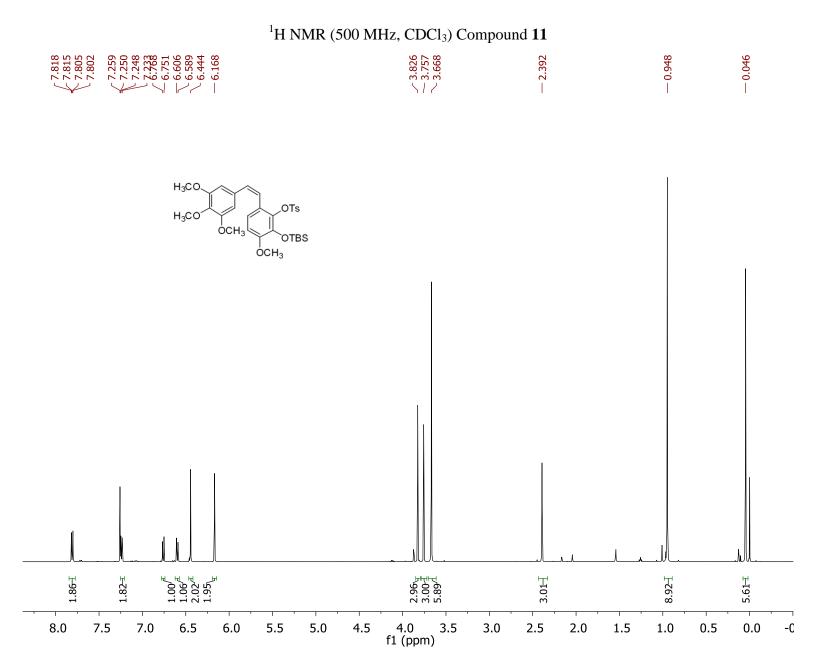


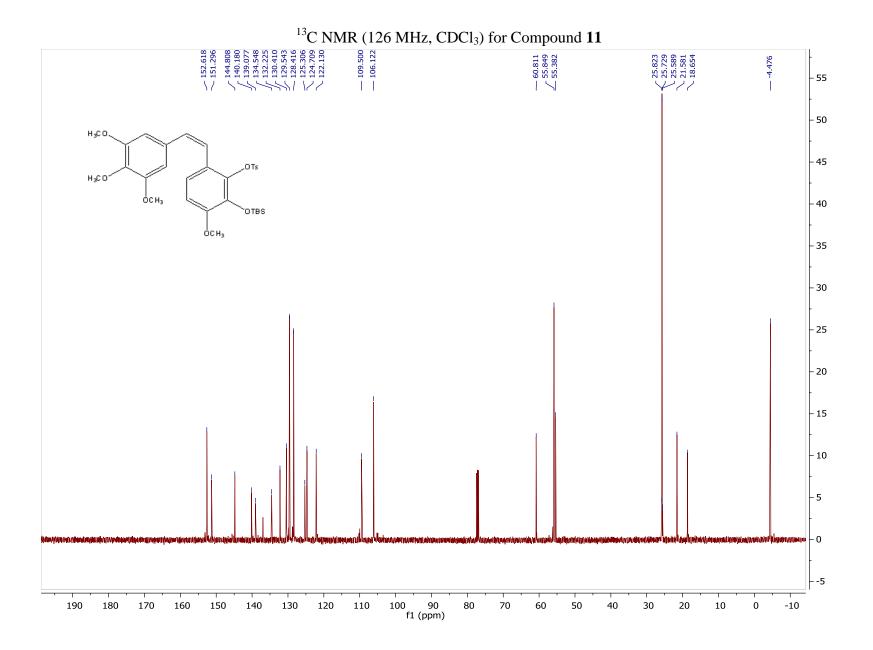


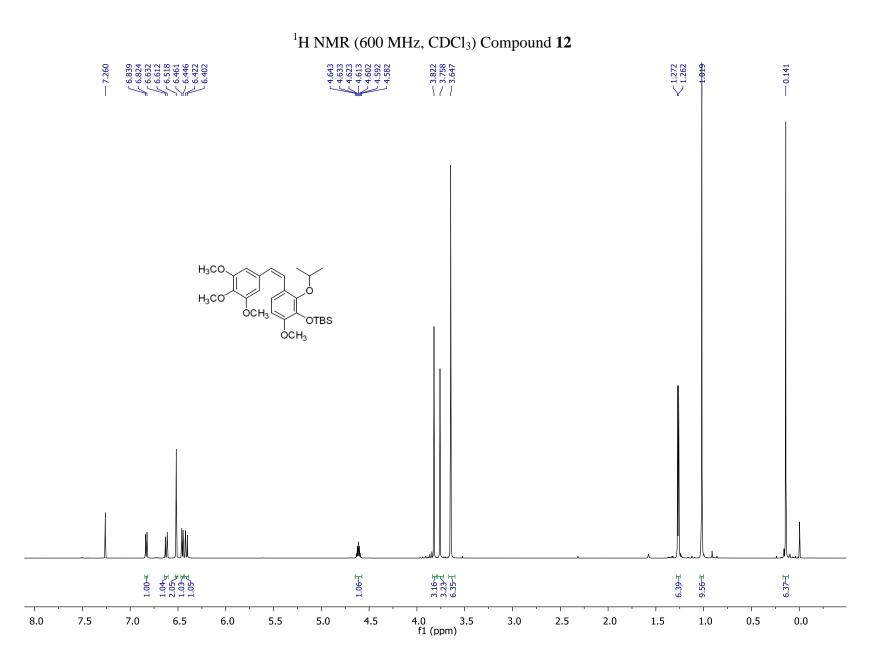


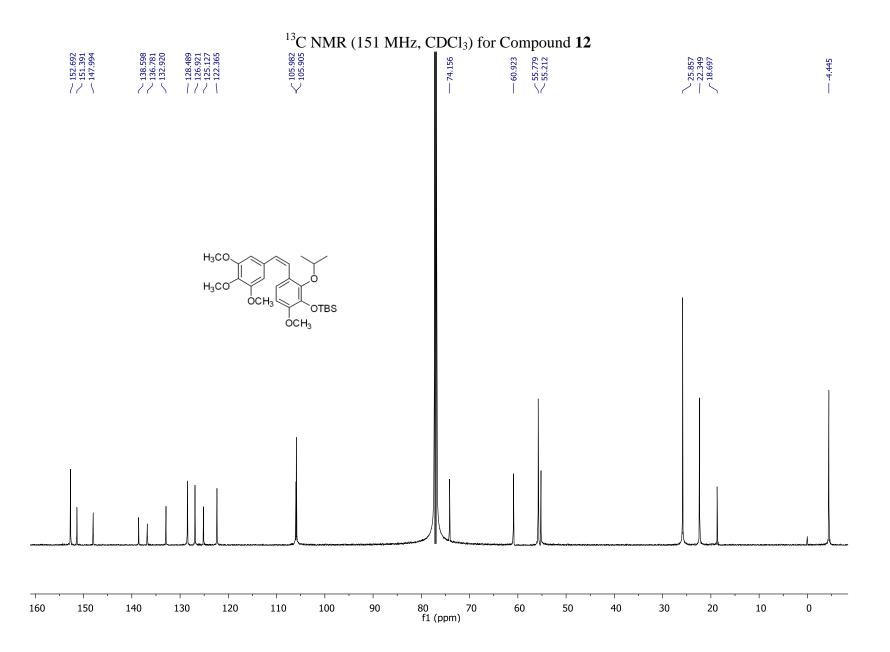




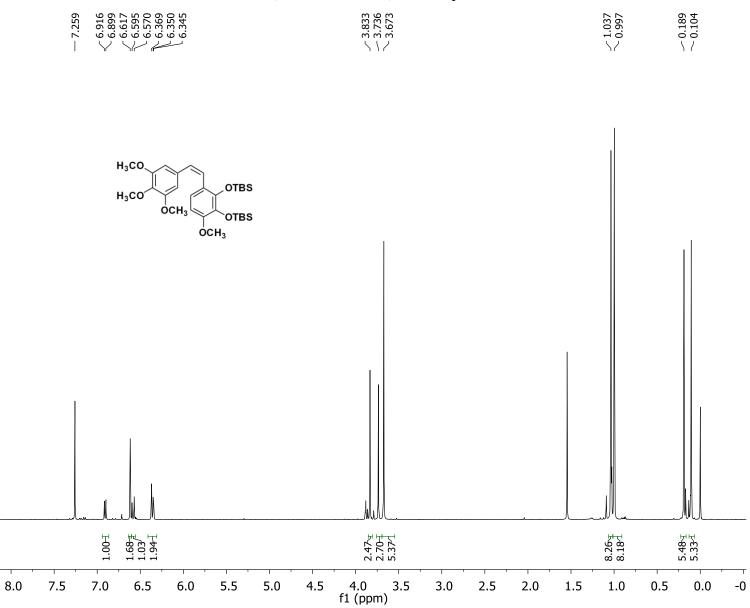


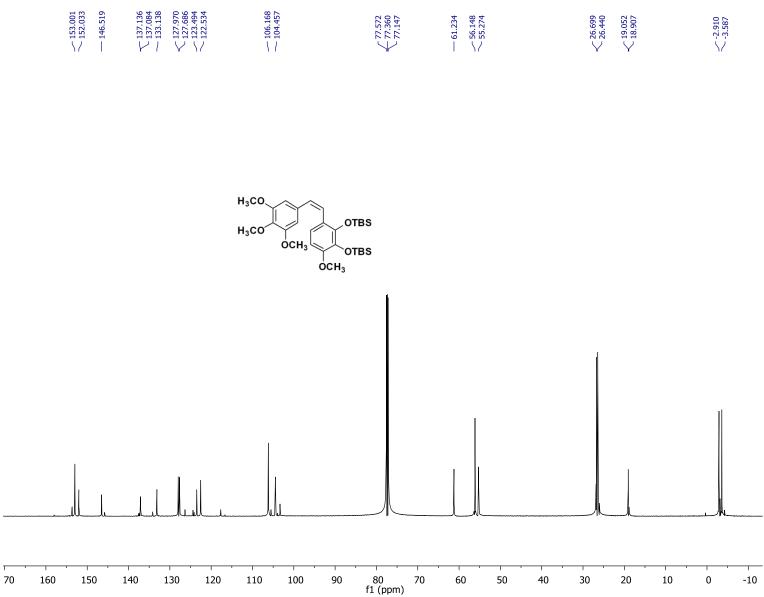


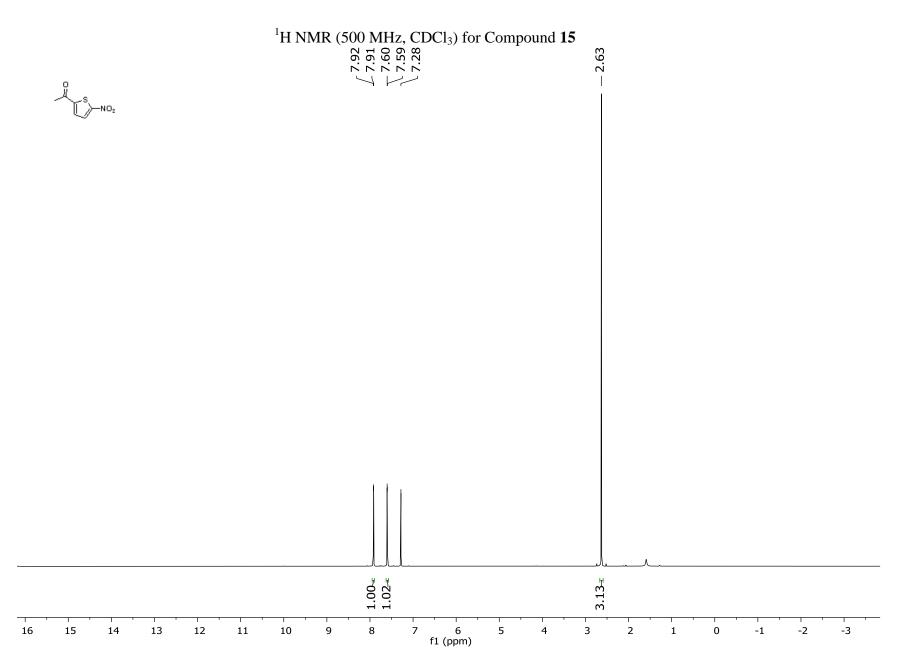


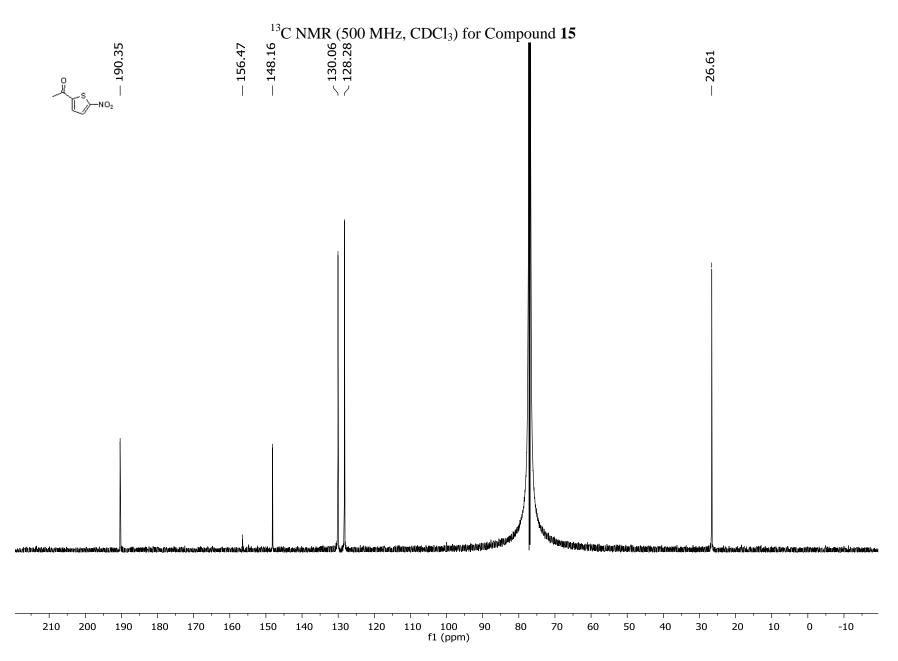


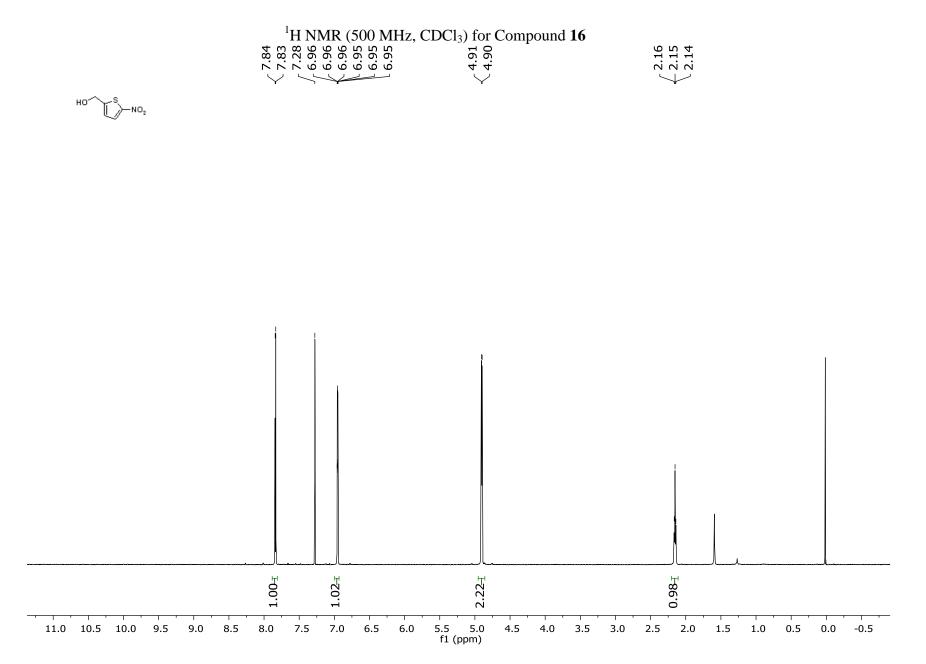
140	120	100	80	60	40	20	0	-20	-40 f1	-60 (ppm)	-80	-100	-120	-140	-160	-180	-200	-220	-240

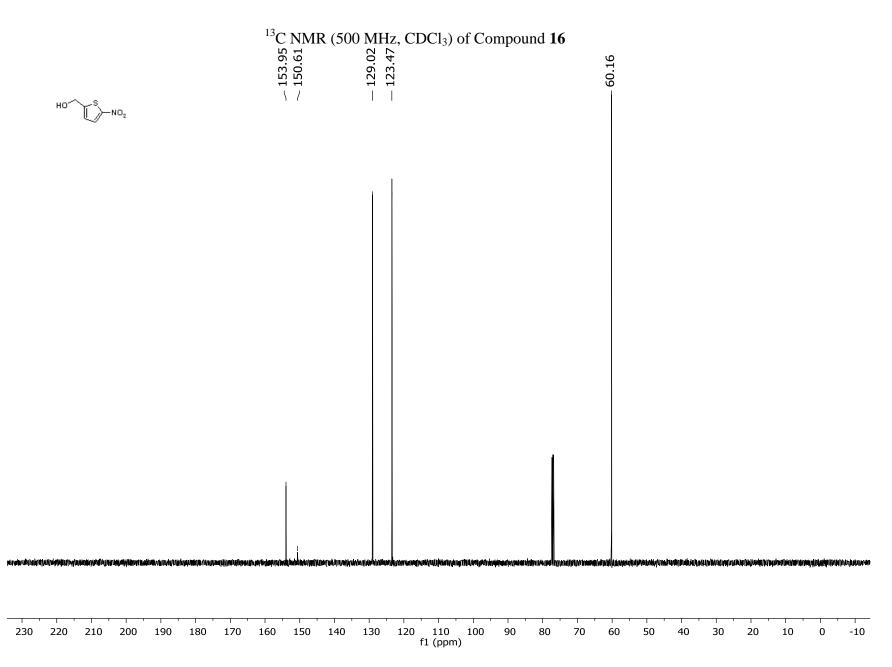


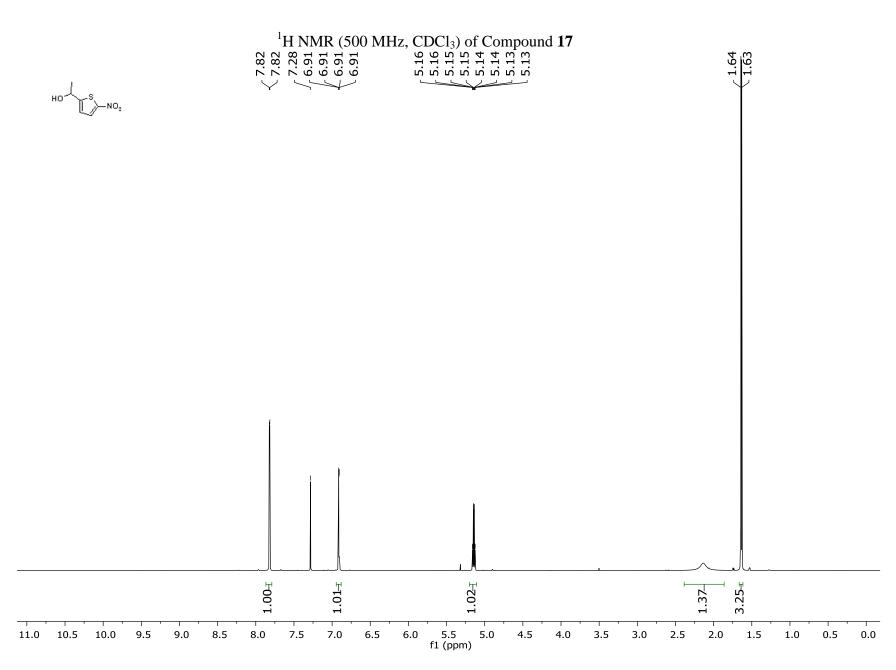


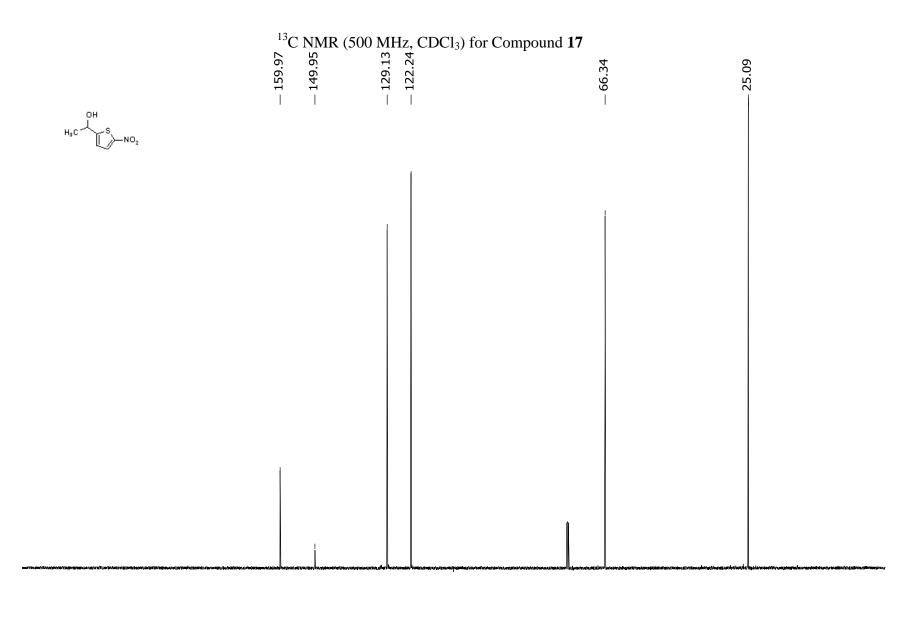


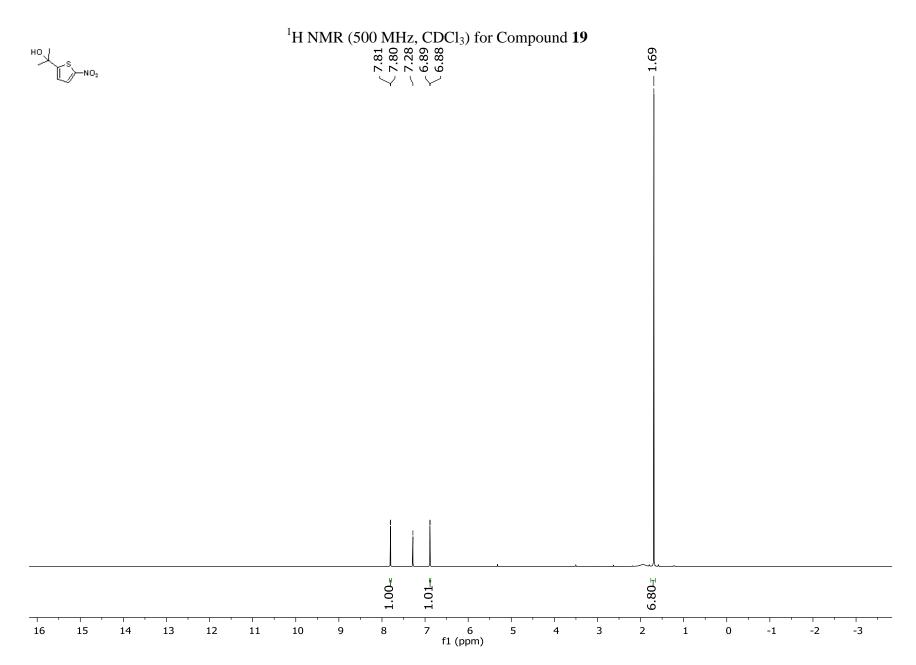

¹H NMR (500 MHz, CDCl₃) for Compound **13**

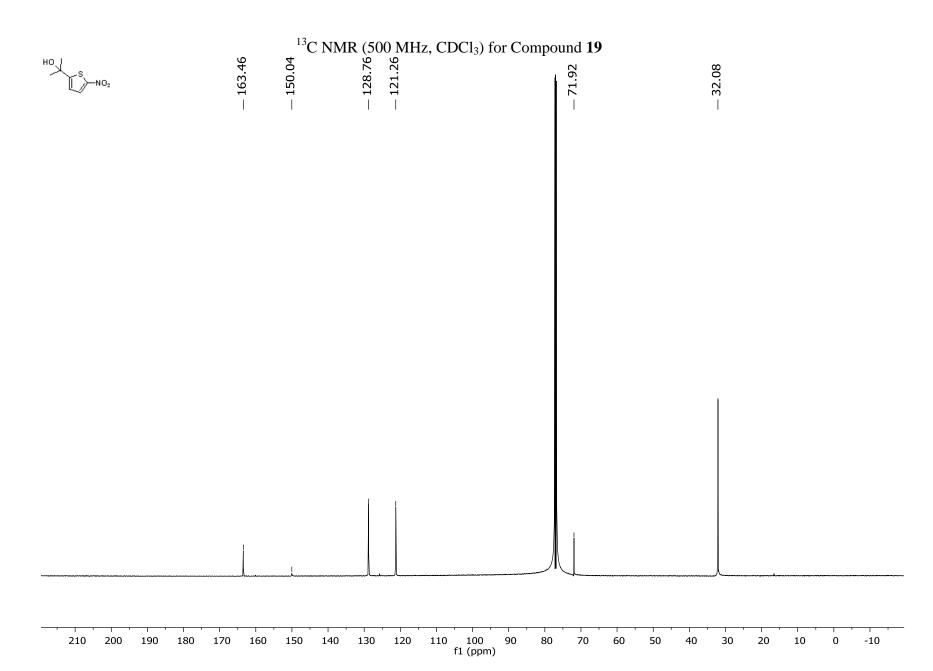


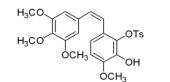


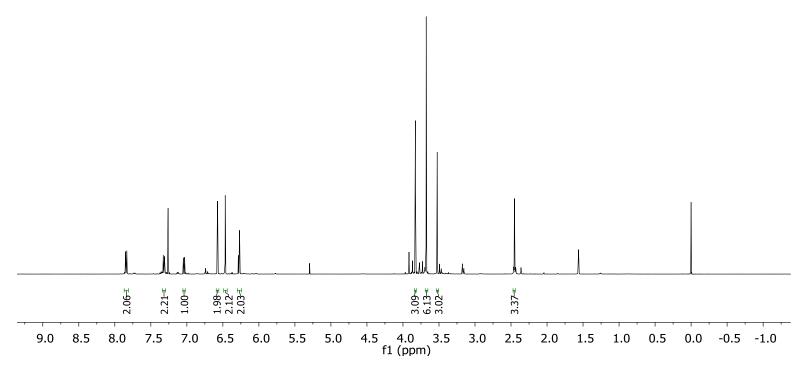


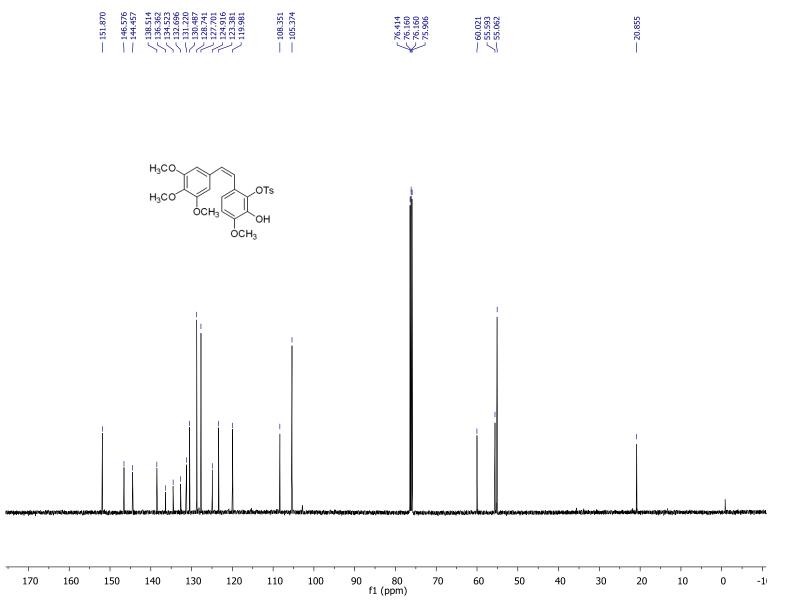


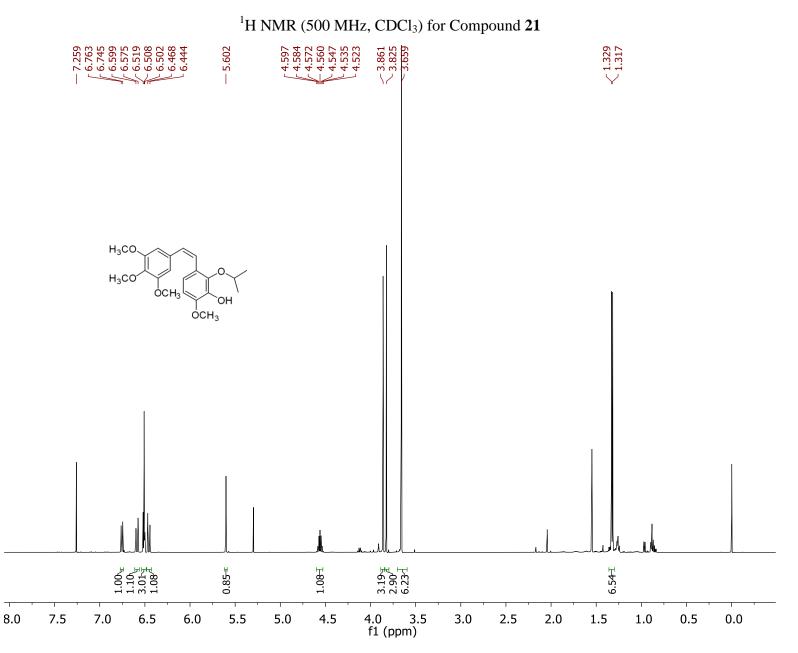


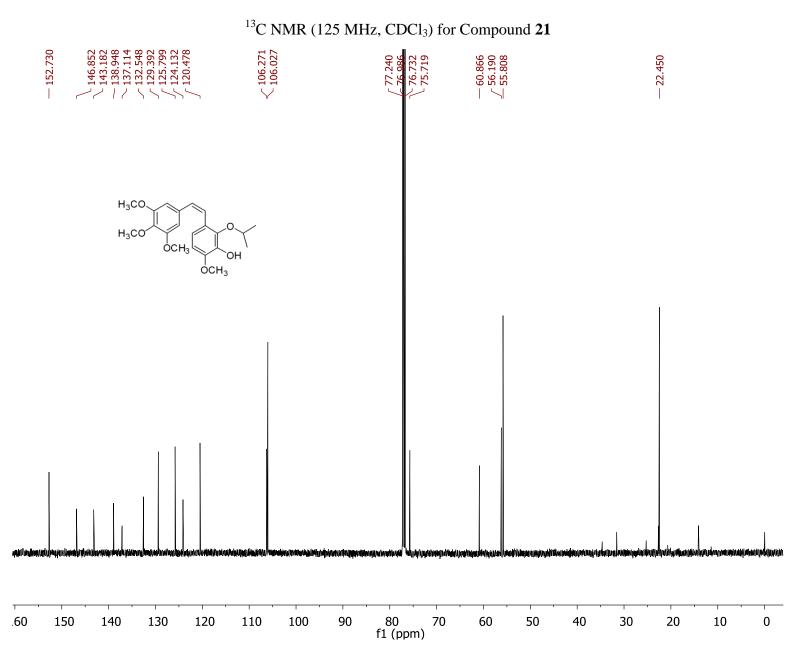



											1 1										1 1			
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
f1 (ppm)																								

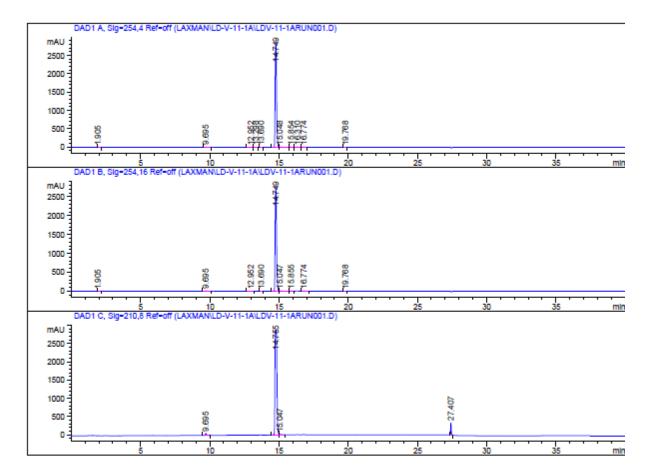



^1H NMR (500 MHz, CDCl₃) for Compound $\mathbf{20}$

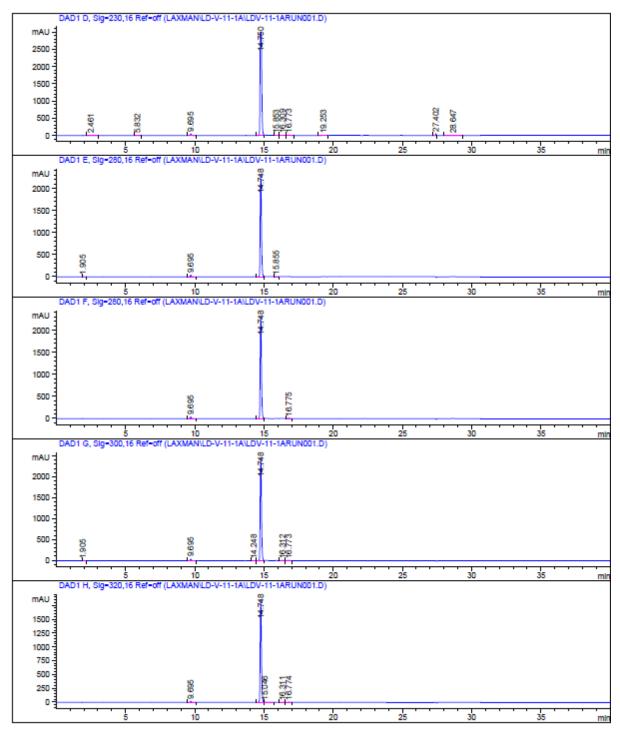

	.827 .677 .524	.452
00001777777777777777777777777777777777	ოოო	\sim
Y YKK YY		1



¹³C NMR (125 MHz, CDCl₃) for Compound **20**



HPLC trace of Compound 21 Data File C:\CHEM32\1\DATA\LAXMAN\LD-V-11-1A\LDV-11-1ARUN001.D Sample Name: LD-V-11-1A-runl


```
Acq. Operator : Laxman
Acq. Instrument : Instrument 1
                                                Location : -
Injection Date : 2/4/2014 12:51:42 PM
             : C:\CHEM32\1\METHODS\MASTERMETHOD.M
Acq. Method
Last changed : 2/4/2014 12:46:52 PM by Laxman
Analysis Method : C:\CHEM32\1\DATA\LAXMAN\LD-V-11-1A\LDV-11-1ARUN001.D\DA.M (MASTERMETHOD.M)
Last changed : 2/4/2014 2:30:02 FM by Laxman
               : runl
Sample Info
```


Instrument 1 2/4/2014 2:33:06 PM Laxman

Page 1 of 5

Data File C:\CHEM32\1\DATA\LAXMAN\LD-V-11-1A\LDV-11-1ARUN001.D Sample Name: LD-V-11-1A-run1

Instrument 1 2/4/2014 2:33:06 PM Laxman

Page 2 of 5

Data File C:\CHEM32\1\DATA\LAXMAN\LD-V-11-1A\LDV-11-1ARUN001.D Sample Name: LD-V-11-1A-runl

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
+	[min]		[min]	[mAU*s]	[mAU]	÷
1	1.905	BB	0.1050	63.49230	8.32688	0.3077
2	9.695	BB	0.0838	39.29815	7.18572	0.1905
3	12.952	BV	0.1532	21.31435	1.92459	0.1033
4	13.298	VB	0.1364	20.15860	2.21022	0.0977
5	13.690	BB	0.0898	6.70567	1.15370	0.0325
6	14.749	BV	0.1128	2.02511e4	2852.08301	98.1487
7	15.048	VB	0.1430	86.96108	8.25082	0.4215
8	15.854	BV	0.1257	47.48036	5.67062	0.2301
9	16.310	VB	0.1784	36.28421	2.81407	0.1759
10	16.774	BB	0.1202	53.41854	6.91010	0.2589
11	19.768	BB	0.0976	6.86424	1.08825	0.0333

Totals : 2.06331e4 2897.61796

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	÷
1	1.905	BB	0.1050	62.44164	8.18640	0.3122
2	9.695	BB	0.0836	61.18841	11.22495	0.3060
3	12.952	BV	0.1563	20.12209	1.77477	0.1006
4	13.690	BB	0.0892	6.66208	1.15644	0.0333
5	14.749	BV	0.1127	1.96340e4	2770.85913	98.1825
6	15.047	VB	0.1425	84.68669	8.06554	0.4235
7	15.855	BV	0.1314	54.17786	6.11229	0.2709
8	16.774	VB	0.1354	67.86295	7.50964	0.3394
9	19.768	BB	0.0975	6.31473	1.00224	0.0316
Total				1.99975e4	2815.89140	

Instrument 1 2/4/2014 2:33:06 PM Laxman

Page 3 of 5

Data File C:\CHEM32\I\DATA\LAXMAN\LD-V-II-IA\LDV-II-IAKUNUUI.D Sample Name: LD-V-11-1A-run1

Signal 3: DAD1 C, Sig=210,8 Ref=off

					Height [mAU]	Area %
1	9.695	BB	0.0833	279.00644	51.44276	0.9452
2	14.755	BV	0.1586	2.80721e4	2858.40137	95.1058
3	15.047	VB	0.1125	153.97672	19.41314	0.5217
4	27.407	BB	0.0490	1011.62750	337.22437	3.4273

Totals : 2.95167e4 3266.48163

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
+	[min]		[min]	[mAU*s]	[mAU]	÷
1	2.461	BB	0.1822	14.68391	1.06963	0.0556
2	5.832	BB	0.0800	11.26862	2.11878	0.0427
3	9.695	BB	0.0838	260.12378	47.56544	0.9848
4	14.750	BV	0.1376	2.56213e4	3001.83618	96.9993
5	15.853	BB	0.1186	20.32653	2.61849	0.0770
6	16.309	BV	0.2044	92.46318	6.11626	0.3501
7	16.773	VB	0.1353	111.28555	12.33039	0.4213
8	19.253	BB	0.1732	14.00256	1.08039	0.0530
9	27.402	BB	0.0492	191.40921	60.00833	0.7247
10	28.647	BB	0.4277	77.03762	2.63050	0.2917

Totals : 2.64139e4 3137.37440

Signal 5: DAD1 E, Sig=280,16 Ref=off

					Height [mAU]	
1	1.905	BB	0.1052	49.02067	6.41397	0.3222
2	9.695	BB	0.0835	215.97261	39.69125	1.4193
3	14.748	vv	0.0984	1.49142e4	2339.12183	98.0145
4	15.855	BV	0.1255	37.12501	4.44043	0.2440

Totals : 1.52163e4 2389.66748

Instrument 1 2/4/2014 2:33:06 PM Laxman

Page 4 of 5

Data File C:\CHEM32\1\DATA\LAXMAN\LD-V-11-1A\LDV-11-1ARUN001.D Sample Name: LD-V-11-1A-run1

Signal 6: DAD1 F, Sig=280,16 Ref=off

=	[min]		[min]	[mAU*s]	Height [mAU]	e
1	9.695	BB	0.0835	215.97261	39.69125	1.4225
2	14.748	vv	0.0984	1.49142e4	2339.12183	98.2322
3	16.775	BB	0.1217	52.42577	6.66968	0.3453

Totals : 1.51826e4 2385.48276

Signal 7: DAD1 G, Sig=300,16 Ref=off

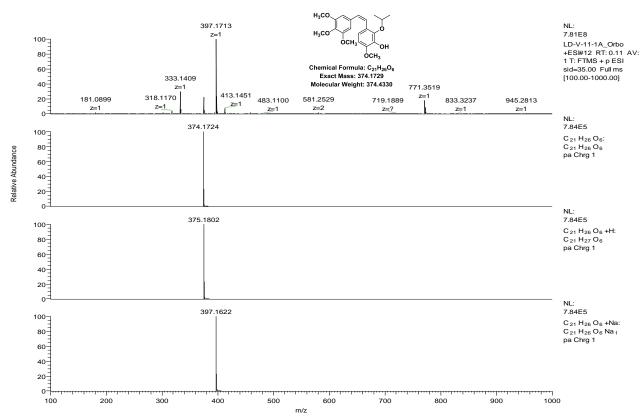
Peak	RetTime	Туре	Width	Area	Height	Area
+	[min]		[min]	[mAU*s]	[mAU]	÷
1	1.905	BB	0.1016	36.36117	4.95634	0.2178
2	9.695	BB	0.0835	209.04446	38.38157	1.2521
3	14.248	BB	0.1195	9.78438	1.27535	0.0586
4	14.748	BV	0.1033	1.63664e4	2471.26636	98.0315
5	16.312	BB	0.1665	21.17754	1.75824	0.1268
6	16.773	BB	0.1221	52.27137	6.61828	0.3131

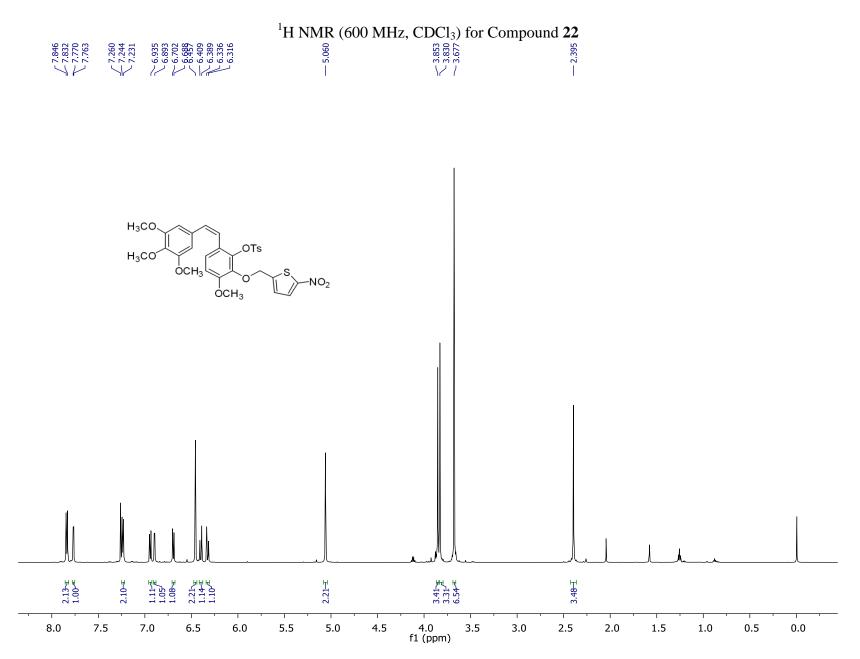
Totals : 1.66951e4 2524.25614

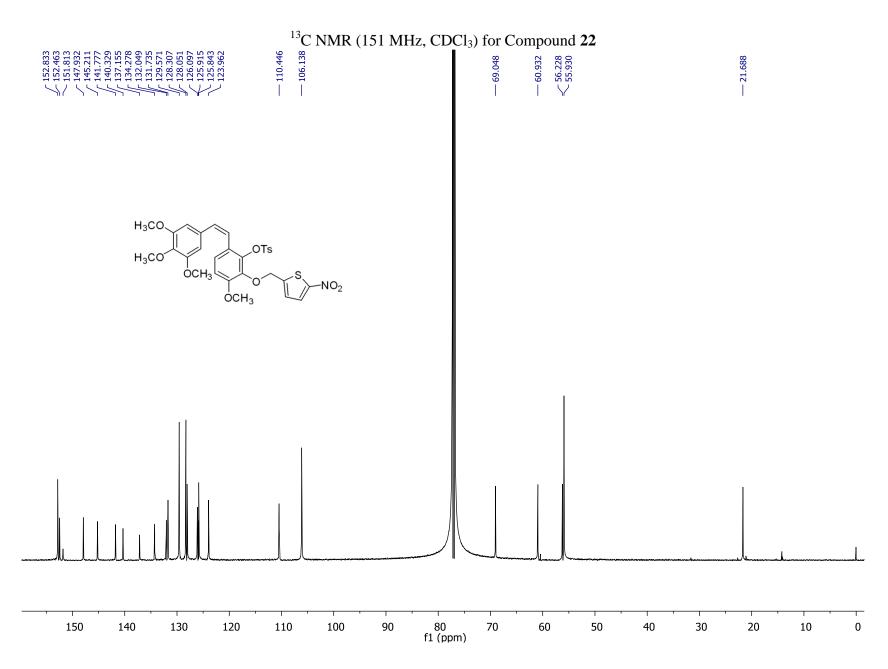
Signal 8: DAD1 H, Sig=320,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
+	[min]		[min]	[mAU*s]	[mAU]	÷
1	9.695	BB	0.0836	103.53847	18.99932	0.8508
2	14.748	BV	0.0987	1.19672e4	1867.92029	98.3422
3	15.046	vv	0.1531	53.64690	4.63198	0.4409
4	16.311	BB	0.1646	11.93031	1.00390	0.0980
5	16.774	BB	0.1222	32.61986	4.12577	0.2681

Totals : 1.21689e4 1896.68126

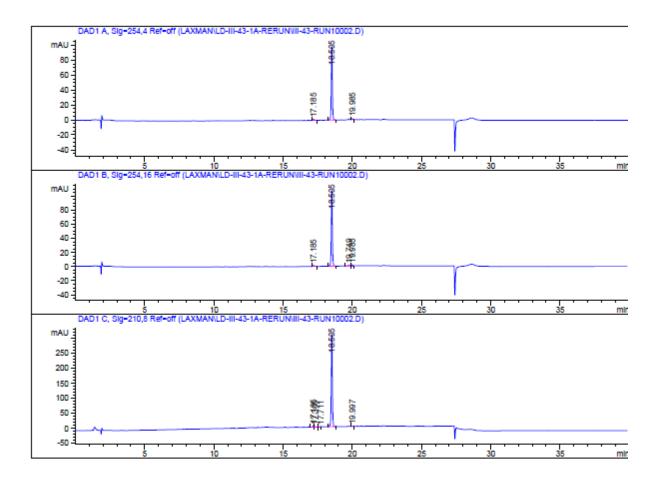



*** End of Report ***


Instrument 1 2/4/2014 2:33:06 PM Laxman

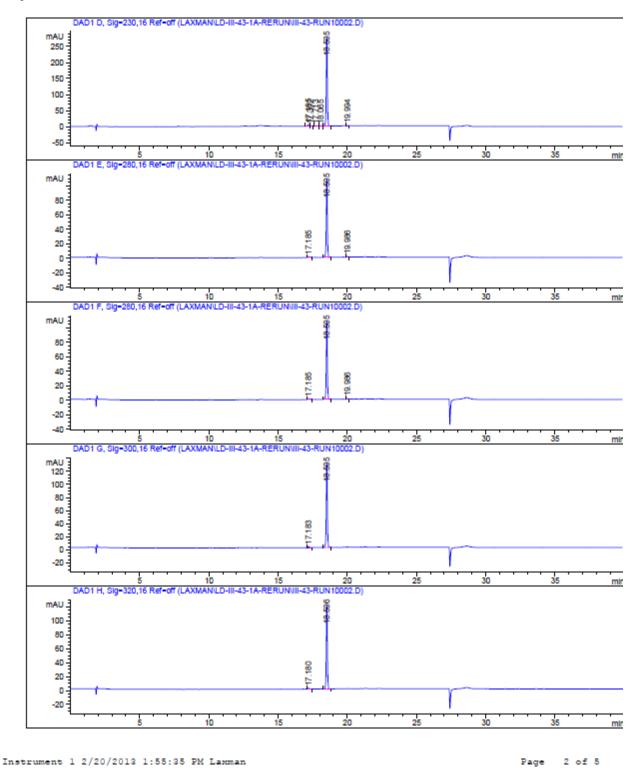
Page 5 of 5

HRMS Traces of Compound 21



HPLC Traces of Compound 22

Data File C:\CHEM32\1\DATA\LAXMAN\LD-III-43-1A-RERUN\III-43-RUN10002.D Sample Name: LD-III-43-1A-rerun-run1


Acq. Operator	:	Laxman
Acq. Instrument	:	Instrument 1 Location : -
Injection Date	:	2/20/2013 10:40:08 AM
Acq. Method	:	C:\CHEM32\1\METHODS\MASTERMETHOD.M
Last changed	:	2/20/2013 10:20:33 AM by Laxman
Analysis Method	:	C:\CHEM32\1\DATA\LAXMAN\LD-III-43-1A-RERUN\III-43-RUN10002.D\DA.M (
		MASTERMETHOD.M)
Last changed	:	2/20/2013 1:53:17 PM by Lamman
		(modified after loading)
Sample Info	:	runl
		10%ACN/H20

Instrument 1 2/20/2013 1:55:35 PM Laxman

Page 1 of 5

Data File C:\CHEM32\1\DATA\LAXMAN\LD-III-43-1A-RERUN\III-43-RUN10002.D Sample Name: LD-III-43-1A-rerun-run1

Data File C:\CHEM32\1\DATA\LAXMAN\LD-III-43-1A-RERUN\III-43-RUN10002.D Sample Name: LD-III-43-1A-rerun-run1

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

\$	[min]			Area [mAU*s]		e
1	17.185	BB	0.0973	9.40742	1.41932	1.6521
2	18.505	BB	0.0847	552.32959	99.64810	96.9969
3	19.985	вв	0.0787	7.69327	1.52861	1.3510

Totals : 569.43028 102.59603

Signal 2: DAD1 B, Sig=254,16 Ref=off

+	[min]		[min]	[mAU*s]	Height [mAU]	e
					1.55665	
2	18.505	BB	0.0846	601.68658	108.63660	95.8011
3	19.749	BB	0.0994	8.24213	1.21077	1.3123
4	19.985	BB	0.0792	7.78437	1.53429	1.2394
Total				628.05797	112.93830	

Signal 3: DAD1 C, Sig=210,8 Ref=off

+	[min]		[min]	Area [mAU*s]	[mAU]	e
1	17.185	vv	0.0913	30.09891	4.92847	1.6977
2	17.305	VB	0.0784	7.90903	1.47888	0.4461
3	17.711	BV	0.0716	5.09792	1.07028	0.2875
4	18.505	VB	0.0846	1723.29053	311.30359	97.2001
5	19.997	BB	0.0837	6.53474	1.23493	0.3686
Total				1772.93112	320.01615	

Instrument 1 2/20/2013 1:55:35 PM Laxman

Page 3 of 5

Data File C:\CHEM32\1\DATA\LAXMAN\LD-III-43-1A-RERUN\III-43-RUN10002.D Sample Name: LD-III-43-1A-rerun-run1

Signal 4: DAD1 D, Sig=230,16 Ref=off

+	[min]		[min]		[mAU]	e
1	17.185	BV	0.0911	28.28330	4.63913	1.7630
2	17.302	VB	0.0714	6.18744	1.25790	0.3857
3	17.713	BV	0.1039	7.61578	1.03443	0.4747
4	18.065	vv	0.1511	10.39987	1.01869	0.6482
5	18.505	VB	0.0846	1544.25427	278.70560	96.2568
6	19.994	BB	0.0834	7.56541	1.43652	0.4716
Total				1604.30607	288.09227	

Signal 5: DAD1 E, Sig=280,16 Ref=off

+	[min]		[min]	Area [mAU*s]	[mAU]	
1	17.185	BB	0.0998	9.16147	1.33870	1.4730
2	18.505	BB	0.0851	607.04138	108.86829	97.6000
3	19.986	BB	0.0793	5.76582	1.13497	0.9270

Totals : 621.96867 111.34196

Signal 6: DAD1 F, Sig=280,16 Ref=off

\$	[min]		[min]	Area [mAU*s]	[mAU]	Area %
				9.16147		-
2	18.505	BB	0.0851	607.04138	108.86829	97.6000
3	19.986	BB	0.0793	5.76582	1.13497	0.9270

Totals : 621.96867 111.34196

Signal 7: DAD1 G, Sig=300,16 Ref=off

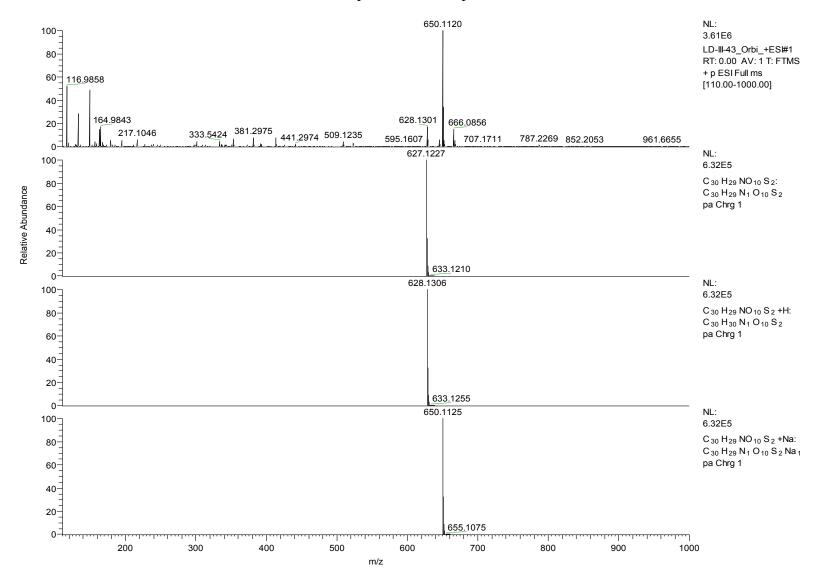
				Area [mAU*s]	-	
1	17.183	BB	0.0982	10.97565	1.63835	1.4851
2	18.505	BB	0.0854	728.06720	129.90228	98.5149
Total				739.04285	131.54064	

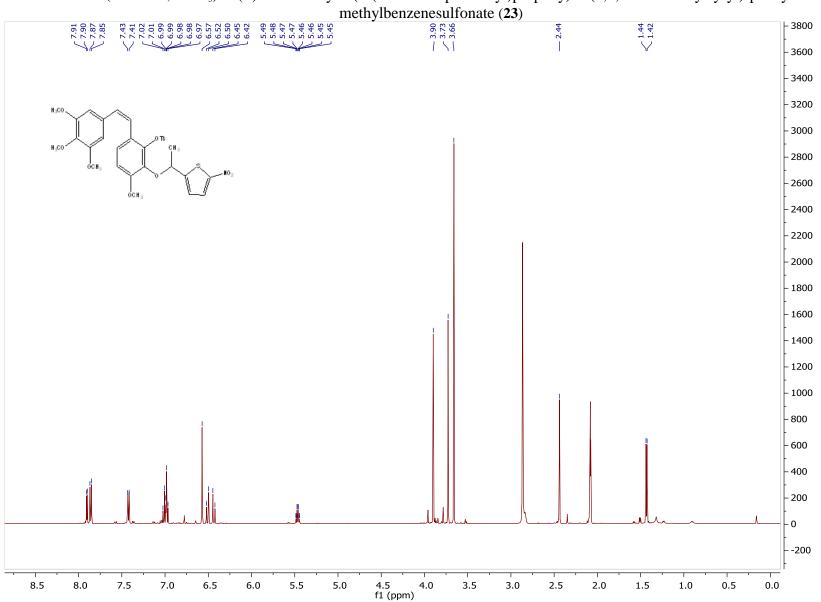
Instrument 1 2/20/2013 1:55:35 PM Laxman

Page 4 of 5

Data File C:\CHEM32\1\DATA\LAXMAN\LD-III-43-1A-RERUN\III-43-RUN10002.D Sample Name: LD-III-43-1A-rerun-run1

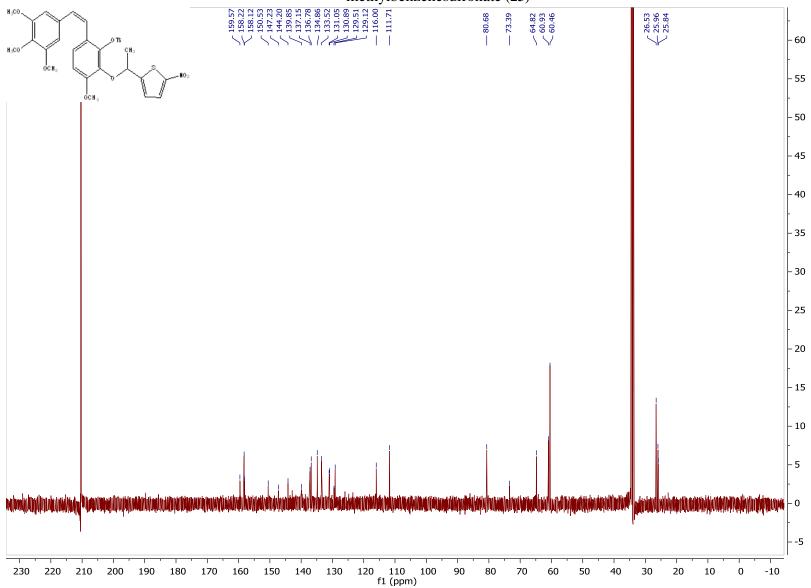
Signal 8: DAD1 H, Sig=320,16 Ref=off


=	[min]		[min]	Area [mAU*s]	[mAU]	Area 9
				8.94699		
2	18.506	BB	0.0853	677.49988	121.10182	98.6966
Total				686.44687	122.52773	

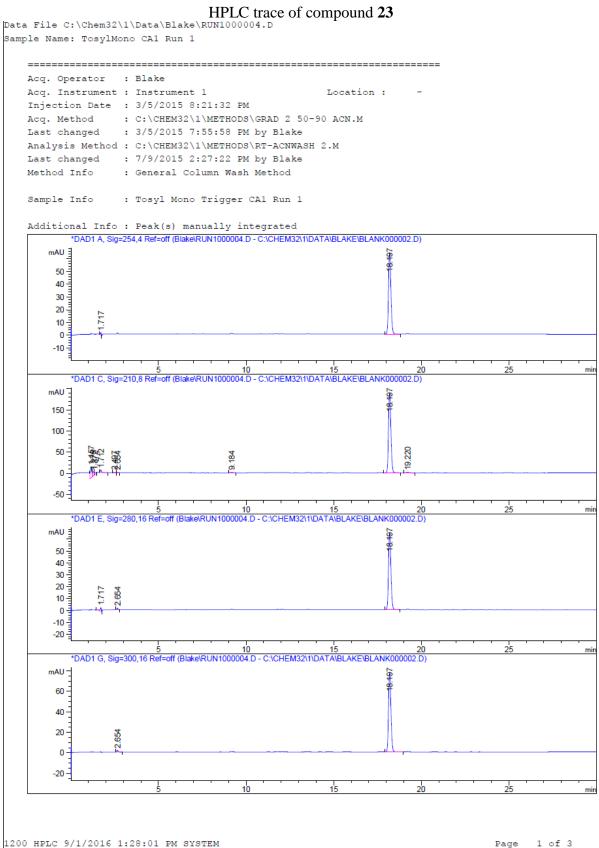

*** End of Report ***

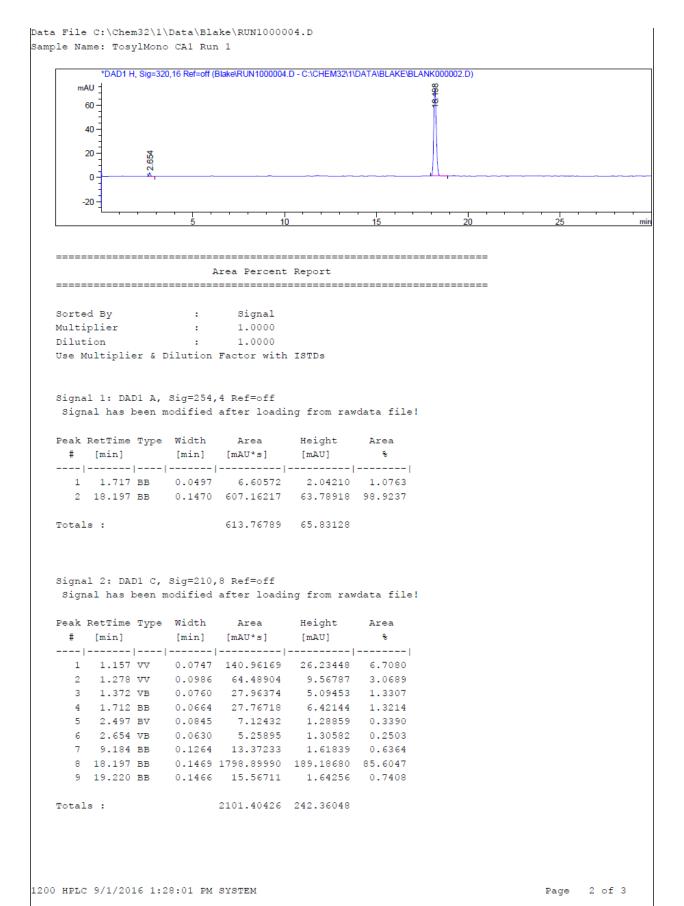
Instrument 1 2/20/2013 1:55:35 PM Laxman

Page 5 of 5

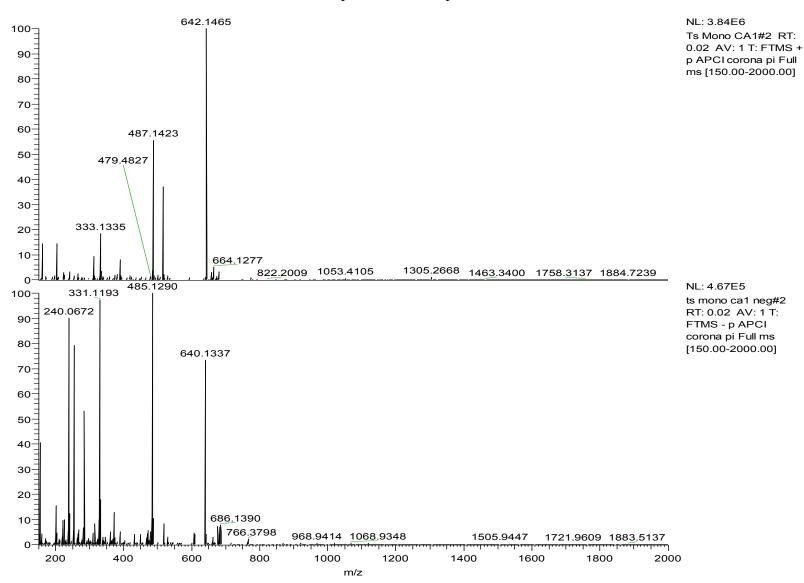


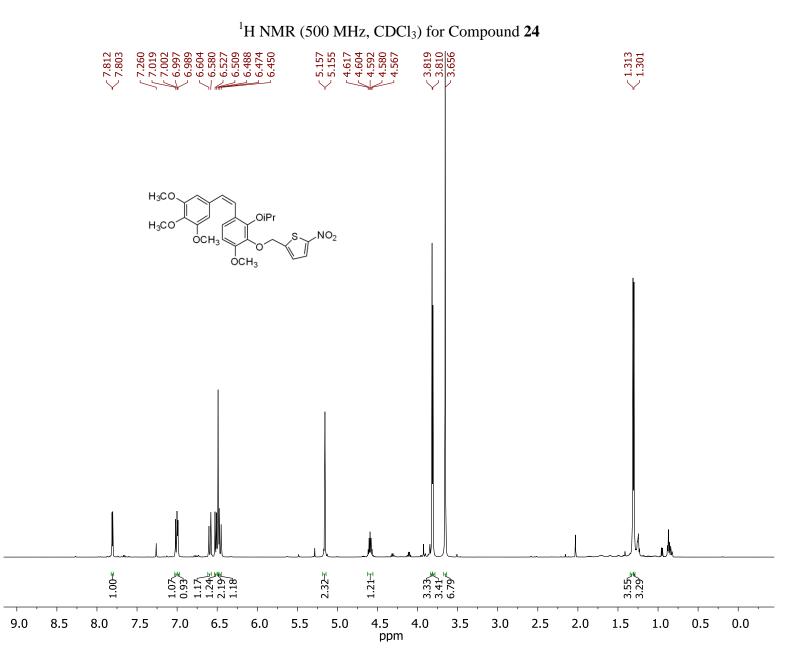
Mass Spectrum of Compound 22




¹H NMR (500 MHz, CDCl₃) of (Z)-3-Methoxy-2-(2-(5-nitrothiophen-2-yl)propoxy)-6-(3,4,5-trimethoxystyryl)-phenyl-4-

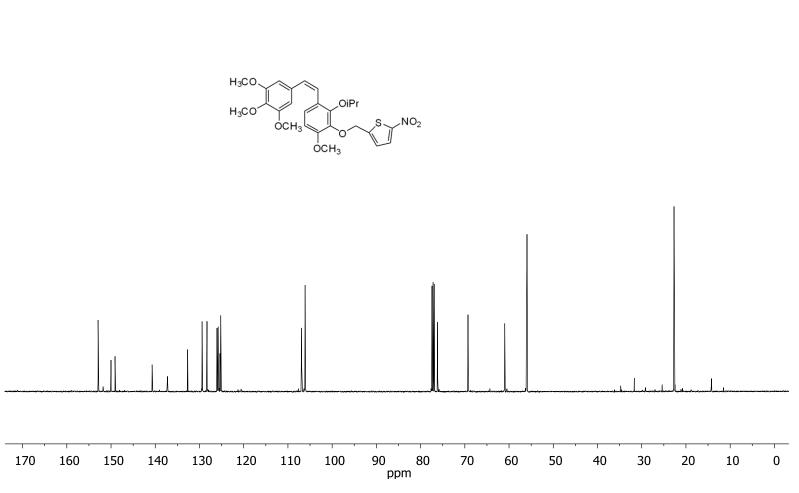
¹³C


NMR (500 MHz, CDCl₃) of (Z)-3-Methoxy-2-(2-(5-nitrothiophen-2-yl)propoxy)-6-(3,4,5-trimethoxystyryl)-phenyl-4methylbenzenesulfonate (**23**)



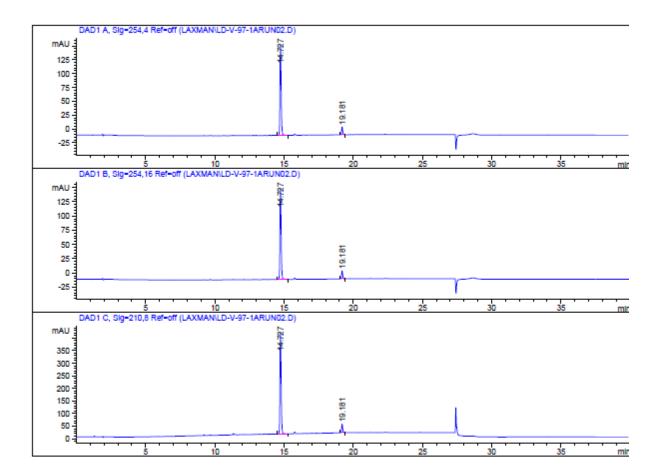

```
Data File C:\Chem32\1\Data\Blake\RUN1000004.D
Sample Name: TosylMono CA1 Run 1
  Signal 3: DAD1 E, Sig=280,16 Ref=off
   Signal has been modified after loading from rawdata file!
    Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %
   Peak RetTime Type Width Area
   ----|-----|-----|-----|------|
    1 1.717 BB 0.0774 16.70851 2.98108 2.6269
     2 2.654 BB 0.0649 5.25675 1.25308 0.8265
     3 18.197 BB 0.1470 614.09607 64.56446 96.5467
                        636.06133 68.79862
  Totals :
  Signal 4: DAD1 G, Sig=300,16 Ref=off
   Signal has been modified after loading from rawdata file!
   Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %
   ----|-----|-----|-----|------|
    1 2.654 BB 0.0678 8.59714 1.93753 1.1541
     2 18.197 вв 0.1472 736.32220 77.24043 98.8459
                        744.91934 79.17796
   Totals :
   Signal 5: DAD1 H, Sig=320,16 Ref=off
   Signal has been modified after loading from rawdata file!
    Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %
   Peak RetTime Type Width
   1 2.654 BB 0.0673 12.99429 2.95627 1.8475
     2 18.198 BB 0.1476 690.34473 72.19302 98.1525
                         703.33902 75.14929
   Totals :
  *** End of Report ***
```

1200 HPLC 9/1/2016 1:28:01 PM SYSTEM

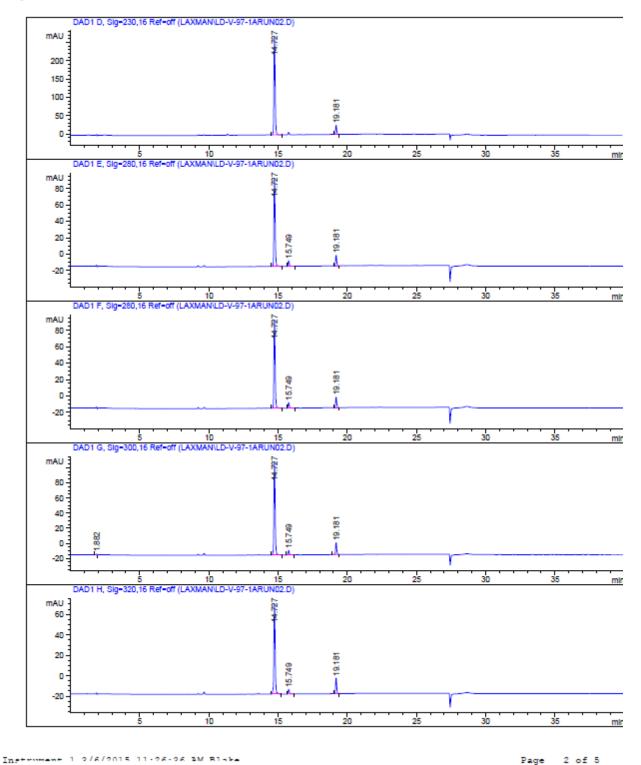

Mass Spectrum of Compound 23

¹³C NMR (125 MHz, CDCl₃) for Compound **24**

— 22.683



HPLC Traces of Compound 24


```
Data File C:\CHEM32\1\DATA\LAXMAN\LD-V-97-1ARUN02.D
Sample Name: LD-V-97-1A-run2
```

Acq. Operator	:	Casey
Acq. Instrument	:	Instrument 1 Location : -
Injection Date	:	6/11/2014 12:23:01 PM
Acq. Method	:	C:\CHEM32\1\METHODS\MASTERMETHOD.M
Last changed	:	6/11/2014 12:20:19 PM by Casey
Analysis Method	:	C:\CHEM32\1\DATA\LAXMAN\LD-V-97-1ARUN02.D\DA.M (MASTERMETHOD.M)
Last changed	:	3/6/2015 11:26:20 AM by Blake
		(modified after loading)
Sample Info	:	LD-V-97-1A-run2
		Mastermethod

Instrument 1.2/6/2015 11-26-26 BM Black Created with novaPDF Printer (<u>www.novaPDF.com</u>). Please register to remove this message. Page 1 of 5

Data File C:\CHEM32\1\DATA\LAXMAN\LD-V-97-1ARUN02.D Sample Name: LD-V-97-1A-run2

Created with novaPDF Printer (<u>www.novaPDF.com</u>). Please register to remove this message.

Data File C:\CHEM32\1\DATA\LAXMAN\LD-V-97-1ARUN02.D Sample Name: LD-V-97-1A-run2

Area Percent Report

Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Totals : 1091.33592 179.08999

Signal 2: DAD1 B, Sig=254,16 Ref=off

ŧ	[min]		[min]	Area [mAU*s]	[mAU]	÷
				987.21277		
2	19.181	BB	0.0863	77.62172	14.09153	7.2896
Total	Ls :			1064.83449	174.73780	

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak RetTime		[min]	[mAU*s]	[mAU]	e
1 14.727	BB	0.0932	2476.75439 187.19514	405.73618	92.9730

Totals : 2663.94954 439.63723

Signal 4: DAD1 D, Sig=230,16 Ref=off

				Area [mAU*s]	Height [mAU]	Area %
1	14.727	BB	0.0935	1653.68958	269.86240	92.4120
2	19.181	VB	0.0865	135.78531	24.57749	7.5880

Instrument 1 2/6/2015 11-26-26 BM Blake

Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Page 3 of 5

Data File C:\CHEM32\1\DATA\LAXMAN\LD-V-97-1ARUN02.D Sample Name: LD-V-97-1A-run2

Peak RetTime	Type Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	÷
Totals :		1789.47488	294.43989	

Signal 5: DAD1 E, Sig=280,16 Ref=off

=	[min]		[min]	[mAU*s]	Height [mAU]	e
1	14.727	BB	0.0939	663.65198	107.74279	85.4036
2	15.749	BB	0.0929	42.01422	6.91261	5.4067
3	19.181	BB	0.0862	71.41132	12.97093	9.1897
Total				777.07752	127.62633	

Signal 6: DAD1 F, Sig=280,16 Ref=off

+	[min]		[min]	[mAU*s]		
1	14.727	BB	0.0939	663.65198	107.74279	85.4036
2	15.749	BB	0.0929	42.01422	6.91261	5.4067
3	19.181	BB	0.0862	71.41132	12.97093	9.1897
Total				777.07752	127.62633	

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	1.882	BB	0.0563	5.62916	1.48090	0.6242
2	14.727	BB	0.0948	770.54956	123.48886	85.4397
3	15.749	BB	0.0922	36.64074	6.09094	4.0628
4	19.181	BB	0.0877	89.04414	15.81382	9.8733
Total	. :			901.86360	146.87453	

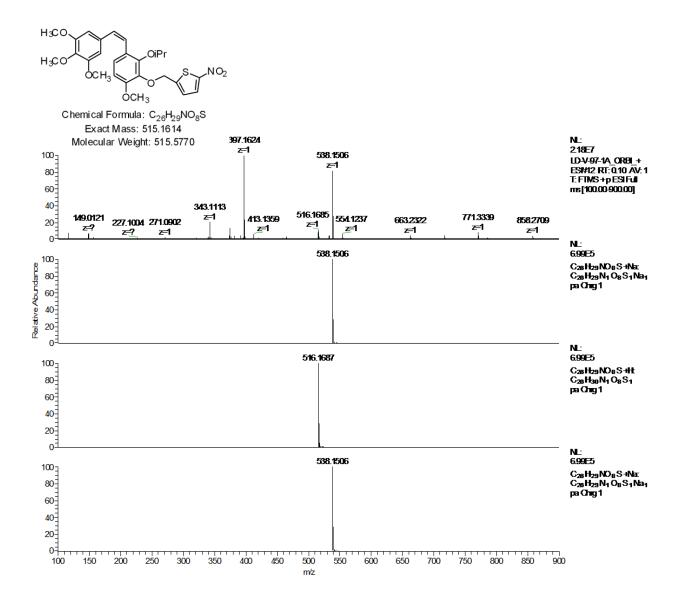
Signal 8: DAD1 H, Sig=320,16 Ref=off

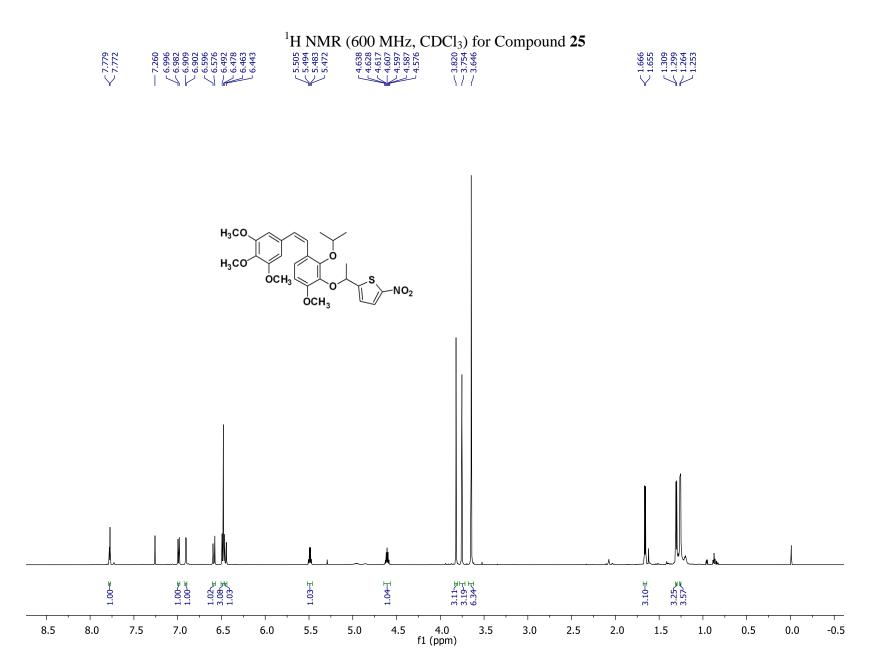
Instrument 1 2/6/2015 11-26-26 BM Blake

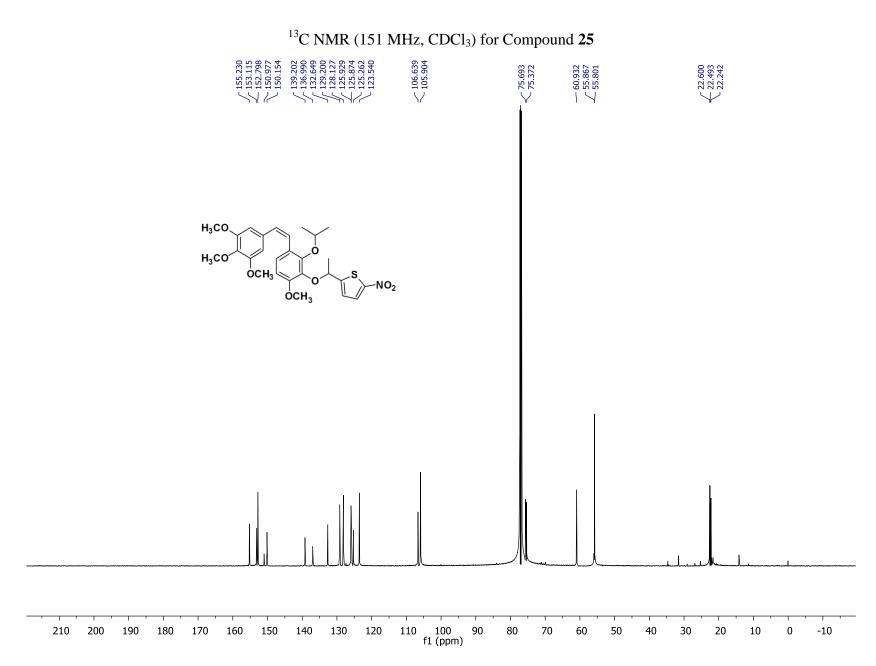
Page 4 of 5

Data File C:\CHEM32\1\DATA\LAXMAN\LD-V-97-1ARUN02.D Sample Name: LD-V-97-1A-run2

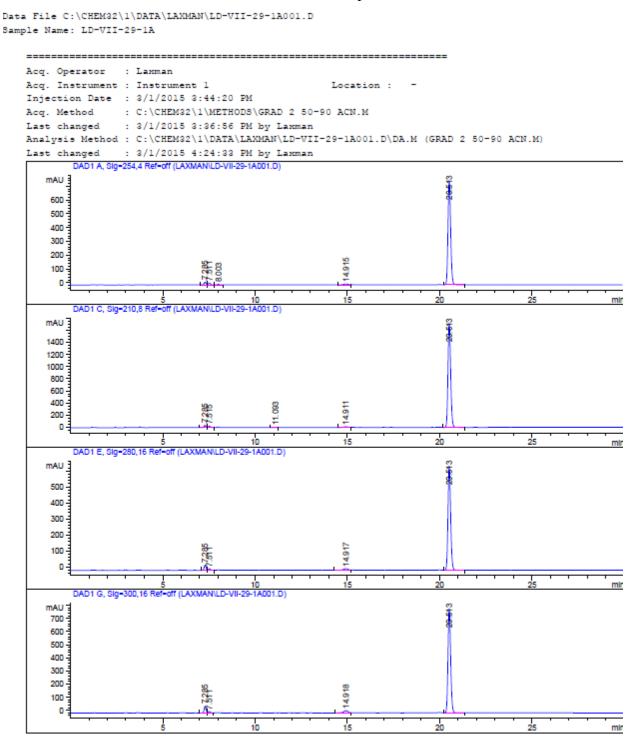
				Area [mAU*s]	Height [mAU]	Area %
1	14.727	BB	0.0968	568.63849	88.65764	83.4444
2	15.749	BB	0.0922	27.48027	4.56638	4.0326
3	19.181	VB	0.0867	85.33914	15.39945	12.5230
Total				681.45790	108.62348	

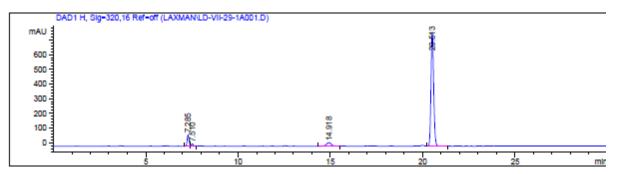

*** End of Report ***


Instrument 1 2/6/2015 11-26-26 BM Blake


Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Page 5 of 5


Mass Spectrum of Compound 24


HPLC Traces for Compound 25

Instrument 1 3/1/2015 5:17:22 PM Graham

Page 1 of 3

Data File C:\CHEM32\1\DATA\LAXMAN\LD-VII-29-1A001.D Sample Name: LD-VII-29-1A

Area Percent Report

Sorted By	÷	Signal	
Multiplier		1.0000	
Dilution	=	1.0000	
Use Multiplier &	Dilution	Factor with IS	TDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

+	[min]		[min]		Height [mAU]	e
1	7.285	BV	0.1134	137.70985	18.81188	1.7190
2	7.511	VB	0.1180	108.58200	14.07325	1.3554
3	8.003	BB	0.1245	30.20725	3.72818	0.3771
4	14.915	BV	0.2773	103.74889	5.89437	1.2951
5	20.513	VB	0.1577	7630.70166	756.65521	95.2534

Totals : 8010.94966 799.16290

Signal 2: DAD1 C, Sig=210,8 Ref=off

					Height [mAU]	Area %
1	7.285	BV	0.1181	282.01685	36.51880	1.5456
2	7.515	VB	0.1310	187.78674	21.27100	1.0291
3	11.093	BV	0.1711	14.92364	1.34912	0.0818
4	14.911	BV	0.2798	225.43584	12.77740	1.2355
5	20.513	VB	0.1588	1.75367e4	1721.62097	96.1080

Totals : 1.82469e4 1793.53730

Instrument 1 3/1/2015 5:17:22 PM Graham

Page 2 of 3

Data File C:\CHEM32\1\DATA\LAXMAN\LD-VII-29-1A001.D Sample Name: LD-VII-29-1A

Signal 3: DAD1 E, Sig=280,16 Ref=off

=	[min]		[min]	Area [mAU*s]	[mAU]	e
				238.84053		
2	7.511	VB	0.1171	77.61353	9.94490	1.1013
3	14.917	BV	0.2830	175.57196	9.80124	2.4912
4	20.513	VB	0.1575	6555.55762	650.98096	93.0185

Totals : 7047.58364 703.19719

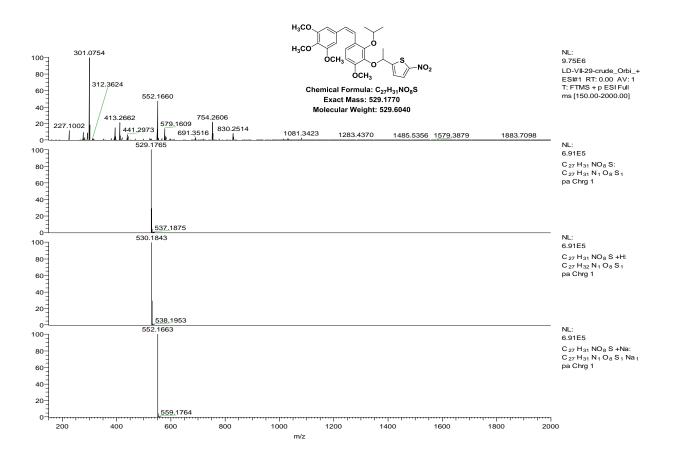
Signal 4: DAD1 G, Sig=300,16 Ref=off

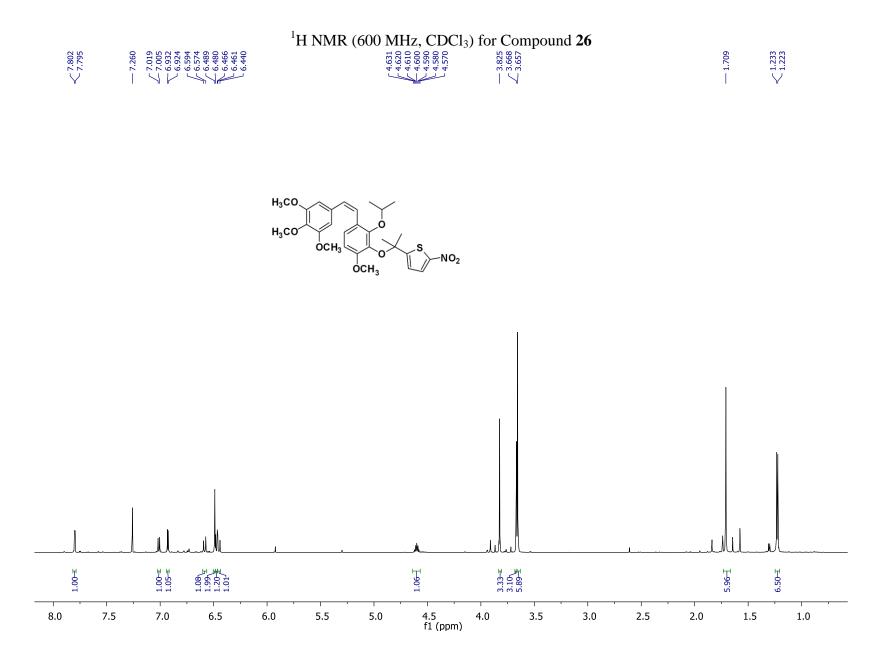
+	[min]		[min]	Area [mAU*s]	[mAU]	e
1	7.285	BV	0.1139	376.73462	51.17566	4.2972
2	7.511	VB	0.1162	81.67451	10.56421	0.9316
3	14.918	BV	0.2823	290.15118	16.09673	3.3096
4	20.513	VB	0.1556	8018.51367	795.31226	91.4617
Total				8767.07399	873.14884	

Signal 5: DAD1 H, Sig=320,16 Ref=off

‡ [m	in]	[min]	Area [mAU*s]	[mAU]	e
1 7 2 7 3 14	.285 BV .510 VB .918 BB	0.1139 0.1160 0.2899	556.89746 116.93579 437.53549 7833.95703	75.66253 15.15809 23.64482	6.2256 1.3072 4.8912

Totals : 8945.32578 890.29863

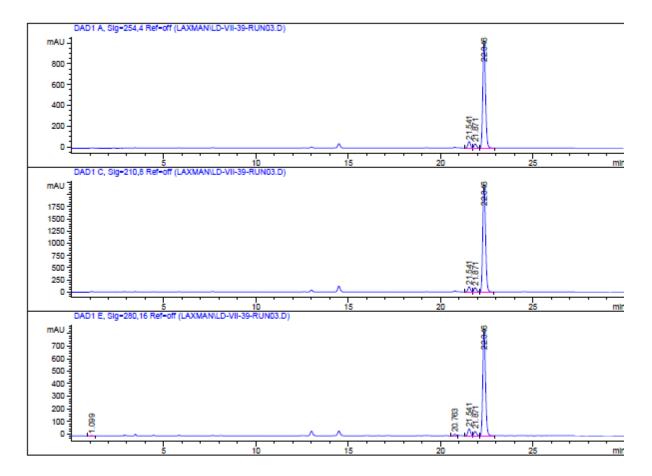



*** End of Report ***

Instrument 1 3/1/2015 5:17:22 PM Graham

Page 3 of 3

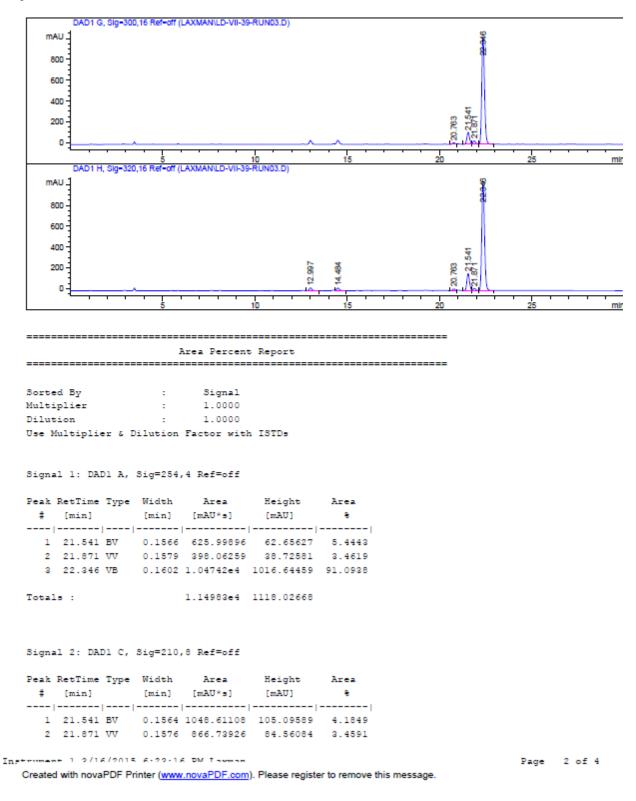
Mass Spectrum of Compound 25



HPLC Traces of Compound 26

```
Data File C:\CHEM32\1\DATA\LAXMAN\LD-VII-39-RUN03.D
Sample Name: LD-VII-39-run3
```

Acq. Operator	:	Laxman
Acq. Instrument	:	Instrument 1 Location : -
Injection Date	:	3/15/2015 10:57:34 AM
Acq. Method	:	C:\CHEM32\1\METHODS\GRAD 2 50-90 ACN.M
Last changed	:	3/15/2015 10:37:39 AM by Laxman
Analysis Method	:	C:\CHEM32\1\DATA\LAXMAN\LD-VII-39-RUN03.D\DA.M (GRAD 2 50-90 ACN.M)
Last changed	:	3/16/2015 6:22:00 PM by Lamman
Sample Info	:	Method-Grad2 50-90% ACN



Instrument 1 2/16/2015 6-22-16 DM Townon

Page 1 of 4

Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Data File C:\CHEM32\1\DATA\LAXMAN\LD-VII-39-RUN03.D Sample Name: LD-VII-39-run3

Data File C:\CHEM32\1\DATA\LAXMAN\LD-VII-39-RUN03.D Sample Name: LD-VII-39-run3

Totals : 2.50569e4 2354.09888

Signal 3: DAD1 E, Sig=280,16 Ref=off

+	[min]			[mAU*s]	Height [mAU]	Area 8
1	1.099	вv	0.0821	22.67783	3.88244	0.2335
2	20.763	BV	0.1483	119.33536	12.40154	1.2289
3	21.541	BV	0.1567	553.77106	55.33903	5.7025
4	21.871	vv	0.1578	351.39407	34.20695	3.6185
5	22.346	VВ	0.1601	8663.92285	841.87061	89.2167

Totals : 9711.10117 947.70056

Signal 4: DAD1 G, Sig=300,16 Ref=off

+	[min]		[min]	Area [mAU*s]		÷
1	20.763	BV	0.1474	140.45000	14.70714	1.1420
2	21.541	BV	0.1571	1151.50391	114.67712	9.3632
3	21.871	vv	0.1580	327.26285	31.81455	2.6611
4	22.346	VВ	0.1604	1.06790 e 4	1034.58325	86.8338

Totals :	1.22982e4	1195.78207
----------	-----------	------------

Signal 5: DAD1 H, Sig=320,16 Ref=off

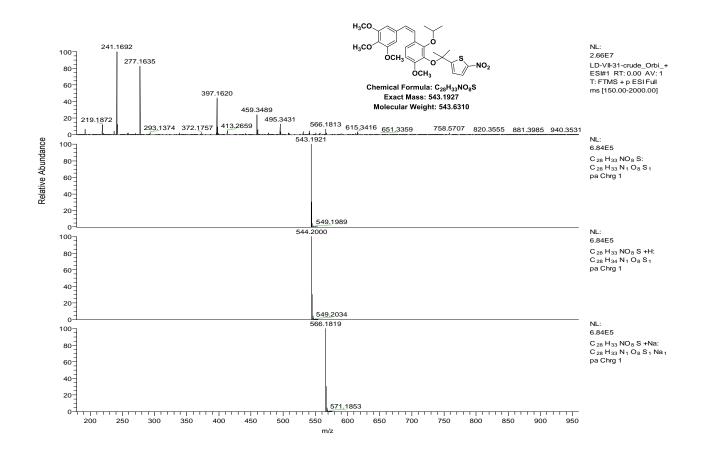
+	[min]		[min]		Height [mAU]	
1	12.997	VВ	0.1451	252.68199	27.01931 25.06436	1.9125
4	21.541	вv	0.1574	1657.25757	16.62563 164.71658	12.5434
-					20.96922 1033.17529	
Total				1.32122e4	1287.57039	

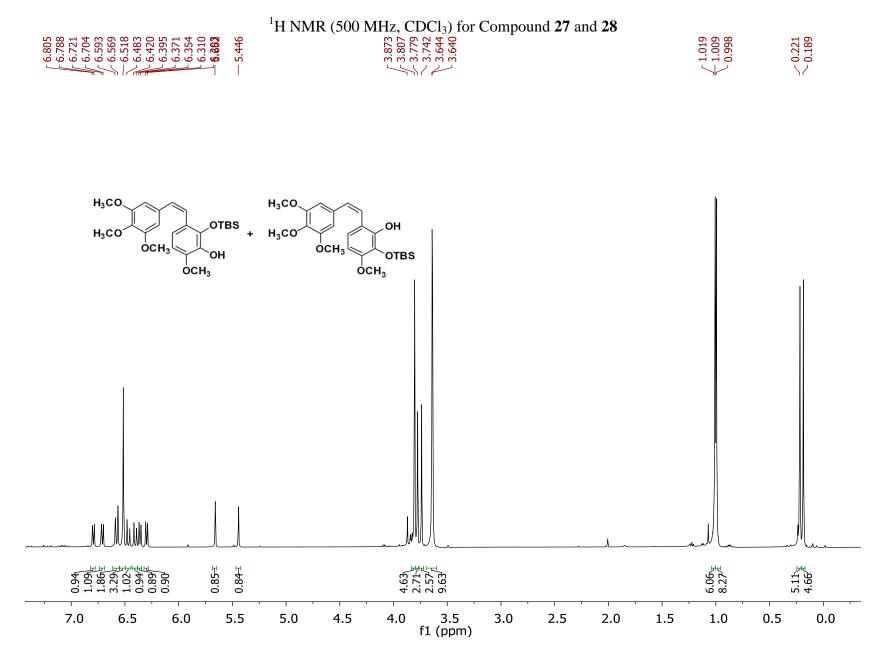
Instrument 1 2/16/2015 6-22-16 DM Tayman

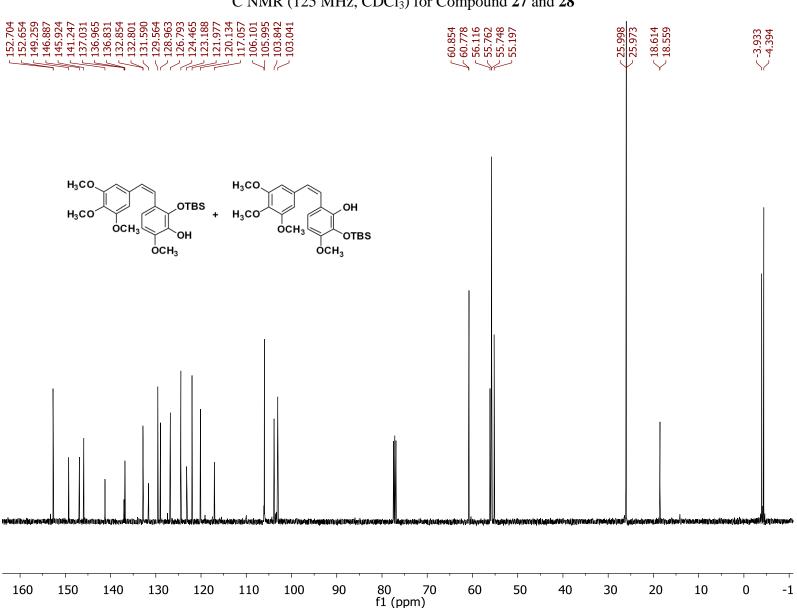
Page 3 of 4

Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Data File C:\CHEM32\1\DATA\LAXMAN\LD-VII-39-RUN03.D Sample Name: LD-VII-39-run3

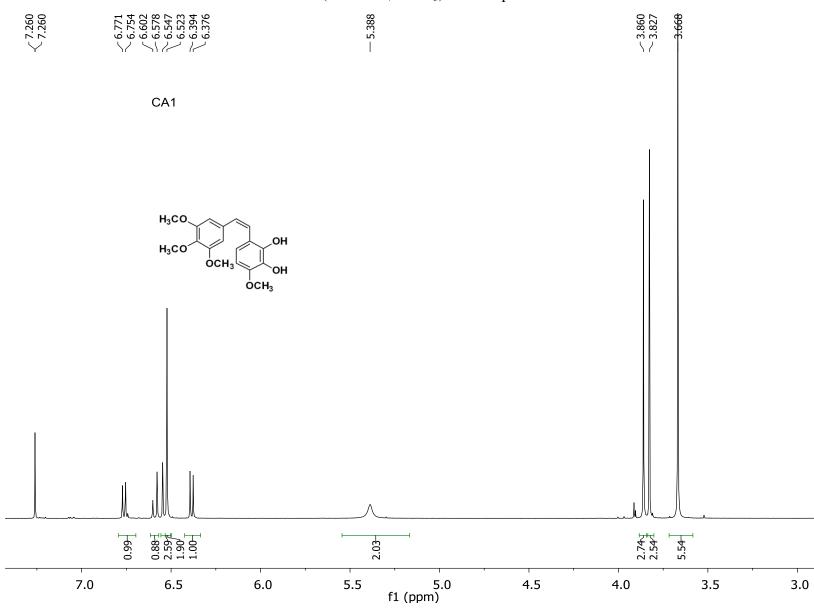

*** End of Report ***

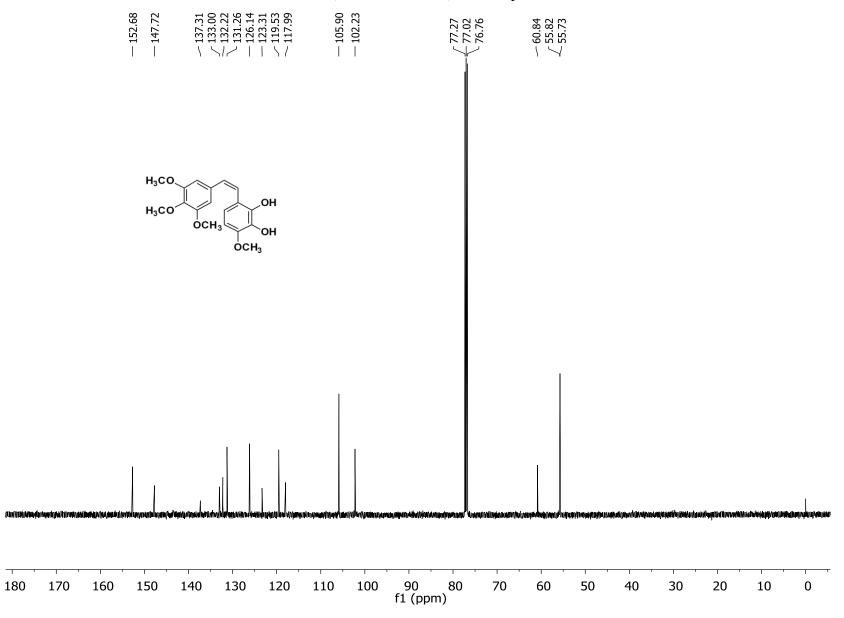

Instrument 1 2/16/2015 6-22-16 DM Tayman


Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Page 4 of 4

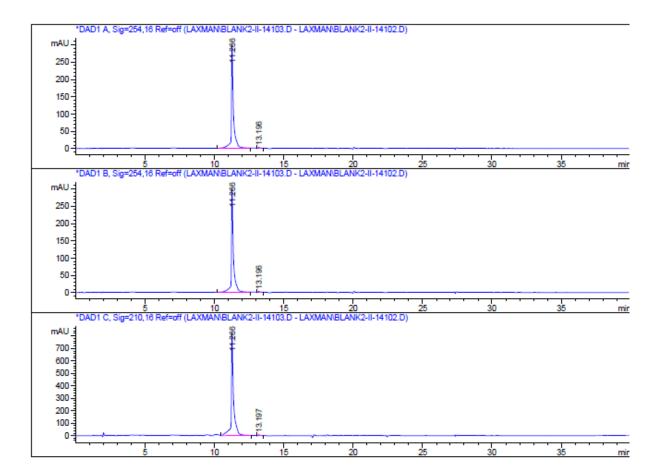
Mass Spectrum of Compound 26





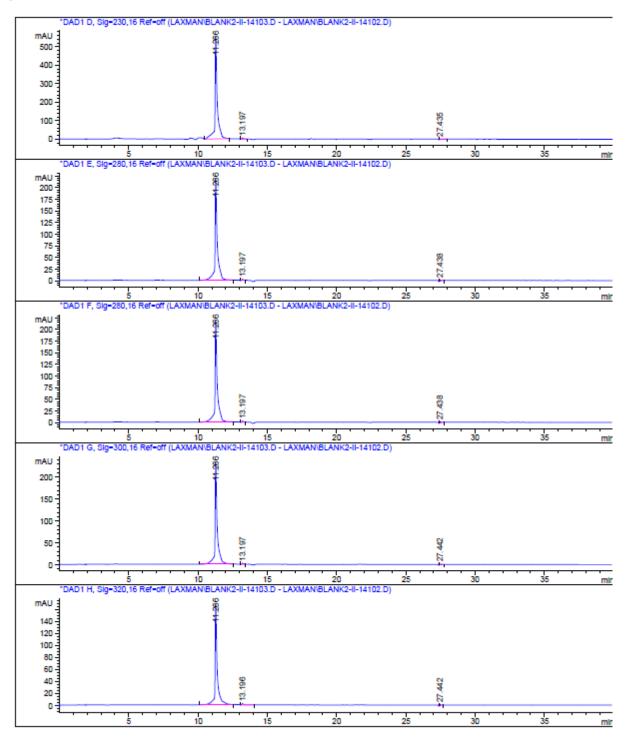
¹³C NMR (125 MHz, CDCl₃) for Compound **27** and **28**

¹H NMR (500 MHz, CDCl₃) for Compound **29**


¹³C NMR (125 MHz, CDCl₃) for Compound **29**

HPLC Traces of Compound 29

```
Data File C:\CHEM32\1\DATA\LAXMAN\BLANK2-II-14103.D
Sample Name: LD-II-141-1blank2
```


Acq. Operator : Laxman Acq. Instrument : Instrument 1 Location : -Injection Date : 10/31/2012 1:13:11 PM Acq. Method : C:\CHEM32\1\METHODS\MASTERMETHOD.M Last changed : 10/31/2012 10:10:23 AM by Laxman Analysis Method : C:\CHEM32\1\DATA\LAXMAN\BLANK2-II-14103.D\DA.M (MASTERMETHOD.M) Last changed : 10/31/2012 2:13:03 PM by Laxman Sample Info : 10% ACN in water

Instrument 1 10/31/2012 2:15:33 PM Laxman

Page 1 of 5

Data File C:\CHEM32\1\DATA\LAXMAN\BLANK2-II-14103.D Sample Name: LD-II-141-1blank2

Instrument 1 10/31/2012 2:15:33 PM Laxman

Page 2 of 5

Data File C:\CHEM32\1\DATA\LAXMAN\BLANK2-II-14103.D Sample Name: LD-II-141-1blank2

Totals : 3064.69640 305.53552

Signal 2: DAD1 B, Sig=254,16 Ref=off Signal has been modified after loading from rawdata file!

				Area [mAU*s]	-	
				3040.83838		
2	13.196	BB	0.1167	23.85802	2.93930	0.7785

Totals : 3064.69640 305.53552

Signal 3: DAD1 C, Sig=210,16 Ref=off Signal has been modified after loading from rawdata file!

‡ [mir	1	[min]	Area [mAU*s]	[mAU]	e
1 11.2	266 VB	0.1514	9399.36523 69.97166	834.36102	99.2611

Totals : 9469.33689 842.84096

Instrument 1 10/31/2012 2:15:33 PM Laxman

Page 3 of 5

Data File C:\CHEM32\1\DATA\LAXMAN\BLANK2-II-14103.D Sample Name: LD-II-141-1blank2

Signal 4: DAD1 D, Sig=230,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Type	Width	Area	Height	Area
=	[min]		[min]	[mAU*s]	[mAU]	÷
1	11.266	VB	0.1531	6351.90918	556.84320	98.0392
2	13.197	BB	0.1182	53.54675	6.49505	0.8265
3	27.435	BB	0.1898	73.49426	5.11005	1.1344

Totals : 6478.95018 568.44830

Signal 5: DAD1 E, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

+	[min]		[min]	Area [mAU*s]	[mAU]	8
1	11.266	BB	0.1545	2534.90454	219.80244	98.0531
2	13.197	BB	0.1035	18.30730	2.62107	0.7081
3	27.438	вв	0.1365	32.02457	3.32076	1.2387

Totals : 2585.23642 225.74427

Signal 6: DAD1 F, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

+	[min]		[min]	Area [mAU*s]	Height [mAU]	Area %
1	11.266	BB	0.1545	2534.90454	219.80244	98.0531
2	13.197	BB	0.1035	18.30730	2.62107	0.7081
3	27.438	BB	0.1365	32.02457	3.32076	1.2387

Totals : 2585.23642 225.74427

Signal 7: DAD1 G, Sig=300,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
=	[min]		[min]	[mAU*s]	[mAU]	
1	11.266	BB	0.1517	2648.87939	234.58089	98.3005
2	13.197	BB	0.1041	19.77978	2.81020	0.7340
3	27.442	BB	0.1246	26.01523	2.74336	0.9654

Instrument 1 10/31/2012 2:15:33 PM Laxman

Page 4 of 5

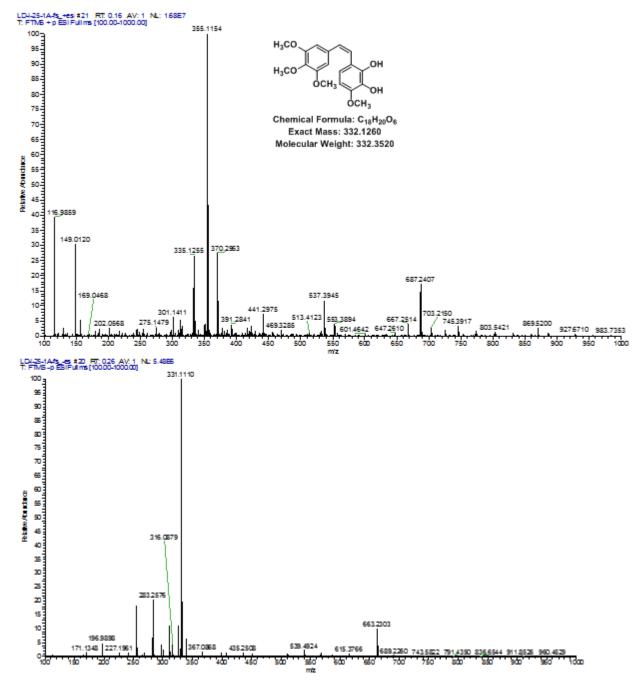
Data File C:\CHEM32\1\DATA\LAXMAN\BLANK2-II-14103.D Sample Name: LD-II-141-1blank2

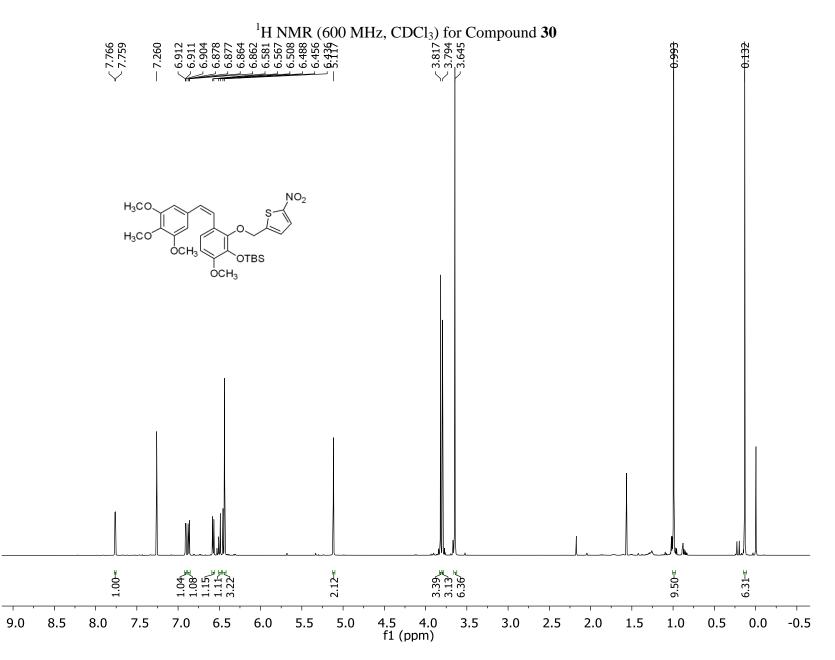
Totals : 2694.67441 240.13445

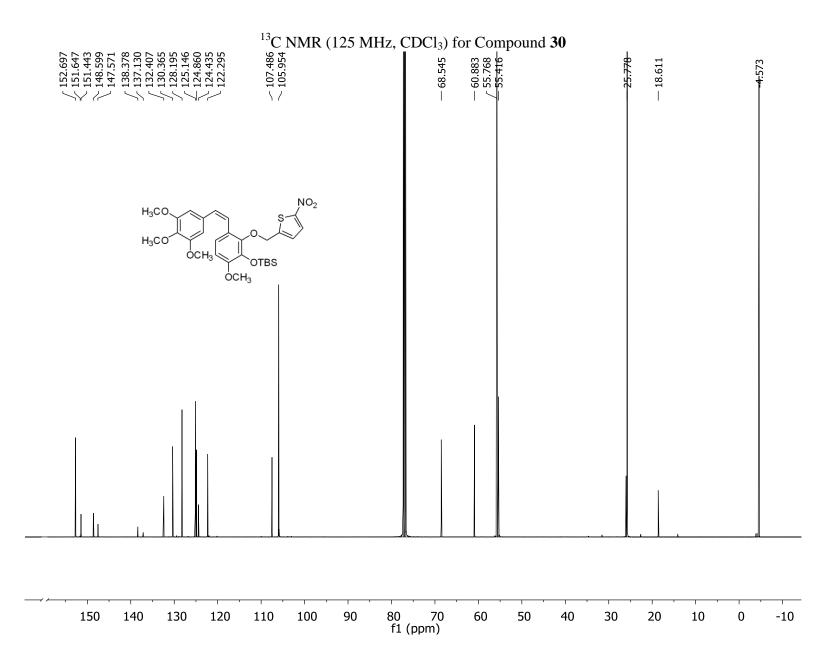
Signal 8: DAD1 H, Sig=320,16 Ref=off Signal has been modified after loading from rawdata file!

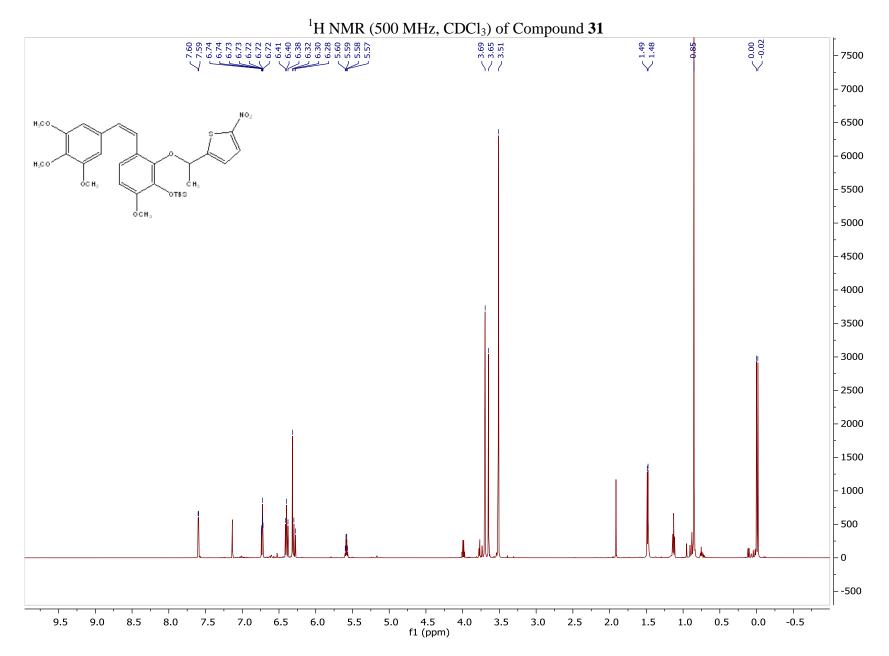
+	[min]		[min]	Area [mAU*s]		÷
1	11.266	BB	0.1474	1847.67163	169.15536	97.3511
2	13.196	BB	0.1628	29.10647	2.41100	1.5336
3	27.442	BB	0.1115	21.16774	2.53313	1.1153

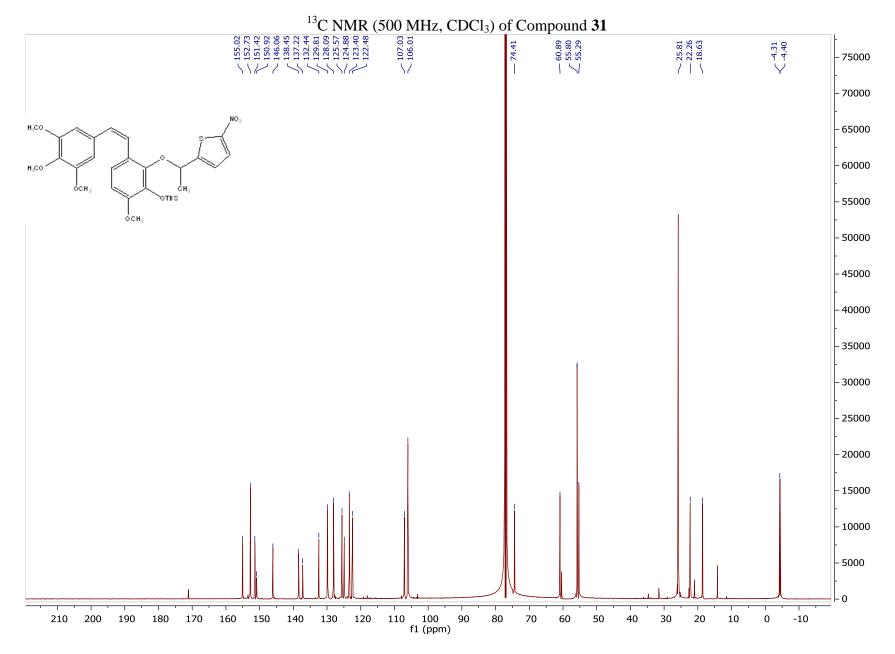
Totals : 1897.94584 174.09949

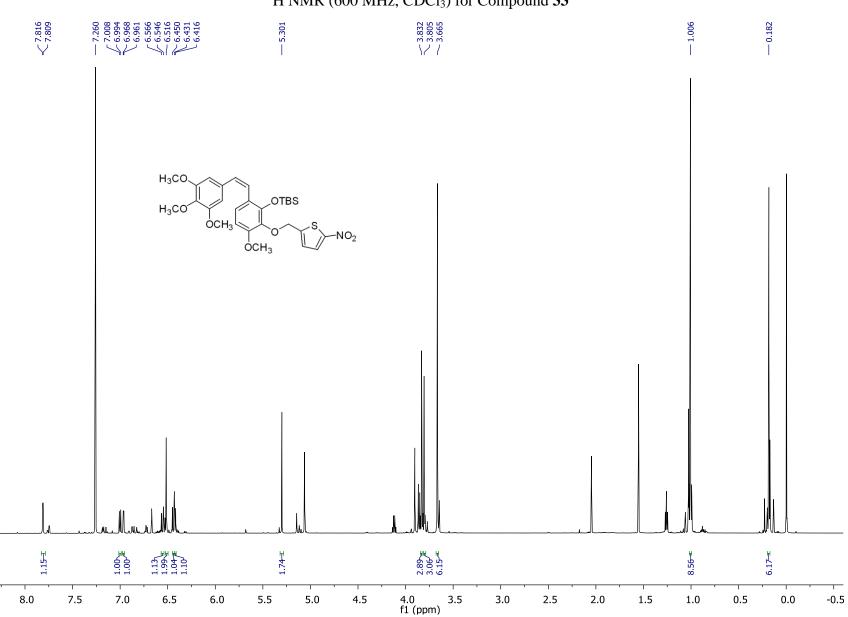


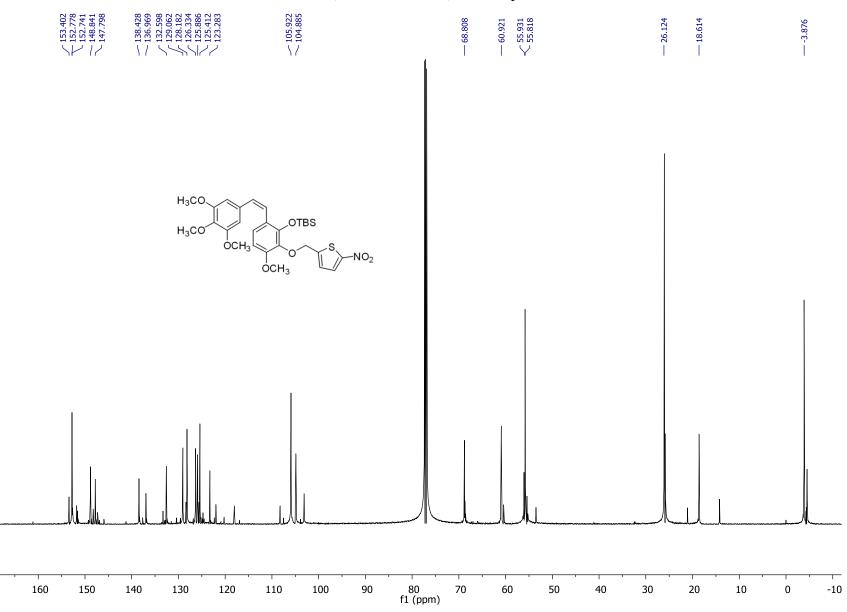

*** End of Report ***

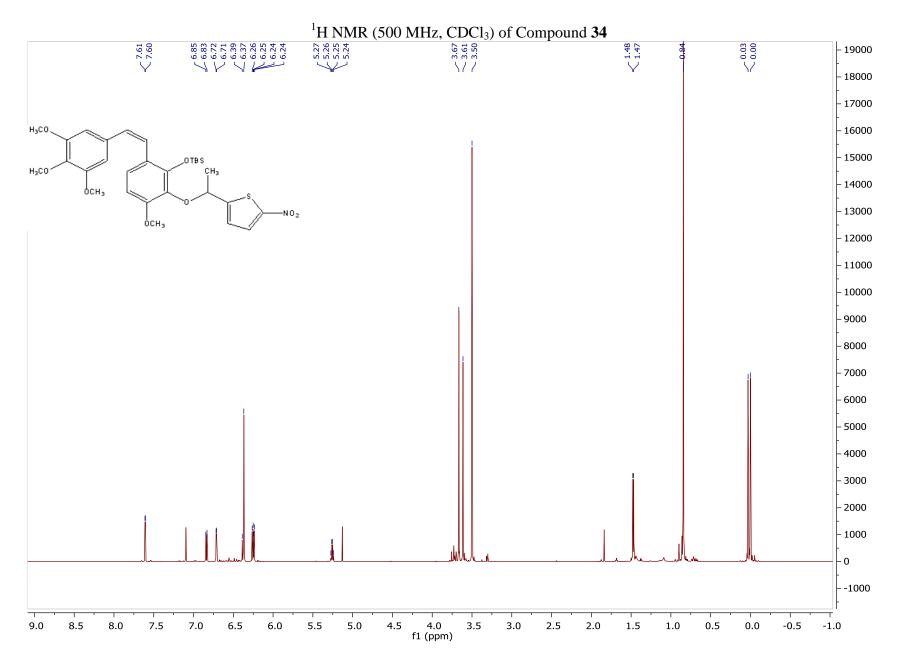

Instrument 1 10/31/2012 2:15:33 PM Laxman

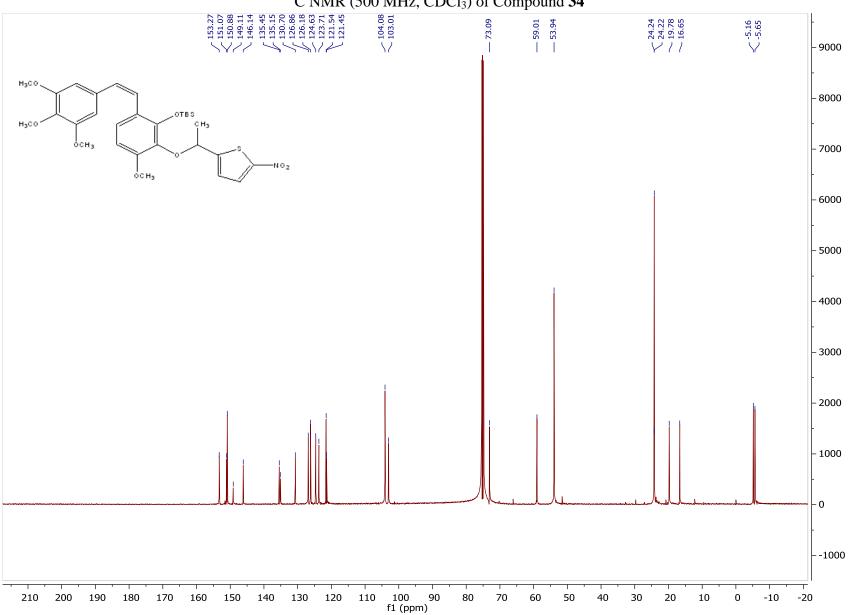

Page 5 of 5





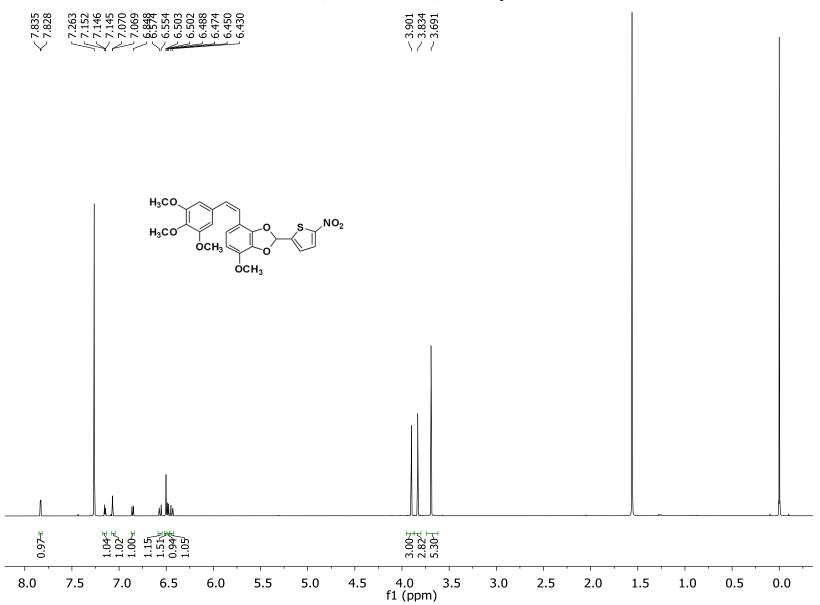


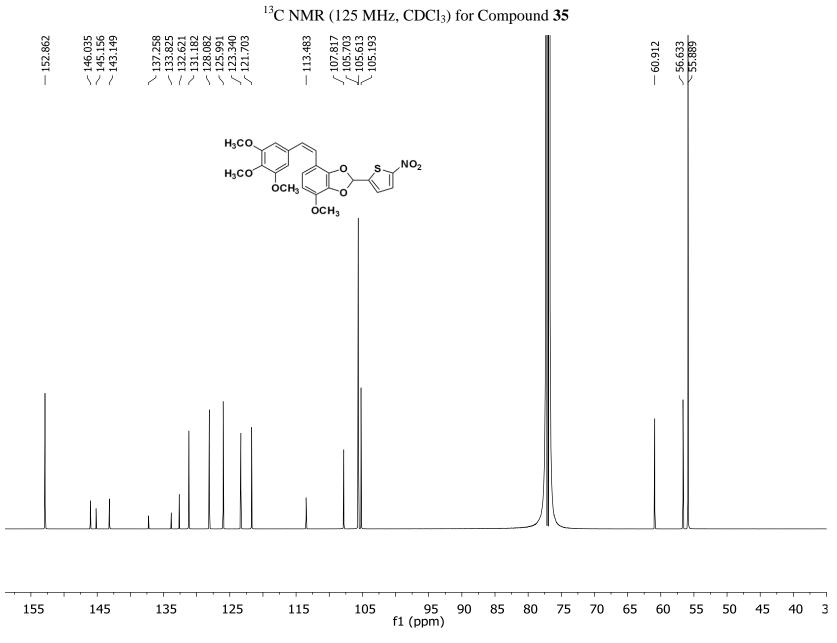




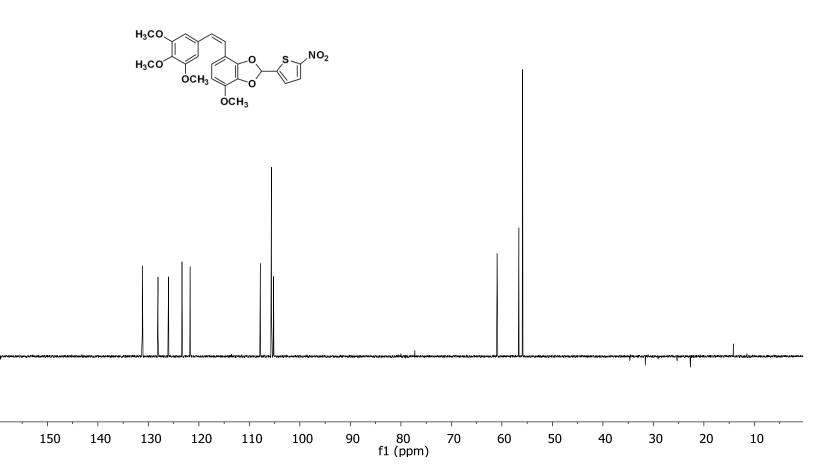
 ^1H NMR (600 MHz, CDCl₃) for Compound 33

¹³C NMR (151 MHz, CDCl₃) for Compound **33**



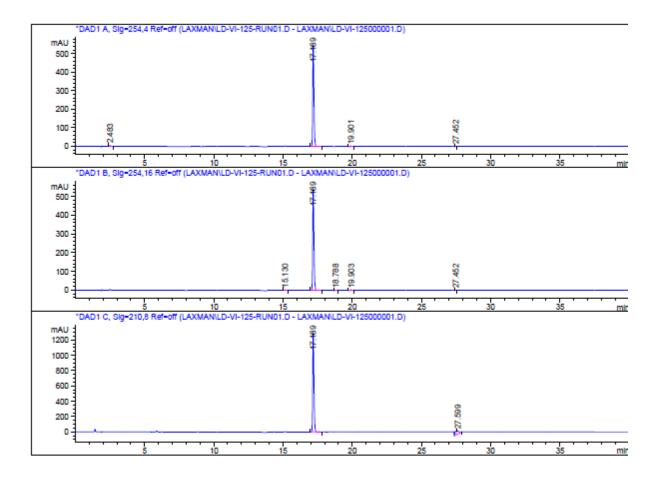


¹³C NMR (500 MHz, CDCl₃) of Compound **34**


¹H NMR (500 MHz, CDCl₃) for Compound **35**

^{13}C DEPT NMR (125 MHz, CDCl_3) for Compound 35

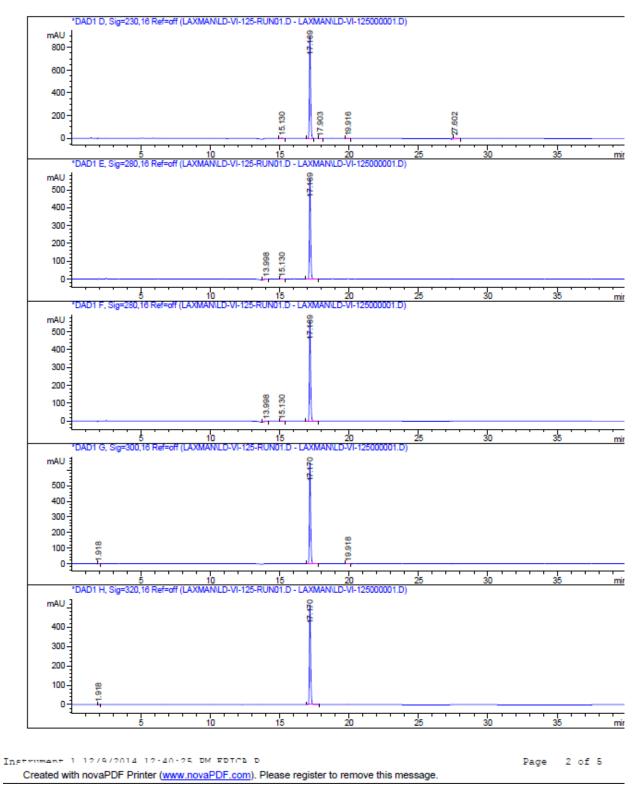
131.203 128.104 126.013 123.359 121.724	107.835 105.631 105.214	60.933 56.652 55.909
1 S S I	$\land \lor$	



HPLC Traces for Compound 35

```
Data File C:\CHEM32\1\DATA\LAXMAN\LD-VI-125-RUN01.D
Sample Name: LD-VI-125-1A-run1
```

Acq. Operator	:	Laxman
Acq. Instrument	:	Instrument 1 Location : -
Injection Date	:	12/9/2014 11:32:27 AM
Acq. Method	:	C:\CHEM32\1\METHODS\MASTERMETHOD.M
Last changed	:	12/9/2014 11:26:37 AM by Laxman
Analysis Method	:	C:\CHEM32\1\DATA\LAXMAN\LD-VI-125-RUN01.D\DA.M (MASTERMETHOD.M)
Last changed	:	12/9/2014 12:37:21 PM by ERICA P
Sample Info	:	Method:Mastermethod



Instrument 1 12/0/2014 12-40-25 DM PDTC% D

Page 1 of 5

Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Data File C:\CHEM32\1\DATA\LAXMAN\LD-VI-125-RUN01.D Sample Name: LD-VI-125-1A-run1

Data File C:\CHEM32\1\DATA\LAXMAN\LD-VI-125-RUN01.D Sample Name: LD-VI-125-1A-run1

Area Percent Report

Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000
Use Multiplier &	Dilution	Factor with ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off Signal has been modified after loading from rawdata file!

+	[min]		[min]	Area [mAU*s]	[mAU]	e
1	2.483	вв	0.0712	21.61808	4.74181	0.6184
_	17.169			24.80698 24.80698		
4	27.452	BB	0.0756	7.26803	1.52501	0.2079

Totals :	3495.58249 566.56485
----------	----------------------

Signal 2: DAD1 B, Sig=254,16 Ref=off Signal has been modified after loading from rawdata file!

\$	[min]		[min]	Area [mAU*s]	Height [mAU]	Area 8
				15.60068		-
2	17.169	BB	0.0939	3399.50537	551.31744	98.3460
3	18.788	BB	0.1392	12.07905	1.36572	0.3494
4	19.903	BB	0.1665	22.60753	1.80040	0.6540
5	27.452	BB	0.0773	6.88721	1.45335	0.1992

Totals : 3456.67985 558.08340

Signal 3: DAD1 C, Sig=210,8 Ref=off Signal has been modified after loading from rawdata file!

\$	[min]		[min]	Area [mAU*s]	[mAU]	e
1	17.169	BB	0.0946	8231.09180	1323.41785	92.6451
2	27.599	VB	0.1942	653.44891	46.99881	7.3549

Totals : 8884.54071 1370.41666

Instrument 1 12/0/2014 12-40-25 DM PDTCh D

Page 3 of 5

Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Data File C:\CHEM32\1\DATA\LAXMAN\LD-VI-125-RUN01.D Sample Name: LD-VI-125-1A-run1

Signal 4: DAD1 D, Sig=230,16 Ref=off Signal has been modified after loading from rawdata file!

	RetTime [min]			Area [mAU*s]	Height [mAU]	Area 8
1	15.130	BB	0.1026	29.53756	4.27385	0.5128
2	17.169	BB	0.0936	5548.04736	903.54651	96.3151
3	17.903	BB	0.1581	17.66217	1.58403	0.3066
4	19.916	BB	0.1198	11.05690	1.31928	0.1919
5	27.602	VB	0.2266	154.00311	9.04747	2.6735

Totals : 5760.30710 919.77115

Signal 5: DAD1 E, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

+	[min]		[min]	Area [mAU*s]	Height [mAU]	Area %
1	13.998	BB	0.2883	63.81478	3.37971	1.7886
2	15.130	BB	0.1106	10.40754	1.40286	0.2917
3	17.169	вв	0.0939	3493.63037	567.18445	97.9197

Totals : 3567.85270 571.96701

Signal 6: DAD1 F, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

ŧ	[min]		[min]	Area [mAU*s]	[mAU]	Area 8
1	13.998	BB	0.2883	63.81478	3.37971	1.7886
2	15.130	BB	0.1106	10.40754	1.40286	0.2917
3	17.169	BB	0.0939	3493.63037	567.18445	97.9197

Totals : 3567.85270 571.96701

Signal 7: DAD1 G, Sig=300,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Type	Width	Area	Height	Area
+	[min]		[min]	[mAU*s]	[mAU]	
1	1.918	BB	0.0755	18.05997	3.31663	0.4456
2	17.170	BB	0.0942	4028.34277	651.30194	99.3971

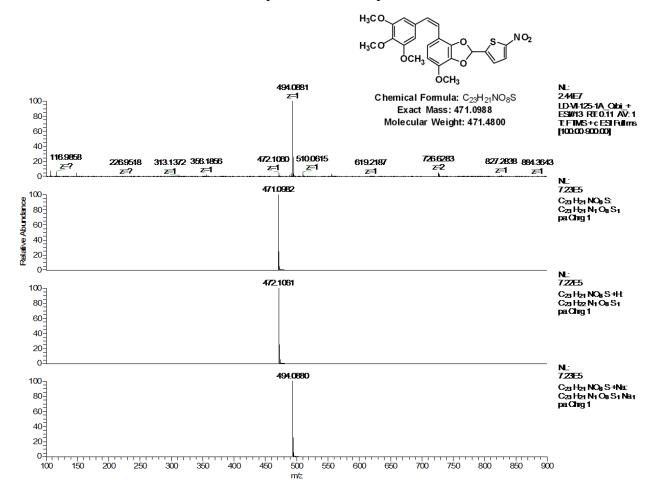
Instrument 1 12/0/2014 12-40-25 DM PDTCE D

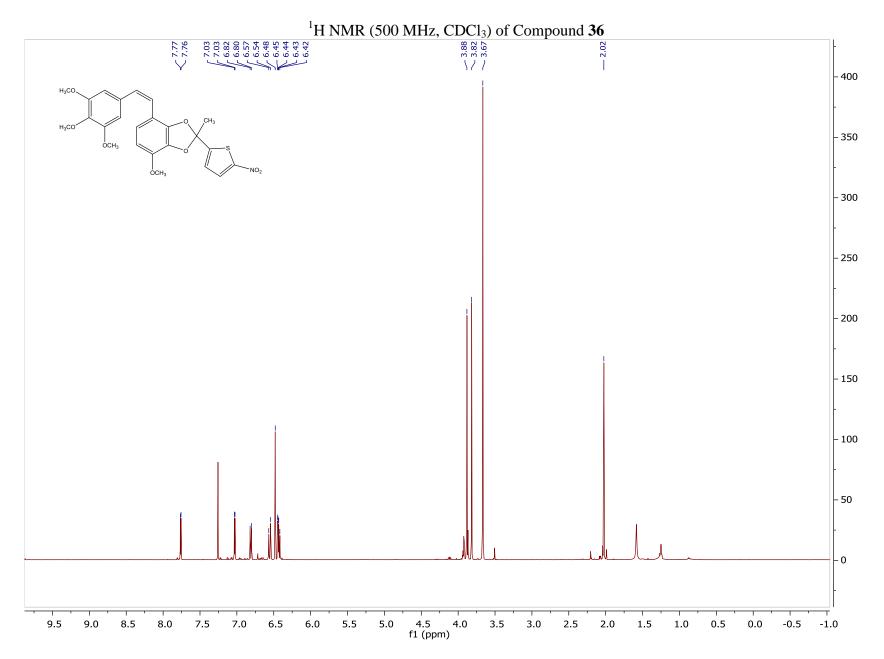
Page 4 of 5

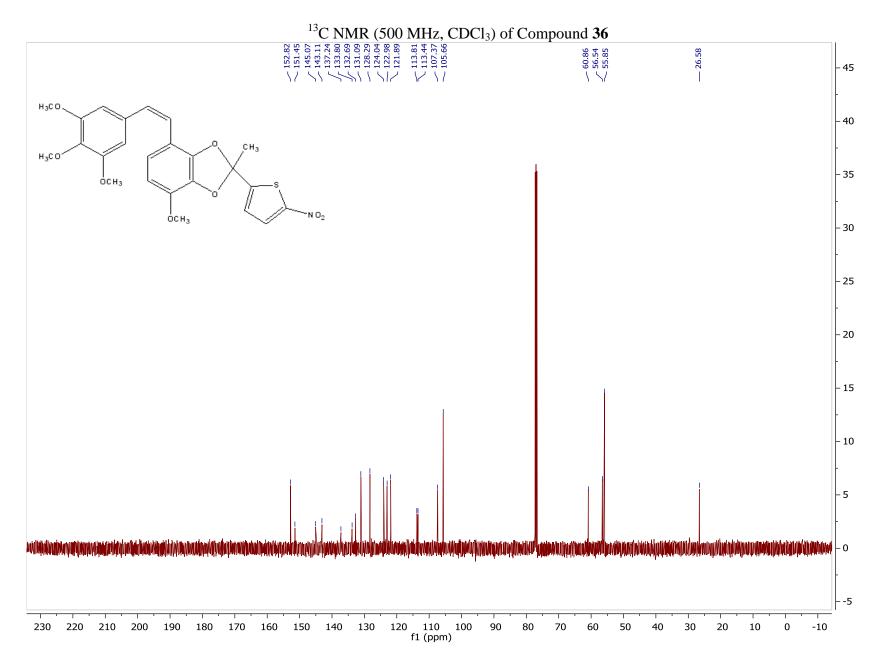
Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Data File C:\CHEM32\1\DATA\LAXMAN\LD-VI-125-RUN01.D Sample Name: LD-VI-125-1A-run1

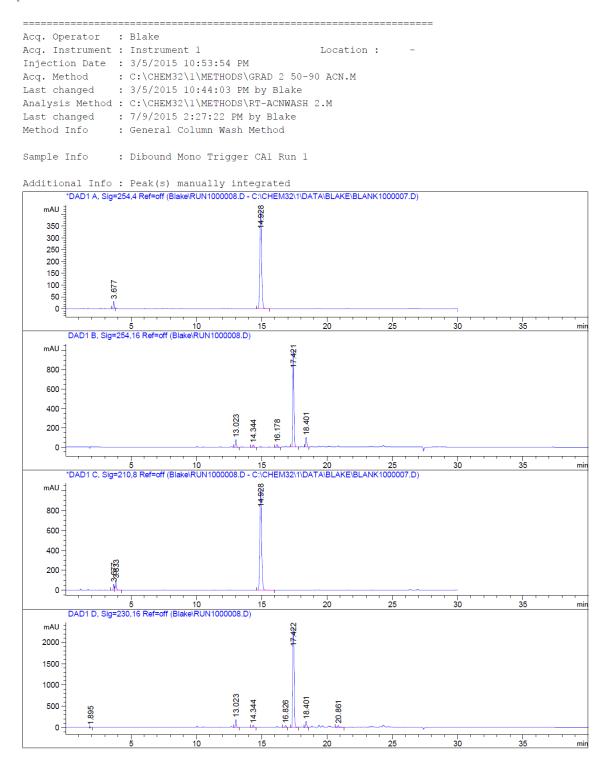
Peak RetTime Type ‡ [min]	[min]	[mAU*s]	[mAU]	e				
3 19.918 BB								
Totals :		4052.77521	655.62096					
Signal 8: DAD1 H, Sig=320,16 Ref=off Signal has been modified after loading from rawdata file!								
•	-		ng from rav	data file!				
•	nodified	after loadi	-					
Signal has been m Peak RetTime Type # [min]	width [min]	after loadi Area [mAU*s]	Height [mAU]	Area %				
Signal has been m Peak RetTime Type	Width [min] 0.0723	after loadi Area [mAU*s] 15.04224	Height [mAU] 2.90981	Area % 0.4641				

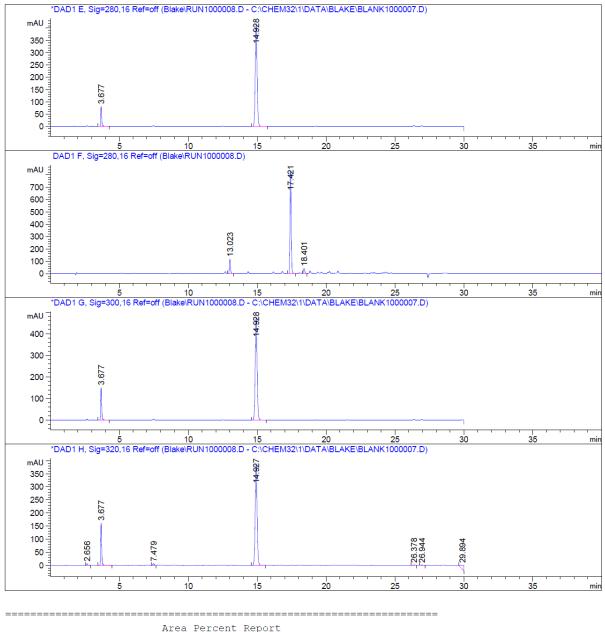

*** End of Report ***


Instrument 1 12/0/2014 12-40-25 DM PDTC3 D


Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.

Page 5 of 5


Mass Spectrum for Compound 35



 $\begin{array}{c} \text{HPLC trace of Compound 36} \\ \texttt{Data File C:\Chem32\l\Data\Blake\RUN1000008.D} \end{array}$ Sample Name: DiboundMonoCA1 Run1

1 of 5 Page

Data File C:\Chem32\1\Data\Blake\RUN1000008.D Sample Name: DiboundMonoCA1 Run1

Alea Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier	& Dilution	Factor with	ISTDs

Data File C:\Chem32\1\Data\Blake\RUN1000008.D Sample Name: DiboundMonoCA1 Run1

Signal 1: DAD1 A, Sig=254,4 Ref=off Signal has been modified after loading from rawdata file!

Peak RetTime	Туре	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	웅
1 3.677	BV	0.0751	154.96552	31.65848	3.7729
2 14.928	BB	0.1464	3952.39966	417.61395	96.2271

Totals: 4107.36517 449.27243

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	÷
1	13.023	BB	0.0792	412.37903	78.59989	5.5884
2	14.344	BB	0.0864	140.51746	24.69783	1.9042
3	16.178	BB	0.0870	150.26970	26.17360	2.0364
4	17.421	BV	0.0921	6080.55078	1011.67804	82.4012
5	18.401	VB	0.0914	595.48279	100.03498	8.0697

Totals :

7379.19975 1241.18435

Signal 3: DAD1 C, Sig=210,8 Ref=off Signal has been modified after loading from rawdata file!

	RetTime			Area	Height [mAU]	Area %
				[mAU*s]		-
1	3.677	BV	0.0737	292.19226	61.24960	2.7847
2	3.833	VB	0.0865	548.90851	96.23808	5.2313
3	14.928	BB	0.1461	9651.77344	1023.13129	91.9841

Totals : 1.04929e4 1180.61897

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		-				
1	1.895	BB	0.0813	104.26080	18.61610	0.5003
2	13.023	BB	0.0792	970.77802	184.92006	4.6584
3	14.344	BB	0.0886	307.83749	52.38946	1.4772
4	16.826	VV	0.0895	281.78674	47.30568	1.3522
5	17.422	BV	0.1256	1.80297e4	2346.77515	86.5168
6	18.401	VB	0.0910	824.25653	139.37587	3.9553
7	20.861	VV	0.1067	320.90729	43.16537	1.5399

Totals :

2.08395e4 2832.54768

1200 HPLC 9/1/2016 1:25:18 PM SYSTEM

Page 3 of 5

Data File C:\Chem32\1\Data\Blake\RUN1000008.D Sample Name: DiboundMonoCA1 Run1

Signal 5: DAD1 E, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	3.677	BB	0.0774	414.77179	81.48527	9.4891
2	14.928	BB	0.1464	3956.28125	417.95911	90.5109

Totals: 4371.05304 499.44437

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak RetTime	туре	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	웅
1 13.023	BB	0.0793	614.59393	117.06161	10.6630
2 17.421	BV	0.0908	4903.08594	831.98090	85.0673
3 18.401	VV	0.0920	246.09302	41.01019	4.2697

Totals: 5763.77289 990.05270

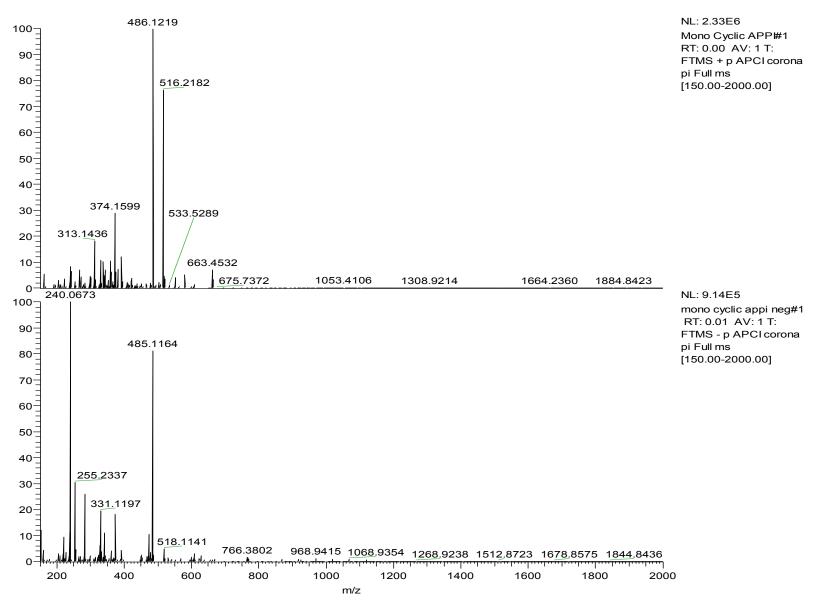
Signal 7: DAD1 G, Sig=300,16 Ref=off Signal has been modified after loading from rawdata file!

Peak RetTime	Туре	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	8
1 3.677	BB	0.0764	758.47052	151.60106	14.2607
2 14.928	BB	0.1475	4560.13281	476.96796	85.7393

Totals: 5318.60333 628.56902

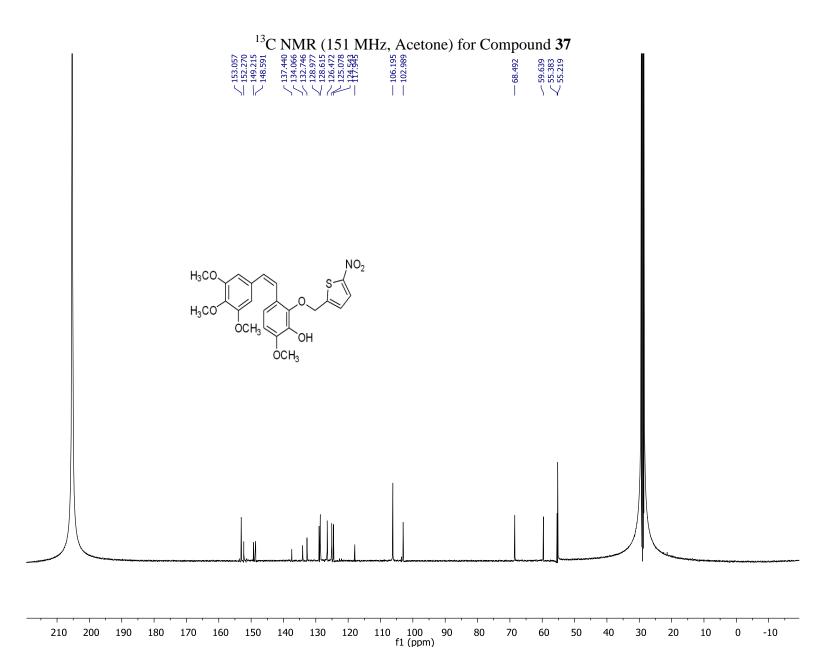
Signal 8: DAD1 H, Sig=320,16 Ref=off Signal has been modified after loading from rawdata file!

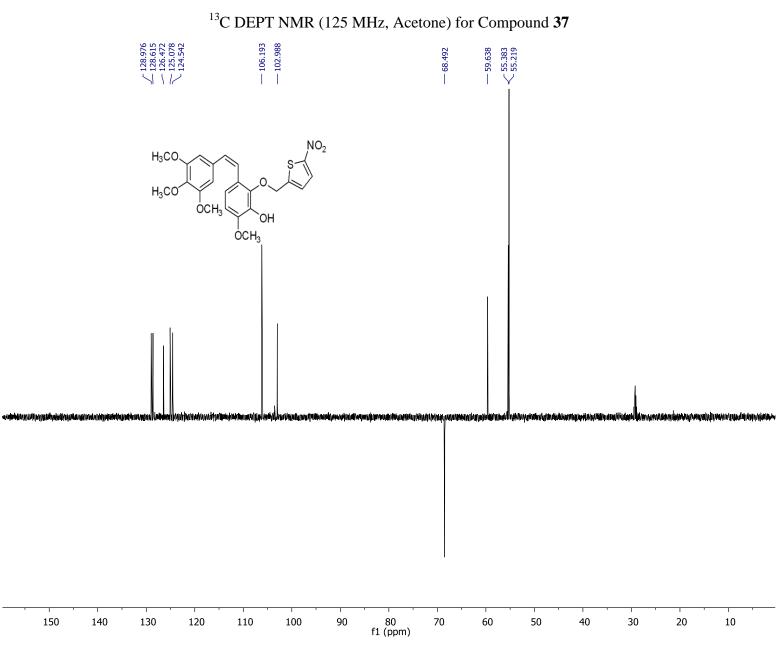
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	2.656	BB	0.0669	29.37908	6.73783	0.5950
2	3.677	BB	0.0764	815.72125	162.95384	16.5208
3	7.479	BB	0.1111	41.89455	5.88280	0.8485
4	14.927	BB	0.1491	3772.36133	389.08377	76.4016
5	26.378	BB	0.1392	15.31042	1.69743	0.3101
6	26.944	BB	0.1383	14.27374	1.59684	0.2891
7	29.894	BBA	0.2220	248.60039	16.66612	5.0349


4937.54077 584.61863

1200 HPLC 9/1/2016 1:25:18 PM SYSTEM

Totals :


Data File C:\Chem32\1\Data\Blake\RUN1000008.D Sample Name: DiboundMonoCA1 Run1


*** End of Report ***

Mass Spectrum of Compound 36

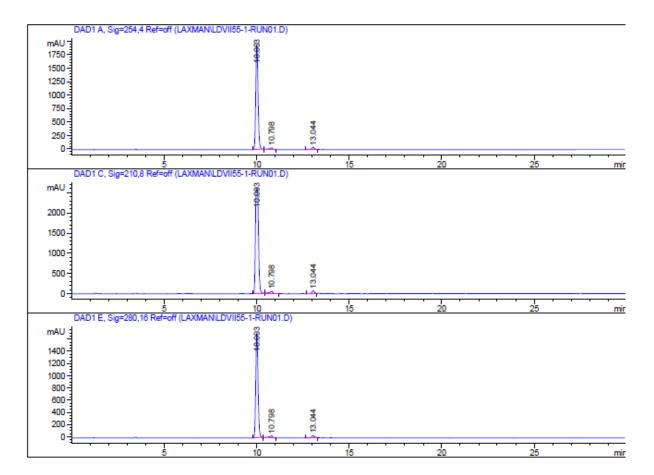
HPLC Traces for Compound 37

```
Data File C:\CHEM32\1\DATA\LAXMAN\LDVII55-1-RUN01.D
Sample Name: LD-VII-55-1A-run1
```

```
Acq. Operator : Laxman

Acq. Instrument : Instrument 1 Location : -

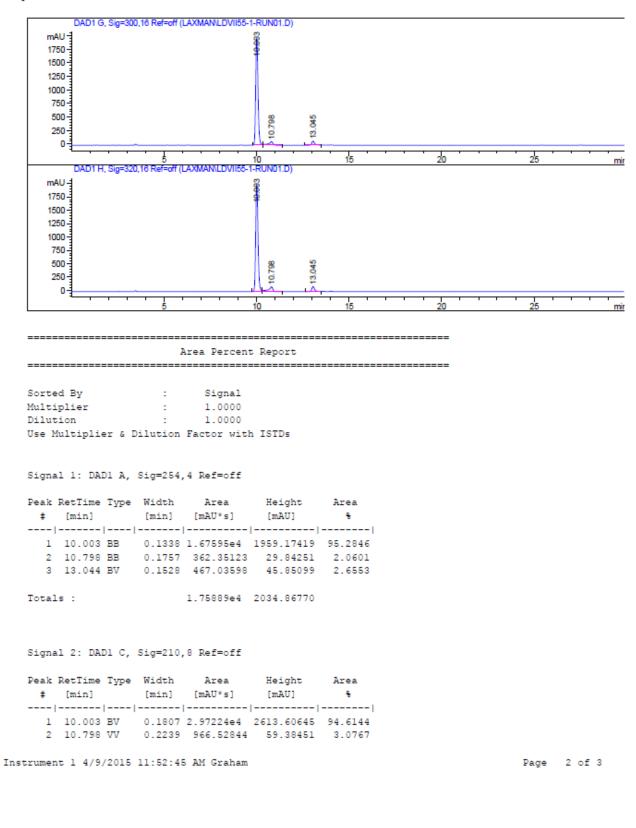
Injection Date : 4/9/2015 11:04:03 AM


Acq. Method : C:\CHEM32\1\METHODS\GRAD 2 50-90 ACN.M

Last changed : 4/9/2015 10:42:01 AM by Laxman

Analysis Method : C:\CHEM32\1\DATA\LAXMAN\LDVII55-1-RUN01.D\DA.M (GRAD 2 50-90 ACN.M)

Last changed : 4/9/2015 11:51:08 AM by Graham


Sample Info : Method- GRAD 2 50-90% ACN
```


Instrument 1 4/9/2015 11:52:45 AM Graham

Page 1 of 3

Data File C:\CHEM32\1\DATA\LAXMAN\LDVII55-1-RUN01.D Sample Name: LD-VII-55-1A-run1

Data File C:\CHEM32\1\DATA\LAXMAN\LDVII55-1-RUN01.D Sample Name: LD-VII-55-1A-run1

Signal 3: DAD1 E, Sig=280,16 Ref=off

#	[min]		[min]	[mAU*s]	Height [mAU]	8
					1727.81067	-
2	10.798	BB	0.1781	385.23578	31.18816	2.4885
3	13.044	BV	0.1532	424.80612	41.59309	2.7441

Totals : 1.54808e4 1800.59192

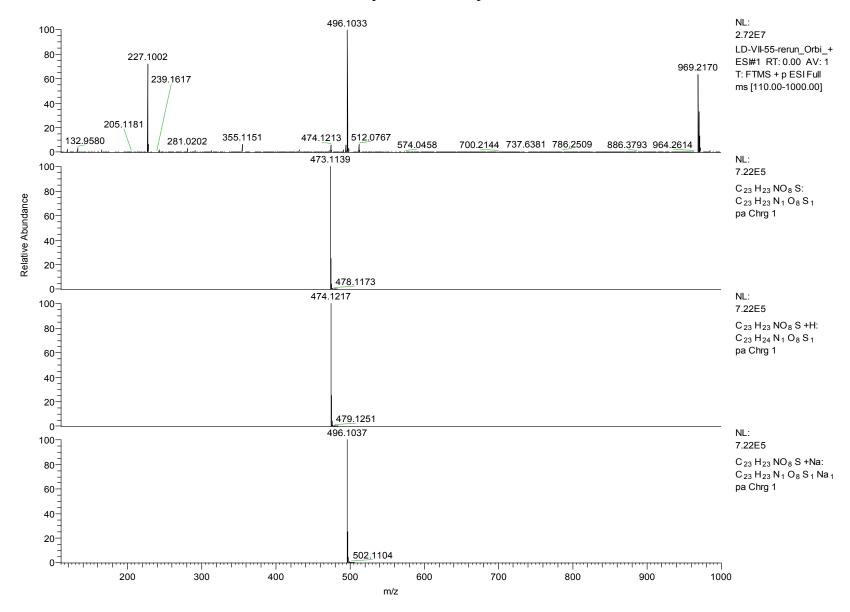
Signal 4: DAD1 G, Sig=300,16 Ref=off

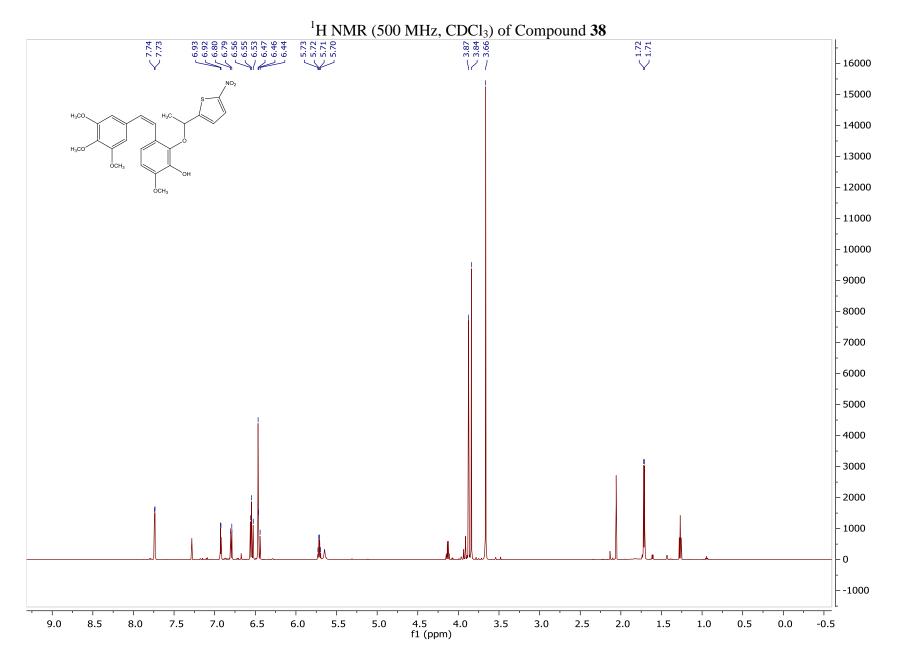
#	[min]		[min]	Area [mAU*s]	Height [mAU]	Area %
1	10.003	vv	0.1358	1.73904e4	1992.41077	89.9899
2	10.798	VB	0.2316	1108.33960	65.42634	5.7353
3	13.045	BV	0.1613	826.08325	75.69793	4.2747

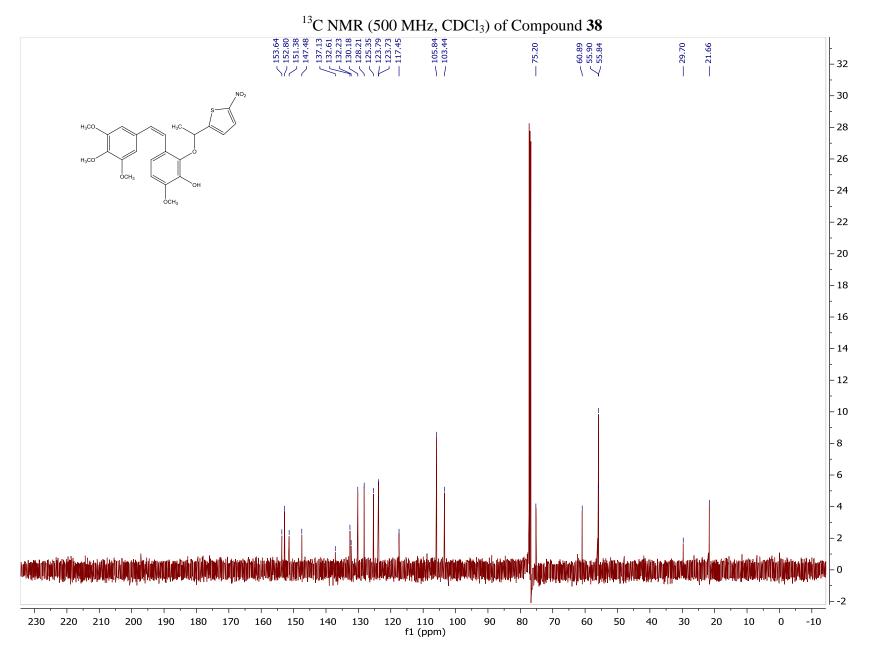
Totals : 1.93248e4 2133.53503

Signal 5: DAD1 H, Sig=320,16 Ref=off

#	[min]		[min]	[mAU*s]		8
1	10.003	vv	0.1365	1.77261e4	2018.29065	87.3120
2	10.798	VB	0.2320	1536.88574	90.55610	7.5701
3	13.045	BV	0.1596	1039.03064	96.51353	5.1179
Total	ls :			2.03020e4	2205.36028	

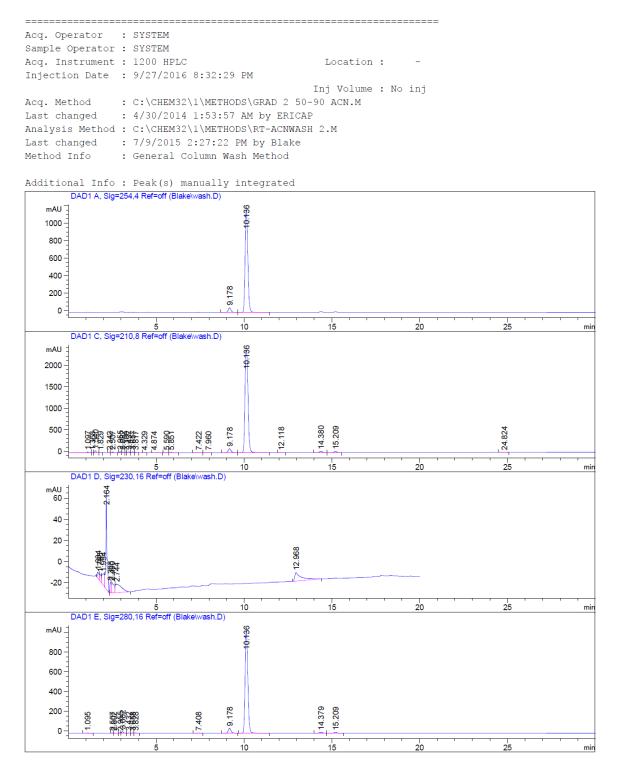


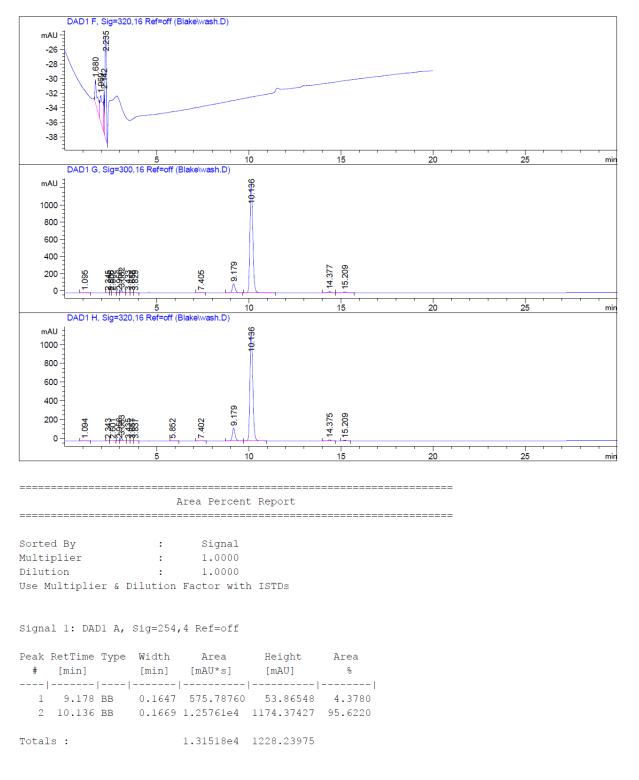

*** End of Report ***


Instrument 1 4/9/2015 11:52:45 AM Graham

Page 3 of 3

Mass Spectrum of Compound 37




HPLC trace of Compound 38

Data File C:\Chem32\1\Data\Blake\wash.D Sample Name: wash

1200 HPLC 9/27/2016 9:14:50 PM SYSTEM

Page 1 of 5

Data File C:\Chem32\1\Data\Blake\wash.D Sample Name: wash

Signal 2: DAD1 C, Sig=210,8 Ref=off

					Height	
					[mAU]	
					13.68161	
2					2.55526	
3	1.540	VV	0.0834	244.72534	45.03909	0.7839
4	1.829	VB	0.1006	9.03021	1.34108	0.0289
5	2.342	BV	0.0697	10.77329	2.34061	0.0345
6	2.507	VB	0.1222	104.57416	11.93351	0.3350
7	2.955	BV	0.0832	102.11187	18.84634	0.3271
8	3.082	VB	0.0869	83.05157	14.47536	0.2660
9	3.300	BV	0.0611	8.05128	2.08455	0.0258
10	3.437	VV	0.1378	106.61871	12.46211	0.3415
11	3.657	VV	0.1006	80.88427	12.31509	0.2591
12	3.817	VB	0.1048	42.89491	6.04386	0.1374
13	4.329	BB	0.1209	23.56181	3.16331	0.0755
14	4.874	BB	0.2170	19.74468	1.20575	0.0632
15	5.590	BV	0.1370	55.60751	6.29734	0.1781
16	5.851	VB	0.1489	69.15494	7.02185	0.2215
17	7.422	BV	0.2089	74.75564	5.22441	0.2394
18	7.960	VB	0.2152	45.88793	3.02121	0.1470
19	9.178	BV	0.1670	978.68933	89.93841	3.1348
20	10.136	VB	0.1901	2.84074e4	2364.92432	90.9899
21	12.118	BB	0.1855	14.03423	1.19036	0.0450
22	14.380	BV	0.1724	301.84442	26.99912	0.9668
23	15.209	VB	0.1833	263.51685	21.76087	0.8441
24	24.824				1.94365	

Totals: 3.12204e4 2675.80906

Signal 3: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	1.684	BV	0.0840	35.62299	5.93305	2.9175
2	1.795	VV	0.0921	42.89725	6.25040	3.5133
3	1.994	VV	0.1386	112.01411	11.02189	9.1740
4	2.164	VB	0.0678	449.19000	93.95271	36.7888
5	2.398	BV	0.0788	50.80936	9.74313	4.1613
6	2.490	VV	0.1384	102.15647	9.73474	8.3666
7	2.744	VB	0.3176	206.77625	7.99775	16.9350
8	12.968	BB	0.3564	221.53159	8.16957	18.1435
Total	s:			1220.99802	152.80325	

1200 HPLC 9/27/2016 9:14:50 PM SYSTEM

Data File C:\Chem32\1\Data\Blake\wash.D Sample Name: wash

Signal 4: DAD1 E, Sig=280,16 Ref=off

	RetTime			Area		
#				[mAU*s]		
		-				
1	1.095	BB	0.1203	23.23680	2.59926	0.1911
2	2.507	VV	0.0825	13.25547	2.39738	0.1090
3	2.602	VB	0.0799	11.86713	2.16566	0.0976
4	2.955	BV	0.0778	23.27455	4.69450	0.1914
5	3.082	VB	0.0850	99.69138	17.36660	0.8198
6	3.432	BB	0.1141	8.99181	1.30945	0.0739
7	3.658	BV	0.0895	8.01711	1.42729	0.0659
8	3.828	VB	0.1285	17.14674	2.11773	0.1410
9	7.408	BB	0.1763	18.24699	1.56190	0.1501
10	9.178	BB	0.1644	553.62714	51.93246	4.5528
11	10.136	BB	0.1669	1.11720e4	1043.97192	91.8739
12	14.379	BB	0.1690	122.91336	11.11768	1.0108
13	15.209	BB	0.1837	87.87356	7.23654	0.7226

Totals: 1.21602e4 1149.89837

Signal 5: DAD1 F, Sig=320,16 Ref=off

Peak R #	etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
-						
1	1.680	BV	0.1282	31.92470	3.26162	19.7916
2	1.969	VV	0.1516	42.04145	3.61721	26.0634
3	2.142	VV	0.0422	14.54720	5.74288	9.0185
4	2.235	VB	0.0862	72.79123	14.09685	45.1266
Totals	:			161.30458	26.71855	

Signal 6: DAD1 G, Sig=300,16 Ref=off

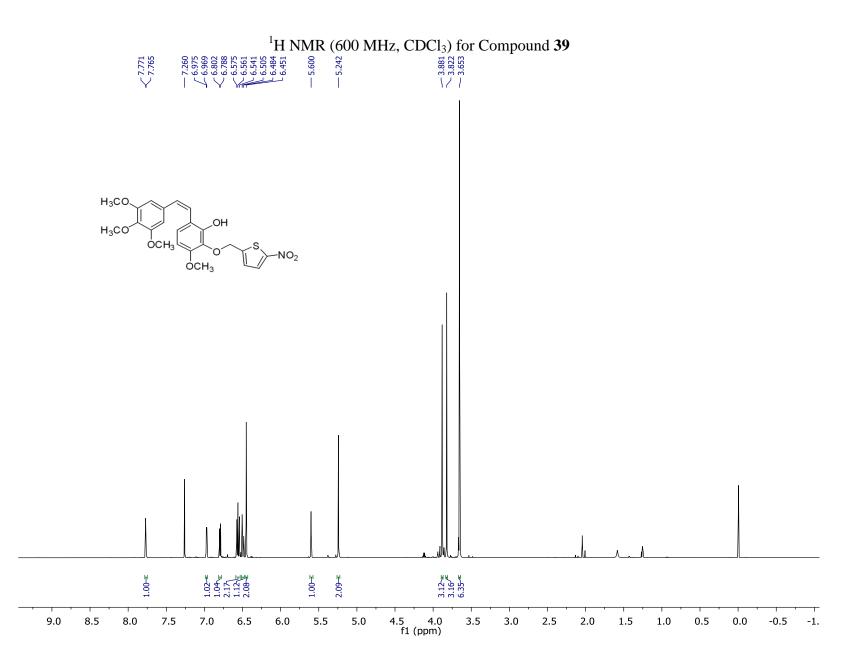
	RetTime				Height	
#	[min]		[min]	[mAU*s]	[mAU]	8
		-				
1	1.095	BB	0.1158	20.06848	2.34592	0.1311
2	2.345	BV	0.0891	8.57328	1.44754	0.0560
3	2.506	VV	0.0789	9.90580	1.83700	0.0647
4	2.602	VB	0.0802	12.84264	2.33244	0.0839
5	2.956	BV	0.0738	24.54047	5.12679	0.1603
6	3.082	VB	0.0868	182.88321	31.91949	1.1949
7	3.433	BB	0.1152	8.80266	1.29695	0.0575
8	3.658	BV	0.0890	7.88855	1.41603	0.0515
9	3.829	VB	0.1365	16.91241	2.00245	0.1105
10	7.405	BB	0.1704	26.67171	2.35090	0.1743
11	9.179	BB	0.1639	1102.77478	103.80939	7.2051
12	10.136	BB	0.1673	1.36339e4	1269.69946	89.0786
13	14.377	BB	0.1741	145.54846	12.85734	0.9510
14	15.209	BB	0.1804	104.16794	8.77950	0.6806

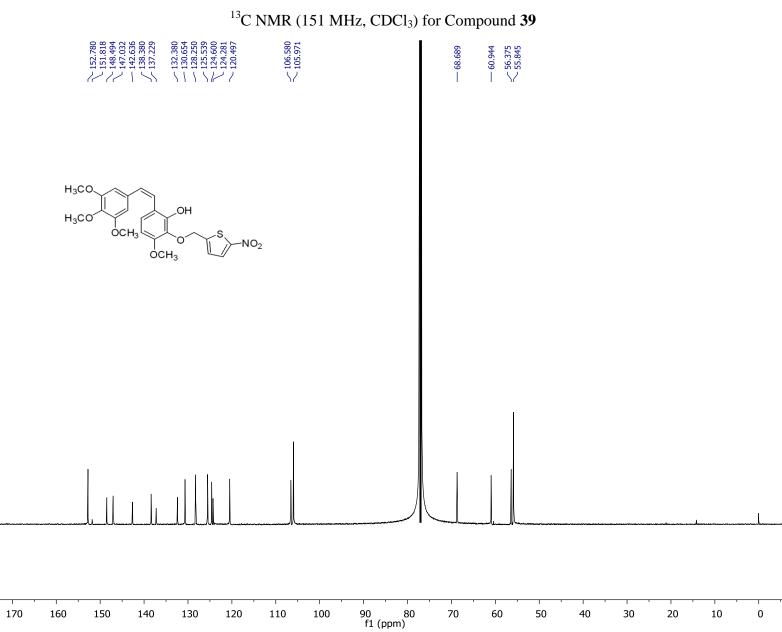
1200 HPLC 9/27/2016 9:14:50 PM SYSTEM

Page 4 of 5

Data File C:\Chem32\1\Data\Blake\wash.D Sample Name: wash

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	8
Totals :		1.53055e4	1447.22120	

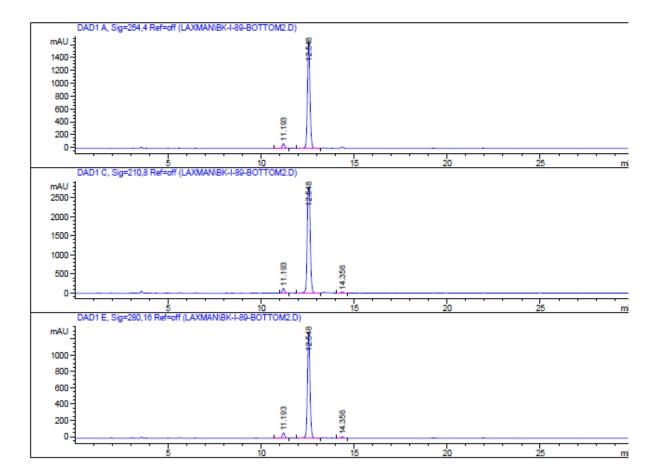

Signal 7: DAD1 H, Sig=320,16 Ref=off


Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		-				
1	1.094	BB	0.1136	17.27962	2.06573	0.1198
2	2.343	BV	0.0916	11.41241	1.86050	0.0791
3	2.601	VB	0.1189	17.75151	2.05259	0.1231
4	2.956	BV	0.0724	18.20128	3.90547	0.1262
5	3.083	VV	0.0884	202.91699	34.59048	1.4070
6	3.435	VB	0.1226	12.80356	1.72437	0.0888
7	3.657	BV	0.0893	8.89841	1.58915	0.0617
8	3.837	VB	0.1539	11.76254	1.24904	0.0816
9	5.852	VB	0.1474	10.19680	1.04921	0.0707
10	7.402	BB	0.1734	30.37993	2.61731	0.2106
11	9.179	BB	0.1638	1439.05432	135.63530	9.9782
12	10.136	BB	0.1671	1.24273e4	1159.30432	86.1692
13	14.375	BB	0.1776	123.96412	10.66818	0.8595
14	15.209	BB	0.1679	90.05003	8.34193	0.6244
Total	s:			1.44220e4	1366.65357	

*** End of Report ***

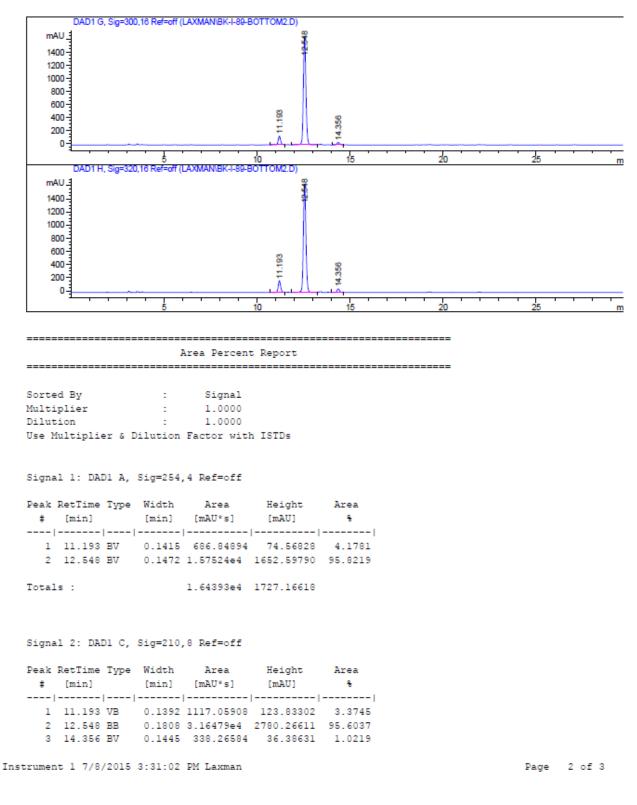
333.1328 NL: 6.03E6 100] Mono Major CA1b#1 RT: 0.00 AV: 1 T: 90-FTMS + p APCI corona pi Full ms 80-[150.00-2000.00] 70-488.1363 Relative Abundance 60-50-516.2174 40-30-20-282.2789 10-609.1348 717.7833 997.2480 1146.4154 1308.9265 1622.5002 1884.8030 0-485.1152 NL: 1.49E6 1007 mono major ca1 neg#1 RT: 0.00 AV: 1 T: 331.1188 90-FTMS - p APCI corona pi Full ms 80-[150.00-2000.00] 70-60-50 40-30-20-518<u>.</u>1130 10-530.1987 868.9456 968.9394 1305.9558 1505.9425 1705.9291 1821.9545 0-77.77.00 חד ה דך ה 200 400 600 800 1000 1400 1200 1600 1800 2000 m/z

Mass Spectrum of Compound 38


.....

HPLC Traces for Compound 39

```
Data File C:\CHEM32\1\DATA\LAXMAN\BK-I-89-BOTTOM2.D
Sample Name: BK-I-89-bottom-isomer-rerun
```



Acq. Operator	:	Laxman
Acq. Instrument	:	Instrument 1 Location : -
Injection Date	:	7/8/2015 2:42:58 PM
Acq. Method	:	C:\CHEM32\1\METHODS\GRAD 2 50-90 ACN.M
Last changed	:	7/8/2015 2:37:39 PM by Laxman
Analysis Method	:	C:\CHEM32\1\DATA\LAXMAN\BK-I-89-BOTTOM2.D\DA.M (GRAD 2 50-90 ACN.M)
Last changed	:	7/8/2015 3:28:55 PM by Laxman
Sample Info	:	Method-Grad2 50-90% ACN

Instrument 1 7/8/2015 3:31:02 PM Laxman

Data File C:\CHEM32\1\DATA\LAXMAN\BK-I-89-BOTTOM2.D Sample Name: BK-I-89-bottom-isomer-rerun

Data File C:\CHEM32\1\DATA\LAXMAN\BK-I-89-BOTTOM2.D Sample Name: BK-I-89-bottom-isomer-rerun

Peak	RetTime	Туре	Width	Area	Height	Area
+	[min]		[min]	[mAU*s]	[mAU]	8
Total	Ls :			3.31032e4	2940.48544	

Signal 3: DAD1 E, Sig=280,16 Ref=off

\$	[min]		[min]	Area [mAU*s]	Height [mAU]	e
					66.56650	
2	12.548	BV	0.1468	1.23966 e 4	1305.82520	93.9761
3	14.356	BB	0.1443	184.21126	19.83845	1.3965

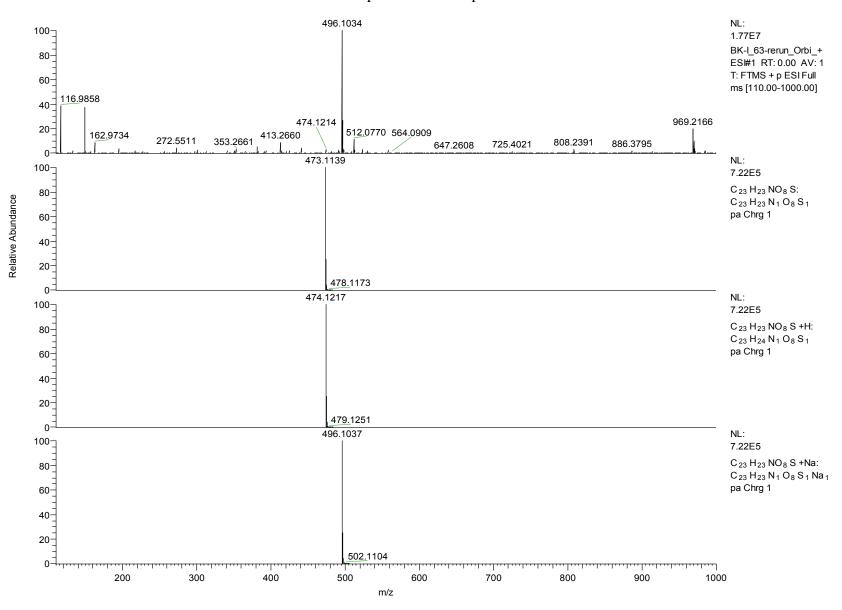
Totals : 1.31912e4 1392.23014

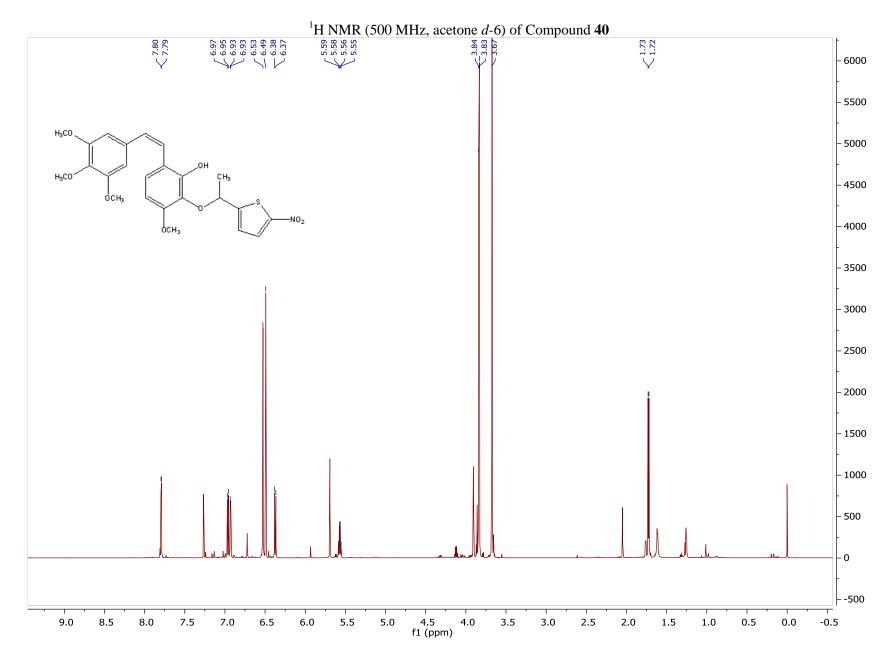
Signal 4: DAD1 G, Sig=300,16 Ref=off

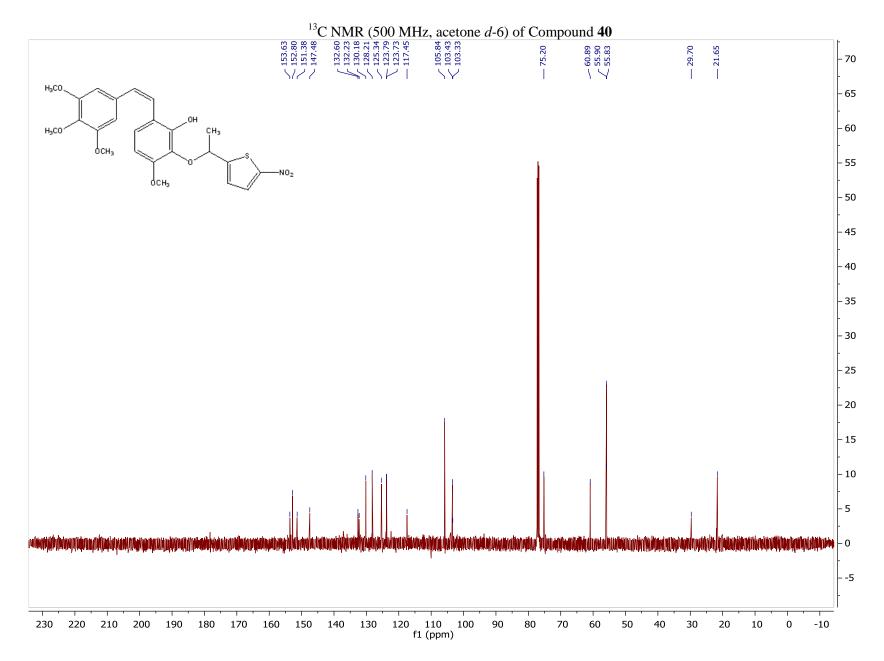
+	[min]		[min]	Area [mAU*s]	-	Area 8
					134.74460	
2	12.548	BV	0.1473	1.58569e4	1661.58582	90.9187
3	14.356	BV	0.1442	355.36490	38.30421	2.0376

Totals : 1.74407e4 1834.63463

Signal 5: DAD1 H, Sig=320,16 Ref=off

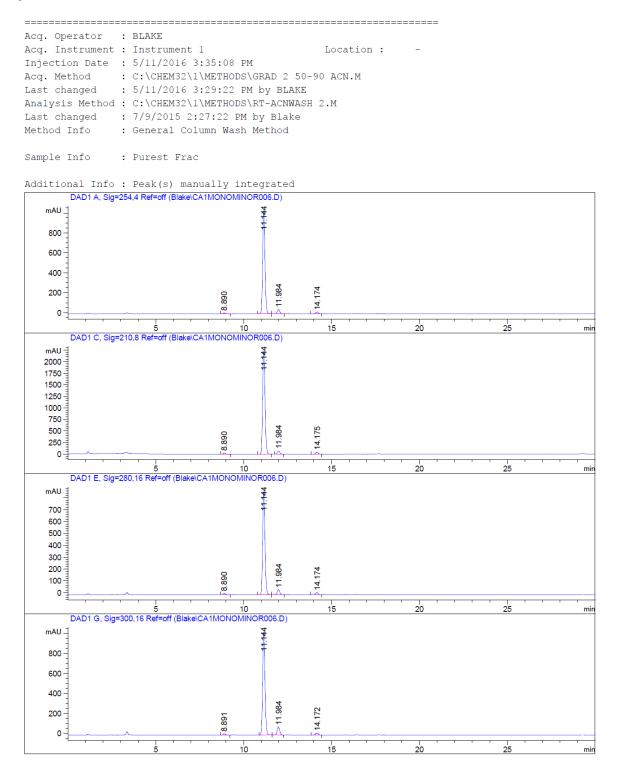

				Area [mAU*s]	Height [mAU]	Area %
1	11.193	BV	0.1401	1616.99170	177.81357	9.0370
2	12.548	BV	0.1474	1.57714e4	1651.39465	88.1433
3	14.356	BV	0.1443	504.52426	54.32704	2.8197
Total	Ls :			1.78929e4	1883.53526	


*** End of Report ***

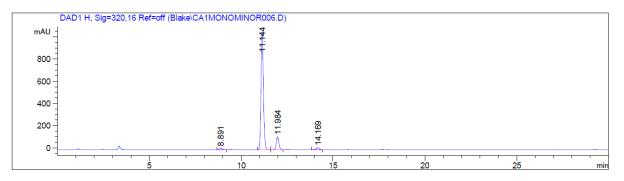

Instrument 1 7/8/2015 3:31:02 PM Laxman

Page 3 of 3

Mass Spectrum of Compound 39



HPLC trace of Compound 40


Data File C:\Chem32\1\Data\Blake\CA1MONOMINOR006.D Sample Name: CA1MonoMinorIsomer

1200 HPLC 9/1/2016 1:21:27 PM SYSTEM

Page 1 of 3

Data File C:\Chem32\1\Data\Blake\CA1MONOMINOR006.D Sample Name: CA1MonoMinorIsomer

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier	Dilution	Factor with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

				Area [mAU*s]	Height [mAU]	Area %
1	8.890	BB	0.1415	98.29693	10.66364	0.9651
2	11.144	BV	0.1412	9471.36328	1031.05286	92.9948
3	11.984	VB	0.1531	435.87039	43.43245	4.2796
4	14.174	BV	0.1531	179.30080	17.85905	1.7605

Totals: 1.01848e4 1103.00799

Signal 2: DAD1 C, Sig=210,8 Ref=off

				Area [mAU*s]	Height [mAU]	Area %
		-				
1	8.890	BB	0.1418	248.90137	26.94793	1.0891
2	11.144	BV	0.1507	2.14740e4	2223.11255	93.9608
3	11.984	VB	0.1474	705.34277	73.89548	3.0863
4	14.175	BV	0.1507	425.95596	43.32686	1.8638

Totals : 2.28542e4 2367.28281

Signal 3: DAD1 E, Sig=280,16 Ref=off

1200 HPLC 9/1/2016 1:21:27 PM SYSTEM

Data File C:\Chem32\1\Data\Blake\CA1MONOMINOR006.D Sample Name: CA1MonoMinorIsomer

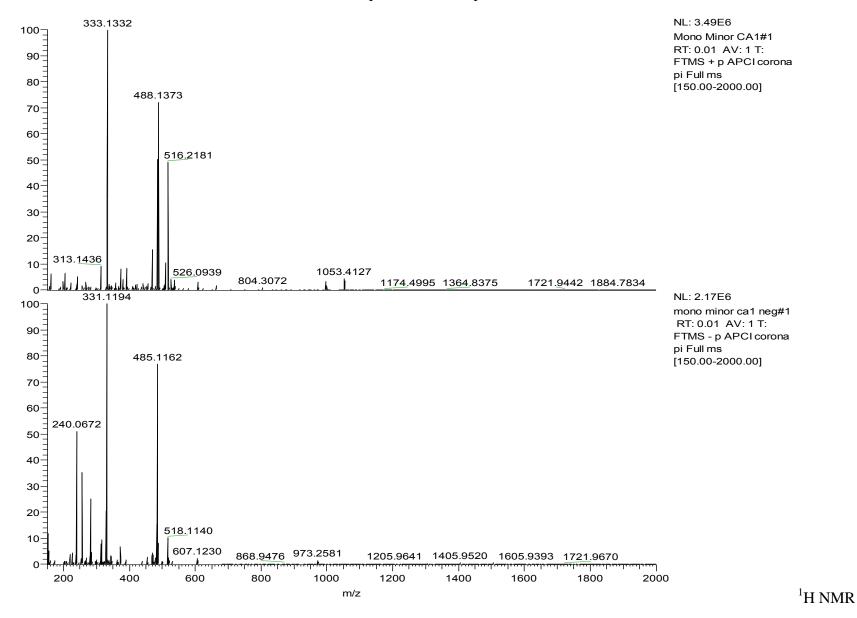
Peak #	RetTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.890	BB	0.1418	87.92610	9.51514	1.0175
2	11.144	BV	0.1410	7950.11084	866.50201	91.9969
3	11.984	VB	0.1518	424.61340	42.77497	4.9135
4	14.174	BV	0.1530	179.06296	17.85389	2.0721
Total	.s :			8641.71330	936.64601	

Signal 4: DAD1 G, Sig=300,16 Ref=off

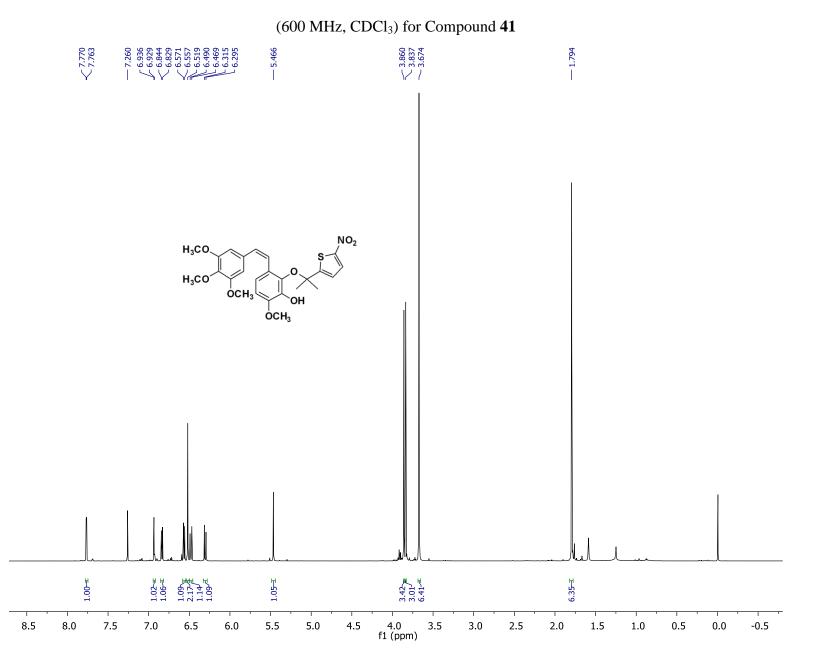
				Area [mAU*s]	Height [mAU]	Area %
1	8.891	BB	0.1416	101.99403	11.06105	0.9697
2	11.144	BB	0.1410	9427.53125	1028.07629	89.6329
3	11.984	BB	0.1464	772.94672	81.67284	7.3488
4	14.172	BV	0.1590	215.45932	20.77102	2.0485

Totals: 1.0	5179e4	1141.58120
-------------	--------	------------

Signal 5: DAD1 H, Sig=320,16 Ref=off


				Area [mAU*s]	Height [mAU]	
1	8.891	BB	0.1415	108.28686	11.75676	0.9815
2	11.144	BB	0.1411	9654.57617	1051.61963	87.5111
3	11.984	BB	0.1464	1080.27380	114.20609	9.7918
4	14.169	BV	0.1644	189.26395	17.46828	1.7155

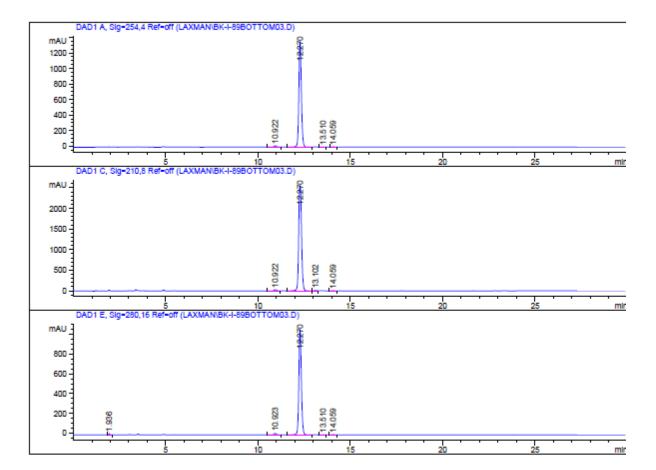
Totals : 1.10324e4 1195.05076


*** End of Report ***

1200 HPLC 9/1/2016 1:21:27 PM SYSTEM

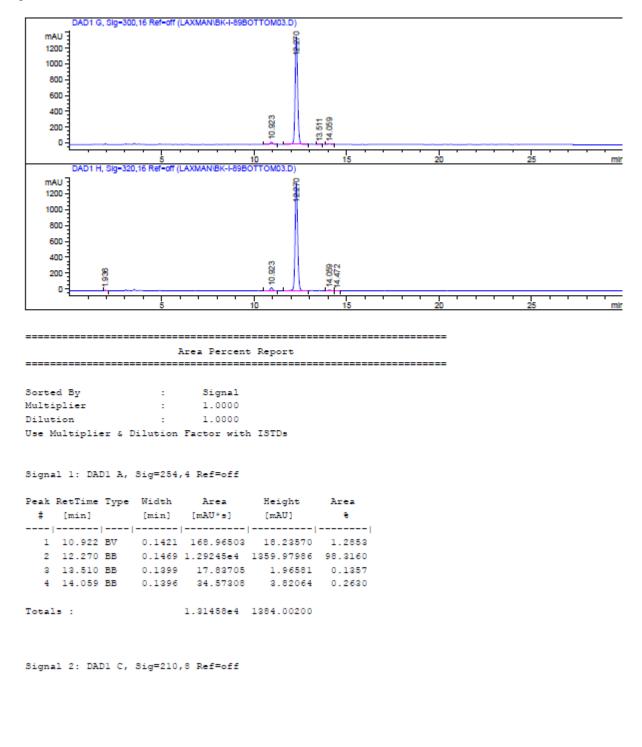
Mass Spectrum of Compound 40

445



HPLC Traces for Compound 41

```
Data File C:\CHEM32\1\DATA\LAXMAN\BK-I-89BOTTOM03.D
Sample Name: BK-I-89bottom-rerun3
```


Acq. Operator	:	Laxman
Acq. Instrument	:	Instrument 1 Location : -
Injection Date	:	7/10/2015 11:55:32 AM
Acq. Method	:	C:\CHEM32\1\METHODS\GRAD 2 50-90 ACN.M
Last changed	:	7/10/2015 10:49:26 AM by Laxman
Analysis Method	:	C:\CHEM32\1\DATA\LAXMAN\BK-I-89BOTTOM03.D\DA.M (GRAD 2 50-90 ACN.M)
Last changed	:	7/10/2015 12:41:23 PM by Lamman
Sample Info	:	Method-Grad2 50-90% ACN

Instrument 1 7/10/2015 12:43:01 PM Laxman

Page 1 of 4

Data File C:\CHEM32\1\DATA\LAXMAN\BK-I-89BOTTOM03.D Sample Name: BK-I-89bottom-rerun3

Instrument 1 7/10/2015 12:43:01 PM Laxman

Page 2 of 4

Data File C:\CHEM32\1\DATA\LAXMAN\BK-I-89BOTTOM03.D Sample Name: BK-I-89bottom-rerun3

Peak	RetTime	Type	Width	Area	Height	Area
+	[min]		[min]	[mAU*s]	[mAU]	
1	10.922	BV	0.1429	300.59656	32.20519	1.0795
2	12.270	BB	0.1691	2.73845e4	2553.27441	98.3416
3	13.102	BV	0.1368	101.43078	11.51260	0.3643
4	14.059	BB	0.1415	59.76510	6.60854	0.2146
Total				2.78463e4	2603.60075	

Signal 3: DAD1 E, Sig=280,16 Ref=off

=	[min]		[min]	Area [mAU*s]	[mAU]	Area %
1	1.936	BB	0.0606	53.48746	13.38945	0.5150
2	10.923	BV	0.1396	146.41867	15.88057	1.4099
3	12.270	BB	0.1466	1.01396e4	1069.87317	97.6365
4	13.510	BB	0.1376	13.06543	1.47166	0.1258
5	14.059	BB	0.1398	32.48272	3.58338	0.3128

Totals : 1.03851e4 1104.19823

Signal 4: DAD1 G, Sig=300,16 Ref=off

+	[min]		[min]	Area [mAU*s]	[mAU]	Area 8
1	10.923	BV	0.1389	280.53387	30.61063	2.0978
2	12.270	BV	0.1470	1.30084e4	1367.02710	97.2770
3	13.511	BB	0.1406	20.27245	2.26112	0.1516
4	14.059	BB	0.1405	63.33008	6.93787	0.4736

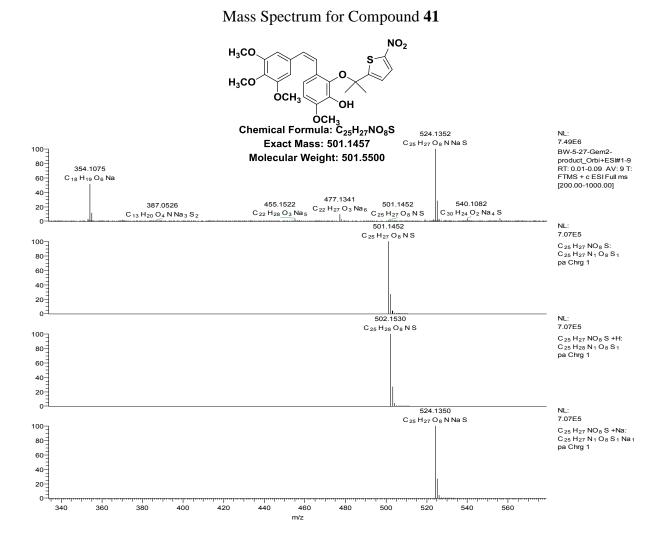
Totals : 1.33726e4 1406.83672

Signal 5: DAD1 H, Sig=320,16 Ref=off

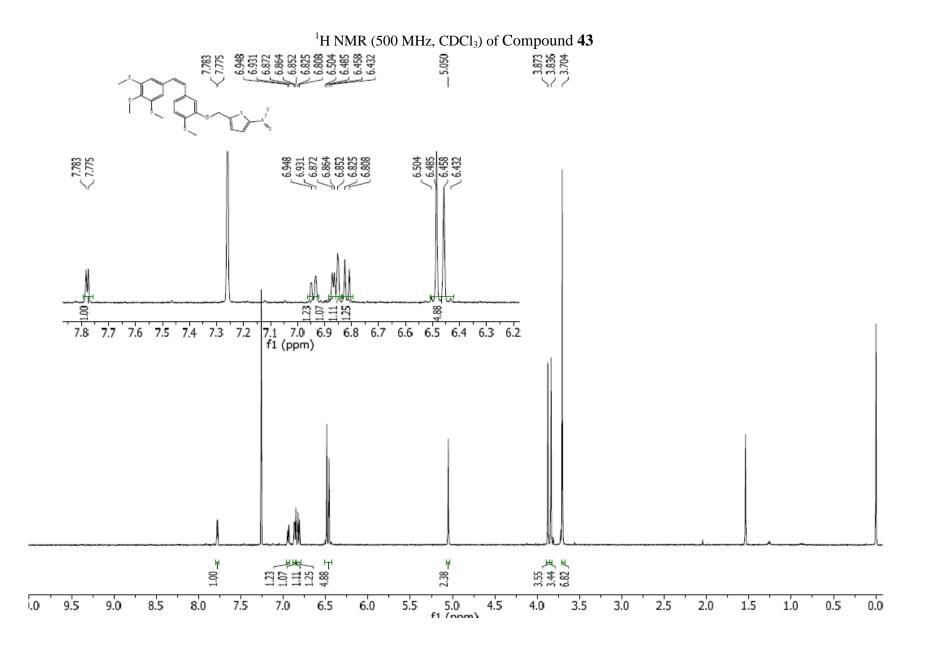
+	[min]		[min]	[mAU*s]	Height [mAU]	
1	1.936	VB	0.0602	37.33607	9.43805	0.2777
2	10.923	BV	0.1388	361.49524	39.48792	2.6884
3	12.270	BV	0.1471	1.29486e4	1359.96545	96.2983
4	14.059	BB	0.1407	90.02934	9.84660	0.6695
5	14.472	BB	0.1373	8.87988	1.02271	0.0660

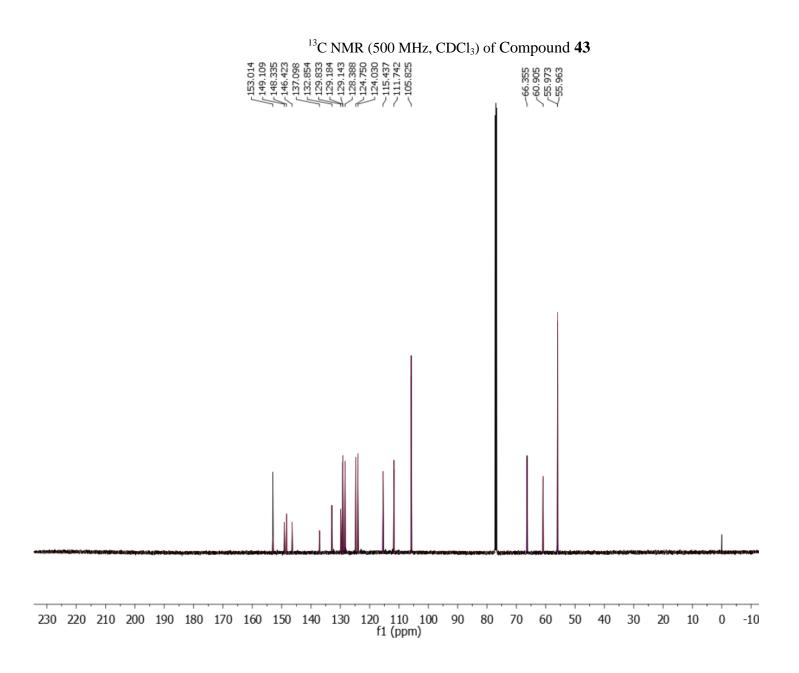
Totals : 1.34464e4 1419.76074

Instrument 1 7/10/2015 12:43:01 PM Laxman

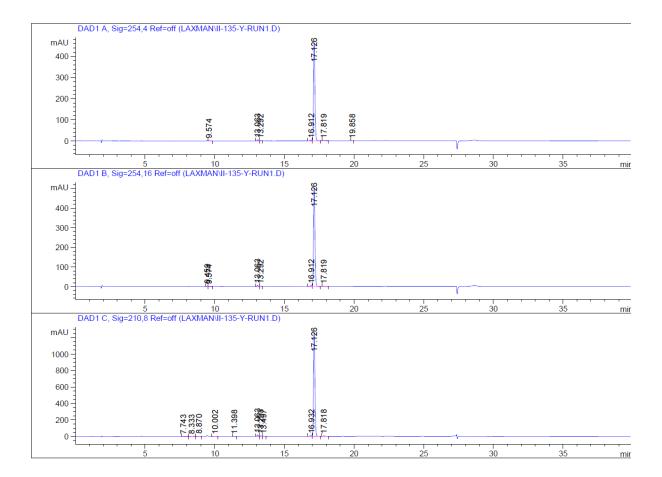

Page 3 of 4

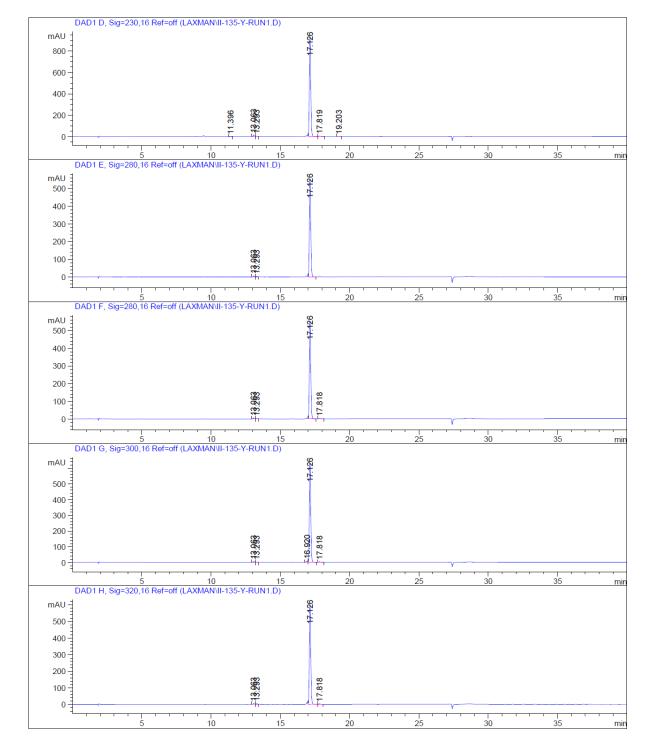
Data File C:\CHEM32\1\DATA\LAXMAN\BK-I-89BOTTOM03.D Sample Name: BK-I-89bottom-rerun3


*** End of Report ***


Instrument 1 7/10/2015 12:43:01 PM Laxman

Page 4 of 4


Relative Abundance


 $\begin{array}{c} HPLC \ trace \ of \ Compound \ 43 \\ \texttt{Data File C:CHEM32(1)DATA(LAXMAN(II-135-Y-RUN1.D))} \end{array}$ Sample Name: LD-II-135-Y- Blank1

Acq. Operator	: Laxman					
Acq. Instrument	: Instrument 1 Location :	-				
Injection Date	: 11/14/2012 12:51:23 PM					
Acq. Method	: C:\CHEM32\1\METHODS\MASTERMETHOD.M					
Last changed	: 11/14/2012 12:27:15 PM by Laxman					
Analysis Method	: C:\CHEM32\1\DATA\LAXMAN\II-135-Y-RUN1.D\DA.M	(MASTERMETHOD.M)				
Last changed	: 11/14/2012 1:41:39 PM by Laxman					
Sample Info	:					
	10% ACN in Water					

Instrument 1 11/14/2012 2:22:04 PM Laxman

1 of 5 Page

Data File C:\CHEM32\1\DATA\LAXMAN\II-135-Y-RUN1.D Sample Name: LD-II-135-Y- Blank1

Instrument 1 11/14/2012 2:22:04 PM Laxman

Page 2 of 5

Data File C:\CHEM32\1\DATA\LAXMAN\II-135-Y-RUN1.D Sample Name: LD-II-135-Y- Blank1

Area Percent Report

Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000
Use Multiplier	& Dilution	Factor with ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	9.574	VB	0.0884	12.42534	2.05785	0.3582
2	13.063	BV	0.0886	36.53085	6.21524	1.0531
3	13.292	VB	0.0823	13.20063	2.39415	0.3805
4	16.912	BV	0.1250	32.23994	3.79975	0.9294
5	17.126	VB	0.1146	3354.70923	462.85483	96.7093
6	17.819	BB	0.1066	13.03892	1.79827	0.3759
7	19.858	BB	0.0861	6.71396	1.22175	0.1935

Totals: 3	3468.85887	480.34183
-----------	------------	-----------

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	R
		-				
1	9.459	BV	0.0768	14.51984	2.87982	0.3841
2	9.574	VB	0.0887	10.97569	1.81098	0.2904
3	13.063	BV	0.0884	39.76277	6.77752	1.0519
4	13.292	VB	0.0819	13.63666	2.48918	0.3608
5	16.912	BV	0.1249	35.15076	4.14536	0.9299
6	17.126	VB	0.1145	3651.35840	503.87845	96.5989
7	17.819	BB	0.1055	14.51247	2.02653	0.3839

Totals: 3779.91658 524.00784

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	7.743	BB	0.1630	14.03030	1.23105	0.1463
2	8.333	BB	0.1290	35.60196	3.81120	0.3712
3	8.870	BB	0.1127	31.62539	4.06788	0.3298
4	10.002	BB	0.1266	20.58630	2.29664	0.2147

Instrument 1 11/14/2012 2:22:04 PM Laxman

Page 3 of 5

Data File C:\CHEM32\1\DATA\LAXMAN\II-135-Y-RUN1.D Sample Name: LD-II-135-Y- Blank1

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
5	11.398	BB	0.0819	8.22434	1.54954	0.0858
6	13.063	BV	0.0929	118.07655	18.90557	1.2313
7	13.293	VV	0.1031	44.22927	6.06295	0.4612
8	13.497	VV	0.2122	41.45767	3.09574	0.4323
9	16.932	BV	0.1304	92.42262	10.32446	0.9638
10	17.126	VB	0.1167	9135.98730	1257.78174	95.2681
11	17.818	BB	0.1249	47.52321	5.38835	0.4956

Totals	:	9589.76493	1314.51514
TOCUTO	•	2002.10123	TOT 1.0TOT 1

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	୫
1	11.396	BB	0.0826	7.50027	1.39710	0.1082
2	13.063	BV	0.0929	92.58957	14.82736	1.3352
3	13.293	VV	0.1024	34.48166	4.76518	0.4973
4	17.126	VB	0.1145	6759.72949	932.89081	97.4820
5	17.819	BB	0.1088	31.06098	4.07915	0.4479
6	19.203	BB	0.1156	8.97497	1.16906	0.1294
Total	s:			6934.33694	959.12866	

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak #	RetTime Type [min]		Area [mAU*s]	Height [mAU]	Area %
1	13.063 BV	0.0883	35.15522	6.00424	0.8637
2	13.293 VB	0.0801	15.65592	2.94128	0.3846
3	17.126 VB	0.1145	4019.61060	554.99536	98.7517
Total	s:		4070.42174	563.94088	

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak #	RetTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	13.063	BV	0.0883	35.15522	6.00424	0.8596
2	13.293	VB	0.0801	15.65592	2.94128	0.3828
3	17.126	VB	0.1145	4019.61060	554.99536	98.2804
4	17.818	BB	0.1008	19.51952	2.96627	0.4773

Instrument 1 11/14/2012 2:22:04 PM Laxman

Page 4 of 5

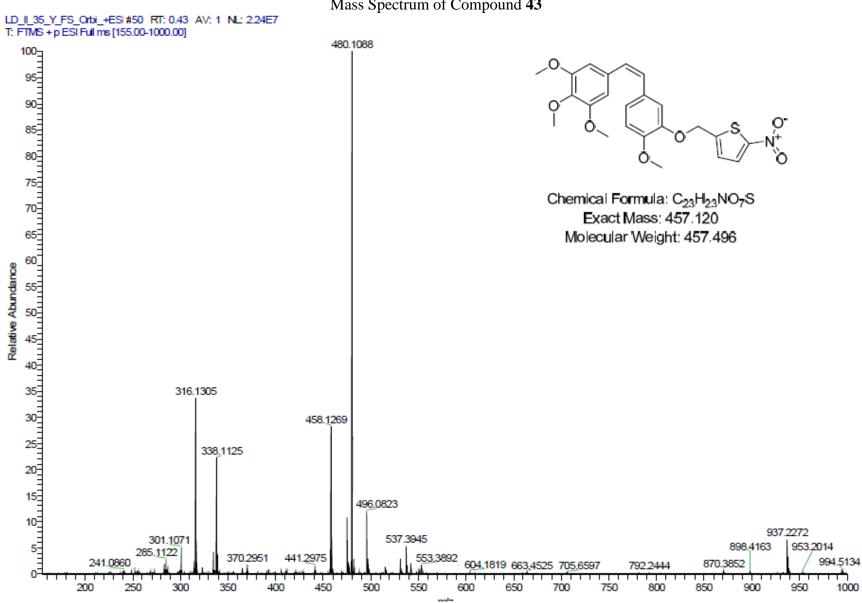
Data File C:\CHEM32\1\DATA\LAXMAN\II-135-Y-RUN1.D Sample Name: LD-II-135-Y- Blank1

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	ક
Totals :		4089.94126	566.90715	

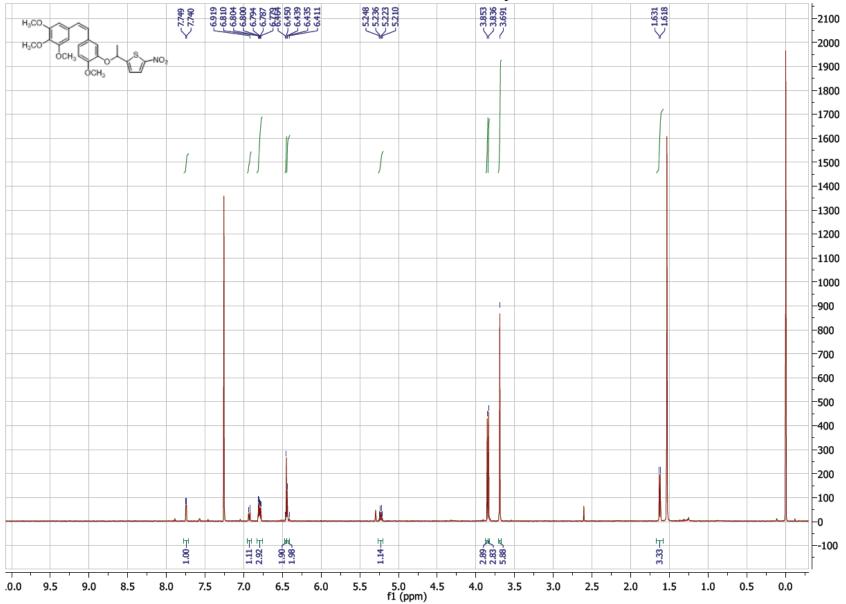
Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	ક
1	13.063	BV	0.0884	38.27963	6.52826	0.8106
2	13.293	VB	0.0803	11.99059	2.24650	0.2539
3	16.920	BV	0.1100	61.49498	8.53992	1.3022
4	17.126	VB	0.1146	4588.46826	633.00854	97.1655
5	17.818	BB	0.0978	22.08729	3.49350	0.4677

Totals: 4722.32075 653.81673

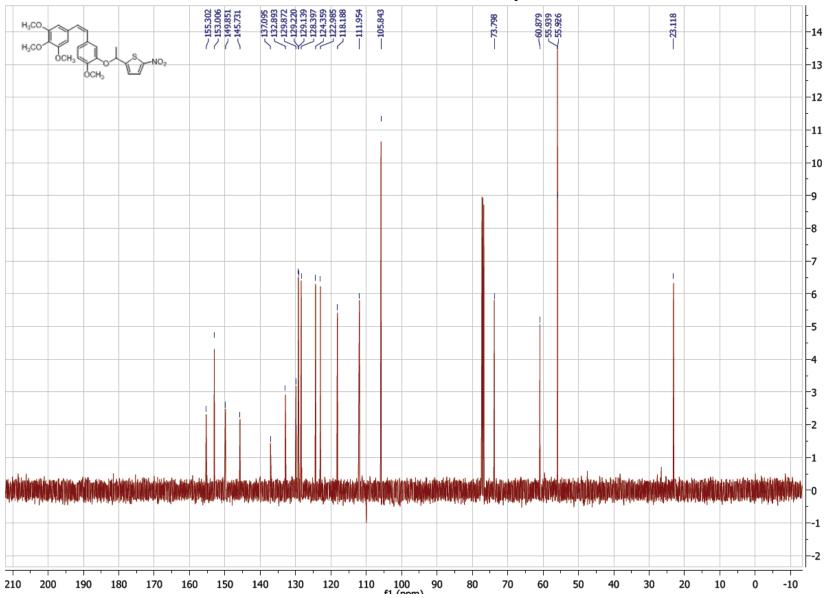

Signal 8: DAD1 H, Sig=320,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	육
1	13.063	BV	0.0881	30.74878	5.26413	0.6958
2	13.293	VB	0.0793	20.63757	3.92874	0.4670
3	17.126	VB	0.1147	4350.68311	599.46283	98.4526
4	17.818	BB	0.0972	16.99543	2.70743	0.3846
Total	s:			4419.06489	611.36313	

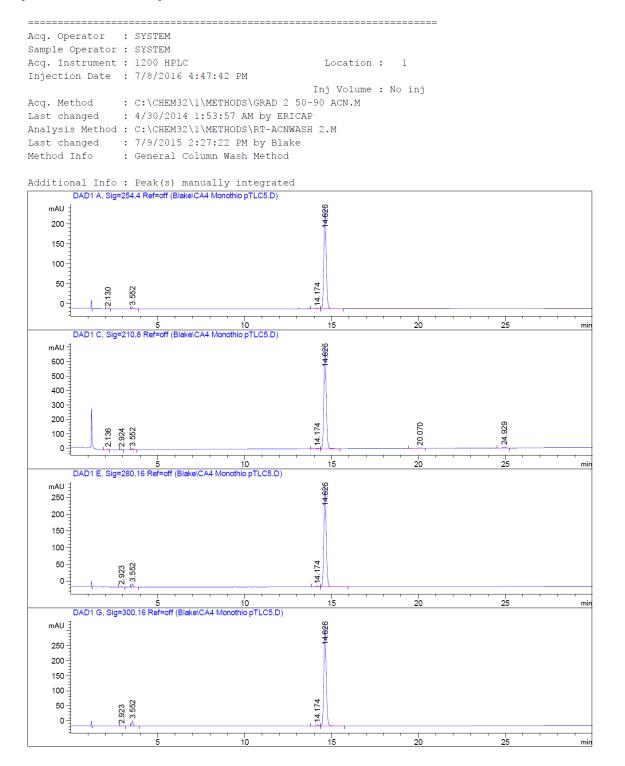

*** End of Report ***

Instrument 1 11/14/2012 2:22:04 PM Laxman

Page 5 of 5

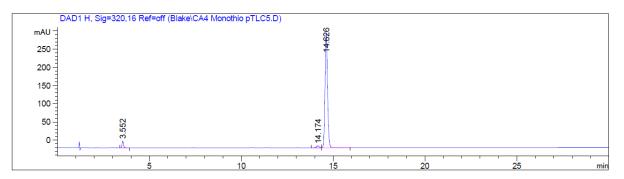


Mass Spectrum of Compound 43


¹H NMR (500 MHz, CDCl₃) of Compound 44

 ^{13}C NMR (500 MHz, CDCl₃) of Compound 44

HPLC trace of compound 44


Data File C:\Chem32\1\Data\Blake\CA4 Monothio pTLC5.D Sample Name: CA4 Monothio pTLC5

1200 HPLC 11/28/2016 6:21:53 PM SYSTEM

Page 1 of 3

Data File C:\Chem32\1\Data\Blake\CA4 Monothio pTLC5.D Sample Name: CA4 Monothio pTLC5

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier	& Dilution	Factor with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak #	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
1	2.130	BB	0.0777	5.62220	1.06346	0.2320
2	3.552	BB	0.0820	18.60733	3.50377	0.7677
3	14.174	BV	0.1472	13.58555	1.40050	0.5605
4	14.626	VB	0.1481	2385.85034	248.38174	98.4398
Total	s:			2423.66542	254.34947	

Signal 2: DAD1 C, Sig=210,8 Ref=off

#	RetTime [min]		[min]	Area [mAU*s]	Height [mAU]	Area %
1	2.136		0.0801	28,96852	5.26916	0.4191
2	2.924	BB	0.0764	14.33322	2.96729	0.2074
3	3.552	BB	0.0816	36.36889	6.88614	0.5262
4	14.174	BV	0.1490	31.27967	3.17406	0.4525
5	14.626	VB	0.1481	6678.81738	694.79736	96.6230
6	20.070	BB	0.1771	53.05204	4.58050	0.7675
7	24.929	BB	0.1923	69.42081	5.53725	1.0043
Total	s:			6912.24055	723.21177	

1200 HPLC 11/28/2016 6:21:53 PM SYSTEM

Data File C:\Chem32\1\Data\Blake\CA4 Monothio pTLC5.D Sample Name: CA4 Monothio pTLC5

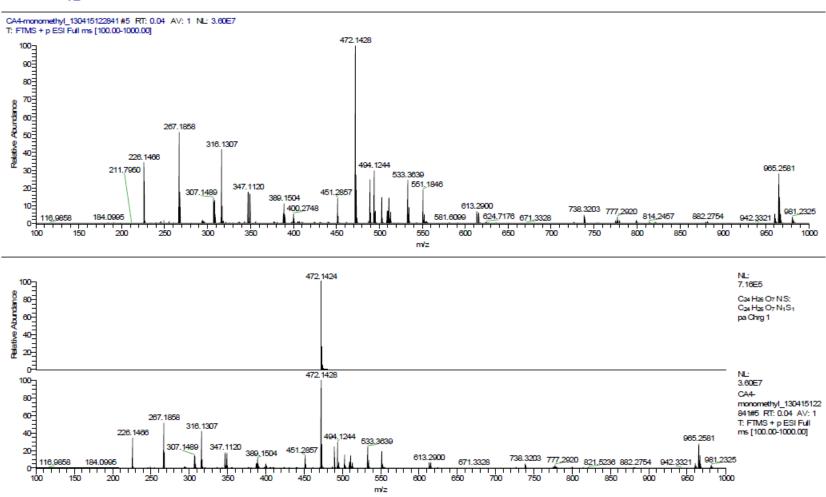
Signal 3: DAD1 E, Sig=280,16 Ref=off

Peak #				Area [mAU*s]	Height [mAU]	Area %
1	2.923	BB	0.0811	6.66962	1.23359	0.2272
2	3.552	BB	0.0819	49.89929	9.39798	1.7000
3	14.174	BV	0.1489	19.37604	2.00204	0.6601
4	14.626	VB	0.1481	2859.24146	297.65536	97.4126
Total	s :			2935.18641	310.28898	

Signal 4: DAD1 G, Sig=300,16 Ref=off

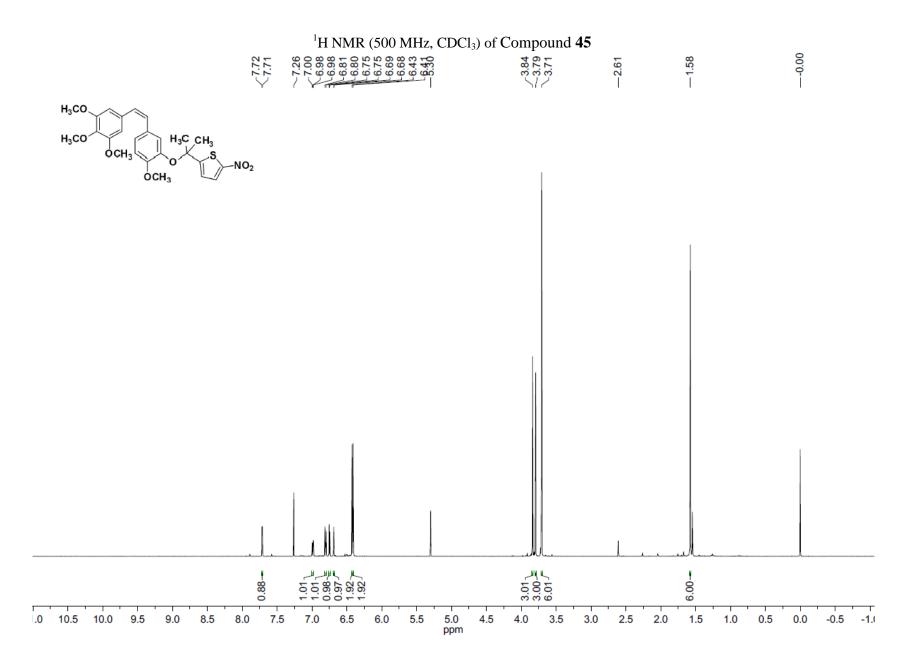
Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.923	BB	0.0843	7.20654	1.26827	0.2164
2	3.552	BB	0.0820	91.39571	17.19951	2.7441
3	14.174	BV	0.1448	36.30665	3.82295	1.0901
4	14.626	VB	0.1481	3195.77393	332.57687	95.9495

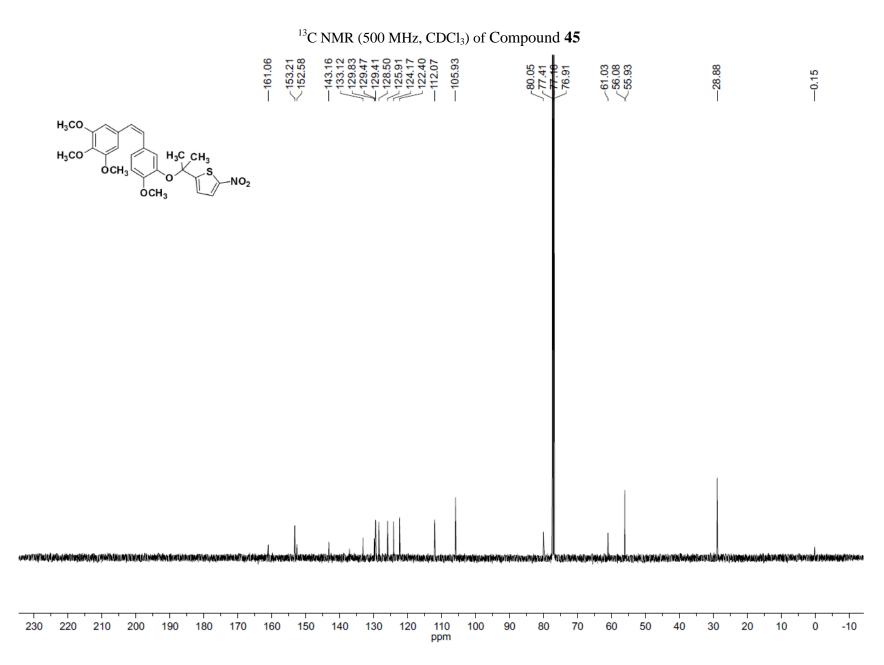
Totals: 3330.68283 354.86761

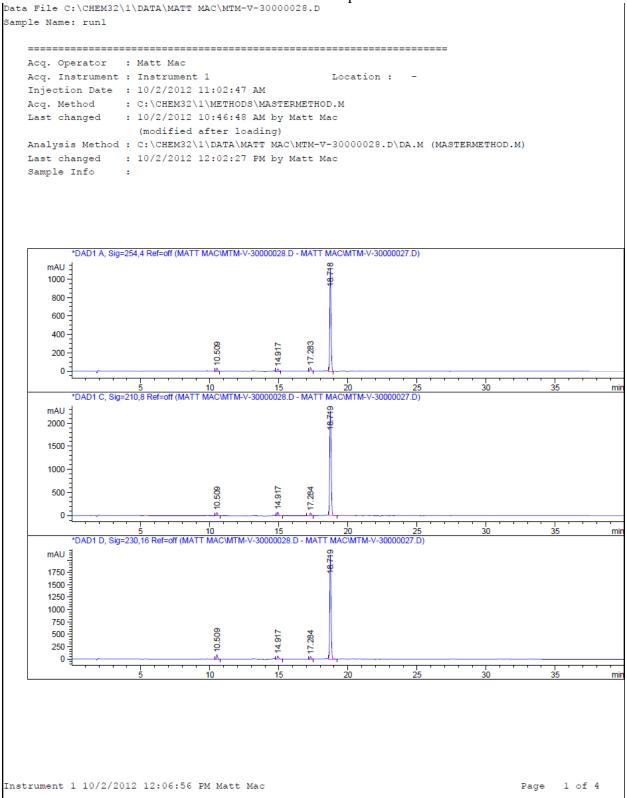

Signal 5: DAD1 H, Sig=320,16 Ref=off

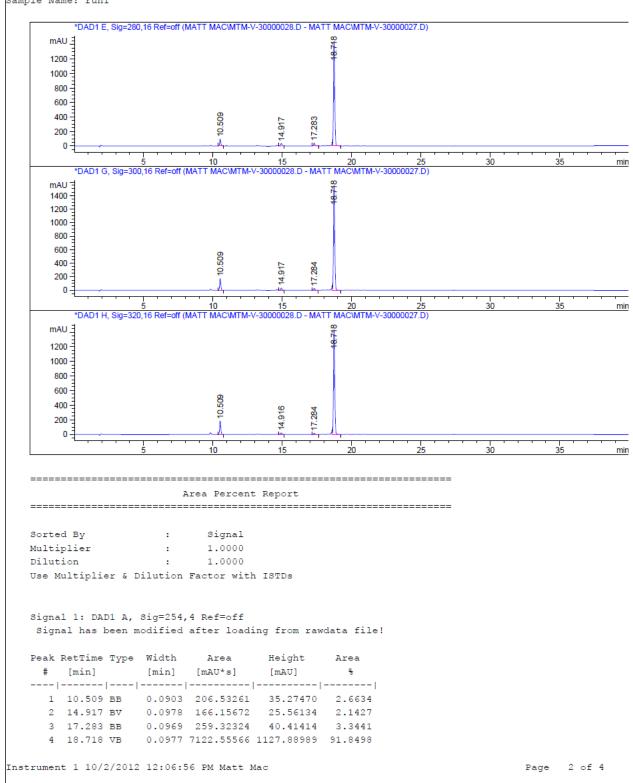
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		-		-		
1	3.552	BB	0.0820	96.86775	18.21322	3.0557
2	14.174	BV	0.1463	49.83819	5.27211	1.5721
3	14.626	VB	0.1482	3023.37158	314.28720	95.3722

Totals: 3170.07752 337.77254




*** End of Report ***


Mass Spectrum of Compound 44 4/15/2013 12:28:42 PM BW4-101-42


CA4-monomethyl_130415122841

HPLC trace of Compound 45

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-V-30000028.D Sample Name: run1 Data File C:\CHEM32\1\DATA\MATT MAC\MTM-V-30000028.D Sample Name: run1 Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % Peak RetTime Type Width 7754.56824 1229.14007 Totals : Signal 2: DAD1 C, Sig=210,8 Ref=off Signal has been modified after loading from rawdata file! Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % Peak RetTime Type Width Area 1 10.509 BB 0.0902 406.20374 69.44135 2.1907 2 14.917 VB 0.1015 576.01318 84.57472 3.1066 3 17.284 BB 0.0972 398.39267 61.78656 2.1486 4 18.719 VB 0.1204 1.71613e4 2265.77734 92.5541 1.85419e4 2481.57997 Totals : Signal 3: DAD1 D, Sig=230,16 Ref=off Signal has been modified after loading from rawdata file! Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] 8 1 10.509 BB 0.0903 520.65814 88.93446 3.3712 2 14.917 VV 0.1123 508.84177 65.76926 3.2947 3 17.284 BB 0.0968 331.46124 51.71173 2.1462 4 18.719 VB 0.1037 1.40835e4 2114.41040 91.1880 1.54444e4 2320.82585 Totals : Signal 4: DAD1 E, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file! Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] 8 ----|-----|-----|-----|------| 1 10.509 BB 0.0903 548.82764 93.68990 5.3169 2 14.917 VV 0.1077 271.90161 37.01789 2.6341 3 17.283 BB 0.0981 258.45758 39.62364 2.5039 4 18.718 VB 0.0984 9243.20996 1448.80347 89.5452 Totals : 1.03224e4 1619.13491 Instrument 1 10/2/2012 12:06:56 PM Matt Mac

Page 3 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-V-30000028.D Sample Name: run1

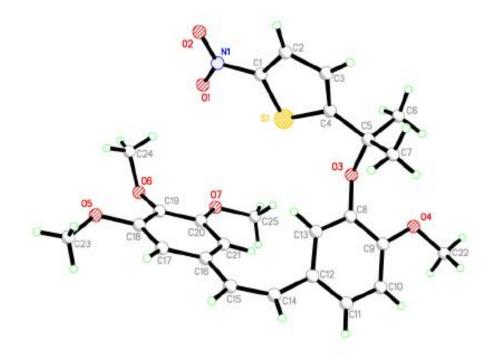
Signal 5: DAD1 G, Sig=300,16 Ref=off Signal has been modified after loading from rawdata file!

Peak #				Area [mAU*s]	Height [mAU]	Area %
1	10.509	BB	0.0903	1010.28589	172.45679	8.9110
2	14.917	BV	0.0966	208.55519	32.61239	1.8395
3	17.284	BB	0.0985	178.25317	27.18596	1.5722
4	18.718	VB	0.0987	9940.42480	1551.60608	87.6772
Total	s :			1.13375e4	1783.86122	

Signal 6: DAD1 H, Sig=320,16 Ref=off Signal has been modified after loading from rawdata file!

#	[min]		[min]	Area [mAU*s]	Height [mAU]	÷
		·				
1	10.509	BB	0.0903	1076.80786	183.83899	10.2507
2	14.916	BV	0.0991	138.73483	21.00286	1.3207
3	17.284	BB	0.0993	104.35675	15.75329	0.9934
4	18.718	VB	0.0984	9184.83105	1439.67126	87.4352

Totals : 1.05047e4 1660.26641



*** End of Report ***

Instrument 1 10/2/2012 12:06:56 PM Matt Mac

Page 4 of 4

X-Ray Crystallography Data for Compound 45

Table 1. Crystal data and structure refinement for	kp61.	
Identification code	kp61	
Empirical formula	C25 H27 N O7 S	
Formula weight	485.54	
Temperature	110(2) K	
Wavelength	0.71073 A	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 8.0895(7) A	α=100.514(5)°.
	b = 12.0696(10) A	β=104.240(5)°.
	c = 14.0112(12) Å	$\gamma = 108.180(5)^{\circ}$.
Volume	1208.84(18) A3	
Z	2	
Density (calculated)	1.334 Mg/m ³	
Absorption coefficient	0.179 mm ⁻¹	
F(000)	512	
Crystal size	$0.31 \ge 0.28 \ge 0.11 \text{ mm}^3$	
Theta range for data collection	2.06 to 26.46°.	
Index ranges	-9=h=10, -15=k=15, -16	i ≔]≔17
Reflections collected	12273	
Independent reflections	4851 [R(int) = 0.0427]	
Completeness to theta = 26.46°	97.5 %	
Absorption correction	Semi-empirical from equivale	ents
Max. and min. transmission	0.9802 and 0.9465	
Refinement method	Full-matrix least-squares on F	72
Data / restraints / parameters	4851 / 0 / 313	
Goodness-of-fit on F2	1.028	
Final R indices [I>2sigma(I)]	R1 = 0.0457, wR2 = 0.1101	
R indices (all data)	R1 = 0.0772, wR2 = 0.1277	
Largest diff. peak and hole	0.158 and -0.218 e.A ⁻³	

	x	у	z	U(eq)
S(1)	3104(1)	5110(1)	1330(1)	61(1)
0(1)	975(3)	2648(2)	59(2)	112(1)
0(2)	88(3)	3044(2)	-1374(1)	94(1)
0(3)	5098(2)	7059(1)	3092(1)	52(1)
D(4)	7261(2)	8749(1)	4853(1)	66(1)
0(5)	-4646(2)	1366(2)	1585(1)	79(1)
0(6)	-1425(2)	1040(1)	2114(1)	71(1)
0(7)	1682(2)	2868(1)	3284(1)	65(1)
N(1)	959(3)	3351(2)	-460(2)	73(1)
C(1)	2038(3)	4618(2)	40(2)	60(1)
C(2)	2242(4)	5513(3)	-422(2)	80(1)
C(3)	3320(4)	6639(2)	290(2)	80(1)
C(4)	3899(3)	6577(2)	1275(2)	53(1)
C(5)	5164(3)	7583(2)	2234(2)	56(1)
C(6)	7146(3)	7905(2)	2232(2)	84(1)
C(7)	4646(4)	8688(2)	2330(2)	69(1)
C(8)	4284(3)	7434(2)	3785(1)	45(1)
C(9)	5429(3)	8284(2)	4725(2)	49(1)
C(10)	4634(3)	8594(2)	5448(2)	56(1)
C(11)	2758(3)	8086(2)	5236(2)	56(1)
C(12)	1602(3)	7231(2)	4313(2)	49(1)
C(13)	2427(3)	6927(2)	3591(2)	47(1)
C(14)	-406(3)	6740(2)	4103(2)	61(1)
C(15)	-1683(3)	5628(2)	3628(2)	60(1)
C(16)	-1551(3)	4457(2)	3224(2)	50(1)
C(17)	-3142(3)	3499(2)	2579(2)	57(1)
C(18)	-3120(3)	2368(2)	2196(2)	56(1)
C(19)	-1484(3)	2175(2)	2432(2)	54(1)
C(20)	127(3)	3133(2)	3083(2)	51(1)
C(21)	85(3)	4252(2)	3489(2)	52(1)
C(22)	8469(3)	9566(2)	5828(2)	74(1)

Table 2. Atomic coordinates ($x 10^4$) and equivalent isotropic displacement parameters ($A^2x 10^3$) for kp61. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

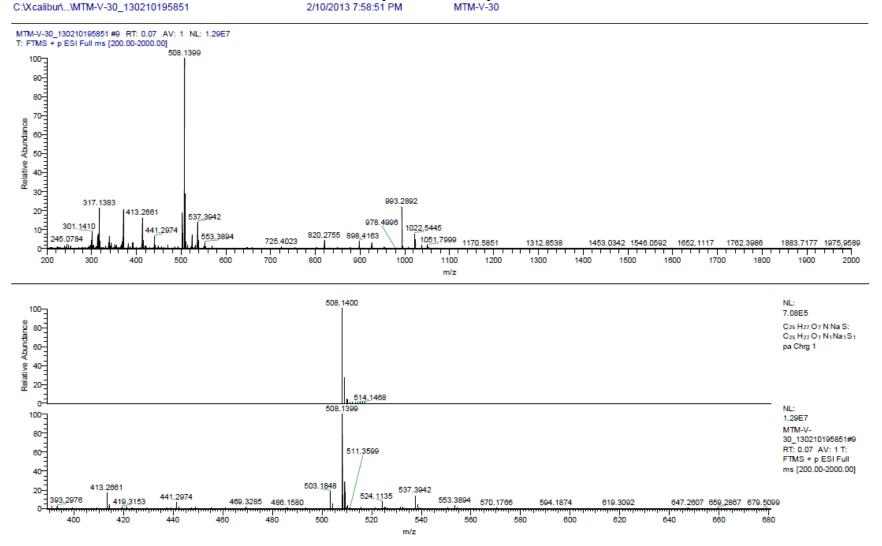
C(23)	-6392(4)	1422(3)	1509(2)	99(1)
C(24)	-1556(5)	656(3)	1080(2)	98(1)
C(25)	3340(3)	3811(2)	3954(2)	66(1)

S(1)-C(1)	1.699(2)
S(1)-C(4)	1.707(2)
O(1)-N(1)	1.215(3)
O(2)-N(1)	1.222(3)
O(3)-C(8)	1.387(2)
O(3)-C(5)	1.462(2)
O(4)-C(9)	1.362(2)
O(4)-C(22)	1.430(3)
O(5)-C(18)	1.374(3)
O(5)-C(23)	1.413(3)
O(6)-C(19)	1.380(2)
O(6)-C(24)	1.405(3)
O(7)-C(20)	1.369(2)
O(7)-C(25)	1.419(3)
N(1)-C(1)	1.438(3)
C(1)-C(2)	1.344(3)
C(2)-C(3)	1.393(3)
C(3)-C(4)	1.368(3)
C(4)-C(5)	1.510(3)
C(5)-C(7)	1.511(3)
C(5)-C(6)	1.528(3)
C(8)-C(13)	1.368(3)
C(8)-C(9)	1.399(3)
C(9)-C(10)	1.383(3)
C(10)-C(11)	1.378(3)
C(11)-C(12)	1.389(3)
C(12)-C(13)	1.397(3)
C(12)-C(14)	1.476(3)
C(14)-C(15)	1.335(3)
C(15)-C(16)	1.470(3)
C(16)-C(17)	1.389(3)
C(16)-C(21)	1.395(3)
C(17)-C(18)	1.380(3)
C(18)-C(19)	1.386(3)

Table 3. Bond lengths [A] and angles [°] for kp61.

C(19)-C(20)	1.399(3)
C(20)-C(21)	1.380(3)
C(1)-S(1)-C(4)	90.52(11)
C(8)-O(3)-C(5)	120.04(14)
C(9)-O(4)-C(22)	117.76(18)
C(18)-O(5)-C(23)	117.7(2)
C(19)-O(6)-C(24)	115.77(18)
C(20)-O(7)-C(25)	117.19(16)
O(1)-N(1)-O(2)	124.0(2)
O(1)-N(1)-C(1)	117.4(2)
O(2)-N(1)-C(1)	118.6(2)
C(2)-C(1)-N(1)	125.5(2)
C(2)-C(1)-S(1)	114.02(19)
N(1)-C(1)-S(1)	120.41(17)
C(1)-C(2)-C(3)	110.8(2)
C(4)-C(3)-C(2)	113.7(2)
C(3)-C(4)-C(5)	129.0(2)
C(3)-C(4)-S(1)	110.99(18)
C(5)-C(4)-S(1)	119.94(15)
O(3)-C(5)-C(4)	106.26(15)
O(3)-C(5)-C(7)	113.24(16)
C(4)-C(5)-C(7)	111.97(19)
O(3)-C(5)-C(6)	104.83(18)
C(4)-C(5)-C(6)	109.06(18)
C(7)-C(5)-C(6)	111.10(19)
C(13)-C(8)-O(3)	121.15(17)
C(13)-C(8)-C(9)	120.55(18)
O(3)-C(8)-C(9)	118.14(18)
O(4)-C(9)-C(10)	124.90(19)
O(4)-C(9)-C(8)	116.78(18)
C(10)-C(9)-C(8)	118.3(2)
C(11)-C(10)-C(9)	120.4(2)
C(10)-C(11)-C(12)	122.11(19)
C(11)-C(12)-C(13)	116.73(19)
C(11)-C(12)-C(14)	120.37(19)

C(13)-C(12)-C(14)	122.79(19)
C(8)-C(13)-C(12)	121.85(19)
C(15)-C(14)-C(12)	131.8(2)
C(14)-C(15)-C(16)	132.1(2)
C(17)-C(16)-C(21)	118.51(19)
C(17)-C(16)-C(15)	118.41(19)
C(21)-C(16)-C(15)	123.0(2)
C(18)-C(17)-C(16)	121.3(2)
O(5)-C(18)-C(17)	124.6(2)
O(5)-C(18)-C(19)	115.2(2)
C(17)-C(18)-C(19)	120.2(2)
O(6)-C(19)-C(18)	121.8(2)
O(6)-C(19)-C(20)	118.94(19)
C(18)-C(19)-C(20)	119.0(2)
O(7)-C(20)-C(21)	124.03(19)
O(7)-C(20)-C(19)	115.48(18)
C(21)-C(20)-C(19)	120.48(19)
C(20)-C(21)-C(16)	120.5(2)

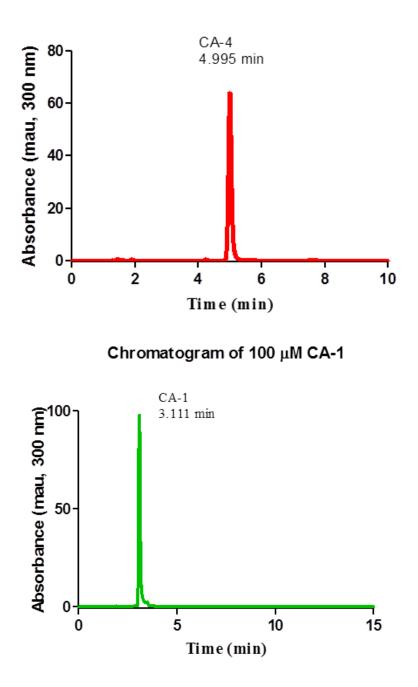

Symmetry transformations used to generate equivalent atoms:

	U	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	80(1)	59(1)	49(1)	21(1)	21(1)	30(1)
O(1)	149(2)	71(1)	90(2)	22(1)	16(1)	25(1)
O(2)	85(1)	116(2)	59(1)	-3(1)	11(1)	37(1)
0(3)	63(1)	57(1)	49(1)	18(1)	25(1)	33(1)
O(4)	54(1)	66(1)	65(1)	8(1)	12(1)	18(1)
0(5)	56(1)	72(1)	86(1)	8(1)	11(1)	13(1)
0(6)	84(1)	48(1)	77(1)	17(1)	20(1)	24(1)
0(7)	55(1)	51(1)	89(1)	20(1)	14(1)	26(1)
N(1)	75(2)	84(2)	60(1)	12(1)	22(1)	36(1)
C(1)	71(2)	69(2)	47(1)	16(1)	25(1)	32(1)
C(2)	102(2)	98(2)	48(1)	29(1)	30(1)	41(2)
C(3)	111(2)	76(2)	62(2)	36(1)	34(2)	36(2)
C(4)	64(1)	61(1)	53(1)	24(1)	32(1)	32(1)
C(5)	64(1)	54(1)	61(1)	22(1)	33(l)	25(1)
C(6)	67(2)	96(2)	98(2)	34(2)	46(2)	25(2)
C(7)	92(2)	56(1)	78(2)	30(1)	41(l)	34(l)
C(8)	57(1)	42(1)	46(1)	15(1)	21(1)	25(1)
C(9)	55(1)	44(1)	54(1)	17(1)	16(1)	22(1)
C(10)	71(2)	50(1)	46(1)	9(1)	16(1)	27(1)
C(11)	81(2)	53(1)	52(1)	19(1)	34(1)	37(1)
C(12)	60(1)	46(1)	58(1)	22(1)	28(1)	29(1)
C(13)	54(1)	42(1)	47(1)	13(1)	16(1)	21(1)
C(14)	68(2)	60(1)	78(2)	25(1)	39(1)	39(1)
C(15)	55(1)	64(1)	76(2)	28(1)	32(1)	32(1)
C(16)	52(1)	55(1)	56(1)	27(1)	24(1)	25(1)
C(17)	52(1)	68(1)	60(1)	30(1)	22(1)	26(1)
C(18)	52(1)	59(1)	53(1)	20(1)	15(1)	15(1)
C(19)	62(2)	48(1)	55(1)	22(1)	20(1)	20(1)
C(20)	53(1)	50(1)	59(1)	27(1)	22(1)	23(1)
C(21)	49(1)	48(1)	60(1)	22(1)	18(1)	17(1)
C(22)	68(2)	59(1)	73(2)	14(1)	1(1)	12(1)

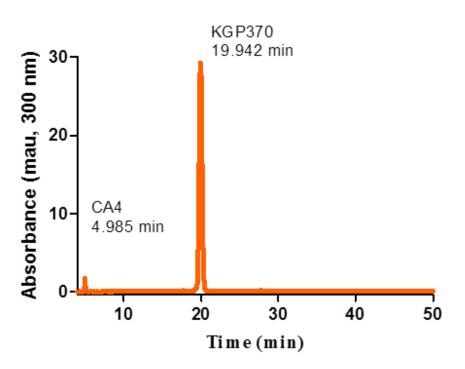
 Table 4. Anisotropic displacement parameters ($A^2x \ 10^3$) for kp61. The anisotropic

 displacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{+2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

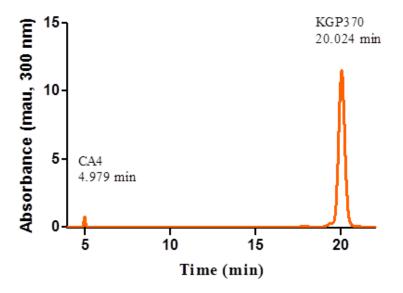
C(23)	56(2)	108(2)	102(2)	4(2)	7(2)	19(2)
C(24)	130(3)	84(2)	97(2)	23(2)	60(2)	46(2)
C(25)	50(1)	66(1)	87(2)	25(1)	20(1)	26(1)

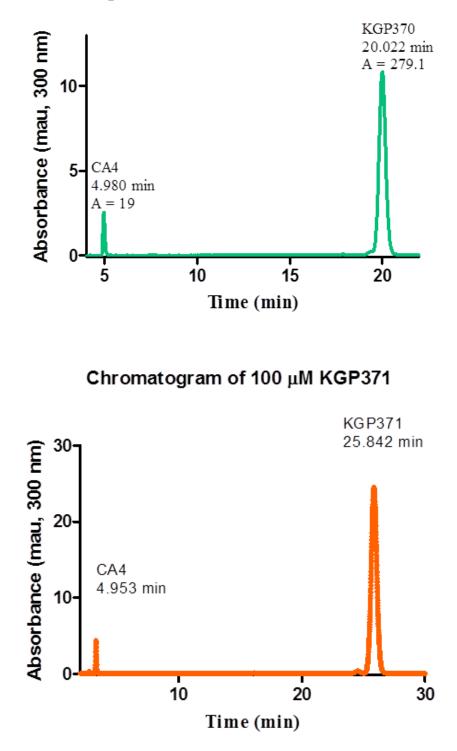


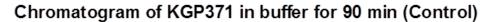
Mass Spectrum of Compound **45** 2/10/2013 7:58:51 PM MTM-V-30

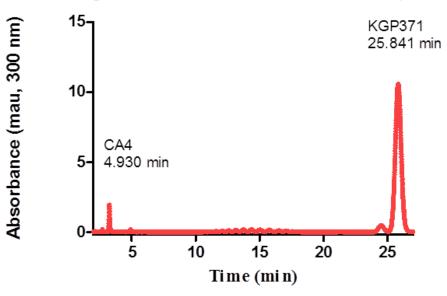

NADPH Cytochrome P450 Oxidoreductase Cleavage Assay

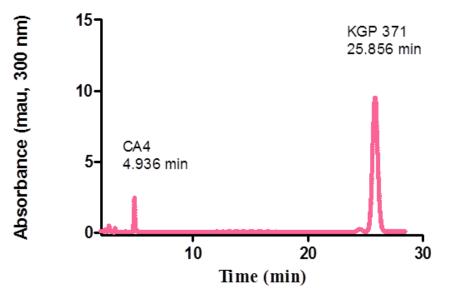
HPLC Conditions:

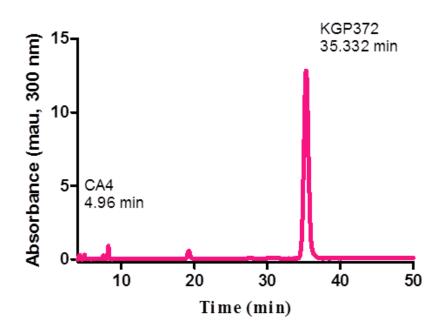

Solvent: 55% Acetonitrile/water isocratic; detection wavelength: 300 nm; flow rate: 1 mL/min.

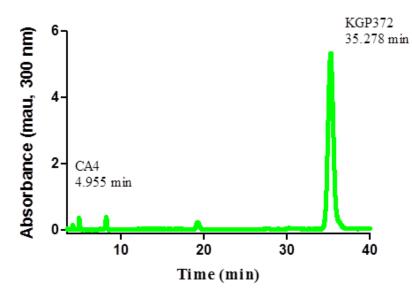

Chromatogram of 100 µM CA-4



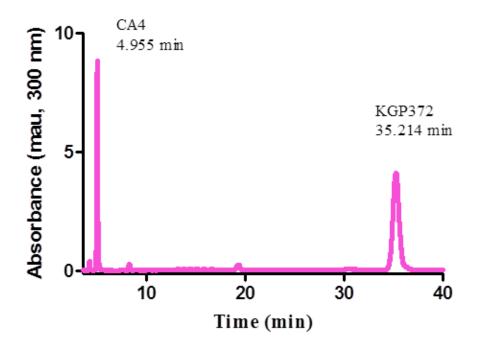


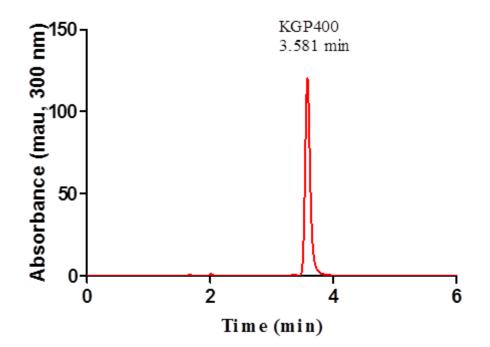

Chromatogram of POR-Treated KGP370 for 90 min

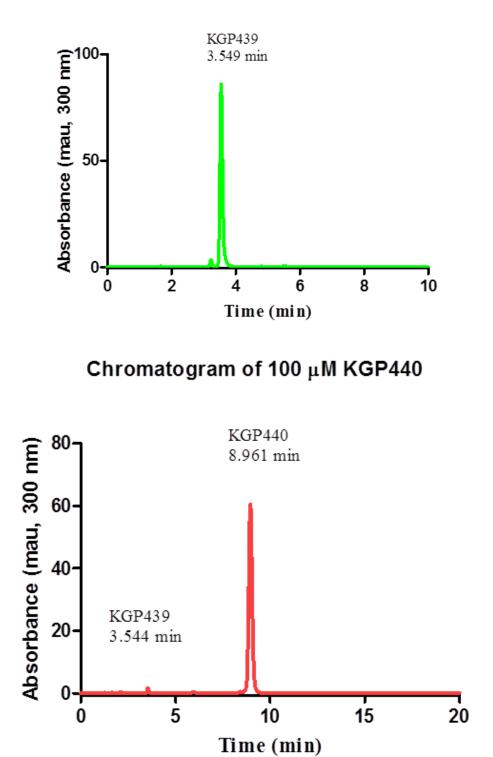


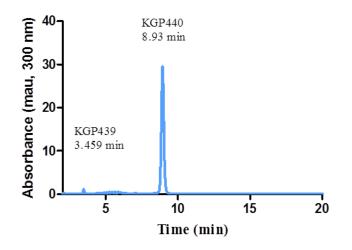


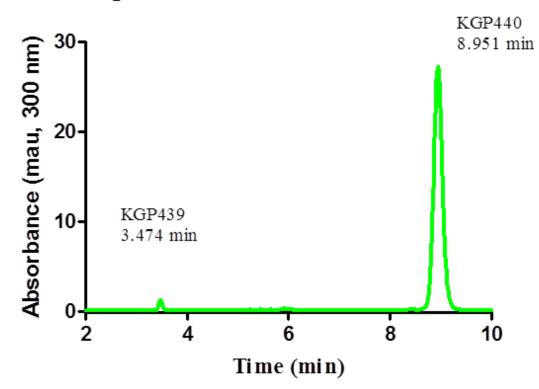
Chromatogram of POR-Treated KGP371 for 90 min

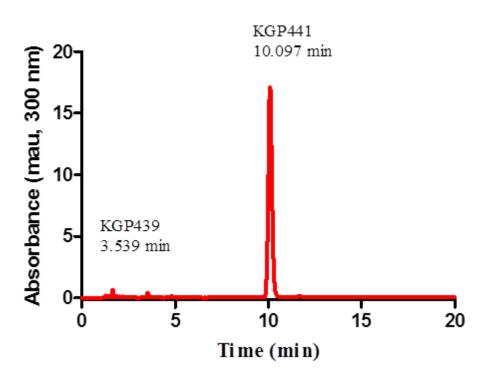


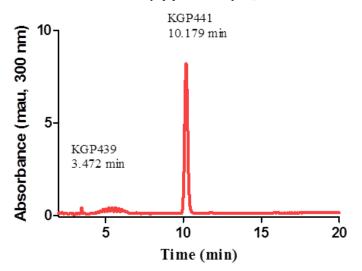


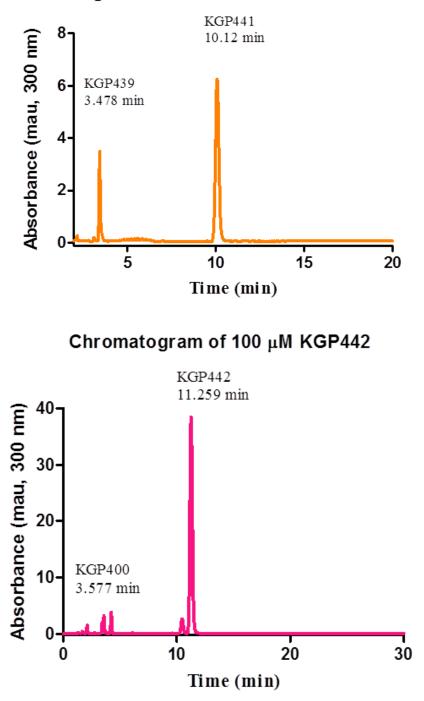

Chromatogram of KGP372 in buffer (+ 0.1% Triton X-100) for 90 min

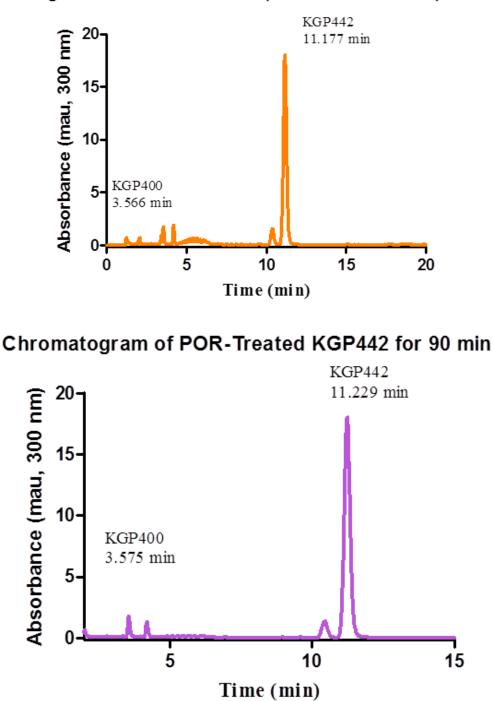

Chromatogram of POR-Treated KGP372 for 90 min

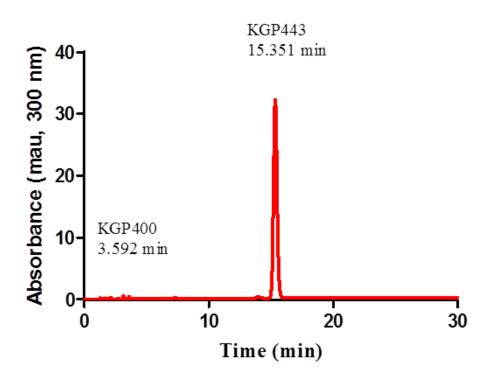


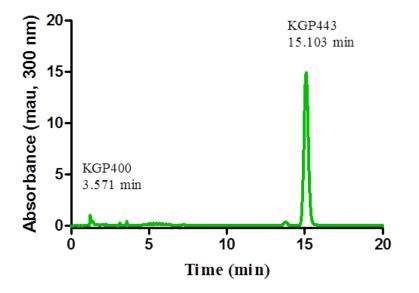

Chromatogram of KGP440 in buffer (approx 50 µM, + 0.1% Triton X-100) for 90 min

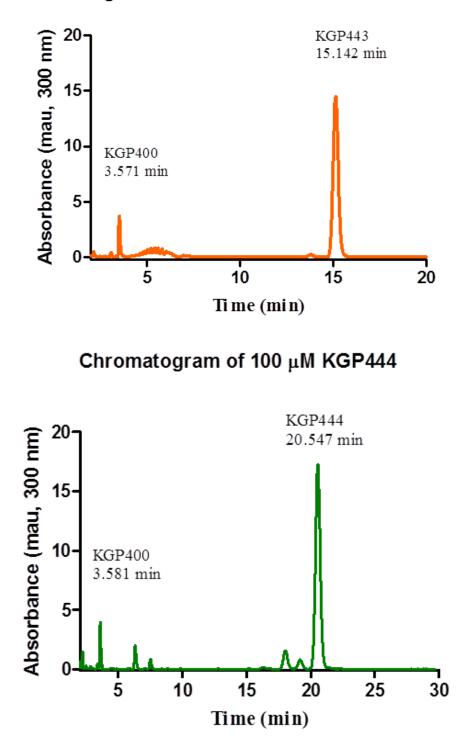

Chromatogram of POR-Treated KGP440 for 90 min

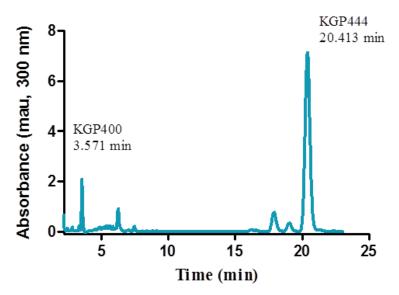

Chromatogram of 100 µM KGP441

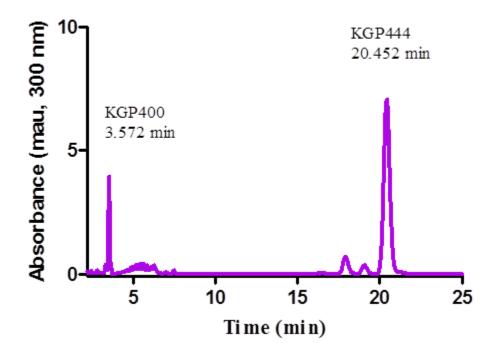

Chromatogram of KGP441 in buffer (approx 50 µM, + 0.1% Triton X-100) for 90 min

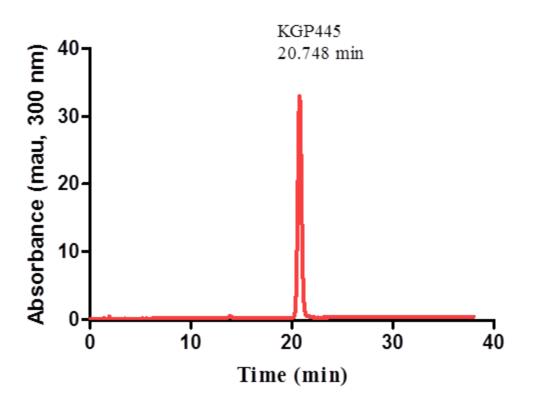

Chromatogram of POR-Treated KGP441 for 90 min

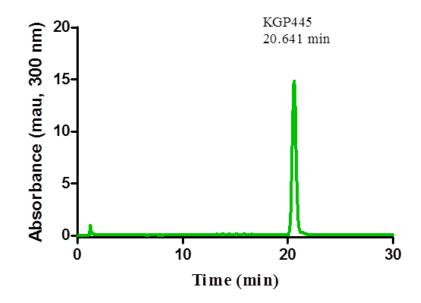

Chromatogram of KGP442 in buffer (+ 0.1% Triton X-100) for 90 min

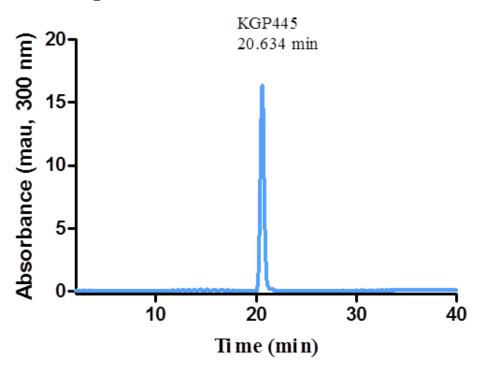

Chromatogram of 100 μ M KGP443

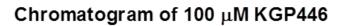

Chromatogram of KGP443 in buffer (+ 0.1% Triton X-100) for 90 min

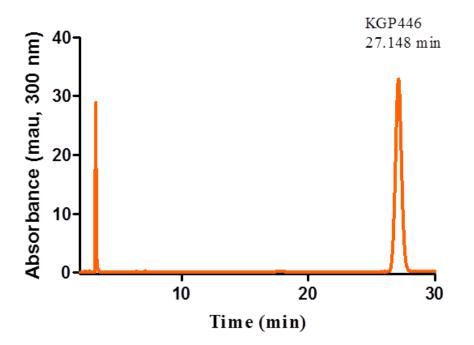

Chromatogram of POR-Treated KGP443 for 90 min

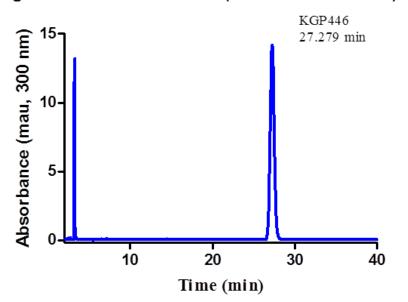

Chromatogram of KGP444 in buffer (+ 0.1% Triton X-100) for 90 min

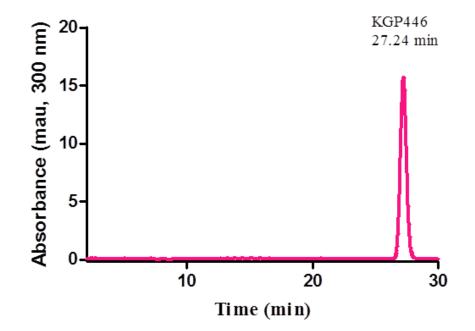

Chromatogram of POR-Treated KGP444 for 90 min

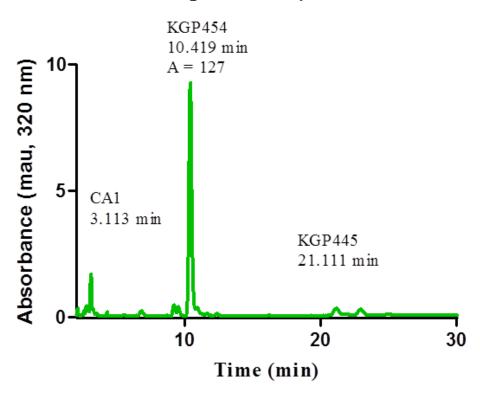

Chromatogram of 100 µM KGP445

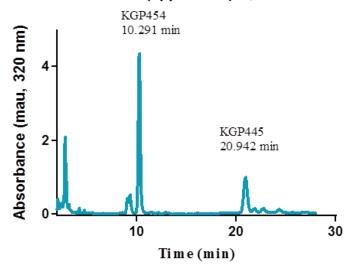


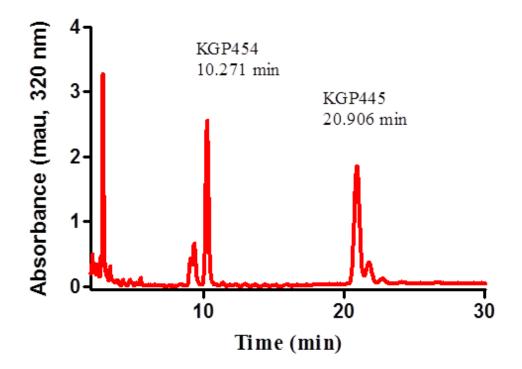

Chromatogram of KGP445 in buffer (+ 0.1% Triton X-100) for 90 min

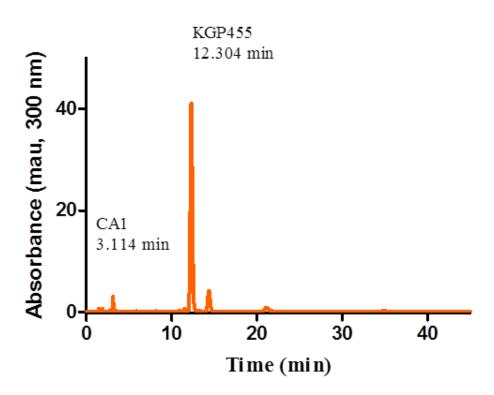

Chromatogram of POR-Treated KGP445 for 90 min

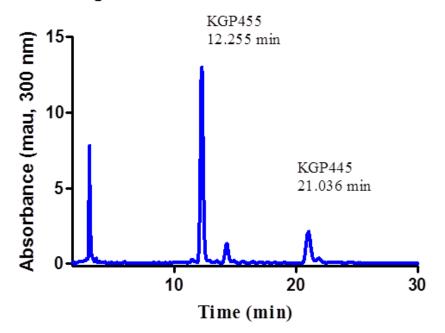


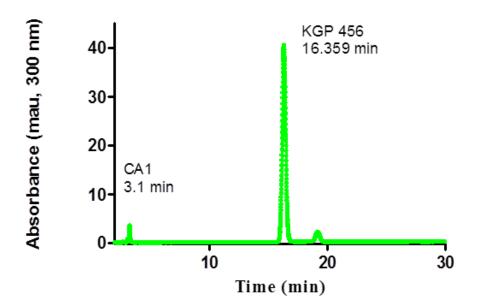

Chromatogram of KGP446 in buffer (+ 0.1% Triton X-100) for 90 min

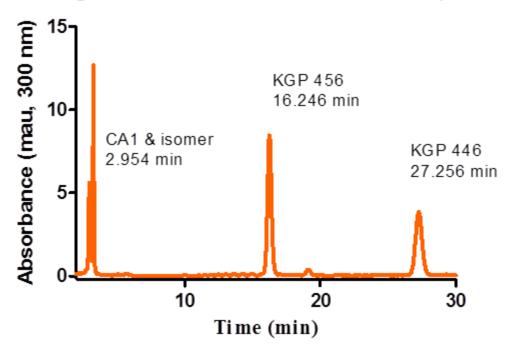

Chromatogram of POR-Treated KGP446 for 90 min

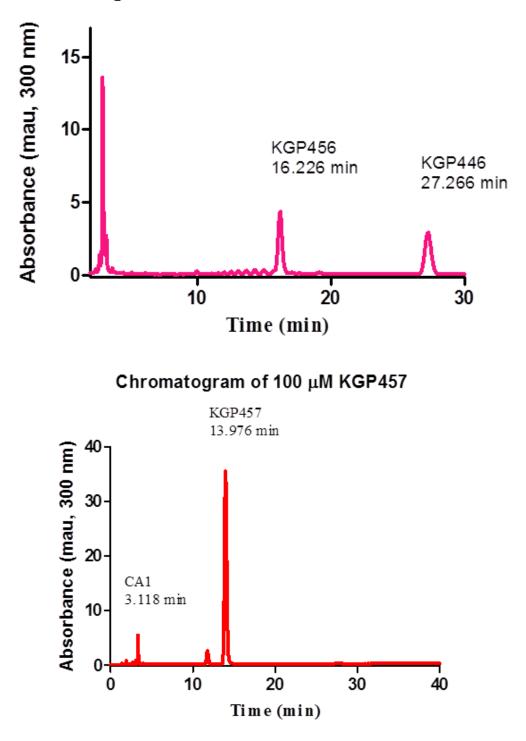

Chromatogram of 50 μ M KGP454

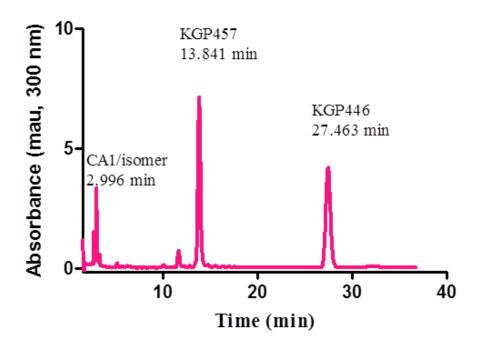

Chromatogram of KGP454 in buffer (approx 50 µM, + 0.1% Triton X-100) for 90 min

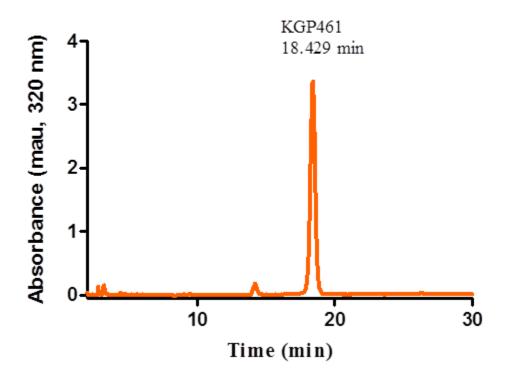

Chromatogram of POR-Treated KGP454 for 90 min

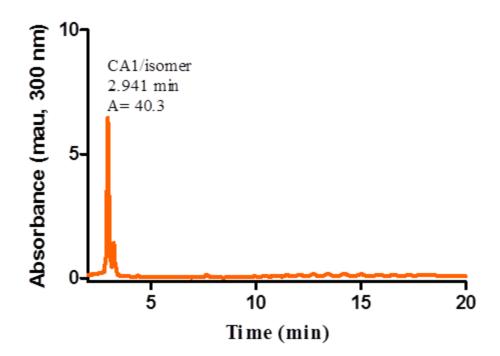

Chromatogram of 100 µM KGP455


Chromatogram of POR-Treated KGP455 for 90 min


Chromatogram of 100 µM KGP456

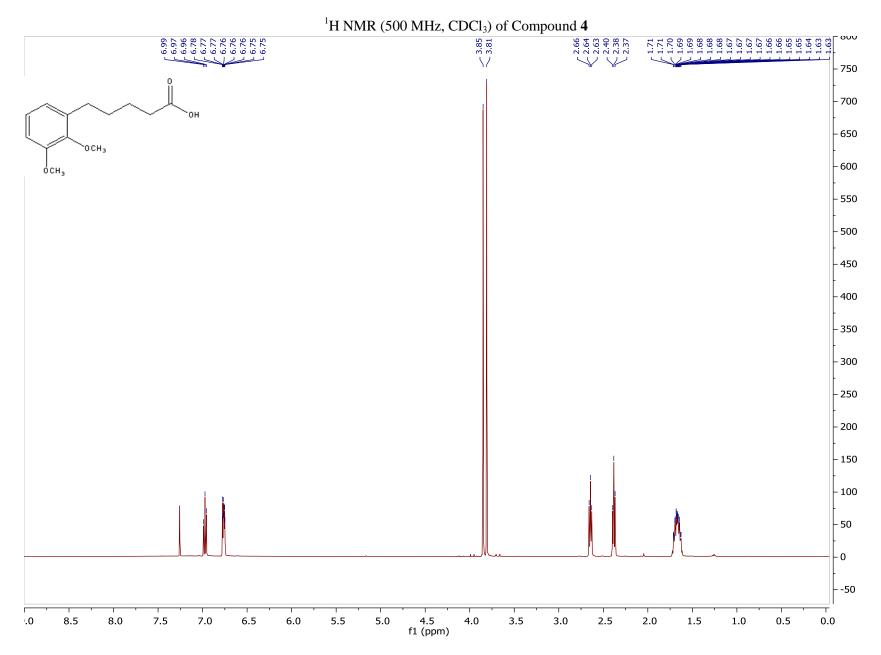

Chromatogram of KGP456 in buffer for 90 min (Control)

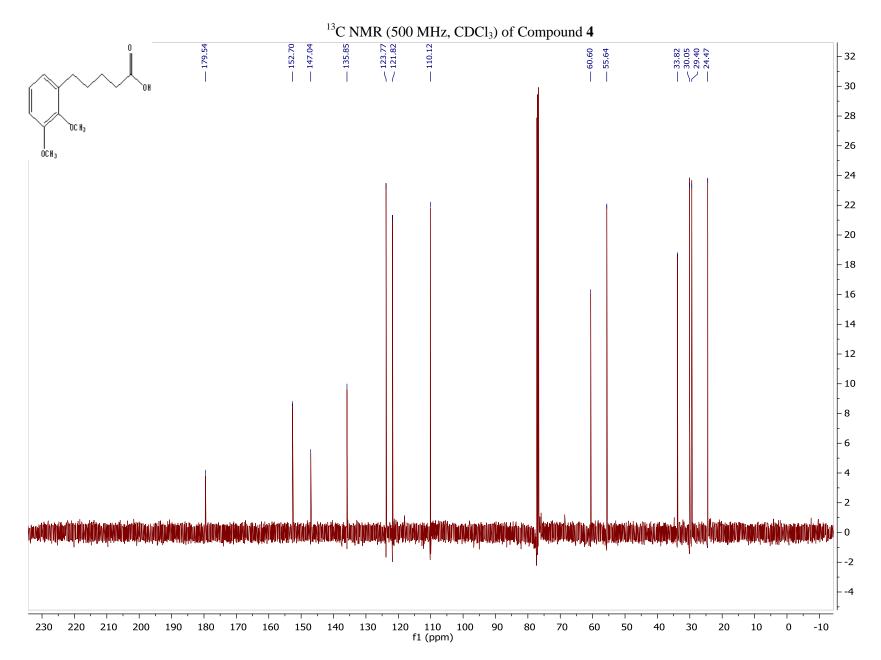

Chromatogram of POR-Treated KGP456 for 90 min

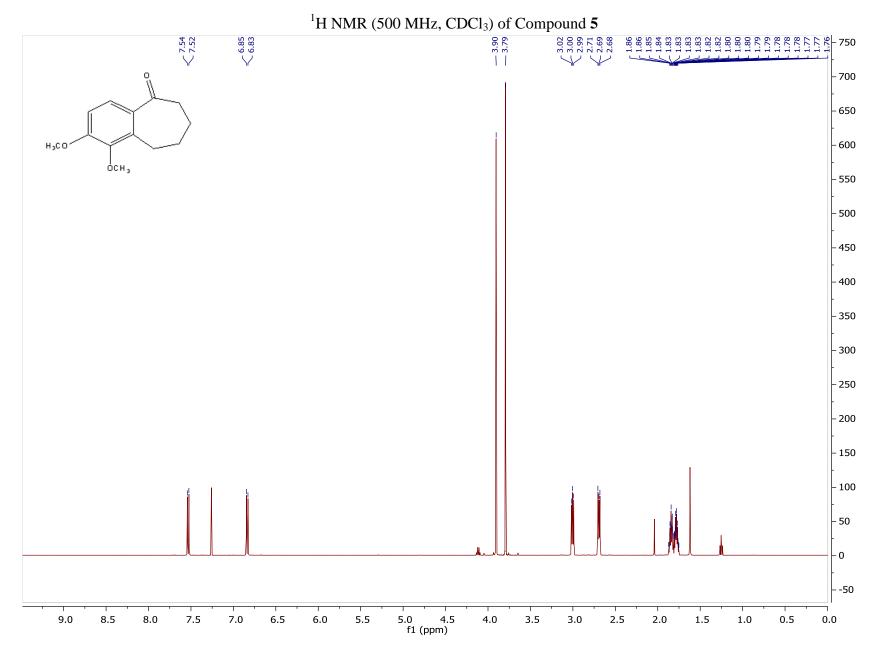

Chromatogram of POR-Treated KGP457 for 90 min

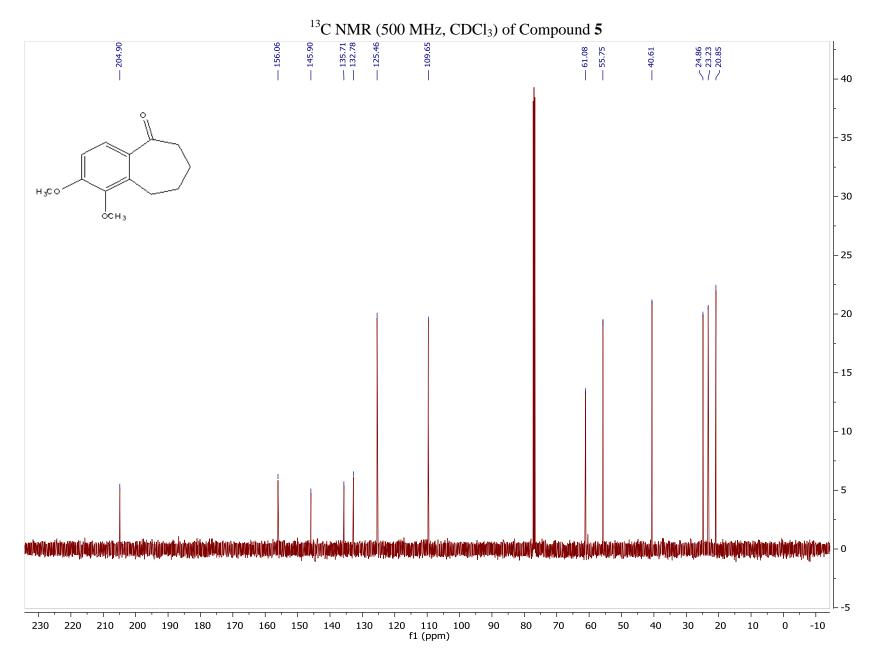
Chromatogram of 50 µM KGP461

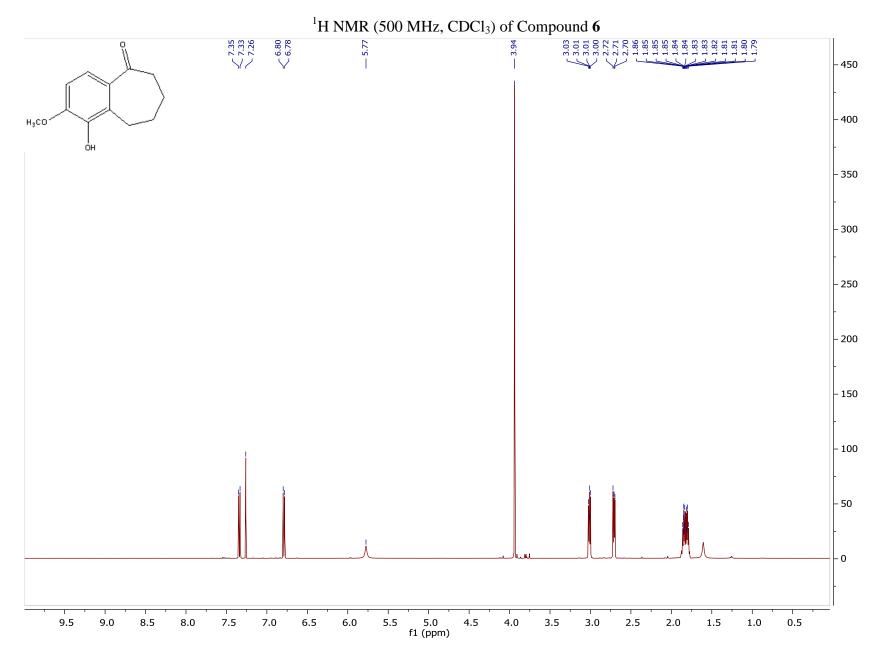
Chromatogram of POR-Treated KGP461 for 90 min

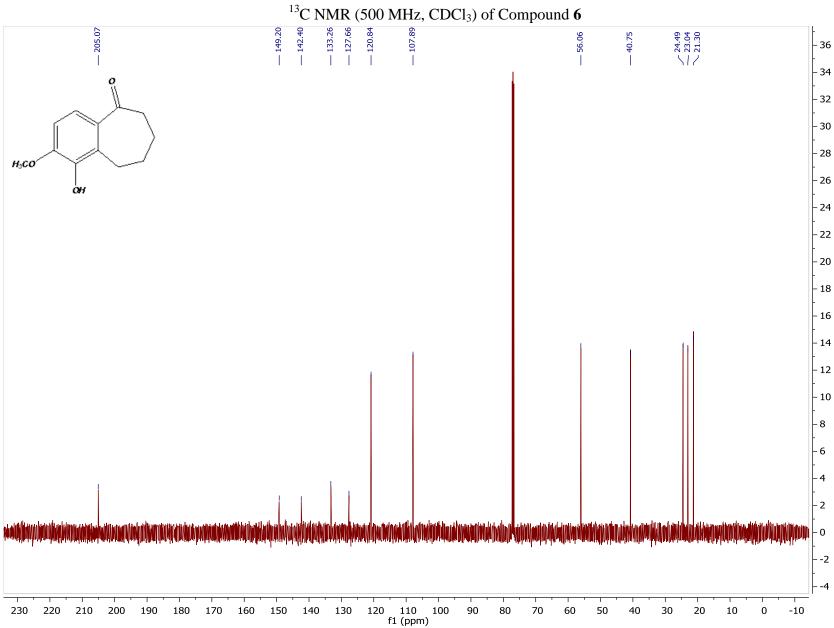

APPENDIX C

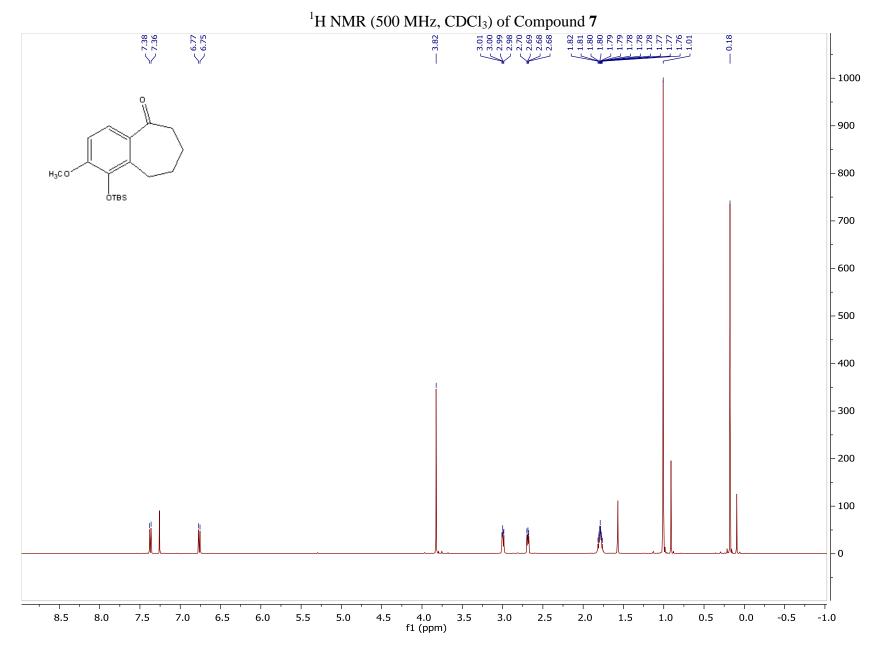

Synthesis of KGP18, KGP18 Bioreductively Activatable Prodrug Conjugates, OXi6196 Bioreductively Activatable Prodrug Conjugates, and the Nitroimidazole Trigger

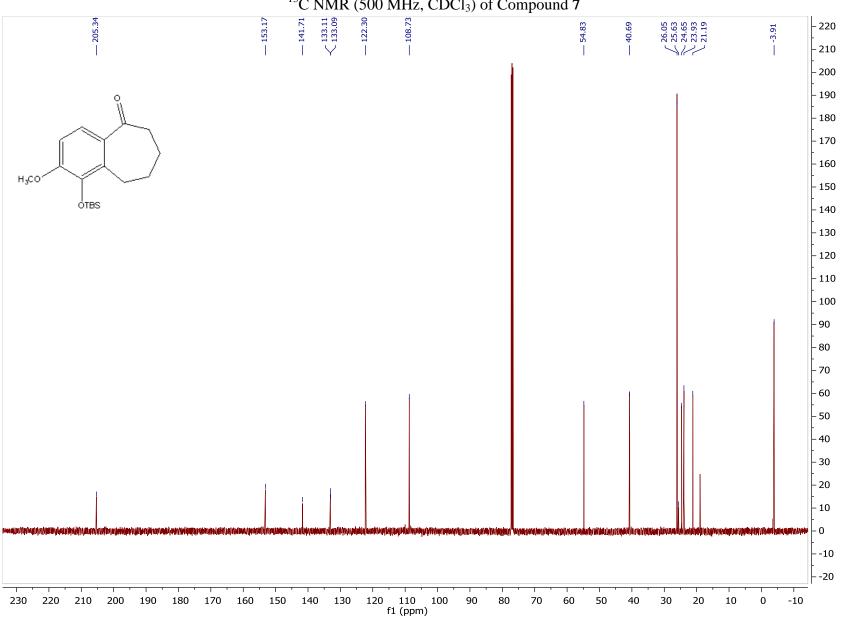

Table of Contents

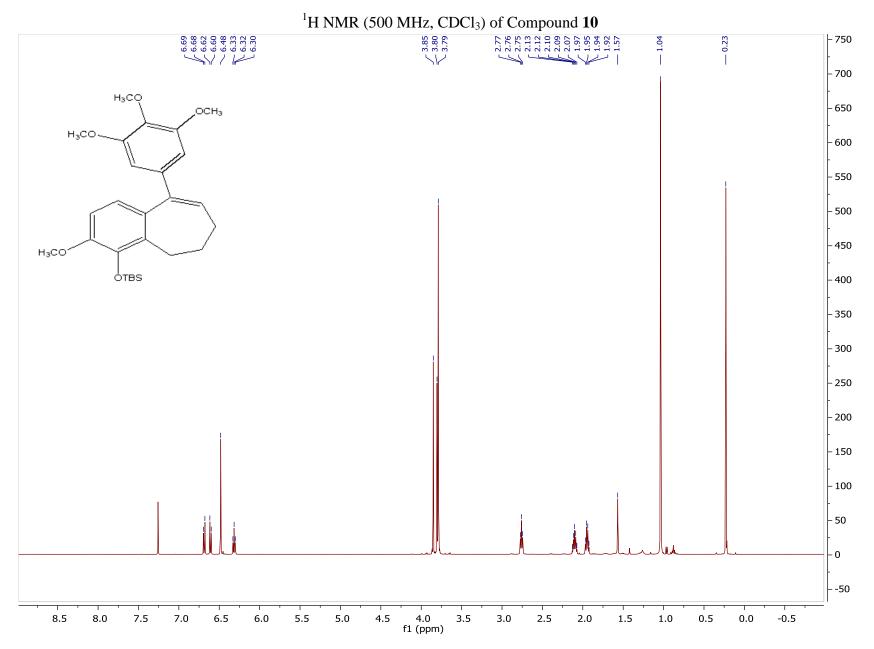

NMR, HPLC, HRMS Data:

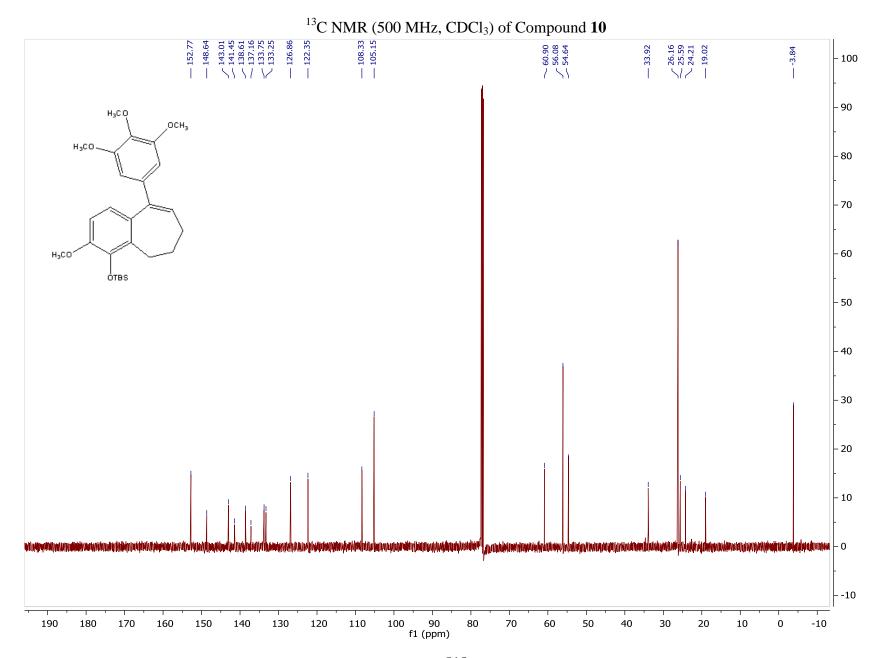

Compound 4	509-510
Compound 5	511-512
Compound 6	513-514
Compound 7	515-516
Compound 10	517-518
Compound 11	519-520
Compound 13	521-526
Compound 15	527-533
Compound 23	534-539
Compound 24	540-545
Compound 26	546-552
Compound 32	553-554

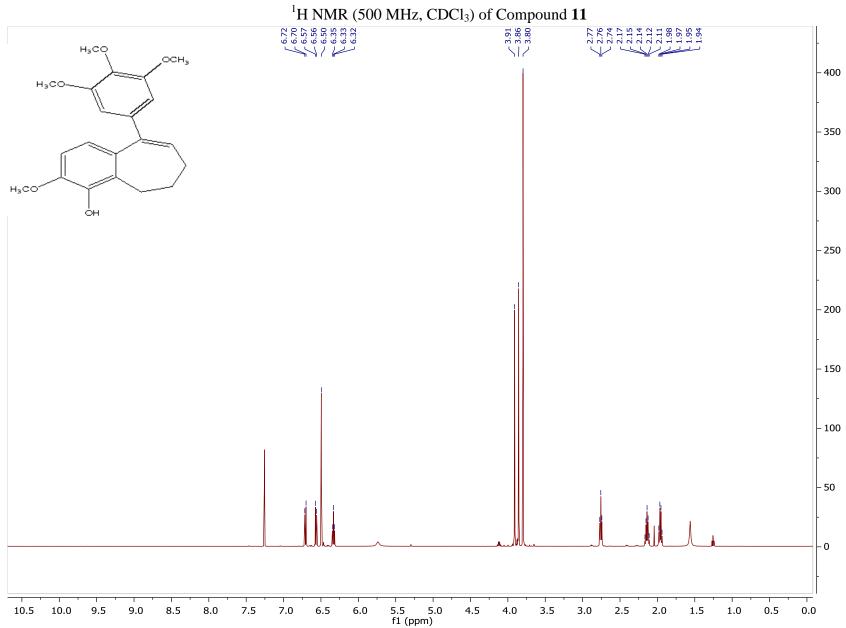


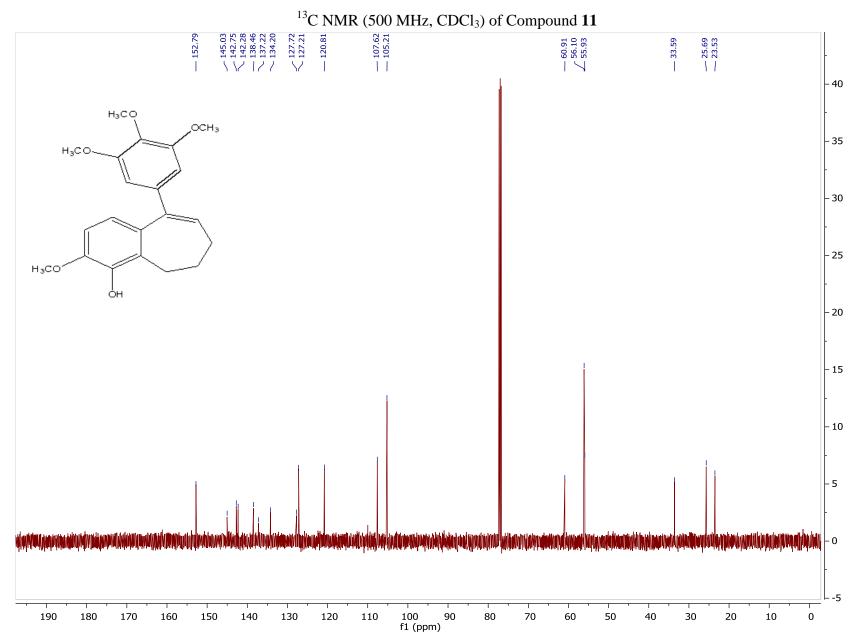


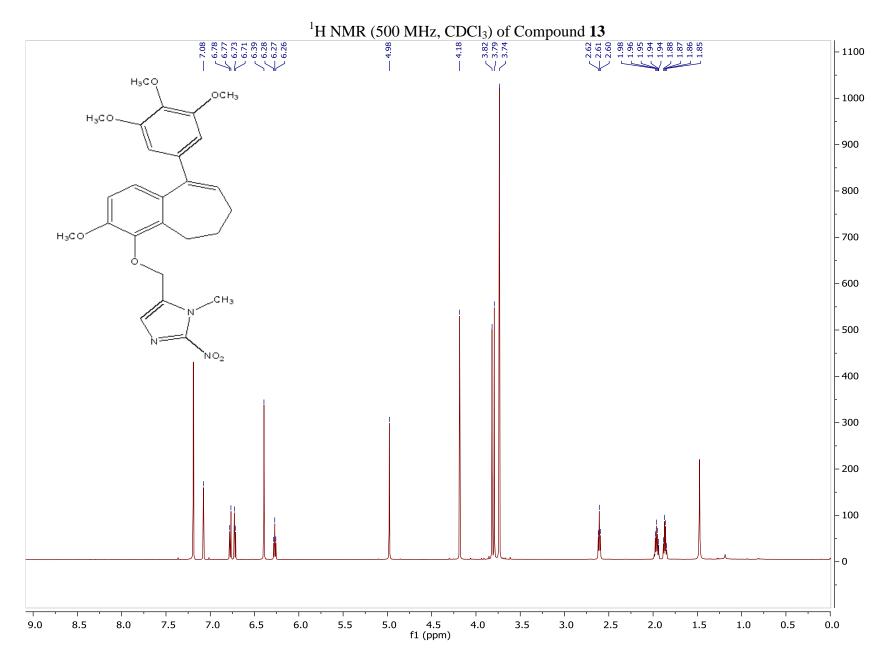


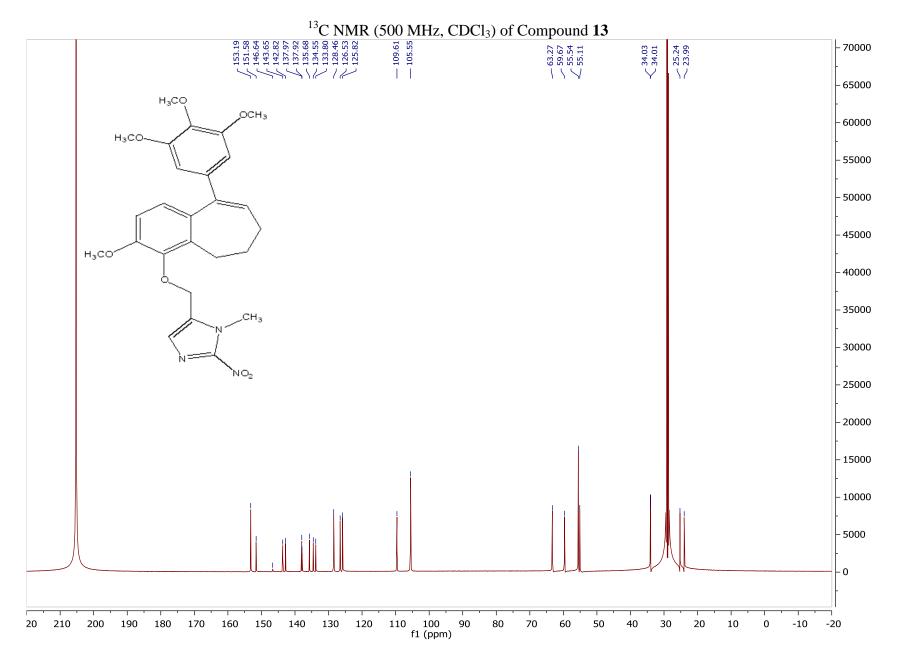


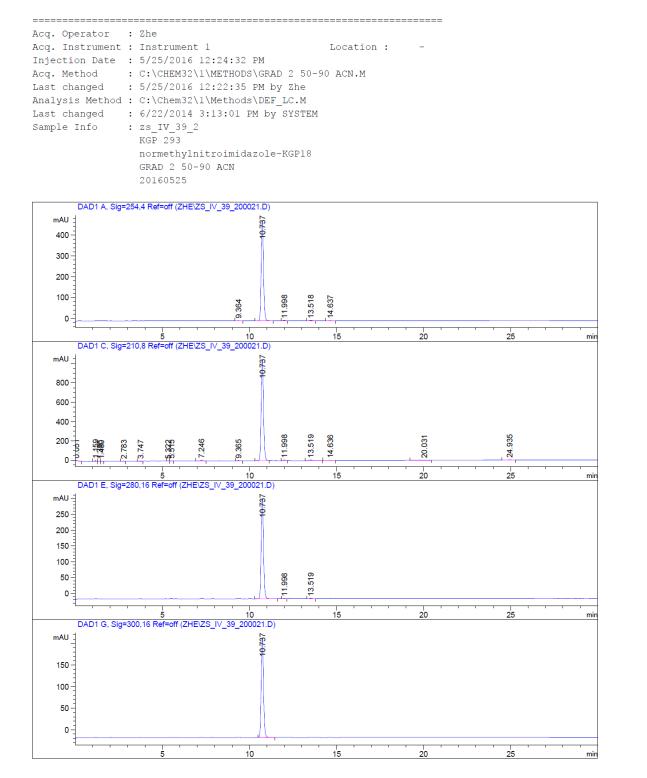


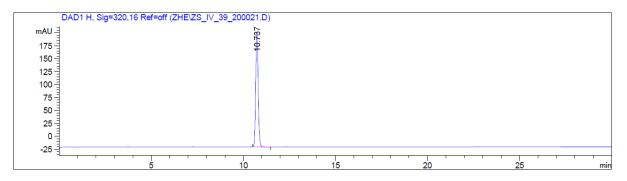



¹³C NMR (500 MHz, CDCl₃) of Compound **7**









 $\label{eq:hermitian} \begin{array}{c} \text{HPLC trace of compound 13} \\ \texttt{Data File C:\Chem32\1\Data\ZHE\ZS_IV_39_200021.D} \end{array}$ Sample Name: zs_IV_39_2

Page 1 of 3

Data File C:\Chem32\1\Data\ZHE\ZS_IV_39_200021.D
Sample Name: zs_IV_39_2

Area Percent Report

Sorted By		:	Sigr	nal	
Multiplie	2	:	1.00	000	
Dilution		:	1.00	000	
Use Multip	olier &	Dilution	Factor	with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	9.364	BB	0.1481	10.64091	1.10784	0.2329
2	10.737	BB	0.1424	4483.29248	482.44608	98.1181
3	11.998	BV	0.1491	26.45956	2.77848	0.5791
4	13.518	BB	0.1802	33.95763	2.82481	0.7432
5	14.637	BB	0.1623	14.92925	1.40135	0.3267

Totals: 4569.27	7982	490.55856
-----------------	------	-----------

Signal 2: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		-				
1	0.051	BB	0.1066	41.25443	5.68900	0.4048
2	1.159	BB	0.0634	40.82954	9.26910	0.4006
3	1.395	BV	0.0595	6.40275	1.64135	0.0628
4	1.480	VB	0.0833	6.22000	1.01708	0.0610
5	2.783	BB	0.0793	6.71858	1.32192	0.0659
6	3.747	BV	0.0903	14.63146	2.42814	0.1436
7	5.322	VV	0.1091	11.23704	1.53974	0.1103
8	5.515	VV	0.1104	16.14544	2.18027	0.1584
9	7.246	BB	0.1306	58.77359	6.68359	0.5767
10	9.365	BB	0.1478	27.24051	2.89495	0.2673
11	10.737	BB	0.1425	9707.28418	1044.03503	95.2494
12	11.998	BB	0.1428	53.50554	5.95838	0.5250
13	13.519	BV R	0.2067	103.91846	7.27487	1.0197
14	14.636	BB	0.1658	36.45964	3.38211	0.3577

1200 HPLC 10/12/2016 4:24:08 PM SYSTEM

Page 2 of 3

Data File C:\Chem32\1\Data\ZHE\ZS_IV_39_200021.D
Sample Name: zs_IV_39_2

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
15	20.031	BB	0.1974	20.63031	1.56853	0.2024
16	24.935	BB	0.2022	40.18402	3.04033	0.3943

Totals : 1.01914e4 1099.92441

Signal 3: DAD1 E, Sig=280,16 Ref=off

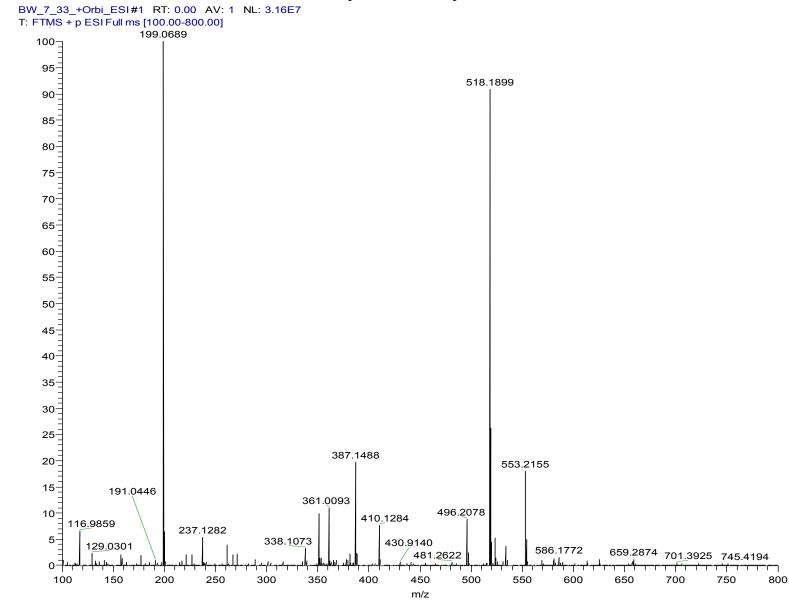
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	95
1	10.737	BB	0.1426	2938.32471	315.77563	99.1208
2	11.998	BB	0.1370	9.60916	1.11037	0.3242
3	13.519	BB	0.1767	16.45451	1.38398	0.5551

Totals : 2964.38837 318.26998

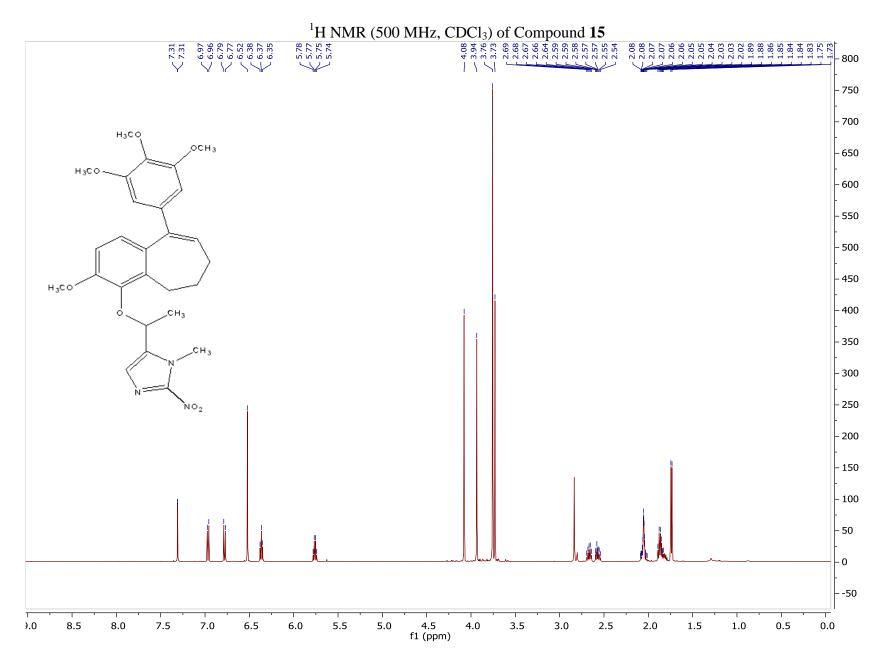
Signal 4: DAD1 G, Sig=300,16 Ref=off

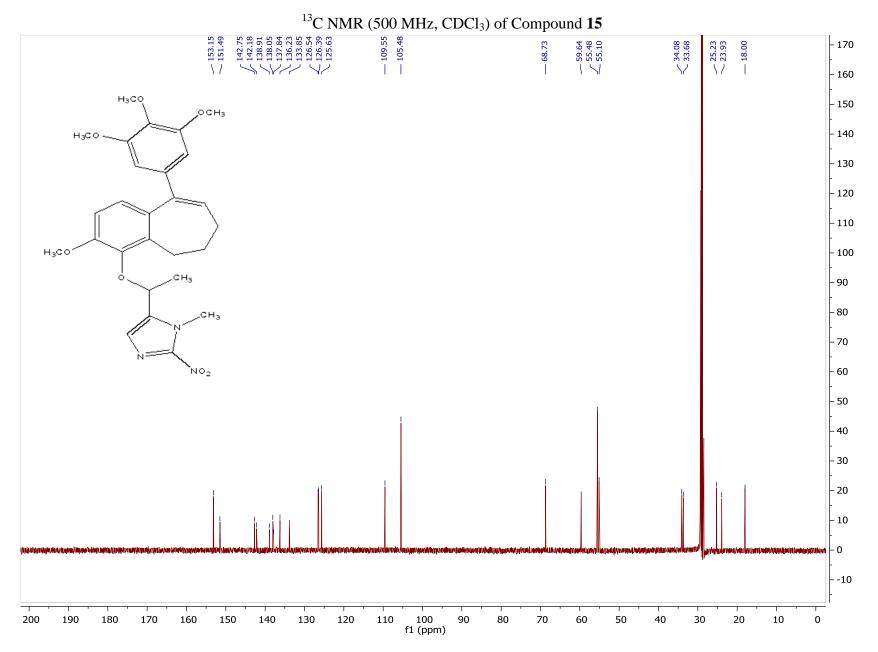
Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	10.737	BB	0.1420	2133.37476	230.35779	100.0000	

Totals : 2133.37476 230.35779

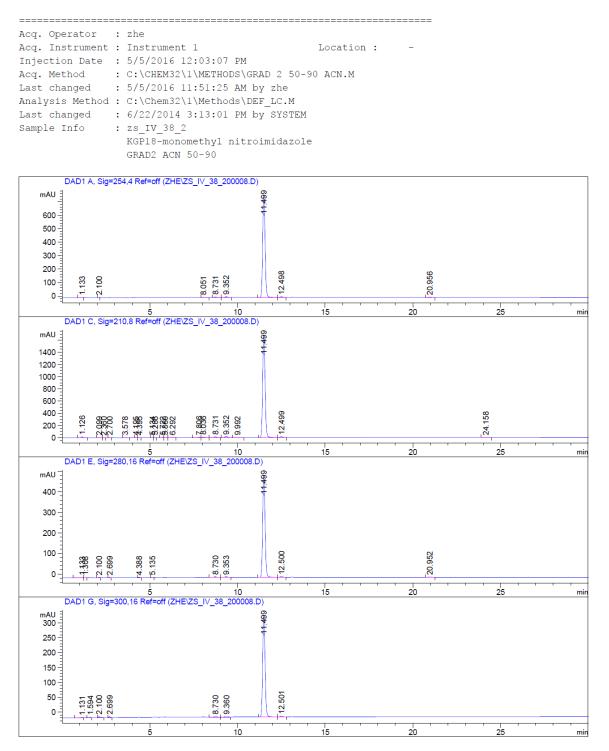

Signal 5: DAD1 H, Sig=320,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	10.737	BB	0.1420	2049.19653	221.43524	100.0000

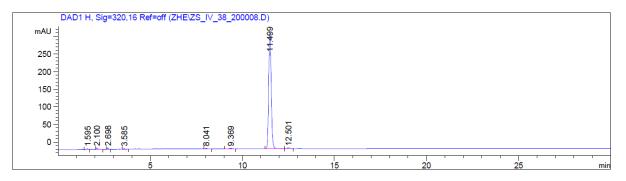

Totals : 2049.19653 221.43524



*** End of Report ***



Mass Spectrum of Compound 13



 $\label{eq:hplctrace} HPLC\ trace\ of\ compound\ 15$ Data File C:\Chem32\1\Data\ZHE\ZS_IV_38_200008.D Sample Name: zs_IV_38_2

Page 1 of 4

Data File C:\Chem32\1\Data\ZHE\ZS_IV_38_200008.D
Sample Name: zs_IV_38_2

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier a	Dilution	Factor with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		-				
1	1.133	BB	0.0924	9.27913	1.45485	0.1268
2	2.100	BV	0.0580	6.46301	1.71326	0.0883
3	8.051	BB	0.1354	10.94999	1.23606	0.1496
4	8.731	BB	0.1383	34.64928	3.87737	0.4734
5	9.352	BB	0.1515	49.93105	5.04203	0.6822
6	11.499	BB	0.1455	7137.88574	760.50507	97.5271
7	12.498	BB	0.1480	44.34357	4.62010	0.6059
8	20.956	BB	0.2606	25.37336	1.60384	0.3467

Totals: 7318.87514 780.05257

Signal 2: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		-		-	-	
1	1.126	BV R	0.0926	92.78095	14.90394	0.5555
2	2.099	BV	0.0776	15.72043	2.88344	0.0941
3	2.360	VB	0.0651	6.67961	1.58807	0.0400
4	2.700	BB	0.0674	16.12425	3.66159	0.0965
5	3.578	BB	0.1048	17.86118	2.51697	0.1069
6	4.195	VV	0.0911	17.36708	2.84933	0.1040
7	4.395	VV	0.1013	13.71676	2.07060	0.0821
8	5.134	BV	0.0937	18.59568	3.02740	0.1113
9	5.286	VB	0.0980	10.67476	1.68193	0.0639
10	5.722	BV	0.1337	21.27279	2.18244	0.1274
11	5.860	VB	0.1106	18.20321	2.45211	0.1090

¹²⁰⁰ HPLC 10/12/2016 4:24:50 PM SYSTEM

Data File C:\Chem32\1\Data\ZHE\ZS_IV_38_200008.D Sample Name: zs_IV_38_2

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
12	6.292	BB	0.1253	12.25700	1.46969	0.0734
13	7.806	BV	0.1349	45.46371	4.96068	0.2722
14	8.036	VB	0.1438	62.68792	6.53912	0.3753
15	8.731	BB	0.1395	95.28065	10.33574	0.5705
16	9.352	BV R	0.1601	143.08829	13.67217	0.8567
17	9.992	VB E	0.2375	25.20261	1.45927	0.1509
18	11.499	BV	0.1467	1.59298e4	1679.45557	95.3770
19	12.499	VB	0.1524	120.06548	12.03571	0.7189
20	24.158	BB	0.1875	19.08722	1.55162	0.1143

Totals: 1.67019e4 1771.29737

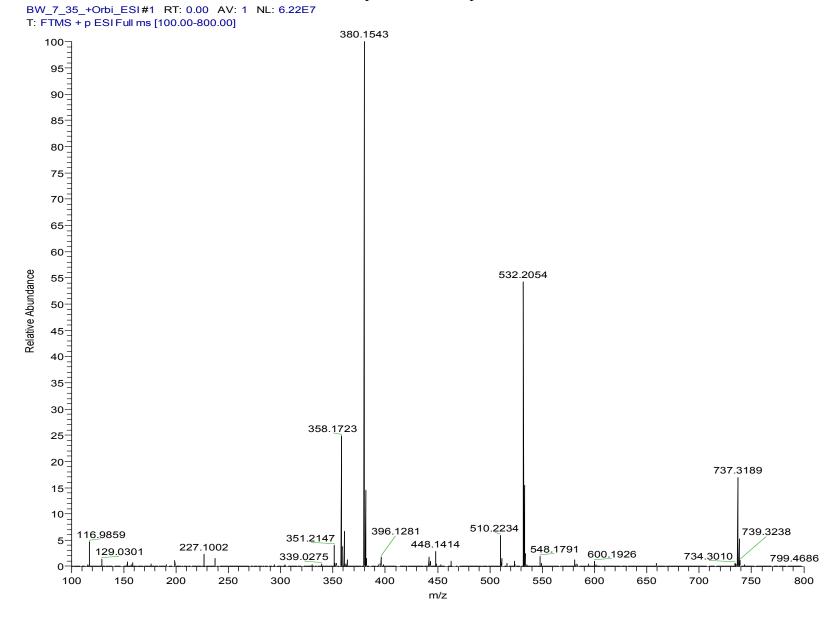
Signal 3: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	1.133	BV	0.1311	14.51148	1.55142	0.3013
2	1.308	VB	0.0633	5.32972	1.26033	0.1107
3	2.100	BB	0.0581	8.32161	2.20213	0.1728
4	2.699	BB	0.0667	5.14825	1.18580	0.1069
5	4.388	BB	0.0913	6.79379	1.17842	0.1411
6	5.135	BB	0.0890	6.98379	1.25374	0.1450
7	8.730	BB	0.1429	25.02971	2.68118	0.5198
8	9.353	BB	0.1535	30.43494	3.07315	0.6320
9	11.499	BB	0.1455	4662.06055	496.67212	96.8104
10	12.500	BB	0.1472	33.89988	3.55608	0.7040
11	20.952	BB	0.2655	17.14649	1.06684	0.3561
Total	s:			4815.66021	515.68121	

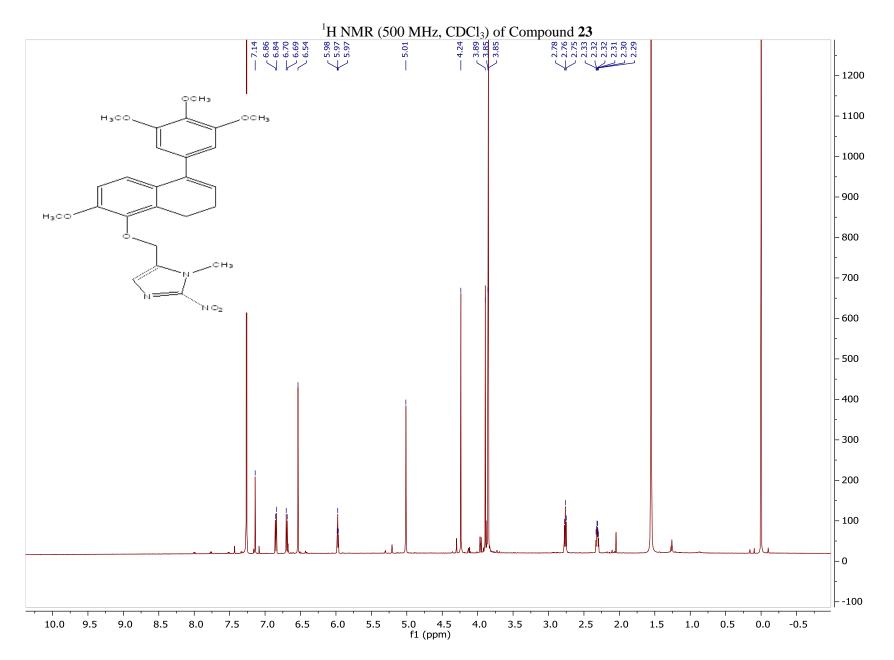
Signal 4: DAD1 G, Sig=300,16 Ref=off

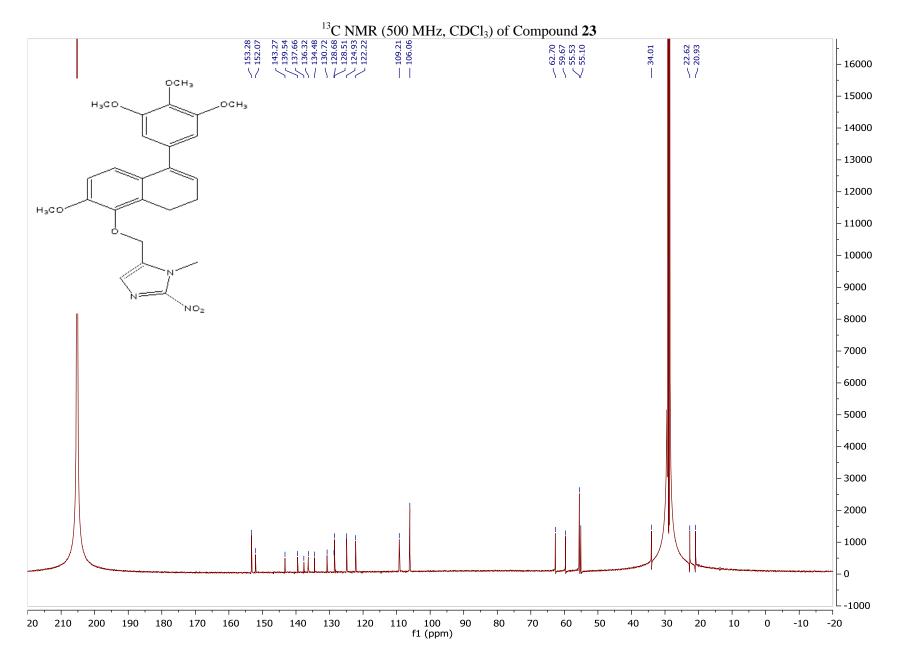
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.131	BV	0.1201	8.26240	1.00280	0.2495
2	1.594	BV	0.0739	8.13209	1.53150	0.2456
3	2.100	BV R	0.0677	18.48183	4.01500	0.5582
4	2.699	BB	0.0678	12.69180	2.85899	0.3833
5	8.730	BB	0.1446	12.71276	1.31774	0.3839
6	9.360	BB	0.1499	15.29412	1.56715	0.4619
7	11.499	BB	0.1455	3213.04224	342.37991	97.0399
8	12.501	BB	0.1462	22.43438	2.37466	0.6776

Totals: 3311.05162 357.04775


1200 HPLC 10/12/2016 4:24:50 PM SYSTEM

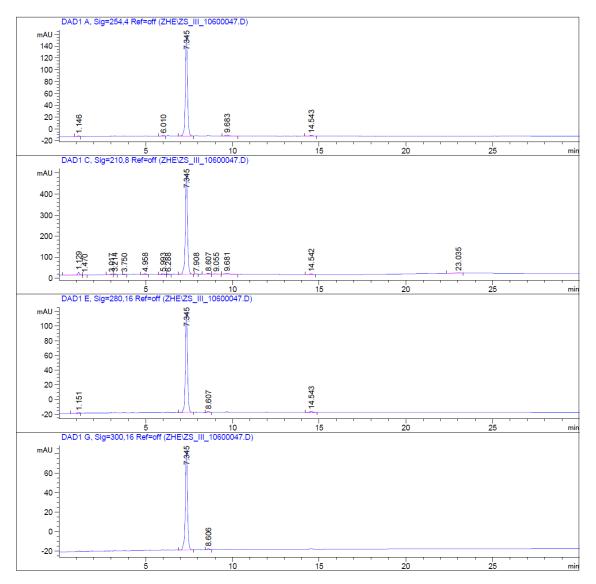
Data File C:\Chem32\1\Data\ZHE\ZS_IV_38_200008.D Sample Name: zs_IV_38_2


Signal 5: DAD1 H, Sig=320,16 Ref=off

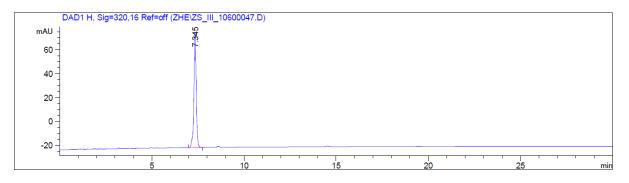

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1.595	BV	0.0682	12.10355	2.60457	0.3776
2	2.100	BV R	0.0740	21.38257	4.15635	0.6671
3	2.698	BB	0.0675	19.07925	4.31986	0.5952
4	3.585	BB	0.0842	7.96521	1.40347	0.2485
5	8.041	VB	0.1351	10.68806	1.20914	0.3335
6	9.369	BB	0.1389	13.34004	1.45553	0.4162
7	11.499	BB	0.1454	3099.98291	330.50562	96.7151
8	12.501	BB	0.1465	20.73283	2.18975	0.6468
Total	s:			3205.27442	347.84428	

------ *** End of Report ***

Mass Spectrum of Compound 15




```
HPLC trace of Compound 23
Sample Name: zs_III_106
```


```
Acq. Operator : zhe
Acq. Instrument : Instrument 1
                                            Location :
Injection Date : 6/13/2016 4:53:29 PM
            : C:\CHEM32\1\METHODS\GRAD 2 50-90 ACN.M
: 4/30/2014 1:53:57 AM by ERICAP
Acq. Method
Last changed
Analysis Method : C:\Chem32\1\Methods\DEF_LC.M
Last changed : 6/22/2014 3:13:01 PM by SYSTEM
Sample Info
              : zs_III_106
               GRAD 2 50-90 ACN
               checking for OXi6196
                20160613
```


1200 HPLC 10/12/2016 4:25:57 PM SYSTEM

1 of 3 Page

Data File C:\Chem32\1\Data\ZHE\ZS_III_10600047.D Sample Name: zs_III_106

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	옹
1	1.146	BV	0.1225	14.50789	1.65133	0.9533
2	6.010	BV	0.1416	10.73883	1.12269	0.7056
3	7.345	BB	0.1304	1463.31226	170.11348	96.1542
4	9.683	BB	0.1668	18.27984	1.55920	1.2012
5	14.543	BB	0.1627	15.00034	1.40349	0.9857

Totals : 1521.8	33916	175.85019
-----------------	-------	-----------

Signal 2: DAD1 C, Sig=210,8 Ref=off

Peak #	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
		-				
1	1.129	BB	0.1194	114.46228	13.99465	2.4845
2	1.470	BB	0.1120	9.27811	1.08261	0.2014
3	3.017	BV	0.1166	19.83439	2.44635	0.4305
4	3.214	VV	0.1009	19.90868	2.87203	0.4321
5	3.750	VB	0.1196	9.08917	1.15818	0.1973
6	4.958	BB	0.1201	24.10078	2.98917	0.5231
7	5.993	BV	0.1532	29.46825	2.88322	0.6396
8	6.288	VB	0.1122	17.46011	2.41898	0.3790
9	7.345	BB	0.1320	4174.38184	477.42743	90.6098
10	7.908	BB	0.1058	8.32523	1.24921	0.1807
11	8.607	BV	0.1375	42.01498	4.64822	0.9120
12	9.055	VB	0.1989	19.14094	1.32226	0.4155
13	9.681	BB	0.2065	65.06004	4.25249	1.4122
14	14.542	BB	0.1595	36.76067	3.53028	0.7979

1200 HPLC 10/12/2016 4:25:57 PM SYSTEM

Page 2 of 3

Data File C:\Chem32\1\Data\ZHE\ZS_III_10600047.D
Sample Name: zs_III_106

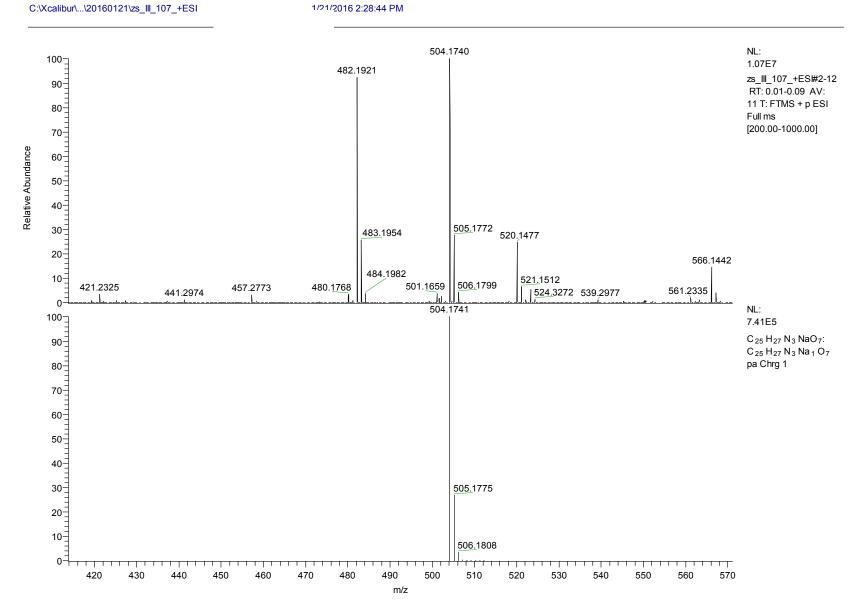
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
15	23.035	BB	0.2213	17.70357	1.19172	0.3843
Total	s:			4606.98903	523.46678	

Signal 3: DAD1 E, Sig=280,16 Ref=off

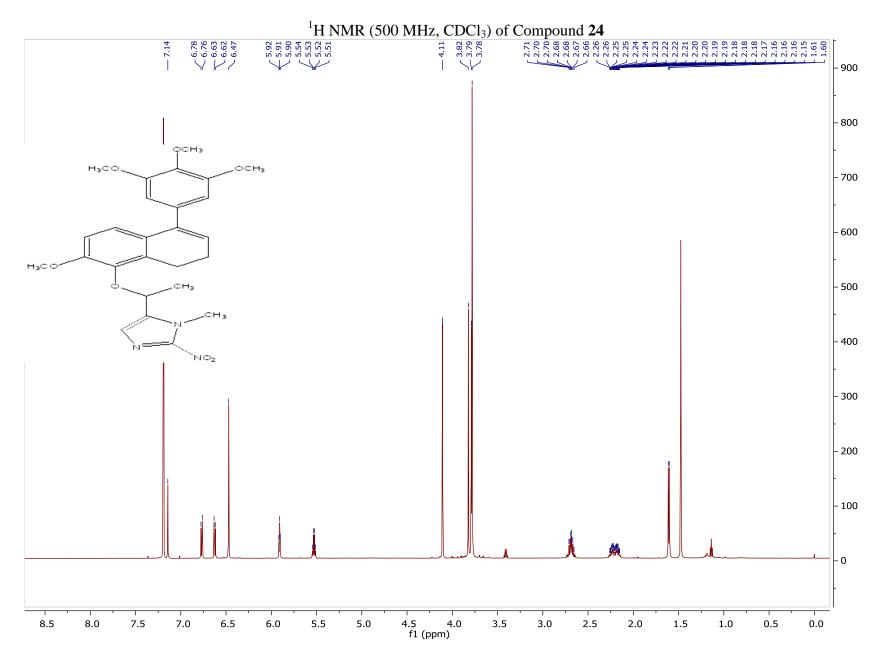
Peak RetTime # [min]			Area [mAU*s]	Height [mAU]	Area %
	-				
1 1.151	BV	0.1316	11.28998	1.12047	0.9390
2 7.345	BB	0.1298	1163.81067	136.00249	96.7981
3 8.607	BB	0.1309	13.15300	1.55119	1.0940
4 14.543	BB	0.1610	14.05339	1.33285	1.1689

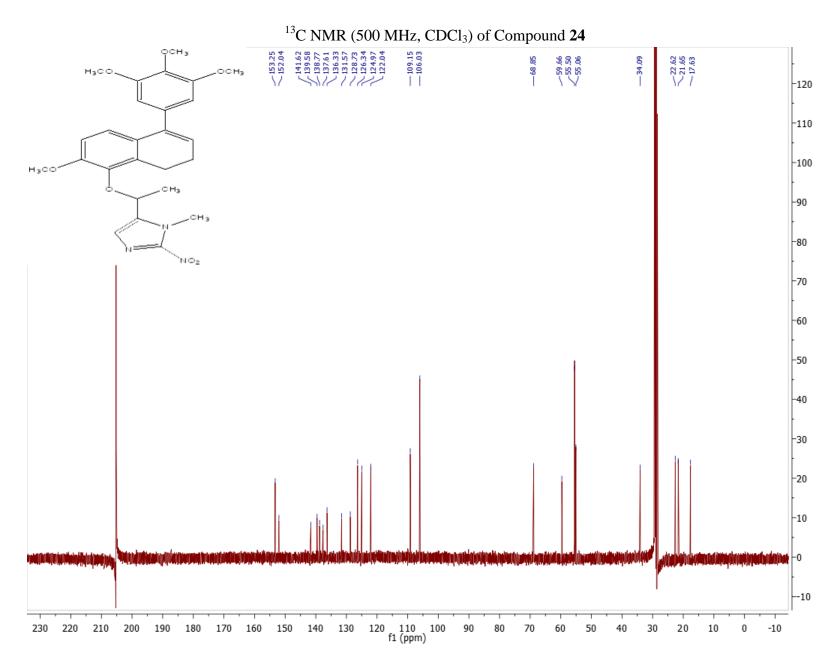
Totals: 1202.30703 140.00700

Signal 4: DAD1 G, Sig=300,16 Ref=off

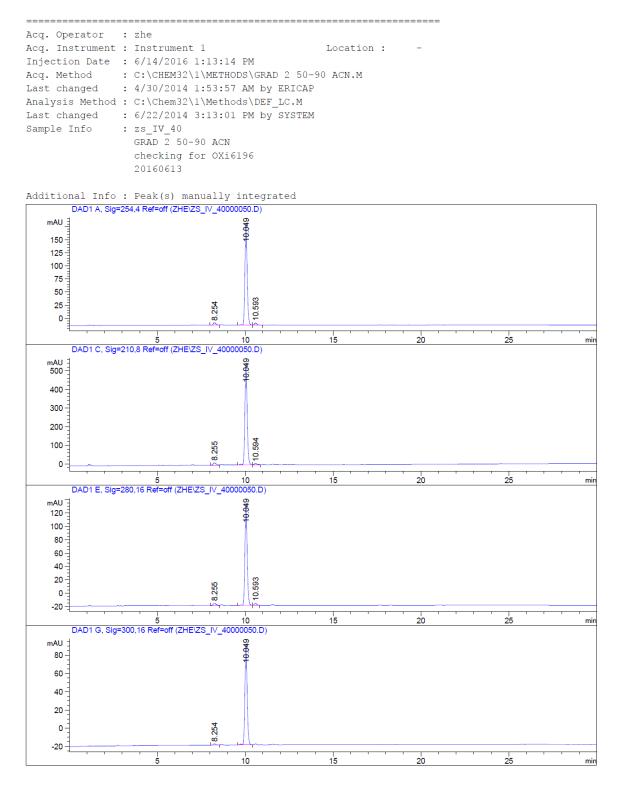

Peak RetTime Typ	e Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	8
	-			
1 7.345 BB	0.1330	899.99927	101.95317	98.8688
2 8.606 BB	0.1332	10.29763	1.21165	1.1312

Totals : 910.29690 103.16482

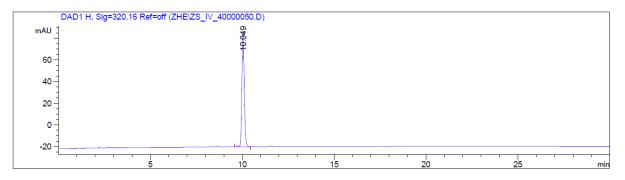

Signal 5: DAD1 H, Sig=320,16 Ref=off


	etTime Type [min]	Area [mAU*s]	Height [mAU]	Area %
		852.90222		
Totals	:	852.90222	96.21187	

Page 3 of 3



Mass Spectrum of Compound 23


HPLC trace of Compound 24 Sample Name: zs_IV_40

1200 HPLC 10/12/2016 4:19:33 PM SYSTEM

Page 1 of 3

Data File C:\Chem32\1\Data\ZHE\ZS_IV_40000050.D
Sample Name: zs_IV_40

Area Percent Report

Sorted By	:	Signal			
Multiplier	ultiplier : 1.0000				
Dilution	:	1.0000			
Use Multiplier &	Dilution	Factor with	ISTDs		

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
		-				
1	8.254	BV	0.1762	56.55766	4.84522	3.0398
2	10.049	VV R	0.1395	1766.42224	195.27231	94.9382
3	10.593	VB	0.1461	37.62222	3.91615	2.0220

Totals: 1860.60212 204.03367

Signal 2: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	8.255	BV	0.1761	145.61433	12.47793	2.8203
2	10.049	VV R	0.1392	4952.49658	545.70105	95.9208
3	10.594	VB	0.1448	64.99823	6.84419	1.2589

Totals : 5163.10915 565.02318

Signal 3: DAD1 E, Sig=280,16 Ref=off

				Area [mAU*s]	Height [mAU]	Area %
-		-				
1	8.255	BV	0.1770	38.75599	3.30042	2.6811
2	10.049	VV R	0.1393	1377.34216	152.55774	95.2831
3	10.593	VB	0.1411	29.42853	3.20475	2.0358

1200 HPLC 10/12/2016 4:19:33 PM SYSTEM

Page 2 of 3

Data File C:\Chem32\1\Data\ZHE\ZS_IV_40000050.D
Sample Name: zs_IV_40

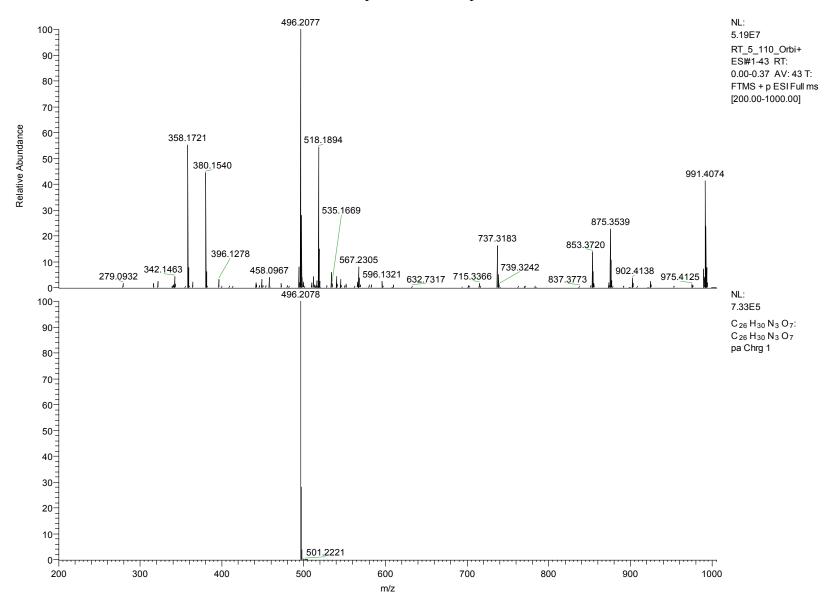
Peak RetTime	Type Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	8
Totals :		1445.52668	159.06291	

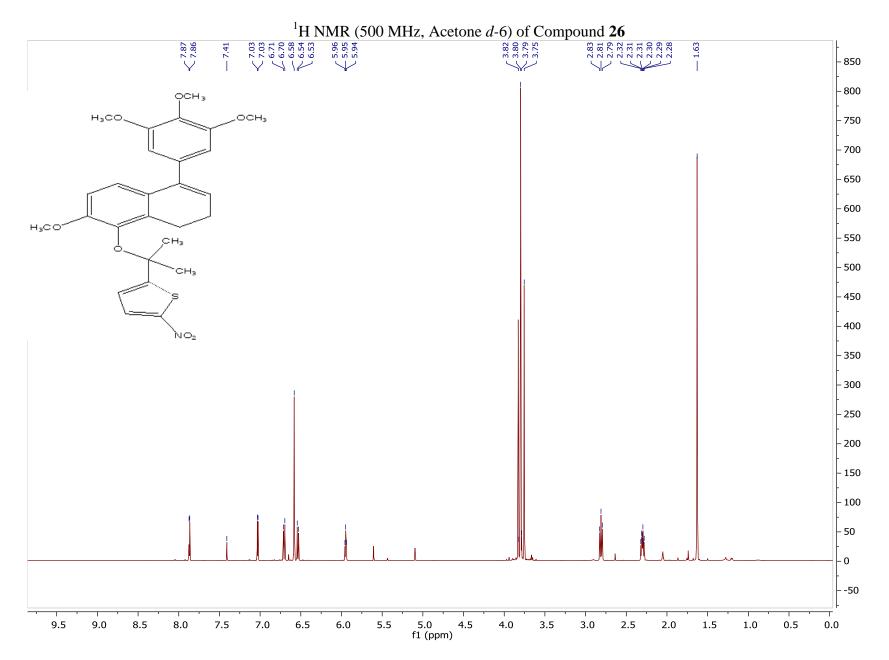
Signal 4: DAD1 G, Sig=300,16 Ref=off

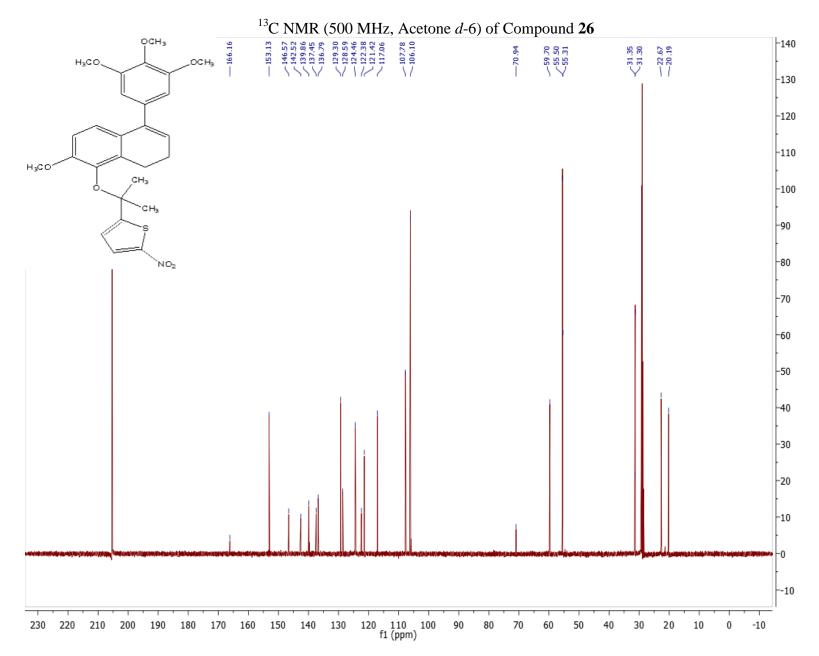
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	8.254	BB	0.1619	13.44318	1.26573	1.3209
2	10.049	VB R	0.1397	1004.31458	110.81192	98.6791

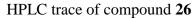
Totals : 1017.75776 112.07765

Signal 5: DAD1 H, Sig=320,16 Ref=off

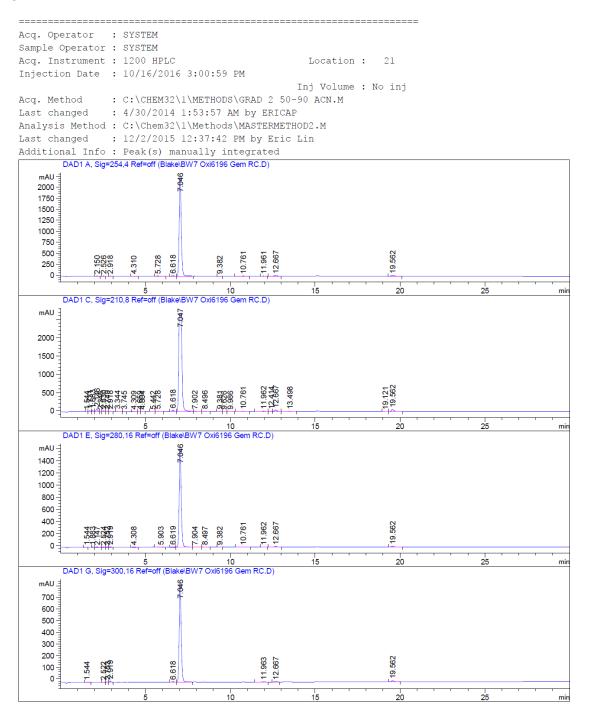

Peak RetTime T			Height	Area
# [min]	2 3		2 3	8
1 10.049 VI	B R 0.1390	967.01086	106.53122	100.0000

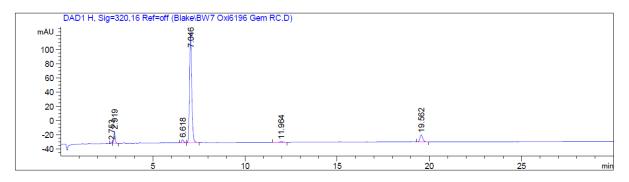

Totals : 967.01086 106.53122




*** End of Report ***

Mass Spectrum of Compound 24




Data File C:\Chem32\1\Data\Blake\BW7 Oxi6196 Gem RC.D Sample Name: BW7 Oxi6196 Gem RC

1200 HPLC 10/16/2016 3:54:20 PM SYSTEM

Page 1 of 4

Data File C:\Chem32\1\Data\Blake\BW7 Oxi6196 Gem RC.D Sample Name: BW7 Oxi6196 Gem RC

Area Percent Report

Sorted By		:	Sign	nal	
Multiplier		:	1.00	000	
Dilution		:	1.00	000	
Use Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		-				
1	2.150	BB	0.0810	21.74414	4.02976	0.1085
2	2.526	BV	0.0819	19.27966	3.63409	0.0962
3	2.918	VB	0.0798	21.06863	3.97996	0.1051
4	4.310	BB	0.1394	21.16036	2.10329	0.1056
5	5.728	BB	0.1465	43.51273	4.21120	0.2171
6	6.618	BB	0.1185	96.37733	12.70104	0.4808
7	7.046	BB	0.1352	1.94107e4	2237.72778	96.8423
8	9.382	BB	0.1269	12.60544	1.58271	0.0629
9	10.761	BB	0.1691	31.43010	2.75466	0.1568
10	11.961	BB	0.1444	18.62211	2.04165	0.0929
11	12.667	BB	0.1665	156.38867	14.42549	0.7802
12	19.562	BB	0.1651	190.73715	17.78152	0.9516

2.00436e4 2306.97316

Signal 2: DAD1 C, Sig=210,8 Ref=off

Totals :

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1.544	BB	0.0636	12.17599	2.98181	0.0321
2	1.731	BV	0.0634	74.16545	18.27028	0.1954
3	1.883	VB	0.0662	147.86836	34.35511	0.3895
4	2.146	BV	0.0880	469.05283	76.04569	1.2356
5	2.346	VB	0.0708	12.12536	2.67804	0.0319
6	2.530	BB	0.0784	109.76604	21.94122	0.2892
7	2.749	BV	0.0872	49.36267	8.56939	0.1300

1200 HPLC 10/16/2016 3:54:20 PM SYSTEM

Page 2 of 4

Data File C:	\Chem32\1\I	Data\Blake\BW7	Oxi6196 Gem RC.D
Sample Name:	BW7 Oxi61	96 Gem RC	

					Height	
					[mAU]	
8	2.918	VB	0.0797	37.39708	7.07094	0.0985
9	3.344	VB	0.1003	50.03474	7.26759	0.1318
10	3.745	BB	0.1276	11.39088	1.51767	0.0300
11	4.309	BV	0.1319	54.41442	5.99596	0.1433
12	4.659	VV	0.1250	12.91497	1.55343	0.0340
13	4.804	VB	0.1211	12.79491	1.57006	0.0337
14	5.442	BV	0.1321	29.21450	3.33666	0.0770
15	5.728	VB	0.1613	83.36116	7.18853	0.2196
16	6.618	BB	0.1176	301.44446	40.14783	0.7941
17	7.047	BV	0.2078	3.49715e4	2688.12720	92.1243
18	7.902	VV	0.2100	123.94389	8.12347	0.3265
19	8.496	VB	0.1661	59.22626	5.15211	0.1560
20	9.381	BV	0.1367	42.00155	4.76997	0.1106
21	9.626	VV	0.1518	15.92287	1.63308	0.0419
22	9.986	VB	0.1470	13.82489	1.47941	0.0364
23	10.761	BV	0.1798	95.38769	7.63518	0.2513
24	11.962	BB	0.1793	119.56042	9.87117	0.3150
25	12.414	BV	0.1328	32.26881	3.80966	0.0850
26	12.667	VB	0.1623	431.83203	41.20753	1.1376
27	13.498	BB	0.2967	52.24476	2.39301	0.1376
28	19.121	BB	0.1545	17.16413	1.74938	0.0452
29	19.562	BB	0.1660	518.84137	48.05563	1.3668
Total	ls :			3.79612e4	3064.49704	

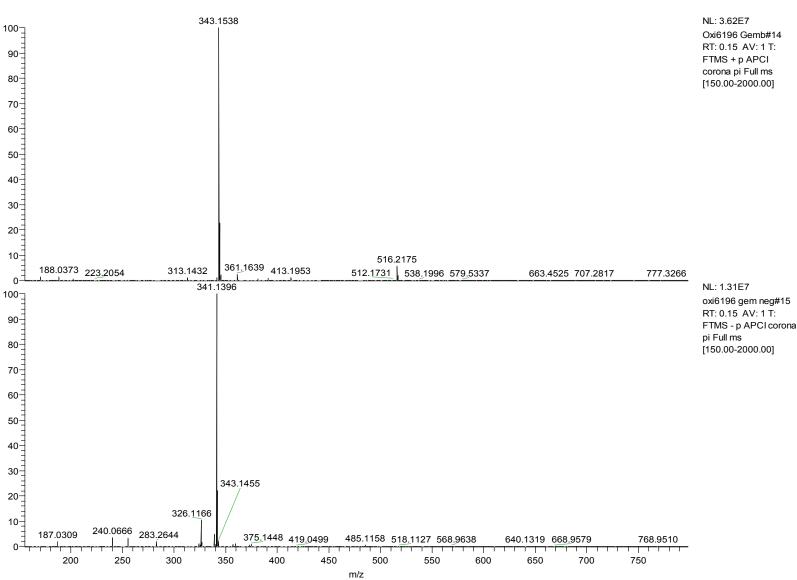
Signal 3: DAD1 E, Sig=280,16 Ref=off

					Height [mAU]	
1	1.544	VB	0.2223	27.49159	1.55504	0.1911
2	1.883	BB	0.0647	6.14138	1.47195	0.0427
3	2.147	BV	0.0939	28.73404	4.30289	0.1998
4	2.524	VB	0.0820	13.30602	2.50370	0.0925
5	2.752	BV	0.0903	13.37504	2.21877	0.0930
6	2.919	VB	0.0811	38.50901	7.12371	0.2677
7	4.308	BB	0.1187	19.31515	2.43219	0.1343
8	5.903	BB	0.2518	26.66931	1.48306	0.1854
9	6.619	BV	0.1197	33.90186	4.41026	0.2357
10	7.046	VV	0.1336	1.38179e4	1618.53064	96.0746
11	7.904	VV	0.2148	34.61695	2.20964	0.2407
12	8.497	VB	0.1676	16.42806	1.41371	0.1142
13	9.382	BB	0.1276	8.51581	1.06148	0.0592
14	10.761	BB	0.1588	20.12291	1.91218	0.1399
15	11.962	BB	0.1412	10.03933	1.11330	0.0698
16	12.667	BB	0.1666	108.24971	9.97465	0.7527
17	19.562	BB	0.1648	159.14778	14.88236	1.1065
Total	ls :			1.43825e4	1678.59953	

1200 HPLC 10/16/2016 3:54:20 PM SYSTEM

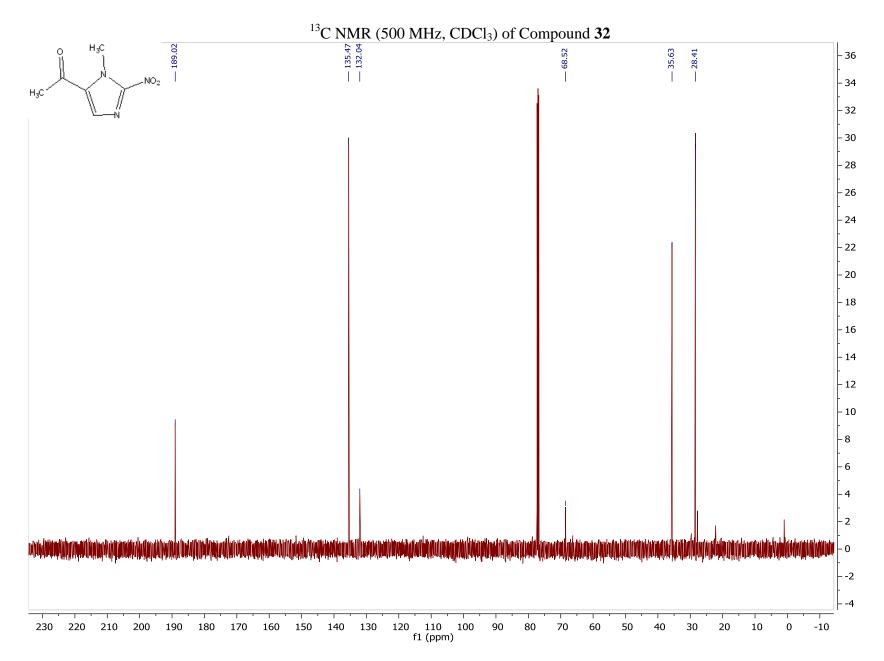
Data File C:\Chem32\1\Data\Blake\BW7 Oxi6196 Gem RC.D Sample Name: BW7 Oxi6196 Gem RC

Signal 4: DAD1 G, Sig=300,16 Ref=off


Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	
1	1.544	BB	0.0961	7.62694	1.11139	0.1032
2	2.522	BB	0.0811	6.80067	1.29880	0.0921
3	2.753	BV	0.0872	15.37116	2.66771	0.2081
4	2.919	VB	0.0799	57.42009	10.82305	0.7773
5	6.618	BB	0.1181	37.88076	5.01658	0.5128
6	7.046	BB	0.1286	7099.83594	839.95410	96.1135
7	11.963	BB	0.1681	18.23425	1.63518	0.2468
8	12.667	BB	0.1566	35.85839	3.58817	0.4854
9	19.562	BB	0.1642	107.89776	10.13904	1.4607
Total	s:			7386.92596	876.23401	

Signal 5: DAD1 H, Sig=320,16 Ref=off


Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	2.753	BV	0.0860	11.72718	2.07270	0.7518
2	2.919	VB	0.0793	89.52174	17.04667	5.7388
3	6.618	BB	0.1185	33.24532	4.38226	2.1312
4	7.046	BB	0.1309	1310.35754	154.51758	84.0011
5	11.964	BB	0.1634	11.01170	1.02408	0.7059
6	19.562	BB	0.1639	104.06503	9.79913	6.6711
Total	s:			1559.92852	188.84243	



*** End of Report ***

Mass Spectrum of Compound 26

APPENDIX D

Permissions

NATURE PUBLISHING GROUP LICENSE TERMS AND CONDITIONS

Nov 30, 2016

This Agreement between Blake A Winn ("You") and Nature Publishing Group ("Nature Publishing Group") consists of your license details and the terms and conditions provided by Nature Publishing Group and Copyright Clearance Center.

	e
License Number	3980980361957
License date	Nov 02, 2016
Licensed Content Publisher	Nature Publishing Group
Licensed Content Publication	Nature Reviews Cancer
Licensed Content Title	Disrupting tumour blood vessels
Licensed Content Author	Gillian M. Tozer, Chryso Kanthou, Bruce C. Baguley
Licensed Content Date	Jun 1, 2005
Licensed Content Volume Number	5
Licensed Content Issue Number	6
Type of Use	reuse in a dissertation / thesis
Requestor type	academic/educational
Format	print and electronic
Portion	figures/tables/illustrations
Number of figures/tables/illustrations	1
High-res required	no
Figures	Figure 3- Proposed mechanisms for rapid tumour vascular shutdown after treatment with CA-4-P or DMXAA.
Author of this NPG article	no
Your reference number	
Title of your thesis / dissertation	Synthesis, Characterization, and Biological Evaluation of Bioreductively Activatable Prodrug Conjugates (BAPCs) of Phenstatin, KGP18,

	OXi6196, Combretastatin A-1, and Combretastatin A-4
Expected completion date	Dec 2016
Estimated size (number of pages)	500
	Blake A Winn 2000 South First Street Apt #1313
Requestor Location	
	WACO, TX 76706 United States
	Attn: Blake A Winn
Billing Type	Invoice
	Blake A Winn
	2000 South First Street Apt #1313
Billing Address	1
	WACO, TX 76706
	United States
	Attn: Blake A Winn
Total	0.00 USD
Terms and Conditions	
Terms an	d Conditions for Permissions

Nature Publishing Group hereby grants you a non-exclusive license to reproduce this material for this purpose, and for no other use, subject to the conditions below:

- 1. NPG warrants that it has, to the best of its knowledge, the rights to license reuse of this material. However, you should ensure that the material you are requesting is original to Nature Publishing Group and does not carry the copyright of another entity (as credited in the published version). If the credit line on any part of the material you have requested indicates that it was reprinted or adapted by NPG with permission from another source, then you should also seek permission from that source to reuse the material.
- 2. Permission granted free of charge for material in print is also usually granted for any electronic version of that work, provided that the material is incidental to the work as a whole and that the electronic version is essentially equivalent to, or substitutes for, the print version. Where print permission has been granted for a fee, separate permission must be obtained for any additional, electronic re-use (unless, as in the case of a full paper, this has already been accounted for during your initial request in the calculation of a print run).NB: In all cases, web-based use of full-text articles must be authorized separately through the 'Use on a Web Site' option when requesting permission.

- 3. Permission granted for a first edition does not apply to second and subsequent editions and for editions in other languages (except for signatories to the STM Permissions Guidelines, or where the first edition permission was granted for free).
- 4. Nature Publishing Group's permission must be acknowledged next to the figure, table or abstract in print. In electronic form, this acknowledgement must be visible at the same time as the figure/table/abstract, and must be hyperlinked to the journal's homepage.
- 5. The credit line should read:

Reprinted by permission from Macmillan Publishers Ltd: [JOURNAL NAME] (reference citation), copyright (year of publication) For AOP papers, the credit line should read: Reprinted by permission from Macmillan Publishers Ltd: [JOURNAL NAME], advance online publication, day month year (doi: 10.1038/sj.[JOURNAL ACRONYM].XXXXX)

Note: For republication from the *British Journal of Cancer*, the following credit lines apply.

Reprinted by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: [JOURNAL NAME] (reference citation), copyright (year of publication)For AOP papers, the credit line should read: Reprinted by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: [JOURNAL NAME], advance online publication, day month year (doi: 10.1038/sj.[JOURNAL ACRONYM].XXXXX)

6. Adaptations of single figures do not require NPG approval. However, the adaptation should be credited as follows:

Adapted by permission from Macmillan Publishers Ltd: [JOURNAL NAME] (reference citation), copyright (year of publication)

Note: For adaptation from the *British Journal of Cancer*, the following credit line applies.

Adapted by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: [JOURNAL NAME] (reference citation), copyright (year of publication)

7. Translations of 401 words up to a whole article require NPG approval. Please visit <u>http://www.macmillanmedicalcommunications.com</u> for more information.Translations of up to a 400 words do not require NPG approval. The translation should be credited as follows:

Translated by permission from Macmillan Publishers Ltd: [JOURNAL NAME] (reference citation), copyright (year of publication).

Note: For translation from the *British Journal of Cancer*, the following credit line applies.

Translated by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: [JOURNAL NAME] (reference citation), copyright (year of publication)

We are certain that all parties will benefit from this agreement and wish you the best in the use of this material. Thank you.

Special Terms:

v1.1

Questions? <u>customercare@copyright.com</u> or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

ELSEVIER LICENSE TERMS AND CONDITIONS Nov 30, 2016

This Agreement between Blake A Winn ("You") and Elsevier ("Elsevier") consists of your license details and the terms and conditions provided by Elsevier and Copyright Clearance Center.

License Number	3980971083691
License date	Nov 02, 2016
Licensed Content Publisher	Elsevier
Licensed Content Publication	Cancer Treatment Reviews
Licensed Content Title	The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by Tumor- Vascular Disrupting Agents
Licensed Content Author	Dietmar W. Siemann
Licensed Content Date	February 2011
Licensed Content Volume Number	37
Licensed Content Issue Number	1

Licensed Content Pages	12
Start Page	63
End Page	74
Type of Use	reuse in a thesis/dissertation
Portion	figures/tables/illustrations
Number of figures/tables/illustrations	2
Format	both print and electronic
Are you the author of this Elsevier article?	No
Will you be translating?	No
Order reference number	
Original figure numbers	figures 1 and 2
Title of your thesis/dissertation	Synthesis, Characterization, and Biological Evaluation of Bioreductively Activatable Prodrug Conjugates (BAPCs) of Phenstatin, KGP18, OXi6196, Combretastatin A-1, and Combretastatin A-4
Expected completion date	Dec 2016
Estimated size (number of pages)	500
Elsevier VAT number	GB 494 6272 12
	Blake A Winn 2000 South First Street Apt #1313
Requestor Location	r
	WACO, TX 76706 United States Attn: Blake A Winn
Total	0.00 USD
Terms and Conditions	

INTRODUCTION

1. The publisher for this copyrighted material is Elsevier. By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are available at any time at http://myaccount.copyright.com).

GENERAL TERMS

2. Elsevier hereby grants you permission to reproduce the aforementioned material subject

to the terms and conditions indicated.

3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source, permission must also be sought from that source. If such permission is not obtained then that material may not be included in your publication/copies. Suitable acknowledgement to the source must be made, either as a footnote or in a reference list at the end of your publication, as follows:

"Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with permission from Elsevier."

4. Reproduction of this material is confined to the purpose and/or media for which permission is hereby given.

5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions and/or any other alterations shall be made only with prior written authorization of Elsevier Ltd. (Please contact Elsevier at permissions@elsevier.com)

6. If the permission fee for the requested use of our material is waived in this instance, please be advised that your future requests for Elsevier materials may attract a fee.

7. Reservation of Rights: Publisher reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.

8. License Contingent Upon Payment: While you may exercise the rights licensed immediately upon issuance of the license at the end of the licensing process for the transaction, provided that you have disclosed complete and accurate details of your proposed use, no license is finally effective unless and until full payment is received from you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions. If full payment is not received on a timely basis, then any license preliminarily granted shall be deemed automatically revoked and shall be void as if never granted. Further, in the event that you breach any of these terms and conditions or any of CCC's Billing and Payment terms and conditions, the license is automatically revoked and shall be void as if never granted. Use of materials as described in a revoked license, as well as any use of the materials beyond the scope of an unrevoked license, may constitute copyright infringement and publisher reserves the right to take any and all action to protect its copyright in the materials.

9. Warranties: Publisher makes no representations or warranties with respect to the licensed

material.

10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and their respective officers, directors, employees and agents, from and against any and all claims arising out of your use of the licensed material other than as specifically authorized pursuant to this license.

11. No Transfer of License: This license is personal to you and may not be sublicensed, assigned, or transferred by you to any other person without publisher's written permission.

12. No Amendment Except in Writing: This license may not be amended except in a writing signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).

13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any purchase order, acknowledgment, check endorsement or other writing prepared by you, which terms are inconsistent with these terms and conditions or CCC's Billing and Payment terms and conditions. These terms and conditions, together with CCC's Billing and Payment terms and conditions (which are incorporated herein), comprise the entire agreement between you and publisher (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations established by these terms and conditions, these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall control.

14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described in this License at their sole discretion, for any reason or no reason, with a full refund payable to you. Notice of such denial will be made using the contact information provided by you. Failure to receive such notice will not alter or invalidate the denial. In no event will Elsevier or Copyright Clearance Center be responsible or liable for any costs, expenses or damage incurred by you as a result of a denial of your permission request, other than a refund of the amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied permissions.

LIMITED LICENSE

The following terms and conditions apply only to specific license types:

15. **Translation**: This permission is granted for non-exclusive world <u>English</u> rights only unless your license was granted for translation rights. If you licensed translation rights you may only translate this content into the languages you requested. A professional translator must perform all translations and reproduce the content word for word preserving the integrity of the article.

16. **Posting licensed content on any Website**: The following terms and conditions apply as follows: Licensing material from an Elsevier journal: All content posted to the web site must maintain the copyright information line on the bottom of each image; A hyper-text must be included to the Homepage of the journal from which you are licensing at

http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books at http://www.elsevier.com; Central Storage: This license does not include permission for a scanned version of the material to be stored in a central repository such as that provided by Heron/XanEdu.

Licensing material from an Elsevier book: A hyper-text link must be included to the Elsevier homepage at <u>http://www.elsevier.com</u>. All content posted to the web site must maintain the copyright information line on the bottom of each image.

Posting licensed content on Electronic reserve: In addition to the above the following clauses are applicable: The web site must be password-protected and made available only to bona fide students registered on a relevant course. This permission is granted for 1 year only. You may obtain a new license for future website posting.

17. For journal authors: the following clauses are applicable in addition to the above:

Preprints:

A preprint is an author's own write-up of research results and analysis, it has not been peerreviewed, nor has it had any other value added to it by a publisher (such as formatting, copyright, technical enhancement etc.).

Authors can share their preprints anywhere at any time. Preprints should not be added to or enhanced in any way in order to appear more like, or to substitute for, the final versions of articles however authors can update their preprints on arXiv or RePEc with their Accepted Author Manuscript (see below).

If accepted for publication, we encourage authors to link from the preprint to their formal publication via its DOI. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help users to find, access, cite and use the best available version. Please note that Cell Press, The Lancet and some society-owned have different preprint policies. Information on these policies is available on the journal homepage.

Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an article that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and editor-author communications.

Authors can share their accepted author manuscript:

- – immediately
 - via their non-commercial person homepage or blog
 - by updating a preprint in arXiv or RePEc with the accepted manuscript
 - o via their research institute or institutional repository for internal

institutional uses or as part of an invitation-only research collaboration work-group

- directly by providing copies to their students or to research collaborators for their personal use
- for private scholarly sharing as part of an invitation-only work group on commercial sites with which Elsevier has an agreement
- – after the embargo period
 - via non-commercial hosting platforms such as their institutional repository
 - via commercial sites with which Elsevier has an agreement

In all cases accepted manuscripts should:

- – link to the formal publication via its DOI
- - bear a CC-BY-NC-ND license this is easy to do
- – if aggregated with other manuscripts, for example in a repository or other site, be shared in alignment with our hosting policy not be added to or enhanced in any way to appear more like, or to substitute for, the published journal article.

Published journal article (JPA): A published journal article (PJA) is the definitive final record of published research that appears or will appear in the journal and embodies all value-adding publishing activities including peer review co-ordination, copy-editing, formatting, (if relevant) pagination and online enrichment.

Policies for sharing publishing journal articles differ for subscription and gold open access articles:

Subscription Articles: If you are an author, please share a link to your article rather than the full-text. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help your users to find, access, cite, and use the best available version.

Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

If you are affiliated with a library that subscribes to ScienceDirect you have additional private sharing rights for others' research accessed under that agreement. This includes use for classroom teaching and internal training at the institution (including use in course packs and courseware programs), and inclusion of the article for grant funding purposes.

<u>Gold Open Access Articles:</u> May be shared according to the author-selected end-user license and should contain a <u>CrossMark logo</u>, the end user license, and a DOI link to the formal publication on ScienceDirect.

Please refer to Elsevier's posting policy for further information.

18. For book authors the following clauses are applicable in addition to the above: Authors are permitted to place a brief summary of their work online only. You are not allowed to download and post the published electronic version of your chapter, nor may you scan the printed edition to create an electronic version. **Posting to a repository:** Authors are permitted to post a summary of their chapter only in their institution's repository.

19. **Thesis/Dissertation**: If your license is for use in a thesis/dissertation your thesis may be submitted to your institution in either print or electronic form. Should your thesis be published commercially, please reapply for permission. These requirements include permission for the Library and Archives of Canada to supply single copies, on demand, of the complete thesis and include permission for Proquest/UMI to supply single copies, on demand, of the complete thesis. Should your thesis be published commercially, please reapply for permission. Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

Elsevier Open Access Terms and Conditions

You can publish open access with Elsevier in hundreds of open access journals or in nearly 2000 established subscription journals that support open access publishing. Permitted third party re-use of these open access articles is defined by the author's choice of Creative Commons user license. See our <u>open access license policy</u> for more information.

Terms & Conditions applicable to all Open Access articles published with Elsevier:

Any reuse of the article must not represent the author as endorsing the adaptation of the article nor should the article be modified in such a way as to damage the author's honour or reputation. If any changes have been made, such changes must be clearly indicated.

The author(s) must be appropriately credited and we ask that you include the end user license and a DOI link to the formal publication on ScienceDirect.

If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source it is the responsibility of the user to ensure their reuse complies with the terms and conditions determined by the rights holder.

Additional Terms & Conditions applicable to each Creative Commons user license:

CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article and to make commercial use of the Article (including reuse and/or resale of the Article by commercial entities), provided the

user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. The full details of the license are available at <u>http://creativecommons.org/licenses/by/4.0</u>.

CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article, provided this is not done for commercial purposes, and that the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. Further, any new works must be made available on the same conditions. The full details of the license are available at <u>http://creativecommons.org/licenses/by-nc-sa/4.0</u>.

CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the Article, provided this is not done for commercial purposes and further does not permit distribution of the Article if it is changed or edited in any way, and provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, and that the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by-nc-nd/4.0. Any commercial reuse of Open Access articles published with a CC BY NC SA or CC BY NC ND license requires permission from Elsevier and will be subject to a fee.

Commercial reuse includes:

- – Associating advertising with the full text of the Article
- – Charging fees for document delivery or access
- – Article aggregation
- – Systematic distribution via e-mail lists or share buttons

Posting or linking by commercial companies for use by customers of those companies.

20. Other Conditions:

v1.8

Questions? <u>customercare@copyright.com</u> or +1-855-239-3415 (toll free in the US) or +1-978-646-2777. ELSEVIER LICENSE TERMS AND CONDITIONS Nov 30, 2016 This Agreement between Blake A Winn ("You") and Elsevier ("Elsevier") consists of your license details and the terms and conditions provided by Elsevier and Copyright Clearance Center.

e e mort	
License Number	3980971227197
License date	Nov 02, 2016
Licensed Content Publisher	Elsevier
Licensed Content Publication	Pharmacology & Therapeutics
Licensed Content Title	Modulation of the tumor vasculature and oxygenation to improve therapy
Licensed Content Author	Dietmar W. Siemann, Michael R. Horsman
Licensed Content Date	September 2015
Licensed Content Volume Number	153
Licensed Content Issue Number	n/a
Licensed Content Pages	18
Start Page	107
End Page	124
Type of Use	reuse in a thesis/dissertation
Intended publisher of new work	other
Portion	figures/tables/illustrations
Number of figures/tables/illustrations	3
Format	both print and electronic
Are you the author of this Elsevier article?	No
Will you be translating?	No
Order reference number	
Original figure numbers	Figures 1A, 1B, 6
Title of your thesis/dissertation	Synthesis, Characterization, and Biological Evaluation of Bioreductively Activatable Prodrug Conjugates (BAPCs) of Phenstatin, KGP18, OXi6196, Combretastatin A-1, and Combretastatin A-4
Expected completion date	Dec 2016
Estimated size (number of pages)	500
Elsevier VAT number	GB 494 6272 12
Requestor Location	Blake A Winn

2000 South First Street Apt #1313

WACO, TX 76706 United States Attn: Blake A Winn 0.00 USD

Total

Terms and Conditions

INTRODUCTION

1. The publisher for this copyrighted material is Elsevier. By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are available at any time at http://myaccount.copyright.com).

GENERAL TERMS

2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to the terms and conditions indicated.

3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source, permission must also be sought from that source. If such permission is not obtained then that material may not be included in your publication/copies. Suitable acknowledgement to the source must be made, either as a footnote or in a reference list at the end of your publication, as follows:

"Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with permission from Elsevier."

4. Reproduction of this material is confined to the purpose and/or media for which permission is hereby given.

5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions and/or any other alterations shall be made only with prior written authorization of Elsevier Ltd. (Please contact Elsevier at permissions@elsevier.com)

6. If the permission fee for the requested use of our material is waived in this instance,

please be advised that your future requests for Elsevier materials may attract a fee.

7. Reservation of Rights: Publisher reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.

8. License Contingent Upon Payment: While you may exercise the rights licensed immediately upon issuance of the license at the end of the licensing process for the transaction, provided that you have disclosed complete and accurate details of your proposed use, no license is finally effective unless and until full payment is received from you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions. If full payment is not received on a timely basis, then any license preliminarily granted shall be deemed automatically revoked and shall be void as if never granted. Further, in the event that you breach any of these terms and conditions or any of CCC's Billing and Payment terms and conditions, the license is automatically revoked and shall be void as if never granted. Use of materials as described in a revoked license, as well as any use of the materials beyond the scope of an unrevoked license, may constitute copyright infringement and publisher reserves the right to take any and all action to protect its copyright in the materials.

9. Warranties: Publisher makes no representations or warranties with respect to the licensed material.

10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and their respective officers, directors, employees and agents, from and against any and all claims arising out of your use of the licensed material other than as specifically authorized pursuant to this license.

11. No Transfer of License: This license is personal to you and may not be sublicensed, assigned, or transferred by you to any other person without publisher's written permission.

12. No Amendment Except in Writing: This license may not be amended except in a writing signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).

13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any purchase order, acknowledgment, check endorsement or other writing prepared by you, which terms are inconsistent with these terms and conditions or CCC's Billing and Payment terms and conditions. These terms and conditions, together with CCC's Billing and Payment terms and conditions (which are incorporated herein), comprise the entire agreement between you and publisher (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations established by these terms and conditions, these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall control.

14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions

described in this License at their sole discretion, for any reason or no reason, with a full refund payable to you. Notice of such denial will be made using the contact information provided by you. Failure to receive such notice will not alter or invalidate the denial. In no event will Elsevier or Copyright Clearance Center be responsible or liable for any costs, expenses or damage incurred by you as a result of a denial of your permission request, other than a refund of the amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied permissions.

LIMITED LICENSE

The following terms and conditions apply only to specific license types:

15. **Translation**: This permission is granted for non-exclusive world <u>English</u> rights only unless your license was granted for translation rights. If you licensed translation rights you may only translate this content into the languages you requested. A professional translator must perform all translations and reproduce the content word for word preserving the integrity of the article.

16. **Posting licensed content on any Website**: The following terms and conditions apply as follows: Licensing material from an Elsevier journal: All content posted to the web site must maintain the copyright information line on the bottom of each image; A hyper-text must be included to the Homepage of the journal from which you are licensing at http://www.sciencedirect.com/science/journal/xxx or the Elsevier homepage for books at http://www.elsevier.com; Central Storage: This license does not include permission for a scanned version of the material to be stored in a central repository such as that provided by Heron/XanEdu.

Licensing material from an Elsevier book: A hyper-text link must be included to the Elsevier homepage at <u>http://www.elsevier.com</u>. All content posted to the web site must maintain the copyright information line on the bottom of each image.

Posting licensed content on Electronic reserve: In addition to the above the following clauses are applicable: The web site must be password-protected and made available only to bona fide students registered on a relevant course. This permission is granted for 1 year only. You may obtain a new license for future website posting.

17. For journal authors: the following clauses are applicable in addition to the above:

Preprints:

A preprint is an author's own write-up of research results and analysis, it has not been peerreviewed, nor has it had any other value added to it by a publisher (such as formatting, copyright, technical enhancement etc.).

Authors can share their preprints anywhere at any time. Preprints should not be added to or

enhanced in any way in order to appear more like, or to substitute for, the final versions of articles however authors can update their preprints on arXiv or RePEc with their Accepted Author Manuscript (see below).

If accepted for publication, we encourage authors to link from the preprint to their formal publication via its DOI. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help users to find, access, cite and use the best available version. Please note that Cell Press, The Lancet and some society-owned have different preprint policies. Information on these policies is available on the journal homepage.

Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an article that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and editor-author communications.

Authors can share their accepted author manuscript:

- – immediately
 - via their non-commercial person homepage or blog
 - by updating a preprint in arXiv or RePEc with the accepted manuscript
 - via their research institute or institutional repository for internal institutional uses or as part of an invitation-only research collaboration work-group
 - directly by providing copies to their students or to research collaborators for their personal use
 - for private scholarly sharing as part of an invitation-only work group on commercial sites with which Elsevier has an agreement
- – after the embargo period
 - via non-commercial hosting platforms such as their institutional repository
 - o via commercial sites with which Elsevier has an agreement

In all cases accepted manuscripts should:

- – link to the formal publication via its DOI
- – bear a CC-BY-NC-ND license this is easy to do
- – if aggregated with other manuscripts, for example in a repository or other site, be shared in alignment with our hosting policy not be added to or enhanced in any way to appear more like, or to substitute for, the published journal article.

Published journal article (JPA): A published journal article (PJA) is the definitive final record of published research that appears or will appear in the journal and embodies all value-adding publishing activities including peer review co-ordination, copy-editing, formatting, (if relevant) pagination and online enrichment.

Policies for sharing publishing journal articles differ for subscription and gold open access articles:

Subscription Articles: If you are an author, please share a link to your article rather than the full-text. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help your users to find, access, cite, and use the best available version.

Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

If you are affiliated with a library that subscribes to ScienceDirect you have additional private sharing rights for others' research accessed under that agreement. This includes use for classroom teaching and internal training at the institution (including use in course packs and courseware programs), and inclusion of the article for grant funding purposes.

<u>Gold Open Access Articles:</u> May be shared according to the author-selected end-user license and should contain a <u>CrossMark logo</u>, the end user license, and a DOI link to the formal publication on ScienceDirect.

Please refer to Elsevier's posting policy for further information.

18. For book authors the following clauses are applicable in addition to the above: Authors are permitted to place a brief summary of their work online only. You are not allowed to download and post the published electronic version of your chapter, nor may you scan the printed edition to create an electronic version. **Posting to a repository:** Authors are permitted to post a summary of their chapter only in their institution's repository.

19. **Thesis/Dissertation**: If your license is for use in a thesis/dissertation your thesis may be submitted to your institution in either print or electronic form. Should your thesis be published commercially, please reapply for permission. These requirements include permission for the Library and Archives of Canada to supply single copies, on demand, of the complete thesis and include permission for Proquest/UMI to supply single copies, on demand, of the complete thesis. Should your thesis be published commercially, please reapply for permission. Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

Elsevier Open Access Terms and Conditions

You can publish open access with Elsevier in hundreds of open access journals or in nearly 2000 established subscription journals that support open access publishing. Permitted third

party re-use of these open access articles is defined by the author's choice of Creative Commons user license. See our <u>open access license policy</u> for more information.

Terms & Conditions applicable to all Open Access articles published with Elsevier:

Any reuse of the article must not represent the author as endorsing the adaptation of the article nor should the article be modified in such a way as to damage the author's honour or reputation. If any changes have been made, such changes must be clearly indicated.

The author(s) must be appropriately credited and we ask that you include the end user license and a DOI link to the formal publication on ScienceDirect.

If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source it is the responsibility of the user to ensure their reuse complies with the terms and conditions determined by the rights holder.

Additional Terms & Conditions applicable to each Creative Commons user license:

CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article and to make commercial use of the Article (including reuse and/or resale of the Article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by/4.0.

CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article, provided this is not done for commercial purposes, and that the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. Further, any new works must be made available on the same conditions. The full details of the license are available at http://creativecommons.org/licenses/by-nc-sa/4.0.

CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the Article, provided this is not done for commercial purposes and further does not permit distribution of the Article if it is changed or edited in any way, and provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, and that the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by-nc-nd/4.0. Any commercial reuse of Open Access articles published with a CC BY NC SA or CC BY NC ND license requires permission from Elsevier and will be subject to a fee.

Commercial reuse includes:

- – Associating advertising with the full text of the Article
- - Charging fees for document delivery or access
- – Article aggregation
- – Systematic distribution via e-mail lists or share buttons

Posting or linking by commercial companies for use by customers of those companies.

20. Other Conditions:

v1.8

Questions? <u>customercare@copyright.com</u> or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

ELSEVIER LICENSE TERMS AND CONDITIONS Nov 30, 2016

This Agreement between Blake A Winn ("You") and Elsevier ("Elsevier") consists of your license details and the terms and conditions provided by Elsevier and Copyright Clearance Center.

Contor.	
License Number	3980971376267
License date	Nov 02, 2016
Licensed Content Publisher	Elsevier
Licensed Content Publication	Seminars in Radiation Oncology
Licensed Content Title	Tumor microenvironmental physiology and its implications for radiation oncology
Licensed Content Author	Peter Vaupel
Licensed Content Date	July 2004
Licensed Content Volume Number	14
Licensed Content Issue Number	3
Licensed Content Pages	9
Start Page	198
End Page	206

Type of Use	reuse in a thesis/dissertation
Intended publisher of new work	other
Portion	figures/tables/illustrations
Number of figures/tables/illustrations	1
Format	both print and electronic
Are you the author of this Elsevier article?	No
Will you be translating?	No
Order reference number	
Original figure numbers	Figure 1
Title of your thesis/dissertation	Synthesis, Characterization, and Biological Evaluation of Bioreductively Activatable Prodrug Conjugates (BAPCs) of Phenstatin, KGP18, OXi6196, Combretastatin A-1, and Combretastatin A-4
Expected completion date	Dec 2016
Estimated size (number of pages)	500
Elsevier VAT number	GB 494 6272 12
	Blake A Winn 2000 South First Street Apt #1313
Requestor Location	-
	WACO, TX 76706 United States Attn: Blake A Winn
Total	0.00 USD
Terms and Conditions	

INTRODUCTION

1. The publisher for this copyrighted material is Elsevier. By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are available at any time at http://myaccount.copyright.com).

GENERAL TERMS

2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to the terms and conditions indicated.

3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source, permission must also be sought from that source. If such permission is not obtained then that material may not be included in your publication/copies. Suitable acknowledgement to the source must be made, either as a footnote or in a reference list at the end of your publication, as follows:

"Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with permission from Elsevier."

4. Reproduction of this material is confined to the purpose and/or media for which permission is hereby given.

5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions and/or any other alterations shall be made only with prior written authorization of Elsevier Ltd. (Please contact Elsevier at permissions@elsevier.com)

6. If the permission fee for the requested use of our material is waived in this instance, please be advised that your future requests for Elsevier materials may attract a fee.

7. Reservation of Rights: Publisher reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.

8. License Contingent Upon Payment: While you may exercise the rights licensed immediately upon issuance of the license at the end of the licensing process for the transaction, provided that you have disclosed complete and accurate details of your proposed use, no license is finally effective unless and until full payment is received from you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions. If full payment is not received on a timely basis, then any license preliminarily granted shall be deemed automatically revoked and shall be void as if never granted. Further, in the event that you breach any of these terms and conditions or any of CCC's Billing and Payment terms and conditions, the license is automatically revoked and shall be void as if never granted. Use of materials as described in a revoked license, as well as any use of the materials beyond the scope of an unrevoked license, may constitute copyright infringement and publisher reserves the right to take any and all action to protect its copyright in the materials.

9. Warranties: Publisher makes no representations or warranties with respect to the licensed material.

10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and their respective officers, directors, employees and agents, from and against any and all claims arising out of your use of the licensed material other than as specifically authorized pursuant to this license.

11. No Transfer of License: This license is personal to you and may not be sublicensed, assigned, or transferred by you to any other person without publisher's written permission.

12. No Amendment Except in Writing: This license may not be amended except in a writing signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).

13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any purchase order, acknowledgment, check endorsement or other writing prepared by you, which terms are inconsistent with these terms and conditions or CCC's Billing and Payment terms and conditions. These terms and conditions, together with CCC's Billing and Payment terms and conditions (which are incorporated herein), comprise the entire agreement between you and publisher (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations established by these terms and conditions, these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall control.

14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described in this License at their sole discretion, for any reason or no reason, with a full refund payable to you. Notice of such denial will be made using the contact information provided by you. Failure to receive such notice will not alter or invalidate the denial. In no event will Elsevier or Copyright Clearance Center be responsible or liable for any costs, expenses or damage incurred by you as a result of a denial of your permission request, other than a refund of the amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied permissions.

LIMITED LICENSE

The following terms and conditions apply only to specific license types:

15. **Translation**: This permission is granted for non-exclusive world <u>English</u> rights only unless your license was granted for translation rights. If you licensed translation rights you may only translate this content into the languages you requested. A professional translator must perform all translations and reproduce the content word for word preserving the integrity of the article.

16. **Posting licensed content on any Website**: The following terms and conditions apply as follows: Licensing material from an Elsevier journal: All content posted to the web site must maintain the copyright information line on the bottom of each image; A hyper-text must be included to the Homepage of the journal from which you are licensing at http://www.sciencedirect.com/science/journal/xxx or the Elsevier homepage for books at http://www.elsevier.com; Central Storage: This license does not include permission for a

scanned version of the material to be stored in a central repository such as that provided by Heron/XanEdu.

Licensing material from an Elsevier book: A hyper-text link must be included to the Elsevier homepage at <u>http://www.elsevier.com</u>. All content posted to the web site must maintain the copyright information line on the bottom of each image.

Posting licensed content on Electronic reserve: In addition to the above the following clauses are applicable: The web site must be password-protected and made available only to bona fide students registered on a relevant course. This permission is granted for 1 year only. You may obtain a new license for future website posting.

17. For journal authors: the following clauses are applicable in addition to the above:

Preprints:

A preprint is an author's own write-up of research results and analysis, it has not been peerreviewed, nor has it had any other value added to it by a publisher (such as formatting, copyright, technical enhancement etc.).

Authors can share their preprints anywhere at any time. Preprints should not be added to or enhanced in any way in order to appear more like, or to substitute for, the final versions of articles however authors can update their preprints on arXiv or RePEc with their Accepted Author Manuscript (see below).

If accepted for publication, we encourage authors to link from the preprint to their formal publication via its DOI. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help users to find, access, cite and use the best available version. Please note that Cell Press, The Lancet and some society-owned have different preprint policies. Information on these policies is available on the journal homepage.

Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an article that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and editor-author communications.

Authors can share their accepted author manuscript:

- – immediately
 - via their non-commercial person homepage or blog
 - by updating a preprint in arXiv or RePEc with the accepted manuscript
 - via their research institute or institutional repository for internal institutional uses or as part of an invitation-only research collaboration work-group

- directly by providing copies to their students or to research collaborators for their personal use
- for private scholarly sharing as part of an invitation-only work group on commercial sites with which Elsevier has an agreement
- – after the embargo period
 - via non-commercial hosting platforms such as their institutional repository
 - o via commercial sites with which Elsevier has an agreement

In all cases accepted manuscripts should:

- – link to the formal publication via its DOI
- – bear a CC-BY-NC-ND license this is easy to do
- – if aggregated with other manuscripts, for example in a repository or other site, be shared in alignment with our hosting policy not be added to or enhanced in any way to appear more like, or to substitute for, the published journal article.

Published journal article (JPA): A published journal article (PJA) is the definitive final record of published research that appears or will appear in the journal and embodies all value-adding publishing activities including peer review co-ordination, copy-editing, formatting, (if relevant) pagination and online enrichment.

Policies for sharing publishing journal articles differ for subscription and gold open access articles:

Subscription Articles: If you are an author, please share a link to your article rather than the full-text. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help your users to find, access, cite, and use the best available version.

Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

If you are affiliated with a library that subscribes to ScienceDirect you have additional private sharing rights for others' research accessed under that agreement. This includes use for classroom teaching and internal training at the institution (including use in course packs and courseware programs), and inclusion of the article for grant funding purposes.

<u>Gold Open Access Articles:</u> May be shared according to the author-selected end-user license and should contain a <u>CrossMark logo</u>, the end user license, and a DOI link to the formal publication on ScienceDirect.

Please refer to Elsevier's posting policy for further information.

18. For book authors the following clauses are applicable in addition to the

above: Authors are permitted to place a brief summary of their work online only. You are not allowed to download and post the published electronic version of your chapter, nor may you scan the printed edition to create an electronic version. **Posting to a repository:** Authors are permitted to post a summary of their chapter only in their institution's repository.

19. **Thesis/Dissertation**: If your license is for use in a thesis/dissertation your thesis may be submitted to your institution in either print or electronic form. Should your thesis be published commercially, please reapply for permission. These requirements include permission for the Library and Archives of Canada to supply single copies, on demand, of the complete thesis and include permission for Proquest/UMI to supply single copies, on demand, of the complete thesis. Should your thesis be published commercially, please reapply for permission. Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

Elsevier Open Access Terms and Conditions

You can publish open access with Elsevier in hundreds of open access journals or in nearly 2000 established subscription journals that support open access publishing. Permitted third party re-use of these open access articles is defined by the author's choice of Creative Commons user license. See our <u>open access license policy</u> for more information.

Terms & Conditions applicable to all Open Access articles published with Elsevier:

Any reuse of the article must not represent the author as endorsing the adaptation of the article nor should the article be modified in such a way as to damage the author's honour or reputation. If any changes have been made, such changes must be clearly indicated.

The author(s) must be appropriately credited and we ask that you include the end user license and a DOI link to the formal publication on ScienceDirect.

If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source it is the responsibility of the user to ensure their reuse complies with the terms and conditions determined by the rights holder.

Additional Terms & Conditions applicable to each Creative Commons user license:

CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article and to make commercial use of the Article (including reuse and/or resale of the Article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. The full details of the license are

available at http://creativecommons.org/licenses/by/4.0.

CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article, provided this is not done for commercial purposes, and that the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. Further, any new works must be made available on the same conditions. The full details of the license are available at <u>http://creativecommons.org/licenses/by-nc-sa/4.0</u>.

CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the Article, provided this is not done for commercial purposes and further does not permit distribution of the Article if it is changed or edited in any way, and provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, and that the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by-nc-nd/4.0. Any commercial reuse of Open Access articles published with a CC BY NC SA or CC BY NC ND license requires permission from Elsevier and will be subject to a fee.

Commercial reuse includes:

- – Associating advertising with the full text of the Article
- - Charging fees for document delivery or access
- – Article aggregation
- – Systematic distribution via e-mail lists or share buttons

Posting or linking by commercial companies for use by customers of those companies.

20. Other Conditions:

v1.8

Questions? <u>customercare@copyright.com</u> or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

Title:Antineoplastic Agents. 379.
Synthesis of Phenstatin
Phosphate1a,Author:George R. Pettit, Brian Toki,
Delbert L. Herald, et alPublication:Journal of Medicinal ChemistryPublisher:American Chemical SocietyDate:May 1, 1998Copyright © 1998, American Chemical Society

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- Permission is granted for your request in both print and electronic formats, and translations.
- If figures and/or tables were requested, they may be adapted or used in part.
- Please print this page for your records and send a copy of it to your publisher/graduate school.
- Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words.
- One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.

If credit is given to another source for the material you requested, permission must be obtained from that source.

Copyright © 2016 <u>Copyright Clearance Center, Inc.</u> All Rights Reserved. <u>Privacy statement</u>. <u>Terms and Conditions</u>. Comments? We would like to hear from you. E-mail us at <u>customercare@copyright.com</u>

REFERENCES

- 1) Mason, R. P.; Zhao, D.; Liu, L.; Trawick, M. L.; Pinney, K. G. *Integr. Biol.*, **2011**, *3*, 375-387.
- 2) Siemann, D. W. Cancer Treat. Rev. 2011, 37 (1), 63-74.
- 3) Siemann, D. W.; Horsman, M. R. Pharmacol. Ther. 2015, 153, 107–124.
- 4) Patterson, D. M.; Rustin, G. S. J. Clin. Oncol. 2007, 19, 443-456.
- 5) Kingston, D. G. I. J. Nat. Prod. 2009, 72, 507-515.
- 6) Pattillo, C. B. Drugs of the Future, **2011**, *36*, 385-390.
- 7) Perez-Perez, M. J.; Priego, E. M.; Bueno, O.; Martins, M. S.; Canela, M. D.; Liekins, S. J. Med. Chem. [Online early access]. DOI: 10.1021/acs.jmedchem.6b00463. Published Online: June 27, 2016. http://pubs.acs.org/doi/abs/10.1021/acs. jmedchem.6b00463 (accessed 10 Sept 2016).
- 8) Philips, R. M. Cancer Chemother. Pharmacol. 2016, 77, 441-457
- 9) Vaupel, P. Semin. Radiat. Oncol. 2004, 14, 198-206.
- 10) Brown, J. M.; Wilson, W. R. Nature Reviews Cancer 2004, 4, 427-447.
- 11) Tozer, G. M.; Kanthou, C.; Baguley, B. C. Nature Reviews Cancer 2005, 5, 423-435.
- 12) Ferrara, N.; Kerbel, R. S.; Nature 2005, 438, 967-974.
- 13) Hicklin, D. J.; Ellis, L. M. J. Clin. Oncol. 2005, 23, 1011-1027.
- 14) Siemann, D. W.; Shi, W. Anticancer Res. 2008, 2027-2031.
- 15) Nathan, P.; Zweifel, M.; Padhani, A. R.; Koh, D.; Ng, M.; Collins, D. J.; Harris, A.; Carden, C., Smythe, J.; Fisher, N.; Taylor, N. J.; Stirling, J. J.; Lu, S.; Leach, M. O.; Rustin, G. J. S.; Judson, I. *Clin. Cancer Res.* **2012**, *18*, 3428-3439.
- 16) Wu, X.; Ma, W.; Gurung, K.; Guo, C. J. Formosan Med. Assoc. 2013, 112, 115-124.
- 17) Jackson, A. L.; Davenport, S. M.; Herzong, T. J.; Coleman, R. L. *Transl. Cancer. Res.* **2015**, *4*, 70-83.

- 18) National Cancer Institute. Bevacizumab With or Without Fosbretabulin Tromethamine in Treating Patients With Recurrent or Persistent Ovarian Epithelial, Fallopian Tube, or Peritoneal Cavity Cancer. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01305213 (15 Sept 2016).
- 19) OXIGENE. A Safety and Efficacy Study of Carboplatin, Paclitaxel, Bevacizumab, and CA4 in Non-Small Cell Lung Cancer (FALCON). ClinicalTrials.gov. https://www.clinicaltrials.gov/ct2/show/NCT00653939 (15 Sept. 2016).
- 20) Singh, S. B.; Boyd, M. R.; Hamel, E.; Pettit, R. K.; Schmidt, J. M.; Hogan, F.; Pettit, G. R. J. Med. Chem., 1995, 38, 1666-1672.
- 21) Pettit, G. R.; Cragg, G. M.; Singh, S. B. J. Nat. Prod. 1987, 50, 386-391.
- 22) Pettit, G. R.; Singh, S. B.; Niven, M. L.; Hamel, E.; Schmidt, J. M. J. Nat. Prod. **1987**, *50*, 119-131.
- 23) Pettit, G. R.; Singh, S. B.; Hamel, E.; Lin, C. M.; Alberts, D. S.; Garcia-Kendall, G. *Experientia* **1989**, *45*, 209-211.
- 24) Pettit, G. R.; Temple, C. Jr; Narayanan, V. L.; Varma, R; Simpson, M. J.; Boyd, M. R; Rener, G. A; Bansal, N. *Anticancer. Drug Des.* 1995, *10* (4), 299–309.
- 25) Pettit, G. R.; Singh, S. B.; Boyd, M. R.; Hamel, E.; Pettit, R. K.; Schmidt, J. M.; Hogan, F. J. Med. Chem. 1995, 38 (10), 1666–1672.
- 26) Pettit, G. R.; Cragg, G. M.; Singh, S. B. Antineoplastic Agents, 122. Constituents of Combretum caffrum. J. Nat. Prod. 1987, 50, 386-391.
- 27) Pettit, G. R.; Lippert III, J. W. Anti-Cancer Drug Design, 2000, 15, 203-216.
- 28) Pettit, G. R.; Grealish, M. P.; Herald, D. L.; Boyd, M. R.; Hamel, E.; Pettit, R. K. J. *Med. Chem.* **2000**, *43*, 2731-2737.
- 29) Patterson, D. M.; Zweifel, M.; Middleton, M. R.; Price, P. M.; Folkes, L. K.; Stratford, M. R. L.; Ross, P.; Halford, S.; Peters, J.; Balkissoon, J.; Chaplin, D. J.; Padhani, A. R.; Rustin, G. J. S. *Clin. Cancer Res.* **2012**, *18* (5), 1415–1425.
- 30) Lin, C. M.; Singh, S. B.; Chu, P. S.; Dempcy, R. O.; Schmidt, J. M.; Pettit, G. R.; Hamel, E. *Molecular Pharmacology* **1988**, *34*, 200-208.
- 31) Rhodes, M. R.; Herald, D. L.; Chaplin, D. J.; Stratford, M. R. L.; Hamel, E.; Pettit, R. K.; Chapuis, J.-C.; Oliva, D.; Pettit, G. R. Anti-Cancer Drug Design, 1998, 13, 981-993.

- 32) Pettit, G. R.; Temple, C. Jr.; Narayanan, V. L.; Varma, R.; Simpson, M. J.; Boyd, M. R.; Rener, G. A.; Bansal, N. *Anticancer Drug Des.* 1995, *10*, 299-309.
- 33) Pettit, G. R.; Toki, B.; Herald, D. L.; Verdier-Pinard, P.; Boyd, M. R.; Hamel, E.; Pettit, R. K. *J. Med. Chem.* **1998**, *41*, 1688-1695.
- 34) Sriram, M.; Hall, J. J.; Grohmann, N. C.; Strecker, T. E.; Wootton, T.; Franken, A.; Trawick, M. L.; Pinney, K. G. *Bioorg. Med. Chem.* 2008, *16*, 8161-8171.
- 35) Tanpure, R. P.; George, C. S.; Strecker, T. E.; Devkota, L.; Tidmore, J. K.; Lin, C. M.; Herdman, C. A.; MacDonough, M. T.; Sriram, M.; Chaplin, D. J.; Trawick, M. L.; Pinney, K. G. *Bioorg. Med. Chem.* 2013, 21, 8019-8032.
- 36) Herdman, C. A.; Devkota, L.; Lin, C. M.; Niu, H.; Strecker, T. E.; Lopez, R.; Liu, L.; George, C. S.; Tanpure, R. P.; Hamel, E.; Chaplin, D. J.; Mason, R. P.; Trawick, M. L.; Pinney, K. G. *Bioorg. Med. Chem.* **2015**, *23*, 7497-7520.
- 37) Pinney, K. G.; Mocharla, V. P.; Chen, Z.; Garner, C. M.; Ghatak, A.; Hadimani, M.; Kessler, J.; Dorsey, J. M.; Edvardsen, K.; Chaplin, D. J.; Prezioso, J.; Ghatak, U. R. U.S. Patent Appl. Publ. 20040043969 A1, 2004.
- 38) Wilson, W. R.; Hay, M. P. Nature 2011, 11, 393-410.
- 39) Huxham, L. A.; Kyle, A. H.; Baker, J. H. E.; McNicol, K. L.; Minchinton, A. I. Microvascular Research 2008, 75, 247-255.
- 40) Weiss, G. J.; Infante, J. R.; Chiorean, E. G.; Borad, M. J.; Bendell, J. C.; Molina, J. R.; Tibes, R.; Ramanathan, R. K.; Lewandowski, K.; Jones, S. F.; Lacouture, M. E.;Langmuir, V. K.; Lee, H.; Kroll, S.; Burris III, H. A. *Clin. Cancer Res.*, 2011, *17*, 2997-3004.
- 41) Chaplin, D. J.; Olive, P. L.; Durand, R. E. Cancer Res. 1987, 47 (2), 597-601.
- 42) Brown, J. M. Br. J. Radiol. 1979, 52 (620), 650-656.
- 43) Brown, J. M. Methods Enzymol. 2007, 435, 297–321.
- 44) Horsman, M. R.; Mortensen, L. S.; Petersen, J. B.; Busk, M.; Overgaard, J. *Nat. Rev. Clin. Oncol.* **2012**, *9*, (12), 674-687.
- 45) Cazares-Korner, C.; Pires, I. M.; Swallow, I. D.; Grayer, S. C.; O'Connor, L. J.; Olcina, M. M.; Christlieb, M.; Conway, S. J.; Hammond, E. M. ACS Chem. Biol. 2013, 8, 1451-1459.
- 46) Denny, W. A. Lancet Oncol. 2000, 1, 25-29.

- 47) Denny, W. A. Eur. J. Med. Chem. 2001, 36, 577-595.
- 48) Jaffar, M.; Williams, K. J.; Stratford, I. J. Advanced Drug Delivery Reviews 2001, 53, 217-228.
- 49) Volpato, M.; Abou-Zeid, N.; Tanner, R. W.; Glasbrook, L. T.; Taylor, J.; Stratford, I.; Loadman, P. M.; Jaffar, M.; Philips, R. M. *Mol. Cancer Ther.* 2007, 6, 3122-3130.
- 50) Konerding, M. A.; Fait, E.; Gaumann, A. Br. J. Cancer 2001, 84, 1354-1362.
- 51) Zeman, E. M.; Brown, J. M.; Lemmon, M. J.; Hirst, V. K.; Lee, W.W. Int. J. Radiat. Oncol. Biol. Phys. 1986, 12, 1239-1242.
- 52) Ahn, G.; Brown, M. Front. Biosci. J. Virtual Libr. 2007, 12, 3483-3501.
- 53) Brown, J. M.; Wilson, W. R. Nature Reviews Cancer 2004, 4, 427-447.
- 54) Huxham, L. A.; Kyle, A. H.; Baker, J. H. E.; McNicol, K. L.; Minchinton, A. I. *Microvascular Research* 2008, 75, 247-255.
- 55) Huxham, L. A.; Kyle, A. H.; Baker, J. H. E.; McNicol, K. L.; Minchinton, A. I. *Radiotherapy and Oncology* **2006**, *78*, 138-145.
- 56) Evans, J. W.; Yudoh, K.; Delahoussaye, Y. M. Cancer Res. 1998, 58, 2098-2101.
- 57) Shinde, S. S.; Hay, M. P.; Patterson, A. V.; Denny, W. A.; Anderson, R. F. *J. Am. Chem. Soc.* 2009, *131*, 14220-14221.58) Duan, J.; Jiao, H.; Kaizerman, J.; Stanton, T.; Evans, J. W.; Lan, L.; Lorente, G.; Banica, M.; Jung, D.; Wang, J.; Ma, J.; Li, X.; Yang, Z.; Hoffman, R. M.; Ammons, W. S.; Hart, C. P.; Matteucci, M. *J. Med. Chem.* 2008, *51*, 2412-2420.
- 59) Meng, F.; Evans, J. W.; Bhupathi, D.; Banica, M.; Lan, L.; Lorente, G.; Duan, J.; Cai, X.; Mowday, A. M.; Guise, C. P.; Maroz, A.; Anderson, R. F.; Patterson, A. V.; Stachelek, P. M.; Glazer, P. M.; Matteucci, M. D.; Hart, C. P. *Mol. Cancer. Ther.* **2012**, *11*, 740-751.
- 60) EMD Serono; Threshold Pharmaceuticals. Clinical Trial Testing TH-302 in Combination With Gemcitabine in Previously Untreated Subjects With Metastatic or Locally Advanced Unresectable Pancreatic Adenocarcinoma (MAESTRO). ClinicalTrials.gov. http://clinicaltrials.gov/ct2/show/NCT01746979?term=TH-302&no_unk=Y&rank=10 (12 Sept. 2016).

- 61) Threshold Pharmaceuticals. A Phase 2 Biomarker Enriched Study of TH-302 in Subjects with Advanced Melanoma. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01864538?term=TH-302&no_unk=Y&rank=8 (12 Sept 2016).
- 62) Threshold Pharmaceuticals. A Trial of TH-302 in Combination with Doxorubicin Versus Doxorubicin Alone to Treat Patients With Locally Advanced Unresectable or Metastatic Soft Tissue Sarcoma. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01440088?term=TH+302&rank=6 (12 Sept 2016).
- 63) Weiss, G. J.; Infante, J. R.; Chiorean, E. G.; Borad, M. J.; Bendell, J. C.; Molina, J. R.; Tibes, R.; Ramanathan, R. K.; Lewandowski, K.; Jones, S. F.; Lacouture, M. E.; Langmuir, V. K.; Lee, H.; Kroll, S.; Burris III, H. A. *Clin. Cancer Res.*, 2011, *17*, 2997-3004.
- 64) Ganjoo, K. N.; Cranmer, L. D.; Butrynski, J. E.; Rushing, D.; Adkins, D.; Okuno, S. H.; Lorente, G.; Kroll, S.; Langmuir, V. K.; Chawla, S. P. Oncology 2011, 80, 50-56.
- 65) Denny, W. A. Chemistry in New Zealand 2004, 68, 19-23.
- 66) Mehibel, M.; Singh, S.; Chinje, E. C.; Cowen, R. L.; Stratford, I. J. *Mol. Cancer Ther.* **2009**, *8*, 1261-1269.
- 67) Williams, K. J.; Albertella, M. R.; Fitzpatrick, B.; Loadman, P. M.; Shnyder, S. D.; Chinje, E. C.; Telfer, B. A.; Dunk, C. R.; Harris, P. A.; Stratford, I. J. *Mol. Cancer Ther*, **2009**, 8, 3266-3275.
- 68) McKeown, S. R.; Hejmadi, M. V.; McIntyre, I. A.; McAleer, J. J. A.; Patterson, L. H. *British J. Cancer* **1995**, *72*, 76-81.
- 69) Raleigh, S. M.; Wanogho, E.; Burke, M. D.; McKeown, S. R.; Patterson, L. H. Int, J. Radiat. Oncol. Biol. Phys. 1998, 42, 763-767.
- 70) Rauth, A. M.; Melo, T.; Misra, V. . Int, J. Radiat. Oncol. Biol. Phys. 1998, 42, 755-762.
- 71) Ali, M. M.; Symons, M. C. R.; Taiwo, F. A.; Patterson, L. H. Chemico-Biological Interactions 1999, 123, 1-10.
- 72) Manley Jr., E.; Waxman, D. J. J. Pharmacol. Exper. Ther. 2013, 344, 368-377.
- 73) Ming, L.; Byrne, N. M.; Camac, S. N.; Mitchell, C. A.; Ward, C.; Waugh, D. J.; McKeown, S. R.; Worthington, J. Int. J. Cancer 2012, 132, 1323-1332.

74) Nishida, C. R.; Lee, M.; de Montellano, P. R. O. Mol. Pharmacol. 2010, 78, 497-502.

- 75) Nishida, C. R.; de Montellano, P. R. O. J. Med. Chem. 2008, 51, 5118-5120.
- 76) Novacea. AQ4N in Combination With Radiotherapy and Temozolomide in Subjects With Newly Diagnosed Glioblastoma Multiforme. ClinicalTrials.gov. https://www.clinicaltrials.gov/ct2/show/NCT00394628?term=AQ4N&rank=1&su bmit_fld_opt= (16 Sept 2016).
- 77) Novacea. Study of AQ4N in Patients With Non Hodgkin's Lymphoma, Chronic Lymphocytic Leukemia, or Small Lymphocytic Leukemia. ClinicalTrials.gov. https://www.clinicaltrials.gov/ct2/show/NCT00109356?term=AQ4N&rank=2&su bmit_fld_opt= (16 Sept 2016).
- 78) Hicks, K. O.; Myint, H.; Patterson, A. V.; Pruijn, F. B.; Siim, B. G.; Patel, K.; Wilson, W. R. Int. J. Radiation Oncology Biol. Phys. 2007, 69, 560-571.
- 79) Patterson, A. V.; Ferry, D. M.; Edmunds, S. J.; Gu, Y.; Singleton, R. S.; Patel, K.; Pullen, S. M.; Hicks, K. O.; Syddall, S. P.; Atwell, G. J.; Yang, S.; Denny, W. A.; Wilson, W. R. *Clin. Cancer Res.* **2007**, *13*, 3922-3932.
- 80) Guise, C. P.; Mowday, A. M.; Amir, A.; Yuan, R.; Lin, W.; Wu, D.; Smaill, J. B.; Patterson, A. V.; Ding, K.; *Chinese Journal of Cancer* **2014**, *32*, 80-86.
- 81) Guise, C. P.; Wang, A. T.; Thiel, A.; Bridewell, D. J.; Wilson, W. R.; Patterson, A. V. Biochem. Pharmacol. 2007, 74, 810-820.
- 82) Guise, C. P.; Abbattistam M. R.; Tipparju, S. R.; Lambie, N. K.; Su, J.; Li, D.;
 Wilson, W. R.; Dachs, G. U.; Patterson, A. V. *Mol. Pharmacol.* 2012, *81*, 31-40.
- 83) Houghton, P. J.; Lock, R.; Carol, H.; Marton, C. L.; Phelps, D.; Gorlick, R.; Kolb, E. A.; Keir, S. T.; Reynolds, C. P.; Kang, M. H.; Maris, J. M.; Wozniak, A.W.; Gu, Y.; Wilson, W. R.; Smith, M. A. *Pediatr. Blood Cancer* 2011, *57*, 443-453.
- 84) Benito, J.; Shi, Y.; Szymanska, B.; Carol, H.; Boehm, I.; Lu, H.; Konoplev, S.; Fang, W.; Zweidler-McKay, P. A.; Campana, D.; Borthakur, G.; Bueso-Ramos, C.; Shpall, E.; Thomas, D. A.; Jordan, C. T.; Kantarjian, H.; Wilson, W. R.; Lock, R.; Andreeff, M.; Konopleva, M. *PLoS ONE* 2011, *6*, e23108.
- 85) Abbattista, M. R.; Jamieson, S. M. F.; Gu, Y.; Nickel. J. E.; Pullen, S. M.; Patterson, A. V.; Wilson, W. R.; Guise, C. P. *Cancer Biol. Ther.* 2015, *16*, 610-622.
- 86) Proacta, Incorportated. PR-104 and Docetaxel or Gemcitabine in Treating Patients With Solid Tumors. ClinicalTrials.gov.ttps://clinicaltrials.gov/ct2/show/ NCT00459836?term=PR+104&rank=5 (12 Sept 2016).

- 87) Proacta, Incorporated. Randomized, Multi-center, Open-label, Study of PR104 Versus PR104/Docetaxel in Non-Small Cell Lung Cancer (NSCLC). ClinicalTrials.gov. <u>https://clinicaltrials.gov/ct2/show/NCT00862134</u>? term=PR+104&rank=4 (12 Sept 2016).
- 88) Thomson, P.; Naylor, M. A.; Everett, S. A.; Stratford, M. R. L.; Lewis, G.; Hill, S.; Patel, K. B.; Wardman, P.; Davis, P. *Mol. Cancer Ther.* **2006**, *5*, 2886-2894.
- 89) Davis, P.; Naylor, M. A.; Thomson, P.; Everett, S. A.; Stratford, M. R. L.; Wardman, P. Bioreductively-Activated Prodrugs. International Patent PCT/GB2004/001330. October 7, 2004.
- 90) Wigerup, C.; Pahlman, S.; Bexell, D. *Pharmacology and Therapeutics* **2016**, *164*, 152-169.
- 91) Hunter, F. W.; Young, R. J.; Shalev, Z.; Vellanki, R. N.; Wang, J.; Gu, Y.; Joshi, N.; Sreebhavan, S.; Weinreb, I.; Goldstein, D. P.; Moffat, J.; Ketela, T.; Brown, K. R.; Koritzinsky, M.; Solomon, B.; Rischin, D.; Wilson, W. R.; Wouters, B. G. *Cancer Res.* 2015, 75, 4211-4223.
- 92) Wilson, W. R.; Hicks, K. O.; Pullen, S. M.; Ferry, D. M.; Helsby, N. A.; Patterson, A. V. *Radiation Research* 2007, 167, 625-636.
- 93) Denny, W.A.; Wilson, W. R.; Hay, M. P. Br. J. Cancer Suppl. 1996, 27, S32-S38.
- 94) Ikeda, Y.; Hisano, H.; Nishikawa, Y.; Nagasaki, Y. *Mol. Pharmaceutics* **2016**, *13*, 2283-2289.
- 95) Hunter, F. W.; Wang, J.; Patel, R.; Hsu, H.; Hickey, A. J. R.; Hay, M. P.; Wilson, W. R. Biochem. Pharmacol. 2012, 83, 574-585.
- 96) McKeown, S. R.; Cowen, R. L.; Williams, K. J. Clinical Oncology 2007, 19, 427-42.
- 97) Stevenson, R. J.; Denny, W. A.; Ashoorzadeh, A. Pruijn, F. B.; van Leeuwen, W. F.; Tercel, M. *Bioorg. Med. Chem.* **2011**, *19*, 5989-5998.
- 98) Stevenson, R. J.; Denny, W. A.; Tercel, M.; Pruijn, F. B.; Ashoorzadeh, A. J. Med. Chem. 2012, 55, 2780-2802.
- 99) Denny, W. A. Future Oncol. 2010, 6, 419-428.
- 100) Hunter, F. W.; Wouters, B. G.; Wilson, W. R. British J. Cancer **2016**, 114, 1071-1077.

- 101) Duan, J.; Jiao, H.; Kaizerman, J.; Stanton, T.; Evans, J. W.; Lan, L.; Lorente, G.;
 Banica, M.; Jung, D.; Wang, J.; Ma, J.; Li, X.; Yang, Z.; Hoffman, R. M.;
 Ammons, W. S.; Hart, C. P.; Matteucci, M. J. Med. Chem. 2008, 51, 2412-2420.
- 102) Nguyen, B. Design and Synthesis of Combretastatin A-1 Analogs, Small Molecule Vasular Disrupting Agents, and Bioreductive Triggers as Potential Therapeutic Agents for the Treatment of Cancer. Ph. D. Dissertation, Baylor University, Waco, TX, 2010.
- 103) Reetz, M. T.; Kyung; S. H.; Hüllman, M. Tetrahedron 1986, 42, 2931-2935.
- 104) O'Connor, L. J.; Cazares-Korner, C.; Saha, J.; Evans, C. N. G.; Stratford, M. R. L.; Hammond, E. M.; Conway, S. J. *Org. Chem. Front.* **2015**, *2*, 1026-1029.
- 105) Swamy, K. C. K.; Kumar, N. N. B.; Balaraman, E.; Kumar, K. V. V. P. *Chem. Rev.* **2009**, *109*, 2551-2651.
- 106) Zhirov, A. M.; Aksenov, A. V. Russian Chemcial Reviews 2014, 83, 502-522.
- 107) Matteucci, M.; Duan, J.; Jiao, H.; Kaizerman, J.; Ammons, S. Phosphoramidite Alkylator Prodrugs. International Patent PCT/US2006/025881. June 29, 2006.
- 108) O'Connor, L. J.; Cazares-Korner, C.; Saha, J.; Evans, C. N. G.; Stratford, M. R. L.; Hammond, E. M.; Conway, S. J. *Nature Protocols* **2016**, *11*, 781-794.
- 109) Long, W.; Liu, P. J. Radiat. Res. 2010, 51, 563-572.
- 110) Adams, G. E.; Clarke, E. D.; Gray, P.; Jacobs, R. S.; Stratford, I. J.; Wardman, P.; Watts, M. E.; Patrick, J.; Wallace, R. G.; Smithen, C. E. Int. J. Radiat. Biol. And Related Stud. Phys. Chem. Med. 1979, 35, 151-160.
- 111) Adams, G. E.; Clarke, E. D.; Flockhart, I. R.; Jacobs, R. S.; Sehmi, D. S.; Stratford, I. J.; Wardman, P.; Watts, M. E.; Parrick, J.; Wallace, R. G.; Smithen, C. E. Int. J. Radiat. Biol. And Related Stud. Phys. Chem. Med. 1979, 35, 133-50.
- 112) Assandri, A.; Perazzi, A.; Zerilli, L. F.; Ferrari, P.; Martinelli, E. Drug Metabolism and Disposition **1978**, 6, 109-113.
- 113) Cavalleri, B.; Volpe, V.; Arioli, V.; Pizzocheri, F.; Diena, A. J. Med. Chem. 1978, 21, 781-784.
- 114) Goldstein, B. P.; Vidal-Plana, R. R.; Cavalleri, B.; Zerilli, L.; Carniti; G.; Silvestri, L. G. *Journal of General Microbiology* **1977**, *100*, 283-298.

- 115) Cavalleri, B.; Volpe, G. α,α,1-Trimethyl-2-Nitroimidazolemethanol Esters. International Patent DE19772700346 19770105. July 28, 1977.
- 116) Assandri, A.; Lancini, G.; Volpe, G.; Cavalleri, B. 5-[(1-Hydroxy-1-methyl)ethyl] 1- methyl-2-nitroimidazole. International Patent DE19762600538 19760108. July 22, 1976.
- 117) Carmeliet, P.; Jain, R. K. Nature 2000, 407, 249–257.
- 118) Pralhad, T.; Madhusudan, S.; Rajendrakumar, K. *Journal of Pharmacy and Pharmacology*. **2003**, *55*, 1045–1053.
- 119) Horsman, M. R.; Chaplin, D. J.; Siemann, D. W. Cancer 2004, 100 (12), 2491-2499.
- 120) Horsman, M. R. Int. J. Hyperthermia 2008, 24 (1), 57-65.
- 121) Kaur, S.; Bajwa, P. Clin. Transl. Oncol. 2014, 16, 115-121.
- 122) Siemann, D. W.; Horsman, M. R. *Pharmacology and Therapeutics* **2015**, *153*, 107-124.
- 123) Prieto-Vila, M.; Yan, T.; Calle, A. S.; Nair, N.; Hurley, L.; Kasai, T.; Kakuta, H.; Masuda, J.; Murakami, H.; Mizutani, A.; Seno, M. Am. J. Cancer Res. 2016, 6 (9), 1906–1921.
- 124) Dark, G. G.; Hill, S. A.; Prise, V. E.; Tozer, G. M.; Pettit, G. R.; Chaplin, D. J. *Cancer Res.* **1997**, *57*, 1829–1834.
- 125) Tozer, G. M.; Prise, V. E.; Wilson, J.; Locke, R. J.; Vojnovic, B.; Stratford, M. R. L.; Dennis, M. F.; Chaplin, D. J. *Cancer Res.* **1999**, *59*, 1626-1634.
- 126) Tozer, G. M.; Akerman, S.; Cross, N. A.; Barber, P. R.; Björndahl, M. A.; Greco, O.; Harris, S.; Hill, S. A.; Honess, D. J.; Ireson, C. R.; Pettyjohn, K. L.; Prise, V. E.; Reyes-Aldasoro, C. C.; Ruhrberg, C.; Shima, D. T.; Kanthou, C. *Cancer Res.* 2008, 68 (7), 2301–2311.
- 127) Cavalleri, B.; Volpe, G.; Arioli, V.; Lancini, G. J. Med. Chem. 1977, 20, 1522-1525.
- 128) Tanpure, R. P.;Nguyen, B. L.; Strecker, T. E.; Aguirre, S.; Sharma, S.; Chaplin, D. J.; Siim, B. G.; Hamel, E.; Lippert III, J. W.; Pettit, G. R.; Trawick, M. L.; Pinney, K. G. J. Nat. Prod. 2011, 74, 1568-1574.
- 129) Tanpure, R. P.; Strecker, T. E.; Chaplin, D. J.; Siim, B. G.; Trawick, M. L.; Pinney, K. G. J. Nat. Prod. 2010, 73, 1093-1101.

- 130) Hamel, E.; Lin, C. M. Biochem. Biophys. Acta BBA Gen. Subj. 1981, 675, 226-231.
- 131) Hamel, E. Evaluation of Antimitotic Agents by Quantitative Comparisons of their Effects on the Polymerization of Purified Tubulin. *Cell Biochem. Biophys.* 2003, 38, 1-21.
- 132) Herdman, C. A.; Devkota, L.; Lin, C.; Niu, H.; Strecker, T. E.; Lopez, R.; Liu, L.; George, C. S.; Tanpure, R. P.; Hamel, E.; Chaplin, D. J.; Mason, R. P.; Trawick, M. L.; Pinney, K. G. *Bioorg. Med. Chem.* 2015, *23*, 7497-7520.
- 133) Guengrich, F. P.; Martin, M. V.; Sohl, C. D.; Cheng, Q. Measurement of Cytochrome P450 And NADPH—Cytochrome P450 Reductase. *Nat. Protoc.* 4, (2009).
- 134) Patil, P. V.; Ballou, D. P. Anal. Biochem. 2000, 286, 187-192.
- 135) Brem, S.; Brem, H.; Folkman, J.; Finkelstein, D.; Patz, A. *Cancer Res.* **1976**, *36*, 2807-2812.
- 136) Pinney, K.G.; Pettit, G. R.; Trawick, M. L.; Jelinek, C.; Chaplin, D. J. In Antitumor Agents From Natural Products; CRC/Taylor & Francis: Boca Raton, Fla, 2011; pp 27-63.
- 137) Winn, B. A. Shi, Z.; Carlson, G. J.; Wang, Y.; Nguyen, B. L.; Kelly, E. M.; Ross IV, R. D.; Hamel, E.; Chaplin, D. J.; Trawick, M. L.; Pinney, K. G. *Bioorg. Med. Chem. Lett.* [Online early access] DOI: 10.1016/j.bmcl.2016.11.093. Published online: Dec 1, 2016. http://www.sciencedirect.com/science/article/pii/S0960894X16312665 (accessed Dec. 11, 2016).
- 138) Williamson, S. K.; Crowley, J. J.; Lara Jr.; P. N.; McCoy, J.; Lau, D. H. M.; Tucker, R. W.; Mills, G. M.; Gandara, D. R. J. Clin. Oncol. 2005, 23, 9097-9104.
- 139) Strecker, T. E.; Tanpure, R. P.; George, C. S.; Chaplin, D. J.; Trawick, M. L.; Pinney, K. G.; Bioreductively Activatable Prodrug Conjugates Designed to Target Hypoxic Tumors. 2012 CPRIT Annual Conference, Austin, Texas, October 24-26, 2012.
- 140) Pettit, G. R.; Rhodes, M. R. Anti-Cancer Drug Design 1998, 13, 183-191.
- 141) von Pawel, J.; von Roemeling, R.; Gatzemeier, U.; Boyer, M.; Elisson, L. O.; Clark, P.; Talbot, D.; Rey, A.; Butler, T. W.; Hirsh, V.; Olver, I.; Bergman, B.; Ayoub, J.; Richardson, G.; Dunlop, D.; Arcenas, A.; Vescio, R.; Viallet, J.; Treat, J. J. *Clin. Oncol.* 2000, *18*, 1351-1359.

- 142) Yoon, C.; Lee, H. –J.; Park, D. J.; Lee, Y. –J.; Tap, W. D.; Eisinger-Mathason, T. S. K.; Hart, C. P.; Choy, E.; Simon, M. C.; Yoon, S. S.; *Br. J. Cancer* 2015, *113*, 46-56.
- 143) Mitsunobu, O.; Yamada, M. Bull. Chem. Soc. Jpn. 1967, 40, 2380-2382.
- 144) Thompson, R. J. J. Neurochem. 1975, 25, 811-823.
- 145) Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. J. Natl. Cancer Inst. 1991, 83, 757-766.
- 146) Vichai, V.; Kirikara, K. Nat. Protoc. 2006, 1, 1112-1116.
- 147) Siles, R.; Ackley, J. F.; Hadimani, M. B.; Hall, J. J.; Mugabe, B. E.; Guddneppanavar, R.; Monk, K. A.; Chapuis, J. –C.; Pettit, G. R.; Chaplin, D. J.; Edvardsen, K.; Trawick, M. L.; Garner, C. M.; Pinney, K. G. J. Nat Prod. 2008, 71, 313-320.
- 148) Voigt, W. Methods Mol. Med. 2005, 110, 39-48.
- 149) Liu, L.; Beck, H.; Wang, X.; Hsieh, H. –P., Mason, R. P.; Liu, X. *PLoS One* **2012**, 7, e43314.
- 150) Pinney, K. G.; Sriram, M. Combretastatin Analogs with Tubulin Binding Activity. United States Patent US 7,429,681. September 30, 2008.
- 151) Pinney, K. G.; Sriram, M. Combretastatin Analogs with Tubulin Binding Activity. United States Patent US 8,394,859. March 12, 2013.
- 152) Pinney, K. G.; Sriram, M. George, C. S.; Tanpure, R. P. Efficient Method for Preparing Functionalized Benzosuberenes. United States Patent US20120130129A1. November 16, 2011.
- 153) Chaplin, D. J.; Garner, C. M.; Kane, R.; Pinney, K. G.; Prezioso, J. A.; Edvardsen, K. Functionalized Stilbene Derivatives as Improved Vascular Targeting Agents. United States Patent US20030419003A1. November 16, 2011.
- 154) Pinney, K. G.; Mocharla, V. P.; Chen, Z.; Garner, C. M.; Ghatak, A.; Hadimani, M.; Kessler, J.; Dorsey, J. M.; Edvardsen, K.; Chaplin, D. J.; Prezioso, J. A. Tubulin Binding Agents and Corresponding Prodrug Constructs. United States Patent US 2004/0043969 A1. March 4, 2004.

- 155) Pinney, K. G.; Mocharla, V. P.; Chen, Z.; Ghatak, A.; Hadimani, M.; Kessler, J.; Dorsey, J. M.; Edvardsen, K.; Chaplin, D. J.; Prezioso, J. A. Tubulin Binding Agents and Corresponding Prodrug Constructs. United States Patent US 7,001,926 B2. March 21, 2006.
- 156) Pravst, I.; Zupan, M.; Stavber, S. *Tetrahedron Letters* **2006**, *47*, 4707-4710.
- 157) Sriram, M. Design, Synthesis, and Biochemical Evaluation of Benzocyclic and Enediyne Analogs of Combretastatins as Potential Tubulin Binding Ligands in the Treatment of Cancer. Ph. D. Dissertation, Baylor University, Waco, TX. 2007.