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From Boroles 
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 Much of the existing methodology for the construction of cyclic systems does not 

translate for boron-containing rings. With both limited routes and the restricted amount of 

commericially available reagents, significant progress is necessary to expand the library of 

known boracycles. Boroles, highly reactive four π-electron heterocycles, are a family of 

compounds with the potential to serve to as effective reagents to produce boron 

heterocycles with extended conjugation. The current work capitalizes on this ring 

expansion methodology to access six- and seven-membered heterocycles via 1,1- and 1,2-

insertion reactions, respectively. These findings demonstrate that boroles, and their 

benzofused relatives 9-borafluorenes, are synthons for the construction of unique 

boracyclic architectures. 
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CHAPTER ONE 
 

Introduction 
 
 

1.1 Aromatic Boron Heterocycles 
 

 Boron heterocycles have emerged as a key class of molecules due to the myriad of 

properties they possess, largely as a result of the incorporation of an electron deficient 

boron center.1-2 Particularly, the empty pz-orbital on boron can participate in π-conjugation 

when integrated into unsaturated cyclic systems.3-4 One key feature of these compounds is 

the unique electronic properties that result from the integration of boron atoms into large 

organic cyclic frameworks culminating in their development as electronic materials, 

specifically as organic light emitting diodes (OLEDs).5-8 Molecules, such as borane 1.1, a 

B-doped polycyclic aromatic hydrocarbon, exhibit intense blue fluorescence showing great 

promise for use in OLEDs (Figure 1.1).1 In a similar vein, B-doped pyrene frameworks 

(i.e. 1.2) are currently being explored as possible n-channel organic semiconductors.9 

 Contemporarily, a surge of interest in biologically active boracycles has given rise 

to compounds such as an antitumor agent (1.3) featuring a 1,2-azaborine which inhibits 

binding to the CDK2 protein, even better than its phenyl analogue.10 In addition, a similar 

ring system is an active antibacterial agent (1.4) that inhibits enoyl reductase in Escherichia 

coli.11 Boron heterocycles have also shown potential as pharmaceuticals, specifically as 

antifungal agents. Tavaborole (1.5) and crisaborole (1.6) are commercially marketed as 

Kerydin® for treatment of the nail fungus onychomyscosis and nonsteroidal medication 

Eucrisa® for treatment of eczema, respectively.12  
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 While it is invigorating to see the incorporation of the boron atom within these 

cyclic systems, synthetic barriers must be overcome to access these species. Much of the 

existing methodology for the construction of cyclic systems does not translate for boron-

containing rings.13-15 With both limited routes and the restricted amount of commericially 

available reagents, significant progress is necessary to expand the library of known 

boracycles. New synthetic approaches include harnessing boron-containing substrates that 

are high in potential energy and thermodynamically poised to react in order to furnish more 

stable products, such a set of compounds in this class are boroles. 

 

Figure 1.1. Examples of aromatic boron heterocycles. 
 
 

1.2 Boroles 
 
 Boroles are metalloles containing four π-electrons within a strained five-membered 

ring. Boroles are also antiaromatic, and in conjunction with the aforementioned strain, 

engenders an energetically unfavourable structure.16-18 Even though the first well known 

borole, pentaphenylborole (1.7-Ph, Figure 1.2), was synthesized in 1969 by Eisch19 and 

coworkers, borole chemistry is relatively undeveloped. It was not until 2008, when its X-
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ray crystal structure was reported that chemists probed its reactivity.20 This report set the 

stage for a renewed renaissance of borole chemistry as exemplified by the exponential 

submission of publications thereafter. The combination of an antiaromatic species coupled 

with an activated diene backbone and Lewis acidic center results in a molecule with a 

unique and diverse reactivity.21  

 

 
 

Figure 1.2. Properties of boroles (1.7). 
 
 

1.2.1 Synthesis 
 
 Two general routes exist for the synthesis of boroles: direct salt metathesis with an 

aryl-substituted 1,4-dilithio-1,3-butadiene and corresponding dihalo- or haloborane16, 22 or 

transmetallation from a tin or zirconium precursor (Scheme 1.1).23-24 Braye and coworkers 

utilized the former route and reported the proposed synthesis of 1.7-Ph as a colorless solid 

in 1961,25 later debunked in 1969 by Eisch.19 The salt metathesis method was reexamined 

by Robinson and coworkers in 2002 to access the B-bromo borole (1.7-Br), however, the 

reaction resulted in formation of fused boracycle 1.9 with a newly formed ethyl group on 

the adjacent carbon center, presumably derived from the solvent (Scheme 1.1).26 As a 

result, few monocyclic boroles are made via this method and those known suffer from poor 

yields as intermediate 1.8 is difficult to manipulate.  
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Scheme 1.1. General routes towards boroles. 
 
 
 The transmetallation route is the more popular method due to the relative ease 

involved in performing tin to boron exchange reactions and is known to work with a variety 

of diarylacetylenes granting access to functionalized species.23 The original route 

developed by Eisch and coworkers remains the most commonly used methodology 

(Scheme 1.2)27. Early work in our group focused on the optimization of this route as well 

as adaptation to large scale, the details of which are elucidated in Appendix G. 
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Scheme 1.2. Synthesis of 1.7-Ph. 
 
 

1.2.2 Brief Overview of Reactivity 
 
 The reactivity of 1.7-Ph can be tentatively generalized in five categories: 

coordination, coordinative ring expansion, Diels-Alder cycloadditions, bond activation, 

and redox chemistry.21 Due to the very Lewis acidic boron center of 1.7-Ph, coordination 

of Lewis bases is facile including pyridines, ethers, phosphines, and carbenes.28-33 Most 

rearrangements begin with coordination to the boron center, rendering the adjacent 

endocyclic B-C bond nucleophilic and poised to insert an unsaturated moiety. Our group, 

as well as Braunschweig and coworkers, reported the generation of the 1,2-azaborine 

species 1.11 via formal nitrene insertion from an azide, commonly referred to as a 1,1-

insertion reaction (Scheme 1.3).34-37 The method was expanded by Braunschweig and 

shown to work for several pentaarylboroles and azide partners. In 2015, our group 

demonstrated similar 1,1-insertion chemistry to give the first 1,2-phosphaborine species by 

incorporation of a P-Ph unit into the borole ring.38  

 The first instance of Diels Alder reactivity with 1.7-Ph reported the borole acting 

as the diene with diphenylacetylene as the dienophile where the resulting product 1.12 

rearranged to heptaphenylborepin upon heating.39 Recently, it has also been shown that 

1.7-Ph can act as a dienophile in the presence of certain dienes.40-41 Pentaphenylborole has 

also been shown to activate small molecules like CO and CO2, resulting in rather unique 

reactivity.42-44 
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Scheme 1.3. Explored chemistry of pentaphenylborole. 
 
 
 The activation of E-H bonds is more straightforward. 1.7-Ph can split H2, adding 

each to the adjacent carbon center providing boracyclopent-3-ene as the cis- and trans-

isomers.45-50 The facile chemical reduction of monocyclic boroles allows access to 6π 

electron borole dianions which are garnering interest as a new class of ligands in transition 

metal chemistry.32, 51-55 The reduction of 1.7-Ph can be achieved by using K or KC8 to give 

borolediide 1.13.  

 The 1,1-insertion methodology can be extended to other systems including 1,2- and 

1,3-dipolar moieties to construct 7- and 8-membered boracycles. One example is shown in 

Scheme 1.3 demonstrating the ability of ketones (i.e benzophenone) to insert into 1.7-Ph 
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to give 7-membered ring 1.14.56 This reactivity has been expanded to include nitriles, 

isocyanates, isothiocyanates, aldehydes, phosphaalkynes, diazoalkanes, azobenzenes, and 

ketenes.56-62 Although this is only a brief introduction of 1.7-Ph, its vast reactivity gives 

credence to its potential utility as a reagent to access large boron heterocycles.  

 
1.3 9-Borafluorenes 

 
 The aforementioned reactivity is not limited to monocyclic boroles. Recent work 

demonstrates that dibenzofused boroles, otherwise known as 9-borafluorenes, may also be 

capable of analogous transformations. The scaffold of 9-borafluorene (1.15) was first 

reported by Köster and coworkers in 196363, further detailing the synthesis of various B-

alkyl-, aryl-, and halo-substituted-9-borafluorenes. 9-Borafluorenes share similarities to 

their borole relatives including a Lewis acidic boron center and planarized ring system 

(Figure 1.3).64-65  

 

 
 

Figure 1.3. Properties of 9-borafluorenes (1.15). 
 
 
 The most relevant alteration is the biphenyl backbone instead of the 1,3-butadiene 

motif seen in monocyclic boroles, which impedes Diels Alder reactivity.66 Interestingly, 

the dibenzoborole skeleton functions as an extended π-system, and when utilized in 

conjunction with known synthetic methods, could allow access to a diverse library of cyclic 

boron compounds.67 Although 9-borafluorenes predate boroles (1.7), the body of work 

surrounding these molecules is rather minute. In that context, this introduction details the 
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synthesis and reactivity of several halo- and aryl-substituted 9-borafluorenes to fashion a 

comprehensive discussion. 

 
1.3.1 Synthesis 

 
 While there are a few reported methods to generate 9-borafluorenes, the most 

common routes to access 1.15 are through a salt metathesis pathway or transmetallation 

approach utilizing tin precursors.68-69 The salt metathesis route, unlike for boroles (1.7), is 

employed frequently for the synthesis of halogen substituted 9-borafluorenes, including the 

B-chloro derivative (1.15-Cl). The dilithiated species 1.16 is much easier to manipulate 

than 1.8 (Scheme 1.4). As a result, most 9-borafluorenes synthesized are generated from 

this route.70-71  

 Our group found the salt metathesis pathway to be inconsistent, and explored the 

transmetallation pathway, akin to that of 1.7, which we were more familiar with. By 

optimizing this route, we could generate stannole 1.17 in multigram quantities (~20 g) 

easily and access 9-phenyl-9-borafluorene (1.15-Ph) and 9-chloro-9-borafluorene (1.15-

Cl) via transmetallation.72 

 

 
 

Scheme 1.4. General routes towards 9-borafluorenes. 
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1.3.2 Brief Overview of Reactivity 
 
 The reactivity of 9-borafluorenes is an emerging area of exploration. Therefore, 

only a few key examples are described in Scheme 1.5 to note the differences and 

similarities of 1.15 to 1.7-Ph. The Lewis bases readily coordinate to the Lewis acidic boron 

center (1.18) just as 1.7-Ph does.62, 73-77 Amine-substituted-9-borafluorenes undergo 

spontaneous ring expansions, such as in the case of 1.19 where the nitrogen of the amine 

is incorporated into the ring to give a 1,2-azaborine containing product (Scheme 1.5).78 

 

 
 

Scheme 1.5. Explored chemistry of 9-borafluorenes. 
 
 
 Work by Fukushima and coworkers showed insertion of a C2 unit from an alkyne 

into the 9-borafluorene ring resulting in a 7-membered boracycle (1.20). In a more 
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traditional sense, aryl-substituted-9-borafluorenes can perform 1,2-insertions like their 

monocyclic relative.66 Ketones can react to insert the carbonyl unit into the ring yielding 

the BO-containing 7-membered heterocycle 1.21 and this reactivity has been extended to 

include aldehydes, ketenes, isocyanates, carbodiimides, and diazoalkanes.62, 79-80  

 
1.4 Properties of Boroles and 9-Borafluorenes 

 
 Boroles and 9-borafluorenes are antiaromatic compounds as well as Lewis acids. 

The methods of investigation of both properties are elucidated below as they play a 

significant role in the unraveling of borole reactivity pathways. 

 
1.4.1 Lewis Acidity 

 
 The Gutmann-Beckett method is the most used Lewis acidity scale for measuring 

boron Lewis acids.81 This method is used for boroles instead of the Child’s method, which 

uses crotonaldehyde82 and has functional groups that react with boroles (see Reactivity 

Sections 1.2.2 and 1.3.2). The Gutmann-Beckett method gauges the strength of the Lewis 

acid by adding an excess of a Lewis base probe, in this case triethylphosphine oxide 

(Et3PO), to form a Lewis acid-base adduct. The adduct will have a new signal in the 31P 

NMR spectrum shifted from the free phosphine oxide (41.0 ppm). From this data, an 

Acceptor Number (AN) scale can be extrapolated using the following formula AN = 2.21 

x (δ31Psample – 41.0). The larger the AN, the stronger the Lewis acid. The Gutmann-Beckett 

method is sensitive to solvent calibration, so it is important to perform the experiment with 

consistent variables. Figure 1.4 details Gutmann-Beckett values of 1.7-Ph, several 

derivatives of 1.15, versus the extremely Lewis acidic tris(pentafluorophenyl)borane 

(B[C6F5]3)83. 
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Figure 1.4. Gutmann-Beckett values for various boranes (all performed in C6D6). 
 
 

1.4.2 Antiaromaticity and Aromaticity 
 
 The criteria for aromaticity was historically based upon the traditional definition of 

Hückel’s (4n + 2)π electron rule.84 While most criteria of aromaticity were reserved for 

organic species, it is now used for heteroatom-containing compounds. Previous 

computational methods, such as resonance stabilization energy (RSE) or aromatic 

stabilization energies (ASE), are based upon energetics and can be tedious to compute and 

are sometimes system dependent.85-87 As chemistry develops and complex molecules arise, 

it becomes more difficult to rely on Hückel’s rule as the only decree of aromaticity (Figure 

1.5). 

 

 
 

Figure 1.5. Examples of aromatic and antiaromatic compounds. 
 
 
 Schleyer and coworkers proposed the usage of nucleus-independent chemical shifts 

(NICS) as a gauge of aromaticity in 1996.88 Under an applied magnetic field (B0, Figure. 
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1.6), ring currents are induced in aromatic and antiaromatic compounds (orange rings, 

Figure 1.6) which then create a magnetic field (purple rings, Figure. 1.6).  

 

 
 

Figure 1.6. Diagram of aromatic ring current. 
 
 
 The induced field can then be sensed by a NICS probe, in this case a ghost atom 

(represented by the pink spheres), which then report a value of the absolute chemical 

shielding in parts per million. Typically, two values are considered to be the best gauge of 

aromaticity: NICS(0), defined as the shielding sensed at the center of the ring, and 

NICS(1)zz, the shielding sensed 1 Å above the center of the ring in the direction of the zz-

tensor out of the plane. Aromatic compounds are distinguished by having a large negative 

value (diatropic ring current), indicative of shielding. Antiaromatic compounds have large 

positive values (paratropic ring current) and the region is considered deshielded. Table 1.1 

confirms that both 1.7-Ph and 1.15-Ph are antiaromatic via this method. NICS calculations 

of conjugated boron heterocycles can be useful in ascertaining both aromaticity and 

stability trends.89-91  

 
Table 1.1. NICS(0) and NICS(1)zz Values of Benzene, 1.7-Ph, and 1.15-Ph89 

 

Compounds 
 

  
NICS(0)           -8.1               +12.9 +13.8 
NICS(1)zz           -29.0               +25.9 +23.9 
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1.5 Scope of the Dissertation and Attributions 
 
 For all intents and purposes, the work in this dissertation is focused on the reactivity 

of boroles and 9-borafluorenes accompanied by mechanistic studies, and in most cases, 

supported by computations. 

 

Yruegas, S.; Huang, K.; Wilson, D. J. D.; Dutton, J. L.; Martin, C. D., Dalton Trans., 

2016, 45, 9902-9911. 

 Chapter Two details the reactions of pentaphenylborole with E-H (E = Group 15 or 

16) bonds to assess the lability of the endocyclic B-C bond. S.Y and C.D.M conceived the 

work and designed the experiments, S.Y acquired primary characterization data, K.H aided 

in X-ray crystallographic studies. D.J.D.W and J.L.D performed computational studies and 

composed manuscript drafts alongside S.Y and C.D.M.  

 

Yruegas, S.; Wilson, C.; Dutton, J. L.; Martin, C. D., Organometallics, 2017, 36, 2581-

2587. 

 Extending this work further, Chapter Three describes how pentaphenylborole 

induces the ring opening of epoxides to form different products based on the substitution 

of the epoxide. These results serve as a guidemap for determining methods of generating 

diverse boron-containing systems. S.Y and C.D.M conceived the work and designed the 

experiments, S.Y and C.W acquired primary characterization data, S.Y aided in X-ray 

crystallographic studies, and J.L.D performed computational studies and composed 

manuscript drafts alongside S.Y and C.D.M. 

 



 14 

Yruegas, S.; Patterson, D. C.; Martin, C. D., Chem. Commun., 2016, 52, 6658-6661. 

Yruegas, S.; Martin, C. D., Chem. –Eur. J., 2016, 22, 18358-18361. 

 Chapter Four identifies pentaarylboroles as potential precursors for the synthesis of 

hybrid inorganic/organic boron-containing benzene analogues that feature oxygen or sulfur 

as the lone-pair bearing heteroatom. The ability of boroles to perform single heteroatom 

insertions into the BC4 ring allows access to a library of unusual aromatic species. S.Y and 

C.D.M conceived the work and designed the experiments, S.Y acquired primary 

characterization data and X-ray crystallographic data and performed computational studies. 

D.C.P acquired initial samples for X-ray analysis. Manuscript drafts were composed by 

S.Y and C.D.M. 

 

Yruegas, S.; Martinez, J. J.; Martin, C. D., Chem. Commun., 2018, 54, 6808-6811. 

 Chapters Five focuses on expanding the scope of the ring expansion methodology, 

established for pentaarylboroles in Chapter 2, to a benzofused borole, specifically 9-

borafluorene, to generate 6-membered BN-containing heterocycles. S.Y and C.D.M 

conceived the work and designed the experiments, S.Y and J.J.M acquired primary 

characterization data, S.Y aided in X-ray crystallographic studies. Manuscript drafts were 

composed by S.Y and C.D.M. 

 

Yruegas, S.; Barnard, J. H.; Al-Furaiji, K.; Dutton, J. L; Wilson, D. J. D; Martin, C. D., 

Organometallics, 2018, 37, 1515-1518. 

 Chapter Six investigates the reactivity of phosphaalkynes with 9-borafluorene both 

experimentally and mechanistically. The outcomes from these studies demonstrate the 
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utility of a family of boroles to act as reagents for the synthesis of fused boron heterocycles. 

S.Y and C.D.M conceived the work and designed the experiments, S.Y and J.H.B acquired 

primary characterization data, S.Y aided in X-ray crystallographic studies, and K. A-F, 

D.J.D.W, and J.L.D performed computational studies and composed manuscript drafts 

alongside S.Y and C.D.M. 

 

Yruegas, S.; Axtell, J. C.; Kirlikovali, K. O.; Spokoyny, A. M.; Martin, C. D, Chem. 

Commun., 2019, 55, 2892-2895. 

 Chapter Seven centers on the incorporation of a 1,1’-bis(o-carborane) scaffold to 

generate three-dimensional analogues of 9-borafluorene. The resulting species represent 

the first examples of 1,1’-bis(carboranyl)boranes and the beginning of an investigation of 

new unique boracyclic architectures utilizing carboranes. S.Y, A.M.S, and C.D.M 

conceived the work. S.Y, J.C.A, and C.D.M and designed the experiments, S.Y acquired 

primary characterization data and performed X-ray crystallographic studies. K.O.K 

performed computational studies. All authors aided in composition of manuscript drafts. 
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CHAPTER TWO 
 

Probing the Reactivity of Pentaphenylborole with N-H, O-H, P-H, and S-H Bonds 
 

This chapter published as: Yruegas, S.; Huang, K.; Wilson, D. J. D.; Dutton, J. L.; 
Martin, C. D., Dalton Trans., 2016, 45, 9902-9911. 

 
 

2.1 Introduction 
 
 The chemistry of boroles has been an attractive subject due to the unique electronic 

structure of this five membered ring.16-17, 19-20, 24, 27, 30-31, 51, 53, 68, 92-100 The antiaromatic four 

π electron heterocycle has displayed diverse reactivity with a variety of molecules.18, 32-36, 

38, 42, 45, 47-49, 54-58, 64, 78, 90, 101-121 A particularly interesting example of reactivity was reported 

by Piers and coworkers demonstrating that pentaaryl boroles (1.7-Ph and 2.1) react with 

dihydrogen under ambient conditions to produce 1-bora-cyclopent-3-ene heterocycles via 

the introduction of the hydrogen atoms on the carbon centers adjacent to boron (2.2 and 

2.3, Scheme 2.1).45, 120 This was a significant discovery as an external Lewis base was not 

required, contrary to prototypical Frustrated Lewis Pairs.122-127 Braunschweig and 

coworkers showed that pentaphenylborole (1.7-Ph) undergoes a hydrosilylation reaction 

with HSiEt3 to afford the analogous silyl substituted 1-bora-cyclopent-3-ene (2.4).49 Our 

group extended this work to other main group hydrides (HGeEt3, HSnnBu3, and HBpin; pin 

= pinacol) which showed the same type of addition reactions (2.5-2.7).50  

 Protic systems react differently than non-polar H2 and hydridic substrates. Piers and 

coworkers reported the reaction of phenol with 1.7-Ph to rapidly produce the ring opened 

species 2.8 (Scheme 2.2). This result can be attributed to the lability of the endocyclic B-

C bond, particularly upon coordination of the oxygen atom.45 Although several 
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publications had reported that boroles were very water sensitive, this process had not been 

comprehensively studied.19-20, 24, 27, 51, 92, 116 

 

 
 

Scheme 2.1. Addition products from the reactions of H2 and main group hydrides with boroles. 
 
 
 Marder and coworkers prepared boroles featuring bulky mesityl groups on boron 

(1.7-Mes and 1.7-FMes) with the goal of protecting the electrophilic boron center as well 

as the labile B-C bonds.116 A water stability study in comparison with the slightly smaller 

B-Mes derivative (1.7-Mes) showed a 600 fold increase in lifetime. The hydrolysis 

products formed (2.9-2.11) were analogous to the phenol protodeborylation ring opening 

reaction. Despite the second O-H group on water, only the activation of one bond occurred. 

However, this may have been a result of the bulky boroles that were studied, perhaps 

impeding further reactivity. Based on the diverse results with water, phenol, main group 

hydrides, and dihydrogen, we herein report a reactivity study of pentaphenylborole with 

various E-H (Group 15/16) bonds to unravel new reactivity pathways in borole chemistry. 

Boroles have interesting electronic properties and understanding their reactivity and 

stability with a wide variety of functional groups could facilitate the development of borole 

containing electronic materials.  
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Scheme 2.2. Reactions of boroles with phenol and water. 
 
 

2.2 Investigating the B-C Bond Cleavage of Pentaphenylborole 
 
 The 1:1 stoichiometric reaction of pentaphenylborole 1.7-Ph with water in 

dichloromethane at 0 ̊ C resulted in the rapid change of the blue color of pentaphenylborole 

to yellow (Scheme 2.3). Removing the solvent in vacuo and analyzing the redissolved 

residue in CDCl3 by 1H NMR spectroscopy showed two products in a ~3:1 ratio. The 

singlet at 5.44 ppm corresponding to the major species was assigned as a B-OH resonance 

due to its similarity to the B-OH resonance of 2.9 (5.92 ppm) and the major product 

accordingly assigned as the ring opened product 2.12.116 The FT-IR spectrum of the crude 

sample showed a diagnostic O-H stretch at 3404 cm-1 and crystals grown from a solution 

of diethyl ether and hexanes confirmed the identity as the protodeborylated product 2.12 

(Figure 2.1).  
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Scheme 2.3. Reaction of borole 1.7-Ph with water. 
 
 
 The isolation of a pure sample of 2.12 proved to be difficult due to similar 

solubilities of the two compounds. Although bulky boroles only showed one product, a 

smaller borole may react in a 2:1 stoichiometry with water to generate a diboroxane species 

which was tentatively assigned as the minor product. The addition of excess borole to the 

reaction mixture converted all of 2.12 to the minor species indicated by 1H NMR 

spectroscopy by the absence of the B-OH resonance at 5.44 ppm. Moreover, the FT-IR 

spectrum of the isolated powder lacked an O-H stretch. The 11B{1H} NMR shift of 45.7 

ppm is indicative of a three-coordinate species and is comparable to other reported 

diboroxanes (e.g. tetraphenylboroxane δ = 46 ppm).128-132 An X-ray diffraction study 

confirmed the identity as diboroxane 2.13. The C4 chains in 2.12 and 2.13 derived from the 

ring carbons are in twisted cis-configurations with dihedral angles ranging between 

38.4(3)˚ and 42.6(2)˚. A notable feature in 2.13 is a surprisingly wide B-O-B angle, 

comparable to Mes2B-O-BMes2 [167.7(12)˚ cf. 165.5˚]129, likely a result of the steric bulk 

imposed by the contorted butadiene. This steric congestion also supports the observation 

of only a single protodeborylation in the reactions of boroles 1.7-Mes, 1.7-FMes, and 2.7 

with water was likely a result of the bulk of the boroles tested.  
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Figure 2.1. Solid-state structures of 2.12 (left) and 2.13 (right). Thermal ellipsoids are drawn at the 50% 
probability level. Hydrogen atoms have been omitted for clarity (other than those derived from H2O). 
Selected bond lengths (Å) and angles (˚) for 2.12: B(1)-O(1) 1.362(2), B(1)-C(1) 1.588(3), C(1)-C(2) 
1.359(3), C(2)-C(3) 1.485(2), C(3)-C(4) 1.352(3), B(1)-C(51) 1.555(3), O(1)-B(1)-C(1) 117.95(18), O(1)-
B(1)-C(51) 118.77(18), C(51)-B(1)-C(1) 122.90(16), C(1)-C(2)-C(3)-C(4) 40.2(2); For 2.13: B(1)-O(1) 
1.352(18), B(1)-C(1) 1.586(2), C(1)-C(2) 1.353(2), C(2)-C(3) 1.488(2), C(3)-C(4) 1.343(2), B(1)-C(51) 
1.568(3), B(2)-O(1) 1.364(18), B(2)-C(6) 1.579(3), C(6)-C(7) 1.358(3), C(7)-C(8) 1.490(3), C(8)-C(9) 
1.343(3), B(2)-C(101) 1.571(3), O(1)-B(1)-C(51) 118.40(15), O(1)-B(1)-C(1) 118.98(15), C(51)-B(1)-C(1) 
121.82(15), C(1)-C(2)-C(3)-C(4) 42.6(2), O(1)-B(2)-C(101) 119.70(17), O(1)-B(2)-C(6) 119.00(17), 
C(101)-B(2)-C(6) 120.93(16), C(6)-C(7)-C(8)-C(9) 38.4(3), B(1)-O(1)-B(2) 167.7(12). 
 
 
 The ring opening reactivity of borole with water and an alcohol prompted us to 

examine the reaction with a thiol. The analogous 1:1 reaction of pentaphenylborole and 

1-naphthalenethiol at room temperature rapidly resulted in the disappearance of the blue 

color of 1.7-Ph (Scheme 2.4). The solvent was removed in vacuo and obtaining an 1H NMR 

spectrum of the solids redissolved in CDCl3 suggested conversion to one product with 

several broad peaks, all in the aryl region with the exception of a peak at 3.81 ppm. The 

broad signals resolved at -30 ̊ C, notably the broad peak at 3.81 ppm became a sharp singlet 

integrating to one proton with respect to the 32 aryl protons and is shifted slightly 

downfield from 1-naphthalenethiol (δ = 3.60). After work-up, a white powder was isolated 

in high yield (93%). A resonance in the 11B{1H} NMR spectrum was detected at δ = 76.0 

ppm, indicative of a three-coordinate boron center, and no S-H stretch (2550-2620 cm-1) 

was present in the FT-IR spectrum of the product. 
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Scheme 2.4. Reaction of borole 1.7-Ph with 1-naphthalenethiol. 
 
 
 Crystals suitable for an X-ray diffraction study were grown from a 

dichloromethane/toluene solution (1:3) and determined the identity of the product as the 

1-boracyclopent-3-ene with a naphthalenethiolate group on the boron center as well as a 

phenyl group and proton introduced on the -carbons of the five-membered ring (2.14, 

Figure 2.2). The boron-sulfur bond length is comparable to other thioboranes that exhibit 

B-S delocalization [1.782(4) Å cf. Mes2B(SCH3) 1.787(6) Å].133-135 The boracycle has a 

trigonal planar boron center [∑angles = 359.9(5)˚] and features a distinct C-C double bond 

in the central ring [C(2)-C(3) = 1.348(3) Å]. The singlet observed at 3.81 ppm is assigned 

as the proton on the tertiary carbon adjacent to boron. While the introduction of groups to 

both -carbon atoms is similar to the previously reported reactions of boroles with H2 or 

main group hydrides, the final products are fundamentally different. With the thiol (S-H), 

the S-B bond is retained, and the Ph group migrates from the B atom, while with main 

group hydrides (E-H) the main group element migrates to the -carbon while retaining the 

B-Ph bond.  

 The 1:1 reaction of aniline with pentaphenylborole at room temperature resulted in 

the rapid color change of blue to yellow accompanied with the formation of a precipitate 

(Scheme 2.5). After work-up, a white solid was isolated in 76% yield. Acquiring a 1H NMR 
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spectrum of the crude solids redissolved in CDCl3 showed the disappearance of the NH2 

resonance of the aniline at 3.55 ppm and the appearance of a new singlet at 6.44 ppm 

integrating in a 1:31 ratio with respect to the resonances in the aryl region. A broad singlet 

was observed in the 11B{1H} NMR spectrum at 41.4 ppm, characteristic of a 

three-coordinate boron center. The FT-IR spectrum showed an N-H stretch at 3388 cm-1 

and an X-ray diffraction study on crystals grown from a dichloromethane solution via vapor 

diffusion into toluene, confirmed the product as the ring opened amino-borane 2.15.  

 

 
 

Scheme 2.5. Reaction of borole 1.7-Ph with aniline and phenylphosphine. 
 
 
 To further examine this transformation, we performed the reaction at -40 ˚C in an 

NMR tube and analyzed the conversion by 11B{1H} NMR spectroscopy. At this 

temperature a signal corresponding to a four-coordinate species (δ = 1.3) was detected 

which was assigned as the pentaphenylborole-aniline adduct. After ten minutes, the four-

coordinate species completely converted to the amino-borane product 2.15 (Appendix A: 

Figure A-21).136 The B-N bond distance of 1.409(2) Å is similar to the B-N bond in 

borazine (1.42 – 1.43 Å) suggesting delocalization between boron and nitrogen.133, 137-138 

The butadiene chain is similar to the boroxines with a twisted cis-conformation [dihedral 
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angle C(1)-C(2)-C(3)-C(4) = 41.4(17)˚]. Interestingly, the addition of another equivalent 

of borole did not induce a second protodeborylation, even at elevated temperatures (at 

23 ˚C in CDCl3 or at 100 ˚C in toluene).  

 

 
 

Figure 2.2. Solid-state structures of 2.14-2.16 (left to right). Thermal ellipsoids are at the 50% probability 
level. Hydrogen atoms have been omitted for clarity (other than those derived from the heteroatom of the 
substrates). Selected bond lengths (Å) and angles (˚) for 2.14: S(1)-B(1) 1.785(3), B(1)-C(1) 1.607(3), C(1)-
C(2) 1.544(3), C(2)-C(3) 1.348(3), C(3)-C(4) 1.526(3), B(1)-C(4) 1.580(4), S(1)-B(1)-C(1) 121.14(19), S(1)-
B(1)-C(4) 129.35(19), C(1)-B(1)-C(4) 109.4(2), B(1)-C(1)-C(2) 100.37(18), B(1)-C(4)-C(3) 101.83(18); 
2.15: N(1)-B(1) 1.409(2), B(1)-C(1) 1.582(2), C(1)-C(2) 1.362(2), C(2)-C(3) 1.490(2), C(3)-C(4) 1.351(2), 
B(1)-C(51) 1.579(2), N(1)-B(1)-C(1) 123.43(15), N(1)-B(1)-C(51) 116.74(15), C(1)-B(1)-C(51) 119.23(15), 
C(1)-C(2)-C(3)-C(4) 41.4(17); 2.16: P(1)-B(1) 1.993(3), B(1)-C(1) 1.616(3), C(1)-C(2) 1.351(3), C(2)-C(3) 
1.479(3), C(3)-C(4) 1.365(3), B(1)-C(4) 1.627(3), P(1)-B(1)-C(1) 96.65(15), P(1)-B(1)-C(4) 104.24(16), 
P(1)-B(1)-C(51) 112.44 (17). 
 
 
 The addition of a stoichiometric equivalent of phenylphosphine to 1.7-Ph in CDCl3 

at room temperature resulted in a rapid color change from blue to green and analysis of the 

crude reaction mixture by 31P NMR spectroscopy showed a triplet at δ = -47.1 ppm (J = 

366 Hz), shifted significantly downfield from free phenylphosphine (δ = -122 ppm). The 

corresponding doublet with a matching coupling constant was observed in the 1H NMR 

spectrum at 5.77 ppm with a similar value to the other primary phosphine-borane adducts 

(J = 366 Hz cf. 360 - 380 Hz).139-141 The 11B{1H} NMR shift is a sharp singlet at δ = -8.7 

ppm, in the range of reported borole adducts.30, 42, 57, 99 Crystals for an X-ray diffraction 

study were grown from a solution of dichloromethane via vapor diffusion into n-pentane 

and confirmed the identity as the Lewis acid/base complex 2.16. The phosphorus-boron 
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bond distance of 1.993(3) Å is consistent with reported phosphine-borane adducts.140, 142-

143 Surprisingly, the phenylphosphine adduct (2.16) shows no evidence of B-C protonolysis 

at room temperature, or upon heating at 80 ˚C for several hours.  

 
2.3 Computational DFT Studies 

 
 Computational DFT studies were undertaken to rationalize the different outcomes 

of the reactions of pentaphenylborole with the relatively similar reactants (Scheme 2.6). 

For computational efficiency, a model system of 2,3,4,5-tetramethyl-1-phenylborole 

(1.7-Ph’) was used in place of pentaphenylborole (1.7-Ph), and PhSH used in place of 

1-naphthalenethiol. The M06-2X/6-31+G(d) optimised geometries of isolated products are 

consistent with the geometrical parameters derived from the crystal structures, which 

indicates that the optimized geometries for all structures are sufficiently accurate. The 

thermochemistry of each reaction was considered (Table 2.1), as it was hypothesized that 

initial adduct formation (Int2.1) was critical to the ring opening and related reactivity of 

boroles, and hence reaction energetics are listed relative to the adduct Int2.1. Experimental 

observations support this approach, with the detection of the initial adduct in the reaction 

with aniline and isolated adduct for phenylphosphine (2.16, for which it is also the final 

product). Adduct formation is calculated to be thermodynamically favoured with NH2Ph 

(-33.3 kJ/mol) and PH2Ph (-20.9 kJ/mol). In contrast, with H2O and PhSH the formation 

of adduct Int2.1 is calculated to be endergonic, although ΔG is very small (+9.9 and +7.8 

kJ/mol, respectively). The endergonic nature of the formation of adducts Int2.1 for H2O 

and PhSH is consistent with no experimental observation of these species. The barrier to 

adduct formation was calculated to be only 35.9 and 22.2 kJ/mol for NH2Ph and PH2Ph, 

respectively. The formation of ring opened products from adduct Int2.1 (Prod2.1) is 
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calculated to be exergonic for all reactants except PH2Ph. The lack of observed reactivity 

with PH2Ph beyond initial adduct formation (2.16 c.f. Int2.1) may subsequently be 

rationalized on thermodynamic grounds. For water and aniline, the G associated with the 

formation of the observed ring opened products (Prod2.1 c.f. 2.12 and 2.15) is calculated 

to be -148.9 and -81.0 kJ/mol respectively. The barriers to H-migration (TS2.1) are 

relatively low for H2O and PhSH, and while the barrier for NH2Ph is unexpectedly higher, 

the barriers are all consistent with the observed rapid reaction times.  

 The G associated with the reaction of the ring opened H2O product (Prod2.1 c.f. 

2.12) with a second equivalent of borole to give Prod2.3 (c.f. 2.13) was calculated to 

be -39.0 kJ/mol. For the aniline product (Prod2.3 c.f. 2.15), G for the reaction with a 

second equivalent of borole was calculated to be -39.1 kJ/mol. While the relevant transition 

state was not able to be located, it is believed that the reaction barrier for formation of the 

aniline bisborole complex (Prod2.3) must be significant in comparison to the H2O reaction 

since no bisborole aniline product is observed in the experimental study.  

 Analysis of the structures and energetics of initial adduct formation (Int2.1) and 

the subsequent transition state (TS2.1) provides insight into the varied reactivity observed 

in the experimental study. After formation of Int2.1, further reactivity to Prod2.1 (via 

H-migration and ring opening) or Prod2.2 (via H and Ph migration for the ring closed 

species, Int2.2 and Int2.3, respectively) requires either an initial H(-E) or Ph(-B) migration 

to an α-carbon of the borole ring. Migration of the boron-phenyl group was calculated to 

be unfavourable by 82-98 kJ/mol (Int2.1 to Int2.3) for all complexes, whereas H-migration 

with thiophenol is favourable by 65 kJ/mol, and with phenylphosphine it is unfavourable 

by only 0.4 kJ/mol (Int2.1 to Int2.2). With water and aniline, H-migration to an α-carbon 
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leads directly to the ring opened species (Prod2.1 c.f. 2.12 and 2.15). No stable minima 

were able to be located that corresponded to H-migration to an α-carbon.  

 Importantly, the stability of the H-migration intermediate (Int2.2) appears to be an 

indicator of further reactivity. For the water and aniline reactions, the absence of a stable 

minimum indicates that the reaction proceeds directly to borole ring opening (Int2.1 to 

Prod2.1). With thiophenol, a stable minimum is identified (-65 kJ/mol from Int2.1), 

allowing subsequent phenyl migration from boron to the other α-carbon to form the ring 

closed product (Prod2.2 c.f. 2.14). A ring opened thiophenol product was identified, 

although it lies 38.8 kJ/mol higher in energy than the ring closed product 2.14 (Prod2.1). 

For PH2Ph, a H-migration minimum was located, but it lies almost equal in energy to that 

of Int2.1.  
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Scheme 2.6. Proposed mechanism for the reactions using 2,3,4,5-tetramethyl-1-phenylborole (1.7-Ph’) as a model system. 
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Table 2.1. M06-2X/6-31+G(d) Calculated Relative Free Energies (ΔG, kJ mol-1) for the 
Reaction of 1-Phenyl-2,3,4,5-tetramethylborole (1.7-Ph’) with E-H Substrates, Relative 

to the Initial Adduct (Int2.1) 
 

Compounds Reactants Int2.1 TS2.1a Prod2.1b Prod2.2c Prod2.3 
H2O -9.9 0.0 57.7 -148.9 -187.6 -187.9 
SHPh -7.8 0.0 50.2 -87.7 -126.5 – 

NH2Ph 33.3 0.0 107.8 -81.0 -156.3 -120.2 
PH2PH 20.9 0.0 128.3 12.3 -47.9 92.2 

aTransition state associated with H-migration from E (E = O, S, N, P) in Int2.1. bRing opened product 
equivalent to 2.12 and 2.15. cAddition product equivalent to 2.14 with H and Ph addition to α-carbons of the 
borole ring. dProduct equivalent to the bisborole ring opened species 2.13. 
 
 
 For all species, a second, more stable, product (Prod2.2) was identified that 

corresponds to the ring closed thiophenol product 2.14. For water and aniline, there is no 

ready pathway to this product, as initial H-migration to an α-carbon is required (but no 

stable intermediate of type Int2.2 is formed in each case). For PH2Ph, a H-migration 

intermediate (Int2.2) was located only 0.4 kJ/mol lower in energy than Int2.1, but with a 

barrier of 128 kJ/mol, which is the largest barrier of the systems considered. Again, the 

importance of TS2.1 and Int2.2 is highlighted.  

 The lability of the E-H bond and formation of stable H-migration intermediates 

(Int2.2) were identified as important factors from an analysis of the thermodynamics. It 

was subsequently hypothesized that the divergent reactivity may be related to the relative 

acidity of the substrate protons on the main group center of the adduct (Int2.1), as the 

second step in related ring opening reactions of boroles are a proton mediated B-C bond 

cleavage. Two different proxies for the acidity of the E-H protons in the adducts Int2.1 

were considered: the energy associated with simply removing a proton from the main group 

element of Int2.1, and the natural population analysis (NPA) charge on the protons in the 

adduct Int2.1, where a higher positive charge on the hydrogen atom indicates potential 

increased acidity. In the former case, pyridine was used as a model Bronsted base, in which 
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case the acidity is calculated as the ΔG of Int2.1 + pyridine → [Int2.1-H]- + [pyridine+H]+, 

by how readily Int2.1 transfers a proton to pyridine.  

 The NPA charges on the E-H protons in the adducts Int2.1 decrease from +0.52 for 

water to +0.42 for aniline, then there is a substantial drop to +0.148 in thiophenol and 

+0.019 in the phenylphosphine adduct. The energy associated with protonating pyridine 

increases from water (+379 kJ/mol) to aniline (+420 kJ/mol), with phenylphosphine (+426 

kJ/mol) having the proton that is the most difficult to remove, in agreement with inferred 

acidity from the calculated proton charges. The thiophenol result (+356 kJ/mol) is an 

anomaly to the trend, having a small magnitude charge (less acidic proton) and yet it more 

readily protonates pyridine compared to the other adducts Int2.1.  

 While acidity is important, lability of the E-H and B-C bonds is also significant. 

The Wiberg bond indices (WBI) give an indication of the E-H and B-C bond strengths 

(Tables 2.2-2.3). For S-H and P-H in Int2.1, the WBIs are closest to unity (together with 

lower magnitude NPA charges on H), while the O-H and N-H WBIs are smaller 

(corresponding with higher magnitude NPA charges). The B-C bonds in the 

phenylphosphine adduct exhibit the highest WBIs, which is consistent with no observed 

reactivity beyond adduct 2.16.  

 Calculated WBIs for E-B bonds (Table 2.3) indicate some multiple bond character 

in the ring opened species (Prod2.1), which arises from delocalization of the lone pairs 

from the heteroatom. A comparison with single-bond distances derived from the sum of 

single-bond covalent radii144 indicates that the O-B and N-B bond distances are shorter 

than standard single bonds. Second-order perturbation analysis of NBO interactions 

indicates that this interaction is the most important stabilizing interaction in the ring opened 
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product for H2O and NH2Ph products (Prod2.1 c.f. 2.12 and 2.15). Delocalization from the 

lone pairs is most obviously manifested in the planarization of the N-atom in 2.15. 

 
Table 2.2. M06-2X/6-31+G(d) Calculated Proton Acidity (ΔG, kJ mol-1) and 

B3LYP/def2-TZVPP Calculated NPA Charges (E) and Wiberg Bond Indices (WBI) of 
Int2.1 Adducts  

 
 Proton  NPA   WBI   
Compound Acidity H E B E-H B-C1  B-C2 
H2O 378.9 0.524 -0.761 0.575 0.718 0.884 0.875 
HSPh 356.1 0.146 0.342 0.492 0.944 0.892 0.876 
NH2Ph 420.2 0.418 -0.655 0.414 0.795 0.897 0.873 
PH2PH 426.0 0.010 0.860 0.068 0.939 0.901 0.913 

 
 
 For PhSH, the energy stabilization from lone-pair donation of S to B is greater in 

the ring closed product (Prod2.2 c.f. 2.14) than in the unobserved ring opened species, 

Prod2.1. The calculated bond distance of 1.42 Å is also shorter than the 1.56 Å derived 

from single-bond covalent radii.  

 
Table 2.3. B3LYP/def2-TZVPP Calculated E-B Bond Distances (Å), E-B Single Bond 
Distances (Å) from Covalent Radii, WBI for Int2.1 and the Experimentally Observed 

Productsa  
 

 Int2.1 Experimentally observed species Single-
Bond a 

Compound R(E-B) WBI R(E-B) WBI Compound  R(E-B) 
H2O 1.724 0.460 1.374 0.958 Prod2.1 2.12 1.48 
HSPh 2.235 0.524 1.793 1.326 Prod2.2 2.14 1.88 
NH2Ph 1.677 0.613 1.422 1.021 Prod2.1 2.15 1.56 
PH2PH 2.011 0.801 2.011 0.801 Int2.1 2.16 1.96 

aBond distances calculated from sum of single-bond covalent radii: B (0.85 Å), O (0.63 Å), S(1.03 Å), and 
P (1.11 Å). 
 
 
 The Lewis acidity of the ring opened product (Prod2.1) is a significant factor in 

predicting further reactivity with another equivalent borole. One measure of Lewis acidity 

is the electron affinity (EA). The reacting E-H compound is required to be less Lewis acidic 
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than the borole for a Lewis acid-base reaction to occur. The M06-2X/6-31+G(d) calculated 

vertical EA of 2,3,4,5-tetramethyl-1-phenylborole is -0.86 eV, with the ring opened 

products being -0.98 eV (H2O), -1.04 eV (SH), -0.50 (NH2Ph), and -0.19 eV (PH2Ph). The 

NH2Ph product (Prod2.1) is more Lewis acidic than the borole, which further supports the 

lack of reaction to form a bisborole complex (Prod2.3). In contrast, the H2O ring opened 

product is less Lewis acidic (more negative EA) than the borole, and hence reaction with a 

second borole is expected (Prod2.3 c.f. 2.13). Interestingly, the PhSH ring opened product 

was the only other substrate that exhibited an EA more negative than that of H2O.  

 The reactions of pentaphenylborole with substrates containing E-H (E = O, S, N, 

P) functional groups demonstrate multiple modes of reactivity with this antiaromatic 

species. The reactions with O-H and N-H containing substrates undergo protodeborylation 

to produce ring opened products with delocalized B-O and B-N bonds. Additionally, it was 

shown that a second protodeborylation could take place for H2O. This differs from previous 

studies with larger boroles and water that only showed a single protodeborolation. A thiol 

reacted differently to produce a boracyclopent-3-ene heterocycle. In this case, the B-C 

bond was not cleaved and the phenyl group on boron migrated to the adjacent carbon. The 

reaction with phenylphosphine only showed adduct formation and no evidence of proton 

migration or ring opening. DFT calculations provide support for the observed reaction 

products and identify the initial adduct as a key intermediate in determining the final 

product. Ring opening may be linked to the lability of the E-H hydrogen in the initial 

adduct. Intriguingly, all the aforementioned reactivity is different to the addition products 

observed in previous studies with H2, HSiEt3, HGeEt3, HSnnBu3, and HBpin. 
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2.4 Experimental Details 
 
Phenylphosphine and 1-naphthalenethiol were purchased from Strem and Sigma-Aldrich 

Chemicals, respectively, and used as received. Aniline was purchased from Sigma-Aldrich 

and purified by distillation prior to use. In-house deionized water was used without further 

purification. 

 
Computational Methods. All calculations were carried out within Gaussian 09.145 

Geometries of structures 2.12-2.16 were optimized using the M06-2X146 density functional 

theory (DFT) method with an ultrafine pruned integration grid and optimized with the 6-

31+G(d) basis set.147-148 Geometry optimization of transition states typically employed the 

quadratic synchronous transit (QST) approach.149 Stationary points were characterized as 

minima or transition states by calculating the Hessian matrix analytically at the same level 

of theory. All structures labelled as minima exhibit no imaginary frequencies; transition 

states exhibit one imaginary frequency. Thermodynamic corrections were taken from these 

calculations (standard state of T = 298.15 K and p = 1 atm). Intrinsic reaction coordinate 

(IRC) calculations using the local quadratic approximation were carried out to ensure 

transition states connected the appropriate local minima. Molecular orbital and natural 

bond orbital (NBO) analysis was calculated at the M06-2X/def2-TZVPP level of theory.  
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Generation of 2.12 (CCDC 1443358): A dichloromethane solution of 1.7-Ph (56.0 mg, 

0.130 mmol; 10 mL) was added drop wise via cannula transfer to a dichloromethane 

solution of degassed water (2.50 μL, 0.130 mmol; 1 mL) at 0 ˚C over a period of 15 

minutes. Upon completion of the addition, the blue solution became yellow. The cold bath 

was removed, the solution stirred an additional 15 min, and the solvent removed in vacuo 

to produce a yellow oil. A mixture of products in a 75:25 ratio was determined by 1H NMR 

and attempts to isolate pure 2.12 from this mixture were unsuccessful. Crystals of 2.12 for 

an X-ray diffraction study were grown by vapor diffusion of a diethyl ether solution of 2.12 

into hexanes. 

 

 
 
 

Isolation of 2.13 (CCDC 1443359): The appropriate amount of 1.7-Ph (42.0 mg, 0.094 

mmol; 3 mL) from the aforementioned mixture (determined by 1H NMR analysis) was 

added dropwise over 5 minutes at room temperature (23 ˚C) to a solution of the yellow oil 

(1 mL). Removal of the solvent in vacuo gave a white solid that was washed with pentane 

(5 × 1 mL) and dried in vacuo to give 2.13 as a white powder. Yield: 32.2 mg, 45%; m.p 

131-133 ˚C. Crystals for X-ray diffraction studies were grown by vapor diffusion of a 

diethyl ether solution of 2.13 into hexanes.  

1H NMR (600 MHz, CDCl3): δ 7.59 (d, J = 12 Hz, 4H, C6H5), 7.26-7.23 (m, 6H, C6H5), 

7.10-7.04 (m, 6H, C6H5), 7.00-6.93 (m, 19H, C6H5), 6.89-6.84 (m, 13H, C6H5), 6.47 (d, J 

= 6 Hz, 4H, C6H5); 

https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1443358&DatabaseToSearch=Published
https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=VAGVIL&DatabaseToSearch=Published
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13C{1H} NMR (151 MHz, CDCl3): δ 151.44, 147.03, 141.51, 139.37, 138.19, 137.23, 

135.05, 132.79, 131.23, 131.02, 130.97, 130.74, 130.46, 127.86, 127.64, 127.50, 127.44, 

126.88, 126.82, 126.52, 126.03;  

11B{1H} NMR (193 MHz, CDCl3): δ 45.7 (br);  

FT-IR (cm−1(ranked intensity)): 3024(14), 1595(11), 1488(7), 1435(8), 1393(1), 1235(9), 

1074(13), 1027(5), 913(6), 799(15), 752(2), 735(4), 624(12), 530(3), 500(10);  

HRMS (ESI): calcd. for C68H52B2O [M +Na]+: 929.4117; found 929.4167.  

 

 
 
 

Synthesis of 2.14 (CCDC 1443360): At room temperature (23 ˚C), a dichloromethane 

solution of 1-naphthalenethiol (75.0 μL, 0.545 mmol; 1 mL) was added dropwise to a 

dichloromethane solution of 1.7-Ph (242.0 mg, 0.545 mmol; 1 mL). The solution color 

changed from dark blue to yellow within 1 min. The solution was allowed to stir for 1 h, 

and the solvent removed in vacuo. The residue was washed with hexanes (3 × 3 mL) and 

dried in vacuo to furnish 2.14 as an off-white powder. Yield: 306.0 mg, 93%; m.p 138-140 

˚C. Crystals for X-ray diffraction studies were grown from a dichloromethane/toluene (1:3) 

solution.  

1H NMR (400 MHz, CDCl3, -30 ˚C): δ 7.77 (dd, J = 16, 8 Hz, 2H, C6H5), 7.64 (d, J = 8 

Hz, 2H, C6H5), 7.56 (d, J = 8 Hz, 2H, C6H5), 7.46-7.34 (m, 9H, C6H5), 7.10 (t, J = 8 Hz, 

1H, C6H5), 7.04-6.99 (m, 2H, C6H5), 6.94 (t, J = 8 Hz, 2H, C6H5), 6.87-6.81 (m, 5H, C6H5), 

https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1443360&DatabaseToSearch=Published
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6.72 (d, J = 8 Hz, 2H, C6H5), 6.67-6.59 (m, 3H, C6H5), 6.09 (d, J = 4 Hz, 2H, C6H5), 3.81 

(s, 1H, CH);  

13C{1H} NMR (100 MHz, CDCl3, -30 ˚C): δ 146.28, 144.51, 142.79, 142.54, 139.73, 

137.99, 137.73, 133.90, 133.73, 132.92, 131.43, 130.69, 129.94, 129.24, 128.76, 128.61, 

128.32, 128.26, 128.17, 128.08, 127.55, 127.35, 127.29, 126.63, 126.57, 126.48, 126.34, 

126.28, 125.97, 125.34, 124.48, 77.36, 67.74, 51.45;  

11B{1H} NMR (128 MHz, CDCl3, -30 ˚C): δ 76.0 (br);  

FT-IR (cm−1(ranked intensity)): 1595(15), 1486(6), 1438(13), 1165(8), 1089(9), 1022(7), 

971(14), 862(10), 794(4), 768(2), 693(1), 577(3), 538(5), 462(11), 420(12);  

HRMS (ESI): calcd. for C44H33BS [M+H]+: 605.2476; found 605.2403.  

 

 
 
 

Synthesis of 2.15 (CCDC 1443361): At room temperature (23 ˚C), a toluene solution of 

aniline (38.0 μL, 0.412 mmol; 1 mL) was added drop wise to a toluene solution of 1.7-Ph 

(183.0 mg, 0.412 mmol; 1 mL). The solution changed from dark blue to yellow within 1 

min. The solution was stirred for 10 min, and the solvent removed in vacuo. The solids 

were washed with hexanes (5 × 1 mL) and dried in vacuo to produce 2.15 as a white 

powder. Yield: 168.1 mg, 76%; m.p 139-141 ̊ C. Crystals for X-ray diffraction studies were 

grown by vapor diffusion of a dichloromethane solution of 2.15 into toluene.  

1H NMR (600 MHz, CDCl3): δ 7.70 (d, J = 6 Hz, 2H, C6H5), 7.38-7.31 (m, 3H, C6H5), 

7.16 (d, J = 6 Hz, 4H, C6H5), 7.10-7.08 (m, 4H, C6H5), 7.05-6.94 (m, 10H, C6H5), 6.86-

https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1443361&DatabaseToSearch=Published
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6.79 (m, 4H, C6H5), 6.65 (d, J = 12 Hz, 2H, C6H5), 6.59 (d, J = 6 Hz, 2H, C6H5), 6.44 (s, 

1H, NH);  

13C{1H} NMR (151 MHz, CDCl3): δ 151.23, 147.37, 143.34, 142.03, 140.22, 138.64, 

137.13, 133.23, 130.57, 130.39, 129.72, 128.91, 127.91, 127.70, 127.58, 127.51, 126.86, 

126.76, 126.51, 125.93, 122.73, 120.52;  

11B{1H} NMR (193 MHz, CDCl3): δ 41.4 (br);   

FT-IR (cm−1(ranked intensity)): 3388(13), 3017(12), 1593(8), 1486(4), 1422(5), 1318(6), 

1221(14), 1075(10), 1026(9), 916(11), 876(15), 752(2), 736(7), 690(1), 524(3);  

HRMS (ESI): calcd. for C40H32BN [M +Na]+: 561.2557; found 561.2500.  

 

 
 
 

Synthesis of 2.16 (CCDC 1443362): At room temperature (23 ˚C), a toluene solution of 

phenylphosphine (26.0 μL, 0.230 mmol; 1 mL) was added dropwise to a toluene solution 

of borole 1.7-Ph (104.0 mg, 0.230 mmol; 1 mL) resulting in a color change from dark blue 

to light green within 1 min accompanied by the formation of a precipitate. The solution 

was stirred for 5 min, and the solvent removed in vacuo. The yellow-green solid was 

washed with hexanes (5 × 1 mL) and dried in vacuo to give a yellow powder. Yield: 85.3 

mg, 66%; m.p 96-98˚C. Crystals for X-ray diffraction studies were grown by vapor 

diffusion of a dichloromethane solution of 2.16 into pentane.  

https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1443362&DatabaseToSearch=Published
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1H NMR (600 MHz, CDCl3): δ 7.56 (m, 1H, C6H5), 7.49-7.38 (m, 4H, C6H5), 7.23-7.13 

(m, 5H, C6H5), 7.00-6.92 (m, 12H, C6H5), 6.81 (d, J = 6 Hz, 4H, C6H5), 6.55 (d, J = 12 Hz, 

4H, C6H5), 5.77 (d, JPH = 366 Hz, 2H, PH);  

13C{1H} NMR (151 MHz, CDCl3) δ 153.16, 141.31, 139.53, 134.06, 133.97, 133.78, 

132.11, 130.16, 129.70, 128.97, 128.89, 127.71, 127.60, 127.39, 125.72, 125.64, 124.88; 

31P NMR (243 MHz, CDCl3): δ -47.1 (t, JPH = 366 Hz);  

31P{1H} NMR (243 MHz, CDCl3): δ -47.1 (s);  

11B{1H} NMR (193 MHz, CDCl3): δ -8.7 (br);  

FT-IR (cm−1(ranked intensity)): 1595(14), 1485(7), 1438(6), 1070(12), 1025(13), 866(9), 

796(8), 778(3), 730(2), 697(1), 580(10), 544(4), 502(15), 456(11), 414(5); 

HRMS (ESI): calcd. for C40H32BP [M +Na]+: 580.2330 found 580.2305. 
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CHAPTER THREE 
 

Ring Opening of Epoxides Induced by Pentaphenylborole 
 

This chapter published as: Yruegas, S.; Wilson, C.; Dutton, J. L.; Martin, C. D., 
Organometallics, 2017, 36, 2581-2587. 

 
 

3.1 Introduction 
 
 In addition to protodeborylation-type reactions, boroles (e.g. 1.7-Ph and 1.7-Mes) 

react with a variety of substrates to generate six- and seven-membered heterocycles via 

1,1- and 1,2-insertion reactions, respectively.18, 21, 30, 34-36, 38-39, 42, 53, 56-59, 116-118, 121, 148, 150-155 

Only two eight-membered heterocyclic motifs have been derived from this methodology, 

namely BONC5 and BN3C4 rings (Scheme 3.1).35, 117 The BONC5 cyclic systems (3.1-3.4) 

are derived from the reaction of a nitrone and the BN3C4 system (3.5) by reaction with 

trimethylsilyl-azide (TMS-azide). In both reactions, the nitrone and azide act as 1,3-dipolar 

molecules that effectively insert into the boron-carbon bond of the borole.35, 117 The 

mechanisms are initiated by forming a coordination complex in which the Lewis basic site 

of the substrate coordinates to the borole followed by attack of the adjacent nucleophilic 

B-C bond to insert atoms into the ring. The BONC5 species proved to be air stable whereas 

the BN3C4 system ultimately converts to the thermodynamic 1,2-azaborine product via the 

expulsion of N2 and loss of the coordinated borole. In this regard, epoxides can be classified 

as dipolar molecules where the highly strained three-membered ring makes the C-O bond 

poised to cleave and serve as a synthetic C2O building block.  
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Scheme 3.1. BONC5 and BN3C4 rings derived from reactions of boroles with nitrones and TMS-azide. 
 
 
 We envisioned the presence of the Lewis basic oxygen and adjacent electrophilic 

carbon atom may react with boroles similar to the aforementioned 1,3-dipoles to provide a 

facile route to eight-membered BOC6 rings. To our surprise, three discrete products were 

obtained depending on the substitution on the epoxide, none of which are polymeric 

species, the typical products observed upon the addition of a Lewis acid to epoxides.156-159  

 
3.2 Exploring the Ring Opening of Epoxides 

 
 The addition of a stoichiometric equivalent of isobutylene oxide to 

pentaphenylborole (1.7-Ph) in CH2Cl2 resulted in the immediate color change from the 

deep blue of borole to a pale yellow solution (Scheme 3.1). Removing the solvent in vacuo, 

redissolving the solids in CDCl3, and acquiring a 1H NMR spectrum revealed five singlets 

integrating in a 1:1:1:2:3 ratio (at 6.90, 4.88, 4.78, 4.32, and 1.63 ppm, respectively; Figure 

3.2) presumably originating from the eight protons of the epoxide, in addition to the 25 

aryl protons derived from the phenyl groups on pentaphenylborole.  
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Scheme 3.1. Reactions of 1.7-Ph with isobutylene oxide and 1,1-diphenylethylene oxide. 
 
 

 A single resonance was detected in the 11B{1H} NMR spectrum at 45.0 ppm, 

consistent with a three-coordinate species. An X-ray diffraction study on crystals grown 

via vapor diffusion of a CH2Cl2 solution into hexanes identified the compound as a ring 

opened borole with the pendent isobutylene oxide ring opened (3.6, Figure 3.1). An olefin 

on the pendent alkoxy group was assigned by the short C-C bond [C(6)-C(7) = 1.304 Å] 

and trigonal planar tertiary carbon center [∑anglesC(6) = 359.87(15)°]. The butadiene chain 

of the product adopts a twisted cis-conformation [dihedral angle C(1)–C(2)–C(3)–C(4) = 

42.04(6)°], consistent with previously reported ring opened borole species (2.8-10, 2.12 

and 2.15).  
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Figure 3.1. Solid-state structure of 3.6. Hydrogen atoms have been omitted for clarity (other than the 
hydrogen atom derived from the protodeborylation of the epoxide) and ellipsoids are depicted at the 50% 
level. Selected bond lengths (Å) and angles (°) for 3.6: B(1)–O(1) 1.360(2), B(1)–C(1) 1.585(3), C(1)–C(2) 
1.356(2), C(2)–C(3) 1.483(2), C(3)–C(4) 1.354(2), B(1)–C(51) 1.563(3), O(1)-C(5) 1.428(2), C(5)-C(6) 
1.495(3), C(6)-C(7) 1.304(3), C(6)-C(8) 1.501(3), O(1)–B(1)–C(1) 123.37(17), O(1)–B(1)–C(51) 
114.97(17), C(51)–B(1)–C(1) 121.53(16), C(1)–C(2)–C(3)–C(4) 42.04(6). 
 
 
 The five singlets in the 1H NMR spectrum could then be assigned accordingly. The 

downfield resonance at 6.90 ppm corresponds to the proton on the end of the butadiene 

chain, similar to reported ring opened borole species (2.8-10, 2.12 and 2.15).35, 45, 160 The 

two peaks at 4.88 and 4.78 ppm are assigned as the two diastereotopic vinyl protons, the 

singlet integrating to two at 4.32 ppm corresponds to the methylene group, and the peak at 

1.63 ppm is assigned to the methyl group (Figure 3.2). We postulated that the isobutylene 

oxide underwent a protodeborylation pathway due to the acidic -hydrogen atoms of the 

methyl groups to produce chain product 3.6. Although an interesting transformation, we 

anticipated that a substrate lacking -hydrogen atoms, specifically 1,1-diphenylethylene 

oxide, would circumvent a protodeborylation pathway and provide a feasible route to 

generate larger ring systems.  
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Figure 3.2. 1H NMR spectrum of 3.6 in CDCl3 with diagnostic peaks assigned. 
 
 
 The 1:1 stoichiometric reaction of 1,1-diphenylethylene oxide and 1.7-Ph in 

dichloromethane immediately produced a colorless solution. Removing the solvent in 

vacuo and acquiring a 11B{1H} NMR spectrum of the redissolved solids in CDCl3 revealed 

a signal at 46.3 ppm indicating a three-coordinate boron-containing product. Growing 

crystals for an X-ray diffraction study via diffusion of a CH2Cl2 into toluene 

unambiguously identified the product as an eight-membered BOC6 heterocycle (3.7, Figure 

3.3), resulting from the incorporation of the C2O fragment of the epoxide into the borole. 

The methylene CH2 is bound to the oxygen atom indicating C-O cleavage occurred 

selectively at the carbon with two phenyl groups. The eight-membered ring adopts a 

pseudo-boat conformation analogous to the systems derived from the nitrone and azide 

(3.1-3.5).35, 117 The incorporated butadiene backbone has alternating double and single 

bond lengths [C(3)-C(4) = 1.349(5) Å, C(4)-C(5) = 1.511(5) Å, and C(5)-C(6) = 1.338(5) 

Å]. 
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Figure 3.3. Solid-state structure of 3.7 (left) and view of the central BOC6 ring (right). Hydrogen atoms have 
been omitted for clarity and ellipsoids are depicted at the 50% level. Selected bond lengths (Å) and angles 
(°) for 3.7: B(1)-O(1) 1.375(5), O(1)–C(1) 1.435(4), C(1)–C(2) 1.551(5), C(2)–C(3) 1.569(5), C(3)–C(4) 
1.349(5), C(4)–C(5) 1.511(5), C(5)-C(6) 1.338(5), C(6)–B(1) 1.577(5), B(1)-C(51) 1.552(5), B(1)–O(1)–
C(1) 120.8(3), O(1)–C(1)–C(2) 113.7(3), C(1)–C(2)–C(3) 112.7(3), C(2)–C(3)–C(4) 128.3(3), C(4)–C(5)–
C(6) 121.6(3), C(5)–C(6)–B(1) 118.3(3), C(6)–B(1)–O(1) 118.9(3), C(6)-B(1)-C(51) 124.0(3), O(1)-B(1)-
C(51) 117.0(3). 
 
 
 Cyclohexene oxide differs from the other two epoxides by the fact that the fused 

cyclohexyl ring provides additional strain on the epoxide, making it more susceptible to 

polymerization. While it has -hydrogen atoms, they are on rigid carbon centers in 

comparison to the free rotating methyl groups of isobutylene oxide. Reasonable expected 

outcomes with 1.7-Ph and cyclohexene oxide were ring expansion, polymerization, or 

protodeborylation reactions. Interestingly, monitoring the 1:1 reaction with cyclohexene 

oxide with pentaphenylborole (1.7-Ph) in CDCl3 by 1H NMR spectroscopy showed that 

only half of the borole was consumed, while all of the epoxide reacted (Scheme 3.2). 

Doubling the stoichiometry of the cyclohexene oxide resulted in the consumption of both 

reagents to produce a yellow solution. Analysis by 1H NMR revealed aryl protons 

integrating in a ratio of 25 to 16 with respect to a series of multiplets ranging from 2.06-

0.72 ppm attributed to the cyclohexyl protons in addition to four multiplets between 5.00-

3.00 ppm each integrating to one, likely derived from the protons on the -carbon atoms 
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of the epoxide. Collectively, this data indicated that a single product was formed, in which 

two epoxides were incorporated in a non-symmetric manner. 

 

 
 

Scheme 3.2. Reactions of pentaphenylborole with cyclohexene oxide. 
 
 
 Crystals for an X-ray diffraction study were grown via vapor diffusion of a 

dichloromethane solution into toluene that revealed two epoxides inserted into the borole 

to form an eleven-membered BO2C8 ring (3.8, Scheme 3.2). Both C2O linkages were 

inserted in the same B-C bond with the substituents on the cyclohexyl groups in an 

anti-orientation. Only a single diastereomer was observed and given the centrosymmetric 

space group (P-1), the other enantiomer is present in an equivalent ratio. This is also in 

agreement with the 1H and 13C NMR data, which both indicate a single diastereomer. 

Compound 3.8 represents the first structurally characterized eleven-membered 

boron-containing ring and only the second of such reported (Figure 3.4). The other example 

is a saturated BC10 system reported by Brown and co-workers in 1988 through five 

successive carbene insertions into a saturated BC5 ring.161  
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Figure 3.4. Solid-state structure of 3.8. Hydrogen atoms have been omitted for clarity and ellipsoids are 
depicted at the 50% level. Selected bond lengths (Å) and angles (°) for 3.8: B(1)-O(1) 1.364(2), O(1)–C(1) 
1.441(2), C(1)–C(2) 1.528(3), C(2)-O(2) 1.431(2), O(2)–C(3) 1.441(2), C(3)–C(4) 1.537(2), C(4)–C(5) 
1.541(2), C(5)-C(6) 1.353(2), C(6)–C(7) 1.512(2), C(7)–C(8) 1.353(2), C(8)–B(1) 1.588(3), B(1)-C(51) 
1.558(3), B(1)–O(1)–C(1) 124.23(14), O(1)–C(1)–C(2) 108.03(15), C(1)–C(2)–O(2) 106.12(15), C(2)–
O(2)–C(3) 119.74(14), O(2)–C(3)–C(4) 116.65(14), C(3)–C(4)–C(5) 118.40(14), C(4)–C(5)–C(6) 
122.27(15), C(5)-C(6)-C(7) 122.82(16), C(6)-C(7)-C(8) 119.38(15), C(7)-C(8)-B(1) 124.66(15), C(8)-B(1)-
O(1) 122.70(17), C(8)-B(1)-C(51) 122.48(15), O(1)-B(1)-C(51) 114.56(16). 
 
 

3.3 Computational DFT Studies 
 
 The drastic difference in the products of the three reactions was surprising and 

prompted investigations into the mechanism. The reaction stoichiometry for all three 

epoxides were conducted in 1:2, 1:1, and 2:1 ratios and exclusively produced the three 

aforementioned products, confirming that the reaction outcome is independent of 

stoichiometry. Although three different products were obtained, the mechanisms are all 

believed to proceed by the initial coordination of the oxygen of the epoxide to the boron 

center to form adduct intermediates. Computational thermodynamic studies for all three 

reactions indicate that the adduct is higher in free energy with G values of +44, +65 and 

+27 kJ/mol for adduct formation for the dimethyl (Int3.1), diphenyl (Int3.2), and 

cyclohexyl (Int3.3) epoxides with borole, respectively (Scheme 3.3).  
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Scheme 3.3. Proposed mechanisms of the reactions of boroles and epoxides with corresponding calculated free energies (G) underneath intermediates and 
final products with each reaction relative to the energies of 1.7-Ph and the free epoxide being 0 kJ/mol. 
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 The modest positive values are accessible for the reactions to proceed at room 

temperature as observed and consistent with the adducts not being isolable or observable 

species. For isobutylene oxide (Int3.1), the ring opened product formed by methyl 

deprotonation is slightly thermodynamically favored over the insertion product analogous 

to 3.7 by 3 kJ/mol, a negligible energetic difference, with an overall calculated G for the 

reaction of -125 kJ/mol.162 With respect to the 1,1-diphenylethylene oxide adduct (Int3.2), 

C-O bond cleavage at the carbon with two phenyl groups implies that the epoxide likely 

ring opens to form a tertiary carbocation that is poised for attack from the B-C bond 

(Int3.4) which lies 79 kJ/mol higher in energy than the initial reactants. This results in a 

ring expansion to incorporate the epoxide and form the BOC6 ring (Int3.4 to 3.7), which 

has a calculated G value of -83 kJ/mol from the starting materials.163 The analogous 

carbocation for the dimethyl epoxide is much higher in energy at 118 kJ/mol, which is 

likely the root of the divergent reactivity for the two epoxides. 

 The mechanism for the cyclohexene oxide reaction differs in the fact that a second 

epoxide attacks the carbon of the coordinated epoxide of the adduct Int3.3 and opens the 

coordinated epoxide to form Int3.5.164 The B-C bond of the borole then attacks the pendent 

epoxide to furnish the 11-membered heterocycle product 3.8. The observed result is the 

thermodynamic product (3.8, -157 kJ/mol) with respect to the other possibilities of ring 

opening via abstraction of the -hydrogen analogous to 3.6 (-137 kJ/mol) or single 

insertion to generate an eight-membered ring product akin to 3.7 (-136 kJ/mol).  

 The reactions of pentaphenylborole with epoxides led to three diverse products 

dependent on the substitution on the epoxide. The reaction of isobutylene oxide resulted in 

the protodeborylation of the methyl group to generate the ring opened product whereas the 
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reaction with 1,1-diphenylethylene oxide generated the eight-membered ring that was 

initially expected. In the more constrained cyclohexene oxide, the -hydrogen atoms were 

not deprotonated, but rather a second equivalent of epoxide reacted resulting in the 

insertion of two C2O fragments into the boracycle to produce a rare 11-membered 

boron-containing ring. The postulated mechanisms are in agreement with thermodynamic 

calculations on the systems. These findings demonstrate that boroles have the potential to 

be effective reagents, in combination with the appropriate substrates, to controllably 

generate large ring systems.  

 
3.4 Experimental Details 

 
Isobutylene oxide and 1,1-diphenylethylene oxide were purchased from TCI America and 

Matrix Scientific, respectively, and used as received. Cyclohexene oxide was purchased 

from Sigma Aldrich and dried by storing over 4 Å molecular sieves.  

 
Computational Methods. All calculations were carried out within Gaussian 09.145 

Geometries and single-point energies of all structures were optimized using the B3LYP165 

density functional theory (DFT) with the 6-31+G(d) basis set.147-148  

 

 
 
 

Synthesis of 3.6 (CCDC 1567465): At room temperature (23 ˚C), a solution of isobutylene 

oxide in CH2Cl2 (14.0 mg, 0.202 mmol) was added to a solution of 1.7-Ph (90.0 mg, 0.202 

https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1567465&DatabaseToSearch=Published
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mmol) in CH2Cl2 resulting in a color change from deep blue to pale yellow. The solution 

was allowed to stir for 1 h and the solvent removed in vacuo. The residue was washed with 

hexanes (3 x 3 mL) and dried in vacuo to give 3.6 as an off-white powder. Yield: 95.0 mg, 

91%; m.p 110-111 ˚C. Single crystals for X-ray diffraction studies were grown from a 

CH2Cl2 solution of 3.6 by vapor diffusion into hexanes.  

1H NMR (400 MHz, CDCl3): δ 7.89 (d, J = 8.0 Hz, 2H), 7.38 (t, J = 8.0 Hz, 1H), 7.30 (t, J 

= 8.0 Hz, 2H), 7.13-6.97 (m, 13H), 6.90 (m, 5H), 6.83 (s, 1H), 6.61 (d, J = 8.0 Hz, 2H), 

4.88 (s, 1H), 4.78 (s, 1H), 4.32 (s, 2H), 1.63 (s, 3H);  

13C{1H} NMR (151 MHz, CDCl3): δ 152.46 (Cq), 147.10 (Cq), 146.52 (CH), 145.10 (CH), 

142.71  (Cq), 142.32 (CH), 141.98 (Cq), 139.56 (Cq), 138.39 (Cq), 136.99 (Cq), 134.98 

(CH), 134.37  (CH), 133.14 (CH), 131.70 (CH), 131.42 (CH), 131.22 (CH), 130.92 (CH), 

130.84 (CH), 130.67 (CH), 130.42 (CH), 130.19 (CH), 129.94 (CH), 128.25 (CH), 127.72 

(CH), 127.66 (CH), 127.56 (CH), 127.09 (CH), 126.96 (CH), 126.76 (CH), 126.19 (CH), 

110.85 (CH2), 109.96 (CH), 71.14 (CH2), 67.06 (CH), 19.38 (CH3), peaks assigned via 

13C{1H} DEPT experiments;  

11B{1H} NMR (193 MHz, CDCl3): δ 45.0 (br);  

FT-IR (cm−1(ranked intensity)): 3022(14), 1596(10), 1488(12), 1435(5), 1328(1), 1243(6), 

1074(7), 1028(11), 892(3), 810(13), 767(15), 750(2), 735(8), 604(9), 528(4);  

HRMS (ESI): calcd. for C38H33BONa [M+Na]+: 539.2523; found 539.2530;  

Elemental Analysis: calculated for C38H33BO: C, 88.37; H, 6.44; Found: C, 84.41; H, 6.30.  
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Synthesis of 3.7 (CCDC 1567466): At room temperature (23 ˚C), a solution of 

1,1-diphenylethylene oxide in CH2Cl2 (36.0 mg, 0.185 mmol) was added to a solution of 

1.7-Ph (82.0 mg, 0.185 mmol) in CH2Cl2 resulting in a color change from deep blue to 

yellow. The solution was allowed to stir for 1 h and the solvent removed in vacuo. The 

residue was washed with hexanes (3 x 3 mL) and dried in vacuo to give 3.7 as a white 

powder. Purity and identity of 3.7 has been verified by 1H and 13C{1H} NMR spectroscopy. 

Yield: 86.2 mg, 73%; m.p. 141-142 ˚C. Single crystals for X-ray diffraction studies were 

grown from a CH2Cl2 solution of 3.7 by vapor diffusion into toluene.  

1H NMR (600 MHz, CDCl3): δ 8.07 (d, 2H), 7.54-7.45 (m, 5H), 7.20-7.02 (m, 9H), 6.97-

6.87 (m, 10H), 6.74-6.68 (m, 3H), 6.64 (dt, J = 6.0, 18.0 Hz, 2H) 6.54 (t, J = 6.0 Hz, 1H), 

6.38 (d, J = 6.0 Hz, 1H), 6.05 (d, J = 6.0 Hz, 2H), 5.77 (d, J = 6.0 Hz, 1H), 5.48 (d, J = 6.0 

Hz, 1H);  

13C{1H} NMR (151 MHz, CDCl3): δ 151.24 (Cq), 148.67 (Cq), 146.28 (Cq), 145.67 (Cq), 

143.05 (Cq), 142.43 (Cq), 140.89 (Cq), 139.96 (Cq), 138.78 (Cq), 136.31 (CH), 135.96 (CH), 

132.42 (CH), 131.92 (CH), 131.25 (CH), 130.84 (CH), 130.08 (CH), 129.62 (CH), 129.37 

(CH), 128.38 (CH), 128.31 (CH), 128.16 (CH), 127.48 (CH), 127.20 (CH), 126.88 (CH), 

126.36 (CH), 126.24 (CH), 126.19 (CH), 125.83 (CH), 125.49 (CH), 124.86 (CH), 81.15 

(CH2), 62.23 (Cq), peaks assigned via 13C{1H} DEPT experiments;  

11B{1H} NMR (128 MHz, CDCl3): δ 46.3 (br);  

https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1567466&DatabaseToSearch=Published


 51 

FT-IR (cm−1(ranked intensity)): 3055(15), 1597(9), 1488(6), 1438(7), 1332(13), 1269(1), 

1180(14), 1074(11), 1030(4), 760(3), 736(10), 637(5), 582(8), 555(2), 516(12);  

HRMS (ESI): calcd. for C48H37BONa [M+Na]+: 663.2838; found 663.2831.  

 

 
 
 

Synthesis of 3.8 (CCDC 1567467): At room temperature (23 ̊ C), a solution of cyclohexene 

oxide in CH2Cl2 (80.0 mg, 0.820 mmol) was added to a solution of 1.7-Ph (182.0 mg, 0.410 

mmol) in CH2Cl2 resulting in a color change from deep blue to orange. The solution was 

allowed to stir for 1 h and the solvent removed in vacuo. The residue was washed with 

hexanes (3 x 3 mL) and dried in vacuo to give 3.8 as a yellow powder. Purity and identity 

of 3.8 has been verified by 1H and 13C{1H} NMR spectroscopy. Yield: 159.0 mg, 61%; 

m.p. 206-207 ˚C. Single crystals for X-ray diffraction studies were grown from a CH2Cl2 

solution of 3.8 by vapor diffusion into toluene.  

1H NMR (400 MHz, CDCl3): δ 7.32 (d, J = 8.0 Hz, 2H), 7.20-6.98 (m, 13H), 6.92 (d, J = 

8.0 Hz, 5H), 6.81 (d, J = 4.0 Hz, 2H), 6.64 (t, J = 8 Hz, 2H), 6.54 (t, J = 8.0 Hz, 1H), 4.73 

(m, 2H), 3.87 (m, 1H), 3.21 (t, J = 8.0 Hz, 1H), 2.06 (m, 2H), 1.88-1.63 (m, 5H), 1.48-1.40 

(m, 3H), 1.31-1.26 (m, 2H), 1.19-1.13 (m, 1H), 0.97-0.94 (m, 1H), 0.81-0.72 (m, 2H); 

13C{1H} NMR (151 MHz, CDCl3): δ 150.24 (Cq), 144.96 (Cq), 144.93 (Cq), 143.02 (Cq), 

142.85 (Cq), 142.39 (Cq), 142.18 (Cq), 140.85 (Cq), 134.68 (CH), 131.05 (CH), 130.98 

(CH), 129.87 (CH), 129.07 (CH), 127.99 (CH), 127.79 (CH), 127.45 (CH), 126.92 (CH), 

https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1567467&DatabaseToSearch=Published
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126.72 (CH), 126.60 (CH), 126.30 (CH), 125.58 (CH), 125.56 (CH), 78.18 (CH), 75.07 

(CH), 74.57 (CH), 49.20 (CH), 34.98 (CH2), 30.60 (CH2), 30.48 (CH2), 29.20 (CH2), 24.99 

(CH2), 24.19 (CH2), 22.06 (CH2), 21.94 (CH2), peaks assigned via 13C{1H} DEPT 

experiments;  

11B{1H} NMR (128 MHz, CDCl3): δ 43.5 (br);  

FT-IR (cm−1(ranked intensity)): 2930(3), 1596(12), 1487(7), 1437(6), 1277(4), 1158(9), 

1071(1), 1053(13), 1022(14), 750(11), 737(8), 656(2), 546(5), 529(10), 470(15);  

HRMS (ESI): calcd. for C46H45BO2Na [M+Na]+: 663.3413; found 663.3417.  
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CHAPTER FOUR 
 

Oxygen and Sulfur-Atom Insertion into Boroles as a Route  
to 1,2-Oxaborines and 1,2-Thiaborines 

 
This chapter published as: Yruegas, S.; Patterson, D. C.; Martin, C. D., Chem. Commun., 
2016, 52, 6658-6661 and Yruegas, S.; Martin, C. D., Chem. –Eur. J., 2016, 22, 18358-

18361. 
 
 

4.1 Introduction 
 
 Over the last decade, significant effort has been put forth toward the development 

of hybrid organic/inorganic analogues of benzene.1, 13, 166-168 In particular, the azaborine 

series has garnered interest due to their potential in electronic materials and 

pharmaceuticals.15, 168-181 Out of the three isomers, 1,2-azaborine (4.1, Figure 4.1) is the 

most stable, and the chemistry of this species is the most advanced.155, 182-186  Despite the 

blossoming research of 1,2-azaborines, the boron-oxygen and boron-sulfur analogues 1,2-

oxaborine (4.2) and 1,2-thiaborine (4.3), have been in comparison, largely neglected.  

 Letzinger and Nazy proposed the boron-oxygen containing phenanthrene analogue 

(4.4) in 1959, suggesting it as a possible product from the isomerization of 2,2’-

tolandiboronic acid.187 Later that year, Dewar and coworkers conclusively reported the 

synthesis of the phenanthrene analogue as well as the bicyclic naphthalene derivative (4.5). 

188-189 The polycyclic systems containing the unsaturated 1,2-BOC4 ring are much more 

developed than species lacking fused aryl groups.44, 190-198 In fact, there are only three 

discrete 1,2-oxaborine systems known in the literature. The first 1,2-oxaborine 4.6 was 

synthesized in 1973 by the condensation of an alkyl phenyl ketone and a borane.199 Ashe 

and coworkers reported the synthesis of 4.7 in 2007 via a carbenoid ring expansion route 
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and reported the only X-ray crystallographic characterization of a 1,2-oxaborine that 

featured chromium bound to the B-phenyl group of 4.7 (4.8).200  

 

 
 

Figure 4.1. Unsaturated B–N, B–O, and B–S containing heteroarenes. 
 
 
 For sulfur, the reported derivatives are limited to two fused polycyclic systems, 

specifically phenanthrene analogues (4.9 and 4.10) and only a singular example of a 1,2-

thiaborine exists, reported by Ashe (4.11).135, 191, 201 The synthetic methodology to prepare 

4.11 involved a carbenoid insertion into a 1,2-thiaborole generating the 1,2-thiaborine in 

relatively low yields.135 Notably, this complex features a diisopropylamino group on the 

boron atom and exhibits a short B-N bond of 1.407 Å, indicative of a significant B-N π-

interaction that inevitably diminishes endocyclic participation of the boron p-orbital, 

hence, disrupting the aromaticity. Disorder in the solid-state structure, specifically with the 
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carbon and sulfur atoms adjacent to boron, prevented an accurate analysis of the endocyclic 

metrical parameters. 

 As described in Chapter Three, boroles are effective reagents for the generation of 

six-, seven-, and eight-membered unsaturated heterocycles via ring expansion reactions. 

Given this, boroles could be a potential precursor to 1,2-oxaborine and 1,2-thiaborine 

species by the simple reaction with an oxygen or sulfur atom source.  

 
4.2 Oxygen Insertion into Boroles 

 
 An early investigation by Eisch, treating pentaphenylborole with O2 and subsequent 

work up by column chromatography, led to the isolation of tetraphenylfuran.27 In 2015, 

upon analysis of an aerated solution of a borole, Marder and coworkers reported the 

observation of a peak by GC-MS corresponding to an ion with the mass of borole and an 

oxygen atom [M + 16] and indicated that it “may suggest the insertion of one oxygen atom 

into the borole.”116 These findings prompted us to investigate the chemistry of boroles with 

oxygen atom sources as a potential route to 1,2-oxaborines. To re-examine oxygen gas as 

a reagent, O2 was bubbled through a CDCl3 solution of pentaphenylborole (1.7-Ph), 

resulting in the change of the blue solution to orange. Acquiring in situ 11B{1H} and 1H 

NMR spectra revealed an indiscernible complex mixture.  
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Scheme 4.1. Reaction of boroles with N-methylmorpholine-N-oxide (NMMO) and proposed intermediate 
Int4.1. 
 
 
 To explore an alternative oxygen atom source, the 1:1 stoichiometric reaction of 

pentaphenylborole (1.7-Ph) with N-methylmorpholine-N-oxide (NMMO) was 

investigated. The room temperature reaction (23 ˚C) in CDCl3 resulted in the rapid 

disappearance of the blue color of 1.7-Ph to a bright yellow solution (Scheme 4.1). 

Monitoring the reaction via in situ 11B{1H} NMR spectroscopy after 1 minute revealed one 

resonance: a sharp singlet at 6.4 ppm indicative of a four-coordinate boron center (Figure 

4.2). After 30 min, the resonance in the four-coordinate region disappeared, converging to 

a broad peak at 38.4 ppm in the three-coordinate region. Acquiring an 1H NMR spectrum 

revealed free N-methylmorpholine, as well as a series of aryl resonances. Scaling up the 

reaction in dichloromethane, removal of the volatiles in vacuo, and recrystallization from 

a 3:1 chloroform/n-pentane solution gave the boron-containing species in 66% yield. An 

X-ray diffraction study on the crystals determined the identity as the desired pentaphenyl-

1,2-oxaborine (4.12, Scheme 4.1).  
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Figure 4.2. Stacked 11B{1H} NMR spectra of the reaction of 1.7-Ph with N-methylmorpholine-N-oxide to 
give 4.12. 
 
 
 Given that 1,2-azaborines bearing phenyl groups on boron and the ring carbon 

atoms have been found to be highly disordered,183 we believed that this was also likely in 

4.12 with the same pentaphenyl substitution. To circumvent this, the analogous species 

with a biphenyl group on the boron of the borole (1.7-PhC6H4) was reacted with NMMO 

to produce a species with a similar 11B{1H} NMR spectroscopic signature (δ = 38.8 cf. 1.7-

Ph δ = 38.4), and the B-biphenyl complex 4.13 was isolated in 56% yield. 

 The biphenyl group allowed us to confidently distinguish the boron from the carbon 

atoms and analyze the metrical parameters (Figure 4.3). The central BOC4 ring in 4.13 is 

highly planar with a maximum deviation from planarity of 0.029 Å. The boron and 

endocyclic carbon atoms of the BOC4 ring are all trigonal planar [∑angles: B1 = 359.9(2)˚, 

C1 = 360.0(2)˚, C2 = 360.0(2)˚, C3 = 360.0(2)˚, and C4 = 360.0(2)˚], and the oxygen atom 

is more obtuse than a typical two coordinate oxygen [124.47(12)˚]. The endocyclic carbon 

bonds lie between single and double bonds, but do exhibit some diene character [C(1)-C(2) 

T = 0 min

T = 1 min

T = 10 min

T = 25 min

T = 30 min

T = 5 min

T = 20 min
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1.379(2) Å, C(2)-C(3) 1.450(2) Å, and C(3)-C(4) 1.368(2) Å], slightly more than the extent 

of reported 1,2-azaborines.155, 166, 183 The B-O bond length [1.380(2) Å] is comparable to 

reported B-O lengths of oxoboranes [cf. 1.351(7) Å] which indicates delocalization of the 

π-electrons between the boron and oxygen.202-203 It is also noteworthy that the endocyclic 

B-C bond [1.527(2) Å] is slightly shorter than the exocyclic bond [1.568(2) Å].  

 The formation of 1,2-oxaborines 4.12 and 4.13 is believed to occur via a mechanism 

proceeding by the coordination of NMMO to the boron center to generate adduct 

intermediate Int4.1, which corroborates the observed four-coordinate boron peak by in situ 

11B{1H} NMR spectroscopy. The endocyclic B-C bond is rendered nucleophilic upon 

coordination and can then attack the oxygen atom to undergo a 1,1-insertion generating the 

1,2-oxaborines while liberating N-methylmorpholine as the by-product.  

 

 
 

Figure 4.3. Solid-state structure of 4.13 (left). Thermal ellipsoids are drawn at the 50% probability level and 
hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (˚): B(1)–O(1) 1.380(2), 
B(1)–C(1) 1.527(2), C(1)–C(2) 1.379(2), C(2)–C(3) 1.450(2), C(3)–C(4) 1.368(2), C(4)–O(1) 1.356(17), 
B(1)–C(51) 1.568(2), O(1)–B(1)–C(51) 113.00(13), O(1)–B(1)–C(1) 116.79(14), C(4)–O(1)–B(1) 
124.47(12), C(51)–B(1)–C(1) 130.11(14), C(4)–C(3)–C(2) 119.72(13), C(1)–C(2)–C(3) 121.43(13), C(2)–
C(1)–B(1) 116.76(13). Simplified view along the BOC4 plane of 4.13 (right, carbon atoms from aryl groups 
except ipso carbons have been removed). 
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 Nucleus independent chemical shifts (NICS), one of the prime computational 

measures of aromaticity, have not been reported for 1,2-oxaborines. To gauge the aromatic 

nature of 1,2-oxaborines, NICS values of 4.12, 4.13, and related boron heterocycles were 

calculated from optimized geometries using the Gaussian 09 suite [GIAO HSE06/6-

311+G(d,p) basis set, Table 4.1]. The diatropic ring currents were determined by a series 

of ghost atoms placed in the center [NICS(0)] and 1 Å above [NICS(1)zz] the ring. The 

parent 1,2-oxaborine 4.2 has only slightly diminished ring current in comparison to its 1,2-

azaborine counterpart 4.1 [4.2: NICS(0) -3.08, NICS(1)zz = -16.60 c.f. 4.1: NICS(0) -5.15, 

NICS(1)zz = -20.15], both of which are less than benzene [NICS(0) -8.18, NICS(1)zz = -

29.68].  

 The incorporation of a phenyl group on boron shows a decrease in the NICS value, 

and a reduction is also observed upon adding phenyl groups to the four carbon atoms. 

Hexaphenylbenzene and hexaphenyl-1,2-azaborine show this effect as well, but all species 

still retain appreciable aromatic character. The NICS values are virtually identical for 4.12 

and 4.13, indicating changing the biphenyl for phenyl group has minimal effect. The NICS 

calculations, coupled with the planarity of the BOC4 ring and delocalized bond lengths, 

indicate that 1,2-oxaborines feature a moderate degree of aromaticity.  

 The UV-Vis absorption spectra of 4.12 and 4.13 both have lowest-energy 

absorption maxima at λ = 333 nm (4.12: ε = 12,000 Lmol−1cm−1, 4.13: ε = 11,000 

Lmol−1cm−1). In comparison, this value is significantly red-shifted with respect to 

hexaphenylbenzene (lowest-energy maximum at λ = 244 nm) and slightly red-shifted from 

hexaphenyl-1,2-azaborine (lowest-energy absorption maxima λ = 315 nm).183 
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Table 4.1. Nuclear Independent Chemical Shifts (NICS) of 4.12, 4.13, and Related Cyclic 
Systems (in ppm) 
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4.3 Exploring Sulfur Atom Insertion into Boroles 
 
 Elemental sulfur, commercially available as the cyclic octatomic allotrope S8, is 

known to act as a sulfur atom source for the synthesis of heterocyclic systems.204-208 We 

believed this could be exploited harmoniously with the aforementioned borole insertion 

chemistry and conveniently be used to access 1,2-thiaborine species in a single step. 

 The reaction of pentaphenylborole 1.7-Ph with excess sulfur at 65 ˚C in benzene 

transformed from a blue suspension of borole into a yellow solution after 16 h (Scheme 

3.2). Acquiring an in situ 11B{1H} NMR spectrum of the yellow solution revealed only a 

single resonance at 50.8 ppm, shifted upfield from pentaphenylborole (δ = 65.0). 

Subsequent work-up allowed the isolation of the product in 44% yield of which the identity 

was determined to be 1,2-thiaborine 4.14 by an X-ray diffraction study. Interestingly, the 

11B{1H} NMR signal is significantly different than the documented shift of the 

diisopropylamino species 4.11 (35.8 ppm)135 suggesting a different electronic structure. 

With B-phenyl and C-phenyl adjacent to sulfur in 4.14, it could not be determined if 

disorder was present in the solid-state structure, therefore the B-biphenyl borole 1.7-

PhC6H4 was reacted with S8 to prepare a derivative that would differentiate these two 

positions and permit the accurate analysis of the bonding.  

 

 
 

Scheme 4.2. Reaction of boroles 1.7-Ph and 1.7-PhC6H4 with elemental sulfur to generate 1,2‐thiaborines 
4.14 and 4.15.  
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 The analogous reaction of elemental sulfur with 1.7-PhC6H4 readily produced 

1,2-thiaborine 4.15 with a similar 11B{1H} NMR spectroscopic signature of 51.1 ppm in a 

42% yield (Scheme 4.2). An X-ray diffraction study on crystals grown allowed the 

assertion of the metrical parameters of 1,2-thiaborine species 4.15 (Figure 4.4). A key 

structural feature of 4.15 is the highly planar central BSC4 ring with a maximum deviation 

from planarity of 0.049 Å. The boron and endocyclic carbon atoms are all within 

experimental error of trigonal planar geometries [∑angles: B1 = 359.9(7)˚, C1 = 360.0(8)˚, 

C2 = 359.8(2)˚, C3 = 359.7(7)˚, and C4 = 360.0(7)˚]. The sulfur atom displays a more 

obtuse bond angle than (CH3)2S [106.55(7)˚ c.f. 99.1˚].209 The C-C bonds within the BSC4 

ring are all intermediary between single and double bonds but contain slight diene character 

[C(1)–C(2) 1.383(2) Å, C(2)–C(3) 1.458(2) Å, and C(3)–C(4) 1.367(2) Å] similar to the 

extent observed in 1,2-azaborines, 1,2-oxaborines, and 1,2-phosphaborines.34, 38, 152 The B-

S bond length is consistent with delocalization of a lone-pair on sulfur to the p-orbital on 

boron, analogous to diorganothiaboranes [1.7934(17) Å c.f. Mes2B(SCH3) 1.787(6) Å].134  

 

 
 

Figure 4.4. Solid‐state structure of 4.15 (left). Thermal ellipsoids are depicted at the 50 % probability level 
and hydrogen atoms have been omitted for clarity. Selected bond lengths [Å] and angles [°]: B(1)−S(1) 
1.7934(17), B(1)−C(1) 1.525(2), C(1)−C(2) 1.383(2), C(2)−C(3) 1.458(2), C(3)−C(4) 1.367(2), C(4)−S(1) 
1.7325(14), S(1)‐B(1)‐C(1) 117.79(11), C(4)‐S(1)‐B(1) 106.55(7), C(51)‐B(1)‐C(1) 128.25(13), C(4)‐C(3)‐
C(2) 123.92(13), C(1)‐C(2)‐C(3) 125.02(13), C(2)‐C(1)‐B(1) 122.51(13). Simplified view of the central 
BSC4 ring of 4.15 (right, carbon atoms from aryl groups except ipso carbons have been removed). 
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 In order to compare 4.11 with 4.14 and 4.15, optimized geometries for the three 

systems were computed using density functional theory (DFT) with the 

exchange-correlation approximation HSE06 hybrid functional and the Pople basis 

6-311+G(d,p).145 The calculated bond lengths for 4.15 are in agreement with the X-ray 

structural data (Table 4.2). Unsurprisingly, 4.14 and 4.15 are virtually identical with the 

switch from a phenyl to a biphenyl group on boron leaving the parameters unaffected. The 

most striking difference in the parameters is the lengthened B-S bond for 4.11 (4.11 = 

1.8552 Å c.f. 4.14 = 1.8006 Å and 4.15 = 1.8013 Å). This feature coupled with the short 

B-N bond indicates the B-S delocalization is significantly lessened in 4.11 in comparison 

to 4.14 and 4.15 as well as implies a greater degree of aromaticity in 4.14 and 4.15.  

 
Table 4.2. Computed and Experimental Bond Lengths [Å] of 1,2‐Thiaborines 

 

Entry        4.11a 
   Computed 

4.14a 

Computed 

4.15 

    Experimental 

4.15 

B(1)-S(1) 1.8552 1.8006 1.8013 1.7934 
B(1)-C(1) 1.5389 1.5249 1.5254 1.5250 
C(1)-C(2) 1.3587 1.3849 1.3848 1.3830 
C(2)-C(3) 1.4317 1.4508 1.4509 1.4580 
C(3)-C(4) 1.3485 1.3727 1.3726 1.3670 
C(4)-S(1) 1.7277 1.7326 1.7325 1.7325 
B(1)-N(1) 1.4191 N/A N/A N/A 

                aDue to the inherent disorder of both 3 and 6, only their computational bond lengths are shown. 
 
 
 The UV-Vis absorbance spectra of 1,2-thiaborines 4.14 and 4.15 have lowest-

energy maxima at λ = 340 nm and λ = 345 nm, respectively, which is substantially 

red-shifted in relation to hexaphenylbenzene (lowest-energy maximum at λ = 244 nm).38 

Fluorescence studies have not been reported previously for the 1,2-thiaborine species. 

Fluorescence maxima for the 1,2-thiaborines species were determined at 392 nm and 400 

nm for 4.14 and 4.15, respectively with corresponding Stokes’ shifts of 52 nm and 55 nm. 
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The calculated HOMO/LUMO gaps for hexaphenylbenzene and the 1,2-thiaborine species 

are consistent with the observed red shift in the UV spectra [6.29 eV c.f. 4.60 eV].38  

 To assess the aromaticity, nuclear independent chemical shift (NICS) values were 

computed using the [GIAO HSE06/6-311+G(d,p)] basis set.86 Compounds 4.11, 4.14, and 

4.15 have comparable NICS(0) values, but vary when examining NICS(1)zz [Table 4.1L 

4.11: NICS(0) = −3.28, NICS(1)zz = −5.88, 4.14: NICS(0) −3.47, NICS(1)zz = −12.75, 4.15: 

NICS(0) = −2.33, NICS(1)zz = −12.72]. The values for 4.14 and 4.15 also exceed those for 

the analogous 4.12 [NICS(0) −1.35, NICS(1)zz = −8.54] and are on par with their nitrogen 

counterparts [NICS(0) −2.60, NICS(1)zz = −14.61]. The NICS values indicate that the 

herein reported penta-aryl species 4.14 and 4.15 are more aromatic than 4.11 and reveals 

that the aromaticity is hampered when π-donors are present on the boron atom.  

 The results presented build upon the rich chemistry of boroles, taking advantage of 

the high reactivity of these species to prepare 1,2-oxaborines and 1,2-thiaborines. The 

chemistry of these heterocycles has an exciting future given the diverse applications of 

their ubiquitous all carbon relative, benzene. 

 
4.4 Experimental Details 

 
N-methylmorpholine N-oxide and elemental sulfur were purchased from Sigma-Aldrich 

Chemicals and used as received.  

Reaction of 1.7-Ph with O2: A CDCl3 solution of 1.7-Ph was prepared in a quartz NMR 

tube equipped with a septum. Oxygen gas was bubbled directly into the solution via a long 

needle and using a 22 gauge needle attached to a bubbler to prevent back-flow. An 

immediate color change from blue to orange occurred.1H and 11B{1H} NMR spectra were 

acquired revealing a complex mixture.  
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Synthesis of 4.12 (CCDC 1457937): At room temperature (23 ˚C), a dichloromethane 

solution (1 mL) of N-methylmorpholine N-oxide (78.0 mg, 0.664 mmol) was added 

dropwise to a dichloromethane solution of borole 1.7-Ph (295.0 mg, 0.664 mmol). The 

solution color changed from dark blue to yellow within 1 min. The solution was allowed 

to stir for 1 h, and the solvent removed in vacuo. The residue was recrystallized by vapor 

diffusion of n-pentane into chloroform giving 4.12 as an off-white crystalline material. 

Yield: 204.0 mg, 66%; m.p 159-160 ̊ C. Crystals for an X-ray diffraction study were grown 

by vapor diffusion of a n-pentane solution of 4.12 into chloroform.  

1H NMR (600 MHz, CDCl3): δ 7.60 (d, J = 6.0 Hz, 2H), 7.42 (dd, J = 9.6, 6.0 Hz, 2H), 

7.34 (t, J = 6.0 Hz, 1H), 7.26-7.21 (m, 5H), 7.14-7.06 (m, 3H), 7.04-7.01 (m, 3H), 6.99-

6.97 (m, 2H), 6.94-6.89 (m, 5H), 6.74 (dd, J = 12.0, 6.0 Hz, 2H);  

13C{1H} NMR (151 MHz, CDCl3): δ 158.97, 153.82, 142.31, 139.40, 139.04, 138.06, 

136.83, 136.67, 135.14, 132.04, 130.08, 130.00, 129.95, 129.71, 128.36, 127.85, 127.81, 

127.68, 127.58, 126.90, 126.47, 125.96, 125.46, 123.87;  

11B{1H} NMR (193 MHz, CDCl3): δ 38.4 (br);   

FT-IR (cm−1(ranked intensity)): 1586(15), 1561(7), 1487(10), 1459(14), 1438(3), 1345(9), 

1291(5), 1072(13), 1025(6), 754(2), 720(11), 692(1), 636(4), 587(8), 544(12);  

HRMS (ESI): calcd. for C34H25BO [M+Na]+: 483.1897; found 483.1885;  

https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1457937&DatabaseToSearch=Published
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Elemental Analysis: calculated for C34H25BO: C, 88.70; H, 5.47. Found: C, 88.20; H, 5.57; 

UV-Vis (CH2Cl2) λmax (333 nm): ε = 12,000 Lmol-1 cm-1; (305 nm): ε = 7500 Lmol-1 cm-1; 

(282 nm): ε = 5600 Lmol-1 cm-1;  

Fluorescence (CH2Cl2) λem 388 nm; Stokes shift (CH2Cl2) 55 nm (4,300 cm-1). 

 

 
Synthesis of 4.13 (CCDC 1457938): At room temperature (23 ˚C), a dichloromethane 

solution (1 mL) of N-methylmorpholine N-oxide (26.0 mg, 0.225 mmol) was added 

dropwise to a dichloromethane solution of borole 1.7-PhC6H4 (117.0 mg, 0.225 mmol). 

The solution color changed from dark blue to yellow within 1 min. The solution was 

allowed to stir for 1 h, and the solvent removed in vacuo. The residue was recrystallized 

by vapor diffusion of n-pentane into chloroform giving 4.13 as an off-white crystalline 

material. Yield: 68.0 mg, 56%; m.p 191-192 ˚C. Crystals of 4.13 for an X-ray diffraction 

study were grown by vapor diffusion of n-pentane solution of 4.13 into chloroform.  

1H NMR (600 MHz, CDCl3): δ 7.65 (d, J = 6.0 Hz, 2H), 7.60 (d, J = 6.0 Hz, 2H), 7.48 (d, 

J = 12.0 Hz, 2H), 7.43-7.40 (m, 4H), 7.33 (t, J = 12.0 Hz, 1H), 7.24-7.22 (m, 3H), 7.14-

7.12 (m, 2H), 7.09-7.07 (m, 1H), 7.03-7.00 (m, 5H), 6.94-6.89 (m, 5H), 6.75 (m, 2H); 

13C{1H} NMR (151 MHz, CDCl3): δ 158.97, 153.90, 142.44, 142.35, 141.20, 139.39, 

139.17, 138.06, 136.70, 135.66, 132.05, 130.09, 129.96, 129.73, 128.83, 128.39, 127.87, 

127.82, 127.75, 127.48, 127.25, 126.91, 126.48, 126.28, 125.98, 125.52, 123.91;  

https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1457938&DatabaseToSearch=Published
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11B{1H} NMR (193 MHz, CDCl3): δ 38.8 (br);  

FT-IR (cm−1(ranked intensity)): 1584(9), 1486(12), 1497(15), 1439(5), 1297(3), 1070(11), 

1026(14), 836(4), 752(2), 712(7), 692(1), 639(10), 589(8), 554(13), 532(6);  

HRMS (ESI): calcd. for C40H29BO [M+Na]+: 559.2211; found 559.2196;   

Elemental Analysis: calculated for C40H29BO: C, 89.55; H, 5.45. Found: C, 88.52; H, 5.48; 

UV-Vis (CH2Cl2) λmax (333 nm): ε = 11,000 Lmol-1 cm-1; (295 nm): ε = 17,000 Lmol-1 

cm-1;  

Fluorescence (CH2Cl2) λem 387 nm; Stokes shift (CH2Cl2) 54 nm (4,200 cm-1). 

 
 
 

Synthesis of 4.14 (CCDC 1507212): At room temperature (23 ˚C), elemental sulfur in 

benzene (75.8 mg, 2.37 mmol; 1 mL) was added to a benzene solution of borole 1.7-Ph 

(334.0 mg, 0.752 mmol; 1mL) in a pressure-tube and the mixture stirred for 16 h at 65 ˚C. 

Over this time, the solution gradually changed from dark blue to yellow. Copper metal was 

then added to the yellow solution and stirred overnight at 90 ˚C to remove excess sulfur. 

The solvent of the supernatant was removed in vacuo and the residue washed with hexanes 

(3 × 2 mL) and dried in vacuo to furnish the 4.14 as an off-white powder. Yield: 159.0 mg, 

44%; m.p 160-161 ˚C. Single crystals for X-ray diffraction studies were grown by vapor 

diffusion of a dichloromethane solution of 4.14 into toluene.  

https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1507212&DatabaseToSearch=Published
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1H NMR (600 MHz, CDCl3): δ 7.28 (m, 2H), 7.24 (m, 1H), 7.21-7.20 (m, 2H), 7.18-7.14 

(m, 5H), 6.99-6.96 (m, 2H), 6.94-6.92 (m, 1H), 6.85-6.81 (m, 7H), 6.80-6.78 (m, 3H), 6.74 

(m, 2H);  

13C{1H} NMR (151 MHz, CDCl3): δ 158.97, 153.82, 142.31, 139.40, 139.04, 138.06, 

136.83, 136.67, 135.14, 132.04, 130.08, 130.00, 129.95, 129.71, 128.36, 127.85, 127.81, 

127.68, 127.58, 126.90, 126.47, 125.96, 125.46, 123.87;  

11B{1H} NMR (193 MHz, CDCl3): δ 50.8 (br);  

FT-IR (cm−1(ranked intensity)): 1596(15), 1542(13), 1485(7), 1440(4), 1334(11), 1262(3), 

1070(9), 1027(10), 927(8), 783(14), 750(12), 732(1), 599(6), 578(5), 558(2);  

HRMS (ESI): calcd. for C34H26BS [M+H]+: 477.1849; found 477.1881;  

Elemental Analysis: calculated for C34H25BS: C, 85.71; H, 5.29; Found: C, 88.20; H, 5.57; 

UV-Vis (CH2Cl2) λmax (340 nm): ε = 12,000 Lmol-1 cm-1, (260 nm): ε = 4,200 Lmol-1 cm-1;  

Fluorescence (CH2Cl2) λem 392 nm; Stokes shift (CH2Cl2) 52 nm (3,900 cm-1). 

 

 
 
 

Synthesis of 4.15 (CCDC 1507213): At room temperature (23 ˚C), elemental sulfur in 

benzene (50.0 mg, 1.56 mmol; 1 mL) was added to a benzene solution of borole 1.7-

PhC6H4 (210.0 mg, 0.403 mmol; 1mL) in a pressure-tube and the mixture stirred for 16 h 

at 65 ˚C. Over this time, the solution gradually changed from dark blue to yellow. Copper 

https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1507213&DatabaseToSearch=Published
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metal was then added to the yellow solution and stirred overnight at 90 ̊ C to remove excess 

sulfur. The solvent of the supernatant was removed in vacuo and the residue washed with 

hexanes (3 × 2 mL) and dried in vacuo to furnish the 4.15 as an off-white powder. Yield: 

93.0 mg, 42%; m.p 165-166 ˚C. Single crystals for X-ray diffraction studies were grown 

by vapor diffusion of a dichloromethane solution of 4.15 into toluene.  

1H NMR (600 MHz, CDCl3): δ 7.40 (d, J = 6.0 Hz, 2H), 7.25-7.19 (m, 5H), 7.13 (t, J = 

6.0 Hz, 1H), 7.05 (m, 3H), 7.00-6.97 (m, 4H), 6.83 (t, J = 6.0 Hz, 2H), 6.78 (t, J = 6.0 Hz, 

1H), 6.73 (d, J = 6.0 Hz, 2H), 6.68-6.62 (m, 7H), 6.75 (d, J = 6.0 Hz, 2H);  

13C{1H} NMR (151 MHz, CDCl3): δ  158.07, 145.87, 144.99, 143.58, 142.01, 141.88, 

141.44, 140.99, 140.67, 139.39, 138.74, 134.49, 131.78, 130.46, 130.40, 129.96, 128.81, 

127.77, 127.44, 127.39, 127.35, 127.16, 126.97, 126.62, 126.25, 125.81, 125.55, 125.12; 

11B{1H} NMR (193 MHz, CDCl3): δ 51.1 (br);  

FT-IR (cm−1(ranked intensity)): 1597(9), 1485(6), 1440(7), 1331(12), 1257(2), 1071(10), 

1026(13), 913(15), 828(8), 764(4), 744(14), 731(1), 578(5), 562(3), 496(11);  

HRMS (ESI): calcd. for C40H29BSNa [M+Na]+: 575.1982; found 575.1960;  

Elemental Analysis: calculated for C40H29BS: C, 86.96; H, 5.29. Found: C, 88.52; H, 5.48; 

UV-Vis (CH2Cl2) λmax (345 nm): ε = 10,000 Lmol-1 cm-1, (260 nm): ε = 17,000 Lmol-1 

cm-1;  

Fluorescence (CH2Cl2) λem 400 nm; Stokes shift (CH2Cl2) 55 nm (4,000 cm-1). 
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CHAPTER FIVE 
 

Intermolecular Insertion Reactions of Azides Into 9-Borafluorenes to Generate 9,10-B,N-
Phenanthrenes 

 
This chapter published as: Yruegas, S.; Martinez, J. J.; Martin, C. D., Chem. Commun., 

2018, 54, 6808-6811. 
 
 

5.1 Introduction 
 

 Polycyclic aromatic hydrocarbons (PAHs) are emerging as candidates for organic 

photovoltaics and organic field effect transistors (OFETs) due to their unique conducting 

properties. 210-211 The incorporation of an isoelectronic B-N unit in place of a C=C unit in 

PAHs alters the photophysical properties, often resulting in a red-shift in the absorbance 

and fluorescence that can be desirable for utility in the aforementioned applications.6, 14, 168, 

212-215 Benzene and carbonaceous PAHs can be isolated from fossil fuel deposits, 

combustion residue, and natural products, whereas their B,N-doped analogues are not 

naturally occurring, and hence, must be accessed synthetically. 3, 13, 216-218 

 Boroles, antiaromatic BC4 heterocycles18 (i.e. 1.7-Ph), have been shown to undergo 

ring expansion reactions via insertion into the endocyclic B-C bond to generate an array of 

unsaturated boracycles (see Chapters Three and Four for previous examples).21, 35-36, 38, 42, 

44, 56-59, 117, 121, 150-152, 183, 219-223 Noteworthy is the reactivity with organic azides to produce 

highly substituted 1,2-azaborines5e, f, i, (5.1, Figure 5.1a), B,N-containing analogues of 

benzene.224 Despite the rich insertion chemistry of boroles, the reactivity of their benzo-

fused relatives, 9-borafluorenes (1.15), has not been explored with organic azides. 9-

Borafluorenes have a reduced degree of antiaromaticity, and as a result, are less reactive.64, 
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69, 225 To date, an air-stable borole has yet to be reported, but 9-borafluorenes with sufficient 

bulk on boron are air stable compounds that can be subjected to column chromatography.65, 

67, 116, 226-228 

 

 
 

Figure 5.1. (a) Example of a formal nitrene insertion of an azide into a borole, (b) intramolecular nitrogen 
atom insertion of 9-N-substituted 9-borafluorenes, and (c) intermolecular insertion reactivity of 1.15-Cl with 
alkynes. 
 
 
 Although scarce, examples of 9-borafluorenes undergoing insertion into the 

endocyclic B-C bond have been reported. Work by the groups of Köster and Wagner 

demonstrated that endocyclic B-C bond cleavage was observed by the addition of hydride 

sources.74, 229-232 Bettinger and coworkers prepared 9-azido-9-borafluorene (1.15-N3), 

which upon thermolysis, produced B,N-phenanthryne 5.2 that was confirmed by a trapping 

experiment with TMSCl.68, 70, 233 In another report, the same group demonstrated that an 
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appropriately substituted 9-borafluorene [1.15-NH(OTMS)] underwent a spontaneous ring 

expansion to incorporate the nitrogen of the amine into the ring to give the 1,2-azaborine 

containing product 1.19.78 Both of the previous insertion reactions were intramolecular 

with the nitrogen bound to boron inserting into the B-C bond. With respect to 

intermolecular insertion reactions, a singular report exists by Fukushima and coworkers on 

the reaction of alkynes with 9-chloro-9-borafluorene (1.15-Cl, Figure 5.1c). Reactions with 

diarylacetylenes furnished unsaturated aryl-fused borepin heterocycles via the insertion of 

the C2 unit into the B-C bond (5.3) whereas bis(trimethylsilyl)acetylene reacted in a 2:1 

stoichiometry to generate a seven-membered ring with an exocyclic allene 5.4.234 

 Inspired by the prior intramolecular nitrogen insertion by Bettinger and the 

intermolecular alkyne insertion, we hypothesized that intermolecular reactions of 

9-borafluorenes with organic azides could produce 1,2-azaborines with two fused arenes, 

namely 9,10-B,N-phenanthrenes. The only reaction of this sort documented is that of 

1.15-Cl with trimethylsilyl-azide, which generated 1.15-N3 by a metathesis reaction.68, 70 

This metathesis pathway can be circumvented by avoiding the pairing of 

trimethylsilyl-azide with a B-halide substituted 9-borafluorene. In this chapter, we describe 

the reactions of azidobenzene and 1-azidoadamantane with 9-borafluorenes as a method to 

generate 9,10-B,N-phenanthrenes. 

 
5.2 Reactions of Azides with 9-Borafluorenes 

 
 The stoichiometric reaction of 1.15-Cl and azidobenzene in n-pentane underwent 

an instant color change from yellow to orange accompanied by gas evolution which 

subsided after 3h (Scheme 5.1). Acquiring an in situ 11B{1H} NMR spectrum of the orange 

solution revealed a single resonance at 35.5 ppm, shifted upfield considerably from 1.15-Cl 
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(64.0 ppm).68 After work-up, a single product was isolated that was identified by single 

crystal X-ray diffraction studies as the 9,10-B,N-phenanthrene complex 5.5, generated via 

the formal nitrene insertion into the B-C bond and concomitant release of N2 gas (Figure 

5.2, Table 5.1). 

 

 
 

Scheme 5.1. Reactions of azidobenzene with 9-borafluorenes 1.15-Cl and 1.15-Ph. 
 
 
 A critical step determined in the intermolecular ring expansion methodology of the 

related monocyclic borole chemistry is coordination of the substrate to the Lewis acidic 

boron center which enables B-C bond cleavage.21 The Gutmann-Beckett method is an 

experimental Lewis acidity scale that gauges the strength of the Lewis acid by addition of 

Et3PO and analyzing the change in the 31P NMR spectroscopic shift from the free 

phosphine oxide (41.0 ppm).83, 235 An Acceptor Number (AN) is then calculated from the 

resultant 31P adduct signal [AN = 2.21 x (δsample – 41.0)] in which a larger AN signifies a 

stronger Lewis acid. Rupar and coworkers measured the AN for 1.15-Cl as 78.7 in 

benzene,67 which is comparable to the value for 1.7-Ph (AN = 79.2) that we measured by 

the analogous experiment in the same solvent and aligns with their comparable reactivity 

with azidobenzene. 9-Phenyl-9-borafluorene (1.15-Ph) is a convenient reagent to access 
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given the commercial availability of PhBCl2, which undergoes transmetallation with the 

stannole precursor.69 Conducting the analogous Gutmann-Beckett experiment with 1.15-

Ph indicated an acceptor number of 73.4, signifying weaker Lewis acidity in comparison 

to 1.15-Cl and 1.7-Ph. 

 To determine if the weaker Lewis acid 1.15-Ph could undergo intermolecular ring 

expansion, it was reacted with azidobenzene. An immediate color change from yellow to 

orange was observed upon the addition of azidobenzene to a solution of 1.15-Ph in toluene, 

but no gas evolution was seen over 48 h. Monitoring the reaction via in situ 11B{1H} NMR 

spectroscopy showed a major peak at 36.9 ppm, similar to 5.5 (35.5 ppm), and comparable 

to known B,N-phenanthrene species.78, 196 The volatiles were stripped in vacuo and the 

resultant solids washed with n-pentane to isolate a bright yellow powder. X-ray diffraction 

studies identified the product as the N-diazene functionalized 9,10-B,N-phenanthrene 

complex 5.6, in this case, incorporating the whole azide into the product. Contrary to the 

aforementioned result where the α-nitrogen of the azide inserted into the B-C bond, the 

γ-nitrogen inserted instead. Heating the reaction at 110 ˚C did not alter the outcome, 

exclusively forming 5.6 with no evidence of a formal nitrene-insertion/N2 elimination 

product. 236 

 

 
 

Scheme 5.2. Reactions of 1-azidoadamantane with 9-borafluorenes 1.15-Cl and 1.15-Ph. 
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 To further assess the ability of the 9-borafluorenes to perform ring expansion, we 

investigated the chemistry with 1-azidoadamantane (AdN3, Scheme 5.2). The addition of 

a stoichiometric amount of AdN3 to a toluene solution of 1.15-Cl or 1.15-Ph at room 

temperature showed no evidence of reactivity by 1H and 11B{1H} NMR spectroscopy or 

color change. Heating the reaction mixtures to 110 ˚C, and monitoring by 11B{1H} NMR 

spectroscopy, showed consumption of the 9-borafluorene starting material after 2d for 

1.15-Cl and 5d for 1.15-Ph with the emergence of new peaks at 40.1 and 40.0 ppm, 

respectively. X-ray diffraction studies identified the products as the B,N-phenanthrenes 5.7 

and 5.8. Subsequent work-up gave off-white solids in 54% (5.7) and 64% (5.8) yields. 

Acquiring 1H NMR spectra of the redissolved solids in CDCl3 revealed signals in the alkyl 

region for the adamantyl groups integrating in a 15:8 (5.7) and 15:13 (5.8) ratio with respect 

to the resonances in the aryl region confirming 1:1 reactions. 

 

 
 

Scheme 5.3. Demonstrating the capability of B–Cl substitution of 5.5 to give 5.9. 
 
 
 We were curious if the B,N-phenanthrene with phenyl groups on both boron and 

nitrogen could be accessed, as its synthesis has not been reported and 5.6 was the only 

observed product in the reaction of 1.15-Ph and azidobenzene. The chloride in 5.5 serves 

as a synthetic handle for modifying the substitution at boron via transmetallation with a 

nucleophile.237 Dissolving 5.5 in toluene, then adding phenyllithium in nBu2O at -78 ˚C, 

followed by removal of the solvent in vacuo, gave a light-yellow powder. Crystals grown 
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for an X-ray diffraction study identified the compound as the 9,10-B,N-phenanthrene 5.9, 

which has a 11B{1H} NMR spectroscopic signature at 39.3 ppm in CDCl3 (Scheme 5.3). 

 
Table 5.1. Salient Bond Lengths (Å) and Angles [˚] in Compounds 5.5, 5.6, 5.7, and 5.8 

 

 
 

Entry 5.5 5.6 5.7 5.8 
B(1)–N(1) 1.402(3) 1.426(3) 1.416(2) 1.431(2) 
N(1)-C(11) 1.420(3) 1.433(3) 1.429(2) 1.433(2) 
C(11)-C(12) 1.411(3) 1.431(3) 1.431(2) 1.412(2) 
C(12)-C(13) 1.474(3) 1.390(3) 1.469(3) 1.461(2) 
C(13)-C(14) 1.411(3) 1.418(3) 1.408(3) 1.406(2) 
C(14)-B(1) 1.525(3) 1.414(3) 1.534(3) 1.554(3) 
N(1)-N(2)  1.427(3)   
N(2)-N(3)  1.246(3)   
N(1)-N(2)-N(3)  110.37(17)   

 
 
 The 9,10-B,N-phenanthrene products 5.5-5.8 share similarities with the exception 

of noticeable puckering observed for 5.7 and 5.8 (max. deviation from planarity = 0.135 

and 0.120 Å, respectively) due to the bulky adamantyl group. The B-N bond lengths range 

between 1.40-1.43 Å, indicating delocalization of the π-electrons between the boron and 

nitrogen atoms.183, 219, 223 The diazene complex 5.6 is in the E-conformation with the two 

exocyclic nitrogen atoms adopting bent geometries and a N-N bond distance consistent 

with a double bond [N(2)-N(3) 1.246(3) Å].36 Due to the identical substitution on boron 

and nitrogen of 5.9, the boron and nitrogen atoms in the central ring are positionally 

disordered in the solid-state structure preventing an accurate discussion on bond lengths 

and angles of this molecule (Appendix D: Figure D-43).238 
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Figure 5.2. Solid‐state structure of 5.5, 5.6, (top left to right) 5.7, and 5.8 (bottom left to right). Thermal 
ellipsoids are depicted at the 50 % probability level and hydrogen atoms have been omitted for clarity.  
 
 
 The UV-Vis absorption and fluorescence data for all compounds are listed in Table 

5.2. The absorbance values are significantly red-shifted with respect to their fully 

carbonaceous relative, phenanthrene (lowest-energy maximum at λ = 240 nm),239 and in 

accordance with known 9,10-B,N-phenanthrenes (lowest-energy absorption maxima λ = 

310-325 nm).78 The carbonaceous analogue of 5.9 is known, 9,10-diphenylphenanthrene, 

which has lowest-energy absorption maxima and emissions red-shifted in comparison to 

5.9 (λmax = 351 nm c.f. 331 nm and  λem = 392 nm c.f. 355 nm).240 Noteworthy, 5.6 has the 

largest molar extinction coefficient (24,300 Lmol-1cm-1) presumably due to the diazene 

moiety being in conjugation with the B,N-phenanthrene π-system.36 The fluorescence 

spectra of the compounds show emissions in the 350-360 nm range with moderate Stokes 

shifts. 

 



 78 

Table 5.2. UV-Vis and Fluorescence Values for 5.5-5.9 (Spectra Collected in CH2Cl2 
Under an Atmosphere of N2)  

 
Entry 5.5 5.6 5.7 5.8 5.9 
R Cl Ph Cl Ph Ph 
R’ Ph N=N-Ph Ad Ad Ph 
λmax [nm] 329 319 328 331 331 
ε  [L mol-1 cm-1] 11 100 24 300 3 700 3 700 12 500 
λem [nm] 352 357 353 357 355 
Stokes shift [cm-1] 23 38 25 26 24 

 
 
 In summary, we have demonstrated the ability of 9-borafluorenes to undergo the 

first intermolecular heteroatom insertion reactions with organic azides to synthesize 

9,10-B,N-phenanthrenes in a single synthetic step. The reactions with 1.15-Cl gave 

products with a B-Cl bond that permits facile substitution at the boron center in the product. 

In one case, a diazene functionalized 9,10-B,N-phenanthrene compound was generated as 

the ɣ-nitrogen was incorporated into the ring rather than the α-nitrogen. Absorbance studies 

showed that the doped B,N-phenanthrenes are red-shifted in comparison to phenanthrene. 

These results demonstrate an intermolecular approach that can be utilized to install 

heteroatoms into boroles with fused rings to construct hybrid organic/inorganic fused arene 

systems. 

 
5.3 Experimental Details 

 
2’-2’-Dibromobiphenyl was purchased from Ark Pharm, boron trichloride in hexanes (1M) 

from Acros Organics, triethylphosphine oxide from Alfa Aesar, dichlorophenylborane 

from Beantown Chemicals, azidobenzene from Enamine, and 1-azidoadamantane and 

phenyllithium in dibutyl ether (1.8 M) from Sigma Aldrich, respectively. All reagents were 

used as received. 
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Note: The following synthesis is adapted from the previous preparation of 1.15-Ph by Piers 

and coworkers.69 In our hands, this route was higher yielding than the prior synthesis for 

1.15-Cl by going through the corresponding 9,9-dimethyl-9-stannafluorene, an air-stable 

intermediate, instead of the lithiation route which was found to be exceedingly sensitive.  

 

 
 
 

Synthesis of 1.15-Cl: A solution of 9,9-dimethyl-9-stannafluorene (2.56 g, 8.51 mmol) in 

toluene (50 mL) was cooled to 0 ˚C upon which BCl3 in hexanes (1 M, 8.5 mL, 8.51 mmol) 

was added dropwise over 10 min. The reaction mixture was then stirred for 14 h at 23˚C. 

The volatiles were removed in vacuo to give an orange powder. The Me2SnCl2 by-product 

was removed by sublimation (40 ˚C, 0.2 Torr) and the resultant yellow residue was 

crystallized in n-pentane to give bright yellow crystals of 1.15-Cl. Yield: 1.24 g, 73%;  

1H NMR (600 MHz, CDCl3): δ 7.55 (d, J = 12.0 Hz, 2H), 7.38-7.34 (m, 4H), 7.15 (td, J = 

12.0, 6.0 Hz, 2H);  

11B{1H} NMR (193 MHz, CDCl3): δ 63.8 (br);  

The spectroscopic data matches the literature values.69  
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Synthesis of 5.5 (CCDC 1819488): A cold (-35 ˚C) solution of azidobenzene (0.152 g, 

1.27 mmol) in n-pentane (2 mL) was added dropwise to a n-pentane solution (2 mL) of 

1.15-Cl (0.253 g, 1.27 mmol) and stirred for 3 h, after which the solvent was removed in 

vacuo. The residue was washed with hexanes (3 x 2 mL) and dried in vacuo to give 5.5 as 

a yellow powder. Single crystals for X-ray diffraction studies were grown from a n-pentane 

solution of 5.5 by vapor diffusion into toluene. Yield: 0.272 g, 74%; m.p 92-94 ˚C;  

1H NMR (400 MHz, CDCl3): δ 8.54-8.41 (m, 2H), 8.39 (d, J = 8.0 Hz, 1H), 7.82 (td, J = 

8.0, 1.2 Hz, 1H), 7.61-7.55 (m, 4H), 7.52-7.48 (m, 1H), 7.31-7.29 (m, 2H), 7.25-7.23 (m, 

1H), 6.82-6.78 (m, 1H) ;  

13C{1H} NMR (151 MHz, CDCl3): δ 143.00, 141.95, 139.08, 135.14, 132.32, 129.97, 

129.21, 128.26, 127.86, 126.99, 124.19, 123.67, 122.32, 122.22, 118.90;  

11B{1H} NMR (193 MHz, CDCl3): δ 35.5 (br);  

FT-IR (cm−1(ranked intensity)): 1591(12), 1481(7), 1444(9), 1363(8), 1281(15), 1259(3), 

1170(11), 950(6), 752(1), 739(13), 721(4), 698(2), 598(5), 560(10), 429(14);  

HRMS (CI+) for C18H13BClN [M+], calcd: 289.0829; found 289.0829;  

UV-Vis (CH2Cl2) λmax (329 nm): ε = 11,100 Lmol-1 cm-1, (318 nm): ε = 7,700 Lmol-1 cm-1;  

Fluorescence (CH2Cl2) λem 352 nm; Stokes shift (CH2Cl2) 23 nm (2,000 cm-1). 

 

 
 
 

https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1819488&DatabaseToSearch=Published
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Synthesis of 5.6 (CCDC 1819489): A solution of azidobenzene (0.145 g, 1.22 mmol) in 

toluene (1 mL) was added to a toluene solution (1 mL) of 1.15-Ph (0.293 g, 1.22 mmol) 

and stirred for 2 d at 23 ˚C. The solvent was removed in vacuo to yield a yellow residue. 

The residue was washed with n-pentane (3 x 2 mL) and dried in vacuo to give 5.6 as a 

yellow powder (the estimated purity by 1H NMR 90%). Single crystals for X-ray 

diffraction studies were grown from a dichloromethane solution of 5.6 by vapor diffusion 

into toluene. Yield: 0.312 g, 71%; m.p 120-121 ˚C;  

1H NMR (600 MHz, C6D6): δ 8.31 (d, J = 12.0 Hz, 1H), 8.27 (d, J = 6.0 Hz, 1H), 7.71-

7.68 (m, 2H), 7.52 (t, J = 6.0, 1H), 7.29 (t, J = 6.0, 1H), 7.24-7.19 (m, 6H), 7.16-7.15 (m, 

2H), 7.09 (t, J = 6.0, 2H), 7.04-6.99 (m, 2H);  

13C{1H} NMR (151 MHz, CDCl3): 148.24, 138.89, 138.74, 138.48, 137.63, 133.02, 

131.90, 131.41, 130.91, 129.73, 129.22, 128.49, 127.92, 127.24, 126.92, 126.53, 124.09, 

123.83, 123.34, 122.93, 122.15, 121.94, 119.01, 116.49;  

11B{1H} NMR (193 MHz, CDCl3): δ 36.9 (br);  

FT-IR (cm−1(ranked intensity)): 1598(13), 1481(7), 1429(9), 1291(11), 1229(3), 1140(12), 

1002(4), 771(8), 745(1), 718(5), 705(2), 685(6), 638(15), 564(14), 516(10);  

HRMS (CI+) for C24H18BN3 [M+], calcd 359.1593; found 359.1597;  

UV-Vis (CH2Cl2) λmax (319 nm): ε = 24,300 Lmol-1 cm-1;  

Fluorescence (CH2Cl2) λem 357 nm; Stokes shift (CH2Cl2) 38 nm (3,400 cm-1). 

 

 
 
 

https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1819489&DatabaseToSearch=Published
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Synthesis of 5.7 (CCDC 1819490): A solution of 1-azidoadamantane (0.026 g, 0.15 mmol) 

in toluene (1 mL) was added to a toluene solution (1 mL) of 1.15-Cl (0.029 g, 0.15 mmol) 

in a pressure tube and heated for 2 d at 110 ˚C, upon which the solvent was removed in 

vacuo. The yellow residue was washed with acetonitrile (3 x 2 mL) and dried in vacuo to 

give 5.7 as an off-white powder. Single crystals for X-ray diffraction studies were grown 

from a dichloromethane solution of 5.7 by vapor diffusion into hexanes. Yield: 0.028 g, 

54%; m.p 117-118 ˚C;  

1H NMR (400 MHz, CDCl3): δ 8.22 (d, J = 8.0 Hz, 1H), 8.14 (d, J = 8.0 Hz, 1H), 8.07 (dd, 

J = 8.0, 1.6 Hz, 1H), 7.73-7.66 (m, 2H), 7.46 (t, J = 8.0 Hz, 1H), 7.27-7.22 (m, 1H), 7.18 

(m, 1H), 2.50 (s, 6H), 2.19 (s, 3H), 1.73 (q, J = 12.0 Hz, 6H);  

13C{1H} NMR (151 MHz, CDCl3): δ 140.00, 139.33, 133.65, 132.05, 128.01, 126.49, 

125.26, 124.75, 123.73, 121.79, 61.28, 43.14, 36.48, 30.92;  

11B{1H} NMR (193 MHz, CDCl3): δ 40.0 (br);  

FT-IR (cm−1(ranked intensity)): 2905(4), 1597(9), 1478(11), 1441(14), 1333(15), 1304(6), 

1230(2), 1176(12), 1137(13), 1065(7), 948(8), 888(10), 759(5), 741(1), 616(3);  

HRMS (CI+) for C22H23BClN [M+], calcd 347.1612; found 347.1608;  

UV-Vis (CH2Cl2) λmax (328 nm): ε = 3,700 Lmol-1 cm-1;  

Fluorescence (CH2Cl2) λem 353 nm; Stokes shift (CH2Cl2) 25 nm (2,200 cm-1). 

 

 
 
 

https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1819490&DatabaseToSearch=Published
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Synthesis of 5.8 (CCDC 1819491): A solution of 1-azidoadamantane (0.037 g, 0.21 mmol) 

in toluene (1 mL) was added to a toluene solution (1 mL) of 1.15-Ph (0.050 g, 0.21 mmol) 

in a pressure tube and heated for 5 d at 110 ˚C, after which the solvent was removed in 

vacuo. The yellow residue was washed with acetonitrile (3 x 2 mL) and dried in vacuo to 

give 5.8 as an off-white powder. Single crystals for X-ray diffraction studies were grown 

from a dichloromethane solution of 5.8 by vapor diffusion into hexanes. Yield: 0.052 g, 

64%; m.p 178-179 ˚C;  

1H NMR (600 MHz, CDCl3): δ 8.26 (d, J = 12.0 Hz, 1H), 8.21 (d, J = 12.0 Hz, 1H), 8.06 

(d, J = 6.0 Hz, 1H), 7.89 (d, J = 12.0 Hz, 1H), 7.65 (t, J = 6.0 Hz, 1H), 7.59 (d, J = 12.0 

Hz, 2H), 7.43 (t, J = 6.0 Hz, 2H), 7.39-7.36 (m, 2H), 7.32 (t, J = 6.0 Hz, 1H), 7.22 (t, J = 

6.0 Hz, 1H), 2.26 (s, 6H), 2.01 (s, 3H), 1.54 (q, J = 12.0 Hz, 6H);  

13C{1H} NMR (151 MHz, CDCl3): δ 145.02, 141.06, 139.03, 137.10, 135.54, 132.60, 

131.07, 130.40, 128.27, 127.32, 127.16, 125.92, 125.41, 124.67, 123.51, 121.63, 121.19, 

61.74, 44.72, 36.38, 30.79;  

11B{1H} NMR (193 MHz, CDCl3): δ 42.1 (br);  

FT-IR (cm−1(ranked intensity)): 2903(3), 1596(10), 1482(6), 1427(8), 1305(12), 1257(2), 

1062(5), 936(14), 906(9), 785(13), 745(1), 729(7), 704(4), 632(11), 580(15);  

HRMS (CI+) for C28H28BN [M+], calcd 389.2314; found 389.2315;  

UV-Vis (CH2Cl2) λmax (331 nm): ε = 8,200 Lmol-1 cm-1;  

Fluorescence (CH2Cl2) λem 357 nm; Stokes shift (CH2Cl2) 26 nm (2,200 cm-1). 

 

 

https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1819491&DatabaseToSearch=Published
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Synthesis of 5.9 (CCDC 1819492):  To a solution of 5.5 (0.298 g, 1.03 mmol) in toluene 

(5 mL) was added a solution of phenyllithium in dibutyl ether (1.9 M, 0.59 mL, 1.13 mmol) 

at -78 ˚C. The reaction was stirred at this temperature for 1 h upon which the cold bath was 

removed and the solution warmed to 23 ˚C and stirred 3 h.  The volatiles were removed in 

vacuo and the resultant orange residue was washed with hexanes (3 x 10 mL), filtered, and 

dried in vacuo to give 5.9 as a yellow powder. Single crystals for X-ray diffraction studies 

were grown from a dichloromethane solution of 5.9 by vapor diffusion into toluene. Yield: 

0.248 g, 73%; m.p 176-178 ˚C;  

1H NMR (600 MHz, CDCl3): δ 8.58-8.55 (m, 2H), 7.87 (d, J = 6.0 Hz, 1H), 7.78 (t, J = 

6.0 Hz, 1H), 7.45 (t, J = 6.0 Hz, 1H), 7.33-7.30 (m, 4H), 7.25-7.24 (m, 3H), 7.18 (m, 3H), 

7.13 (d, J = 6.0 Hz, 2H), 6.94-6.91 (m, 1H);  

13C{1H} NMR (151 MHz, CDCl3): δ 144.29, 142.00, 138.89, 137.64, 133.02, 131.42, 

129.73, 129.23, 127.92, 126.96, 126.93, 126.43, 124.22, 124.09, 121.98, 121.94, 119.01; 

11B{1H} NMR (193 MHz, CDCl3): δ 39.3 (br);  

FT-IR (cm−1(ranked intensity)): 1594(8), 1552(13), 1483(5), 1427(10), 1352(7),1323(9), 

1298(3), 1023(14), 751(2), 742(15), 724(4), 697(1), 653(11), 619(6), 577(12);  

HRMS (CI+) for C24H18BN [M+], calcd 331.1532; found 331.1534;  

UV-Vis (CH2Cl2) λmax (331 nm): ε = 12,500 Lmol-1 cm-1, (319 nm): ε = 11,300 Lmol-1 

cm-1;  

Fluorescence (CH2Cl2) λem 355 nm; Stokes shift (CH2Cl2) 24 nm (2,100 cm-1). 

 
 
 
  

https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1819492&DatabaseToSearch=Published


 85 

 
 
 

CHAPTER SIX 
 

Boraphosphaalkene Synthesis via Phosphaalkyne Insertion into 9-Borafluorene 
 

This chapter published as: Yruegas, S.; Barnard, J. H.; Al-Furaiji, K.; Dutton, J. L; 
Wilson, D. J. D; Martin, C. D., Organometallics, 2018, 37, 1515-1518. 

 
 

6.1 Introduction 
 

 Phosphorus is often labelled the “carbon copy” due to the similarities of its 

chemistry to carbon, particularly in unsaturated systems.241-242  Cyclic species can act as 

ligands through conjugated π-systems akin to unsaturated cyclic hydrocarbons,243-246 while 

the corresponding P≡C and P=C containing molecules (phosphaalkynes and 

phosphaalkenes, respectively) have reactivity reminiscent to their multiply bonded 

carbonaceous counterparts.247-251 The chemistry of phosphaalkynes in many ways mimics 

that of alkynes, debatably more closely than that of their lighter congeners, nitriles. Nitriles 

coordinate Lewis acidic centers via the lone pair on nitrogen, whereas phosphaalkynes are 

inversely polarized and as a result are poor σ donors.252-254 In addition, the diminished 

dipole moment of phosphaalkynes results in dienophile reactivity in pericyclic processes 

analogous to alkynes that is rarely observed for nitriles.255-256 

 In the few reported reactions of phosphaalkynes with boron species, the products 

are the result of addition reactions or Diels-Alder processes (Figure 6.1). The reaction of 

catecholborane (HBCat, Cat = catechol) and tert-butylphosphaalkyne results in a double 

hydroboration to produce primary phosphine 6.1 with the carbon quaternized by the 

introduction of the two BCat groups.257 Stephan and coworkers reported that Piers’ borane 

[HB(C6F5)2] undergoes a single hydroboration with phosphaalkynes to 
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1,2-boraphosphaalkene dimer 6.2, with the inverse selectivity forging P-B and C-H 

bonds.258 This 1,2-boraphosphaalkene dimer dissociates upon the addition of Lewis bases 

(pyridine and isocyanide) to give the 1,2-boraphosphaalkene adducts. BBr3 was claimed to 

react with tert-butylphosphaalkyne to generate 1,3-boraphosphaalkene 6.3 as a mixture of 

the E/Z isomers, but no characterization details supporting this complex were provided.259  

 

 
 

Figure 6.1. Reported reactions of boron species with phosphaalkynes (Cat = catechol, Ad = 1-adamantyl). 
 
 
 Our group reported the reactivity of antiaromatic boroles (1.7) with 

1-adamantylphosphaalkyne to produce 1-phospha-6-boratricyclo-hept-3-enes (6.5),59 

which DFT calculations indicated proceeded via a [4 + 2] cycloaddition and subsequent 

rearrangement. In the borole reaction, while the initial step is similar to that of the 

cycloaddition observed with alkynes, the alkyne Diels-Alder adduct ultimately rearranged 

to a borepin.39, 121, 150-151 Unsaturated 1,2-dipolar molecules with more pronounced dipole 

moments (nitrile, ketone, aldehyde, imines, isocyanates, isothiocyanates) coordinate to 
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boroles and subsequently insert to furnish seven-membered unsaturated boron 

heterocycles.56-58  

 9-Borafluorenes (1.15) are relatives of boroles with two aryl groups fused to the 

BC4 core that decrease the degree of antiaromaticity and Lewis acidity46, 67, 69, 228, 260 but 

readily form adducts with Lewis bases.68, 73-74, 261 The biphenyl backbone should decrease 

the likelihood of a Diels-Alder pathway as diene reactivity would require disrupting the 

aromaticity of both arenes. 9-Borafluorenes have also been demonstrated to undergo 

insertions into the endocyclic B-C bonds (see Chapter 1 and Chapter 5 for examples). 

Herein, we examine the reactivity of 1-adamantylphosphaalkyne with 

9-phenyl-9-borafluorene and probe the mechanism computationally. 

 
6.2 Reaction of Phosphaalkyne with 9-Borafluorenes 

 
 The 1:1 stoichiometric reaction of 1.15-Ph and 1-adamantyl phosphaalkyne in 

CH2Cl2 at room temperature was monitored by in situ 31P{1H} NMR spectroscopy 

indicating conversion of the phosphaalkyne signal (δ = -68) after 40 min to a major product 

at 199 ppm (Figure 6.2). This downfield spectroscopic signature lies in the region of known 

phosphaalkenes262 and a single resonance was detected by 11B{1H} NMR spectroscopy at 

69.4 ppm, representative of a three-coordinate boron environment, shifted slightly 

downfield from 1.15-Ph (δ = 65).69 After isolation, acquiring a 1H NMR spectrum of the 

redissolved solids in CDCl3 confirmed a 1:1 stoichiometric reaction based on the aromatic 

(7.71-7.15 ppm) and aliphatic (2.03-1.69 ppm) resonances integrating in a 13:15 ratio.  
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Figure 6.2. 31P{1H} NMR stacked plot of in situ reaction of 6.6 with 1-adamantylphoshaalkyne (‡ = 6.6, * = 
1-adamantylphosphaalkyne). 
 
 
 Single crystals for X-ray diffraction studies were grown by the vapor diffusion of a 

saturated n-pentane solution of the crude extract into hexanes and the structure was 

determined to be the 1,3-phosphaborepin product 6.6 (Scheme 6.1). The 1-

adamantylphosphaalkyne underwent a formal 1,2-insertion into the endocyclic B-C bond 

of 1.15-Ph to give 6.6 (Figure 6.3). The central BPC5 ring of 6.6 adopts a boat-like 

conformation, with an interplanar angle for the biphenyl moiety of 44.95(5)˚. In regard to 

the boraphosphaalkene moiety, the P=C distance of 1.6847(12) Å and the C-P-C angle of 

107.07(8)˚ are consistent with a P=C double bond263-266 and matches the observed 

downfield 31P{1H} NMR shift of 199 ppm. The C=P-C angle of 107.06(6)˚ is more obtuse 

than the typical angle for phosphaalkenes (~100 ̊).267 Both boron and the carbon of the 

phosphaalkene [C(1)] are trigonal planar [∑angles boron = 359.93(16)˚, carbon = 

359.99(13)˚], but despite the planarity of the adjacent boron and carbon centers, the two 
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are not co-planar [interplanar angle = 75.95(4)˚]. Moreover, the B-C bond is a single bond 

[1.5536(17) Å]266 and the P=C bond is not elongated, indicating negligible π-interaction 

between boron and the phosphaalkene.  

 

 
 

Scheme 6.1. Mechanism for the insertion reaction of 1-adamantylphosphaalkyne with 1.7-Ph. M06-2X/def2-
TZVP relative free energies are represented relative to the starting materials. 
 
 
 The reaction pathway was investigated using computational methods as insertion 

reactions of 9-borafluorenes are rare in the literature.268 To enable a direct comparison, we 

employed the same methods as the previous investigation of the reactivity of 

pentaphenylborole 1.7-Ph. The isolated product 6.6 is considerably different than that of 

the reaction of 1-adamantylphosphaalkyne with boroles (1.7) where the sole product is 6.5, 

suggesting an alternative pathway. The insertion reaction between 1.15-Ph and 

1-adamantylphosphaalkyne to give 6.6 was found to be linked via a single transition state 

(TS6.1, Scheme 6.1) involving cleavage of an endocyclic B-C bond by the P≡C unit of the 

phosphaalkyne and concomitant formation of B-C and P-C bonds. The calculated G‡ for 

the transition state (TS6.1) is 88 kJ/mol, with G for the overall reaction being -17 kJ/mol, 

indicating a thermodynamically favored product (6.6). Despite significant effort, attempts 

to locate a transition state similar to 6.3 from 1.15-Ph and 1-adamantylphosphaalkyne were 

unsuccessful. A Diels-Alder adduct akin to 6.3 could be found from the product 6.6 with a 

high corresponding G‡ for the transition state, 176 kJ/mol higher in energy than 6.6. The 
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tripodal phosphine product (c.f. 6.4) itself is thermodynamically unfavorable by 133 kJ/mol 

with respect to the reactants (150 kJ/mol higher than the observed product 6.6, Appendix 

E: Scheme E-1). 

 

 
 

Figure 6.3. (a) Solid-state structure of 6.6. Hydrogen atoms have been omitted for clarity, and ellipsoids are 
depicted at the 50% level. Selected bond lengths (Å) and angles (˚) for 6.6: B(1)−C(1) 1.5536(17), C(1)−P(1) 
1.6847(12), P(1)−C(2) 1.8385(13), C(2)−C(7) 1.4136(18), C(7)−C(8) 1.4869(17), C(8)−C(13) 1.4009(17), 
C(13)−B(1) 1.4013(17); C(13)−B(1)−C(1) 115.32(10), C(13)−B(1)−C(14) 120.71(10), C(14)−B(1)−C(1) 
123.90(11), C(15)−C(1)−B(1) 124.10(10), C(15)−C(1)−P(1) 120.92(18), B(1)−C(1)−P(1) 144.97(8), 
C(1)−P(1)−C(2) 107.06(6). (b) The 1,3-BPC5 core of 6.6. (c) Diagram illustrating the dihedral planes 
defining the deviation of the ring from planarity into a boatlike conformation. 
 
 
 The calculations clearly rationalize the contrast in products generated between 

reaction of 1-adamantylphosphaalkyne with 1.7 and 1.15-Ph due to alternative 

mechanisms. The rationale for preferential Diels-Alder reactivity for 1.7 is that a Diels-

Alder process in 1.15-Ph requires disruption of the aromaticity in both of the phenyl groups 

whereas this is not the case for 1.7 which has clear diene character in the organic backbone. 

This bond metathesis pathway differs from the modelled 1,2-insertion reactions with borole 

that form adduct intermediates en route to the seven membered ring products.57  

 In summary, 9-phenyl-9-borafluorene reacts with 1-adamantylphosphaalkyne 

under ambient conditions to give a ring expanded P,B-containing product that is the first 
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characterized 1,3-boraphosphaalkene. The reactivity is significantly different than the 

analogous reaction with pentaarylboroles which do not have fused aryl groups, rationalized 

by computational mechanistic studies that indicate the observed pathway is 

thermodynamically favored.  The modelled bond metathesis ring expansion pathway is 

unique from the precedented Diels-Alder and coordination mechanisms in borole 

chemistry. The results demonstrate the potential of ring expansion reactions to insert 

unsaturated organic substrates into borafluorenes to prepare a wealth of seven membered 

rings with fused aryl groups. 

 
6.3 Experimental Details 

 
Adamantylphosphaalkyne was purchased from Santa Cruz Biotechnology and used as 

received.  

Computational Methods. All theoretical calculations were performed within the Gaussian 

09 and Gaussian 16 programs.145, 269 Geometry optimizations without symmetry constraints 

were carried out with the M06-2X146 density functional together with the 6-31+G(d) basis 

set147 for both minima and transition state structures. All calculations employed an ultrafine 

integration grid. Harmonic vibrational frequencies were calculated analytically at the same 

level of theory in order to characterize stationary points as minima or transition states on 

the potential energy surface. The vibrational frequencies also enabled standard 

thermochemical properties under standard conditions (1 atm and 298 K) to be determined 

within the harmonic limit. The quadratic synchronous transit (QST) method149 was also 

utilized to locate transition states. For all transition states, intrinsic reaction coordinate 

(IRC)270 analysis was carried out to ensure connectivity between all minima and transition 

states along the reaction pathway. Single point energy calculations were performed at the 
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M06-2X/6-31+G(d) optimized geometries with M06-2X/def2-TZVPP146, 271 calculations. 

Solvent effects were included with polarizable continuum model (PCM) self-consistent 

reaction field (SCRF) together with Truhlar’s SMD solvation model,272 with parameters 

for dichloromethane. All reported ΔG values are M06-2X/def2-TZVPP electronic energies 

(inclusive of solvent effects) with M06-2X/6-31+G(d) gas phase thermochemical 

corrections, defined as M06-2X/def2-TZVPP(CH2Cl2,SMD) //M06-2X/6-31+G(d). 

Molecular orbital (MO) and natural bonding orbital (NBO) evaluation were carried out at 

the B3LYP/def2-TZVP level of theory.273  

 

 
 
 

Synthesis of 6.6 (CCDC 1837570): 1-Adamantylphosphaalkyne (36.0 mg, 0.200 mmol) in 

CH2Cl2 (1 mL) was added to a solution of 1.15-Ph (48.0 mg, 0.200 mmol) in CH2Cl2 (3 

mL) at 23 ̊ C. The mixture was stirred for 40 min giving a pale-yellow solution. The solvent 

was removed in vacuo and the solids washed with n-pentane (0.5 mL) to give an off-white 

powder. Yield: (75.0 mg, 90%) Single crystals for X-ray diffraction studies were grown 

from a n-pentane solution of 6.6 by vapor diffusion into hexanes. m.p 108 – 110 ˚C. 

1H NMR (600 MHz, CDCl3)  7.70 (dd, J = 18.0, 6.0 Hz, 1H, Ar), 7.64 (d, J = 12.0 Hz, 

1H, Ar), 7.62 (d, J = 6.0 Hz, 2H, Ar), 7.46 – 7.40 (m, 4H, Ar), 7.37 (t, J = 6.0 Hz, 1H, Ar), 

7.24 (t, J = 6.0 Hz, 2H, Ar), 7.20 (t, J = 6.0 Hz, 1H, Ar), 7.16 (t, J = 12.0 Hz, 1H, Ar), 2.03 

(s, 9H, Ad), 1.72 (dd, J = 12.0, 6.0 Hz, 6H, Ad) ppm;  

https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1837570&DatabaseToSearch=Published
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13C{1H} NMR (151 MHz, CDCl3)  151.16 (br, Ar), 143.48 (d, J = 7.6 Hz, Ar), 139.17 

(Ar), 138.13 (Ar), 137.77 (Ar), 136.66 (Ar), 136.41 (Ar), 133.06 (Ar), 130.60 (Ar), 128.45 

(Ar), 128.36 (Ar), 127.62 (Ar), 126.95 (Ar), 125.91 (Ar), 125.72 (d, J = 12.0 Hz, Ar), 123.72 

(Ar), 46.09 (d, J = 15.1 Hz, Ad), 45.87 (d, J = 15.1 Hz, Ad), 36.79 (Ad), 29.24 (Ad) ppm; 

31P NMR (243 MHz, CDCl3)  199.0 ppm;  

31P{1H} NMR (243 MHz, CDCl3)  199.0 ppm;  

11B{1H} NMR (192 MHz, CDCl3)  69.4 ppm (br, s);  

FT-IR (ranked intensity, cm-1) 2898 (2), 2845 (15), 1591 (7), 1433 (4), 1241 (3), 883 (10), 

744 (1), 695 (8), 650 (12), 617 (5), 596 (13), 556 (14), 500 (9), 471 (6), 416 (11);  

HRMS (CI+) for C29H28BP (M+), calcd:  418.2021; found: 418.2022;  

Elemental Analysis: calculated for C29H28BP: C, 83.26; H, 6.75. Found: C, 82.00; H, 

7.10*;  

UV-Vis (CH2Cl2) λmax (256 nm): ε = 16,000 Lmol-1cm-1, (340 nm): ε = 1,500 Lmol-1cm-1 

 
*Note: The elemental analysis values received were high, likely due to decomposition 

during shipment. The purity of compound 6.6 is established from the multinuclear NMR 

data. 
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CHAPTER SEVEN 
 

Generating Boracycles featuring Carborane Scaffolds 
 

This chapter published as: Yruegas, S.; Axtell, J. C.; Kirlikovali, K. O.; Spokoyny, A. 
M.; Martin, C. D, Chem. Commun., 2019, 55, 2892-2895. 

 
 

7.1 Introduction 
 
 Polyhedral carborane clusters are viewed as three-dimensional aromatic analogues 

to the ubiquitous two-dimensional aromatic arenes (e.g. benzene).274-276 These species 

share high delocalization within the cage and ring resulting in high kinetic stability.277-281 

The significant difference is that carboranes exhibit three-dimensional aromaticity while 

benzene is a classical π aromatic molecule. Due to their unique steric profile and electronic 

structure, o-carboranes have been explored as a substitute for phenyl groups in molecules. 

The lability of the C-H vertices (pKa = 22 c.f. benzene = 43) of o-carborane facilitates 

selective derivatization to incorporate carboranes into molecular architectures.282-309 1,1’-

Bis(o-carborane, 7.2) can be viewed as a three-dimensional analogue to a biphenyl unit, a 

common ligand scaffold in organometallic chemistry (7.1, Figure 7.1).310-321 The facile 

manipulation and high stability has resulted in complexes featuring 7.2 being investigated 

in medicine and electronic materials.277, 322-331 

 9-Borafluorenes (1.15) contain a biphenyl backbone linked by a three-coordinate 

boron center and have been recognized as attractive targets for molecular sensors,227-228, 332 

reagents for the synthesis of polycyclic aromatic hydrocarbons62, 70, 72, 78, 215, 333-335 as well 

as components in organic light emitting diodes (OLEDs)4, 8, 336 and organic photovoltaics 

(OPVs).337 The vacant pz orbital on the boron center extends conjugation throughout the 
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three fused rings. We envisioned that 1,1’-bis(o-carborane) could replace the biphenyl 

framework in 9-borafluorenes to generate a species with a three-dimensional backbone. 

 

 
 

Figure 7.1. Relationship of biphenyl (7.1) to 1,1’-bis(o-carborane) (7.2) and the corresponding chelated 
boranes investigated in this work. 
 
 

7.2 Approaches Towards a Three-Dimensional Analogue of 9-Borafluorene 
 
 The initial strategies to access the target [1,1’-bis(o-carboranyl)]boranes were 

inspired by effective methods for the synthesis of 9-borafluorenes, specifically 

transmetallation of a stannole or dilithiated species with RBX2 (R = Ph, Mes).67, 69, 338 The 

corresponding [1,1’-bis(o-carboranyl)]stannole319 was recently reported and the 

[1,1’-bis(o-carboranyl)]dilithium species339 has been generated and utilized in situ. 

Unfortunately, all attempts to access the [1,1’-bis(o-carboranyl)]borane via these reagents 

were unsuccessful (Appendix F: Tables F-1 and F-2). In addition, the transmetallation 

reaction with the [1,1’-bis(o-carboranyl)]magnesium species did not generate the desired 

boracycle (Table F-3). Potassium bis(trimethylsilyl)amide [K(HMDS)] is also an effective 

base for the deprotonation of the C-H vertices and the resultant salt, K2[7.2], is easier to 
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generate and offers enhanced solubility in comparison to the dilithiated reagent.320, 340 After 

several attempts using a variety of conditions (Table F-4), the room temperature generation 

of K2[7.2] in THF followed by addition of (iPr)2NBCl2 proved to be an effective method 

to furnish the desired [1,1’-bis(o-carboranyl)]borane 7.3. Acquiring a 11B{1H} NMR 

spectrum of the crude reaction mixture showed a three-coordinate peak at 32.9 ppm, 

slightly shifted from (iPr)2NBCl2 (31.3 ppm), coupled with the disappearance of one of the 

diagnostic signals corresponding to 7.2 (-2.2 ppm) and emergence of a singlet at 1.7 ppm, 

suggesting restricted rotation about the C-C bond in 7.2.341 After isolation, the product was 

dissolved in CDCl3 and the subsequent 1H NMR spectrum contained no C-H carborane 

signal at 3.51 ppm, indicating successful deprotonation of the carboranyl moieties and the 

product was isolated in 89% yield (Scheme 7.1).  

 

 
 

Scheme 7.1. Synthesis of 7.3 and 7.4. 
 
 
 The identity of 7.3 was further confirmed based on single crystal X-ray diffraction 

studies (Figure 7.2). The synthetic route was compatible with the octa-methylated variant 

7.4342 featuring a 11B{1H} NMR resonance at 33.7 ppm corresponding to the (iPr)2NB-

center, and a singlet at 6.0 ppm resulting from κ2-C,C′-chelation of the bis(o-carborane). 

X-ray diffraction studies confirmed the structural identity of 7.4, which was isolated in 

67% yield (Figure 7.2). 
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7.3 Characterization of Three-Dimensional 9-Borafluorenes 
 
 A notable structural feature of 7.3 and 7.4 are highly planar central BC4 rings 

(maximum deviation from planarity = 0.029 Å and 0.011 Å, respectively), which is 

comparable to their borafluorene counterpart 1.15-N(iPr)2 (0.020 Å). The boron atom of 

the central ring and adjacent nitrogen atom of 7.3 are trigonal planar [Σangles: B(1) = 

360.0(18)˚ and N(1) = 360.0(17)˚, Table 7.1].  

 

 
 

Figure 5.2. Solid-state structures of 7.3 and 7.4 (left to right). Thermal ellipsoids are depicted at 50% 
probability and hydrogen atoms are removed for clarity. The diisopropyl group in 7.4 is positionally 
disordered and only the major component is shown. 
 
 
 Positional disorder of the isopropyl groups on the nitrogen atom of 7.4 prevents an 

in-depth analysis of the metrical parameters of the substituents. The endocyclic 

carbon-carbon bonds of 7.3 and 7.4 are longer than 1.15-N(iPr)267 [7.3: C(1)–C(2) 1.649(3) 

Å, C(2)–C(3) 1.528(3) Å, and C(3)–C(4) 1.649(3) Å, 7.4: C(1)–C(2) 1.652(3) Å, C(2)–

C(3) 1.524(3) Å, and C(3)–C(4) 1.646(3) Å, 1.15-N(iPr)2: C(1)–C(2) 1.418(3) Å, C(2)–

C(3) 1.474(3) Å, and C(3)–C(4) 1.413(3) Å] but contracted from the parent 7.2291 [C(1)–

C(2) 1.630(3) Å, C(2)–C(3) 1.528(3) Å, and C(3)–C(4) 1.649(3) Å]. The B–N bond lengths 

of 7.3 and 7.4 are slightly shorter compared to previously reported B–N length of 1.15-
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N(iPr)2 [1.371(3) Å and 1.384(4) Å c.f. 1.396(3) Å]67, 343-344 indicating strong π-donation 

from the nitrogen lone pair to boron.345 

 
Table 7.1. Salient Bond Lengths (Å) and Angles [˚] in Compounds 7.3, 7.4, and 1.15-

N(iPr)2 
 

Entry 7.3 7.4 1.15-N(iPr)2 
    
B(1)-C(1) 1.631(3) 1.622(4) 1.593(3) 
C(1)-C(2) 1.649(3) 1.652(3) 1.418(3) 
C(2)-C(3) 1.528(3) 1.524(3) 1.474(3) 
C(3)-C(4) 1.649(3) 1.646(3) 1.413(3) 
C(4)-B(1) 1.630(3) 1.626(4) 1.601(3) 
B(1)-N(1) 1.371(3) 1.384(4) 1.396(3) 
N(1)-B(1)-C(4) 126.06(19) 125.50(2) 128.97(13) 
C(1)-B(1)-N(1) 125.61(18) 125.40(2) 127.51(19) 
C(1)-B(1)-C(4) 108.33(16) 109.00(2) 103.44(17) 
B(1)-N(1)-C(5) 119.94(17) * 120.90(2) 
B(1)-N(1)-C(8) 120.09(18) * 119.76(18) 
C(5)-N(1)-C(8) 119.96(16) * 119.35(19) 

        *The diisopropyl group in 7.4 is positionally disordered, barring discussion of these bond angles. 
 
 
 The UV-Vis spectra of 7.3 and 7.4 in CH2Cl2 (Figure 7.3) exhibit absorption 

maxima at 232 and 233 nm, respectively, blueshifted from 1.15-N(iPr)2 (248 nm).67 Cyclic 

voltammetry (CV) measurements conducted on 7.3 show an irreversible one-electron 

reduction at -1.86 V versus the ferrocenium/ferrocene couple (Fc+/Fc). In comparison, 7.4 

exhibits an irreversible reduction at -2.09 V whereas 1.15-N(iPr)2 showed only a reversible 

reduction at -2.95 V, indicating that the bis(o-carboranyl) backbone imparts an electron-

withdrawing effect facilitating reduction (Figure 7.4).67 
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Figure 7.3. UV-Vis absorption emission spectra for 7.3 and 7.4 obtained from solutions of CH2Cl2 (λmax = 
232 and 233 nm respectively). 
 
 
 In order to understand the electronic effects of the bis(o-carboranyl) ligand scaffold, 

density functional theory (DFT) calculations were carried out. The geometries of 

1.15-N(iPr)2, 7.3, and 7.4 were optimized based on the X-ray structure of 7.3 at the 

PBE-D3(BJ)/TZP level, and single-point calculations were carried out at the 

B3LYP-D3(BJ)/TZ2P level of theory (Appendix F: Figure F-18). The frontier orbital 

diagrams for 7.3 and 7.4 are similar, where the highest occupied molecular orbital (HOMO) 

is predominantly of π-character with respect to the B–N fragment, and the lowest occupied 

molecular orbital (LUMO) primarily resides on the bis(o-carboranyl) borane fragment. In 

contrast to the HOMO for 1.15-N(iPr)2 is entirely on the biphenyl fragment with no 

contribution from the amine, and the LUMO for 1.15-N(iPr)2 is localized on the biphenyl 

borane fragment. The HOMO-LUMO gaps for 7.3 and 7.4 are comparable (5.99 eV and 

6.03 eV, respectively), and significantly larger than 1.15-N(iPr)2 (4.17 eV). These data 
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corroborate similar absorption maxima for 7.3 and 7.4 as well as a bathochromic shift 

relative to the absorption maximum of 1.15-N(iPr)2 (Figure 7.3). The calculated higher-

lying LUMO for 7.4 (-1.74 eV) relative to that of 7.3 (-2.05 eV) is consistent with the 

observed more negative reduction potential for 7.4 (-2.09 V and -1.86 V, respectively; 

Figure 7.4). 

 

 
Figure 7.4. Cyclic voltammograms of 7.3 and 7.4 recorded in anhydrous tetrahydrofuran with 0.1 M 
[NnBu4][PF6] and referenced to the ferrocenium/ferrocene redox couple (Fc+/Fc; scan rate = 0.1 V s-1 ). 
 
 
 To experimentally gauge Lewis acidity, the Gutmann-Beckett method was 

utilized.81, 83 This method involves the addition of an excess of Et3PO to a solution of the 

borane and monitoring the change in chemical shift of the 31P{1H} NMR signal (δ31P
sample 

− 41.0). Multiplying this value by 2.21 gives the acceptor number (AN), where a greater 

AN signifies stronger Lewis acidity. The AN of 1.15-N(iPr)2 is 13.5 in C6D6
67 and 

performing the analogous study with 7.3 gave an AN value of 15.3. Methyl substitution at 

the peripheral boron vertices have an inductive effect, in this case acting as 



 101 

electron-withdrawing groups.292, 346-348 Subsequent Gutmann-Beckett studies of 7.4 

corroborated this hypothesis with an AN of 20.3, aligning with an increase of Lewis acidity 

at the boron center. 

 In summary, we have taken advantage of the lability of the C-H bonds of 

1,1’-bis(o-carborane) to access 9-borafluorene analogues with a three-dimensional 

backbone. These species represent the first examples of 1,1’-bis(carboranyl)boranes and 

feature a highly planar central ring with enhanced Lewis acidity in comparison to 

9-borafluorenes. Methyl substitution at the 8,9,10,12-B-vertices results in an increase of 

the overall Lewis acidity of the molecule. The results demonstrate the potential of utilizing 

bis(o-carboranes) as biphenyl analogues to create unique boracyclic architectures. 

 
7.4 Experimental Details 

 
O-carborane and triethylphosphine oxide were purchased from Health Consumer Research 

and Alfa Aesar and used as received. Dichloro(diisopropylamino)borane and potassium 

bis(trimethylsilyl)amide [(K(HMDS)] were purchased from Sigma-Aldrich Chemicals and 

used as received. 1,1′‐bis(o‐carborane, 7.2) and 9,9′,10,10′,11,11′,12,12′‐octamethyl‐bis(o‐

carborane, 7.2-BMe8) were synthesized according to published procedures.315, 342  

 
Computational Methods. Density functional theory calculations were performed with 

ADF 2014 Suite version 2014.04349-351 using Slater-type orbitals. Geometry optimizations 

were performed using PBE-D3(BJ)352-353 with TZP (double- core, triple- valence + 1 

polarization function) basis sets and single point calculations were performed using 

B3LYP-D3(BJ)352, 354-356 with TZ2P (double- core, triple- valence + 2 polarization 

functions) basis sets.  
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Synthesis of 7.3 (CCDC 1884761): To a solution of K(HMDS) (345.0 mg, 1.730 mmol) 

in tetrahydrofuran (2 mL) was added a solution of 7.2 (248.0 mg, 0.860 mmol) in 

tetrahydrofuran (2 mL) at 23 ˚C. Upon completion of the addition, the clear solution 

became orange and the mixture was stirred for an additional 45 min. 

Dichloro(diisopropylamino)borane (166.0 µL, 0.946 mmol) was added dropwise and 

stirred for 5 min before removing the solvent in vacuo. The residue was extracted with 

CH2Cl2 (2 mL), filtered, and the solvent removed in vacuo resulting in a tan residue. The 

product was purified via recrystallization by dissolving the residue in a minimal amount of 

Et2O (~2 mL) and storing at -35 ˚C overnight. The supernatant was decanted to produce 

white crystals. Yield: (304.0 mg, 89%); Crystals of 7.3 for X-ray diffraction studies were 

grown by the slow evaporation of a concentrated CH2Cl2 solution into hexanes at ambient 

temperature. m.p (231 – 232 ˚C);  

1H NMR (600 MHz, CDCl3)  4.44 (quint, J = 6.0 Hz, 2H), 2.92 – 1.74 (m, 20H), 1.38 (d, 

J = 6.0 Hz, 12H) ppm;  

1H{11B} NMR (600 MHz, CDCl3)  4.44 (quint, J = 6.0 Hz, 2H), 3.21 (s, 3H), 2.59-2.02 

(m, 17H), 1.38 (d, J = 6.0 Hz, 12H) ppm;  

13C{1H} NMR (101 MHz, CDCl3) δ 75.34, 52.01, 24.78 ppm;  

11B NMR (128 MHz, CDCl3)  32.9 (s, 1B), 2.78 (d, 2B), -1.8 to -12.0 (m, 18B) ppm; 

11B{1H} NMR (128 MHz, CDCl3)  32.9 (s, 1B), 1.7 (s, 2B), -3.1 to -11.2 (m, 18B) ppm; 

https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1884761&DatabaseToSearch=Published
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FT-IR (ranked intensity, cm-1) 2972 (12), 2577 (1), 1519 (13), 1491 (4), 1463 (10), 1370 

(6), 1177 (3), 1112 (5), 1065 (8), 981 (15), 912 (14), 813 (7), 732 (2), 714 (11), 647 (9); 

HRMS (CI) for C10H33B21N (M-H)+, calcd: 394.4712; found: 394.4709;  

UV-Vis (CH2Cl2) λmax (233 nm): ε = 12,600 Lmol-1cm-1 

 

 
 
 

Synthesis of 7.4 (CCDC 1884762): To a solution of K(HMDS) (351.0 mg, 1.760 mmol) 

in tetrahydrofuran (2 mL) was added a solution of 7.2-BMe8 (351.0 mg, 0.880 mmol) in 

tetrahydrofuran (2 mL) at 23 ˚C. Upon completion of the addition, the clear solution 

became orange and the mixture was stirred for an additional 45 min. 

Dichloro(diisopropylamino)borane (155.0 µL, 0.882 mmol) was added dropwise and 

stirred for 5 min before removing the solvent in vacuo. The residue was extracted with 

CH2Cl2 (2 mL), filtered, and the solvent removed in vacuo resulting in a tan powder. The 

product was purified via recrystallization by dissolving the tan residue in a minimal amount 

of n-pentane (~1 mL) and storing at -35 ˚C overnight. The supernatant was decanted to 

produce white crystals.Yield: (300.0 mg, 67%); Crystals of 7.4 for X-ray diffraction studies 

were grown by the slow evaporation of a concentrated diethyl ether solution into hexanes 

at -35 ˚C. m.p (189 – 192 ˚C);  

1H NMR (400 MHz, CDCl3)  4.44 (quint, J = 4.0 Hz, 2H), 3.48 – 1.54 (m, 12H), 1.36 (d, 

J = 4.0 Hz, 12H), 0.20 – 0.17 (m, 11H), 0.10 – 0.05 (m, 3H), 0.00 – -0.05 (m, 10H) ppm; 

1H{11B} NMR (600 MHz, CDCl3)  4.44 (quint, J = 6.0 Hz, 2H), 3.03 (s, 3H), 2.37 – 1.88 

https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1884762&DatabaseToSearch=Published
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(m, 9H), 1.36 (d, J = 6.0 Hz, 12H) 0.19 – 0.17 (m, 11H), 0.10 – 0.05 (m, 3H), 0.00 – -0.05 

(m, 10H) ppm;  

13C{1H} NMR (101 MHz, CDCl3) δ 77.36, 67.50, 51.66, 24.88, -2.66 ppm;  

11B NMR (128 MHz, CDCl3)  33.7 (s, 1B), 11.3 (s, 2B), 5.9 (s, 2B), 1.4 (s, 4B), -5.2 to -

13.1 (m, 12B) ppm;  

11B{1H} NMR (128 MHz, CDCl3)  33.7 (s, 1B), 11.3 (s, 2B), 6.0 (s, 2B), 1.1 (s, 4B), -6.8 

to -13.7 (m, 12B) ppm;  

FT-IR (ranked intensity, cm-1) 2905 (9), 2700 (15), 2584 (4), 1516 (11), 1489 (2), 1465 

(12), 1386 (14), 1369 (7), 1309 (3), 1182 (5), 1114 (1), 1025 (6), 958 (10), 783 (13), 750 

(8);  

HRMS (CI) for C18H50B21N (M+), calcd:  509.5970; found: 509.5973;  

UV-Vis (CH2Cl2) λmax (233 nm): ε = 13,300 Lmol-1cm-1 
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CHAPTER EIGHT 
 

Synopsis and Future Directions 
 
 

8.1 General Synopsis 
 
 This dissertation has described the reactivity of pentaarylboroles and 9-

borafluorenes, demonstrating their ability to act as reagents for generating new boron-

containing compounds. Chapter Two disclosed experimental and computational studies  on 

the relative lability of the endocyclic B-C bond of pentaphenylborole (1.7-Ph) when 

reacted with different E-H-containing partners.160 Substrates containing O-H and N-H 

bonds underwent protodeborylation to give ring opened products 2.12 and 2.15 with a 

second protodeborylation occurring with H2O (2.13, Scheme 8.1).  

 

 
 

Scheme 8.1. Different modes of E-H activation. 
 
 
 Descending the row, S-H containing substrates resulted in a boracyclopent-3-ene 

framework (2.14), where the phenyl group on boron migrated to the adjacent carbon. The 

reaction of 1.7-Ph with phenylphosphine produced adduct 2.16 with no evidence of proton 
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migration or ring opening, even at elevated temperatures. These investigations identify the 

adduct as a key intermediate in accessing the products alongside the lability of the B-C 

bond. 

 

 
 

 Scheme 8.2. Ring opening of epoxides. 
 
 
 Chapter Three extended this work further by describing the ring opening of 

epoxides by pentaphenylborole.222 Interestingly, different products were formed based on 

the substitution of the epoxide. The availability of β-hydrogens at the epoxide resulted in 

protodeborylation of the methyl group to generate the ring opened product 3.6 (Scheme 

8.2). Utilizing an epoxide without β-hydrogens gave the eight-membered ring 3.7 instead. 

Unexpectedly, the reaction of cyclohexene oxide with 1.7-Ph furnished a rare 11-

membered boracycle 3.8 from the insertion of two C2O units into the BC4 ring. The vastly 
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different products demonstrate the potential of boroles to be effective reagents for the 

construction of large boron-containing ring systems. 

 Chapter Four identifies pentaarylboroles as potential precursors for the synthesis of 

hybrid inorganic/organic boron-containing benzene analogues that feature oxygen or sulfur 

as a two π-electron contributor to the aromatic 6π electron ring.152, 154 The results presented 

build upon the rich chemistry of boroles, taking advantage of the high reactivity of these 

species to prepare 1,2-oxaborines and 1,2-thiaborines (Scheme 8.3). The chemistry of these 

heterocycles has an exciting future given the diverse applications of their ubiquitous all 

carbon relative, benzene. 

 

 
 

Scheme 8.3. Generation of 1,2-oxaborines and 1,2-thiaborines from insertion reactions with 
pentaphenylborole. 
 
 
 Chapters Five and Six expand the scope of ring expansion methodology established 

from Chapters Two, Three, and Four for pentaarylboroles to a benzofused borole, 

specifically 9-borafluorene, to generate 6- and 7-membered BN- and BC=P-containing 

heterocycles (Scheme 8.4).72, 333 The outcomes from these studies demonstrate that the 

unsaturated BC4 rings with extended conjugation can also act as reagents for the synthesis 

of polycyclic aromatic hydrocarbons. 
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 Scheme 8.4. Ring expansion reactions of 9-borafluorenes with azides and phosphaalkyne. 
 
 
 Chapter Seven described a new synthetic avenue in accessing 9-borafluorene 

analogues with a three-dimensional backbone.357 The resulting species represent the first 

examples of 1,1’-bis(carboranyl)boranes and the beginning of an investigation of new 

unique boracyclic architectures utilizing carborane scaffolds (Figure 8.1).  

 

 
 

 Figure 8.1. Synthesis of new 1,1’-bis(carboranyl)boranes. 
 
 

8.2 Final Remarks 
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 In summary, the chemistry disclosed in this dissertation elucidates the reactivity of 

pentaarylboroles and 9-borafluorenes, experimentally and computationally. The results 

reveal mechanistic insight enabling others to further pursue this vein of main group 

chemistry. Although several substrates are examined in this body of work, there remains 

other borole relatives and a vast library of small molecules that will rely on this foundation 

as the chemistry is pursued further. 

 
 

  



 110 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDICES 
  



 111 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX A 
 
 

General Experimental Details and Supplementary Information for Chapter Two 
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General Experimental Details 

 All manipulations were performed under an inert atmosphere in a nitrogen-filled 

MBraun Unilab glovebox. Solvents were purchased from commercial sources as 

anhydrous grade, dried further using a JC Meyer Solvent System with dual columns packed 

with solvent-appropriate drying agents and stored over molecular sieves. CDCl3 and C6D6 

for NMR spectroscopy were purchased from Cambridge Isotope Laboratories and dried by 

stirring for 3 days over CaH2, distilled, and stored over 4 Å molecular sieves. Compounds 

1.7-Ph, 1.7-PhC6H4, 9,9-dimethyl-9-stannafluorene, and 1.15-Ph were prepared via the 

literature procedures.27, 59, 69 

 Multinuclear NMR spectra were recorded on Bruker 400 or 600 MHz 

spectrometers. FT-IR spectra were recorded on a Bruker Alpha ATR FT-IR spectrometer 

on solid samples. High resolution mass spectra (HRMS) were obtained at the University 

of Texas at Austin Mass Spectrometry Center on a Micromass Autospec Ultima 

spectrometer using CI or at the Baylor University Mass Spectrometry Center on a Thermo 

Scientific LTQ Orbitrap Discovery spectrometer using +ESI. Melting points were 

measured with a Thomas Hoover Uni-melt capilliary melting point apparatus and are 

uncorrected. Elemental analyses (C and H) were performed by Atlantic Microlab, Inc. 

(Norcross, GA). UV-Vis spectra were recorded using an Agilent 8453 UV-Vis 

spectrophotometer. Solutions were prepared in a nitrogen filled glovebox and measured in 

screw capped quartz cuvettes for UV-Vis spectroscopy.  

 For the Gutmann−Beckett studies, samples were prepared in a 1:2 stoichiometric 

ratio of Lewis acid:Et3PO. Subsequent 31P NMR spectroscopy was done in C6D6. Samples 

were prepared in a glovebox under a N2 atmosphere.   



 113 

 Cyclic voltammetry experiments were performed in an argon filled glovebox using 

a CH Instruments Model 1140 electrochemical analyzer with a platinum working electrode 

and a platinum wire auxiliary electrode. The reference electrode was AgCl coated silver 

wire and was referenced by the standard ferrocene/ferrocinium redox couple (0.56 V in 

THF) as an internal standard.  

 Single crystal X-ray diffraction data were collected on a Bruker D8 quest using Mo-

K radiation ( = 0.71073 Å). Crystals were selected under paratone oil, mounted on 

MiTeGen micromounts, and immediately placed in a cold stream of N2. Structures were 

solved and refined using SHELXTL358 and figures were produced using OLEX2.359 
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Figure A-1: Stacked plot of crude 1H NMR spectra of the reaction of 1.17-Ph with H2O (top) and isolated 2.13 (bottom) in CDCl3 († 
CH2Cl2, * hexanes, • CDCl3).  
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Figure A-2: FT-IR spectrum of crude reaction of 1.7-Ph with H2O. 
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Figure A-3: 1H NMR spectrum of 2.13 in CDCl3 (*hexanes).  
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Figure A-4: Expansion of aromatic region of 1H NMR spectrum of 2.13 in CDCl3. 
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Figure A-5: 11B{1H} NMR spectrum of 2.13 in CDCl3.  
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Figure A-6: 13C{1H} NMR spectrum of 2.13 in CDCl3 (*hexanes). 
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Figure A-7: Expansion of 13C{1H} NMR spectrum of 2.13 in CDCl3. 
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Figure A-8: FT-IR spectrum of 2.13.
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Figure A-9: 1H NMR of 2.14 at 25 ˚C and -30 ˚C in CDCl3. 
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Figure A-10: 1H NMR spectrum of 2.14 in CDCl3 at -30 ˚C (*hexanes).
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Figure A-11: Expansion of 1H NMR spectrum of 2.14 in CDCl3 at -30 ˚C. 
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Figure A-12: 11B{1H} NMR spectrum of 2.14 in CDCl3 at -30 ˚C. 
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Figure A-13: 13C{1H} NMR spectrum of 2.14 in CDCl3 at -30 ˚C. 
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Figure A-14: Expansion of 13C{1H} NMR spectrum of 2.14 in CDCl3 at -30 ˚C. 
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Figure A-15: FT-IR spectrum of 2.14. 
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Figure A-16: 1H NMR spectrum of 2.15 in CDCl3 (*hexanes). 
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Figure A-17: Expansion of aromatic region of 1H NMR spectrum of 2.15 in CDCl3. 
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Figure A-18: 11B{1H} NMR spectrum of 2.15 in CDCl3. 
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Figure A-19: 13C{1H} NMR spectrum of 2.15 in CDCl3. 
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Figure A-20: Expansion of 13C{1H} NMR spectrum of 2.15 in CDCl3. 
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Figure A-21: Stacked plot of crude 11B{1H} NMR spectra of the reaction of 1.7-Ph with aniline at -40˚C in CDCl3 over a period of ten 
minutes. 
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Figure A-22: FT-IR spectrum of 2.15. 
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Figure A-23: 1H NMR spectrum of 2.16 in CDCl3 († CH2Cl2, * n-pentane, • silicone grease). 
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Figure A-24: Expansion of 1H NMR spectrum of 2.16 in CDCl3. 
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Figure A-25: 11B{1H} NMR spectrum of 2.16 in CDCl3. 
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Figure A-26: 31P{1H} NMR spectrum of 2.16 in CDCl3. 
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Figure A-27: 31P NMR spectrum of 2.16 in CDCl3. 
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Figure A-28: 13C{1H} NMR spectrum of 2.16 in CDCl3. 
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Figure A-29 Expansion of 13C{1H} NMR spectrum of 2.16 in CDCl3. 
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Figure A-30: FT-IR spectrum of 2.16. 
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Table A-1: Crystallographic Data for 2.12-2.16. 
 

X-Ray Crystallography details: Crystals were selected under paratone oil, mounted on micromounts then immediately placed in a cold 
stream of N2. Structures were solved and refined using SHELXTL358. For compounds 2.13 and 2.16, the n-pentane and n-hexane solvates 
were found to be disordered to an extent that could not be modeled and the contribution of the solvate was removed from the reflection 
data using the squeeze function in the PLATON software suite.360  For compound 2.15, the toluene solvent molecule in the unit cell was 
disordered on an inversion center and was removed from the reflection data using the squeeze function in the PLATON software suite.360 

a R1(F[I > 2(I)]) = ∑‖|Fo| - |Fc |‖/ ∑ |Fo|; wR2(F2 [all data]) = [w(Fo
2 - Fc

2)2]1/2; S(all data) = [w(Fo
2 - Fc

2)2/(n - p)]1/2 (n = no. of data; p = no. of parameters varied; 
w = 1/[2(Fo

2) + (aP)2 + bP] where P = (Fo
2 + 2Fc

2)/3 and a and b are constants suggested by the refinement program. 

Entry 2.12 2.13 2.14 2.15 2.16 
CCDC  1443358 1443359 1443360 1443361 1443362 

Empirical formula C34H27BO C68H52B2O C44H33BS C40H32BN C40H32BP 
FW (g/mol) 462.36 906.71 604.57 537.47 554.43 

Crystal system Monoclinic Monoclinic Triclinic Triclinic Monoclinic 
Space group P21/n C2/c P-1 P-1 C2/c 

a (Å) 16.1884(9) 47.9860(16) 8.5301(6) 10.1357(6) 14.7877(6) 
b (Å) 9.1325(6) 10.1805(3) 9.7269(7) 12.1343(7) 12.3571(6) 
c (Å) 18.4471(13) 22.1076(7) 19.5345(15) 14.8636(9) 35.9892(16) 
 (deg) 90 90 87.469(2) 70.2320(17) 90 
 (deg) 108.626(2) 91.302(2) 86.921(2) 73.1203(19) 95.394(3) 
 (deg) 90 90 82.647(2) 85.9647(18) 90 
V (Å3) 2584.4(3) 10797.2(6) 1604.0(2) 1645.44(17) 6547.3(5) 

Z 4 8 2 2 8 
Dc (mg m-3) 1.188 1.230 1.252 1.085 1.125 

radiation,  (Å) 0.71073 0.71073 0.71073 0.71073 0.71073 
temp (K) 150(2) 150(2) 150(2) 150(2) 150(2) 

R1[I>2I]a 0.0529 0.0876 0.0562 0.0488 0.0717 
wR2(F2)a 0.1502 0.1365 0.1539 0.1279 0.1297 
GOF (S)a 1.085 1.047 1.055 1.088 1.124 
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Cartesian Coordinates of M06-2X / 6-31+G(d) optimised geometries 

Reactants 

1.7-Ph’ 

ESCF = -568.311763727 Hartree 
Singlet, neutral 
6                    3.618646    1.497053   -0.160491 
6                    2.316844    0.760468   -0.063760 
6                    2.316835   -0.760458    0.063713 
6                    1.064900   -1.262522    0.081890 
5                    0.106853    0.000033    0.000157 
6                    1.064922    1.262574   -0.081610 
6                    0.696584    2.711556   -0.239272 
1                    1.534200    3.322980   -0.589491 
1                   -0.122103    2.831485   -0.958302 
1                    0.351515    3.147895    0.707687 
6                   -1.449007    0.000019    0.000076 
6                   -2.180700   -1.110302   -0.461240 
6                   -3.572946   -1.109097   -0.477689 
6                   -4.271000   -0.000047   -0.000173 
6                   -3.573081    1.109039    0.477457 
6                   -2.180833    1.110312    0.461248 
1                   -1.649250    1.984865    0.826872 
1                   -4.114994    1.973220    0.851729 
1                   -5.357700   -0.000073   -0.000268 
1                   -4.114752   -1.973298   -0.852069 
1                   -1.649010   -1.984823   -0.826788 
6                    0.696561   -2.711492    0.239711 
1                    0.351834   -3.148049   -0.707275 
1                    1.534083   -3.322807    0.590349 
1                   -0.122356   -2.831306    0.958494 
6                    3.618626   -1.497107    0.160099 
1                    4.255380   -1.279208   -0.706217 
1                    4.181442   -1.188278    1.050184 
1                    3.476222   -2.578512    0.207183 
1                    4.181163    1.188255   -1.050777 
1                    3.476294    2.578470   -0.207459 
1                    4.255657    1.279053    0.705609 
 
H2O 
 
ESCF = -76.3837661933 Hartree 
Singlet, neutral 
8                   0.000000    0.116389    0.000000 
1                   0.770604   -0.465524    0.000000 
1                  -0.770604   -0.465586    0.000000 
 

 

 

thiophenol (PhSH)) 

ESCF = -630.296445793 Hartree 
Singlet, neutral 
16                  2.282897   -0.082928   -0.004779 
6                    0.509059   -0.000242    0.001300 
6                   -0.197786   -1.207061    0.002887 
6                   -0.192317    1.208408   -0.002003 
6                   -1.589731   -1.200157    0.000920 
6                   -1.585463    1.205879   -0.000996 
1                    0.344887    2.153096   -0.005752 
6                   -2.291334    0.004640   -0.000416 
1                   -2.118639    2.152200   -0.002200 
1                   -3.376766    0.007024   -0.000585 
1                    0.341627   -2.150493    0.007529 
1                   -2.126949   -2.144076    0.002144 
1                    2.494917    1.240294    0.065183 
 

aniline (NH2Ph) 

ESCF = -630.296445793 Hartree 
Singlet, neutral 
6                   -1.169737    1.200785    0.003859 
6                    0.221724    1.205853   -0.005845 
6                    0.935284    0.000177   -0.008908 
6                    0.221618   -1.205811   -0.005711 
6                   -1.169516   -1.200944    0.003493 
6                   -1.878419    0.000047    0.008990 
1                   -1.702940    2.147407    0.007372 
1                    0.764366    2.148303   -0.017977 
1                    0.764869   -2.147929   -0.016868 
1                   -1.703169   -2.147315    0.006603 
1                   -2.963562   -0.000340    0.016804 
7                    2.332117   -0.000105   -0.076976 
1                    2.775217    0.835831    0.283241 
1                    2.774674   -0.835867    0.284388 
 

phenylphosphine (PH2Ph) 

ESCF = -574.046105321 Hartree 
Singlet, neutral 
6                    1.603028    1.216497   -0.000002 
6                    0.211259    1.200131    0.000004 
6                   -0.489442   -0.013543    0.000008 
6                    0.236904   -1.207998    0.000009 
6                    1.633143   -1.195069   -0.000001 
6                    2.317268    0.016775   -0.000007 
1                    2.132277    2.165136   -0.000005 
1                   -0.336946    2.139189    0.000005 
1                   -0.292995   -2.157434    0.000019 
1                    2.182122   -2.132233   -0.000002 
1                    3.403303    0.030366   -0.000013 
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15                 -2.334902   -0.119903    0.000012 
1                   -2.568604    0.826527    1.029332 
1                   -2.568593    0.826241   -1.029573 
 

H2O reaction 

Intermediate 2.1 (adduct) 
 
ESCF = -644.711587639 Hartree 
Singlet, neutral 
5                    0.123006    0.003940    0.502062 
8                    0.002850    0.142304    2.222232 
1                   -0.796269    0.635972    2.477755 
1                    0.781089    0.647518    2.517137 
6                    0.986635    1.280213    0.029611 
6                    2.178712    0.802632   -0.389626 
6                    3.313516    1.558792   -1.021723 
1                    3.483664    1.219139   -2.051508 
1                    3.125199    2.634508   -1.053116 
1                    4.252753    1.396790   -0.478531 
6                    2.288295   -0.691261   -0.192979 
6                    3.563153   -1.404536   -0.546958 
1                    3.827004   -1.242587   -1.599467 
1                    4.407674   -1.036192    0.049823 
1                    3.483982   -2.482411   -0.387012 
6                    1.154254   -1.212272    0.320306 
6                    0.920997   -2.638356    0.727562 
1                    1.832197   -3.245753    0.721889 
1                    0.497963   -2.681726    1.740059 
1                    0.190469   -3.134494    0.075294 
6                    0.504243    2.699958   -0.059286 
1                    1.260687    3.394905   -0.438097 
1                   -0.372589    2.768845   -0.716683 
1                    0.178447    3.083619    0.920266 
6                   -1.409136   -0.084486    0.057038 
6                   -2.342331    0.881599    0.472405 
1                   -2.016650    1.725404    1.086560 
6                   -3.682535    0.832675    0.091397 
1                   -4.376220    1.595613    0.435177 
6                   -4.124541   -0.188551   -0.747869 
1                   -5.165776   -0.232126   -1.055067 
6                   -3.217002   -1.146406   -1.197960 
1                   -3.550910   -1.940075   -1.861266 
6                   -1.882933   -1.093044   -0.794273 
1                   -1.188498   -1.846815   -1.157241 
 

Transition State 2.1 (TS2.1, H-migration 
from Int2.1) 
 
ESCF = -644.686180576 Hartree 
Singlet, neutral 

5                   -0.085790   -0.303813    0.638245 
8                   -0.115133   -0.710160    2.199399 
1                    0.653738   -0.335077    2.660668 
1                   -0.825532    0.227491    1.884559 
6                   -1.084968   -1.311987   -0.091965 
6                   -2.206289   -0.647475   -0.453547 
6                   -3.427615   -1.182097   -1.148375 
1                   -3.648803   -0.614198   -2.060352 
1                   -3.298467   -2.228392   -1.434312 
1                   -4.315631   -1.117475   -0.506713 
6                   -2.130626    0.777782   -0.046524 
6                   -3.114857    1.772406   -0.584953 
1                   -2.992305    1.878500   -1.670999 
1                   -4.143169    1.431406   -0.417275 
1                   -2.993221    2.756896   -0.127929 
6                   -1.057407    1.079036    0.745027 
6                   -0.618508    2.486350    1.080740 
1                   -1.389948    3.045401    1.624419 
1                    0.280530    2.475188    1.707563 
1                   -0.364909    3.064540    0.182784 
6                   -0.805164   -2.774645   -0.216967 
1                   -1.625067   -3.348205   -0.660109 
1                    0.097791   -2.941437   -0.817847 
1                   -0.595854   -3.190364    0.778325 
6                    1.387264   -0.060164    0.096320 
6                    2.470936   -0.768919    0.633596 
1                    2.300147   -1.483329    1.439041 
6                    3.768048   -0.599269    0.145930 
1                    4.589913   -1.161567    0.581669 
6                    4.005826    0.286907   -0.901941 
1                    5.013084    0.424211   -1.285208 
6                    2.940072    0.995521   -1.458836 
1                    3.117547    1.687081   -2.278351 
6                    1.650605    0.821725   -0.961979 
1                    0.826262    1.378646   -1.405496 
 
 
Product 2.1 (Prod2.1, ring open product) 
 
ESCF = -644.768236585 Hartree 
Singlet, neutral 
6                    0.061727    2.337356    2.050295 
6                   -0.814997    1.287987    1.436032 
6                   -1.381378    1.285143    0.217057 
6                   -2.099324    0.076970   -0.270466 
6                   -1.554997   -1.154378   -0.141363 
6                   -2.304917   -2.400697   -0.593332 
1                   -3.250723   -2.536182   -0.053208 
1                   -2.547891   -2.357317   -1.661421 
1                   -1.708715   -3.306384   -0.441285 
5                   -0.125682   -1.384312    0.482021 
8                    0.025565   -2.265467    1.525665 
1                   -0.814880   -2.614844    1.851923 
6                    1.208184   -0.758781   -0.065365 
6                    2.395062   -0.873745    0.674123 
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1                    2.375042   -1.409599    1.620030 
6                    3.586766   -0.311923    0.218622 
6                    3.613867    0.368775   -0.998338 
1                    4.541706    0.805554   -1.357767 
6                    2.447766    0.483064   -1.756415 
1                    2.467434    1.005557   -2.709069 
6                    1.260467   -0.075291   -1.288809 
1                    0.352398    0.016700   -1.881708 
1                    4.494412   -0.406085    0.808659 
6                   -3.437037    0.324524   -0.930355 
1                   -4.036852   -0.585579   -0.995534 
1                   -4.013587    1.075116   -0.378424 
1                   -3.304566    0.706057   -1.951501 
6                   -1.330030    2.446125   -0.746280 
1                   -2.335882    2.836596   -0.941478 
1                   -0.718187    3.269904   -0.377133 
1                   -0.916597    2.126961   -1.711126 
1                   -0.980129    0.410202    2.062083 
1                   -0.281947    2.594512    3.058167 
1                    1.083701    1.946988    2.147072 
1                    0.112197    3.256360    1.463869 
 

Product 2.2 (Prod2.2, ring-closed 
product) 
 
ESCF = -644.787635586 Hartree 
Singlet, neutral 
6                   -0.077757    0.294173    0.792333 
6                   -0.980014   -0.935185    0.683744 
6                   -0.656497   -2.129637    1.532960 
1                   -0.807698   -1.903496    2.595973 
1                   -1.263597   -3.004328    1.289102 
1                    0.399883   -2.401698    1.412123 
6                   -1.984541   -0.809263   -0.204631 
6                   -3.027949   -1.835220   -0.541730 
1                   -4.025057   -1.496792   -0.233391 
1                   -3.070348   -1.994085   -1.627361 
1                   -2.844447   -2.800295   -0.064397 
6                   -2.003208    0.523818   -0.942577 
1                   -1.712574    0.351709   -1.995059 
6                   -3.368701    1.229120   -0.942661 
1                   -3.721176    1.402910    0.080981 
1                   -3.317666    2.201613   -1.448019 
1                   -4.133114    0.641130   -1.462562 
5                   -0.856091    1.299563   -0.165568 
8                   -0.582259    2.627670   -0.187361 
6                    1.299039    0.038808    0.182079 
6                    2.465159    0.611659    0.705050 
1                    2.414610    1.230825    1.594726 
6                    3.704797    0.401202    0.101446 
1                    4.592845    0.855399    0.532505 
6                    3.809092   -0.385179   -1.043106 
1                    4.775105   -0.549975   -1.511228 
6                    2.657383   -0.960029   -1.578480 

1                    2.720443   -1.578900   -2.469439 
6                    1.421239   -0.749425   -0.972888 
1                    0.532362   -1.214502   -1.393961 
6                   -0.004313    0.824982    2.232332 
1                   -1.010633    0.877696    2.662718 
1                    0.605238    0.176846    2.874602 
1                    0.418275    1.834137    2.264126 
1                   -1.136295    3.133683   -0.797937 
 

 

Product 2.3 (Prod2.3, bis-borole 
product)  
 
ESCF = -1213.12019435 Hartree 
Singlet, neutral 
6                    2.853151    1.883162   -1.964085 
6                    2.118366    0.592382   -1.755168 
1                    1.065324    0.701985   -1.491745 
6                    2.597460   -0.658133   -1.858787 
6                    1.721986   -1.813084   -1.514670 
6                    1.006862   -1.795348   -0.368166 
5                    1.143357   -0.626150    0.683844 
8                    0.000000    0.000000    1.091821 
5                   -1.143357    0.626150    0.683844 
6                   -1.006862    1.795348   -0.368166 
6                   -1.721986    1.813084   -1.514670 
6                   -2.597460    0.658133   -1.858787 
6                   -2.118366   -0.592382   -1.755168 
1                   -1.065324   -0.701985   -1.491745 
6                   -2.853151   -1.883162   -1.964085 
1                   -3.799545   -1.759585   -2.494013 
1                   -2.236363   -2.588287   -2.531407 
1                   -3.071643   -2.353841   -0.996432 
6                   -3.993981    0.992070   -2.323705 
1                   -3.974614    1.480072   -3.305312 
1                   -4.628012    0.108273   -2.400945 
1                   -4.476426    1.688656   -1.628222 
6                   -1.723613    2.935968   -2.525732 
1                   -2.697532    3.440046   -2.538827 
1                   -0.967414    3.693720   -2.319832 
1                   -1.553015    2.545646   -3.535501 
6                    0.000000    2.853425    0.030919 
1                    0.224587    3.576199   -0.756560 
1                   -0.346805    3.414322    0.908229 
1                    0.944873    2.376996    0.322855 
6                   -2.469319    0.262868    1.444930 
6                   -3.645140    1.006921    1.274562 
1                   -3.631008    1.865716    0.607391 
6                   -4.816572    0.670852    1.944623 
1                   -5.716579    1.261567    1.800739 
6                   -4.832606   -0.426330    2.804961 
1                   -5.746022   -0.693216    3.328699 
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6                   -3.674063   -1.175152    2.997827 
1                   -3.682432   -2.025647    3.673182 
6                   -2.505195   -0.826645    2.326331 
1                   -1.597479   -1.403432    2.488158 
6                    2.469319   -0.262868    1.444930 
6                    2.505195    0.826645    2.326331 
1                    1.597479    1.403432    2.488158 
6                    3.674063    1.175152    2.997827 
1                    3.682432    2.025647    3.673182 
6                    4.832606    0.426330    2.804961 
1                    5.746022    0.693216    3.328699 
6                    4.816572   -0.670852    1.944623 
1                    5.716579   -1.261567    1.800739 
6                    3.645140   -1.006921    1.274562 
1                    3.631008   -1.865716    0.607391 
6                    0.000000   -2.853425    0.030919 
1                   -0.944873   -2.376996    0.322855 
1                   -0.224587   -3.576199   -0.756560 
1                    0.346805   -3.414322    0.908229 
6                    1.723613   -2.935968   -2.525732 
1                    1.553015   -2.545646   -3.535501 
1                    2.697532   -3.440046   -2.538827 
1                    0.967414   -3.693720   -2.319832 
6                    3.993981   -0.992070   -2.323705 
1                    4.628012   -0.108273   -2.400945 
1                    4.476426   -1.688656   -1.628222 
1                    3.974614   -1.480072   -3.305312 
1                    2.236363    2.588287   -2.531407 
1                    3.071643    2.353841   -0.996432 
1                    3.799545    1.759585   -2.494013 
 

Intermediate 2.3 (Ph migration) 
 
ESCF = -644.678173148 Hartree 
Singlet, neutral 
6                   -0.122966   -0.242751    0.894435 
6                   -1.175870   -1.150765    0.265019 
6                   -1.039257   -2.638388    0.390082 
1                   -1.088510   -2.969133    1.437850 
1                   -1.820663   -3.173659   -0.156346 
1                   -0.070172   -2.982063   -0.000747 
6                   -2.177869   -0.424755   -0.296539 
6                   -3.411163   -0.984816   -0.950713 
1                   -4.314006   -0.634427   -0.434858 
1                   -3.490958   -0.645983   -1.991206 
1                   -3.427699   -2.077239   -0.950565 
6                   -1.979533    1.050269   -0.227813 
6                   -2.945620    2.005689   -0.871252 
1                   -3.956197    1.934174   -0.445539 
1                   -2.632172    3.050265   -0.742797 
1                   -3.047858    1.835714   -1.952438 
5                   -0.761515    1.159342    0.510344 
8                    0.151881    2.397780    0.755254 
6                    1.222195   -0.260228    0.194279 

6                    2.396859    0.162655    0.841511 
1                    2.386629    0.359464    1.911135 
6                    3.609438    0.278652    0.147855 
1                    4.502904    0.591954    0.681572 
6                    3.673997   -0.023098   -1.206515 
1                    4.613469    0.057961   -1.744993 
6                    2.512953   -0.443082   -1.865199 
1                    2.549428   -0.683922   -2.924293 
6                    1.309714   -0.552745   -1.179777 
1                    0.404776   -0.863251   -1.697016 
6                   -0.035548   -0.494052    2.410340 
1                   -1.048060   -0.515306    2.825367 
1                    0.449706   -1.453776    2.631219 
1                    0.517001    0.287679    2.944430 
1                   -0.044537    3.107406    0.118521 
1                    1.085477    2.099684    0.622682 
 

SHPh reaction 

Intermediate 2.1 (adduct) 
 
ESCF = -1198.62846574 Hartree 
Singlet, neutral 
5                    0.909672    0.196451    0.295373 
6                    0.204529    1.634782    0.277930 
6                   -0.861127    1.545591    1.105885 
6                   -1.873273    2.604244    1.438000 
1                   -1.884737    2.821408    2.513425 
1                   -1.678295    3.540468    0.909468 
1                   -2.885602    2.270783    1.171708 
6                   -0.987598    0.173169    1.707240 
6                   -2.163644   -0.167051    2.576738 
1                   -2.231064    0.503912    3.442014 
1                   -3.103508   -0.062391    2.016769 
1                   -2.108391   -1.191791    2.952933 
6                    0.012244   -0.646096    1.312919 
6                    0.143509   -2.101532    1.669679 
1                   -0.825570   -2.584990    1.845194 
1                    0.655076   -2.661652    0.874206 
1                    0.745103   -2.251491    2.576594 
6                    0.643892    2.841210   -0.498898 
1                    0.032891    3.728316   -0.302496 
1                    1.686150    3.094809   -0.266936 
1                    0.610851    2.655473   -1.583482 
6                    2.464325   -0.033683    0.052752 
6                    3.149627    0.531517   -1.037675 
1                    2.598528    1.125244   -1.765902 
6                    4.519910    0.354214   -1.216132 
1                    5.019251    0.802282   -2.071151 
6                    5.251324   -0.393611   -0.292762 
1                    6.320910   -0.531343   -0.425284 
6                    4.600133   -0.959754    0.801202 
1                    5.162222   -1.539814    1.528391 
6                    3.225103   -0.784847    0.962595 
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1                    2.733177   -1.229772    1.824221 
6                   -1.677307   -0.646290   -1.333418 
6                   -2.421753    0.517233   -1.526504 
1                   -1.938975    1.420247   -1.890673 
6                   -3.784263    0.515319   -1.230662 
1                   -4.363549    1.422141   -1.376912 
6                   -4.398566   -0.640401   -0.752941 
1                   -5.460223   -0.638365   -0.525350 
6                   -3.646476   -1.800649   -0.566229 
6                   -2.283376   -1.805691   -0.847730 
1                   -1.693883   -2.702409   -0.674463 
1                   -4.117801   -2.703000   -0.188415 
16                    0.070790   -0.552082   -1.635845 
1                    0.343153   -1.863062   -1.499125 
 

TS2.1  (H-migration from Int2.1) 
 
ESCF = -1198.60693916 Hartree 
Singlet, neutral 
5                   -1.002452    0.247374    0.321311 
6                    0.005824   -0.298765    1.395109 
6                    0.998233    0.619323    1.540499 
6                    2.257718    0.483971    2.346401 
1                    2.409126    1.350186    3.001358 
1                    2.236877   -0.409224    2.974568 
1                    3.134079    0.412890    1.688013 
6                    0.762470    1.809704    0.702406 
6                    1.661635    3.001621    0.817934 
1                    1.563013    3.464271    1.808189 
1                    2.709394    2.692676    0.716350 
1                    1.450652    3.759802    0.062033 
6                   -0.333755    1.676918   -0.123682 
6                   -0.969188    2.769130   -0.946154 
1                   -1.049051    2.486316   -2.003346 
1                   -1.986883    2.971509   -0.592375 
1                   -0.407593    3.706579   -0.901324 
6                   -0.006150   -1.677796    1.982568 
1                    0.996063   -2.044589    2.229150 
1                   -0.606318   -1.712571    2.901553 
1                   -0.464965   -2.381311    1.277206 
6                   -2.517651   -0.082509    0.101274 
6                   -3.254148   -0.685361    1.132610 
1                   -2.756231   -0.936497    2.066240 
6                   -4.613972   -0.960720    0.991045 
1                   -5.162286   -1.421953    1.807849 
6                   -5.265911   -0.649478   -0.200134 
1                   -6.323642   -0.867999   -0.317408 
6                   -4.553097   -0.057515   -1.243861 
1                   -5.054261    0.182677   -2.177415 
6                   -3.199495    0.226751   -1.088089 
1                   -2.658799    0.684467   -1.914513 
6                    1.761899   -0.899705   -1.146015 
6                    2.346978   -1.990637   -0.487748 
1                    1.730325   -2.847395   -0.230221 

6                    3.701380   -1.975196   -0.169290 
1                    4.144402   -2.829514    0.334845 
6                    4.489431   -0.868232   -0.492972 
1                    5.546362   -0.859319   -0.243165 
6                    3.913846    0.220543   -1.144438 
6                    2.557849    0.205993   -1.473126 
1                    2.112589    1.047355   -1.998232 
1                    4.521544    1.081471   -1.409850 
16                    0.034578   -0.912635   -1.541993 
1                   -0.088770    0.627216   -0.980186 
 

Product 2.1 (Prod2.1, ring opened 
product) 
 
ESCF = -1198.66272915 Hartree 
Singlet, neutral 
6                    2.226496    1.260946    2.661616 
6                    1.152376    1.373354    1.623141 
6                    1.255033    2.025426    0.453130 
6                    0.195038    1.921115   -0.577426 
6                   -0.314412    0.722210   -0.951317 
6                   -1.408541    0.665886   -2.003082 
1                   -2.360714    1.063047   -1.625091 
1                   -1.131504    1.259347   -2.882830 
1                   -1.597147   -0.357662   -2.338634 
5                    0.218826   -0.613607   -0.339821 
16                   -0.924210   -1.872147    0.320969 
6                   -2.524804   -1.075854    0.333100 
6                   -2.758164    0.078811    1.084227 
6                   -4.013353    0.682625    1.062879 
6                   -5.047185    0.129518    0.307267 
1                   -6.025100    0.601455    0.293132 
6                   -4.821233   -1.035819   -0.423221 
6                   -3.563897   -1.637715   -0.411681 
1                   -3.379621   -2.536913   -0.993132 
1                   -5.621938   -1.475756   -1.010627 
1                   -4.183510    1.585409    1.642503 
1                   -1.956008    0.512208    1.673832 
6                    1.729893   -1.044289   -0.361602 
6                    2.256834   -2.008595    0.514684 
1                    1.607226   -2.474003    1.253188 
6                    3.601821   -2.369504    0.473736 
1                    3.985434   -3.111185    1.168878 
6                    4.454164   -1.779300   -0.459161 
1                    5.502691   -2.061670   -0.495648 
6                    3.953899   -0.825378   -1.345030 
1                    4.611715   -0.363711   -2.076528 
6                    2.610021   -0.462426   -1.290183 
1                    2.230614    0.291330   -1.977094 
6                   -0.292804    3.213986   -1.196670 
1                    0.081775    4.086239   -0.654495 
1                    0.015633    3.308145   -2.246207 
1                   -1.388018    3.253598   -1.181720 
6                    2.489674    2.819653    0.080974 
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1                    2.335813    3.389720   -0.839344 
1                    2.790802    3.520734    0.866031 
1                    3.329321    2.134664   -0.096144 
1                    0.229966    0.832175    1.831599 
1                    3.018547    2.001507    2.524776 
1                    1.821036    1.369816    3.672648 
1                    2.691088    0.265996    2.602222 
 

Product 2.2 (Prod2.2, ring closed 
product) 
 
ESCF = -1198.68090192 Hartree 
Singlet, neutral 
6                   -1.482594    0.481043    0.811685 
6                   -1.775258    1.828011    0.146266 
6                   -3.159263    2.396337    0.269363 
1                   -3.360034    2.715680    1.299848 
1                   -3.320458    3.259368   -0.380758 
1                   -3.907368    1.634222    0.018015 
6                   -0.723792    2.365479   -0.496548 
6                   -0.692693    3.670870   -1.239193 
1                   -0.112766    4.423418   -0.690774 
1                   -0.205178    3.543791   -2.214215 
1                   -1.690128    4.082646   -1.409736 
6                    0.549937    1.531493   -0.426858 
1                    0.840850    1.216376   -1.443889 
6                    1.737986    2.309287    0.172588 
1                    1.515654    2.626443    1.198587 
1                    2.645995    1.699869    0.192795 
1                    1.953551    3.208711   -0.414952 
5                    0.062636    0.301847    0.444941 
16                    0.974111   -1.115931    1.057114 
6                    2.597548   -0.943872    0.325698 
6                    2.764114   -1.005602   -1.059537 
6                    4.034688   -0.862274   -1.613082 
1                    4.158090   -0.902324   -2.691473 
6                    5.143667   -0.676710   -0.787947 
6                    4.978591   -0.641808    0.595811 
6                    3.708428   -0.775461    1.154299 
1                    3.573047   -0.733361    2.231300 
1                    5.838635   -0.503463    1.244489 
1                    6.133004   -0.566733   -1.221706 
1                    1.899524   -1.165048   -1.698300 
6                   -2.272641   -0.643341    0.143571 
6                   -2.898512   -1.663393    0.867904 
1                   -2.867709   -1.660408    1.952792 
6                   -3.571363   -2.698771    0.217200 
1                   -4.051228   -3.476601    0.804799 
6                   -3.631206   -2.737998   -1.172822 
1                   -4.155365   -3.543897   -1.677970 
6                   -3.011880   -1.727974   -1.909060 
1                   -3.051936   -1.741989   -2.994829 
6                   -2.343266   -0.696105   -1.257389 
1                   -1.875325    0.094487   -1.841165 

6                   -1.712578    0.555408    2.331062 
1                   -1.177736    1.416508    2.746412 
1                   -2.777293    0.669526    2.570174 
1                   -1.344246   -0.339275    2.843957 
 

Intermediate 2.3 (Ph migration from 
Int2.1) 
 
ESCF = -1198.5929058 Hartree 
Singlet, neutral 
5                    0.035882    0.618515    0.470521 
6                    1.001063    0.163572   -0.717013 
6                    1.780837    1.469496   -0.897372 
6                    2.851158    1.541570   -1.942803 
1                    3.396685    2.488476   -1.917453 
1                    3.579715    0.730255   -1.807804 
1                    2.435616    1.427261   -2.953987 
6                    1.354602    2.441930   -0.052307 
6                    1.877946    3.850103    0.024058 
1                    2.684220    4.035269   -0.689430 
1                    1.079784    4.575596   -0.177774 
1                    2.260271    4.072257    1.028208 
6                    0.259577    1.990923    0.844431 
6                   -0.339167    2.914361    1.864604 
1                    0.404558    3.278664    2.586580 
1                   -0.787589    3.805237    1.402743 
1                   -1.135552    2.426561    2.442588 
6                    0.221681   -0.151588   -2.006835 
1                    0.892621   -0.401637   -2.839552 
1                   -0.472474   -0.991820   -1.878343 
1                   -0.368906    0.724000   -2.297739 
6                    1.915747   -0.970331   -0.276741 
6                    2.814228   -0.750639    0.781964 
1                    2.841379    0.236340    1.240579 
6                    3.653294   -1.758755    1.238099 
1                    4.340610   -1.558717    2.055924 
6                    3.616683   -3.027183    0.649766 
1                    4.272748   -3.816825    1.004578 
6                    2.733544   -3.261705   -0.396807 
1                    2.695507   -4.239772   -0.869345 
6                    1.892811   -2.241790   -0.856690 
1                    1.220774   -2.451886   -1.683417 
6                   -2.733367   -0.533795    0.449333 
6                   -3.077303    0.583083   -0.305285 
1                   -2.382335    1.419014   -0.371431 
6                   -4.301821    0.592023   -0.969731 
1                   -4.585703    1.457894   -1.560146 
6                   -5.155744   -0.508108   -0.883769 
1                   -6.106037   -0.497676   -1.409047 
6                   -4.790904   -1.624218   -0.132492 
6                   -3.569517   -1.643336    0.540108 
1                   -3.269692   -2.509914    1.123064 
1                   -5.452052   -2.483276   -0.072414 
16                  -1.141413   -0.590428    1.324214 
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1                   -1.493037    0.175292    2.376476 
 

Intermediate 2.2 (H migration from 
Int2.1) 
 
ESCF = -1198.65663263 Hartree 
Singlet, neutral 
5                   -0.899049    0.195063   -0.126033 
6                   -0.207552    1.295856    0.748594 
6                    0.937907    1.832600   -0.035432 
6                    1.817885    2.904361    0.540202 
1                    2.690959    3.104235   -0.085081 
1                    1.266317    3.845868    0.656696 
1                    2.176443    2.629043    1.540180 
6                    1.060384    1.199759   -1.223165 
6                    2.179167    1.350058   -2.208286 
1                    2.860240    2.168695   -1.964335 
1                    2.764958    0.420241   -2.234727 
1                    1.795750    1.516241   -3.221499 
6                   -0.053319    0.202145   -1.497453 
6                   -0.958697    0.681604   -2.650652 
1                   -1.762298   -0.039479   -2.831325 
1                   -1.426441    1.642510   -2.403764 
1                   -0.400035    0.810472   -3.584941 
6                   -0.819886    2.123624    1.850550 
1                   -0.086563    2.444213    2.598588 
1                   -1.258018    3.023084    1.398676 
1                   -1.624750    1.582442    2.356859 
6                   -2.405587   -0.268273   -0.005727 
6                   -3.432423    0.687359    0.025464 
1                   -3.175500    1.745852    0.025017 
6                   -4.777315    0.315784    0.049924 
1                   -5.551537    1.078138    0.072570 
6                   -5.125723   -1.033310    0.050124 
1                   -6.171059   -1.328449    0.073825 
6                   -4.122796   -2.003098    0.021905 
1                   -4.386342   -3.057463    0.024304 
6                   -2.783826   -1.619234   -0.008125 
1                   -2.010358   -2.385862   -0.024009 
6                    1.807174   -0.975507    0.829707 
6                    2.976647   -0.304257    1.197773 
1                    2.921422    0.526350    1.894754 
6                    4.203078   -0.702881    0.673094 
1                    5.107368   -0.172469    0.956755 
6                    4.270947   -1.783803   -0.206570 
1                    5.228957   -2.095421   -0.612094 
6                    3.108330   -2.468370   -0.556985 
6                    1.877096   -2.062210   -0.045533 
1                    0.964883   -2.582697   -0.325044 
1                    3.156168   -3.315801   -1.234461 
16                   0.233091   -0.500169    1.503188 
1                    0.376286   -0.765604   -1.794250 
 

NH2Ph reaction 

Intermediate 2.1 (adduct) 
 
ESCF = -855.827803989 Hartree 
Singlet, neutral 
7                   -0.222563   -1.464846   -0.434711 
5                    0.577013   -0.036937   -0.068754 
6                    0.180785    1.053973   -1.188183 
6                   -0.474132    2.055677   -0.563381 
6                   -1.011412    3.327493   -1.158857 
1                   -0.548427    4.209999   -0.699627 
1                   -0.832808    3.382754   -2.235725 
1                   -2.092745    3.416275   -0.992053 
6                   -0.631220    1.782200    0.906406 
6                   -1.331141    2.781406    1.785863 
1                   -0.838274    3.761050    1.748484 
1                   -2.367382    2.936051    1.459127 
1                   -1.357523    2.460797    2.829968 
6                   -0.077585    0.601071    1.259128 
6                    0.007302    0.026231    2.643115 
1                   -0.442623    0.662828    3.412283 
1                   -0.491103   -0.952197    2.708036 
1                    1.055558   -0.147761    2.923638 
6                    0.554484    0.972157   -2.638599 
1                    0.158868    1.793153   -3.246444 
1                    1.646410    0.962297   -2.755296 
1                    0.198917    0.034689   -3.100815 
6                    2.146079   -0.405215   -0.003557 
6                    2.748628   -1.455653   -0.713443 
1                    2.150408   -2.114151   -1.346682 
6                    4.123624   -1.699114   -0.661763 
1                    4.550127   -2.524792   -1.225718 
6                    4.944897   -0.879141    0.106289 
1                    6.014872   -1.061534    0.151882 
6                    4.377600    0.181818    0.814697 
1                    5.009003    0.831698    1.415271 
6                    3.004579    0.406538    0.758921 
1                    2.575555    1.238051    1.316177 
6                   -1.670354   -1.441679   -0.297639 
6                   -2.434824   -0.748734   -1.231446 
1                   -1.952664   -0.236549   -2.057890 
6                   -3.818020   -0.701643   -1.073249 
1                   -4.418217   -0.159340   -1.797336 
6                   -4.428779   -1.338789    0.005689 
1                   -5.506863   -1.294906    0.124904 
6                   -3.651891   -2.036810    0.927979 
6                   -2.268583   -2.092877    0.775524 
1                   -1.659724   -2.636418    1.493890 
1                   -4.118943   -2.540589    1.768471 
1                    0.171557   -2.195083    0.164550 
1                    0.028669   -1.721157   -1.393313 
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TS 2.1  (H-migration from Int2.1) 
 
ESCF = -855.780235608 Hartree 
Singlet, neutral 
7                   -0.722062   -0.650195    1.058617 
5                    0.472262    0.029648    0.186075 
6                   -0.083461    0.837818   -1.070537 
6                    0.114952    2.165772   -0.886686 
6                   -0.227227    3.289677   -1.825503 
1                   -0.660452    2.915253   -2.755544 
1                   -0.947189    3.984817   -1.374662 
1                    0.661837    3.876403   -2.087283 
6                    0.753054    2.438422    0.418906 
6                    1.329597    3.793219    0.709180 
1                    2.170917    4.002699    0.035435 
1                    0.585407    4.579132    0.535476 
1                    1.687491    3.873331    1.737857 
6                    0.870657    1.345550    1.231735 
6                    1.723761    1.299215    2.478383 
1                    1.412166    2.039356    3.225198 
1                    1.663226    0.312559    2.951536 
1                    2.783773    1.477511    2.256614 
6                   -0.698135    0.172429   -2.263937 
1                   -1.338472   -0.662825   -1.956033 
1                   -1.297757    0.846499   -2.883925 
1                    0.093328   -0.258173   -2.892187 
6                    1.713161   -0.951905   -0.037407 
6                    1.514835   -2.331708   -0.182944 
1                    0.506742   -2.739681   -0.107845 
6                    2.577053   -3.200120   -0.442284 
1                    2.392705   -4.265622   -0.552180 
6                    3.871072   -2.699372   -0.562976 
1                    4.702143   -3.370716   -0.760069 
6                    4.091418   -1.327380   -0.430224 
1                    5.097562   -0.927656   -0.526123 
6                    3.024173   -0.470913   -0.171049 
1                    3.207617    0.598246   -0.073208 
6                   -2.079416   -0.775834    0.684150 
6                   -2.818525    0.354600    0.315290 
1                   -2.342396    1.330923    0.334888 
6                   -4.147939    0.222335   -0.075350 
1                   -4.706750    1.107209   -0.366681 
6                   -4.768228   -1.026913   -0.078465 
1                   -5.807338   -1.123290   -0.377213 
6                   -4.041416   -2.148929    0.316076 
6                   -2.705771   -2.026954    0.691310 
1                   -2.136857   -2.908120    0.980489 
1                   -4.510875   -3.128476    0.324234 
1                   -0.209709    0.522221    1.463491 
1                   -0.395684   -1.432541    1.621028 
 

 

Product 2.1 (Prod2.1, ring opened 
product) 
 
ESCF = -855.857441688 Hartree 
Singlet, neutral 
6                    1.829924    0.747178    2.998271 
6                    1.056163    1.183218    1.790160 
6                    1.507059    1.840177    0.707105 
6                    0.604859    2.073260   -0.452316 
6                   -0.145818    1.068408   -0.957787 
6                   -1.099660    1.302713   -2.119790 
1                   -1.849328    2.071633   -1.896604 
1                   -0.555992    1.626325   -3.016351 
1                   -1.645310    0.390134   -2.377618 
5                    0.003142   -0.411064   -0.440435 
7                   -1.124884   -1.207425   -0.099068 
1                   -0.966336   -2.206045   -0.009824 
6                   -2.481340   -0.862171    0.063196 
6                   -2.876935    0.429733    0.431295 
6                   -4.228188    0.730626    0.580836 
6                   -5.204526   -0.245390    0.387312 
1                   -6.255653   -0.004550    0.511271 
6                   -4.811882   -1.537248    0.040281 
6                   -3.464460   -1.842615   -0.123188 
1                   -3.164444   -2.848907   -0.407792 
1                   -5.557139   -2.313025   -0.110409 
1                   -4.516846    1.738625    0.865361 
1                   -2.125248    1.193148    0.605594 
6                    1.402325   -1.147045   -0.435128 
6                    1.685432   -2.194646    0.456160 
1                    0.936789   -2.494393    1.189087 
6                    2.921205   -2.839445    0.457167 
1                    3.117991   -3.637458    1.168106 
6                    3.906492   -2.454688   -0.451662 
1                    4.870229   -2.956221   -0.457101 
6                    3.648870   -1.419711   -1.350072 
1                    4.411989   -1.115434   -2.061543 
6                    2.414217   -0.773277   -1.333034 
1                    2.227200    0.042665   -2.028752 
6                    0.609685    3.471220   -1.029043 
1                    0.660516    4.225722   -0.236258 
1                    1.482677    3.624271   -1.677785 
1                   -0.281176    3.666740   -1.629816 
6                    2.917013    2.351983    0.546950 
1                    2.925439    3.435831    0.383307 
1                    3.544226    2.139760    1.413646 
1                    3.385795    1.887744   -0.330395 
1                    0.001764    0.902209    1.799038 
1                    2.843836    1.150059    3.029798 
1                    1.316126    1.043119    3.919478 
1                    1.908762   -0.348331    3.010949 
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Product 2.2 (Prod2.2, ring closed 
product) 
 
ESCF = -855.877016076 Hartree 
Singlet, neutral 
6                   -1.335471    0.297141    0.776613 
6                   -1.981278    1.580836    0.253541 
6                   -3.449130    1.792583    0.489554 
1                   -3.656068    1.932522    1.558317 
1                   -3.841181    2.664531   -0.038936 
1                   -4.019013    0.912694    0.166547 
6                   -1.122285    2.421142   -0.350709 
6                   -1.437068    3.772222   -0.926589 
1                   -0.991365    4.570554   -0.320060 
1                   -1.012046    3.865941   -1.934146 
1                   -2.510001    3.966890   -0.991717 
6                    0.313930    1.919705   -0.413588 
1                    0.623726    1.869204   -1.470470 
6                    1.294687    2.852112    0.326279 
1                    0.984682    2.981857    1.370071 
1                    2.312013    2.447381    0.327271 
1                    1.330703    3.845697   -0.134843 
5                    0.175050    0.486336    0.262197 
6                    2.511606   -0.588321    0.173457 
6                    3.061484    0.126022   -0.895912 
6                    4.422251    0.030671   -1.175060 
1                    4.832459    0.593386   -2.008773 
6                    5.251837   -0.787815   -0.410269 
6                    4.701665   -1.516818    0.642765 
6                    3.344918   -1.416316    0.934585 
1                    2.923031   -1.976642    1.766013 
1                    5.330931   -2.164508    1.246343 
1                    6.310776   -0.862257   -0.636579 
1                    2.420669    0.740784   -1.517772 
6                   -1.941620   -0.946881    0.142176 
6                   -2.251351   -2.101669    0.869564 
1                   -2.112659   -2.122244    1.946385 
6                   -2.756353   -3.240331    0.236229 
1                   -2.991289   -4.121365    0.827359 
6                   -2.965476   -3.247427   -1.138759 
1                   -3.360550   -4.131407   -1.630518 
6                   -2.665699   -2.101803   -1.878493 
1                   -2.826715   -2.090077   -2.953002 
6                   -2.160981   -0.971738   -1.245243 
1                   -1.937562   -0.080369   -1.829061 
6                   -1.384803    0.266985    2.315694 
1                   -1.000626    1.209779    2.719696 
1                   -2.408648    0.132209    2.687193 
1                   -0.772406   -0.541086    2.733306 
7                    1.139433   -0.511994    0.493244 
1                    0.814660   -1.332998    0.998659 
 

 

Intermediate 2.3 (Ph migration from 
Int2.1) 
 
ESCF = -855.798569123 Hartree 
Singlet, neutral 
6                   -1.646752    0.004182    0.801565 
6                   -2.539214    0.837739   -0.108147 
6                   -3.938045    0.381733   -0.393167 
1                   -4.547906    0.336936    0.521152 
1                   -4.455348    1.039286   -1.097237 
1                   -3.944099   -0.631438   -0.821919 
6                   -1.897693    1.956430   -0.533215 
6                   -2.483571    3.025716   -1.414684 
1                   -2.449006    4.001901   -0.914879 
1                   -1.907859    3.127565   -2.343191 
1                   -3.523024    2.824378   -1.684766 
6                   -0.495896    2.066860   -0.049556 
6                    0.371591    3.217675   -0.481011 
1                   -0.010540    4.186600   -0.128209 
1                    1.394566    3.119754   -0.101431 
1                    0.445616    3.292915   -1.575385 
5                   -0.319178    0.904295    0.775471 
6                   -1.253332   -1.330259    0.201126 
6                   -0.933861   -2.445195    0.991092 
1                   -1.103686   -2.418549    2.065067 
6                   -0.429270   -3.622027    0.422705 
1                   -0.194425   -4.468067    1.063406 
6                   -0.245300   -3.715112   -0.951544 
1                    0.138084   -4.628888   -1.395986 
6                   -0.577951   -2.618558   -1.756478 
1                   -0.447616   -2.678360   -2.833915 
6                   -1.067845   -1.449316   -1.189843 
1                   -1.301157   -0.589584   -1.814012 
6                   -2.267481   -0.112628    2.204082 
1                   -2.585463    0.880496    2.537662 
1                   -3.143194   -0.775982    2.210153 
1                   -1.567691   -0.500694    2.957577 
7                    0.958105    0.335078    1.538116 
1                    1.125212    0.864191    2.397312 
6                    2.189735    0.282128    0.748630 
6                    3.168904    1.246968    0.938761 
6                    2.334006   -0.733707   -0.190661 
6                    4.324285    1.200401    0.158593 
1                    3.028960    2.035683    1.674343 
6                    3.494942   -0.774360   -0.956418 
1                    1.545262   -1.470847   -0.328892 
6                    4.488596    0.191390   -0.786724 
1                    5.092750    1.954905    0.294361 
1                    3.618803   -1.563008   -1.691951 
1                    5.389167    0.156281   -1.391706 
1                    0.716664   -0.622861    1.827633 
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Product 2.3 (Prod2.3, Bisborole)  
 
ESCF = -1424.20745325 Hartree 
Singlet, neutral 
6                   -2.744843   -2.444425    2.459307 
6                   -1.976970   -2.385551    1.173227 
1                   -0.912744   -2.168454    1.243961 
6                   -2.483823   -2.567264   -0.056817 
6                   -1.619006   -2.363109   -1.243821 
6                   -0.944972   -1.201076   -1.398907 
5                   -1.203987    0.067496   -0.495415 
7                   -0.085162    0.843616   -0.003041 
5                    1.214302    0.260228    0.403352 
6                    1.240849   -0.840783    1.526046 
6                    2.088069   -1.898485    1.545822 
6                    2.908995   -2.255964    0.366374 
6                    2.320960   -2.428396   -0.828579 
1                    1.235944   -2.353069   -0.867300 
6                    3.031298   -2.717274   -2.117305 
1                    4.056891   -3.062316   -1.959489 
1                    2.499877   -3.476639   -2.701540 
1                    3.078028   -1.809964   -2.735879 
6                    4.403213   -2.409480    0.567924 
1                    4.692196   -2.180637    1.598011 
1                    4.750600   -3.423575    0.338114 
1                    4.944142   -1.713152   -0.083133 
6                    2.212424   -2.806168    2.751385 
1                    2.352439   -2.243514    3.681110 
1                    1.297493   -3.402954    2.866986 
1                    3.043085   -3.508324    2.642152 
6                    0.366322   -0.557883    2.738840 
1                    0.028821   -1.469248    3.244336 
1                    0.914614    0.038042    3.483123 
1                   -0.524136    0.015130    2.457904 
6                    2.538784    0.944344   -0.109322 
6                    3.739411    0.868817    0.614430 
1                    3.753132    0.332959    1.561553 
6                    4.909296    1.467809    0.151196 
1                    5.823010    1.401528    0.736024 
6                    4.906002    2.149929   -1.064912 
1                    5.816986    2.614238   -1.432714 
6                    3.725713    2.241832   -1.803610 
1                    3.715018    2.778483   -2.748267 
6                    2.558403    1.655608   -1.321493 
1                    1.637918    1.754556   -1.893627 
6                   -0.197698    2.259506    0.146600 
6                   -0.794300    3.044661   -0.846884 
6                   -0.901116    4.422497   -0.690070 
6                   -0.395766    5.045051    0.451779 
6                    0.214421    4.272244    1.437215 
6                    0.307287    2.890174    1.289145 
1                    0.769028    2.289690    2.070503 
1                    0.615705    4.742859    2.330226 
1                   -0.474056    6.121567    0.569160 
1                   -1.373895    5.013709   -1.469133 

1                   -1.175414    2.563443   -1.744339 
6                   -2.686666    0.591227   -0.321474 
6                   -3.091526    1.266959    0.842284 
1                   -2.357092    1.485264    1.615783 
6                   -4.411946    1.666500    1.029794 
1                   -4.700729    2.175257    1.945525 
6                   -5.360989    1.426324    0.034379 
1                   -6.389382    1.749226    0.171709 
6                   -4.982016    0.771376   -1.135848 
1                   -5.714905    0.580995   -1.915509 
6                   -3.663063    0.346989   -1.298798 
1                   -3.384849   -0.191533   -2.203297 
6                   -0.043728   -0.969414   -2.598289 
1                    0.875491   -0.445789   -2.310927 
1                    0.248485   -1.895278   -3.104084 
1                   -0.546658   -0.331443   -3.339946 
6                   -1.533272   -3.512389   -2.228490 
1                   -2.223390   -4.316776   -1.959908 
1                   -1.755017   -3.199236   -3.254871 
1                   -0.522723   -3.941634   -2.228098 
6                   -3.935200   -2.925769   -0.300951 
1                   -4.229155   -3.849236    0.210631 
1                   -4.584142   -2.118047    0.058931 
1                   -4.139026   -3.050040   -1.368552 
1                   -2.231014   -3.064554    3.203033 
1                   -2.837857   -1.437388    2.889461 
1                   -3.755434   -2.838572    2.322919 
 
PH2Ph reaction 

Intermediate 2.1 (adduct) 
 
ESCF = -1142.39033135 Hartree 
Singlet, neutral 
15                  -0.019809   -0.223255    1.497999 
5                    0.957082    0.020152   -0.242691 
6                    0.229046   -1.154184   -1.064207 
6                   -0.798194   -0.584171   -1.747776 
6                   -1.818694   -1.261009   -2.620030 
1                   -1.778369   -0.882077   -3.648863 
1                   -1.675244   -2.343745   -2.657706 
1                   -2.835228   -1.069845   -2.250226 
6                   -0.865396    0.880703   -1.519667 
6                   -1.984768    1.698619   -2.100068 
1                   -2.049124    1.578637   -3.188360 
1                   -2.952869    1.382701   -1.685713 
1                   -1.859748    2.763846   -1.888376 
6                    0.130073    1.317831   -0.705133 
6                    0.307452    2.739708   -0.237793 
1                    0.833747    3.348367   -0.986025 
1                   -0.645889    3.244369   -0.032577 
1                    0.913151    2.786516    0.675920 
6                    0.606105   -2.607362   -1.055103 
1                   -0.010787   -3.219001   -1.721705 
1                    1.653858   -2.736395   -1.355356 
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1                    0.525939   -3.044661   -0.047128 
6                    2.528021    0.020942    0.055960 
6                    3.171856   -1.054963    0.691565 
1                    2.586125   -1.917101    1.011157 
6                    4.547258   -1.062509    0.917952 
1                    5.012351   -1.912149    1.411200 
6                    5.325905    0.019060    0.506828 
1                    6.398637    0.018628    0.679005 
6                    4.715273    1.097930   -0.130016 
1                    5.313455    1.943315   -0.460186 
6                    3.336850    1.095266   -0.346125 
1                    2.878382    1.941977   -0.851826 
6                   -1.826962   -0.186626    1.375678 
6                   -2.518496   -1.312790    0.919966 
1                   -1.982481   -2.236152    0.712482 
6                   -3.894689   -1.246398    0.709816 
1                   -4.427759   -2.123266    0.354474 
6                   -4.581364   -0.056428    0.946573 
1                   -5.653062   -0.005755    0.778137 
6                   -3.893041    1.069448    1.398185 
6                   -2.517989    1.005906    1.610184 
1                   -1.980889    1.890231    1.945708 
1                   -4.424617    1.998722    1.579666 
1                    0.243207    0.730668    2.501177 
1                    0.239459   -1.403595    2.227861 
 

TS2.1  (H-migration from Int2.1) 

ESCF = -1142.33678722 Hartree 
Singlet, neutral 
5                   -0.920908   -0.025205   -0.117621 
6                   -0.598829    0.970854    1.089960 
6                   -1.298814    2.148411    0.936537 
6                   -1.262011    3.358360    1.830484 
1                   -0.560358    3.223934    2.656869 
1                   -0.964731    4.259290    1.280130 
1                   -2.248428    3.558934    2.266314 
6                   -2.099318    2.116497   -0.261592 
6                   -2.920672    3.296666   -0.684982 
1                   -3.606304    3.587168    0.119528 
1                   -2.281067    4.166510   -0.883288 
1                   -3.510833    3.091154   -1.579894 
6                   -1.899907    0.938171   -0.998058 
6                   -2.691801    0.525813   -2.212646 
1                   -3.000171    1.366334   -2.843330 
1                   -2.111149   -0.166771   -2.831166 
1                   -3.594694   -0.015296   -1.904774 
6                    0.298702    0.632473    2.240667 
1                    1.077028   -0.075353    1.937348 
1                    0.779704    1.498479    2.708338 
1                   -0.298649    0.122232    3.008767 
6                   -1.225987   -1.566372    0.127384 
6                   -0.212195   -2.533009    0.215468 
1                    0.824638   -2.230366    0.071569 

6                   -0.495215   -3.872779    0.481132 
1                    0.313946   -4.596077    0.542827 
6                   -1.814475   -4.284775    0.664000 
1                   -2.040174   -5.328105    0.866643 
6                   -2.841704   -3.345187    0.583731 
1                   -3.874070   -3.654537    0.726091 
6                   -2.544946   -2.008075    0.321309 
1                   -3.358795   -1.285993    0.271785 
6                    2.362112    0.306343   -0.689610 
6                    2.946223    1.200594    0.214588 
1                    2.371245    2.053679    0.569548 
6                    4.251780    1.003293    0.658832 
1                    4.693425    1.701789    1.363810 
6                    4.993374   -0.080927    0.190942 
1                    6.013343   -0.231327    0.532091 
6                    4.423511   -0.968114   -0.721923 
6                    3.114379   -0.777639   -1.159688 
1                    2.674023   -1.477882   -1.865890 
1                    4.997741   -1.812456   -1.092561 
1                   -0.693972    1.570526   -1.479269 
15                   0.632410    0.572596   -1.225215 
1                    0.611438   -0.152377   -2.434385 
 
Product 2.1 (Prod2.1, ring opened 
product) 
 
ESCF = -1142.38487989 Hartree 
Singlet, neutral 
6                    2.150715    1.422692    2.770914 
6                    1.144984    1.548719    1.667040 
6                    1.331057    2.093736    0.451225 
6                    0.281899    1.965360   -0.591479 
6                   -0.243699    0.750416   -0.869959 
6                   -1.309982    0.589442   -1.939232 
1                   -1.005432    1.089499   -2.866813 
1                   -1.491960   -0.463661   -2.175103 
1                   -2.272826    1.017109   -1.629080 
5                    0.272696   -0.537304   -0.149384 
15                 -0.911833   -1.588436    0.966154 
1                   -0.877219   -2.818233    0.266902 
6                   -2.590176   -1.013704    0.506522 
6                   -3.031117    0.217327    1.010446 
6                   -4.284690    0.719799    0.668931 
6                   -5.128652   -0.011877   -0.166194 
1                   -6.107947    0.376345   -0.430132 
6                   -4.710035   -1.249746   -0.652638 
6                   -3.450030   -1.744953   -0.320871 
1                   -3.127831   -2.702699   -0.722963 
1                   -5.362479   -1.829513   -1.299659 
1                   -4.604704    1.681206    1.060924 
1                   -2.383990    0.794934    1.667872 
6                    1.742570   -1.051376   -0.320193 
6                    2.327294   -1.976089    0.564586 
1                    1.756221   -2.335445    1.419140 
6                    3.633080   -2.425726    0.388166 
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1                    4.065503   -3.130190    1.093192 
6                    4.384461   -1.972574   -0.696863 
1                    5.401469   -2.326872   -0.840743 
6                    3.826040   -1.064380   -1.595656 
1                    4.406359   -0.711402   -2.443832 
6                    2.524365   -0.606673   -1.401837 
1                    2.097993    0.110349   -2.100427 
6                   -0.145765    3.218146   -1.324459 
1                    0.109323    4.119743   -0.759993 
1                    0.330092    3.294557   -2.311491 
1                   -1.228317    3.218670   -1.488347 
6                    2.611414    2.770527    0.024489 
1                    2.410213    3.575751   -0.689022 
1                    3.167221    3.195629    0.863118 
1                    3.260724    2.043652   -0.482892 
1                    0.161894    1.130816    1.884859 
1                    3.108681    1.886522    2.526866 
1                    1.777683    1.862003    3.702960 
1                    2.340938    0.359907    2.971656 

 

Product 2.2 (Prod2.2, ring closed 
product) 
 
ESCF = -1142.4027099 Hartree 
Singlet, neutral 
6                   -1.322852    0.425012    0.723792 
6                   -1.664154    1.863314    0.321486 
6                   -2.970294    2.448204    0.775400 
1                   -2.991517    2.548050    1.868237 
1                   -3.159244    3.436739    0.350404 
1                   -3.803935    1.791451    0.499005 
6                   -0.695032    2.472967   -0.384361 
6                   -0.698814    3.887073   -0.890483 
1                    0.007671    4.509670   -0.327618 
1                   -0.381144    3.916582   -1.940296 
1                   -1.682072    4.358224   -0.821005 
6                    0.534564    1.605752   -0.624992 
1                    0.762066    1.544489   -1.702662 
6                    1.790252    2.172079    0.078365 
1                    1.641756    2.221287    1.163901 
1                    2.672837    1.555590   -0.114993 
1                    2.005340    3.187876   -0.271748 
5                    0.062394    0.212682   -0.040141 
6                    2.636378   -1.155126   -0.146962 
6                    3.400256   -0.906501   -1.293210 
6                    4.750577   -0.572972   -1.190389 
1                    5.326838   -0.374195   -2.089538 
6                    5.360935   -0.506908    0.060560 
6                    4.614255   -0.776886    1.207824 
6                    3.261158   -1.092093    1.104967 
1                    2.682006   -1.277457    2.006712 
1                    5.084011   -0.730888    2.186340 
1                    6.413608   -0.252733    0.142158 

1                    2.934151   -0.972204   -2.273786 
6                   -2.348996   -0.580205    0.219285 
6                   -2.785823   -1.670150    0.980353 
1                   -2.431613   -1.802967    1.997923 
6                   -3.683155   -2.601226    0.453570 
1                   -4.007324   -3.437661    1.066641 
6                   -4.163355   -2.461258   -0.844907 
1                   -4.861740   -3.185657   -1.253356 
6                   -3.739329   -1.377695   -1.615322 
1                   -4.106635   -1.253562   -2.630246 
6                   -2.844317   -0.452971   -1.088417 
1                   -2.522691    0.392717   -1.694008 
6                   -1.092886    0.336950    2.246716 
1                   -0.403165    1.124381    2.569156 
1                   -2.033647    0.466856    2.796507 
1                   -0.661490   -0.625581    2.542871 
15                    0.840449   -1.494635   -0.353984 
1                    0.561012   -2.129060    0.880217 
 

Intermediate 2.3 (Ph migration from 
Int2.1) 
 
ESCF = -1142.3609863 Hartree 
Singlet, neutral 
6                   -1.805079    0.263162    0.791666 
6                   -2.433102    1.366557   -0.059423 
6                   -3.893719    1.297994   -0.383550 
1                   -4.510574    1.393403    0.521219 
1                   -4.205910    2.081756   -1.078575 
1                   -4.144550    0.328053   -0.834699 
6                   -1.534923    2.324571   -0.401737 
6                   -1.816934    3.568548   -1.199028 
1                   -1.602621    4.467585   -0.607725 
1                   -1.179374    3.617691   -2.090456 
1                   -2.857180    3.627048   -1.527743 
6                   -0.173260    2.035776    0.105859 
6                    0.968579    2.962107   -0.202035 
1                    0.776347    3.979287    0.166268 
1                    1.904598    2.624249    0.255438 
1                    1.146680    3.053311   -1.283947 
5                   -0.287096    0.795828    0.844201 
6                   -1.860562   -1.082206    0.084681 
6                   -2.231842   -2.269171    0.724447 
1                   -2.552573   -2.250723    1.761886 
6                   -2.212123   -3.494658    0.047845 
1                   -2.510359   -4.399136    0.571650 
6                   -1.823854   -3.557094   -1.284522 
1                   -1.811819   -4.506708   -1.811514 
6                   -1.455207   -2.377899   -1.941057 
1                   -1.155182   -2.408928   -2.985293 
6                   -1.472812   -1.164777   -1.265325 
1                   -1.188206   -0.246504   -1.776849 
6                   -2.469383    0.246038    2.179456 
1                   -2.435657    1.252540    2.609208 
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1                   -3.520251   -0.070008    2.126615 
1                   -1.958072   -0.428593    2.876847 
15                   1.129061   -0.265137    1.497413 
1                    1.627837   -0.089901    2.805698 
6                    2.667909   -0.263104    0.525250 
6                    3.901949   -0.507064    1.135196 
6                    2.600016   -0.020724   -0.849434 
6                    5.065208   -0.518302    0.369353 
1                    3.958909   -0.685536    2.206512 
6                    3.766411   -0.036720   -1.611122 
1                    1.636800    0.192763   -1.307921 
6                    4.996546   -0.285214   -1.003925 
1                    6.023364   -0.705003    0.844767 
1                    3.713755    0.152134   -2.678999 
1                    5.904298   -0.292220   -1.600054 
1                    0.736388   -1.615557    1.579900 
 

Intermediate 2.2 (H migration from 
Int2.1) 
 
ESCF = -1142.39255562 Hartree 
Singlet, neutral 
5                   -0.914661    0.112565   -0.034088 
1                    0.319289   -0.922736   -1.753752 
6                   -0.279366    1.344126    0.643581 
6                    0.879309    1.778695   -0.090445 
6                    1.798923    2.875582    0.370458 
1                    1.295554    3.850296    0.357602 
1                    2.138474    2.706229    1.399106 
1                    2.688952    2.946935   -0.260250 
6                    1.034194    1.021744   -1.223636 
6                    2.200311    1.100290   -2.159091 
1                    2.432175    2.133867   -2.438684 
1                    3.096531    0.681778   -1.677808 
1                    2.013162    0.527225   -3.071472 
6                   -0.089274    0.047637   -1.439354 
6                   -1.000546    0.549723   -2.583593 
1                   -0.449015    0.667866   -3.524471 
1                   -1.817310   -0.159488   -2.748344 
1                   -1.447293    1.516516   -2.325359 
6                   -0.752052    2.101465    1.845365 
1                    0.056277    2.339591    2.547672 
1                   -1.164231    3.062895    1.505362 
1                   -1.546313    1.569566    2.376412 
6                   -2.467621   -0.236421    0.047878 
6                   -2.944832   -1.553247   -0.046844 
1                   -2.229528   -2.373116   -0.094416 
6                   -4.308049   -1.840852   -0.070956 
1                   -4.644323   -2.871784   -0.145432 
6                   -5.241474   -0.806616    0.006253 
1                   -6.305407   -1.026650   -0.007777 
6                   -4.797071    0.510436    0.101883 
1                   -5.514903    1.324629    0.159927 
6                   -3.428534    0.784124    0.120238 

1                   -3.100345    1.821164    0.181390 
15                   0.121321   -1.072648    1.376520 
6                    1.858557   -1.106296    0.830398 
6                    2.852338   -0.255989    1.338699 
6                    2.221307   -2.024729   -0.166761 
6                    4.160428   -0.316704    0.865590 
1                    2.594654    0.462383    2.113752 
6                    3.527062   -2.085023   -0.648967 
1                    1.470596   -2.705676   -0.563184 
6                    4.500354   -1.228338   -0.135753 
1                    4.914689    0.349941    1.274705 
1                    3.785446   -2.803274   -1.421824 
1                    5.519810   -1.274664   -0.507806 
1                    0.302763   -0.254243    2.517620 
 

Product 2.3 (Prod2.3, bisborole) 
 
ESCF = -1710.69376701 Hartree 
Singlet, neutral 
6                   -4.021670   -0.805726    2.867939 
6                   -3.153405   -1.474188    1.847831 
1                   -2.080760   -1.333714    1.975977 
6                   -3.560431   -2.176268    0.778608 
6                   -2.574319   -2.646286   -0.224124 
6                   -1.650328   -1.811772   -0.761592 
5                   -1.634185   -0.285713   -0.407338 
15                  -0.000009    0.539601    0.000346 
5                    1.634132   -0.285802    0.407667 
6                    1.650257   -1.811913    0.761735 
6                    2.574047   -2.646456    0.223987 
6                    3.560142   -2.176431   -0.778810 
6                    3.153038   -1.474282   -1.847950 
1                    2.080379   -1.333683   -1.975860 
6                    4.021001   -0.805868   -2.868355 
1                    5.061723   -1.132749   -2.819184 
1                    3.649868   -0.980015   -3.883316 
1                    4.011576    0.279718   -2.699793 
6                    5.010464   -2.461016   -0.470653 
1                    5.124037   -3.395607    0.086445 
1                    5.629654   -2.526936   -1.367922 
1                    5.410921   -1.656659    0.160390 
6                    2.625184   -4.113818    0.597190 
1                    3.005609   -4.266165    1.615268 
1                    1.621506   -4.552576    0.564174 
1                    3.259382   -4.680644   -0.088586 
6                    0.639260   -2.363960    1.749421 
1                   -0.157750   -2.929439    1.246537 
1                    1.114255   -3.040607    2.468618 
1                    0.157094   -1.562599    2.315183 
6                    2.923510    0.604216    0.538433 
6                    3.869270    0.301426    1.531569 
1                    3.695440   -0.551655    2.183350 
6                    5.023633    1.064233    1.694261 
1                    5.733232    0.814513    2.477944 
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6                    5.270146    2.140554    0.846177 
1                    6.172499    2.733275    0.964309 
6                    4.353296    2.453161   -0.156517 
1                    4.541133    3.288586   -0.824582 
6                    3.191804    1.701391   -0.297778 
1                    2.480667    1.963986   -1.077809 
6                    0.000152    2.359479    0.000081 
6                   -0.560246    3.071455   -1.067662 
6                   -0.568388    4.463009   -1.062275 
6                    0.000497    5.162142   -0.000330 
6                    0.569206    4.463180    1.061822 
6                    0.560718    3.071630    1.067619 
1                    1.002981    2.530212    1.899296 
1                    1.014860    5.001432    1.892820 
1                    0.000632    6.247902   -0.000489 
1                   -1.013908    5.001127   -1.893432 
1                   -1.002639    2.529903   -1.899184 
6                   -2.923437    0.604477   -0.538120 
6                   -3.191583    1.701764    0.297990 
1                   -2.480437    1.964302    1.078032 
6                   -4.352943    2.453721    0.156619 
1                   -4.540658    3.289238    0.824603 

6                   -5.269816    2.141179   -0.846072 
1                   -6.172059    2.734050   -0.964287 
6                   -5.023466    1.064727   -1.694041 
1                   -5.733090    0.815048   -2.477716 
6                   -3.869234    0.301749   -1.531252 
1                   -3.695534   -0.551429   -2.182940 
6                   -0.639285   -2.363761   -1.749250 
1                   -0.157092   -1.562351   -2.314924 
1                    0.157705   -2.929259   -1.246368 
1                   -1.114248   -3.040337   -2.468529 
6                   -2.625721   -4.113562   -0.597626 
1                   -3.260158   -4.680364    0.087952 
1                   -3.006049   -4.265615   -1.615785 
1                   -1.622153   -4.552557   -0.564558 
6                   -5.010832   -2.460612    0.470479 
1                   -5.629530   -2.528934    1.367926 
1                   -5.411909   -1.654857   -0.158389 
1                   -5.124365   -3.393876   -0.088832 
1                   -3.650525   -0.979245    3.882998 
1                   -4.012756    0.279794    2.698874 
1                   -5.062243   -1.133115    2.818823 

 

 

. 
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APPENDIX B 
 
 

Supplementary Information for Chapter Three  
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Figure B-1: 1H NMR spectrum of 3.6 in CDCl3 (*grease). 
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Figure B-2: Expansion of 1H NMR spectrum of 3.6 in CDCl3 (aryl region). 
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Figure B-3: 11B{1H} NMR spectrum of 3.6 in CDCl3. 
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Figure B-4: 13C{1H} NMR spectrum of 3.6 in CDCl3 (*grease). 
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Figure B-5: Expansion of 13C{1H} NMR spectrum of 3.6 in CDCl3 (aryl region). 
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Figure B-6: FT-IR spectrum of 3.6. 
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Figure B-7: 1H NMR spectrum of 3.7 in CDCl3. 
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Figure B-8: Expansion of 1H NMR spectrum of 3.7 in CDCl3 (aryl region). 
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Figure B-9: 11B{1H} NMR spectrum of 3.7 in CDCl3. 



 169 

 
 

Figure B-10: 13C{1H} NMR spectrum of 3.7 in CDCl3. 
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Figure B-11: Expansion of 13C{1H} NMR spectrum of 3.7 in CDCl3 (aryl region). 
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Figure B-12: FT-IR spectrum of 3.7. 
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Figure B-13: 1H NMR spectrum of 3.8 in CDCl3 (*grease, #diethyl ether). 
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Figure B-14: Expansion of 1H NMR spectrum of 3.8 in CDCl3 (aryl region). 
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Figure B-15: Expansion of 1H NMR of 3.8 in CDCl3 (aliphatic region). 
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Figure B-16: 11B{1H} NMR spectrum of 3.8 in CDCl3.
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Figure B-17: 13C{1H} NMR spectrum of 3.8 in CDCl3. 
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Figure B-18: Expansion of 13C{1H} NMR spectrum of 3.8 in CDCl3 (aryl region). 
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Figure B-19: FT-IR spectrum of 3.8. 
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Table B-1: Crystallographic Data for 3.6-3.8. 
 

 
 

  

Entry 3.6 3.7 3.8 
CCDC 1567465 1567466 1567467 

Empirical formula C38H33BO C48H37BO C46H45BO2 
FW (g/mol) 516.45 640.59 640.63 

Crystal system Triclinic Triclinic Triclinic 
Space group P-1 P-1 P-1 

a (Å) 10.8110(7) 10.0123(19) 11.9143(10) 
b (Å) 11.2201(8) 12.407(3) 12.2386(10) 
c (Å) 13.9894(8) 14.530(3) 13.8415(11) 
 (deg) 91.363(2) 83.153(7) 88.644(3) 
 (deg) 105.304(2) 80.646(7) 72.819(3) 
 (deg) 112.355(2) 86.380(6) 69.847(3) 
V (Å3) 1499.00(17) 1767.7(7) 1803.3(3) 

Z 2 2 2 
Dc (mg m-3) 1.144 1.204 1.180 

radiation,  (Å) 0.71073 0.71073 0.71073 
temp (K) 150(2) 150(2) 150(2) 

R1[I>2I]a 0.0575 0.0511 0.0621 
wR2(F2)a 0.1697 0.1398 0.1729 
GOF (S)a 1.081 1.001 1.087 

a R1(F[I > 2(I)]) = ∑‖|Fo| - |Fc |‖/ ∑ |Fo|; wR2(F2 [all data]) = [w(Fo
2 - Fc

2)2]1/2; S(all data) = [w(Fo
2 - Fc

2)2/(n - p)]1/2 (n = no. of data; p = no. 
of parameters varied; w = 1/[2(Fo

2) + (aP)2 + bP] where P = (Fo
2 + 2Fc

2)/3 and a and b are constants suggested by the refinement program.1,2 
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Supplementary Information for Chapter Four 
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Figure C-1: Crude 1H NMR spectrum of the reaction of 1.7-Ph with O2. 
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Figure C-2: Crude 11B{1H} NMR spectrum of the reaction of 1.7-Ph with O2.
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Figure C-3: Crude 1H NMR spectrum of the reaction of 1.7-Ph with N-methylmorpholine-N-oxide after 30 min (• grease). 
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Figure C-4: Expansion of the crude 1H NMR spectrum of the reaction of 1.7-Ph with N-methylmorpholine-N-oxide after 30 min. 
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Figure C-5: 1H NMR spectrum of 4.12 in CDCl3 (* n-pentane).
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Figure C-6: Expansion of 1H NMR spectrum of 4.12 in CDCl3.  
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Figure C-7: 11B{1H} NMR spectrum of 4.12 in CDCl3.
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Figure C-8: 13C{1H} NMR spectrum of 4.12 in CDCl3.  



 189 

 
 

Figure C-9: Expansion of 13C{1H} NMR spectrum of 4.12 in CDCl3.
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Figure C-10: FT-IR spectrum of 4.12.
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Figure C-11: 1H NMR spectrum of 4.13 in CDCl3 (* n-pentane, • grease).  
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Figure C-12: Expansion of 1H NMR spectrum of 4.13 in CDCl3.  
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Figure C-13: 11B{1H} NMR spectrum of 4.13 in CDCl3.
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Figure C-14: 13C{1H} NMR spectrum of 4.13 in CDCl3 (*n-pentane).
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Figure C-15: Expansion of 13C{1H} NMR spectrum of 4.13 in CDCl3.   
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Figure C-16: FT-IR spectrum of 4.13.
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4.12 (333 nm): ε = 12,000 Lmol-1 cm-1; (305 nm): ε = 7500 Lmol-1 cm-1; (282 nm): ε = 5600 Lmol-1 cm-1 

4.13 (333 nm): ε = 11,000 Lmol-1 cm-1; (295 nm): ε = 17,000 Lmol-1 cm-1 

 
Figure C-17: Normalized absorption spectrum of 4.12 and 4.13 in CH2Cl2 (normalized at the 333 nm peak).
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Figure C-18: Normalized emission spectra of 4.12 and 4.13 in CH2Cl2 (both compounds excited at 333 nm). Concentrations of 
samples 4.12: 6.66 × 10-7 M; 4.13: 6.58 × 10-7 M.
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Table C-1: Coordinates of the HSE06/6-311+G(d,p) Geometry of 4.2 Simulated in C1 Symmetry. 

 

Center Number Atomic Number Atomic  
Type 

Coordinates (Angstroms) 
X Y Z 

      
1 6 0 0.397343 -1.034286 0.006079 
2 6 0 1.831846 1.366935 0.005033 
3 6 0 0.478838 1.393573 0.004814 
4 6 0 -0.250708 0.168294 0.005349 
5 1 0 -0.187411 -1.948899 0.006505 
6 1 0 2.453605 2.255443 0.004641 
7 1 0 -0.028157 2.350431 0.004230 
8 1 0 -1.337385 0.224128 0.005175 
9 5 0 1.909040 -1.014922 0.006259 
10 1 0 2.654896 -1.944609 0.006829 
11 8 0 2.528709 0.233333 0.005703 
12 0 0 1.117336 0.150963 0.005841 
13 0 0 1.117336 0.150963 1.005841 
14 0 0 1.117336 0.150963 -0.994159 
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Figure C-19: Computed optimized structure of 4.2 displaying ghost atom positioning within the central ring.
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Table C-2: Coordinates of the HSE06/6-311+G(d,p) Geometry of 4.6 Simulated in C1 
Symmetry. 

 

Center 
Number 

Atomic 
Number 

Atomic  
Type 

Coordinates (Angstroms) 
X Y Z 

      
1 6 0 2.313696 -0.847202 -0.000463 
2 6 0 1.773142 0.392019 -0.001105 
3 6 0 0.352766 0.539059 -0.001205 
4 6 0 -0.467297 -0.550492 -0.000671 
5 1 0 3.380991 -1.040332 -0.000355 
6 1 0 2.428808 1.253684 -0.001530 
7 1 0 -0.053200 1.548485 -0.001728 
8 1 0 -1.540973 -0.387702 -0.000774 
9 5 0 0.174720 -1.927553 0.000021 
10 8 0 1.575983 -1.953950 0.000063 
11 6 0 -0.529866 -3.315570 0.000705 
12 6 0 0.210024 -4.507233 0.001273 
13 6 0 -1.927638 -3.418374 0.000767 
14 6 0 -0.416966 -5.745876 0.001873 
15 1 0 1.294184 -4.453776 0.001239 
16 6 0 -2.562650 -4.654051 0.001364 
17 1 0 -2.532006 -2.516012 0.000338 
18 6 0 -1.806697 -5.821572 0.001918 
19 1 0 0.175413 -6.655351 0.002306 
20 1 0 -3.646535 -4.708725 0.001398 
21 1 0 -2.299313 -6.788681 0.002386 
22 0 0 0.917534 -0.713656 -0.031292 
23 0 0 0.917534 -0.713656 -1.031292 
24 0 0 0.917534 -0.713656 0.968708 
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Figure C-20: Computed optimized structure of 4.6 displaying ghost atom positioning within the central ring. 
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Table C-3: Coordinates of the HSE06/6-311+G(d,p) Geometry of Hexaphenylbenzene 
Simulated in C1 Symmetry. 

Center 
Number 

Atomic 
Number 

Atomic  
Type 

Coordinates (Angstroms) 
X Y Z 

      
1 6 0 0.698849 -0.795613 0.001780 
2 6 0 2.104734 -0.795723 -0.000351 
3 6 0 2.807484 0.421975 0.000629 
4 6 0 2.104920 1.639783 0.000926 
5 6 0 0.699038 1.639888 -0.002570 
6 6 0 -0.003713 0.422190 -0.000737 
7 6 0 -0.047814 -2.086315 0.009502 
8 6 0 0.041650 -2.970957 -1.066810 
9 6 0 -0.851754 -2.435899 1.096095 
10 6 0 -0.657810 -4.171108 -1.059506 
11 1 0 0.667879 -2.715922 -1.915489 
12 6 0 -1.545592 -3.639160 1.108859 
13 1 0 -0.934432 -1.756280 1.937909 
14 6 0 -1.452662 -4.510679 0.029534 
15 1 0 -0.578355 -4.844742 -1.906515 
16 1 0 -2.163567 -3.894607 1.963483 
17 1 0 -1.996924 -5.449238 0.036838 
18 6 0 2.851560 2.930505 0.007753 
19 6 0 3.654474 3.281440 1.094673 
20 6 0 2.763047 3.813846 -1.069705 
21 6 0 4.348271 4.484730 1.106610 
22 1 0 3.736391 2.602849 1.937389 
23 6 0 3.462475 5.014021 -1.063222 
24 1 0 2.137600 3.557761 -1.918645 
25 6 0 4.256324 5.354927 0.026132 
26 1 0 4.965447 4.741242 1.961492 
27 1 0 3.383781 5.686623 -1.911122 
28 1 0 4.800564 6.293504 0.032793 
29 6 0 -1.495015 0.422301 -0.001466 
30 6 0 -2.207304 -0.093633 -1.085596 
31 6 0 -2.208292 0.938334 1.081964 
32 6 0 -3.596430 -0.090555 -1.088863 
33 1 0 -1.665934 -0.502598 -1.932413 
34 6 0 -3.597422 0.935442 1.083874 
35 1 0 -1.667695 1.347236 1.929303 
36 6 0 -4.296752 0.422490 -0.002836 
37 1 0 -4.133075 -0.493562 -1.941559 
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38 1 0 -4.134844 1.338525 1.936044 
39 1 0 -5.381722 0.422561 -0.003365 
40 6 0 2.851194 -2.086552 -0.006502 
41 6 0 3.655091 -2.437537 -1.092678 
42 6 0 2.761573 -2.969919 1.070842 
43 6 0 4.348750 -3.640910 -1.104014 
44 1 0 3.737884 -1.758919 -1.935287 
45 6 0 3.460861 -4.170179 1.064967 
46 1 0 2.135361 -2.713789 1.919204 
47 6 0 4.255685 -4.511142 -0.023659 
48 1 0 4.966700 -3.897461 -1.958326 
49 1 0 3.381291 -4.842802 1.912768 
50 1 0 4.799818 -5.449784 -0.029847 
51 6 0 -0.047408 2.930712 -0.010983 
52 6 0 0.041172 3.815289 1.065457 
53 6 0 -0.850215 3.280503 -1.098348 
54 6 0 -0.658059 5.015568 1.057531 
55 1 0 0.666525 3.560097 1.914736 
56 6 0 -1.543823 4.483890 -1.111727 
57 1 0 -0.932194 2.600944 -1.940279 
58 6 0 -1.451790 5.355336 -0.032265 
59 1 0 -0.579309 5.689148 1.904649 
60 1 0 -2.160914 4.739496 -1.966943 
61 1 0 -1.995874 6.293994 -0.040053 
62 6 0 4.298785 0.421856 0.001348 
63 6 0 5.011007 -0.092939 1.086065 
64 6 0 5.012135 0.936523 -1.082685 
65 6 0 6.400133 -0.090071 1.089317 
66 1 0 4.469583 -0.500856 1.933351 
67 6 0 6.401263 0.933403 -1.084610 
68 1 0 4.471594 1.344548 -1.930483 
69 6 0 7.100526 0.421602 0.002687 
70 1 0 6.936722 -0.492174 1.942474 
71 1 0 6.938739 1.335413 -1.937253 
72 1 0 8.185496 0.421502 0.003204 
73 0 0 1.354410 0.443517 0.011111 
74 0 0 1.354410 0.443517 1.000000 
75 0 0 1.354410 0.443517 -1.000000 

 

 

.
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Figure C-21: Computed optimized structure of hexaphenylbenzene displaying ghost atom positioning within the central ring. 
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Table C-4: Coordinates of the HSE06/6-311+G(d,p) Geometry of Hexaphenyl-1,2-
azaborine (5.1) Simulated in C1 Symmetry. 

 

Center 
Number 

Atomic 
Number 

Atomic  
Type 

Coordinates (Angstroms) 
X Y Z 

      
1 6 0 2.193775 0.298714 0.006791 
2 6 0 1.503179 1.492731 0.009507 
3 6 0 0.066211 1.515976 -0.002862 
4 6 0 -0.665744 0.341593 -0.009056 
5 6 0 -0.649893 -2.385902 -0.021382 
6 6 0 -0.455982 -3.347615 -1.021488 
7 6 0 -1.562645 -2.692781 0.997097 
8 6 0 -1.138786 -4.558329 -1.007038 
9 1 0 0.243346 -3.151263 -1.829174 
10 6 0 -2.231706 -3.910581 1.031740 
11 1 0 -1.760790 -1.960967 1.775182 
12 6 0 -2.024515 -4.847276 0.025402 
13 1 0 -0.974375 -5.280948 -1.800295 
14 1 0 -2.925873 -4.123344 1.838668 
15 1 0 -2.552985 -5.795096 0.042936 
16 6 0 3.683782 0.278488 0.028168 
17 6 0 4.409392 0.768141 -1.058234 
18 6 0 4.377405 -0.208748 1.137458 
19 6 0 5.798162 0.765327 -1.039887 
20 1 0 3.878735 1.160463 -1.919204 
21 6 0 5.765815 -0.206485 1.158680 
22 1 0 3.825773 -0.588835 1.990752 
23 6 0 6.480660 0.278026 0.068768 
24 1 0 6.347961 1.149379 -1.892701 
25 1 0 6.290761 -0.584465 2.029705 
26 1 0 7.565428 0.278178 0.084996 
27 6 0 -0.621092 2.840780 -0.019603 
28 6 0 -1.416294 3.202707 -1.108298 
29 6 0 -0.496742 3.734731 1.045302 
30 6 0 -2.064733 4.430764 -1.136261 
31 1 0 -1.529722 2.511220 -1.936730 
32 6 0 -1.155546 4.957323 1.024816 
33 1 0 0.121160 3.469506 1.896854 
34 6 0 -1.938827 5.311702 -0.068112 
35 1 0 -2.676043 4.696657 -1.992473 
36 1 0 -1.052567 5.637426 1.864088 
37 1 0 -2.449313 6.268916 -0.086372 
38 6 0 2.294806 -2.121439 -0.050548 
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39 6 0 3.013641 -2.459273 -1.192150 
40 6 0 2.288835 -2.976455 1.045198 
41 6 0 3.736079 -3.645155 -1.230062 
42 1 0 3.006716 -1.791236 -2.046289 
43 6 0 3.008705 -4.163602 1.002262 
44 1 0 1.709319 -2.711494 1.922647 
45 6 0 3.736348 -4.499930 -0.133527 
46 1 0 4.297404 -3.902369 -2.122007 
47 1 0 2.996897 -4.828807 1.858998 
48 1 0 4.298881 -5.426781 -0.165666 
49 6 0 -2.151743 0.366500 0.017429 
50 6 0 -2.851909 0.957589 1.074014 
51 6 0 -2.889319 -0.239671 -1.003886 
52 6 0 -4.240738 0.951474 1.103707 
53 1 0 -2.298576 1.426539 1.881073 
54 6 0 -4.278314 -0.236812 -0.982569 
55 1 0 -2.363706 -0.719689 -1.823148 
56 6 0 -4.960883 0.358306 0.072542 
57 1 0 -4.762286 1.414183 1.935532 
58 1 0 -4.829079 -0.707934 -1.790413 
59 1 0 -6.045715 0.356256 0.093276 
60 6 0 2.266697 2.774946 0.024603 
61 6 0 3.039635 3.137574 1.129145 
62 6 0 2.214327 3.647275 -1.064910 
63 6 0 3.747134 4.333349 1.143413 
64 1 0 3.087402 2.472373 1.985255 
65 6 0 2.921810 4.842480 -1.054546 
66 1 0 1.608934 3.386209 -1.926951 
67 6 0 3.691610 5.190188 0.050200 
68 1 0 4.342898 4.596023 2.011605 
69 1 0 2.869444 5.505871 -1.911728 
70 1 0 4.243376 6.124357 0.059304 
71 5 0 0.075945 -0.987420 -0.020360 
72 7 0 1.521867 -0.907318 -0.009053 
73 0 0 0.699907 0.271937 -0.000661 
74 0 0 0.699907 0.271937 -0.995809 
75 0 0 0.699907 0.271937 0.991061 

 

.
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Figure C-22: Computed optimized structure of hexaphenyl-1.2-azaborine (5.1) displaying ghost atom positioning within the central 
ring. 
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Table C-5: Coordinates of the HSE06/6-311+G(d,p) Geometry of 4.12 Simulated in C1 
Symmetry. 

 
Center 

Number 
Atomic 
Number 

Atomic  
Type 

Coordinates (Angstroms) 
X Y Z 

      
1 6 0 1.408961 1.107799 -0.088849 
2 6 0 0.748718 2.308586 -0.037103 
3 6 0 -0.699999 2.321911 -0.012457 
4 6 0 -1.433889 1.151674 -0.010585 
5 5 0 -0.652785 -

0.157407 
0.025852 

6 8 0 0.732174 -
0.042656 

-0.033386 

7 6 0 -1.158090 -
1.632271 

0.134779 

8 6 0 -0.335556 -
2.678585 

-0.312965 

9 6 0 -2.392886 -
1.977970 

0.703242 

10 6 0 -0.731197 -
4.005804 

-0.213990 

11 1 0 0.630296 -
2.440908 

-0.748109 

12 6 0 -2.786674 -
3.305737 

0.820308 

13 1 0 -3.055521 -
1.200183 

1.067198 

14 6 0 -1.960074 -
4.322988 

0.356270 

15 1 0 -0.080748 -
4.795070 

-0.577573 

16 1 0 -3.743277 -
3.547043 

1.272628 

17 1 0 -2.271394 -
5.359457 

0.439784 

18 6 0 -2.918348 1.169369 -0.010603 
19 6 0 -3.646720 1.711121 1.052690 
20 6 0 -3.623657 0.599822 -1.075170 
21 6 0 -5.035928 1.688248 1.049116 
22 1 0 -3.116343 2.150603 1.890931 
23 6 0 -5.012859 0.586265 -1.085375 
24 1 0 -3.072527 0.161126 -1.901314 
25 6 0 -5.725234 1.129318 -0.021643 
26 1 0 -5.582015 2.110910 1.886301 
27 1 0 -5.540137 0.144346 -1.924660 
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28 1 0 -6.810056 1.114631 -0.025634 
29 6 0 2.864303 0.881341 -0.191375 
30 6 0 3.701273 1.688298 -0.968543 
31 6 0 3.418479 -

0.219316 
0.473370 

32 6 0 5.057891 1.410224 -1.061365 
33 1 0 3.289224 2.530030 -1.511364 
34 6 0 4.777541 -

0.486068 
0.388876 

35 1 0 2.772448 -
0.862587 

1.059794 

36 6 0 5.603298 0.328829 -0.377800 
37 1 0 5.691353 2.041099 -1.675843 
38 1 0 5.192284 -

1.335614 
0.921163 

39 1 0 6.665250 0.118294 -0.448205 
40 6 0 1.514127 3.584175 0.004012 
41 6 0 2.348502 3.868209 1.086951 
42 6 0 1.416284 4.520544 -1.028375 
43 6 0 3.073634 5.052513 1.134700 
44 1 0 2.431750 3.147959 1.894714 
45 6 0 2.142632 5.703427 -0.983490 
46 1 0 0.766673 4.318082 -1.873472 
47 6 0 2.974226 5.973768 0.098306 
48 1 0 3.717867 5.255210 1.983977 
49 1 0 2.057264 6.417605 -1.795903 
50 1 0 3.539843 6.898907 0.133829 
51 6 0 -1.387271 3.645724 -0.002029 
52 6 0 -2.193549 4.026792 -1.075656 
53 6 0 -1.249134 4.518229 1.078724 
54 6 0 -2.841337 5.255607 -1.072654 
55 1 0 -2.314553 3.352373 -1.916841 
56 6 0 -1.908585 5.740565 1.088849 
57 1 0 -0.620805 4.236702 1.917376 
58 6 0 -2.703456 6.115328 0.011147 
59 1 0 -3.461132 5.538572 -1.917102 
60 1 0 -1.796409 6.404533 1.939634 
61 1 0 -3.213849 7.072686 0.016709 
62 0 0 -0.028822 1.049494 0.008684 
63 0 0 -0.028822 1.049494 -0.991316 
64 0 0 -0.028822 1.049494 1.008684 
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Figure C-23: Computed optimized structure of 4.12 displaying ghost atom positioning within the central ring. 
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Table C-6: Coordinates of the HSE06/6-311+G(d,p) Geometry of 4.13 Simulated in C1 
Symmetry. 

 
Center 

Number 
Atomic 
Number 

Atomic  
Type 

Coordinates (Angstroms) 
X Y Z 

      
1 6 0 -0.318282 -0.630638 -0.051679 
2 6 0 1.296533 1.705251 -0.202112 
3 6 0 -0.062846 1.826124 -0.069537 
4 6 0 -0.879913 0.630928 -0.009529 
5 5 0 1.203775 -0.711534 -0.099836 
6 8 0 1.877575 0.502416 -0.189614 
7 6 0 2.149685 -1.952631 -0.046274 
8 6 0 1.786965 -3.172102 0.543539 
9 6 0 3.450864 -1.858518 -0.564721 
10 6 0 2.674494 -4.235870 0.613663 
11 1 0 0.791555 -3.296784 0.955901 
12 6 0 4.335090 -2.924464 -0.513380 
13 1 0 3.774760 -0.923510 -1.011523 
14 6 0 3.963828 -4.135641 0.081282 
15 1 0 2.353716 -5.170464 1.062939 
16 1 0 5.339183 -2.810268 -0.910091 
17 6 0 4.905728 -5.271257 0.148221 
18 6 0 4.959959 -6.092533 1.279736 
19 6 0 5.768075 -5.554371 -0.916597 
20 6 0 5.846039 -7.159601 1.344787 
21 1 0 4.317121 -5.875129 2.126578 
22 6 0 6.653984 -6.621826 -0.852562 
23 1 0 5.724200 -4.945136 -1.813607 
24 6 0 6.697173 -7.429383 0.278654 
25 1 0 5.878257 -7.778117 2.235828 
26 1 0 7.307360 -6.829350 -1.693729 
27 1 0 7.389264 -8.263226 0.329046 
28 6 0 -1.157956 -1.854318 -0.017899 
29 6 0 -1.973869 -2.158040 1.076177 
30 6 0 -1.114510 -2.759026 -1.083377 
31 6 0 -2.724663 -3.326852 1.102305 
32 1 0 -2.015430 -1.471581 1.915261 
33 6 0 -1.872862 -3.922863 -1.063328 
34 1 0 -0.474802 -2.545203 -1.934057 
35 6 0 -2.680013 -4.212904 0.031288 
36 1 0 -3.348439 -3.545122 1.963132 
37 1 0 -1.827865 -4.608508 -1.903306 
38 1 0 -3.268432 -5.124201 0.050676 
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39 6 0 -2.358847 0.798940 0.085413 
40 6 0 -3.183642 0.351507 -0.947731 
41 6 0 -2.944125 1.392180 1.205270 
42 6 0 -4.562449 0.500828 -0.866967 
43 1 0 -2.739035 -0.119972 -1.817888 
44 6 0 -4.323638 1.527749 1.293108 
45 1 0 -2.313976 1.749431 2.013149 
46 6 0 -5.137153 1.086739 0.255123 
47 1 0 -5.189467 0.151596 -1.680701 
48 1 0 -4.763713 1.984505 2.173432 
49 1 0 -6.214326 1.198099 0.321303 
50 6 0 2.286041 2.789936 -0.356424 
51 6 0 3.540547 2.645864 0.247933 
52 6 0 2.038157 3.928879 -1.128737 
53 6 0 4.508875 3.630275 0.109908 
54 1 0 3.748040 1.754800 0.829464 
55 6 0 3.013990 4.904683 -1.275876 
56 1 0 1.082988 4.047283 -1.625233 
57 6 0 4.248780 4.764482 -0.651537 
58 1 0 5.471378 3.509002 0.595647 
59 1 0 2.808861 5.777632 -1.886379 
60 1 0 5.007221 5.532031 -0.764157 
61 6 0 -0.688060 3.173370 0.027290 
62 6 0 -0.393204 4.004379 1.110163 
63 6 0 -1.576889 3.634729 -0.946910 
64 6 0 -0.964534 5.266544 1.214653 
65 1 0 0.295664 3.655809 1.873107 
66 6 0 -2.146360 4.897535 -0.845505 
67 1 0 -1.821265 2.998501 -1.791126 
68 6 0 -1.842157 5.718163 0.235774 
69 1 0 -0.722794 5.898371 2.063041 
70 1 0 -2.831880 5.240931 -1.613275 
71 1 0 -2.289079 6.703548 0.315412 
72 0 0 0.489289 0.509824 -0.073490 
73 0 0 0.489289 0.509824 -1.073490 
74 0 0 0.489289 0.509824 0.926510 
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Figure C-24: Computed optimized structure of 4.13 displaying ghost atom positioning within the central ring. 
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Figure C-25: Frontier orbitals of 4.2 depicting contributions to the aromaticity at an isovalue of 0.02 a.u. 
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Figure C-26: Frontier orbitals of 4.12 depicting contributions to the aromaticity at an isovalue of 0.02 a.u. 
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Figure C-27: Frontier orbitals of 4.13 depicting contributions to the aromaticity at an isovalue of 0.02 a.u. 
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Figure C-28: a) Solid-state structure of 4.12. Thermal ellipsoids are drawn at the 50% probability level and hydrogen atoms have been 
omitted for clarity. Selected bond lengths (Å) and angles (˚): B(1)-O(1) 1.388(17), B(1)-C(1) 1.510(19), C(1)-C(2) 1.388(18), C(2)-C(3) 
1.449(17), C(3)-C(4) 1.379(18), C(4)-O(1) 1.360(15), B(1)-C(51) 1.567(2), O(1)-B(1)-C(51) 112.40(11), O(1)-B(1)-C(1) 116.70(12), 
C(51)-B(1)-C(1) 130.88(12), C(4)-C(3)-C(2) 118.93(12), C(3)-C(2)-C(1) 121.56(11), C(2)-C(1)-B(1) 117.58(11); b) Simplified view 
along the BOC4 plane of 4.12 (carbon atoms from aryl groups except ipso carbons have been removed). 

Note: Similar boron heterocycles bearing phenyl groups on boron and carbon atoms within the ring have shown disorder. Therefore, 
the bond distances and bond angles are not discussed in detail. However, the structure confirms the identity of 4.12. 
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Table C-7: Crystallographic Data for 4.12 and 4.13. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

  

Entry 4.12 4.13 
CCDC 1457937 1457938 

Empirical formula C34H25BO C40H29BO 
FW (g/mol) 460.35 536.44 

Crystal system Triclinic Triclinic 
Space group P-1 P-1 

a (Å) 9.7747(5) 10.5923(10) 
b (Å) 11.2285(5) 11.7946(7) 
c (Å) 12.0790(6) 12.5909(7) 
 (deg) 86.439(2) 91.861(2) 
 (deg) 70.815(1) 94.751(2) 
 (deg) 85.025(1) 113.478(2) 
V (Å3) 1246.59(11) 1434.13(14) 

Z 2 2 
Dc (mg m-3) 1.226 1.242 

radiation,  (Å) 0.71073 0.71073 
temp (K) 150(2) 150(2) 

R1[I>2I]a 0.0470 0.0434 
wR2(F2)a 0.1190 0.1281 
GOF (S)a 1.014 1.064 

a R1(F[I > 2(I)]) = ∑‖|Fo| - |Fc |‖/ ∑ |Fo|; wR2(F2 [all data]) = [w(Fo
2 - Fc

2)2]1/2; S(all data) = [w(Fo
2 - Fc

2)2/(n - p)]1/2 (n = 
no. of data; p = no. of parameters varied; w = 1/[2(Fo

2) + (aP)2 + bP] where P = (Fo
2 + 2Fc

2)/3 and a and b are constants 
suggested by the refinement program. 
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Figure C-29: 1H NMR spectrum of the reaction of 4.14 in CDCl3.
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Figure C-30: Expansion of aryl region of 1H NMR spectrum of 4.14 in CDCl3.
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Figure C-31: 11B{1H} NMR spectrum of 4.14 in CDCl3.
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Figure C-32: 13C{1H} NMR spectrum of 4.14 in CDCl3. 
  



 224 

 
 

Figure C-33: Expansion of 13C{1H} NMR spectrum of 4.14 in CDCl3.
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Figure C-34: FT-IR spectrum of 4.14.  
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Figure C-35: 1H NMR spectrum of 4.15 in CDCl3 (* n-pentane, • grease).
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Figure C-36: Expansion of 1H NMR spectrum of 4.15 in CDCl3.  
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Figure C-37: 11B{1H} NMR spectrum of 4.15 in CDCl3.
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Figure C-38: 13C{1H} NMR spectrum of 4.15 in CDCl3. 
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Figure C-39: Expansion of 13C{1H} NMR spectrum of 4.15 in CDCl3.
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Figure C-40: FT-IR spectrum of 4.15.
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4.14 (340 nm): ε = 11,000 Lmol-1 cm-1; (260 nm): ε = 4,200 Lmol-1 cm-1 

4.15 (345 nm): ε = 10,000 Lmol-1 cm-1; (260 nm): ε = 17,000 Lmol-1 cm-1 

Figure C-41: Normalized absorption spectrum of 4.14 and 4.15 in CH2Cl2 (normalized at the 260 nm shoulder). 
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Figure C-42: Normalized emission spectra of 4.14 and 4.15 in CH2Cl2 (compounds excited at 340 and 345 nm respectively). 
Concentrations of samples 4.14: 1.55 × 10-7 M; 4.15: 9.33 × 10-7 M.  
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Table C-8: Coordinates of the HSE06/6-311+G(d,p) Geometry of 4.11 Simulated in C1 
Symmetry. 

 
Center  

Number 
Atomic 
Number 

Atomic 
Type 

Coordinates (Angstroms) 
X Y Z 

1 6 0 1.562864 2.368292 -1.275456 
2 6 0 1.622986 2.969046 -0.069571 
3 6 0 1.094967 2.390279 1.128769 
4 6 0 0.475196 1.184064 1.212476 
5 1 0 1.976205 2.841426 -2.159653 
6 1 0 2.098616 3.942914 -0.007715 
7 1 0 1.211552 2.981883 2.034683 
8 1 0 0.144267 0.915967 2.213595 
9 5 0 0.233401 0.22825 0.030876 
10 16 0 0.857504 0.827018 -1.610396 
11 7 0 -0.411768 -1.033088 0.112707 
12 6 0 -0.930324 -1.519265 1.400961 
13 1 0 -0.715316 -0.742247 2.133462 
14 6 0 -0.63017 -1.963742 -1.010688 
15 1 0 -1.13867 -2.831252 -0.580219 
16 6 0 -0.212392 -2.780918 1.878689 
17 1 0 -0.394789 -3.636543 1.221026 
18 1 0 0.866579 -2.613936 1.929388 
19 1 0 -0.563353 -3.058453 2.877187 
20 6 0 -2.448454 -1.695722 1.389768 
21 1 0 -2.801329 -1.96927 2.388602 
22 1 0 -2.942152 -0.765971 1.09591 
23 1 0 -2.770819 -2.485305 0.704047 
24 6 0 0.671304 -2.498395 -1.606638 
25 1 0 1.249925 -1.720473 -2.108831 
26 1 0 1.299204 -2.936001 -0.826584 
27 1 0 0.448867 -3.275627 -2.344349 
28 6 0 -1.576126 -1.40709 -2.073581 
29 1 0 -1.148079 -0.554374 -2.604378 
30 1 0 -1.799341 -2.181543 -2.81409 
31 1 0 -2.516929 -1.085082 -1.62047 
32 0 0 0.836324 1.537531 -0.208005 
33 0 0 1.738119 1.105367 -0.208005 
34 0 0 -0.027439 2.041429 -0.208005 
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Figure C-43: Computed optimized structure of 4.11 displaying ghost atom positioning within the central ring. 
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Table C-9: Coordinates of the HSE06/6-311+G(d,p) Geometry of 4.14 Simulated in C1 
Symmetry. 

 
Center  

Number 
Atomic 
Number 

Atomic 
Type 

Coordinates (Angstroms) 
X Y Z 

1 6 0 2.47066 0.921773 -0.010996 
2 6 0 1.676818 2.041651 0.002293 
3 6 0 0.226361 2.010864 0.008779 
4 6 0 -0.541819 0.858491 0.005561 
5 5 0 0.062109 -0.541778 0.004643 
6 16 0 1.855916 -0.69797 0.013102 
7 6 0 -0.691634 -1.914994 0.01464 
8 6 0 -1.805084 -2.135521 0.840403 
9 6 0 -0.250206 -2.988852 -0.774176 
10 6 0 -2.438107 -3.370818 0.88422 
11 1 0 -2.181875 -1.328212 1.459827 
12 6 0 -0.893107 -4.220667 -0.749623 
13 1 0 0.606373 -2.854838 -1.429073 
14 6 0 -1.987862 -4.416241 0.084475 
15 1 0 -3.291306 -3.516391 1.538998 
16 1 0 -0.53728 -5.029399 -1.379914 
17 1 0 -2.489476 -5.378298 0.110161 
18 6 0 3.955009 0.952919 -0.06275 
19 6 0 4.624729 1.594203 -1.108242 
20 6 0 4.706174 0.290918 0.912239 
21 6 0 6.011337 1.585457 -1.166956 
22 1 0 4.053048 2.098881 -1.878549 
23 6 0 6.09419 0.292872 0.857878 
24 1 0 4.19641 -0.219274 1.723159 
25 6 0 6.751366 0.940215 -0.181794 
26 1 0 6.515916 2.084189 -1.987757 
27 1 0 6.662669 -0.215246 1.629712 
28 1 0 7.835251 0.938464 -0.227074 
29 6 0 2.363461 3.370912 0.02607 
30 6 0 3.12594 3.74551 1.133253 
31 6 0 2.269134 4.254108 -1.051055 
32 6 0 3.776148 4.972885 1.166483 
33 1 0 3.211217 3.064687 1.97425 
34 6 0 2.922923 5.478894 -1.022348 
35 1 0 1.676266 3.979674 -1.917392 
36 6 0 3.67735 5.843782 0.08777 
37 1 0 4.363186 5.247612 2.036729 
38 1 0 2.84051 6.152052 -1.86936 
39 1 0 4.185307 6.802151 0.11118 
40 6 0 -2.030019 0.959533 0.01894 
41 6 0 -2.776093 0.450572 -1.047303 



 237 

42 6 0 -2.716302 1.507509 1.106413 
43 6 0 -4.164 0.509364 -1.039706 
44 1 0 -2.259029 0.001608 -1.889614 
45 6 0 -4.104671 1.554648 1.121924 
46 1 0 -2.154619 1.898941 1.948081 
47 6 0 -4.83468 1.060453 0.046367 
48 1 0 -4.723208 0.114946 -1.88194 
49 1 0 -4.617806 1.981943 1.977418 
50 1 0 -5.918809 1.100832 0.056607 
51 6 0 -0.468596 3.33591 0.007959 
52 6 0 -1.223522 3.731053 -1.09711 
53 6 0 -0.389071 4.191753 1.107349 
54 6 0 -1.878105 4.956075 -1.106634 
55 1 0 -1.30095 3.069313 -1.953496 
56 6 0 -1.054091 5.410986 1.104469 
57 1 0 0.197592 3.899428 1.972079 
58 6 0 -1.797768 5.799413 -0.004424 
59 1 0 -2.45811 5.248983 -1.975632 
60 1 0 -0.98713 6.061632 1.970221 
61 1 0 -2.313199 6.75406 -0.008568 
62 0 0 1.032008 0.646188 0.004849 
63 0 0 1.032008 0.646188 1.004849 
64 0 0 1.032008 0.646188 -0.995151 
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Figure C-44: Computed optimized structure of 4.14 displaying ghost atom positioning within the central ring. 
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Table C-10: Coordinates of the HSE06/6-311+G(d,p) Geometry of 4.15 Simulated in C1 
Symmetry. 

 
Center  

Number 
Atomic 
Number 

Atomic 
Type 

Coordinates (Angstroms) 
X Y Z 

1 6 0 2.073677 1.543772 -0.066151 
2 6 0 1.29148 2.6706 -0.016156 
3 6 0 -0.158944 2.65361 0.020362 
4 6 0 -0.93866 1.509219 0.007059 
5 5 0 -0.349154 0.10289 -0.033429 
6 16 0 1.443634 -0.070133 -0.059188 
7 6 0 -1.115126 -1.262091 -0.039742 
8 6 0 -2.232795 -1.489986 0.778148 
9 6 0 -0.686059 -2.333575 -0.838308 
10 6 0 -2.874954 -2.718175 0.80449 
11 1 0 -2.61364 -0.688693 1.402751 
12 6 0 -1.33877 -3.557388 -0.831205 
13 1 0 0.177935 -2.207266 -1.484953 
14 6 0 -2.445162 -3.775454 -0.004738 
15 1 0 -3.74666 -2.850735 1.437518 
16 1 0 -0.968532 -4.366023 -1.453494 
17 6 0 3.55691 1.561171 -0.149084 
18 6 0 4.210344 2.212095 -1.198855 
19 6 0 4.322078 0.875932 0.798523 
20 6 0 5.595142 2.189719 -1.288531 
21 1 0 3.62733 2.734849 -1.948306 
22 6 0 5.708518 0.864075 0.713304 
23 1 0 3.824826 0.358028 1.612322 
24 6 0 6.349647 1.521102 -0.330323 
25 1 0 6.086878 2.69625 -2.112345 
26 1 0 6.288314 0.337638 1.464146 
27 1 0 7.432187 1.508623 -0.399685 
28 6 0 -0.839245 3.985394 0.066761 
29 6 0 -0.723123 4.812393 1.184805 
30 6 0 -1.615998 4.41658 -1.009261 
31 6 0 -1.37301 6.038978 1.22877 
32 1 0 -0.11921 4.491492 2.027234 
33 6 0 -2.255455 5.649091 -0.97212 
34 1 0 -1.722355 3.777567 -1.879653 
35 6 0 -2.138346 6.463669 0.148307 
36 1 0 -1.277094 6.666718 2.108574 
37 1 0 -2.852725 5.970476 -1.819081 
38 1 0 -2.642047 7.424032 0.180159 
39 6 0 -2.425291 1.62426 0.048523 
40 6 0 -3.193516 1.14598 -1.01623 
41 6 0 -3.088356 2.152444 1.15994 
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42 6 0 -4.580598 1.214208 -0.982971 
43 1 0 -2.694273 0.713052 -1.877475 
44 6 0 -4.475935 2.209381 1.200528 
45 1 0 -2.509227 2.520321 2.000402 
46 6 0 -5.228163 1.744816 0.127071 
47 1 0 -5.157388 0.842927 -1.823845 
48 1 0 -4.970999 2.620776 2.074265 
49 1 0 -6.31162 1.792114 0.157386 
50 6 0 1.99143 3.992727 0.013934 
51 6 0 2.783009 4.342817 1.108594 
52 6 0 1.881055 4.89338 -1.047113 
53 6 0 3.445681 5.563437 1.145488 
54 1 0 2.881059 3.648419 1.937014 
55 6 0 2.547361 6.111296 -1.014968 
56 1 0 1.265661 4.638137 -1.903582 
57 6 0 3.330595 6.451893 0.082839 
58 1 0 4.055366 5.819003 2.005945 
59 1 0 2.452125 6.79817 -1.849534 
60 1 0 3.848315 7.404945 0.109128 
61 6 0 -3.139024 -5.079057 0.011136 
62 6 0 -3.320641 -5.81084 -1.167573 
63 6 0 -3.630919 -5.616131 1.20579 
64 6 0 -3.97121 -7.037538 -1.152257 
65 1 0 -2.969407 -5.400199 -2.108731 
66 6 0 -4.281224 -6.842916 1.221888 
67 1 0 -3.478462 -5.076208 2.13472 
68 6 0 -4.454488 -7.559366 0.042681 
69 1 0 -4.109428 -7.584362 -2.079302 
70 1 0 -4.646417 -7.245497 2.161069 
71 1 0 -4.962645 -8.517704 0.054746 
72 0 0 0.605558 1.437619 -0.00354 
73 0 0 0.605558 1.437619 0.99646 
74 0 0 0.605558 1.437619 -1.00354 
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Figure C-45: Computed optimized structure of 4.15 displaying ghost atom positioning within the central ring. 
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Figure C-46: Solid-state structure of 4.14. Thermal ellipsoids are drawn at the 50% probability level and hydrogen atoms have been 
omitted for clarity. 

Note: Similar boron heterocycles bearing phenyl groups on boron and carbon atoms within the ring have shown disorder. Therefore, 
the bond distances and bond angles are not discussed in detail. However, the structure confirms the identity of 4.14.  
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Table C-11: Crystallographic Data for 4.14 and 4.15. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a R1(F[I > 2(I)]) = ∑‖|Fo| - |Fc |‖/ ∑ |Fo|; wR2(F2 [all data]) = [w(Fo
2 - Fc

2)2]1/2; S(all data) = [w(Fo
2 - Fc

2)2/(n - p)]1/2 (n = no. of data; p = no. of                                                  
parameters varied; w = 1/[2(Fo

2) + (aP)2 + bP] where P = (Fo
2 + 2Fc

2)/3 and a and b are constants suggested by the refinement program. 
 
 
 
 

Entry 3.16 3.17 
CCDC 1507212 1507213 

Empirical formula C34H25BS C40H29BS 
FW (g/mol) 476.41 552.50 

Crystal system Triclinic Triclinic 
Space group P-1 P21/n 

a (Å) 10.572(8) 9.4650(7) 
b (Å) 11.407(8) 20.4026(13) 
c (Å) 12.957(10) 15.6377(6) 
 (deg) 63.900(16) 90 
 (deg) 73.750(18) 102.068(2) 
 (deg) 70.575(16) 90 
V (Å3) 1306.8(17) 2953.1(3) 

Z 2 4 
Dc (mg m-3) 1.211 1.243 

radiation,  (Å) 0.71073 0.71073 
temp (K) 150(2) 150(2) 

R1[I>2I]a 0.0921 0.0482 
wR2(F2)a 0.3193 0.1232 
GOF (S)a 1.122 1.057 
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APPENDIX D 
 
 

Supplementary Information for Chapter Five 
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Figure D-1: 1H NMR spectrum of 1.15-Cl in CDCl3.   
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Figure D-2: 11B{1H} NMR spectrum of 1.15-Cl in CDCl3.  
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Figure D-3: 1H NMR spectrum of 5.5 in CDCl3.   
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Figure D-4: Expansion of 1H NMR spectrum of 5.5 in CDCl3 (aryl region) .   
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Figure D-5: 11B{1H} NMR spectrum of 5.5 in CDCl3.   
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Figure D-6: 13C{1H} NMR spectrum of 5.5 in CDCl3.   
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Figure D-7: Expansion of 13C{1H} NMR spectrum of 5.5 in CDCl3 (aryl region).  
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Figure D-8: FT-IR spectrum of 5.5.  



 253 

 
Figure D-9: 1H NMR spectrum of 5.6 in C6D6.  
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Figure D-10: Expansion of 1H NMR spectrum of 5.6 in C6D6 (aryl region).   
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Figure D-11: 11B{1H} NMR spectrum of 5.6 in CDCl3.   



 256 

 
 

Figure D-12: 13C{1H} NMR spectrum of 5.6 in CDCl3.  
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Figure D-13: Expansion of 13C{1H} NMR spectrum of 5.6 in CDCl3 (aryl region).  
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Figure D-14: FT-IR spectrum of 5.6.  
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Figure D-15: 1H NMR spectrum of 5.7 in CDCl3 (*grease).  
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Figure D-16: Expansion of 1H NMR spectrum of 5.7 in CDCl3 (aryl region).   
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Figure D-17: 11B{1H} NMR spectrum of 5.7 in CDCl3.   
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Figure D-18: 13C{1H} NMR spectrum of 5.7 in CDCl3 (*grease).   
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Figure D-19: Expansion of 13C{1H} NMR spectrum of 5.7 in CDCl3 (aryl region).  
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Figure D-20: FT-IR spectrum of 5.7.  
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Figure D-21: 1H NMR spectrum of 5.8 in CDCl3 (*grease).   
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Figure D-22: Expansion of 1H NMR spectrum of 5.8 in CDCl3 (aryl region).   
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Figure D-23: 11B{1H} NMR spectrum of 5.8 in CDCl3.   
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Figure D-24: 13C{1H} NMR spectrum of 5.8 in CDCl3 (*grease). 
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Figure D-25: Expansion of 13C{1H} NMR spectrum of 5.8 in CDCl3 (aryl region).  
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Figure D-26: FT-IR spectrum of 5.8.  
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Figure D-27: 1H NMR spectrum of 5.9 in CDCl3 (*CH2Cl2).. 
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Figure D-28: Expansion of 1H NMR spectrum of 5.9 in CDCl3 (aryl region).  
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Figure D-29: 11B{1H} NMR spectrum of 5.9 in CDCl3.  
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Figure D-30: 13C{1H} NMR spectrum of 5.9 in CDCl3.   
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Figure D-31: Expansion of 13C{1H} NMR spectrum of 5.9 in CDCl3 (aryl region).  



 276 

 
 

Figure D-32: FT-IR spectrum of 5.9.  
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Gutmann-Beckett Studies 
 
For the Gutmann−Beckett studies, samples were prepared in a 1:1 stoichiometric ratio of 

Lewis acid/Et3PO. Subsequent 31P{1H} NMR spectroscopy was done in C6D6. Samples 

were prepared in a glovebox under a nitrogen atmosphere. Single crystals for X-ray 

diffraction studies were grown from a dichloromethane solution of the adduct by vapor 

diffusion into hexanes.  

 

1H NMR (600 MHz, CDCl3): δ 7.68 (d, J = 6.0 Hz, 2H), δ 7.25 (d, J = 6.0 Hz, 1H), 7.11-

7.00 (m, 12H), 6.91-6.86 (m, 8H), 6.79 (t, J = 6.0 Hz, 2H, 1.72 (dq, J = 18.0, 6.0 Hz, 6H), 

1.04 (dt, J = 18.0, 6.0 Hz, 9H) 

31P{1H} NMR (243 MHz, C6D6): δ 76.6 (br)  

11B{1H} NMR (193 MHz, C6D6): δ 7.4 (br)  

 

1H NMR (600 MHz, C6D6): δ 7.84 (d, J = 6.0 Hz, 2H), 7.81 (d, J = 6.0 Hz, 2H), 7.67 (d, J 

= 6.0 Hz, 2H), 7.42-7.39 (m, 2H), 7.35-7.32 (m, 2H), 7.27-7.23 (m, 3H), 0.85-0.82 (m, 

6H), 0.40-0.28 (m, 9H)   

31P{1H} NMR (243 MHz, C6D6): δ 74.1 (br)  

11B{1H} NMR (193 MHz, C6D6): δ 6.0 (br)  
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Figure D-33: 1H NMR spectrum of 1.7-Ph·OPEt3 in CDCl3 (*CH2Cl2).  
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Figure D-34: Expansion of 1H NMR spectrum of 1.7-Ph·OPEt3 in CDCl3.   
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Figure D-35: 11B{1H} NMR spectrum of 1.7-Ph·OPEt3 in C6D6.  
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Figure D-36: 31P NMR spectrum of 1.7-Ph·OPEt3 in C6D6.  
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Figure D-37: 1H NMR spectrum of 1.15-Ph·OPEt3 in C6D6.  



 283 

 
 

Figure D-38: Expansion of 1H NMR spectrum of 1.15-Ph·OPEt3 in C6D6 (aryl region).  
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Figure D-39: 11B{1H} NMR spectrum of 1.15-Ph·OPEt3 in C6D6.  
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Figure D-40: 31P NMR spectrum of 1.15-Ph·OPEt3 in C6D6.  
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Figure D-41: Normalized absorption spectra of 5.5-5.9 in CH2Cl2 under an N2 atmosphere (spectra have their respective λmax listed above 
their respective peaks).  
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Figure D-42: Normalized emission spectra of 5.5-5.9 in CH2Cl2 under an N2 atmosphere (all emission spectra excited at their 
respective λmax and correspondingly labeled).  
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Table D-1: Crystallographic Data for 5.5-5.9, 1.7-Ph·OPEt3, and 1.15-Ph·OPEt3. 

 a R1(F[I > 2(I)]) = ∑‖|Fo| - |Fc |‖/ ∑ |Fo|; wR2(F2 [all data]) = [w(Fo
2 - Fc

2)2]1/2; S(all data) = [w(Fo
2 - Fc

2)2/(n - p)]1/2 (n = no. of data; p = no. of 
parameters varied; w = 1/[2(Fo

2) + (aP)2 + bP] where P = (Fo
2 + 2Fc

2)/3 and a and b are constants suggested by the refinement program. 
 

Entry 5.5 5.6 5.7 5.8 5.9 1.7-
Ph·OPEt3 

1.15-·OPEt3 

CCDC 1819488 1819489 1819490 1819491 1819492 1819493 1819494 
Empirical 
formula 

C18H13BClN C24H18BN3 C22H23BClN C28H28BN C24H18BN C40H40BOP C24H28BOP 

FW (g/mol) 289.55 359.22 347.67 389.32 331.20 578.50 374.24 
Crystal 
system 

Monoclinic Triclinic Monoclinic Monoclinic Tetragonal Monoclinic Monoclinic 

Space group P21/n P-1 P21/c P21/c I41/a P21/n Pn 
a (Å) 11.4311(11) 8.3238(12) 13.679(15) 15.8892(14) 26.7935(17) 9.0948(3) 9.8145(9) 
b (Å) 7.5161(6) 9.5871(14) 12.5898(13) 12.4193(10) 26.7935(17) 36.1717(13) 15.5763(15) 
c (Å) 17.3831(16) 11.8893(15) 10.2613(10) 11.0719(9) 9.9207(13) 10.2433(4) 13.7943(13) 
 (deg) 90 83.315(4) 90 90 90 90 90 
 (deg) 101.691(3) 81.252(4) 97.732(3) 104.771(3) 90 110.991(2) 90.023(3) 
 (deg) 90 76.743(5) 90 90 90 90 90 
V (Å3) 1462.5(2) 909.5(2) 1751.1(3) 2112.6(3) 7122.0(13) 3146.2(2) 2108.8(3) 

Z 4 2 4 4 16 4 4 
Dc (mg m-3) 1.315 1.312 1.319 1.224 1.236 1.221 1.179 
radiation,  

(Å) 
0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 

temp (K) 150(2) 150(2) 150(2) 150(2) 150(2) 150(2) 150(2) 
R1[I>2I]a 0.0481 0.0640 0.0433 0.0499 0.0928 0.0445 0.0492 
wR2(F2)a 0.1053 0.1861 0.1221 0.1109 0.2264 0.1197 0.1104 
GOF (S)a 1.046 1.153 1.147 1.042 1.221 1.110 1.025 
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Figure D-43: Solid-state structure of 5.9. Thermal ellipsoids are drawn at the 50% probability level and hydrogen atoms have been 
omitted for clarity. 
 
Note: Similar boron heterocycles bearing phenyl groups on boron and nitrogen atoms within the ring have shown disorder. Therefore, 
the bond distances and bond angles are not discussed in detail. However, the structure confirms the identity of 5.9. The disorder was 
modeled using EADP on both boron and nitrogen atoms. 
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Figure D-44: Solid-state structures of 1.7-Ph·OPEt3 and 1.15-Ph·OPEt3. Thermal ellipsoids are drawn at the 50% probability level 
and hydrogen atoms have been omitted for clarity. 
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APPENDIX E 
 
 

Supplementary Information for Chapter Six 
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Figure E-1: 1H NMR spectrum of 6.6 in CDCl3.  
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Figure E-2: Expansion of 1H NMR spectrum of 6.6 in CDCl3.  
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Figure E-3: 11B{1H} NMR spectrum of 6.6 in CDCl3.  
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Figure E-4: 13C{1H} NMR spectrum of 6.6 in CDCl3.  
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Figure E-5: Expansion of 13C{1H} NMR spectrum of 6.6 in CDCl3 (aryl region).  
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Figure E-6: 31P NMR spectrum of 6.6 in CDCl3.  
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Figure E-7: 31P{1H} NMR spectrum of 6.6 in CDCl3.  
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Figure E-8: 11B{1H} NMR stacked plot of in situ reaction of 6.6 with 1-adamantylphoshaalkyne (‡ = 6.6, * = 1.15-Ph).  
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Figure E-9: FT-IR spectrum of 6.6.  
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Figure E-10: Normalized absorption spectrum of 6.6 in CH2Cl2 under an N2 atmosphere (spectrum has the respective λmax listed above 
the respective peaks).  
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Table E-1: Crystallographic Data for 6.6. 
 
 

  

Entry 6.6 
CCDC 1837570 

Empirical formula C29H28BP 
FW (g/mol) 418.29 

Crystal system Triclinic 
Space group P-1 

a (Å) 8.8815(7) 
b (Å) 11.795(1) 
c (Å) 12.1256(10) 
 (deg) 113.894(2) 
 (deg) 98.665(2) 
 (deg) 93.102(2) 
V (Å3) 1138.77(16) 

Z 2 
Dc (Mg m-3) 1.220 

2θmax 27.916 
μ 0.135 

No. reflections 33232 
No. independent reflections 5456 

radiation,  (Å) 0.71073 
temp (K) 150(2) 

R1[I>2I]a 0.0373 
wR2(F2)a 0.0995 
GOF (S)a 1.034 

a R1(F[I > 2(I)]) = ∑‖|Fo| - |Fc |‖/ ∑ |Fo|; wR2(F2 [all data]) = [w(Fo
2 

- Fc
2)2]1/2; S(all data) = [w(Fo

2 - Fc
2)2/(n - p)]1/2 (n = no. of data; p 

= no. of parameters varied; w = 1/[2(Fo
2) + (aP)2 + bP] where P = 

(Fo
2 + 2Fc

2)/3 and a and b are constants suggested by the 
refinement program.  
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Table E-2: Calculated Frontier Molecular Orbitals for Reactants, Intermediates and 
Products (B3LYP/def2-TZVP). 

 

Frontier 
Molecular 
Orbitals 

 

 
 

TS4.1 
 

6.6 

LUMO+3 

    

LUMO+2 
  

 
 

LUMO+1 
    

LUMO 
 

   

HOMO 
 

   

HOMO-1 

    

HOMO-2 

 
   

HOMO-3 
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Table E-3: HOMO and LUMO Energies Gaps for Reactants and Products (B3LYP/def2-

TZVP (dichloromethane solvent, SMD, units of eV). 
 
 

Molecules  HOMO LUMO HOMO/LUMO 
gap 

1-adamantylphosphaalkyne -7.05 -1.09 5.96 

9-phenyl-9-borafluorene (1) -6.09 -2.46 3.63 

TS1 -5.92 -1.71 4.21 

Product (2) -6.07 -1.82 4.25 
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Scheme E-1: Mechanism of reaction of 1.15-Ph with 1-adamantylphosphaalkyne. 
 
Note: We attempted to model a significant number of configurations, however no adduct (phosphorus of the phosphaalkyne bound 
directly to the boron center of 1.15-Ph) was able to be located. The pathway through TS1 is the most feasible computed pathway.  
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APPENDIX F 
 
 

Supplementary Information for Chapter Seven 
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Table F-1: Attempted transmetallation reaction of Me2Sn(7.2) with boranes. 
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Table F-2: Attempted transmetallation reaction of Li2(7.2) with boranes. 
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Table F-3: Attempted transmetallation reaction of DME2Mg(7.2) with boranes. 
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Table F-4: Attempted transmetallation reaction of K2(7.2) with boranes. 
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Figure F-1: 1H NMR spectrum of 7.3 in CDCl3. 
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Figure F-2: Expansion of the 1H NMR spectrum of 7.3 in CDCl3.  
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Figure F-3: 1H{11B} NMR spectrum of 7.3 in CDCl3.   
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Figure F-4: Expansion of the 1H{11B} NMR spectrum of 7.3 in CDCl3.  
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Figure F-5: 11B NMR spectrum of 7.3 in CDCl3.  
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Figure F-6: 11B{1H} NMR spectrum of 7.3 in CDCl3.  
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Figure F-7: 13C{1H} NMR spectrum of 7.3 in CDCl3.  



 318 

 
 

Figure F-8: Expansion of 13C{1H} NMR spectrum of 7.3 in CDCl3 (aryl region).  
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Figure F-9: FT-IR spectrum of 7.3.  
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Figure F-10: 1H NMR spectrum of 7.4 in CDCl3.   
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Figure F-11: Expansion of the 1H NMR spectrum of 7.4 in CDCl3.  
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Figure F-12: 1H{11B} NMR spectrum of 7.4 in CDCl3.  
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Figure F-13: Expansion of the 1H NMR spectrum of 7.4 in CDCl3.  
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Figure F-14: 11B NMR spectrum of 7.4 in CDCl3.  
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Figure F-15: 11B{1H} NMR spectrum of 7.4 in CDCl3.  



 326 

 
 

Figure F-16: 13C{1H} NMR spectrum of 7.4 in CDCl3.  
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Figure F-17: Expansion of 13C{1H} NMR spectrum of 7.4 in CDCl3 (aryl region).  
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Table F-5: Crystallographic Data for 7.3 and 7.4. 
 

 
 
 
 
 
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

  

Entry 7.3 7.4 
CCDC 1884761 1884762 

Empirical formula C10H34B21N C18H36B21N 
FW (g/mol) 395.39 493.49 

Crystal system Triclinic Monoclinic 
Space group P-1 P21/n 

a (Å) 10.5847(11) 11.7390(7) 
b (Å) 10.7181(11) 16.5577(11) 
c (Å) 12.7511(13) 19.2181(13) 
 (deg) 93.570(6) 90 
 (deg) 109.312(5) 96.680(2) 
 (deg) 116.930(6) 90 
V (Å3) 1177.9(2) 3710.1(4) 

Z 2 4 
Dc (mg m-3) 1.115 0.883 

radiation,  (Å) 0.71073 0.71073 
temp (K) 150(2) 150(2) 

R1[I>2I]a 0.0546 0.0988 
wR2(F2)a 0.1399 0.2898 
GOF (S)a 1.055 1.048 

a R1(F[I > 2(I)]) = ∑‖|Fo| - |Fc |‖/ ∑ |Fo|; wR2(F2 [all data]) = [w(Fo
2 - Fc

2)2]1/2; S(all data) = [w(Fo
2 

- Fc
2)2/(n - p)]1/2 (n = no. of data; p = no. of parameters varied; w = 1/[2(Fo

2) + (aP)2 + bP] where 
P = (Fo

2 + 2Fc
2)/3 and a and b are constants suggested by the refinement program. 
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Coordinates for geometry optimized structures of 1.15-N(iPr)2, 7.3, and 7.4. 
 
1.15-N(iPr)2

N      -3.15442387       9.96704909       3.51892173 
C      -4.66959764      11.49289484       2.20047046 
H      -4.05728387      12.40166500       2.16391970 
H      -5.72402248      11.79735301       2.12541361 
H      -4.42709274      10.87580411       1.32575656 
C      -4.45130418      10.69376783       3.49500131 
H      -5.19903505       9.89283350       3.51062950 
H      -0.28285940       8.50749397       4.40053722 
C      -1.70343919      10.66055216       5.46245407 
H      -2.36477922      11.37952211       5.96038679 
H      -0.66640406      10.94106178       5.69996069 
H      -1.89503190       9.66483075       5.88279547 
C      -1.89970213      10.64523864       3.93825661 
H      -1.10871781      10.01499179       3.51656644 
C      -1.68358763      12.03084312       3.31718306 
H      -1.76825976      11.99202667       2.22396841 
H      -0.66904668      12.37240121       3.56626518 
H      -2.38419766      12.78483337       3.69730239 
C      -4.24564551       7.76634151       2.39727186 
H      -3.99565604       4.49614567       1.31594564 
C      -2.33916157       6.35237326       2.71610788 
C      -4.73702629      11.53425415       4.74578463 
H      -4.64171652      10.93152680       5.65763616 
H      -5.77043694      11.90427210       4.69047495 
H      -4.08118014      12.40937914       4.83328068 
B      -3.11219846       8.61280649       3.12740904 
C      -1.90974755       7.58287793       3.28965339 
H       1.14322008       6.50974744       4.40864525 

C      -1.53047539       5.21563193       2.72971871 
C      -0.26840266       5.27951327       3.33277827 
C       0.16555294       6.46797661       3.92511610 
C      -0.65230045       7.60775466       3.90717322 
H       0.37232744       4.39604815       3.34922981 
H      -1.87459760       4.27979171       2.28469703 
C      -3.70621868       6.46850351       2.16662363 
H      -7.25320043       7.27822861       0.83299220 
C      -5.52496736       8.03525336       1.89243278 
C      -6.25611712       7.04920628       1.21291845 
C      -5.71058864       5.77849416       1.01432804 
C      -4.42574995       5.48499719       1.48693636 
H      -6.28309881       5.01652713       0.48215902 
H      -5.98174128       9.01895941       2.00583399 
 
7.3 
N      -3.09410817       9.87831787       3.52897163 
C      -3.96573152      11.60024356       1.91469165 
H      -3.25782676      12.41988166       2.08546121 
H      -4.91137537      12.03936405       1.56488383 
H      -3.57341013      10.96111115       1.11185173 
C      -4.23975472      10.77376897       3.17853963 
H      -5.05239586      10.08863605       2.92074446 
C      -1.85838527       7.52130179       3.18373204 
C      -2.18256904      10.42304743       5.81170124 
H      -2.85179991      11.23637798       6.11646680 
H      -1.22516762      10.56184170       6.33469397 
H      -2.61478888       9.46999108       6.14624616 
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C      -1.92191337      10.39660222       4.29963195 
H      -1.14022161       9.64798157       4.14236127 
C      -1.34685370      11.71524006       3.78124685 
H      -1.11394140      11.65550752       2.71001685 
H      -0.40974802      11.91812035       4.31912013 
H      -2.01373321      12.57042404       3.95145969 
C      -4.40418471       7.76947071       2.51294378 
C      -3.91111904       6.21323127       2.27054557 
C      -2.40375563       6.11243450       2.51643022 
C      -4.76702994      11.62750501       4.33220983 
H      -5.01208002      11.01140981       5.20712079 
H      -5.69102598      12.12143109       3.99954496 
H      -4.06725789      12.41598399       4.63810993 
B      -3.11632236       8.54841725       3.12515463 
B      -1.40214875       7.17582377       1.55448123 
H      -1.86225194       7.85617459       0.71183452 
B      -1.24161592       5.41480358       1.46928513 
H      -1.63538767       4.85428385       0.49843056 
B       0.11413482       4.97576239       2.53571366 
H       0.80092076       4.03413829       2.28876912 
B      -5.70945629       8.13948754       1.42803014 
H      -5.78477559       9.24438389       0.99282938 
B      -4.37031579       7.14641420       0.88159980 
H      -3.56534177       7.53052337       0.11615316 
B      -5.10328403       5.08409876       2.75616646 
H      -4.73690888       4.06262083       3.23965301 
B      -4.79163158       5.43294238       1.03996737 
H      -4.21363807       4.64757593       0.36141332 
B      -5.99246125       6.64208957       0.49838301 
H      -6.33813403       6.68616102      -0.64104299 
B      -7.03550446       7.03975138       1.87266116 

H      -8.17129767       7.37163950       1.73087408 
B      -6.03037860       7.78801569       3.12250360 
H      -6.31927279       8.64634771       3.89519162 
B      -4.88782272       6.58187428       3.67405759 
H      -4.41371725       6.65669358       4.74840377 
B      -6.50163839       6.07632634       3.26697193 
H      -7.21697633       5.71153172       4.14710972 
B      -6.46322007       5.36219415       1.64161251 
H      -7.18203728       4.46653106       1.32412901 
B      -0.22687057       7.82719247       2.67367950 
H       0.09546307       8.96152158       2.51135917 
B       0.19176238       6.47548322       1.59022631 
H       0.90406203       6.64286975       0.65000451 
B       0.74306190       6.47373367       3.27781008 
H       1.88728817       6.63329988       3.57006745 
B      -1.55986222       4.74866356       3.08905090 
H      -2.16882039       3.73675501       3.21689112 
B      -1.92843084       6.09332877       4.18310100 
H      -2.72700318       6.00821962       5.04098291 
B      -0.55190947       7.17639727       4.27676970 
H      -0.44708903       7.84313407       5.25704110 
B      -0.32720558       5.40782072       4.20299034 
H       0.00817974       4.79474662       5.16802831 
 
7.4 
C       6.09095469      11.53162286       6.08272552 
H       5.98560440      10.71504617       6.81280457 
H       5.53554744      11.22968664       5.18226660 
H       5.57981736      12.41030273       6.50354531 
C       9.55272085      12.74482404       3.92748528 
B      10.32197462      13.09624643       2.54466266 
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C      11.91932554      13.12135162       2.81675292 
C      15.88988002      14.11278773       1.67284181 
H      15.92481090      13.49744698       0.76131789 
H      16.85268141      13.97677311       2.18787036 
H      15.83763324      15.16456315       1.35386409 
C      15.54142478      10.89932746       2.99805188 
H      15.22395227       9.93943153       3.43089082 
H      16.52259911      11.14467737       3.43144077 
H      15.69607534      10.73977321       1.92074225 
C      12.09414801      12.85657342       4.43891106 
C      10.74526781      12.46503623       5.03646309 
C       8.70752649      10.92889381       8.38566397 
H       9.00536457      11.64116976       9.16963393 
H       9.27799903      10.00343970       8.55422148 
H       7.64556846      10.69213467       8.55136201 
C       8.39926618       8.96750641       5.48790848 
H       7.72672238       8.70098950       4.65918606 
H       7.87805644       8.71293755       6.42292284 
H       9.28111509       8.31371909       5.41944953 
C       7.82569527      14.21555833       7.52326889 
H       7.33368324      13.67643816       8.34657082 
H       7.05752462      14.83402692       7.03545617 
H       8.55973386      14.89976381       7.97347730 
N       9.71035578      13.32993777       1.31719788 
C      14.41324791      16.36560372       3.95357059 
H      14.52177573      16.61838556       5.01863838 
H      13.72014454      17.09684161       3.51216019 
H      15.39579431      16.52122359       3.48356592 
C      16.17183024      13.59076585       5.17970473 
H      16.08681494      14.32478849       5.99485502 
H      16.99106790      13.92801558       4.52703815 

H      16.48670576      12.63884110       5.63255864 
B       7.61915939      11.83059768       5.75957310 
B       8.28072166      11.59146033       4.13088606 
H       7.69823886      11.22549604       3.15716260 
B      13.36673514      12.64233047       2.00201391 
H      13.28358033      12.16289836       0.91395896 
B      14.66420358      13.71176358       2.60330076 
B      14.49076562      12.06172856       3.27181544 
B      14.80496298      13.44301983       4.38198800 
B      13.24872801      13.90697480       5.12333057 
H      13.06306823      14.30695641       6.22850554 
B      13.91482687      14.86832165       3.75719599 
B      13.03166623      14.33770919       2.29562039 
H      12.68360536      15.07143030       1.42270878 
B      12.78012476      11.69830038       3.35218874 
H      12.30632462      10.62805517       3.23196091 
B      13.60944284      12.19999011       4.82779241 
H      13.66751215      11.42796386       5.73109634 
B      12.20910421      14.49076441       3.82443472 
H      11.32249535      15.25672565       3.95070055 
B       9.66051003      13.78223868       5.32713314 
H      10.02146984      14.89707162       5.22165606 
B       8.49950973      13.20187973       6.49983101 
B      10.22627883      12.72972998       6.62740825 
H      11.01189919      13.16959403       7.40512865 
B       8.95531541      11.51744067       6.93076672 
B      10.40758434      11.08814129       5.98657876 
H      11.31764333      10.39962600       6.32370584 
B       9.94602354      11.10465877       4.28435608 
H      10.46924739      10.48311423       3.43107585 
B       8.79203094      10.50784975       5.45572686 
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B       8.10784132      13.22204124       4.75256303 
H       7.39221374      14.02288381       4.23511894 
C      10.54275904      13.35118706       0.07585189 
C      10.25890149      14.51578732      -0.87354280 
C      10.54256138      11.99574226      -0.64426849 
C       7.50517910      12.69832858       0.21138749 
C       7.85628964      15.02707842       1.18373320 
C       8.23268377      13.54090260       1.25970747 
H      11.56477257      13.50288150       0.43523999 
H       9.28255514      14.43718847      -1.36936444 
H      11.02719689      14.51318671      -1.66003393 

H      10.31533720      15.47969890      -0.35137269 
H      10.74242519      11.18218336       0.06659331 
H      11.34384606      11.99077779      -1.39770468 
H       9.59626143      11.78593400      -1.15745679 
H       6.42279248      12.81597476       0.36279734 
H       7.74702290      11.63291918       0.31986900 
H       7.72774684      13.00890176      -0.81785875 
H       6.78520421      15.13525918       1.40888930 
H       8.03694273      15.46422400       0.19460007 
H       8.41823854      15.60512770       1.93011656 
H       7.87030805      13.18989069       2.23040274 
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Figure F-18: HOMO and LUMO diagrams for 1.15-N(iPr)2,7.3, and 7.4.  



 334 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX G 
 
 

Synthesis of 1.10 and 1.7-Ph 
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General Considerations. All manipulations were performed using Schlenk techniques 

under a dry argon atmosphere, under an inert atmosphere in an argon-filled MBraun 

LABstar Pro glovebox, in a nitrogen-filled MBraun Unilab glovebox. Solvents were 

purchased from commercial sources as anhydrous grade, and dried further using a JC 

Meyer Solvent System with dual columns packed with solvent-appropriate drying agents. 

Diphenylacetylene was purchased from Alfa Aesar, dimethyltin dichloride from TCI, 

lithium pellets from Acros, and dichlorophenylborane from Beantown Chemicals. All 

reagents were used as received and stored in an argon-filled glovebox. CDCl3 for NMR 

spectroscopy was purchased from Cambridge Isotope Laboratories and dried by stirring 

for 3 days over CaH2, distilled, and stored over 4 Å molecular sieves. Multinuclear NMR 

spectra were recorded on a Bruker 400 MHz spectrometer.  

 
 
 

Synthesis of 1.10 (Video Experimental): In an argon-filled glovebox, diphenylacetylene 

(10.0 g, 56.1 mmol), lithium pellets (0.390 g, 56.1 mmol), and a medium-sized stir bar 

were added to a 200-mL Schlenk flask. Diethyl ether (80 mL) was added to the flask via 

cannula transfer (under positive pressure) on an argon Schlenk line. The reaction mixture 

was stirred vigorously (700 rpm) at room temperature (22 – 27 ˚C) for 16 h to give a 

yellowish-brown suspension. The yellowish-brown suspension was added to a 500 mL 

Schlenk flask containing dimethyltin dichloride (6.16 g, 28.0 mmol) in THF (100 mL) via 

cannula transfer (under positive pressure) on the Schlenk line. The combination of both 

mixtures resulted in a bright yellow solution that was immediately dried in vacuo. Ethanol 
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(100 mL) was added to the flask and the yellow solid was collected on a glass frit. The 

solid was washed with ethanol (2 × 100 mL) and dried in vacuo to give the desired 1,1-

dimethyl-2,3,4,5-tetraphenylstannole. Yield: 10.3 g, 73%.  

 

1H NMR (400 MHz, CDCl3): δ 7.09-7.06 (m, 4H), 7.01-6.93 (m, 8H), 6.87-6.85 (m, 4H), 

6.81-6.76 (m, 4H), 0.63 (s, JSn-C-H = 28.0 Hz);  

119Sn{1H} NMR (149 MHz, CDCl3): δ 3.7; The spectroscopic data matches the literature 

values. 

 
 
 

Synthesis of 1.7-Ph (Video Experimental): In a nitrogen-filled glovebox, 

dichlorophenylborane (30.0 μL, 2.31 mmol) was added dropwise to a toluene solution of 

1.10 (1.07 g, 2.11 mmol; 3 mL) at room temperature (20 – 25 ˚C) and stirred for 3 h. The 

resulting blue solution was centrifuged, a dark blue residue was isolated and washed with 

toluene (3 × 20 mL) and  subsequently n-pentane (1 × 20 mL). Drying the solid in vacuo 

gave the desired pentaphenylborole. Yield: 0.78 g, 84%.  

 

1H NMR (400 MHz, CDCl3): δ 7.43 (t, J = 4.0 Hz, 1H), 7.24-7.17 (m, 4H), 7.15-7.08 (m, 

8H), 7.03 (t, J = 8.0 Hz, 4H), 6.90-6.88 (m, 4H), 6.76 (d, J = 4.0 Hz, 4H);  

11B NMR (128 MHz, CDCl3): δ 66.7 (br); The spectroscopic data matches the literature 

values. 
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Figure G-1: 1H NMR spectrum of 1.10 in CDCl3.  
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Figure G-2: Expansion of 1H NMR spectrum of 1.10 in CDCl3.  
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Figure G-3: 119Sn{1H} NMR spectrum of 1.10 in CDCl3.  
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Figure G-4: 1H NMR spectrum of 1.7-Ph in CDCl3.  
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Figure G-5: Expansion of 1H NMR spectrum of 1.7-Ph in CDCl3.
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0  
Figure G-6: 11B NMR spectrum of 1.7-Ph in CDCl3. 
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