
 
 

 
 
 
 
 
 

ABSTRACT 
 

Effects of Nozzle Geometry and Extrudate Swell  
on Fiber Orientation in Fused Deposition Modeling Nozzle Flow 

 
Blake P. Heller, M.S.M.E. 

 
Mentor: Douglas E. Smith, Ph.D. 

 
 

Fused Deposition Modeling (FDM) is a rapidly growing Additive Manufacturing 

(AM) technology using extruded thermoplastics to produce intricate three-dimensional 

parts from digital data. Adding discrete fibers to FDM filament feedstock improves 

mechanical properties of FDM parts; however, little is known about processing and 

tooling effects on fiber orientation defined by velocity gradients within the polymer melt 

flow. This research simulates axisymmetric FDM extrudate swell extending from the 

nozzle exit by adjusting the radial location of the free surface to minimize the integrated 

free surface stress. Fiber orientation within the polymer melt is calculated from velocity 

gradients evaluated along streamlines in the fluid domain using orientation tensors, the 

fast exact closure, and isotropic rotary diffusion. Results quantify the influence of nozzle 

geometry and extrudate swell on fiber orientation in the extruded polymer. Parametric 

studies of nozzle geometry show sharp contractions in nozzle geometry near its exit 

significantly increases average fiber alignment. 
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CHAPTER ONE 
 

Introduction 
 
 

1.1 Research Objective and Motivation 

Fused Deposition Modeling (FDM) is perhaps the fastest growing technology in 

the area of Additive Manufacturing (AM). Additive manufacturing is defined as any 

process that uses only the addition of materials to build a finished part. The greatest 

attribute of additive manufacturing is intricate three dimensional parts can often be 

created using less material and energy without the need for tooling or molding devices. 

Materials used in additive manufacturing vary greatly and include, metals, plastics, 

concrete, and eventually human tissue. All additive manufacturing processes use a similar 

structure for the creation of parts from digital data. Users can create essentially any part 

using a Computer Aided Design (CAD) software such as SolidWorks (Dassault Systems, 

LLC, Velizy, France), PTC Creo (PTC, Inc.,Needham, MA), or AutoDesk Inventor 

(Autodesk, Inc., San Rafael, CA). A solid model is saved as an .stl file, which stands for a 

“stereolithography” file, which divides the given part into a number of triangular 

components that define the surface of the object. The respective software will then 

translate the .stl file into a series of layers that define the designed part. 

There are many types of additive manufacturing technologies, but undoubtedly 

the most popular techniques are Selective Laser Sintering (SLS), Stereolithography 
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(SLA), Laminated Object Manufacturing (LOM), and Fused Deposition Modeling 

(FDM) [1]. 

Selective Laser Sintering (SLS) is an AM technique which consists of a sealed 

chamber of powdered material with a window over the printing platform. A laser is 

positioned above the window and the beam is directed towards the material platform. The 

material in the chamber is brought to a temperature slightly below its melting point and 

spread over a plate in a thin layer. The laser is then directed to selective positions which 

increases the temperature of the material above its melting point. Part shape is defined by 

the location of laser exposure. This is done successively until the part has been 

completed. The benefits of SLS printing are that plastics, metals, and ceramics can all be 

printed and printing is performed with high dimensional accuracy. Disadvantages of SLS 

printing include a final part having a porous structure and a large amount of material 

waste during processing. 

Stereolithography (SLA) uses a liquid material bath that is exposed to the beam of 

a UV laser in select locations. The solidified liquid is built layer by layer until the part is 

complete. The benefits of SLA printing are fast print times with high dimensional 

accuracy and little material waste. Disadvantages of SLA printing include low material 

strength, poor thermal properties, and comparatively high material costs. Another major 

issue with SLA printing is photopolymer printing materials can contain up to 100 times 

the heavy metal (Antimony) content of other polymers which could lead to environmental 

and health concerns [2].  

Laminated Object Manufacturing (LOM) is an AM technique in which separate 

layers of an adhesive coated material are glued together and cut to a specified shape using 
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a knife or laser. The benefits of LOM are low cost of materials and relatively large parts 

can be made easily. The issues of LOM include a low dimensional accuracy in 

comparison to other AM methods and the need for post processing. 

Fused Depostion Modeling (FDM) is an AM technology that uses a filament 

based feedstock. This feedstock is fed into a liquefier, melted, and then extruded as a 

bead onto a moving platform. The platform moves in the plane perpendicular to and 

relative to the extrusion nozzle to create a single layer. The platform then is moved away 

from the nozzle as successive layers of plastic material are deposited. Material deposition 

is repeated layer by layer to create the final part. FDM printing uses G-code, which is 

numerical information passed from a computer to the printer, to define the print paths 

necessary to create the final part from the .stl file. The advantages of FDM printing are 

the ability to scale the technology for creation of large parts, low cost part production, 

and the use of industrial grade environmentally stable printing materials. Disadvantages 

of FDM printing include interlayer voids caused by the extrusion of parallel cylindrical 

polymer beads, interlayer adhesion problems seen between molten polymer layers and 

previously deposited partially cooled polymer layers, warping and delamination’s due to 

thermal gradients in the printed part, and the overall strength of a part printed with a 

virgin polymer.  

The research in this thesis addresses how the virgin polymer product can be 

enhanced by the introduction of discrete fiber reinforcement. The addition of discrete 

fiber reinforcement is by no means a new topic to the world of reinforced polymers, but 

can aid in the effectiveness of FDM printing as an emerging additive manufacturing 

technology. The addition of discrete fibers has been shown to improve material properties 
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of a virgin polymer. The material properties affected by the addition of discrete fibers 

include an increase in elastic modulus, toughness, and total strength. Specifically, the 

addition of carbon fibers to the virgin polymer will decrease the amount of warping and 

delamination’s in the printed part [3]. 

To assess the value of adding discrete fibers to the polymer melt, the orientation 

of the discrete fibers must be calculated. Calculation of the orientation of discrete fibers 

in various fluids and suspensions (Newtonian and Non-Newtonian dilute, semi-dilute, 

and concentrated suspensions) have been previously calculated by many researchers [4, 

5, 6, 7, 8] and is well understood. Work has gone into calculating the motion of a single 

fiber in the polymer melt flow [9, 10], two fibers [11], and multiple fibers [7].  

To properly define the final fiber orientation state in a finished part we must 

consider two factors related to the FDM manufacturing process. The first factor to 

consider is the extrudate swell phenomena. As a fluid passes from a pressurized vessel to 

a free jet there is a natural expansion of the fluid. This expansion is called die, or 

extrudate, swell which causes a change in the velocity in both the radial and longitudinal 

directions of the flow seen as a swell of the fluid at the exit of the nozzle. Expansion flow 

such as that occurring in extrudate swell has been shown to decrease the alignment of the 

fibers in the direction of the flow and increase the alignment transverse to the flow [42, 

43, 44] which is studied further in this thesis. The other factor to consider relates to the 

nozzle convergence zone upstream from the nozzle which effects the flow of plastic 

during processing. Prior research and results in the current research shows that fiber 

orientation changes considerably in expansion and contraction flows. The change in the 

velocity gradients in these areas causes the orientation of the fibers to rapidly align with 
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the flow of the polymer. Another consideration necessary in the modeling of the 

extrudate swell and fiber orientation is the boundary conditions at the point of initial 

expansion. The fluid undergoes major changes as it transitions from the no-slip boundary 

within the nozzle to the free surface no stress boundary outside of the nozzle exit. This 

change in boundary condition creates a singularity in the velocity field in the problem 

that cannot be avoided. The effect of the singularity on the final free surface stress can 

only be minimized not completely removed. Several researchers have previously 

developed their own approach to reducing the effects of the singularity [12, 13, 14]. 

Nixon et al. [15] originally modeled the fiber orientation in an FDM nozzle 

problem using Moldflow (Moldflow Corporation, Framingham, Massachusetts) which is 

a stand-alone injection molding software with fiber orientation calculation capabilities. 

The problem presented by Nixon et al., was modeled as a carbon micro fiber (CMF) 

filled fluid being injected into an open mold until the mold is 99.9% filled. The author 

states “[P]ost-nozzle, fibers tend to be aligned similarly in the global perspective. 

However, these results are meaningless due to the lack of material cooling once the 

material has been ejected from the nozzle as well as the lack of open-air boundary 

condition that would be present in a realistic FDM process.” The work done for the 

current thesis defines the free jet surface and its effect on the resultant fiber orientation as 

well as the effect of an FDM nozzle geometry. Also a more in depth study and discussion 

of the effects of the nozzle geometry and the calculated free jet surface on the final fiber 

orientation state will be presented. 

The goal of this thesis is to provide a model for the calculation of fiber orientation 

through the FDM nozzle fluid domain. The extrudate swell is calculated using a 
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minimization technique to zero the stress along the free surface boundary extending from 

the nozzle exit. The fiber orientation is then calculated through an axisymmetric 

representation of the full fluid domain which includes the nozzle geometry and calculated 

extrudate swell regions. Fiber orientation in the fluid domain is calculated using 

orientation tensors popularized by Advani-Tucker [10] with the Fast Exact Closure [17] 

assuming Folgar-Tucker [7] isotropic rotary diffusion. A study of the effects of changes 

in the nozzle geometry is then completed to define in more depth the effect of each 

portion of the nozzle (convergence zone, straight tube, and exit expansion). The 

calculations run in the following thesis define the effects of nozzle geometry and 

extrudate swell on the resultant fiber orientation. 

 
1.2 Order of Thesis 

Chapter One presents an overview of the research task to be approached and the 

overall objective of the presented thesis. Chapter Two discusses the literature that has 

been previously published pertaining to the established numerical and analytical models 

that effect the research topic discussed in the thesis. Chapter Three presents the method 

and implementation used to properly define the extrudate swell free jet surface for a 

straight tube and a FDM nozzle. Chapter Four gives the models used to calculate fiber 

orientation in the straight tube and FDM nozzle, as well as how the nozzle shape and 

extrudate swell affects the resultant fiber orientation. The results and conclusions from 

the fiber orientation models are also discussed. Chapter Five provides a parametric study 

of the effects of nozzle geometry on the average final orientation state of the extruded 

polymer bead. Lastly the thesis will conclude with Chapter Six which includes results and 
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discussion about the findings of the research, the applicability to current FDM processes, 

and recommendations for future work.   
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CHAPTER TWO 
 

Literature Review 
 
 

Fused Deposition modeling is a method of rapid prototyping that has great 

potential for many uses in the industrial field. Due to how new the field of fiber 

reinforced FDM research is there is a small amount of literature that pertains to this 

thesis, but the interesting and applicable information will be addressed here. There is, on 

the other hand decades of literature on the subject of extrudate swell and fiber orientation 

to be reviewed and discussed. To properly define the orientation of fibers flowing in a 

polymer melt, through a FDM extrusion nozzle, there must be a thorough understanding 

of all factors that affect that this fiber filled melt. Properly defining the die swell is 

pivotal to the understanding of the polymer jet extruded by the FDM nozzle. The exact 

values of the extrudate swell for Newtonian and Non-Newtonian fluids are important in 

the design and manufacturing of extrusion dies. For this reason die swell, also known as 

extrudate swell, has been studied extensively for the last fifty years. An overview of the 

analytical and numerical models defining extrudate swell and fiber orientation as well as 

the associated strengths and weaknesses of the accepted models is discussed below. 

 
 

2.1 Fused Deposition Modeling in Additive Manufacturing 

There is a wide variety of Rapid Prototyping (RP), more recently referred to as, 

Additive Manufacturing (AM), technologies that are currently used in industry. Selective 

Laser Sintering (SLS), Stereolithography (SLA), Digital Laser Metal Sintering (DLMS), 
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Laminated Object Manufacturing (LOM), and Fused Deposition Modeling (FDM) are the 

most popular RP methods [1] 

The most popular and perhaps the most promising method is Fused Deposition 

Modeling [18]. The low material cost and ability to create intricate three dimensional 

shapes make this technology an exciting additive manufacturing technique. While being a 

promising prospect there are many issues with FDM printing that still need to be 

addressed. These issues include interlayer adhesion, interlayer voids, warping, 

delaminations, and unsatisfactory material properties for virgin polymers used in printing. 

The main areas that have been researched thus far are print parameter optimization and 

the addition of second phase particles to increase the mechanical properties of the print 

material.[18, 19] 

 
2.1.1 Print Parameter Optimization 

Print parameter research seeks to optimize the major variables in the printing 

process to improve mechanical properties, efficiency of the machines, and quality of the 

final printed part. This allows for increase in viability of FDM printing as an effective 

industrial tool. Thrimurthulu et al.[20] studied two major print parameters. The first 

parameter was print path optimization which seeks to decrease print times by decreasing 

the number of passes per layer and selection of the most effective print path. The second 

parameter looks at the effect of layer thickness on the surface finish of the part. The 

author minimizes a weighted sum of the print time and surface roughness to optimize the 

final print properties of the part depending on the preference of the print job. A weight of 

1 for print time would use the largest layer thickness and shortest print paths to complete 
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the part as fast as possible while a weight of 0 would focus on the best possible surface 

finish. Other studies, such as the study by Sood et al. [21], seeks to increase the 

mechanical properties of the printed part by optimizing print parameters. The studied 

print parameters and definitions taken from Sood et al. [21] are given as: 

 Orientation: Part build orientation or orientation refers to the inclination of part in 
a build platform with respect to X, Y, Z axis. X and Y axis are considered parallel 
to the build platform and Z axis is along the direction of part build. 

 
 Layer thickness – is a thickness of layer deposited by nozzle and depends on the 

type of nozzle used. 
 

 Raster angle – is  a direction of raster relative to the X axis of the build table 
 

 Part Raster Width – is the width of raster pattern used to fill interior regions of 
part curves 

 
 Raster to Raster Gap -  is the gap between two adjacent rasters on the same layer 

 
The optimization of the above factors allows for parts that have improved 

mechanical properties with better surface finishes and parts that are more viable for 

industry use. This research area is important to the progression of FDM printing, but due 

to its limited use in this thesis, will not be discussed further. 

 
2.1.2 Addition of Second Phase Particles 

The addition of second phase particles to the virgin print material to increase 

mechanical properties is of interest for this thesis. Increasing the mechanical properties 

such as, thermal conductivity, ductility, tensile strength, and toughness is a necessity to 

make FDM printed parts viable in industry. One major point that needs to be made is that 

the addition of the second phase particles can be problematic when the volume fractions 

become too great. This causes nozzle clogging, agglomerations, and other issues which 

result in a failure in the printed part [22, 19].  
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2.1.2.1 Thermal Conductivity  

The purpose of increasing thermal conductivity of the printing material is to 

decrease the surface roughness of the printed part and increase the heat dissipation 

properties of the final printed parts. One of the major applications for FDM printing is the 

creation of part tooling for injection molding; therefore, decreasing surface roughness of 

the printed part and increasing the heat dissipation are major concerns. Heat buildup in 

the injection molding process decreases the efficiency of the mold and poor surface finish 

on the molded part are unwanted properties which are improved with an increased 

thermal conductivity. 

A study conducted by Nikzad et al. [22] looked at the addition of copper and iron 

particles to virgin ABS. The copper and iron particles were included in sizes of 10μm and 

45μm, and in volume fractions of 5%, 10%, 20%, 30%, and 40%. A noticeable change in 

thermal conductivity of the material was not seen below 20% volume fraction of copper 

particles and 30% volume fraction of iron particles. Above these volume fractions, 

Nikzad et al. reported an order of magnitude improvement in thermal conductivity which 

the authors attribute to “a break in the thermal resistance of ABS and the creation of 

conductive chains in the matrix.” The authors also note that agglomerations can occur at 

too high of a volume fraction which can cause voids that reduce thermal conductivity. It 

is understood that these voids would also decrease the structural integrity of the printed 

part which is unwanted. 

 
2.1.2.2 Strength and Toughness 

The purpose of increasing the strength and toughness of the printing material is to 

create parts that can be load bearing, and stand up to fatigue and wearing in an industrial 
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setting. An approach to increasing the strength and toughness of virgin plastic is to add 

chopped fibers which act as a stronger second phase material.  

A study conducted by Zhong et al. [23] evaluated the addition of chopped glass 

fibers to virgin ABS. The chopped glass fibers were added in 15, 20, 25, and 30 % by 

weight. The glass filled ABS was found to be brittle when extruded into the printing 

filament and therefore could not be wound onto a cylinder. The authors then studied the 

effects of the addition of LLDPE, PE, Hydrogenated Buna-N, and Ethylene-Ethyl-

Acrylate (EEA) which is an elastomer. These substances were added to increase ductility 

and toughness of the printing material so it could be extruded into a filament that could 

be wound. It was found that addition of Buna-N and LLDPE to the glass filled ABS 

allowed for a filament that was ductile enough to be wound. Zhong et al. showed that this 

combination of materials allowed for the inclusion of chopped glass fibers which increase 

the strength of the printing material. 

Another study conducted by Tekinalp et al. [19] looked at the addition of chopped 

carbon fibers to virgin ABS. The chopped carbon fibers with an average length of 3.2 mm 

were added to the ABS in 10, 20, 30, and 40 % by weight. The carbon fiber filled ABS 

was then printed into dog-bones for tensile testing with the deposition direction being 

parallel to the load direction. After tensile testing the dog-bone specimens to failure the 

fracture surface of the dog-bone specimens were imaged with an SEM to study the fiber 

orientation in the printed part. Three major effects were seen on the fracture surfaces. The 

first effect, triangular voids between beads, was a known occurrence in FDM printing. 

The authors do state that as the carbon fiber weight percentage increases the size of the 

triangular voids decrease. This is said to be a result of increasingly lower extrudate swell 
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values and higher thermal conductivity as carbon fiber content increases. The second 

effect seen is void formation inside of the polymer bead around the chopped fibers. This 

type of void or pore formation increases along with the fiber weight percentage. This is 

said to be a result of the fiber and polymer phases flowing partially independently during 

extrusion. The last effect seen is high fiber breakage and high fiber alignment in the bead. 

The authors conclude that the high fiber breakage is attributed to high shear forces in the 

extrusion process, which also causes the high rate of alignment of the fibers. The authors 

state that even with the void formations and porosity there is a large increase of strength 

with the addition of chopped carbon fibers which gives the material “great potential for 

use in manufacturing of load bearing composite parts.” [19] The high alignment of fibers 

oriented in the direction of the flow is of specific interest to the materials studied in this 

thesis.  

 
2.1.3 Fiber Orientation Calculation 

The fiber orientation within a FDM printed part will define the structural and 

mechanical properties. The fiber orientation in the polymer bead that is exiting the FDM 

extrusion nozzle is therefore of interest for the design and creation of load bearing parts. 

A highly aligned fiber orientation like the one presented by Tekinalp et al. [19] allows for 

high strength in the direction of fiber alignment, but little to no increase in strength 

transverse to the fiber alignment. A good understanding of how the extrusion nozzle 

effects the fiber orientation is critical in the nozzle design and mechanical expectations of 

a printed part.  

A study by Nixon et al. [15, 16] first considered the effect of nozzle exit shape on 

the fiber orientation in FDM polymer melt flow. Moldflow (Moldflow Corporation, 
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Framingham, Massachusetts), which employs the Folgar-Tucker isotropic rotary 

diffusion model [7] and the ORL fourth order orientation tensor closure [24], was used 

for this study. Three nozzle geometries (convergent, short straight, and divergent) were 

considered in addition to volumetric ejection rate and volumetric fill fraction. Volumetric 

flow rates used in this study are 1.207, 1.448, and 1.810 
ୡ୫య

ୱ
 and the volumetric fiber fill 

fractions are 0, 10, and 20%. The author runs 27 simulations to exhaust all given 

possibilities then reports findings for the 10% and 20 % volumetric fill fractions. The 

author finds that fiber orientation in the liquefier/plenum sees little change until it reaches 

the area immediately before the nozzle. In this region the authors state that higher 

velocity gradients cause the fibers to align with the flow and that both percent fiber fill 

fraction and ejection rate increase the fiber alignment pre-nozzle. Finally the author 

reports that the convergent nozzle sees high in nozzle fiber alignment while the divergent 

nozzle sees a large decrease in the fiber alignment due to expansion flow. The author did 

not comment on the fiber orientation after the nozzle exit. Due to the fluid being shot into 

a large open mold rather than a free jet into open air the results were deemed 

meaningless. 

Nixon et al. presents a significant first step in modeling fiber orientation in FDM 

printing, but there are definitely improvements needed before a full understanding of the 

process is gained. For example, the free surface calculations to define the polymer 

extrudate geometry is a focus this thesis. In addition a more in-depth investigation related 

to the fluid flow and fiber orientation is considered in the current work. 
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2.2 Extrudate Swell 

The extrudate swell phenomena seen at the exit of an extrusion nozzle when the 

polymer melt becomes a free-stream fluid jet has yet to be analyzed for FDM printing. 

The free surface boundary must be properly defined to accurately model the FDM nozzle 

fluid domain. The flow of a polymer melt within a die and the related extrudate swell has 

been studied for many years as related to manufacturing processes, and a good 

understanding of the proper definition of the free surface has been reached. Extrudate 

swell is defined as the partial elastic recovery or swelling effect of an elastic fluid back to 

its former shape and volume at the exit of an extrusion nozzle or die assembly. The 

polymer melts’ elastic nature is inhibited by the compression undergone in an extrusion 

nozzle or die assembly; therefore, when the polymer melt exits the compressed cavity and 

becomes a fluid jet with free surfaces it swells to its former shape and volume. The extent 

of the swelling depends on the fluid properties for each fluid and external conditions that 

the fluid is exposed to after exiting the die. The amount of swelling that the fluid 

undergoes will also affect the final physical and mechanical properties of the extruded 

product. [25]  

 
2.2.1 Calculation of Extrudate Swell 

An interesting aspect of extrudate swell that was introduced by Tanner [26] is that 

there are two different portions of the extrudate swell. There is an initial large expansion 

close to the die or extrusion exit then farther from the exit there is a region of smaller 

swell. It is said that the secondary swell can be neglected in calculations due to the rate 

and value of the swell being small in comparison with the initial swell. When modeling 

the die swell there are several assumptions that Tanner states and that are used in this 
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thesis. The assumptions are (a) the flow is isothermal and incompressible, (b) the die is 

long with a length/diameter>>1, (c) inertial effects in the flow may be ignored, (d) 

gravity, other body forces, and surface tension forces are ignored, so that the final 

extruded rod is load free, (e) the small, slow recovery far from the die is ignored [26]. 

Using these assumptions Tanner [27] defines an equation for the die swell of a 

viscoelastic fluid which is given as 

ܦ
݀
ൌ 	 ൤1 ൅

1
2
൬ ଵܰ

2߬௪
൰൨

ଵ
଺
൅ 0.13 (2.1)

where ଵܰ	is the first normal stress difference at the wall of a long circular tube, ݀ is the 

diameter of the extrusion tube, ߬௪ is the wall shear stress, ܦ is the diameter of the 

extrudate emerging from the extrusion tube, and the factor 0.13 is an addition to account 

for the swelling observed in inelastic Newtonian fluid in creeping flow [27]. For a 

Newtonian fluid the first normal stress, ଵܰ, difference is zero [28] which causes 
஽

ௗ
 in 

equation (2.1) to become simply 
஽

ௗ
ൌ 1.13. 

Creeping flow of a compressible fluid is defined by the continuity and momentum 

which are respectively given as 

׏ ൉ ܞߩ ൌ 0 
(2.2)

ܞߩ ∙ ܞ׏ െ ׏ ∙ ࢀ ൌ 0 
(2.3)

where ߩ is the fluid density, ܞ is the velocity vector, and T is defined as 

ࢀ ൌ 	െ݌ሺߩሻࡵ ൅ ሻܞ׏ሾሺߤ ൅ ሺܞ׏ሻ୘ሿ െ
2
3
׏ࡵߤ ∙ (2.4) ܞ

In the case of incompressible flow ρ is constant and the െଶ

ଷ
׏ࡵߤ ∙  term of ܞ

equation (2.4) goes to zero. Also for the case of a Newtonian fluid, μ is constant. For the 



17 
 

work done in this thesis we are concerned with only the Newtonian term which shows a 

flow expansion of 0.13 or 13%. A Non-Newtonian fluid has a greater expansion value 

than the Newtonian fluid and will vary for different fluid properties due to shear rate 

dependence. This value has been found to be accurate by several different numerical 

simulations. The first study considered is the work done by Georgiou et al, which defines 

the stick-slip free surface problem that represents an axisymmetric fluid jet exiting a die 

or extrusion tube [29]. Georgiou defines the problem as is seen in Figure 2.1. 

 

Figure 2.1. Axisymmetric Die Swell Flow Domain with Boundary Conditions from 
Georgiou [30] 
 
 

The finite element method may be used to solve the fluid flow problem in Figure 

2.1 in two dimensions, or the two-dimensional axisymmetric problem having the center 

of the flow channel as the axis of symmetry. In the latter case, the bottom boundary line 

Figure 2.1 is the line of axis symmetry. The wall with hashed lines is defined as a no slip 

boundary. The inlet fluid velocity is a parabolic flow representative of laminar flow with 

maximum velocity at the axis of symmetry and minimum velocity at the no slip upper 

boundary. The swell boundary is defined by n·v = 0 which says that no fluid is passing 
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through the defined free boundary. The swell boundary is also defined by setting the 

stress vector along the boundary equal to zero which is defined as 

:ࢀ ሾܖ ሿܖ ൌ 0 
(2.5)

where n is the normal vector along the boundary: 

ܖ ൌ ൥
݊௥
݊ఏ
݊௭
൩ 

(2.6)

and ࢀ: ሾܖ	ܖሿ is the double contraction of the stress tensor with the normal vector defined 

as the stress traction along the free surface. The outlet is defined as no fluid is flowing 

radially and the fluid is passing freely through the outlet boundary with zero stress in the 

z-direction. Solving the problem defined above for a round tubular channel with the finite 

element method, Georgiou [29] predicted a die swell of 13% for a Newtonian fluid. He 

also discovered that there is a particular rate of expansion, defined by the slope of the 

curve shown in Figure 2.2, and therefore a well-defined shape to the swell which is used 

as a benchmark later in the study. 

Georgiou [29] also studied the effect of fluid compressibility on the final 

extrudate swell. He showed that compressibility can affect the overall swell value for a 

given fluid where die swell ranged from 11-13% depending on the amount of 

compressibility of the fluid. Georgiou [30] also presents the effectiveness of singular 

finite elements at the die exit, which will be discussed in the following section. Georgiou 

states that Salamon et al. experimentally determined a die swell value of 1.1291, which 

agrees well with Georgiou’s calculated values for Ca = 1. Where Ca is the capillary 

number which is a dimensionless quantity that represents a relationship between the 

viscous and surface tension forces. 
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Figure 2.2. Magnitude and Shape of the Extrudate Swell from Georgiou [29] 
 

Reddy and Tanner [31] found that minimizing the stress along the boundary using 

a finite element approach could be used to determine the extrudate swell of a free surface. 

A quadrilateral mesh is used with 20 degrees of freedom per element. Reddy and Tanner 

also consider the effects of increasing the Reynolds number on the extrudate swell. The 

authors show that at higher Reynolds numbers the effect of surface tension becomes 

negligible. 

Elwood et al. [32] used three dimensional streamlined finite elements to predict a 

14% swell for an incompressible Newtonian fluid from a round tubular channel. He also 

predicted that there is no swell at the corners of a square die but a contraction of the fluid 

at the die exit. Contrary to previous works Elwood et al. [32] considers the effects of a 

flat wall on the die swell versus an annular die shape. He also predicts that the flat wall 

will create 19% swell which is substantially greater than the 14% previously defined. 

Elwood [32] states that the solution to the extrudate swell can be calculated with three 

types of free surface boundary conditions (kinematic, normal stress, or shear stress). The 
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kinematic approach is used by Georgiou [29] where the surface stress state is neglected, 

Tanner [26] uses the shear stress approach to define the free surface, and Reddy and 

Tanner [31] use the normal stress approach. Elwood also states, body forces due to 

gravity cause a decrease in swell of the free surface when included in the model.  

From the above papers it is found that the die swell is highly dependent on the 

flow conditions that the fluid undergoes. Several studies have looked at the effect of 

different flow parameters on the amount of swell seen by the fluid. Mitsoulis et al. [33] 

predicts that for creeping flow of a Newtonian fluid the die swell can vary from -90% to 

+56% by changing factors affecting the flow. These factors include Stokes Number (St), 

Reynolds number (Re), capillary number (Ca), compressibility (B), pressure-shift 

coefficient (Bp), and slip coefficient (Bsl). The extremes of -90% swell and +56% swell 

come from unlikely flow parameters for normal processing such as highly gravity or 

inertial driven flow and highly compressible fluids, but it does show the large effect that 

the parameters can have on the resultant die swell. These factors do not affect the 

problem evaluated in this thesis. The assumptions used in this thesis and by Tanner [27] 

eliminate the influence of B, Bp, Bsl, and St and sets Re and Ca in ranges that do not 

affect the extrudate swell. 

 
2.2.2 Stick-Slip Singularity 

Another factor that affects the calculation of die swell relates to singularities in 

the flow field. The occurrence of a singularity in the finite element problem for the 

velocity-pressure formulation of creeping flow has been well documented, as well as the 

approaches to dealing with the inherent singularity. Georgiou [12] determined that 

singular finite elements that map the shape of the singularity can be used to improve 



21 
 

convergence with fewer elements as compared to simply using standard finite elements. 

There are several types of singular finite element approaches presented in the paper 

which include embodied singularity elements, embedded singularity elements, and 

singular isoperimetric elements. Georgiou [13] employs embodied finite elements which 

embody specific shape functions to represent the singularity field. In his approach the 

singular finite elements are only used in the area immediately surrounding the stick slip 

singularity point. Using this method Georgiou claims a substantial decrease in the 

number of elements needed for similar or better convergence. 

Another approach to properly assessing the singularity is discussed by Finlayson 

[14] who uses COMSOL Multiphysics (COMSOL, Stockholm, Sweden) to address the 

singularity issue. Finlayson claims by the use of Petrov-Galerkin stream wise up-winding 

and the Discrete Elastic-Viscous-Split-Stress (DEVSS) method a viscoelastic fluid can be 

modeled with the stick slip boundary conditions. The SUPG method smooths the velocity 

gradients at the singularity, by averaging upstream and downstream velocity gradient 

values. Using this method Finlayson sustains acceptable answers without requiring the 

specialty elements developed by Georgiou [12, 13]. 

The literature discussed above indicates that various methods have been 

developed to address the singularity that occurs at the stick-slip point. The singularity 

effects the evaluation of stress along the swell boundary and the ability eliminate the 

stress by adjusting the shape of the free surface. This effect will be seen later in the 

thesis.  
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2.3 Fiber Orientation 

Fiber orientation models are used to compute the direction of fibers or groups of 

fibers suspended within a moving fluid. These models have seen extensive development 

and application in extrusion, and injection and compression molding over the past several 

decades. Fiber orientation models are widely used in commercial software packages such 

as Moldflow (Moldflow Corporation, Framingham, MA) and Moldex3D (Core Tech 

Systems Co., Ltd., Chupei City, Taiwan).  

 
2.3.1 Fiber Orientation Models 

The study of fiber orientation of a single inclusion suspended within a viscous 

fluid can trace its origins to work done by Einstein, [34] who modeled perfect spheres 

suspended in a viscous fluid. Jeffery [9] expanded Einstein’s work on spheres to the 

periodic rotation of a single ellipsoidal fiber suspended in a viscous fluid. The first 

assumption made by Jeffery is that an ellipsoidal fiber rotates in a domain with no fiber 

boundary or fiber-fiber interaction. His derivation assumed that the ellipsoid is much 

smaller than the distance from the ellipsoid to the boundary or the distance to another 

ellipsoid. The suspended ellipsoid was also assumed to be under the influence of shear 

flow as well which causes the periodic tumbling motion of the fiber. From this paper we 

get the differential equation of motion for the direction of a fiber. Jeffery’s differential 

equation can be written as [36] 

ܘܦ
ݐܦ

ൌ ࢹ ⋅ ܘ ൅ λሺࢣ ∙ ܘ െ :ࢣ  ሻ (2.7)ܘܘܘ

where p is the unit vector along the primary axis of the fiber with the components given 

as, 
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ଵ݌ ൌ sin ߠ cos߮  

ଶ݌ ൌ sin ߠ sin߮ 
(2.8) 

ଷ݌ ൌ cos ߠ   

where ߠ and ߮ are angles defined in the coordinate system shown in Figure 2.3. 

 

 

Figure 2.3. Coordinate System for a Single Fiber in Jeffery’s Equation 
 

In equation (2.7), λ is the coefficient related to fiber geometry,  

ߣ ൌ
௘ଶݎ െ 1
௘ଶݎ ൅ 1

 (2.9)

where ݎ௘ is the equivalent aspect ratio. In equation (2.7), Ω is the vorticity tensor given 

as, 

ࢹ ൌ
1
2
ሾሺܞ׏ሻ െ ሺܞ׏ሻ୘ሿ (2.10)

and Γ is the rate of deformation tensor defined as 

ࢣ ൌ
1
2
ሾሺܞ׏ሻ ൅ ሺܞ׏ሻ୘ሿ (2.11)

There are two main issues with Jeffery’s approach to fiber orientation when 

applying it to discrete fiber polymer composites. The first is that for flows containing 
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more than one fiber Jeffery’s equation would need to be calculated separately for each 

fiber which is inefficient. Folgar and Tucker [7] introduced the use of the probability 

distribution function, ߰ሺܘሻ, which calculates the probability of a fiber being between ߠଵ 

and ሺߠଵ ൅ ሻ and ߮ଵ and ሺ߮ଵߠ݀ ൅ ݀߮ሻ. The second issue related to modeling discrete 

fiber composites relates the lack of a fiber-fiber interaction term. Fiber interaction for 

discrete fiber composites was first addressed by Folgar and Tucker [7] who introduced an 

Isotropic Rotary Diffusion function to account for fiber interaction. The rotary diffusivity 

term, Dr, was added to Jeffery’s equation (Eq. (2.7)) to account for fiber-fiber interactions 

which limits the amount of fiber alignment. Folgar and Tucker recommended	ܦ௥ ൌ ሶߛூܥ	 , 

where CI is an empirically fit coefficient called the interaction coefficient and ߛሶ  is the 

magnitude of the rate of deformation tensor given as  

ሶߛ ൌ ሺࢣ: ሻࢣ
ଵ
ଶ (2.12)

where ߛሶ ൌ 	 ሺࢣ: ሻࢣ
భ
మ is the double contraction of the rate of deformation with itself. The 

equation for a single fiber rotating in a concentrated suspension would then become [10] 

ܘܦ
ݐܦ

ൌ ൫ࢹ ⋅ ܘ ൅ ૃሺࢣ ∙ ܘ െ :ࢣ ሻ൯ܘܘܘ െ ሶߛூܥ
1
߰
݀߰
ܘ݀

 
(2.13)

Computing the fiber orientation distribution function as a function of time can be 

computationally expensive. Therefore, it is common today to compute the moments of 

the distribution function which were first popularized for discrete fiber composites by 

Advani-Tucker [10]. Advani and Tucker [10] stated “orientation tensors are related to the 

coefficients of a Fourier series expansion of the probability distribution function.” The 

differential equation for computing the time history of the second-order orientation tensor 

A is written as  
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࡭ܦ
ݐܦ

ൌ െ
1
2
ሺࢹ ∙ ࡭ െ ࡭ ∙ ሻࢹ ൅

1
2
ࢣሺߣ ∙ ࡭ ൅ ࡭ ∙ ࢣ െ 2८: ሻࢣ ൅ (2.14) ࢘ࡰ

where second and fourth order orientation tensors are defined respectively as 

࢐࢏ܣ ൌ ර݌௜݌௝߰ሺ࢖ሻ  ࢖݀
(2.15)

and 

८௜௝௞௟ ൌ ර݌௜݌௝݌௞݌௟߰ሺ࢖ሻ  ࢖݀
(2.16)

The Advani-Tucker orientation tensor approach is an improvement on the calculation 

speed compared to that of the probability distribution function. Advani and Tucker [10] 

stated an increase of computation speed of two orders of magnitude, and it was shown 

later by Montgomery-Smith et al. [45] that an increase of up to four orders of magnitude 

was seen. When Dr  is set equal to zero the above equation defines the Jeffery equation 

defined earlier. To account for fiber interaction, fiber orientation diffusion functions are 

employed. The Folgar-Tucker [7] Isotropic Rotary diffusion mentioned above was 

created to account for fiber interaction in concentrated fiber suspensions where there 

exists fiber-fiber interaction. The Folgar-Tucker diffusion function is given as  

࢘ࡰ
ࡰࡾࡵ ൌ ሶߛூܥ2 ሺࡵ െ  ሻ࡭3

(2.17)

The Folgar-Tucker Isotropic Rotary Diffusion (IRD) model has been widely used 

in industry, and is used by fiber orientation simulation programs such as Moldflow 

(Moldflow Corporation, Framingham, Massachusetts) and Moldex3D (Core Tech 

Systems Co., Ltd., Chupei City, Taiwan). The main problem with this orientation model 

is that there still exists an overestimate of the calculated fiber orientation rate of 

alignment in shear flow. To address this issue, various recent modifications have been 
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proposed that include the Reduced Strain Closure [8] (RSC) model, the Koch model [35], 

and the Anisotropic Rotary Diffusion (ARD) [36] model. 

The reduced strain closure (RSC) method, introduced by Wang et al. [8] seeks to 

slow the orientation kinetics exhibited by short fiber polymer suspensions which tend to 

be over-predicted by the previously discussed models. The authors found that orientation 

of short fibers can range from two to ten times slower than is predicted by the Folgar-

Tucker IRD model [8]. To slow the orientation kinetics but not affect the steady state 

solution the authors decrease the eigenvalue growth rate but do not disturb the rotation 

rate of the eigenvectors. The referenced eigenvectors and eigenvalues represent the 

symmetric second order orientation tensor as 

࡭ ൌ ෍ߣ௜

ଷ

௜ୀଵ

௜ (2.18)ࢋ௜ࢋ

where ࢋ௜ are the eigenvectors and ߣ௜ are the eigenvalues. Given this representation of A, 

it can be shown that Equation (2.14) becomes [8] 

࡭ܦ
ݐܦ

ൌ 	 ሺࢹ ∙ ࡭ െ ࡭ ∙ ሻࢹ ൅ λሼࢣ ∙ ࡭ ൅ ࡭ ∙ ࢣ െ 2ሾ८ ൅ ሺ1 െ κሻሺॷ െॸ:८ሻሿ: ሽࢣ

൅ 2κܥூߛሶ ሺࡵ െ  ሻ࡭3
(2.19)

where ॷ and ॸ are analytical functions of the eigenvalues and eigenvectors of A which 

are defined respectively as 

ॷ ൌ ෍ߣ௜ሺࢋ௜ࢋ௜ࢋ௜ࢋ௜ሻ
ଷ

௜ୀଵ

 (2.20)

and 

ॸ ൌ ෍ࢋ௜ࢋ௜ࢋ௜ࢋ௜

ଷ

௜ୀଵ

 (2.21)
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In the above, κ is a parameter that slows the orientation kinetics, chosen to fit 

experimental data. The authors state that the model reduces to the Folgar-Tucker IRD 

model when κ→1-. These changes effectively reduce strain rate imposed on the 

orientation tensor; hence, the model is named the Reduced Strain Closure (RSC). This 

model has been an effective addition to the reduction of the rate of fiber orientation. The 

RSC method is also used in the Phelps-Tucker ARD-RSC model which is the most 

accurate model that currently exists for prediction of fiber orientation states. 

The ARD and ARD-RSC models are presented by Phelps and Tucker. The ARD 

is defined as [36]  

࢘ࡰ
ࡰࡾ࡭ ൌ ࡯ሶሾ2ߛ െ 2ሺtr	࡯ሻ࡭ െ 5ሺ࡯ ∙ ࡭ ൅ ࡭ ∙ ሻ࡯ ൅ 10८:࡯ሿ  (2.22)

and the ARD-RSC is defined as [36] 

࡭ܦ
ݐܦ

஺ோ஽ିோௌ஼

ൌ ሺࢹ ∙ ࡭ െ ࡭ ∙ ሻࢹ

൅ λሼࢣ ∙ ࡭ ൅ ࡭ ∙ ࢣ െ 2ሾ८ ൅ ሺ1 െ κሻሺॷ െॸ:८ሻሿ: ሽࢣ

൅ ሶߛ ሼ2ሾ࡯ െ ሺ1 െ κሻॸ:࡯ሿ െ 2κሺtr࡯ሻ࡭ െ 5ሺ࡯ ∙ ࡭ ൅ ࡭ ∙ ሻ࡯

൅ 10ሾ८ ൅ ሺ1 െ κሻሺॷ െॸ:८ሻሿ:  ሽ࡯

(2.23)

where C is a spatial tensor describing fiber-fiber interactions given by  

࡯ ൌ 	ܾଵࡵ ൅ ܾଶ࡭ ൅ ܾଷ࡭ଶ ൅
ܾସ
ሶߛ
ࢣ ൅

ܾହ
ሶߛ
 ૛ࢣ

(2.24)

The Koch model [35] builds on the Folgar-Tucker Isotropic Rotary Diffusion 

model and adds the effect of long-range hydrodynamic fiber-fiber interactions. It is also 

an anisotropic model and depends on the fiber orientation state to calculate orientation 

diffusivity. This model was designed for semi-dilute fiber suspensions such that nL2d > 3, 
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where n is the number of fibers per unit volume, L is the average fiber length, and d is the 

fiber diameter. The Koch anisotropic rotary diffusion model is defined as [35] 

࢘ࡰ
ࢎࢉ࢕ࡷ ൌ 	

ଷܮ݊

ሶߛ ଶ lnଶ ߙ
ሾߣଵሺࢣ: ८: ࡵሻࢣ ൅ :ऋ:ࢣଶሺߣ ሻሿ (2.25)ࢣ

where, α = L/d is the fiber aspect ratio, λ1 and λ2 are coefficients that are obtained by 

fitting the model to theoretical orientation distributions in extensional flows, and ऋ is the 

sixth order orientation tensor given as 

ऋ௜௝௞௟௠௡ ൌ ර݌௜݌௝݌௞݌௟݌௠݌௡߰ሺ࢖ሻ  ࢖݀
(2.26)

Phelps and Tucker [36] noted that for values of nL2d sufficiently less than 3 A11 

will rise above unity which is non-physical, and in the steady-state condition λ1 which is 

the isotropic diffusion term dominates the anisotropic diffusion term λ2 so that there is 

little difference between the Koch model and the Folgar-Tucker diffusion function which 

is more computationally efficient. 

 
2.3.2 Closure Methods 

A major issue in the use of the Advani-Tucker [10] orientation tensor approach is the 

need for a series truncation. The fiber orientation tensor approach is a Fourier series 

expansion of increasing even order orientation tensors (Aij, ८ijkl, ऋijklmn, ….) used to 

represent the fiber orientation distribution function. This series must be truncated at a 

certain point and a closure method must be used to calculate the highest order tensor 

using the lower order tensors. There are many different closure methods that have been 

proposed. The Hybrid Closure presented by Advani and Tucker [10] simply combines the 

linear [37] and quadratic [38] closure approximations. The linear closure approximation 

is simply a summation of all the products of A and δ. 
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८෡௜௝௞௟ ൌ 	െܥଵ൫ߜ௜௝ߜ௞௟ ൅ ௝௟ߜ௜௞ߜ ൅ ௝௞൯ߜ௜௟ߜ ൅ ௞௟ߜ௜௝ܣଶሺܥ ൅ ௝௟ߜ௜௞ܣ ൅ ௝௞ߜ௜௟ܣ

൅ ௜௝ߜ௞௟ܣ ൅ ௜௞ߜ௝௟ܣ ൅  ௜௟ሻߜ௝௞ܣ
(2.27) 

where C1 and C2 are constants defined respectively as 
ଵ

ଷହ
 and 

ଵ

଻
 for three-dimensional 

orientation and respectively as 
ଵ

ଶସ
and 

ଵ

଺
 for planar constrained orientation. The quadratic 

closure is defined as the product of the second-order orientation tensor defined as 

८෩௜௝௞௟ ൌ ௞௟ (2.28)ܣ௜௝ܣ

The linear closure is exact for completely random fiber distributions while the 

quadratic closure is exact for fully aligned fibers. The hybrid closure combines the 

strengths of each method to compute the fourth-order orientation tensor as 

८ഥ ൌ ሺ1 െ ݂ሻ८෡ ൅ ݂८෩ (2.29)

where f is an alignment parameter defined as  

݂ ൌ ௝௜ܣ௜௝ܣܽ െ ܾ 
(2.30)

In this calculation, a and b are, respectively, 
ଷ

ଶ
 and 

ଵ

ଶ
for three-dimensional orientation and 

2 and 1 for planar orientation. The hybrid closure is shown to provide a better model 

across the orientation spectrum than the two previous models.  

The Orthotropic fitted closure presented by Cintra-Tucker [24] is based on the 

realization that all fourth order tensor approximations must be orthotropic which is 

obtained when its principal axes match those of the second order tensor from which the 

fourth order tensor approximation is computed. The Orthotropic Fitted Closure is 

computed as 

ഥ௠௠࡭
ைோி ൌ ௠ଵܥ	 ൅ ௠ଶܥ ܽଵ ൅ ௠ଷܥ ሾܽଵሿଶ ൅ ௠ସܥ ܽଶ ൅ ௠ହܥ ሾܽଶሿଶ ൅ ௠଺ܥ ܽଵܽଶ (2.31)
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where m = 1,6. In equation (2.31) ܽଵand ܽଶ are the eigenvalues of the second order 

orientation tensor. There are 18 independent coefficients that are computed using a 

minimization process that fits computed values of A for various homogenous flow fields. 

The authors state that the orthotropic fitted closure (ORF) uses a similar approach as the 

Natural Closure presented by Verleye and Dupret [39]. It is stated that “the invariants and 

the principal values contain the same information and, if completely general functions 

were used, they would give identical closure results. The Natural Closure is defined as 

८ഥ௜௝௞௟
ே௔௧௨௥௔௟ ൌ ௞௟൯ߜ௜௝ߜଵܵ൫ߚ	 ൅ ௞௟൯ܣ௜௝ߜଶܵ൫ߚ ൅ ௞௟൯ܣ௜௝ܣଷܵ൫ߚ ൅ ௠௟ሻܣ௞௠ܣ௜௝ߜସܵሺߚ

൅ ௠௟ሻܣ௞௠ܣ௜௝ܣହܵሺߚ ൅  ௡௟ሻܣ௞௡ܣ௠௝ܣ௜௠ܣ଺ܵሺߚ
(2.32)

where S is the symmetric part of its argument, i.e., 

ܵ ൌ 	
1
24

ሺ ௜ܶ௝௞௟ ൅ ௝ܶ௜௞௟ ൅ ௝ܶ௞௜௟ ൅ ⋯ሻ (2.33)

The Invariant Based Optimal Fitting (IBOF) closure is a hybrid of the Natural and 

Orthotropic Fitted Closures that is presented by Chung and Kwon [40]. The natural and 

orthotropic closures are eigenvalue-based optimal fitting (EBOF) closure approximations. 

The IBOF closure is defined in the exact same way as the natural closure (८ഥே௔௧௨௥௔௟), 

except that the ߚ௜ values are calculated with a different procedure. For the IBOF it is 

considered that the ߚ௜ values are functions of the second and third invariants (II, III) of 

Aij. 

The Fast Exact Closure (FEC) by Montgomery-Smith et al. [17] is a 

computationally efficient version of the Exact Closure by Montgomery-Smith et al. [41]. 

The FEC is considered exact since it does not require a fiber interaction term (Dr = 0), 

resulting in the Jeffery equation being solved exactly. The FEC solves the following set 

of coupled ODEs simultaneously to find the fiber orientation state: 
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࡭ܦ
ݐܦ

ൌ െԧ: ሻ࡮ሺࡲ ൅ ሻ࡭ሺࡳ
࡮ܦ
ݐܦ

ൌ ሻ࡮ሺࡲ െ ॰:ࡳሺ࡭ሻ (2.34)

where ԧ and ॰ are rank four conversion tensors, and ࡲሺ࡮ሻ and ࡳሺ࡭ሻ are defined by the 

fiber orientation model that is being solved. The implementation of the fast exact closure 

for the Folgar-Tucker IRD model, 

஽࡭
஽௧

ୀି
૚
૛
ԧ: ሾ࡮ ∙ ሺࢹ ൅ ሻࢣߣ ൅ ሺെࢹ ൅ ሻࢣߣ ∙ ሿ࡮ ൅ ࡵ௥ሺ2ܦ െ  ሻ࡭6

(2.35) 

 
஽࡮
஽௧

ୀି
ଵ
ଶ
ሺ࡮ ∙ ሺࢹ ൅ ሻࢣߣ ൅ ሺെࢹ ൅ ሻࢣߣ ∙ ሻ࡮ ൅ :௥॰ܦ ሺ2ࡵ െ  ሻ (2.36)࡭6

 

where the tensor B is a parameter of orientation defined similar to that of the orientation 

tensor A, and ԧ and ॰ are fourth-order conversion tensors. The conversion tensors are 

calculated in the orthonormal basis of B; therefore, ܾଵ, ܾଶ, and ܾଷ are the eigenvalues of 

B and ܽଵ, ܽଶ, and ܽଷ are the eigenvalues A. ԧ is a symmetric tensor defined as 

ԧ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

	

ԧଵଵଵଵ ԧଵଵଶଶ ԧଵଵଷଷ
ԧଶଶଵଵ ԧଶଶଶଶ ԧଶଶଷଷ
ԧଷଷଵଵ ԧଷଷଶଶ ԧଷଷଷଷ

2ԧଵଵଵଶ 2ԧଵଵଵଷ 2ԧଵଵଵଵ
2ԧଶଶଵଶ 2ԧଶଶଵଷ 2ԧଶଶଶଷ
2ԧଷଷଵଶ 2ԧଷଷଵଷ 2ԧଷଷଶଷ

2ԧଵଶଵଵ 2ԧଵଶଶଶ 2ԧଵଶଷଷ
2ԧଵଷଵଵ 2ԧଵଷଶଶ 2ԧଵଷଷଷ
2ԧଶଷଵଵ 2ԧଶଷଶଶ 2ԧଶଷଷଷ

4ԧଵଶଵଶ 4ԧଵଶଵଷ 4ԧଵଶଶଷ
4ԧଵଷଵଶ 4ԧଵଷଵଷ 4ԧଵଷଶଷ
4ԧଶଷଵଶ 4ԧଶଷଵଷ 4ԧଶଷଶଷے

ۑ
ۑ
ۑ
ۑ
ې

 (2.37)
 

where the components of ԧ are calculated as 

ԧതଵଵଶଶ ൌ 	
ܽଵ െ ܽଶ

2ሺܾଶ െ ܾଵሻ
 ԧതଵଵଵଵ ൌ

1
2
ܾଵ
ିଵ െ ԧଵଵଶଶ െ ԧଵଵଷଷ 

(2.38)
 

ԧതଵଵଷଷ ൌ 	
ܽଵ െ ܽଷ

2ሺܾଷ െ ܾଵሻ
 ԧതଶଶଶଶ ൌ

1
2
ܾଶ
ିଵ െ ԧଵଵଶଶ െ ԧଶଶଷଷ 

ԧതଶଶଷଷ ൌ 	
ܽଶ െ ܽଷ

2ሺܾଷ െ ܾଶሻ
 ԧതଷଷଷଷ ൌ

1
2
ܾଷ
ିଵ െ ԧଵଵଷଷ െ ԧଶଶଷଷ 

				ԧത௜௝௞௞ ൌ 	0	݂݅	݅ ് ݆ ് ݇  

and ॰ is defined as 
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॰ ൌ ԧିଵ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

	

॰ଵଵଵଵ ॰ଵଵଶଶ ॰ଵଵଷଷ
॰ଶଶଵଵ ॰ଶଶଶଶ ॰ଶଶଷଷ
॰ଷଷଵଵ ॰ଷଷଶଶ ॰ଷଷଷଷ

2॰ଵଵଵଶ 2॰ଵଵଵଷ 2॰ଵଵଵଵ
2॰ଶଶଵଶ 2॰ଶଶଵଷ 2॰ଶଶଶଷ
2॰ଷଷଵଶ 2॰ଷଷଵଷ 2॰ଷଷଶଷ

2॰ଵଶଵଵ 2॰ଵଶଶଶ 2॰ଵଶଷଷ
2॰ଵଷଵଵ 2॰ଵଷଶଶ 2॰ଵଷଷଷ
2॰ଶଷଵଵ 2॰ଶଷଶଶ 2॰ଶଷଷଷ

4॰ଵଶଵଶ 4॰ଵଶଵଷ 4॰ଵଶଶଷ
4॰ଵଷଵଶ 4॰ଵଷଵଷ 4॰ଵଷଶଷ
4॰ଶଷଵଶ 4॰ଶଷଵଷ 4॰ଶଷଶଷے

ۑ
ۑ
ۑ
ۑ
ې

 
(2.39)

The Phelps-Tucker ARD model is recast as 

࡭ܦ
ݐܦ

ൌ
1
2
ԧ: ሾ࡮ ∙ ሺࢹ ൅ λࢣሻ ൅ ሺെࢹ ൅ λࢣሻ ൉ ሿ࡮ ൅ ௥ܦ2 ൅ 3ሺ࢘ࡰݎݐሻ࡭ െ 5ԧ: ሺ࡮ ൉ ௥ܦ ൅ ௥ܦ ൉ ሻ (2.40)࡮

࡮ܦ
ݐܦ

ൌ െ
1
2
ሺ࡮ ∙ ሺࢹ ൅ λࢣሻ ൅ ሺെࢹ ൅ λࢣሻ ൉ ሻ࡮ െ ॰: ሺ2ܦ௥ ൅ 3ሺ࢘ࡰݎݐሻ࡭ሻ ൅ 5ሺ࡮ ൉ ௥ܦ ൅ ௥ܦ ൉ ሻ (2.41)࡮

It is shown by the authors that the FEC is exactly accurate for ܦ௥ = 0, and 

otherwise is as accurate as the orthotropic fitting closures, and is much faster than most of 

the other current closure approximations. The major benefit of this closure is that it does 

not need to calculate or approximate the fourth order moment tensor ८.  

 
2.3.3 Fiber Orientation in Expansion and Contraction Geometries 

 Fiber orientation in extrusion processes and in complex geometries has been 

studied for decades and is well understood for the common injection molding and 

extrusion processes. Studies have also been run that take into consideration abrupt 

changes in geometry and complex geometric shapes. These areas of research are of 

interest to the current study which aims to study fiber orientation through a nozzle with 

complex geometry and in an extruded polymer region. 

 VerWeyst and Tucker [42] study several common complex flow domains such as 

rapid expansion, a center gated disk, and a rapid contraction using the finite element 

method to model the respective flow domains. The model used in this study includes the 

use of a coupled fiber orientation-viscosity model which is of interest for future studies in 

the subject area of this thesis. The authors show that expansion and contraction flows 
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cause fibers to orient transverse to the original flow direction. Vortices in the corners of 

the expansion and contractions are also observed and are shown to increase in size and 

strength by the addition of chopped fibers. The effects of the vortices in the contraction 

and expansion flows have also been discussed by Lipscomb et al. [38] and Baloch and 

Webster [43] who solved the problem within an axisymmetric fluid domain. The decrease 

in fiber alignment is seen for all three flow types (rapid expansion, center gated disk, and 

rapid contraction) presented which would indicate we should see a loss of fiber alignment 

in the extrudate swell. 

 Yasuda et al. [44] evaluated the effect of abrupt expansion geometries on fiber 

orientation. The authors use an experimental approach to the fiber orientation study rather 

than the finite element modeling by VerWeyst and Tucker [42]. A flow channel was 

created with a 1:16 expansion and a 1:4 expansion. The flow channel was filled with a 

Newtonian fluid and cellulose acetate propionate (CAP) fibers. The fiber filled 

suspending fluid was then passed through the expansion domain for both the 1:16 and 1:4 

expansions. The authors report that at the expansion the fibers quickly orient 

perpendicular to the radial flow and due to the quick orientation, effect the amount of 

fiber interaction for a semi-dilute fiber suspension. 

 The understanding of fiber orientation in expansions and contractions will be 

helpful in the definition of fiber orientation in the extrudate swell. Fiber orientation in an 

extrudate swell expansion flow and an FDM nozzle has yet to be studied. This thesis 

presents a calculation of the fiber orientation for the FDM nozzle geometry and extrudate 

swell domain extending from the FDM nozzle exit. From the research presented we 
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should expect an increase in orientation in the flow direction at contraction areas and a 

decrease in expansion areas. 
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CHAPTER THREE 
 

Extrudate Swell 
 
 

A method for calculating the extrudate swell free surface shape is developed in 

this chapter to define the entire fluid domain through which the fiber filled polymer melt 

will travel during the FDM deposition process. The free surface of the polymer melt 

outside of the nozzle exit is calculated using a minimization approach similar to the one 

used by Reddy and Tanner[14] which computed the shape of the free surface that 

minimized the normal and tangential stresses along the free surface. The stress 

calculation and minimization process is achieved using COMSOL Multiphysics 

(COMSOL, Stockholm, Sweden) and a custom code created in MATLAB (MathWorks, 

Inc., Natick, Massachusetts) through COMSOL LiveLink. The results of the stress 

minimizations are then discussed and compared to values in the literature for validation 

of the minimization technique. The following sections will present a deeper look at the 

extrudate swell calculation method used to define the extrudate swell free surface. 

 
3.1 Extrudate Swell Theory 

The finite element model used in the minimization function is defined as having 

the same geometry, similar boundary conditions, and the same two-dimensional 

axisymmetric problem presented by Tanner [11], Georgiou [13], and Reddy [15]. The use 

of a similar problem structure allows the results to be compared to a benchmark shape 

and value of the extrudate swell for validation of the method used in this study.  
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The flow of polymer melt through a nozzle and into free space is defined as 

creeping flow (i.e. a flow having a Reynolds number that is small compared to unity) of 

an incompressible Newtonian fluid. The continuity and momentum equations defining 

this flow are given respectively as  

׏ ൉ ܞ ൌ 0 (3.1)

and 

ܞ ∙ ܞ׏ െ ׏ ∙ ࢀ ൌ 0 (3.2)

where v is the velocity vector and T is the total stress tensor given as 

ࢀ ൌ 	െࡵ݌ ൅ ሻܞ׏ሾሺߤ ൅ ሺܞ׏ሻ୘ሿ (3.3)

In Equation (3.3) p is the pressure, I is the identity matrix, μ is the viscosity, and 

superscript T is the transpose operator. The extrudate swell problem is defined using the 

geometry and boundary conditions appearing in Figure 3.1. 

 

 

Figure 3.1. Extrudate Swell Model Geometry and Boundary Conditions 
 
 

Georgiou concluded that a distance of 5 radii upstream and downstream from the 

extrusion exit is a sufficient length to ensure steady results. In this thesis, the diameter of 

a common desktop FDM printing extrusion nozzle being modeled is 0.35 mm; therefore, 

the radius is 0.175 mm for the given two-dimensional axisymmetric problems considered 

here. The swell boundary is defined with function r(z) which represents the free surface.  
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The boundary conditions appearing in Figure 3.1 define the fluid flow domain and 

boundary conditions required to solve the die swell problem. The bottom dashed 

boundary line in the figure is the line of axis symmetry. The axisymmetric model can be 

swept around this axis to represent the three-dimensional flow domain used in this study. 

The wall with hashed lines is the inner wall of the flow nozzle and is defined to have a no 

slip boundary condition (vz = 0 and vr = 0). The inlet fluid velocity is assumed to have a 

parabolic profile typical of a laminar tube flow of a Newtonian fluid with a maximum 

velocity at the axis of symmetry, and zero velocity at the no slip upper boundary. The 

inlet velocity equation may be written as 

௭௜௡௟௘௧ݒ ൌ െݒ௠௔௫ ቈ1 െ ൬
௜௡௟௘௧ݎ
௠௔௫ݎ

൰
ଶ

቉ 
(3.4) 

where ݒ௠௔௫ is the maximum velocity at the inlet of the fluid domain, ݎ௜௡௟௘௧ is the radial 

location, and ݎ௠௔௫ is the maximum radius of the fluid domain at the inlet. The die swell 

boundary is defined as a slip wall where fluid adjacent to the wall is allowed to slip (t·v ≠ 

0) where t is the tangential velocity vector, and does not pass through the wall (n·v = 0). 

The extrudate swell free surface boundary is also defined by T:[n n] = 0, which provides 

that no fluid passes through or away from the boundary. The outlet is defined by a zero 

pressure which provides for a zero fluid stress along this surface. 

 
3.2 Free Surface Defined 

The approach to defining the shape of the free surface used in this work is similar 

to that used by Reddy and Tanner [14] and has proven to be a successful method. In 

previous work by Georgiou [13] and Mistoulis [16], an iterative process was used to zero 

the normal velocity along the free surface by moving points along the surface in the 
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radial direction. The approach described below, defines the free surface using various 

functions of radius along the length of the flow and computes parameters that define each 

function to minimize the stresses along the free surface. The minimized surface is then 

compared to solutions found in the literature that has been studied. 

The free surface shape is defined using a radius function r, in terms of the 

independent spatial coordinate z. Values of ݎ௜ሺݖ௜ሻ	݅ ൌ 1,… , ݊	, are specified along the 

length of the flow which are used to define an interpolating polynomial r(z) for the free 

surface. In the studies to follow, the radius r of the free surface of the axisymmetric 

extrudate swell is defined as the mth order polynomial of the z coordinate as. 

ሻݖሺݎ ൌ ܽ଴ ൅ ܽଵݖ ൅ ܽଶݖଶ ൅ ܽଷݖଷ ൅ ⋯൅ ܽ௡ݖ௠ (3.5)

where the coefficients ܽ଴, … . , ܽ௡ are derived for the following conditions: 

 Expansion occurs over a length of z from 1 to 5 radii to match the model 
presented by Georgiou [29] 
 

 The slope at the point of expansion end is zero, 
ௗ௥

ௗ௭
ൌ 0 

 
 At ݉ െ 1 equally* spaced points along the curve a surface swell value is defined 

as ݎߙ଴ 
 

 For expansion lengths less than 5 radii a line with zero slope continues past the 
defined function. 
 

 Other derivations are considered that do not have equally spaced points. In these 
cases, points are concentrated upstream toward the nozzle exit where the rate of 
expansion is greatest.   
 

The highest order polynomial used in this study is a fifth order polynomial. 

Polynomials with order higher than 5 were considered, but were not used due to 

instabilities in the resulting fitted equation that occurred between defined points.  

An exponential function was also considered in an effort to provide the best 

representation of the free surface shape. The exponential form used here is given as 
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ሻݖሺݎ ൌ ଴ݎ ൅
1
2
ሺߙ െ 1ሻ ቈ1 െ ݁

ିఉ௭൬
୪୬ሺଵିఈ௥బሻ

௥బ
൰
቉ 

(3.6)

where ߙ is the max expansion of the free surface, ߚ is the coefficient that determines the 

rate of expansion, and ݎ଴ is the initial radius of the fluid flow in the nozzle. The smooth 

growth of an exponential function appeared to be a good fit for possibly defining the 

extrudate swell shape. The exponential function as it is defined here could not reach the 

minimum stress state in the optimization process and therefore was not used in any of the 

results to follow. Because a sufficient answer could not be found with the exponential 

defined above and the ability to define the free surface repeatedly with a polynomial, 

only the polynomial function in equation (3.5) was used in this study. Five plots of the 

die swell expansion with typical die swell radius values appear in Figure 3.2 for the 

quadratic function in equation (3.6) 

 

Figure 3.2. Five Expansion Lengths Plotted for the Quadratic Free Surface 
Representation 
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3.3 Minimization Process 

The goal of the optimization is to minimize the stress along the free surface 

boundary. The minimization problem is stated as 

݉݅݊
ߙ ݂൫ߙ൯ ൌ න ௡ܶ൫ܵሺߙሻ൯ ൅ ௧ܶ൫ܵሺߙሻ൯݀ݖ ൌ 0

ௌ
 (3.7)

																														subject	to						1.2 ൒ ଵߙ ൒ ଶߙ ൒ ଷߙ ൒ … ൒ ௡ߙ ൒1 

௡ܶ and ௧ܶ are derived from the stress boundary condition ࢀ: ሾܖ	ܖሿ ൌ 0 where ࢀ is 

presented in equation (3.3) and n is given as 

ܖ ൌ ൥
݊௥
݊ఏ
݊௭
൩ 

(3.8)

with the understanding that all ߠ components are equal to zero for the axisymmetric 

representation. The stress boundary condition ࢀ: ሾܖ	ܖሿ ൌ 0 can be written as  

:ࢀ ሾܖ	ܖሿ ൌ

ۉ

ۈ
ۈ
ۇ
െ݌ ൥

1 0 0
0 1 0
0 0 1

൩ ൅ ߤ

ۏ
ێ
ێ
ێ
ێ
ۍ 2

௥ݒ߲
ݎ߲

0
௥ݒ߲
ݖ߲

൅
௭ݒ߲
ݎ߲

0 2
௥ݒ
ݎ

0

௭ݒ߲
ݎ߲

൅
௥ݒ߲
ݖ߲

0 2
௭ݒ߲
ݖ߲ ے

ۑ
ۑ
ۑ
ۑ
ې

ی

ۋ
ۋ
ۊ
൥
݊௥
0
݊௭
൩ ൥
݊௥
0
݊௭
൩ ൌ 0 

(3.9)

After expansion the stress boundary condition can be written as  

:ࢀ ሾܖ	ܖሿ ൌ 	െ݊݌௥݊௥ െ ௭݊௭݊݌ ൅ ߤ2
௥ݒ߲
ݎ߲

݊௥݊௥ ൅ ߤ ൬
௥ݒ߲
ݖ߲

൅
௭ݒ߲
ݎ߲

൰ ݊௭݊௥

൅ ߤ2
௭ݒ߲
ݖ߲

݊௭݊௭ ൅ ߤ ൬
௭ݒ߲
ݎ߲

൅
௥ݒ߲
ݖ߲

൰ ݊௥݊௭ ൌ 0 
(3.10)

The stress boundary condition can be separated into two stress components Tn and Tt. 

where Tn is the normal stress on the free surface 

௡ܶ ൌ 	െ݊݌௥ଶ ൅ ߤ2 ൬
௥ݒ߲
ݎ߲

൰ ݊௥ଶ ൅ ߤ ൬
௥ݒ߲
ݖ߲

൅
௭ݒ߲
ݎ߲

൰ ݊௭݊௥ (3.11)

and Tt is the tangential stress on the free surface 
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௧ܶ ൌ 	െ݊݌௭ଶ ൅ ߤ2 ൬
௭ݒ߲
ݖ߲

൰ ݊௭ଶ ൅ ߤ ൬
௭ݒ߲
ݎ߲

൅
௥ݒ߲
ݖ߲

൰ ݊௥݊௭ (3.12)

 When the minimum value of both Tn and Tt is calculated the correct extrudate 

swell shape has been reached. 

The minimization problem is solved for each of the five expansion length options 

for each of the different functions that have been defined. MATLAB’s fmincon function 

is used for the minimization process. fmincon is defined by MATLAB as  

ሾݔ, ,݈ܽݒ݂ ~, ሿݐݑ݌ݐݑ݋ ൌ ,݊ݑሺ݂݊݋݂ܿ݊݅݉ ,଴ݔ ~, ~, ~, ~ , ݈ܾ, ,ܾݑ ,݊݋݈ܿ݊݋݊  (3.13)	ሻݏ݊݋݅ݐ݌݋

where ݔ is the vector of optimum values, ݂݈ܽݒ is the value of the objective function at the 

optimum point, and ݐݑ݌ݐݑ݋ is a function that contains minimization variables for each 

iteration of the minimization. In equation (3.13), ݂݊ݑ is the objective function being 

minimized, ݔ଴ is the initial vector of expansion values, ~ represents an unused parameter 

in this minimization, ݈ܾ is the lower bound for the ݔ vector, ܾݑ is the upper bound of the ݔ 

vector, ݊݊݋݈ܿ݊݋ contains the constraints for the minimization function, and ݏ݊݋݅ݐ݌݋ is a 

function that contains variables which change the minimization calculation. 

The objective function for this study is calculated for each iteration by inserting 

the curve defined by the ݔ vector, which contains the ߙ௡ expansion values for the free 

surface into the geometry in COMSOL. The initial ݔ vector, ݔ଴, the lower boundary, ݈ܾ, 

and the upper boundary, ܾݑ, for this study are defined as 

଴ݔ ൌ 	

ۏ
ێ
ێ
ێ
ۍ
1.05 ൅ ሺ0.2 ∗ ሺ݊ െ 1ሻሻ

…
1.09
1.07
1.05 ے

ۑ
ۑ
ۑ
ې

, ݈ܾ ൌ 		

ۏ
ێ
ێ
ێ
ۍ
1
1
1
…
ے1
ۑ
ۑ
ۑ
ې

, ܾݑ ൌ 	

ۏ
ێ
ێ
ێ
ۍ
1.2
1.2
1.2
…
ے1.2

ۑ
ۑ
ۑ
ې

 
(3.14)

The boundary conditions and mesh are then added to the defined geometry. The 

FEM problem is then run in COMSOL. Once the FEM solution is obtained the normal 
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and tangential stress are calculated in post processing using a “Line Integration” which is 

built in to COMSOL. This process is done for each iteration of the minimization. The 

options used for the minimization in this study designate the objective function tolerance, 

TolFun, which is set to 10-5, the ݔ vector tolerance, TolX, which is set to 10-5, and the 

Algorithm used, Algorithm, is set to SQP (Sequential Quadratic Programming). When the 

optimum has been found for the current function or expansion value, the next function or 

expansion calculation is begun. The minimization with the lowest objective function 

value is then designated as the optimum free surface and the true shape of the extrudate 

swell for the given function and expansion length. 

 
3.4 Calculation of Extrudate Swell 

 The steps taken to calculate the extrudate swell free surface are described in this 

section. The extrudate swell free surface is computed for 1) a straight tube and 2) a FDM 

nozzle. The models used to compute extrudate swell for both of these geometries are 

described below, where boundary conditions, fluid properties, and mesh properties that 

define the problem are provided for both of the models.  

 
3.4.1 Extrudate Swell Calculation: Straight Tube Model 

The first problem considered in this research is the flow of an isothermal Newtonian 

fluid through a straight tube, where the fluid domain is defined as that within the tube itself 

and also immediately adjacent to the tube beyond its exit where extrudate swell occurs. The 

properties used in this simulation are fluid density ρ = 1040 kg/cm3 and dynamic viscosity of 

μ = 350 Pa·s. These values are chosen since they present reasonable average properties for an 

ABS plastic, which is a common FDM printing material used in industry, at 230oC and under 
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a shear rate of 575 s-1. It is understood that since ABS is a polymer it is Non-Newtonian with 

a viscosity that varies with strain rate. Assuming an isothermal Newtonian fluid simplifies the 

simulation process and is expected to be a good first step into the study of fiber orientation in 

deposition processes. Additional insight into these processes could be gained in the future by 

including non-isothermal, non-Newtonian models which more accurately represent polymer 

melt flow. Here we consider a Newtonian fluid only, so a single value of viscosity is chosen 

for ABS at a nominal shear rate for the processing of ABS in a typical FDM process. Use of 

a Newtonian fluid also makes it possible to compare results in this thesis to known data from 

Georgiou [13] and Ellwood [15].  

For this study we use ݒ௠௔௫ ൌ 108.6௠௠

௦
 and ݎ௠௔௫ ൌ 0.175	݉݉. This inlet 

velocity allows for an average extrusion tube exit velocity of 66.5 
௠௠

௦
 ,which is in the 

range of extrusion speeds for most desktop FDM printers. The mesh for the finite element 

model is created based on the geometry and boundary conditions of the problem. The 

mesh used for this problem is a mapped quad mesh which is well suited for fluid flow 

problems since the likelihood of numerical instabilities is reduced. The mapped quads 

also allow for elements of nearly equal size along the extrudate swell boundary, which 

results in more accurate stress calculation during the extrudate swell optimization 

solution process. The geometry and mesh defined can be seen in Figure 3.3. 

Once the fluid domain has been defined and meshed, the finite element solution 

can be calculated. The mesh for the straight tube extrudate swell model has 199200 

domain elements, 3256 boundary elements, 602037 degrees of freedom, and takes 41 

seconds to compute the velocity and pressure solution. The objective function in equation 

(3.7) is evaluated by computing the normal and tangential stresses in equations (3.8) and 
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(3.9), respectively, from z = 0.875 mm to z = 0 mm. The velocity normal to the surface is 

also integrated along the free surface. The FEM solution is calculated for each 

optimization iteration during the minimization procedure. After the stress calculation, all 

the necessary data is stored for the given iteration, then the swell boundary geometry is 

removed from the finite element model so that the new geometry with the new swell 

values can be created. This is repeated until the optimization process reaches the 

minimum stress state along the free surface. 

 

 

 
Figure 3.3. Geometry and Mapped Mesh for the Straight Tube Extrudate Swell Problem 

 
 

3.4.2 Extrudate Swell Calculation: FDM Nozzle 

The straight tube extrusion model above provides a means to validate the 

proposed modeling approach. However, understanding the effect of a typical FDM nozzle 

on extrudate swell and fiber orientation requires that the analysis above be extended to 
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include the appropriate geometry. The geometry, boundary conditions, and meshing for a 

typical FDM nozzle will be defined in the following section. The boundary conditions 

used in the full nozzle are similar to the straight tube problem. The FDM nozzle model 

simply adds a larger inlet and a convergence zone upstream from the nozzle exit. 

The cross section showing the geometrical aspects of a common FDM extrusion 

nozzle are shown in Figure 3.4. 

 

Figure 3.4. Common FDM Nozzle Geometry, Dimensions are Shown in Millimeters 
(mm) 
 
 

A typical FDM nozzle geometry is modeled with a two-dimensional axisymmetric 

finite element model to represent the actual three-dimensional nozzle. The axisymmetric 

cross section of the fluid domain for the FDM nozzle considered in this study appears in 

Figure 3.4. A section extending from the nozzle exit with a length of 5 radii is included 

for the analysis of the extrudate swell free surface. The fluid domain can be seen in 

Figure 3.5 with dimensions and boundary conditions. 

 The inlet at z = 5.625 mm is defined as a parabolic profile for laminar flow within 

a tube as defined by equation (3.4). For this study we use ݒ௠௔௫ ൌ 4௠௠

௦
 and ݎ௠௔௫ ൌ
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0.875	݉݉. This inlet velocity allows for an average nozzle exit velocity of 66.5 
௠௠

௦
 

which is typical for desktop FDM printers. The properties used in this simulation are 

fluid density ρ = 1040 kg/cm3 and dynamic viscosity of μ = 350 Pa·s. The outlet at z = 0 

mm is defined as pressure P = 0 Pa. The free surface is defined as a slip wall from z = 0 

mm to 0.875 mm. The remaining outer portion of the wall is defined as a no slip wall, and 

the wall at r = 0 mm is defined as an axisymmetric wall. 

 

Figure 3.5. Boundary Conditions and Dimensions for the Full Nozzle Extrudate Swell 
Calculation 
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 The mesh for this geometry was changed slightly from the Georgiou model. In 

order to decrease computational time, the domain defined by the inlet zone and 

convergence zone is modeled with triangular elements, and the straight portion of the 

nozzle and the extrudate swell portion of the fluid domain is modeled with quad 

elements, as before. The finite element mesh for a typical FDM nozzle model used in this 

study appears in Figure 3.6 below.  

 

     

 
Figure 3.6. Geometry and Mesh for the Full Nozzle Extrudate Swell Calculation 

 
 

It was found that for the full nozzle problem, a mapped quad mesh became 

inefficient with respect to calculation time and changes in mesh size between the inlet 

and outlet were difficult to accommodate. A COMSOL free quadrilateral mesh was 

considered, but the need for a very fine mesh size resulted in a finite element meshing 

issue which would affect the overall minimization method. The use of triangular elements 

in this model allow for a much faster solution time and the ability to mesh any domain. In 
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order to be confident in the use of triangular elements a study was performed in which it 

was found that a very fine triangular mesh would allow for the proper die swell 

calculation and also served to decrease the stress state along the free surface. The results 

of the mesh study are shown in Table 3.1. COMSOL uses a number system for mesh size 

which is used in the Table 3.1. Mesh sizes are defined as 1 – Extremely Fine, 2 – Extra 

Fine, 3 – Very Fine, and 4 – Fine.  

 
Table 3.1. Mesh Study for FDM Nozzle Minimization Problem 

 
 

Mesh Number 
of 
Domain 
Elements 

Number 
of 
Boundary 
Elements 

Number 
of 
Degrees 
of 
Freedom 

Optimum 
Free 
Surface 
Stress 
(N/m2) 

Calculation 
Time (s) 

Mesh 
Time (s) 

Calculation 
Time with 
180 
function 
calls (s) 

Mapped 
Mesh 4 

5568 559 51220 10.3 5 0.17 930 

Mapped 
Mesh 3 

8568 693 78485 9.52 7 0.2 1300 

Mapped 
Mesh 2 

38962 1475 353576 7.37 29 0.4 5300 

Mapped 
Mesh 1 

147450 2866 1332718 5.63 111 0.83 20200 

Mapped 1 
and 
Triangular 1 

223425 2387 1055652 4.73 76 20.9 17500 

Mapped 1 
and 
Triangular 2 

63746 1692 335359 4.73 24 3 4900 

Mapped 1 
and 
Triangular 3 

21506 1298 144294 4.73 13 0.63 2450 

Mapped 1 
and 
Triangular 4 

17542 1228 126281 4.73 11 0.53 2100 

 
 

The normal and tangential stress as well as the normal velocity are integrated 

along the free surface from z = 0.875 mm to z = 0 mm. The FEM solution is calculated in 

COMSOL for each iteration of the minimization performed in MATLAB. After the stress 



49 
 

calculation all the necessary data is stored for the given iteration, then the swell boundary 

geometry is removed from the finite element model so that the new geometry with the 

new swell values can be built. This is repeated until the optimization process reaches the 

minimum stress state along the free surface. 

 
3.5 Extrudate Swell Results 

 The results for the extrudate swell free surface minimization for both the straight 

tube model and the FDM nozzle is discussed in this section. Calculation of the extrudate 

swell was found to be sensitive to the meshing and boundary conditions. It was also 

found that the results were repeatable and had very little variation, which is a necessary 

property for a minimization to run effectively. 

 
3.5.1 Straight Tube Model Results 

The optimum free surface shape that defines the extrudate swell geometry is 

calculated using the minimization approach presented above. Figure 3.7 shows the 

optimization history and extrudate free surface shape for two surfaces that define the die 

swell shape. As has been stated previously, we use the function shape and magnitude that 

is presented in literature [29, 30, 32] as a benchmark. 

Figure 3.7 (a) and (b) show that there is good agreement between the optimal 

fourth-order representation of the free surface and the Georgiou [29] curve defining 

extrudate swell. The fourth order polynomial contains four evenly spaced points, and at 

each point an expansion value ߙ௜is defined. The fourth order polynomial defined over 

two radii of expansion length with ߙ௜ defined at z = 0.525 mm, 0.642 mm, 0.758 mm, and 

0.875 mm has expansion values 
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ଵߙ ൌ ଶߙ	;1.1274 ൌ ଷߙ	;1.1229 ൌ ସߙ	;1.10945 ൌ 1 

and a final polymer bead radius of 0.1973 mm, and final stress state Ttot = 2.92
ே

௠మ. 

In a different optimization, the fourth order polynomial defined over three radii of 

expansion length with ߙ௜ defined at z = 0.350 mm, 0.525 mm, 0.700 mm, and 0.875 mm 

has expansion values 

ଵߙ ൌ ଶߙ	;1.1289 ൌ ଷߙ	;1.1275 ൌ ସߙ	;1.1139 ൌ 1 

and a final polymer bead radius of 0.1976 mm, and final stress state Ttot = 3.082
ே

௠మ. Both 

of the given equations have a lower final stress state than the curve given in the die swell 

literature which returns Ttot = 3.935
ே

௠మ. 

Figure 3.8 (a) and (b) shows similar values are obtained for a fifth order 

polynomial representation of the extrudate swell free surface. The fifth order polynomial 

contains five evenly spaced points, and at each point an expansion value is defined. The 

fifth order polynomial defined over two radii of expansion length with ߙ௜ defined at z = 

0.525 mm, 0.613 mm, 0.700 mm, 0.788 mm, and 0.875 mm has expansion values 

ଵߙ ൌ ଶߙ	;1.1275 ൌ ଷߙ	;1.1250 ൌ 1.1137; ସߙ	 ൌ 1.0791; ହߙ	 ൌ 1 

and a final polymer bead radius of 0.1973 mm, and final stress state Ttot = 2.8
ே

௠మ. 

The fifth order polynomial defined over five radii of expansion length with ߙ௜ 

defined at z = 0 mm, 0.219 mm, 0.438 mm, 0.656 mm, and 0.875 mm has expansion 

values 

ଵߙ ൌ ଶߙ	;1.1294 ൌ ଷߙ	;1.1294 ൌ 1.1279; ସߙ	 ൌ 1.1222; ହߙ	 ൌ 1 
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and a final polymer bead radius of 0.1976 mm, and final stress state Ttot = 3.38
ே

௠మ. Both 

of the given equations have a lower final stress state than the curve given in the literature 

which returns Ttot = 3.935
ே

௠మ. 

 

 

(a) 

 

(b) 
Figure 3.7. Optimum Curve Using a 4th Order Function (a) & (b). 
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(a) 

 
(b) 

Figure 3.8. Optimum Curve using a 5th Order Function (a) & (b). in the Optimization 
Process 
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there can be slight differences in the final percentage of extrudate swell. The four curves  
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swell. From the study above, it is proved that the die swell shape can be accurately 

defined by using a minimization of the free surface stress. For the rest of the calculations 

a fourth order function defined over 2 radii of expansion will be used. It was seen that 

this function could repeatedly find the 13% swell value. 

 

3.5.2 Full Nozzle Results 

 The full nozzle was treated in the same way the straight tube extrusion 

problem was treated. The minimization was again able to find approximately the 13% 

swell for the fourth order representation with 2 radii of defined expansion. The 

minimization results and shape of the extrudate swell function is shown below for the full 

nozzle problem. Figure 3.9 (a) shows that a minimum is found lower than that of the 

benchmark extrudate swell shape. The fourth order polynomial defined over two radii of 

expansion length with ߙ௜ defined at z = 0.525 mm, 0.642 mm, 0.758 mm, and 0.875 mm 

has expansion values 

ଵߙ ൌ ଶߙ	;1.1329 ൌ ଷߙ	;1.1280 ൌ ସߙ	;1.10987 ൌ 1 

and a final polymer bead radius of 0.1983 mm which is shown in Figure 3.9 (b), and final 

stress state Ttot = 4.74
ே

௠మ. The final stress state for the curve given in the literature returns 

Ttot = 5.46
ே

௠మ. The reason for the higher stress state for the full nozzle has to do with the 

mesh size available for the larger geometry. The effect of mesh size will be discussed in 

the following section. 
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(a) 

 

(b) 
 

Figure 3.9. Minimization Path (a) and Shape of Minimum Extrudate Swell Curve (b) 
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zero minimum, is a singularity that is inherent to the extrudate swell problem. The stick-

slip singularity occurs at the point where the boundary condition transitions from a no 

slip boundary (ݒ௥ ൌ 0 and ݒ௭ ൌ 0) to a slip boundary condition (n·v = 0), and is 

responsible for the non-zero minimum stress value observed in Figure 3.7-9. To show the 

shape and intensity of the singularity the normal, tangential, and combined stresses are 

plotted in Figure 3.10.  

In Figure 3.10, we can see a steep spike in the two stress components from the 

singularity. This spike, while occuring over a very small distance, is large enough to add 

a substantial amount of stress to the integration over the free surface. The effect of the 

singularity is essentially gone after just 0.02 mm in the current model, which is only 2.3% 

of the entire free surface. In order to show the effect of the singularity and how it effects 

the integration, several integrals were taken at 0.01 mm intervals from 0.875 mm to 0.775 

mm. It can be seen in Figure 3.11 how quickly the stress summation decreases outside of 

the singularity. The effect of the singularity can be reduced but not completely mitigated 

by increasing the number of elements and reducing the size of the elements around the 

stick-slip point. The effect of the singularity can be reduced further by the use of singular 

finite elements or upwinding techniques discussed by Georgiou [18] and Finlayson [19]. 

These methods allow for better convergence with fewer elements, but are difficult to 

apply when using a stand alone finite element software such as COMSOL Multiphysics. 

Even with the effect of the singularity, we are still able to minimize to the correct free 

surface shape. The only major concern is that the minimization is not able to drive the 

stress on the free surface to zero, but with the understanding that this is due to an inherent 

singularity in the finite element problem, this small amount of error is acceptable. 
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Figure 3.10. Plots of Stick-Slip Singularity Effects on the Tangential and Normal 
Stresses. 
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Figure 3.11. Integration Values along Free Surface for Different Mesh Sizes 
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CHAPTER FOUR 
 

Fiber Orientation in FDM Nozzle Flow 
 
 

The nozzle geometry and the extrudate swell free surface calculation was 

presented in the previous chapter to define the fluid domain representing the FDM nozzle 

flow. The fiber orientation throughout the entire fluid domain can be calculated from the 

velocity gradients in the flow field, which is important for determining the orientation 

state of the discrete fibers suspended in the polymer melt. The orientation state of the 

fibers after the nozzle exit is of interest in the current study. The fiber orientation state 

beyond the nozzle exit will determine the fiber orientation in the extruded bead and 

therefore in the final printed part. The fiber orientation state in the final printed part will 

define the strength, toughness, and other mechanical properties of that part. In this 

chapter the method for calculating the fiber orientation is presented, as well as the fiber 

orientation results seen for the straight tube extrudate swell and FDM nozzle problems. 

 
4.1 Calculation of the Fiber Orientation 

The fiber orientation calculation method used in this thesis employs the Advani-

Tucker [10] orientation tensor approach with the Folgar-Tucker [7] isotropic rotary 

diffusion model for fiber-fiber interactions. The fiber orientation equation assuming 

isotropic rotary diffusion is given as  

࡭ܦ
ݐܦ

ൌ െ
1
2
ሺࢹ ∙ ࡭ െ ࡭ ∙ ሻࢹ ൅

1
2
ࢣሺߣ ∙ ࡭ ൅ ࡭ ∙ ࢣ െ 2८: ሻࢣ ൅ ࡵሺܩூܥ2 െ  ሻ (4.1)࡭3

where the second and fourth order orientation tensors are defined respectively as 
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࢐࢏ܣ ൌ ර݌௜݌௝߰ሺ࢖ሻ (4.2) ࢖݀

and 

A௜௝௞௟ ൌ ර݌௜݌௝݌௞݌௟߰ሺ࢖ሻ (4.3) ࢖݀

In equation (4.1), 	ܥூ is the empirically obtained interaction coefficient defined by Folgar 

and Tucker [7], I is the identity tensor, ࢹ is the vorticity tensor which is defined as, 

ࢹ ൌ ሾሺܞ׏ሻ െ ሺܞ׏ሻ୘ሿ (4.4) 

 ,is the rate of deformation tensor given as ࢣ

ࢣ ൌ ሾሺܞ׏ሻ ൅ ሺܞ׏ሻ୘ሿ (4.5)

  ,is the magnitude of the strain rate tensor defined as ܩ

ܩ ൌ ሺࢣ: ሻࢣ
ଵ
ଶ (4.6) 

 ,is the coeffiecient related to fiber geometry ߣ

ߣ ൌ
௘ଶݎ െ 1
௘ଶݎ ൅ 1

 (4.7) 

where ݎ௘	is the equivalent fiber aspect ratio. In cylindrical coordinates, the velocity 

gradient	ܞ׏ is defined as  

ܞ׏ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

	

௥ݒ߲
ݎ߲

1
ݎ
௥ݒ߲
ߠ߲

െ
ఏݒ
ݎ

௥ݒ߲
ݖ߲

ఏݒ߲
ݎ߲

1
ݎ
ఏݒ߲
ߠ߲

൅
௥ݒ
ݎ

ఏݒ߲
ݖ߲

௭ݒ߲
ݎ߲

1
ݎ
௭ݒ߲
ߠ߲

௭ݒ߲
ݖ߲ ے

ۑ
ۑ
ۑ
ۑ
ې

 
(4.8) 

For axisymmetric problems having the z-axis as the axis of symmetry,	ݒఏ and all 

derivatives with respect to ϴ vanish yielding the following simplified two-dimensional 

axisymmetric velocity gradient 
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ܞ׏ ൌ
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ێ
ێ
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ۍ

	

௥ݒ߲
ݎ߲

0
௥ݒ߲
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0
௥ݒ
ݎ

0

௭ݒ߲
ݎ߲

0
௭ݒ߲
ݖ߲ ے

ۑ
ۑ
ۑ
ۑ
ې

 
(4.9) 

 Note that the calculation of A in Equation (4.1) requires that the fourth order 

orientation tensor Aijkl be known. Unfortunately, this requires the solution of an additional 

ordinary differential equation in time which includes the sixth order orientation tensor. 

To avoid this additional calculation, it is common to solve equation (4.1) using an 

approximation to, or closure of, Aijkl calculated from Aij. The closure method chosen in 

this study is the Fast Exact Closure from Montgomery-Smith, et al. [17]. The major 

benefit of this closure is that it does not need to calculate or approximate the fourth order 

moment tensor ८. The implementation of the fast exact closure causes the fiber 

orientation equation defined in equation (4.1) to be recast as [17] 

஽࡭
஽௧

ୀି
૚
૛
ԧ: ሾ࡮ ∙ ሺࢹ ൅ ሻࢣߣ ൅ ሺെࢹ ൅ ሻࢣߣ ∙ ሿ࡮ ൅ ࡵ௥ሺ2ܦ െ   ሻ࡭6

(4.10) 

 

஽࡮
஽௧

ୀି
ଵ
ଶ
ሺ࡮ ∙ ሺࢹ ൅ ሻࢣߣ ൅ ሺെࢹ ൅ ሻࢣߣ ∙ ሻ࡮ ൅ :௥॰ܦ ሺ2ࡵ െ   ሻ࡭6

(4.11) 

where the tensor B is a parameter of orientation defined similar to that of the orientation 

tensor A, and ԧ and ॰ are fourth-order conversion tensors. ԧ is a symmetric tensor 

defined as 

ԧ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

	

ԧଵଵଵଵ ԧଵଵଶଶ ԧଵଵଷଷ
ԧଶଶଵଵ ԧଶଶଶଶ ԧଶଶଷଷ
ԧଷଷଵଵ ԧଷଷଶଶ ԧଷଷଷଷ

2ԧଵଵଵଶ 2ԧଵଵଵଷ 2ԧଵଵଵଵ
2ԧଶଶଵଶ 2ԧଶଶଵଷ 2ԧଶଶଶଷ
2ԧଷଷଵଶ 2ԧଷଷଵଷ 2ԧଷଷଶଷ

2ԧଵଶଵଵ 2ԧଵଶଶଶ 2ԧଵଶଷଷ
2ԧଵଷଵଵ 2ԧଵଷଶଶ 2ԧଵଷଷଷ
2ԧଶଷଵଵ 2ԧଶଷଶଶ 2ԧଶଷଷଷ

4ԧଵଶଵଶ 4ԧଵଶଵଷ 4ԧଵଶଶଷ
4ԧଵଷଵଶ 4ԧଵଷଵଷ 4ԧଵଷଶଷ
4ԧଶଷଵଶ 4ԧଶଷଵଷ 4ԧଶଷଶଷے

ۑ
ۑ
ۑ
ۑ
ې

 
(4.12) 

where the components of	ԧ are calculated in the principal frame of A and B as 
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ԧതଵଵଶଶ ൌ 	
ܽଵ െ ܽଶ

2ሺܾଶ െ ܾଵሻ
 ԧതଵଵଵଵ ൌ

1
2
ܾଵ
ିଵ െ ԧതଵଵଶଶ െ ԧതଵଵଷଷ 

(4.13) 

ԧതଵଵଷଷ ൌ 	
ܽଵ െ ܽଷ

2ሺܾଷ െ ܾଵሻ
 ԧതଶଶଶଶ ൌ

1
2
ܾଶ
ିଵ െ ԧതଵଵଶଶ െ ԧതଶଶଷଷ 

ԧതଶଶଷଷ ൌ 	
ܽଶ െ ܽଷ

2ሺܾଷ െ ܾଶሻ
 ԧതଷଷଷଷ ൌ

1
2
ܾଷ
ିଵ െ ԧതଵଵଷଷ െ ԧതଶଶଷଷ 

				ԧത௜௝௞௞ ൌ 	0	݂݅	݅ ് ݆ ് ݇  

The conversion tensors are calculated in the orthonormal basis of B; therefore, ܾଵ, 

ܾଶ, and ܾଷ are the values of the diagonal matrix B and ܽଵ, ܽଶ, and ܽଷ are the values of the 

diagonal matrix A. 

The conversion tensor ॰ is defined as 

॰ ൌ ԧିଵ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

	

॰ଵଵଵଵ ॰ଵଵଶଶ ॰ଵଵଷଷ
॰ଶଶଵଵ ॰ଶଶଶଶ ॰ଶଶଷଷ
॰ଷଷଵଵ ॰ଷଷଶଶ ॰ଷଷଷଷ

2॰ଵଵଵଶ 2॰ଵଵଵଷ 2॰ଵଵଵଵ
2॰ଶଶଵଶ 2॰ଶଶଵଷ 2॰ଶଶଶଷ
2॰ଷଷଵଶ 2॰ଷଷଵଷ 2॰ଷଷଶଷ

2॰ଵଶଵଵ 2॰ଵଶଶଶ 2॰ଵଶଷଷ
2॰ଵଷଵଵ 2॰ଵଷଶଶ 2॰ଵଷଷଷ
2॰ଶଷଵଵ 2॰ଶଷଶଶ 2॰ଶଷଷଷ

4॰ଵଶଵଶ 4॰ଵଶଵଷ 4॰ଵଶଶଷ
4॰ଵଷଵଶ 4॰ଵଷଵଷ 4॰ଵଷଶଷ
4॰ଶଷଵଶ 4॰ଶଷଵଷ 4॰ଶଷଶଷے

ۑ
ۑ
ۑ
ۑ
ې

 
(4.14)

There are two instances that can cause issues in equation (4.13) which are 

discussed in depth by Montgomery-Smith et al. [17]. If two or all three of the eigenvalues 

ܾଵ, ܾଶ, and ܾଷ are the same, equation (4.13) can become 
଴

଴
. These problems are avoided 

by alternate calculations of the ԧത terms listed above. 

Using the structure given here the change in fiber orientation throughout any 

given fluid domain can be calculated. In the next section the specific method used to 

implement the fiber orientation calculation will be discussed in depth. 

 
4.2 Implementation of the Fiber Orientation Calculation 

The fiber orientation calculation relies on the velocity gradients in the fluid 

domain. To calculate the velocity gradients for the fluid domain the points from the stress 
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minimization described in Chapter Three are used to calculate the optimum extrudate 

swell curve. The optimum extrudate swell curve then defines the fluid flow boundary in 

the finite element model using the LiveLink program. The geometry is then meshed and 

the finite element problem is calculated. Streamlines within the fluid domain are 

computed with COMSOL (COMSOL, Stockholm, Sweden) from the velocities and 

velocity gradients. Ten evenly spaced streamlines are placed along the outlet boundary. 

For clarity the streamlines do not remain evenly spaced throughout the domain which can 

be seen in Figure 4.8. Streamlines are calculated in COMSOL using a second order 

Runge-Kutta integration method along the direction of the vector. Along the ten defined 

streamlines the velocities and velocity gradients ቀݓ,ݑ, ௗ௨
ௗ௥
, ௗ௨
ௗ௭
, ௨
௥
, ௗ௪
ௗ௥
, ௗ௪
ௗ௭
ቁ are calculated 

throughout the fluid domain. Here we define ݑ as the velocity in the r direction, ݓ as the 

velocity in the z direction, 
ௗ௨

ௗ௥
 as the change of the velocity in the r direction with respect 

to the r direction, 
ௗ௨

ௗ௭
 as the change of the velocity in the r direction with respect to the z 

direction,	௨
௥
 as the circumferential expansion of the fluid flow, 

ௗ௪

ௗ௥
 as the change of the 

velocity in the z direction with respect to the r direction, and 
ௗ௪

ௗ௭
 as the change of the 

velocity in the z direction with respect to the z direction. As an example the velocities 

and velocity gradients from streamline 1 in the straight tube extrudate swell problem are 

shown in Figure 4.1. 

In Figure 4.1 the velocities and velocity gradients are shown with respect to time, 

but when the values calculated in the FEM problem are exported from COMSOL they are 

defined spatially. The spatial change from point to point needs to be converted to a time 
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step between the two points to solve the fiber orientation equation defined by equation 

(4.1) the spatial values must be converted to temporal values. 

 

(a) 
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(b) 

Figure 4.1. Velocities (a) and Velocity Gradients (b) Along Streamline 1 for the Straight 
Tube Extrudate Swell Problem 
 
 
The evaluation of the time at the i+1 iteration is written as 

௜ାଵݐ ൌ
݀௜

ୟ୴୥‖ݒ‖
൅  ௜ (4.15)ݐ

where ݀௜ is the distance between two adjacent points in the streamline computed as 
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݀௜ ൌ ඥሺݎ௜ାଵ െ ௜ሻଶݎ ൅ ሺݖ௜ାଵ െ  ௜ሻଶ (4.16)ݖ

 

and ‖ݒ‖௔௩௚	is the average of the magnitude of the velocity between the same two points 

given as 

௔௩௚‖ݒ‖ ൌ
‖௜ାଵݒ‖ ൅ ‖௜ݒ‖

2
 (4.17) 

This calculation gives the time it takes to get from the current point ti to the next 

point ti+1 in seconds along the streamline. The velocities and velocity gradients can now 

be defined at specific time steps through the fluid domain. 

In the fiber orientation equation there are two constants that must be defined. 	ܥூ 

is a constant that is defined empirically by Folgar-Tucker [7] and represents the amount 

fiber interaction. In equation (4.1) λ is a coefficient that is defined by the fiber geometry. 

To begin the fiber orientation calculation an initial A and B tensor must be selected which 

defines the initial orientation of the fibers entering the fluid domain of interest. The 

change in fiber orientation state can then be calculated throughout the given fluid domain.  

To calculate the change in fiber orientation with respect to time using the initial 

conditions and constants a Runge-Kutta method is employed for the solution of the 

ordinary differential equation. The Runge-Kutta method used in this study is an adaptive 

step Runge-Kutta which uses a combination of the fourth and fifth order Runge-Kutta 

methods which can be written as 

௡ାଵସோ௄࡭ ൌ ௡ସோ௄࡭ ൅ ݄ ൬
37
378

݇ଵ ൅
250
621

݇ଷ ൅
125
594

݇ସ ൅
512
1771

݇଺ ൰ (4.18) 

௡ାଵ࡭
ହோ௄ ൌ ௡ହோ௄࡭ ൅ ݄ ൬

2825
27648

݇ଵ ൅
18575
48384

݇ଷ ൅
13525
55296

݇ସ ൅
277
14336

݇ହ ൅
1
4
݇଺ ൰ (4.19) 
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where ݇ଵ, ݇ଶ, ݇ଷ, ݇ସ, ݇ହ, and ݇଺ are defined as 

݇ଵ ൌ ݂ሺݐ௡,  ௡ሻۯ

(4.20) 

݇ଶ ൌ ݂ሺݐ௡ ൅
݄
5
, ௡ۯ ൅

݄
5
݇ଵሻ 

݇ଷ ൌ ݂ሺݐ௡ ൅
3݄
10

, ௡ۯ ൅
3݄
40

݇ଵ ൅
9݄
40

݇ଶሻ 

݇ସ ൌ ݂ሺݐ௡ ൅
3݄
5
, ௡ۯ ൅

3݄
10

݇ଵ െ
9݄
10

݇ଶ ൅
6݄
5
kଷሻ 

݇ହ ൌ ݂ሺݐ௡ ൅ ݄, ௡ۯ െ
11݄
54

݇ଵ ൅
5݄
2
݇ଶ െ

70݄
27

kଷ ൅
35݄
27

݇ସሻ 

݇଺ ൌ ݂ሺݐ௡ ൅
7݄
8
, ௡ۯ ൅

1631݄
55296

݇ଵ ൅
175݄
512

݇ଶ ൅
575݄
13824

kଷ ൅
44275݄
110592

݇ସ ൅
253݄
4096

݇ହሻ 

In equation (4.18) and (4.19) ࡭  is a vector containing 5 components of the 

orientation tensor ࡭, and ݄ is the time step. For the adaptive Runge-Kutta the time step ݄ 

is checked at each step. Error at each time step is calculated as 

௉ݎݎܧ ൌ ቛ5ۯRK െ4ۯRKቛ (4.21) 

where ࡭ହோ௄ is the solution to the fifth order Runge-Kutta, and ࡭ସோ௄ is the solution for a 

fourth order Runge-Kutta. If the error is equal to zero the original time step is used, if the 

error, ݎݎܧ௉, is greater than the minimum error, ݎݎܧ௠௜௡, the new time step is given as 

݄௡௘௪ ൌ ݄ ൬
௠௜௡ݎݎܧ

௉ݎݎܧ
൰

ଵ
ସ
 (4.22) 

and if the error, ݎݎܧ௉, is less than the minimum error, ݎݎܧ௠௜௡, the new time step is given 

as 

݄௡௘௪ ൌ ݄ ൬
௠௜௡ݎݎܧ

௉ݎݎܧ
൰

ଵ
ହ
 (4.23) 

A maximum step size is defined for the Runge-Kutta method so the method does 

not increase to too large of a step which can cause oscillations. If ݄௡௘௪ is greater than the 

max time step, ݄௠௔௫, the new time step is set to the defined maximum time step. 



67 
 

Oscillatory results can occur when large velocity gradients exist along a streamline. Note 

that the k values in equation (4.19) calculate the slope at different points in the time 

interval. Oscillations can occur if the values of k differ significantly in a time step. The 

time step size is therefore found using a brute force method of increasing and decreasing 

the maximum step size. The maximum step size is set as a large value and slowly reduced 

until smooth accurate results are reached. 

Since orientation tensors are symmetric and the trace of A is unity, only five 

components are computed, i.e. A21 = A12, A31 = A13, and A23 = A32; therefore, only A11, 

A22, A12, A13, and A23 are calculated for the following models. A sixth orientation tensor 

component, A33, is shown in the results to aid in understanding of the orientation state and 

is given as 

ଷଷܣ ൌ 1 െ ଵଵܣ െ  ଶଶܣ
(4.24)

 

 In the following studies the orientation tensor A and B are defined as  

࡭ ൌ	 ൥
௥௥ܣ ௥ఏܣ ௥௭ܣ
ఏ௥ܣ ఏఏܣ ఏ௭ܣ
௭௥ܣ ఏ௭ܣ ௭௭ܣ

൩ and ࡮ ൌ ൥
௥௥ܤ ௥ఏܤ ௥௭ܤ
ఏ௥ܤ ఏఏܤ ఏ௭ܤ
௭௥ܤ ఏ௭ܤ ௭௭ܤ

൩ 
(4.25)

 
 

4.2 Pure Shear Steady State Fiber Orientation Calculation  

The pure shear steady state fiber orientation was calculated to provide a more 

accurate inlet condition for the fiber orientation problems studied in this thesis. Using the 

pure shear steady state value of Aij as the inlet condition allows for a shortened inlet 

geometry in the fiber orientation calculation since a transient solution to pure shear 

steady state can be avoided. To find the pure shear steady state fiber orientation, a large 

aspect ratio tube was modeled for radii of the two problems considered below. The 
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straight tube extrudate swell having an inlet diameter equal to that of a typical desktop 

FDM nozzle exit, and the FDM nozzle having an inlet with a diameter of a typical 

desktop FDM filament. The geometry and boundary conditions are shown in Figure 4.2. 

 
Figure 4.2. Geometry and Boundary Conditions for the Pure Shear Steady State Fiber 
Orientation Calculation 
 
 

The mesh for the pure shear steady state fiber orientation tube geometry is shown 

in Figure 4.3. The mesh contains 202,664 domain elements, 5,418 boundary elements, 

and 1,837,524 degrees of freedom. 
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Figure 4.3. Mesh for the Pure Shear Steady State Fiber Orientation Calculation 
Geometries 
 
 

The ten equally spaced streamlines used in the velocity pressure solution are 

shown in Figure 4.4. The computation time for the pure shear steady state fiber 

orientation tube problem is 139 seconds. 

For this fiber orientation model the calculation is initialized with an isotropic 

orientation state; therefore, A and B are defined as the following 

࡭ ൌ	 ൥
1/3 0 0
0 1/3 0
0 0 1/3

൩ and ࡮ ൌ ൥
1 0 0
0 1 0
0 0 1

൩ (4.7)
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Figure 4.4. Streamlines for Solution of Pure Shear Steady State Calculation 

 
 

The interaction coefficient ܥூ is set to 0.0075 which is in an acceptable range for a 

concentrated fiber suspension (see e.g. [40, 36]) and the coefficient λ = 1 which describes 

an infinite fiber aspect ratio. 

The pure shear steady state fiber orientation was then calculated for both the 1.75 

mm and 0.35 mm diameter tubes. The calculated pure shear steady state fiber orientation 

for both tubes values were identical. It was also found that as long as the laminar profile 

was maintained that the magnitude of the velocity or velocity gradients did not affect the 

pure shear steady state orientation. Changing the inlet velocity was found to affect the 

rate of change of alignment of the fibers, where an increase in mean velocity would 

increase the rate of alignment. The results from the pure shear transient calculation of the 

extrudate swell and FDM nozzle are shown in Figure 4.5 and Figure 4.6 below. 
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Figure 4.5. Pure Shear Steady State Values for A along Streamline 1, x values in bulleted 
points correspond to values of z, y values correspond to values of Aij 

 

 
Figure 4.6. Pure Shear Steady State Values for B Tensor along Streamline 1, x values in 
bulleted points correspond to values of z, y values correspond to values of Bij 

 



72 
 

The ‘y’ values of the points captured in Figure 4.6 are the pure shear steady state 

values of each component of the orientation tensor A and the associated tensor B. The 

tensor forms of the steady state values shown in Figure 4.6 are calculated as 

࡭ ൌ	 ൥
0.06512 0 0.07561

0 0.1361 0
0.07561 0 0.7988

൩ ࡮ ൌ ൥
6.785 0 െ0.6847
0 2.046 0

െ0.6847 0 0.07202
൩ 

(4.26)

To verify the calculated pure shear steady state values in equation (4.26), for A 

and B in the simulation of straight tube flow where the tube is long compared to its 

diameter. The results for the pure shear steady state calculation agreed exactly with the 

previously calculated pure shear steady state inlet values shown in Figure 4.7. 

The pure shear steady state values shown in equation (4.26) will be used as the 

inlet orientation for all of the following fiber orientation calculations. 
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Figure 4.7. Pure Shear Steady State Inlet Orientation Values Check 
 
 

4.3 Fiber Orientation Results in the Straight Tube Model  

 The first fluid domain geometry considered in this study is a straight 0.175 mm 

diameter tube that includes extrudate swell at its exit. This study was run to see the 

effects of the expansion flow in the extrudate swell region on the fiber orientation. The 

optimum extrudate swell free surface was computed using the minimization process 

described in Chapter Three. In post processing ten streamlines were added that originate 

at the outlet boundary and are equally spaced at the outlet only as is seen in Figure 4.8. 
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Figure 4.8. Streamlines Defined in Straight Tube Extrudate Swell Problem 
 
 
 Figures 4.10-15 illustrate the effect of extrudate swell on fiber orientation in the 

polymer melt. In Figures 4.10-15 NE represents the beginning of the extrudate swell at 

the exit of the extrusion tube.  

 In Figure 4.9, the components of the orientation tensor A are shown along the 

length of Streamline 1. Streamline 1 was chosen as an example of the fiber orientation 

tensor components along the interior of the fluid domain.  
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Figure 4.9. Fiber Orientation Tensor Components along Streamline 1 
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(b)  

Figure 4.10. Velocity Gradients for Streamline 1 
 
 

 
(c) 
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(d) 

 
(e) 

Figure 4.11. Velocity Gradients for Streamline 1 
 
 

Figure 4.9 shows that the fiber orientation within the tube remains at the pure 

shear steady state value calculated in Section 4.3.2 with A33 = 0.7988. This orientation 

defines a highly aligned state in the z direction. Near z = 0.875 mm where the extrudate 
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swells after leaving the extrusion tube (see Figure 4.8) there is a significant decrease in 

the A33 component. The decrease in the A33 component can be explained by looking at 

the velocity gradients in the polymer melt flow. The velocity gradients along Streamline 

1 are shown in Figure 4.10 and Figure 4.11. Figure 4.11 (d) shows a rapid decrease in the 

డ௪

డ௭
 component caused by a flow that is slowing in the z direction at the extrusion tube 

exit. This is called a contraction flow and causes a decrease in alignment transverse to the 

flow [42, 43, 44]. Figure 4.9 (a) shows that 
డ௨

డ௥
 increases at the exit which increases a 

fibers tendency to orient in the direction transverse to the flow. This results from the 

condition that expansion flows also serves to decrease fiber alignment in the direction of 

the flow. The increase in the alignment transverse to the flow caused by the contraction 

flow is recognized also by the increase in the A11 and A22 component’s which indicate the 

amount of alignment in the r and z directions, respectively.  

The velocity gradients seen along the outer edge of the extrusion tube are much 

different than those in the interior of the extrusion tube flow. To understand the effects of 

the outer edge of the extrusion tube the components of the fiber orientation tensor for 

streamline 10, shown in Figure 4.10, are studied.  
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Figure 4.12. Fiber Orientation Tensor Components along Streamline 10 
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(b) 

Figure 4.13. Velocity Gradients for Streamline 10 
 
 

 
(c) 
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(d) 

 
(e) 

Figure 4.14. Velocity Gradients for Streamline 10 
 
 

Figure 4.12 shows the effects at the outer wall of the nozzle. An increase in A33 

followed by a large decrease is seen near the extrusion tube exit, which is then followed 

by a return to a value near the pure shear steady state. The changes in the A33 component 
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can be explained by looking at the velocity gradients in the polymer melt flow. The 

velocity gradients along Streamline 1 are shown in Figure 4.13 and Figure 4.14. 

The effects seen in Figure 4.12 are caused by a flow that is first driven by a large shear 

rate, shown in Figure 4.14 (c), which increases as does A33 right before the extrusion 

nozzle exit. Immediately before and for a small distance after the extrusion exit the flow 

becomes mostly an expansion flow defined by 
డ௨

డ௥
. Because the magnitude of 

డ௪

డ௭
 is smaller 

than 
డ௨

డ௥
 the expansion flow causes a decrease in alignment in the direction of the flow and 

increases the alignment transverse to the flow. This is seen by a decrease in A33 and an 

increase in A11 at the nozzle exit. The orientation tensor then returns to an alignment 

value near the pure shear steady state due to the 
డ௨

డ௭
 and 

డ௪

డ௥
shear components that remain 

shortly after gradients that define elongation 
డ௪

డ௭
 and expansion	డ௨

డ௥
 flow return to zero. 

 Figure 4.15 illustrates the A33 component for all ten streamlines that define the 

velocities and velocity gradients along each streamline from the flow domain entrance to 

exit. Figure 4.15 provides insight into the amount of fiber alignment along the length of 

the nozzle and across the width of the nozzle at the 10 discrete streamlines that are 

plotted. 
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Figure 4.15. A33 Component of the Orientation Tensor along Streamlines in the Fluid 
Domain 
 
 
 Figure 4.15 shows that a decrease in the A33 component of fiber orientation at the 

extrusion tube exit occurs for streamlines 1-9. This is due to the large expansion velocity 

gradients in the polymer melt as it leaves the extrusion tube exit and becomes a free jet. 

The velocity in the tube is greatest at the center near streamline 1; therefore, the effect of 

the velocity decrease on fiber orientation is strongest along this streamline. The velocity 

gradients decrease in the radial direction from streamline 1 to streamline 9. The behavior 

of streamline 10 is different from the others in the fluid domain. This effect appears to 

result from a small but rapid increase in the A33 component followed by a larger rapid 

decrease and finally a return to a value near the pure shear steady state A33 value. This 

behavior is also seen to effect streamline 9 but the effect is much smaller.  
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The fiber orientation state along streamline 10 returns to approximately the pure 

shear steady state orientation value calculated in Section 4.3. Due to the low velocity and 

high velocity gradients at the edge of the extrusion tube there is little change in the fiber 

orientation due to a change in velocity gradient from the no slip wall to the free stream 

flow.  

The most important part of the fiber orientation study is the final orientation state 

after the polymer melt has left the nozzle. Figure 4.15 illustrates that the fiber orientation 

reaches a steady state after exiting the extrusion tube due to the absence of velocity 

gradients in the free stream flow. Figure 4.16 shows the value of the A33 component of 

the orientation tensor immediately after the orientation reaches steady state in the swollen 

polymer melt. This figure shows what is expected to be the orientation of the fibers in the 

printed bead. 

 

Figure 4.16. Fiber Orientation for the Straight Tube A33 Component at the Extrusion 
Tube Exit 
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The orientation state for the defined fluid flow is shown in Figure 4.16. It can be 

seen that the orientation of the fibers decreases from streamline 10 to streamline 1. This 

decrease can be attributed to the change in velocity gradients previously discussed. 

 
4.4 Fiber Orientation Results in an FDM Nozzle 

This section considers the fiber orientation as polymer melt passes through the 

fluid domain of a FDM nozzle. The common nozzle geometry and the extrudate swell 

free surface shape described in Section 3.4.2 will be used in this study. Ten streamlines 

that are evenly spaced at the outlet are evaluated in COMSOL where the velocity, and 

velocity gradients are obtained for further analysis. The fluid domain showing the 

streamlines of a typical analysis is shown in Figure 4.17. The fiber orientation calculation 

described above is used to compute the second-order fiber orientation tensor at points 

along each streamline. 

 Results from the solution to the fiber orientation equation appearing in Figure 

4.18-22 show the effects of the converging nozzle and the extrudate swell free surface. 

For this study the fluid domain is extended 5 radii beyond the extrusion nozzle exit to 

allow for the calculation of the effect of extrudate swell to be included. In Figure 4.18-22 

CZS represents the start of the convergence zone of the nozzle, CZE represents the end 

of the convergence zone, and NE represents the extrusion nozzle exit. The location of 

CZS, CZE, and NE are shown in Figure 4.17. In Figure 4.18, the components of the 

orientation tensor A are shown along the length of Streamline 1. Streamline 1 was chosen 

as an example of the fiber orientation tensor components along the interior of the fluid 

domain. 
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Figure 4.17. Streamlines for the FDM Nozzle Fluid Domain 
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Figure 4.18. Components of the Fiber Orientation Tensor A along Streamline 1 for FDM 
nozzle 
 
 

 
(a) 
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(b) 

Figure 4.19. Velocity Gradietns for Streamline 1 of the FDM Nozzle Flow 
 
 

 
(c) 
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(d) 

 
(e) 

Figure 4.20. Velocity Gradients for Streamline 1 of the FDM Nozzle Flow 
 
 

Figure 4.18 shows the effects of the interior of the FDM nozzle geometry on the 

fiber orientation tensor A at Streamline 1. Figure 4.18 shows that the A33 component of 

the orientation tensor increases in the convergence zone which spans from CZS to CZE. 
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This increase in fiber orientation is due to elongation flow which is defined by an 

increase in 
డ௪

డ௭
 as seen in Figure 4.20 (d). The velocity gradient,

డ௪

డ௭
 starts to increase 

before the convergence zone begins which causes a similar increase in the A33 component 

slightly before the convergence zone. Immediately after the end of the convergence zone, 

in the straight portion of the nozzle, there is a decrease in the A33 component which can 

be related to the velocity gradients shown in Figure 4.20 (a-e). All velocity gradients 

return to their steady state values in this region of the nozzle which results in the fibers 

orientation beginning a return to pure shear steady state orientation. After the nozzle exit, 

NE, there is a decrease in the A33 component of the fiber orientation which is due to the 

negative elongation component,	డ௪
డ௭

, and an expansion flow,	డ௨
డ௥

, both of which decrease 

the alignment in the A33 component.  

 

 

Figure 4.21. Components of the Fiber Orientation Tensor A along Streamline 10 for the 
FDM Nozzle 
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(a) 

 
(b) 

Figure 4.22. Velocity Gradients along Streamline 10 for the FDM Nozzle 
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(c) 

 
(d) 
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(e) 

Figure 4.23. Velocity Gradients along Streamline 10 for the FDM Nozzle 
 
 
 The velocity gradients seen along the outer edge of the FDM nozzle differ 

significantly from those near the center of the nozzle. To understand the effects of the 

outer edge of the nozzle the components of the fiber orientation tensor for streamline 10, 

shown in Figure 4.21, are studied. 

 Six of the 9 components of the orientation tensor A are shown along the length of 

Streamline 10. These results indicate that there is a decrease in the A33 component 

immediately before and for a short distance after the start of the convergence zone, CZS, 

along streamline 10. This is due to an increase in the expansion flow,	డ௨
డ௥

, and a decrease 

of elongation flow, 
డ௪

డ௭
, both of which reduce the alignment in the direction of flow, as 

indicated by the lower values of the A33 component. The expansion flow and elongation 

flow terms continue to increase from CZS to CZE, but the A33 component does not 
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continue to decrease. At this point the magnitude of shear in the flow increases to a point 

where it becomes dominant in the fluid domain. At the end of the convergence zone, 

CZE, there is a peak in the shear flow component near the maximum value of the A33 

component of the fiber orientation tensor. Immediately after the nozzle exit there is a 

decrease in the A33 component which is caused by a decrease in the shear component in 

the flow. Once the polymer has passed the nozzle exit, there is a return to a value near 

pure shear steady state. This occurs due to the shear velocity gradients ቀడ௨
డ௭
	and	 డ௪

డ௥
ቁ that 

exist after the velocity gradients that represent elongation
డ௪

డ௭
 and expansion

డ௨

డ௥
 flow. As 

the extrudate travels further out of the nozzle exit and reaches a constant velocity through 

all of the flow field. 

  Figure 4.24 illustrates the amount of alignment along the z direction throughout 

the length of the nozzle and over the width of the nozzle along the ten streamlines that are 

plotted. Note that in the convergence zone of the nozzle, A33 reaches a value near unity, 

which represents a nearly uniaxial alignment in the z-direction. The maximum value of 

A33 at its peak is A33 = 0.9775 along streamline 1. It is also seen that in the straight region 

of the nozzle after the convergence zone that the orientation decreases towards a pure 

shear steady state value which is defined by the CI and λ coefficients. At the exit of the 

nozzle in the region of extrudate swell there is a substantial decrease in alignment. This 

rapid decrease in alignment is caused by the expansion flow in the area of the extrudate 

swell.  
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Figure 4.24. A33 Component of the Orientation Tensor A along All Streamlines 
 
 
 Figure 4.24 shows that streamlines 7-10 exhibits a slight decrease in alignment in 

the convergence zone of the nozzle while the remainder of the streamlines have the same 

increase in alignment as discussed earlier in this section. The decreasing alignment in the 

z direction occurs due to the expansion flow in the convergence zone of the nozzle. This 

is a negative expansion or contraction in the convergence zone of the nozzle which 

effects the alignment of the fibers. Due to the fluid moving inward in the convergence 

zone the fibers are influenced and the orientation in the z direction is shown to decrease. 

The region close to the outside wall of the nozzle has a decrease in alignment caused by 

the contracting flow. The decrease in the A33 component of the fiber orientation caused 

0123456

x 10
-3

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

z (mm)

A
33

 

 

 Streamline 1
 Streamline 2

 Streamline 3

 Streamline 4

 Streamline 5
 Streamline 6

 Streamline 7

 Streamline 8
 Streamline 9

 Streamline 10

 CZS

 CZE
 NE



96 
 

by the expansion flow in the extrudate swell is similar to that seen in the straight tube 

extrudate swell model in Section 4.3. 

 

Figure 4.25. A33 Component of the Fiber Orientation Tensor at Steady State After Nozzle 
Exit 
 
 Figure 4.25 shows the value of the A33 immediately after the orientation reaches 

steady state in the expanded polymer melt. This figure is of the highest interest in this 

study because it shows the amount of alignment of the fibers in the polymer melt that 

forms the deposited bead in the FDM process.  

 Figure 4.25 shows that the fiber orientation is highly aligned at all radial values, 

with A33 values greater than 0.55. It is also seen that there is high alignment near the wall 

of the die along streamline 10 and also high degree of alignment at the center of the flow 

along streamline 1. There is also an obvious decline of alignment between the wall and 

the center of the flow. 
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 It is interesting to consider differences between Figure 4.25 for the FDM nozzle 

flow and Figure 4.16 for the straight tube flow. Both results show that the extrudate swell 

expansion has a significant effect on the fiber orientation which decreases the A33 

component over the entire flow front. It is noticed however that the alignment is higher 

for the FDM nozzle than for the straight tube flow. This is due to the increased alignment 

in the convergence zone of the FDM nozzle that occurs just before the straight tube 

portion that forms the nozzle exit, both of which serve to decrease A33. As a result, the 

FDM nozzle geometry has a significant impact on the final orientation state of the fiber 

filled polymer melt that exits an FDM nozzle. Further, these results indicate that the 

geometry of the FDM nozzle can be changed to create a desired final orientation state in 

an FDM printed part.  
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CHAPTER FIVE 
 

Nozzle Geometry Parametric Study 
 
 

 A computational approach was presented in Chapter Three to obtain the extrudate 

swell surface and the fiber orientation through the fluid domain for an axisymmetric 

polymer melt flow. In addition, calculations in Chapter Four shows that the geometry of a 

standard FDM nozzle can be modified to influence the fiber orientation in the extruded 

bead. This is important to the mechanical performance of an FDM printed short fiber 

composite since the fiber orientation in an extruded bead defines the material properties 

of the final printed part. Highly aligned fibers provide high stiffness and strength in the 

direction of alignment, but add little or no strength in other planes, whereas an isotropic 

orientation state increases the strength in all planes but by a lesser amount. The ability to 

define the final orientation of the fiber suspension by changing the nozzle flow field 

geometry is of interest. In this chapter, a parametric study is presented to show the effects 

of nozzle geometry on fiber orientation at the exit of an FDM nozzle. 

 
5.1 Calculation of Average Exit Fiber Orientation 

 To compare the results for various FDM nozzle geometries, a single valued 

orientation metric is needed to quantify the fiber orientation state downstream of the 

nozzle exit. In this study, the average value of the A33 component of the orientation 

tensor at steady state after the nozzle exit will be used to define the amount of alignment 

in the extruded polymer bead. Values of A33 downstream of the nozzle exit appeared in 

Chapter Four, Figure 4.16 and Figure 4.25, as a single value for each of the ten 
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streamlines. These ten values are used here to compute the average ̅33ܣ across the 

extruded bead using numerical integration along the radial dimension of the 

axisymmetric flow domain. The integrated A33 across the melt flow area is divided by the 

area of the circular extrudate to obtain the average ̅ܣଷଷ. The numerical integration used 

here is a Simpson’s 3/8 rule for 10 points and nine segments and is given as 

ଷଷܣ̅ ൌ
2

ሺݎ௢௨௧௘௥
ଶ െ ௜௡௡௘௥ݎ

ଶ ሻ
 ܫ

(5.1)

where router is the radial value of streamline 10, rinner is the radial value of streamline 1, 

and I is the numerically integrated area under the curve given as 

ܫ ൌ 	
3
8
݄ሾܨଵ ൅ ଶܨ3 ൅ ଷܨ3 ൅ ସܨ2 ൅ ହܨ3 ൅ ଺ܨ3 ൅ ଻ܨ2 ൅ ܨ3଼ ൅ ଵ଴ሿ (5.2)ܨଽ൅ܨ3

For equation (5.2) Fi is defined as  

௜ܨ ൌ ௜ݎଷଷ,௜ܣ ݎ݋݂ ݅ ൌ 1: 10 (5.3) 

and h is defined as 

݄ ൌ
௢௨௧௘௥ݎ െ ௜௡௡௘௥ݎ

݊
 (5.4)

where n is the number of segments being integrated. 

Figure 4.16 and Figure 4.25, as well as equation (5.1), show that the integration is 

not performed over the entire exit cross section. A small section near the interior 

axisymmetric boundary and near the exterior free surface boundary of the domain is not 

considered. As a result, equation (5.1) only approximates the average A33 over a portion 

of the flow domain, but the change in value is expected to be small. In addition, all of the 

results given below use the same ̅ܣଷଷ integration domain which provides for a good 

comparison for the geometric parameters considered.  
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5.2 Parametric Studies 

 Two parametric studies were conducted to evaluate the effect of nozzle geometry 

on the average alignment value, ̅ܣଷଷ, at a steady state downstream of the nozzle exit. Four 

parameters that define the shape of the inner nozzle geometry in Figure 5.1 are used for 

the parametric study: length of the convergence zone (ܣ), length of the straight portion of 

the nozzle (ܤ), length of the expanding nozzle (ܥ), and amount of expansion of the 

nozzle exit (ܦ). 

 

 

 
Figure 5.1. Definition of Nozzle Geometry Shape Parameters 
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5.2.1 Parametric Study of Nozzle Upstream Shape 

The first parametric study evaluates the effect of the length of the convergence 

zone (ܣ) and the length of the straight portion of the nozzle (ܤ) on the amount of fiber 

alignment. Values of parameters ܣ and ܤ used for this study are 

ܣ ൌ 5, 7, 9, 11, 13, ܽ݊݀ 15  ݅݅݀ܽݎ

(5.5) 
ܤ ൌ 0.1, 2, 4, 6, 8, ܽ݊݀ 10  ݅݅݀ܽݎ

 This allows for thirty-six different nozzle geometry tests to be run. Other 

dimensions for the nozzle geometry include C = 0, D = 0, an inlet and outlet diameter of 

0.875 mm and 0.175 mm respectively. 

 

 
Figure 5.2. Average	ܣഥ ଷଷ Value Downstream of the Nozzle Exit for Values of A and B 
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Figure 5.2 shows that the average amount of fiber alignment in the direction of 

the flow can be altered with the ܣ and ܤ geometry parameters. The effect of changing the 

length of the nozzle convergence zone is seen to be little in comparison to changing the 

length of the straight portion of the nozzle. This is due to the effects discussed in Chapter 

Four for each of the zones in the nozzle geometry. Increasing the length of the 

convergence zone increases fiber alignment due to elongation flow in the z-direction. 

Figure 5.2 shows that the alignment of the fibers downstream of the nozzle exit is high 

for all convergence zone lengths in the study and little variation is seen as the nozzle 

length is changed. These results show that the fiber alignment is only slightly affected by 

convergence zone length. Figure 5.2 also shows that the length of the straight portion of 

the nozzle has a significant effect on the fiber alignment in the polymer melt. Fiber 

alignment along the direction of flow decreases considerably as the straight portion of the 

tube is increased. This effect is due to the lack of velocity gradients in the straight portion 

of the nozzle. The pure shear flow which is dominant in the straight section of the nozzle 

directs the fibers towards their pure shear steady state fiber orientation as calculated in 

section 4.3.2. Indeed, if the straight portion of the nozzle was made to be long enough, 

the pure shear steady state A33 value of 0.799 found in section 4.3.2 would be reached. 

By analyzing the slope of the plots in Figure 5.2, it can be seen that the length of the 

straight portion of the nozzle is approaching the pure shear steady state value. 

  The fiber alignment is decreased in the extrudate swell for all upstream geometry 

changes; therefore, the ̅ܣଷଷ value immediately before the nozzle exit will dictate the 

orientation state in the extruded bead. Changes in the nozzle geometry upstream from the 

nozzle exit are seen to change the fiber alignment before the nozzle exit, and thus the 
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values of ̅ܣଷଷ in Figure 5.2. In addition, Figure 5.2 indicates that a maximum ̅ܣଷଷ is 

obtained with the nozzle exit being at the end of the convergence zone with no straight 

portion present. For this study a long straight portion in which the orientation state 

returns to the pure shear steady state gives the minimum fiber alignment in the direction 

flow. 

 Nozzle geometries that result in a maximum and minimum fiber alignment are 

further discussed to provide an increased understanding of nozzle geometry effects on the 

fiber orientation. The nozzle geometry that provides a maximum fiber alignment in 

Figure 5.2 has 5 = ܣ radii and 0.1 = ܤ radii. The geometry and streamlines for this flow 

appear in Figure 5.3. 

 
 

Figure 5.3. Geometry and Streamlines for Maximum Fiber Alignment Model, 
Dimensions in Meters (m) 
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Figure 5.4 shows the A33 component along the 10 streamlines described in 

Chapter Four for the nozzle geometry having A = 5 radii and B = 0.1 radii that yielded 

the maximum ̅ܣଷଷ. In Figure 5.4, CZS indicates the beginning of the convergence zone 

of the nozzle, CZE shows the end of the convergence zone, and NE is at the location of 

the extrusion nozzle exit. 

 
 
Figure 5.4. A33 Component of the Orientation Tensor A along All Streamlines for 
Maximum Fiber Alignment Model 
 
 

Figure 5.4 shows similar effects as those discussed in Chapter Four. The 

elongation flow in the convergence zone increases the fiber alignment to a value near 

unity. The decrease in the fiber alignment seen along streamlines 7-10 is due to the 

contraction flow where fluid travels inward towards the centerline of the nozzle. This 

causes the fibers to align more transverse to the flow direction, decreasing the A33 
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component. The decrease in fiber alignment seen along streamlines 7-10, is greater for 

the geometry defined by this set of parameters than that computed for the geometry 

evaluated in Chapter Four, where A = 5 and B = 10. This decrease results from the 

shorter convergence zone in the earlier simulation than that considered here. At the 

nozzle exit, NE, in Figure 5.4, the decrease in fiber alignment due to the expansion flow 

in the extrudate swell is still evident in this nozzle design, however, fiber alignment 

remains high due to the short straight section of the nozzle. The average ̅ܣଷଷ value at 

steady state downstream of the nozzle exit is ̅ܣଷଷ = 0.886, which indicates a very high 

alignment of fibers in the polymer bead. 

The nozzle geometry which yields the minimum fiber alignment (i.e. the 

geometry defined by A = 5 and B = 10) is also considered here for further analysis. The 

values for the minimum fiber alignment are very close for all values of B. However, to 

provide a better comparison between the minimum and maximum fiber alignment cases, 

the convergence zone length A was chosen to be the same as that for the nozzle geometry 

giving the maximum fiber alignment. The geometry and streamlines for the minimum 

fiber alignment model are shown in Figure 5.5. 
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Figure 5.5. Geometry and Streamlines for Minimum Fiber Alignment Model, Dimensions 
in Meters (m) 
 
 

Figure 5.6 shows the effects of the nozzle geometry and extrudate swell for the 

maximum fiber alignment model. In Figure 5.6, CZS represents the beginning of the 

convergence zone of the nozzle, CZE represents the end of the convergence zone, and 

NE represents the extrusion nozzle exit. 
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Figure 5.6. A33 Component of the Orientation Tensor A along All Streamlines for 
Minimum Fiber Alignment Model 
 
 

Figure 5.6 shows similar effects to those discussed for the maximum fiber 

alignment case. The effects seen on the fiber alignment from the inlet to CZE are exactly 

the same as those discussed for Figure 5.4 and do not need to be repeated. The flow field 

from CZE to NE is defined by the straight portion of the nozzle. There is a decrease in 

fiber alignment seen in the straight portion of the nozzle between CZE and NE. This 

decrease is due to the lack of velocity gradients in the straight portion of the nozzle and a 

pure shear driven flow. The fibers begin to return to the pure shear steady state fiber 

orientation discussed in Section 4.3.2. At the nozzle exit, NE in Figure 5.6, the expansion 

flow in the extrudate swell causes a further decrease in the fiber alignment from the 
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straight portion of the nozzle. The average A33 value at steady state after the nozzle exit is 

calculated as, ̅ܣଷଷ = 0.635, which defines a highly aligned fiber filled polymer bead. 

The parametric study of the convergence zone length (ܣ) and the length of the 

straight portion of the nozzle (ܤ) shows that the fiber alignment can be changed by 

changing the upstream nozzle geometry. It was seen that the length of the straight portion 

of the nozzle has a larger effect on the fiber alignment that the convergence zone length 

and will return the fiber orientation to pure shear steady state if it is made to be long 

enough. 

 
5.2.2 Parametric Study of Nozzle Exit Shape 

The second parametric study of the nozzle includes the amount of nozzle exit 

expansion (ܥ) and the length of the nozzle exit expansion (ܦ). A maximum nozzle 

expansion angle that is expected to return a correct result was defined by calculating the 

slope tanget to the extrudate swell surface. The derivative of the fourth order polynomial 

defining the extrudate swell free surface was calculated at the extrudate swell start to find 

the slope of the tangent line. The maximum nozzle expansion angle is then calculated as 

the inverse tangent of the tangent line slope. The maximum nozzle expansion was found 

to be 13.65 degrees. The reason for defining the maximum nozzle expansion is to ensure 

that the fluid is not pulling away from the nozzle wall. Our model does not include the 

calculation of capillary effects; therefore, large expansion values could cause issues in the 

finite element calculation if the expansion was too great and the fluid pulled away from 

the nozzle wall. Four of the six expansion values (ܥ) were set inside this angle for the 

smallest expansion length (ܦ) and the other two were set slightly above. These variables 

are calculated with a set minimum ܣ and ܤ combination from the previous studies. The 
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values chosen are again 5 = ܣ and 10 = ܤ to provide an accurate comparison. The values 

for the new variables used in this study are 

ܥ ൌ 1.025, 1.05, 1.075, 1.1, 1.125, ܽ݊݀ 1.15  ݅݅݀ܽݎ

(5.6) 
ܦ ൌ 1, 2, ܽ݊݀ 3  ݅݅݀ܽݎ

 This allows for eighteen different nozzle geometry tests to be run. The number of 

tests run for this parametric study was thirty-six originally to match the first parametric 

study, but for two results there existed numerical issues that stemmed from the Fast Exact 

Closure. The case when two eigenvalues are equal, which is mentioned in Chapter Four, 

occurred for the two inconsistent results and caused numerical issues. For this reason a 

smaller set of ܥ and ܦ values was created which contained only consistent and correct 

results. Results were found for all expansion values which means that the max expansion 

value is conservative and could be increased in future studies. The results of the 

parametric study of ܥ and ܦ are shown in Figure 5.7. 

Figure 5.7 shows the effects of the amount of nozzle exit expansion (ܥ) and the 

length of the nozzle exit expansion (ܦ) on the average fiber alignment. There is little 

change in the average fiber alignment for the nozzle geometry changes defined by ܥ and 

 has a greater effect on the (ܥ) It is shown that the amount of nozzle exit expansion .ܦ

average fiber alignment than the length of the nozzle expansion (ܦ). Figure 5.7 shows 

that as the nozzle expansion increases the average fiber alignment decreases. This is 

because nozzle expansion introduces expansion flow inside the nozzle which has been 

shown to decrease fiber alignment. The nozzle expansion length (ܦ) by itself can be 

compared to increasing the length of the straight portion of the nozzle (ܤ). It is discussed 

in Section 5.2.1 that at a length of 10 radii the effect on fiber alignment of increasing the 
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straight portion length is beginning to plateau; therefore, it would take large values of 

ሺܦሻ to show a significant decrease in the fiber alignment. 

 

 
Figure 5.7. Average A33 Value after Nozzle Exit for Values of C and D 

 
 

The maximum expansion and expansion length fiber alignment model is selected 

from Figure 5.7 as 1.15 = ܥ radii and 10 = ܦ radii. The values for the maximum 

expansion and expansion length are combined with the ܣ and ܤ values defining the 

minimum orientation from section 5.2.1. The geometry and streamlines for the maximum 

expansion fiber alignment model are shown in Figure 5.8. 
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Figure 5.8. Geometry and Streamlines for Minimum Fiber Alignment Model, Dimensions 
in Meters (m) 
 
 

Figure 5.9 shows the effects of the nozzle geometry and extrudate swell for the 

maximum fiber alignment model. In Figure 5.9, CZS represents the beginning of the 

convergence zone of the nozzle, CZE represents the end of the convergence zone, STE 

represents the straight tube end, and NE represents the extrusion nozzle exit. 
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Figure 5.9. A33 Component of the Orientation Tensor A along All Streamlines for 
Maximum Expansion and Expansion Length Fiber Alignment Model 
 
 

Figure 5.9 shows similar effects to those discussed for the minimum fiber 

alignment case. The effects seen on the fiber alignment from the inlet to STE are exactly 

the same as those discussed for Figure 5.6 and do not need to be repeated. The flow field 

from STE to NE is defined by the nozzle expansion. There is a decrease in fiber 

alignment seen in the nozzle expansion between STE to NE. This decrease in fiber 

alignment is due to the introduction of expansion flow in the nozzle. The expansion flow 

immediately after the nozzle exit in the extrudate swell further decreases the fiber 

alignment. The average A33 value for the maximum nozzle expansion and nozzle 

expansion length is calculated as ̅ܣଷଷ = 0.5689. 
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The parametric study of the nozzle expansion (ܥ) and the nozzle expansion length 

 shows that the fiber alignment can be changed by changing the geometry (ܦ)

immediately before the nozzle exit. It was seen that the nozzle expansion has a larger 

effect on the fiber alignment than the nozzle expansion length. Larger expansion values 

could further decrease the fiber alignment, but a model for the capillary effect of the fluid 

being extruded would be needed to ensure the fluid could pull away from the wall at an 

expansion value that is too large.  

The parametric studies show that the nozzle geometry can be designed to produce 

a certain average fiber orientation. This is an important result that can be used to increase 

the number of moldable parameters used in FDM printing for the optimization of FDM 

printed part structure. 
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CHAPTER SIX 
 

Conclusions and Future Work 
 
 

6.1 Conclusions 

Fused deposition modeling technology is a popular additive manufacturing 

technique in the three-dimensional printing industry, but some issues need to be 

addressed before FDM printing can be industrially viable, particularly as composites are 

introduced as a viable FDM material. Virgin polymers currently used for print material 

have relatively low mechanical properties such as strength, toughness, and stiffness. As is 

common in other plastic processing methods, the addition of discrete fibers to the virgin 

polymer increases these mechanical properties. The material properties of the discrete 

fiber composite will vary depending on the orientation state of the fibers; therefore, 

understanding the orientation state is critical to the use of discrete fiber composites in the 

FDM process. The calculation of fiber orientation is a well-known subject and has been 

studied extensively, particularly for injection molding and extrusion. However, research 

on fiber orientation in the complex geometry of a FDM printer nozzle is a new topic and 

no prior work has been found on predicting fiber orientation in the extrudate swell region 

of FDM nozzle flow.  

The objective of this thesis is to increase the understanding of the fiber orientation 

of discrete fibers in a polymer melt extruded by an FDM printing nozzle. A secondary 

motivation is to define the fluid domain of a fused deposition modeling nozzle by 

calculating the extrudate swell surface of material exiting the FDM nozzle. In addition to 
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the previous two objectives the effect of the fluid domain on the orientation state of a 

fiber filled polymer melt is also evaluated. The final objective of the thesis is to analyze 

the effects of changing the nozzle geometry on the final fiber orientation state.  

The first step in this research was to calculate the extrudate swell free surface 

extending from the nozzle exit to fully define the fluid domain. The calculation of the 

extrudate swell free surface was completed by minimizing the stress state along the free 

surface. This calculation was done for both a straight extrusion tube and an FDM nozzle 

geometry. The straight extrusion tube problem was solved for several polynomial and one 

exponential representation of the free surface. Results showed that the fourth and fifth 

order representations could repeatedly and accurately calculated the expected Newtonian 

swell of 13% (see Georgiou [29, 30] and Elwood [32]), and approximate the extrudate 

swell free surface as defined by minimizing the integrated free surface stress. The fourth 

order representation was then used to calculate the extrudate swell free surface for the 

FDM nozzle. The extrudate swell was calculated to be very close to the 13% swell given 

in literature varying at most by 0.29% which is within the range of values published by 

several authors [26, 27, 29, 30]. 

The second step was to calculate fiber orientation in the fluid domain which 

includes the nozzle geometry and extrudate swell regions. The fiber orientation was 

calculated using Advani-Tucker [10] orientation tensors with the Fast Exact Closure from 

Montgomery-Smith, et al. [17] assuming the Folgar-Tucker [7] isotropic rotary diffusion 

model for fiber-fiber interactions. The fiber orientation was found to be highly aligned for 

both the straight extrusion tube and for the FDM nozzle. The average orientation in the 
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flow direction for the straight extrusion tube is calculated as ̅ܣଷଷ = 0.6082, and for the 

FDM nozzle, the average orientation in the flow direction is ̅ܣଷଷ = 0.6612. 

The last step was to study the effect of changing the FDM nozzle geometry. A 

parametric study was run by changing four variables (length of convergence zone, length 

of the straight portion, length of exit expansion, and percentage of exit expansion) to find 

a minimum and maximum fiber orientation state. The maximum fiber orientation state 

that was found was ̅ܣଷଷ = 0.8858 and the minimum orientation state that was found was 

  .ଷଷ = 0.5689ܣ̅

The analysis in this thesis was done using a code written in MATLAB 

(MathWorks, Inc., Natick, Massachusetts) that was used to control COMSOL 

Multiphysics through LiveLink. The MATLAB fmincon function was used to minimize 

the extrudate swell free surface stress which was calculated in COMSOL for each 

iteration. After the optimum extrudate swell free surface was calculated, the finite 

element problem would be run one more time in COMSOL. Streamlines were added in 

post processing and exported to a MATLAB code which then calculated the fiber 

orientation using a fourth order Runge-Kutta ODE solver. The average orientation was 

calculated using an expanded Simpsons 1/3 rule numerical integration technique in a 

MATLAB code that used a single point with the value of A33 in the post nozzle steady 

state region from each streamline. 

The important findings of this thesis are: 

 The 13% extrudate swell free surface can be defined by minimizing the 
integrated stress along the free surface boundary. 
 

 The nozzle geometry and extrudate swell effect the fiber orientation in the 
extruded bead. 
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 Fiber alignment is shown to  
o Increase in the convergence zone due to elongation flow. 
o Decrease in the extrudate swell expansion and contraction flow. 

 
 The nozzle geometry can be changed to provide different fiber alignment 

values for specific printing purposes. 
 

 Fiber alignment is shown to  
o Be affected little by the convergence zone length and nozzle exit 

expansion length. 
o Decrease as the length of the straight portion of the nozzle and the 

nozzle exit expansion value increase. 
 
 

6.2 Future Work 

 Modeling of the FDM printing process is a growing area of research that has 

many issues and opportunities for future study. Interlayer voids, interlayer adhesion, 

porosity interior to the printed strand, and several other issues need to be solved to 

increase the usefulness of fused deposition modeling printing as an industrial tool. The 

possibilities for future study are quite significant as well due to the many factors defining 

print quality that have yet to be studied. 

 In this thesis many assumptions were made to reduce the complexity of the 

problem and make this initial study feasible. There are many improvements that need to 

be made to the model presented here but the scope is large. In the future, the true effect of 

omitted variables will need to be studied to fully define the inherent behavior and also the 

possible uses of the FDM process. 

 The variables with respect to the flow field calculation have a large effect on the 

FDM process and need to be addressed before further modeling can be pursued. The 

effect of gravity and inertia on the extrudate swell has been studied by Mistoulis et al. 

[33], and is shown to have a large effect on the amount of extrudate swell seen at the 
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nozzle exit. The extrudate swell has been shown to affect the final fiber orientation state; 

therefore, changes in the extrudate swell are of great importance.  

For this thesis, the fluid was defined as a Newtonian fluid, whereas ABS and 

other FDM print materials are viscoelastic polymers which behave much differently. 

Polymers are shear thinning materials; therefore, a large shear stress will change the local 

viscosity and the respective velocities and velocity gradients. Methods exist for the 

modeling of Non-Newtonian, including viscoelastic materials [5]; however, this work 

was outside of the scope of the given study.  

The fiber orientation calculations were done using the velocities and velocity 

gradients of a virgin ABS that had a singular viscosity value as the fluid moves through 

the printing nozzle. This is a common practice, but does not fully define the fiber 

orientation problem. The viscosity of a fiber filled polymer is highly dependent on the 

current orientation state of the fibers filling the polymer making the use of a fully coupled 

calculation an important task. This dependent viscosity will again change the velocities 

and velocity gradients [42].  

The problem presented in this thesis was also run as an isothermal fluid flow. This 

again is an acceptable simplification but does not fully define the problem. The filament 

feedstock begins as a fiber filled solid which is liquefied and extruded, but from the 

moment the plastic leaves the nozzle exit it begins cooling and hardening in the ambient 

conditions. The rate of cooling and the time required before the pliability of the molten 

polymer ceases to exist are of interest to those studying interlayer adhesion, 

delaminations, and warping. An understanding of the when the polymer solidifies will 

also give an idea when the fibers reach the final orientation state. 
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 The modeling of the extrudate swell and fiber orientation can also be improved in 

future studies to improve accuracy and decrease computation time. To decrease 

computation time, it is of interest to apply a shape optimization to the extrudate swell free 

surface calculation. The current model relies completely on gradients calculated by 

MATLAB (MathWorks, Inc., Natick, Massachusetts) through fmincon by the finite 

difference method. Exact gradients and Hessians can be calculated for the flow problem 

considered, which can significantly increase the rate of convergence and decrease 

function calls and iterations to reach the minimum solution. This would also allow for the 

use of more points to define the boundary without becoming computationally inefficient. 

 Singular finite elements are discussed in the literature review, but are not used in 

the current study. The implementation of a different element type in a pre-packaged 

software such as COMSOL Multiphysics was not feasible for the given study. If a finite 

element code was written using MATLAB (MathWorks, Inc., Natick, Massachusetts) the 

singular finite elements could be employed [12, 13, 14]. This would minimize or 

completely remove the effects of singularities which proved to be problematic in the 

current study. Two singularities occurred in this study and affected the abilities of the 

stress minimization and fiber orientation calculations. 

 A planar and three dimensional model should be created for the FDM extrudate 

swell problem studied. The axisymmetric model is a good representation of the three 

dimensional model but the full three dimensional model may show some small 

differences. It would also be of interest to run a planar model of the extrudate swell 

problem. Mistoulis et al. [33] show values for both the axisymmetric model and the 
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planar model which would provide a good metric for the further validation of the model 

presented in this thesis. 

 A study of different fiber orientation models for this given problem would be of 

interest. The Folgar-Tucker IRD model is used in this thesis because it is what is 

understood to be used in most of the mold filling software such as MoldFlow and 

Moldex3D (Core Tech Systems Co., Ltd., Chupei City, Taiwan). The Folgar-Tucker IRD 

model is known to over predict the rate of alignment of fibers and there exists newer, 

arguably more accurate, fiber orientation models that may better define the final fiber 

orientation state in the printed strand [8, 36]. 

 FDM printing is an exciting and wide open field of study that needs more work 

before it is perfected. Many ideas for future study have been presented here and will 

hopefully be accomplished for the purpose of improving a technology with great 

potential.  
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