
ABSTRACT

Semiparametric Estimation and Forecasting
for Functional-Coefficient Autoregressive Models

Joshua D. Patrick, Ph.D.

Chairperson: Jane L. Harvill, Ph.D.

The functional-coefficient autoregressive (FCAR) model is a useful structure

for reducing the size of the class of nonlinear time series models. Local linear regres-

sion has been shown to be an effective method for estimating the coefficient functions

of these models. However, local linear regression suffers from the “curse of dimen-

sionality” for high order models. We adapt a spline-backfitted kernel (SBK) method

for estimating the coefficient functions. The SBK estimators are computationally

expedient and theoretically reliable. We show the SBK estimator performs better

than local linear regression in root mean square error through simulation results.

Three forecasting methods for FCAR models have been examined in the litera-

ture after fitting the model with local linear regression. We adapt the three methods

to the SBK estimators. We also examine methods for constructing prediction inter-

vals for the forecasts. The performance of the three forecasting methods and the

prediction intervals are compared through simulation results.

Utility scale photovoltaic (PV) plants are becoming economically viable. Util-

ity companies are interested in forecasting the short-term and long-term power gen-

erated from a PV plant. The power generated by the plant is correlated with the

irradiance measured from the sun. We develop a spatio-temporal model for irra-

diance measurements from a 1.2 MW PV plant located in Lanai, Hawaii. We use

the SBK method for estimating the time component of the model. We assume a

separable covariance structure and find evidence that this assumption does not hold.
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CHAPTER ONE

Overview

1.1 Introduction

Nonlinear models are often more appropriate than linear models for fitting

time series data. Some non-linear dynamic systems include limit cycles, jump

phenomenon, time irreversibility, and amplitude-frequency models (Tong, 1990).

The class of nonlinear time series models is extremely large and include models

such as threshold autoregressive (TAR), self-exciting threshold autoregressive (SE-

TAR), exponential autoregressive (EXPAR), bilinear, smooth threshold autoregres-

sive (STAR), and generalized autoregressive conditional heteroscedasticity (GARCH)

models. A useful structure that can reduce the size of the class of nonlinear models

for modeling a data set is the functional-coefficient autoregressive (FCAR) model.

The FCAR model is defined as

Xt = m1 (Xt−d) Xt−1 + ∙ ∙ ∙ + mp (Xt−d) Xt−p + εt, (1.1)

where p and d are positive integers, d ≤ p, mj (Xt−d) is a measurable function of

the delay variable Xt−d, for j = 1, . . . , p, and {εt} is a sequence of i.i.d. random

variables with mean 0 and variance σ2. We will estimate these models by adapting

a procedure known as spline-backfitted kernel (SBK) estimation and examine the

forecasting performance using these estimators. In this chapter, we discuss the

literature on FCAR models in Section 1.2 and the literature on forecasting methods

for FCAR models in Section 1.3. We then discuss the SBK method in Section 1.4

and give an overview of Chapters Two, Three, and Four in Section 1.5.

1.2 Functional Coefficient Autoregressive Models

Chen and Tsay (1993) introduced the FCAR model and proposed a procedure

for building the model based on arranged local regression (ALR). The ALR procedure

works by first selecting an interval length c to form a window and a minimum sample

1



size K to control the number of observations in the window. Let x(1), . . . , x(k) be in

the window
[
x(1), x(1) + c

]
. Fit the linear regression

xt−d = a1xt+d−1 + ∙ ∙ ∙ + apxt+d−p + εt+d

with t = t1, . . . , tk where εt+d is the residual at time t+d. The ordinary least squares

(OLS) estimate of aj is an estimate of mj

(
x(1) + c

)
. Move the window along the

Xt−d axis until there is at least one new data point and at least K data points

in the window. Refit the linear regression to obtain the estimate m̂j

(
x(i) + c

)
of

mj

(
x(i) + c

)
where x(i) + c is the right end point of the window. The scatterplots of

the estimates of m̂j (x) versus x can be used to infer the functional form of mj (∙).

Chen and Tsay (1993) used simulated data and real data examples to compare the

FCAR model and the proposed model building procedure to threshold and linear

time series models through multistep forecasts. The FCAR model performed much

better than the other two models in terms of bias. However, the FCAR model only

performed better for short term forecasts in terms of mean square error (MSE). For

long term forecasts, the linear model performed the best in MSE.

1.2.1 Local Linear Fitting of FCAR Models

The method of Chen and Tsay (1993) constructed estimators based on an

iterative recursive formula that resembles local constant fitting. Cai, Fan, and Yao

(2000) used a local linear fitting method to estimate mj (∙) in (1.1). In the local linear

method, each mj (∙) is approximated locally at u0 by a linear function mj (ut) ≈

aj +bj (ut − u0). In the time series context, Ut is the lagged variable Xt−d. The local

linear estimate is m̂j (u0) = âj , where
{(

âj , b̂j

)}
minimize

n∑

t=1

[

Xt −
p∑

j=1

{aj + bj (Ut − u0)}Xt−j

]2

Kh (Ut − u0) , (1.2)

where Kh (∙) = h−1K (∙/h) , K (∙) is a kernel function, and h > 0 is a bandwidth.

The least squares solution is

m̂j (u0) =
n∑

t=1

Kn,j (Ut − u0,Xt) Yt,

2



where

Kn,j (u,x) = eT
j,2p

(
X̃

T
WX̃

)−1

X̃
T
Kh (u) . (1.3)

In expression (1.3), ej,2p is the 2p × 1 unit vector with 1 at the jth position,

X̃ denotes an n × 2p matrix with
(
XT

t ,XT
t (Ut − u0)

)
as its tth row, and W =

diag {Kh (U1 − u0) , . . . , Kh (Un − u0)}.

Cai et al. (2000) used local linear fitting on simulated data from an EXPAR

model. They assessed the fit by calculating the square root of average squared errors

(RASE),

RASEj =

[

n−1
grid

ngrid∑

k=1

{m̂j (uk) − mj (uk)}
2

]1/2

,

where {uk, k = 1, . . . , ngrid} are regular grid points. The performance of the method

was gauged by comparing the RASE to the standard deviation of the time series

denoted by σX . The mean of the estimate σ̂X of σX for their 400 replications was

0.5389 with a standard deviation of 0.048. The RASE was well below that value

with a median RASE of around 0.10.

Real data examples were used to assess the post sample forecasting perfor-

mance of the local linear method. The two examples were the Canadian lynx data

set (Tong, 1990, p. 377) and the Wolf’s annual sunspot numbers data set (Tong,

1990, p. 420). The local linear method was compared with the linear AR model,

the TAR model, and the ALR procedure of Chen and Tsay (1993) using a one-step

ahead and a iterative two-step ahead forecast. In terms of average absolute pre-

dictive errors (AAPE), the local linear method had much better performance than

both the linear AR model and the TAR model in the Canadian Lynx example and

performed just as well as the other two models in the sunspot numbers example.

Chen and Liu (2001) establish the asymptotic properties of the local linear

estimator. They summarize these properties in a theorem which states that for

β =
(
â, b̂
)

that minimizes (1.2), μ2 =
∫

u2K (u) du, K2
2 =

∫
K2 (u) du, pi,j,d is the

joint stationary density of the triplet (Xt−i, Xt−j , Xt−d), and p (x) is the marginal

3



density of Xt, then

n2/5
(
m̂ (x) − m (x) − β2b (x)

) D
→ Np

(
0, β−1σ2K2

2A
−1 (x)

)
,

where A (x) = p (x) E
[
XtX

T
t |Xt−d = x

]
and b (x) = μ2A

−1 (x)B (x) where B (x)

is a vector with ith element being
p∑

j=1

∫
uv

{
1

2
f ′′

j (x) pi,j,d (u, v, x) + m′
j (x) p′i,j,d (u, v, x)

}

dudv

with m′
j (x) and m′′

j (x) being the first and second derivative of mj (x) respectively,

and p′i,j,d being the partial derivative with respect to the third argument (see The-

orem 1 in Chen and Liu, 2001, p. 154). This result is only applicable when x is

a continuity point. Chen and Liu (2001) use the theorem to construct pointwise

confidence bands for the function estimates of an EXPAR model. They show that

the local linear procedure is reasonably robust for this type of model.

Now consider the TAR model

xt = φ
(i)
1 xt−1 + ∙ ∙ ∙ + φ(i)

p xt−p + ε
(i)
t if xt−d ∈ Ωi, i = 1, . . . , k,

where {Ωi} form a partition of <. Clearly, this model is a special case of the FCAR

model where mj (xt−d) = φ
(i)
j . However, mj (xt−d) is not continuous at all points

in this model. Chen and Liu (2001) note that estimating the functional coefficients

using the local linear procedure result in large bias in the neighborhood of points of

discontinuity. The authors propose a procedure similar to the local linear estimator

but using one-sided kernels. They also establish the asymptotic properties using the

one-sided kernels. However, the convergence rate of the one-sided estimator is slower

than that of the two-sided estimator. The simulations of Chen and Tsay (1993) are

repeated using the two-sided local linear estimator and they show the same results

even with the TAR model.

1.2.2 The Curse of Dimensionality

A general review of nonparametric methods for time series models can be

found in Härdle, Lütkepohl, and Chen (1997). They note that using nonparametric

methods has the advantage of letting the data speak for itself but at the cost of

poor performance in high dimensions. This disadvantage is known as the “curse of

4



dimensionality.” The authors suggest the nonparametric approach should be used as

a guidance for choosing appropriate parametric models with lower dimensions and

for deciding between competing classes of models. They state that one way to ease

the curse of dimensionality is to impose some restrictions on the model. For example,

we could impose the nonlinear additive autoregressive (NAAR) model defined as

Xt = c + f1 (Xt−1) + f2 (Xt−2) + ∙ ∙ ∙ + fp (Xt−p) + εt, (1.4)

where c is a constant. The Nadaraya-Watson estimator can be used to estimate

fj (Xt−j). This estimator has a rate of convergence of n2/5 which is the same as

one-dimensional smoothing. Hence, the curse of dimensionality is not as severe for

this estimator.

Chen and Liu (2001) also note that the local linear estimator for FCAR models

has a rate of convergence of n2/5. Thus, this estimator does not suffer from the curse

of dimensionality as much as direct p-dimensional estimation. Cai et al. (2000) give

more detail as to why this estimator has the same convergence as one-dimensional

smoothing. They note that the local linear method smooths the delay variable Xt−d

only. So, unless the delay variable is a vector, the estimator does not suffer the

difficulties of higher dimensional models.

1.2.3 Estimation Using Polynomial Splines

Most of the literature on nonlinear times series estimation involves using local

polynomial smoothing with kernel weights. For FCAR models, the local polynomial

procedure was the only method investigated until the work of Huang and Shen

(2004). In that paper, the authors propose a global smoothing procedure based on

polynomial splines for estimating FCAR models. They also prove consistency and

find the rate of convergence for their method. The authors note that the spline

method yields a fitted model with a parsimonious explicit expression which is an

advantage over the local polynomial method. This feature allows us to produce

multi-step ahead forecasts conveniently. Additionally, their spline method is less

computationally intensive than the local polynomial method.

5



We now define the spline method with degree 3 and knot sequence κ0, . . . , κN+1

where κ0 and κN+1 are the exterior knots. Huang and Shen (2004) use the truncated

power basis which are 1, x, x2, x3,(x − κ1)
3
+ , . . . , (x − κN)3

+. Suppose the coefficient

function fj (Xt−d) in (1.1) is smooth. Then there is a set of basis functions Bjs (∙)

and constants β∗
js, s = 1, . . . , Ki, such that

mj (u) ≈ m∗
j (u) =

Ki∑

s=1

β∗
jsBj (u) . (1.5)

The β∗
jss are estimated by minimizing

n∑

t=1

(

Xt −
p∑

j=1

{
Ki∑

s=1

βjsB (Ut)

}

Xt−i

)2

with respect to β. The estimate is denoted as β̂js. The least squares estimate of the

coefficient function mj (ut) is

m̂j (ut) =

Kj∑

s=1

β̂jsBjs (ut) .

The number of terms in (1.5) is determined by the number of knots N and the power

of the splines. Huang and Shen (2004) applied the spline method to simulated ex-

amples and compared their results to the results of Cai et al. (2000). They found

that the local linear estimates tended to have larger bias than the estimates of the

spline method. They also found that the spline fits are usually smoother than the

local linear fits. One disadvantage of using the spline method is the lack of asymp-

totic theory. Recent literature has provided substantial development of asymptotic

theory for i.i.d. data but not for time series data (see e.g. Stone (1994) and Huang

(2001)).

1.3 Forecasting Methods for FCAR Models

Early literature for forecasting nonlinear models focused primarily on using

Monte Carlo (MC) or bootstrap methods with parametric models. For example,

Clements and Smith (1997) discuss methods for forecasting with SETAR models. In

their paper, the authors compare different forecasting methods against the forecast

from a linear AR model. They assume all the parameters are unknown except for

the lag orders and the delay lag. Through simulation results, the authors show that
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the MC method is at least as good as the other methods they compared, but it

is generally not preferable because it is computationally expensive. The authors

conclude that the bootstrap method is preferred over the MC method, but the

differences in the forecast accuracy are relatively small. For comparison to the linear

AR forecasts, the authors found the linear AR model provides a good approximation

to the SETAR model. However, this approximation is dependent on the sign and

magnitude of the intercepts of the model.

Before Harvill and Ray (2005), little work had been done in comparing different

forecasting methods for FCAR models. Chen and Tsay (1993) used the ALR proce-

dure to estimate the FCAR model (see Section 1.2). They also obtained multi-step

forecasts but they did specify how this is done. Chen (1996) proposed a multistage

kernel smoother for a general non-linear AR model and derived the asymptotic mean

squared error and integrated mean squared error. Through simulation results, the

author was able to show the multistage smoother has smaller mean squared error

than the direct kernel smoother. Fan and Yao (2003) showed that a direct and

iterative “naive” method performs well in average absolute prediction error when

compared to forecasting using a linear AR model. They use the local smoothing

method of Cai et al. (2000) to estimate the coefficient functions in both methods.

The direct method forecasts Yt+M as a function of Yt while ignoring the relationship

between Yt+M and Yt+m−j , j = 1, . . . ,M − 1. The iterative method forecasts Yt+M

by substituting the forecasted values Ŷt+M−j , j = 1, . . . ,M −1 into the FCAR mean

function. The authors’ simulation results were only for a TAR model of order two

and show that the iterative method performs better than the direct method. Huang

and Shen (2004) proposed a simulation based method using the fitted model recur-

sively (see Section 1.2.3). They use bootstrapping to sample the residuals of the

fitted models to generate an error term for the simulated series.

Harvill and Ray (2005) adapt the bootstrapping method of Huang and Shen

(2004) to forecasting FCAR models fitted using local linear smoothing. They also

adapt the multistage method of Chen (1996) to FCAR models. The authors compare
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the “naive” method of Fan and Yao (2003) to the bootstrap and multistage methods.

This comparison is done for both univariate and multivariate FCAR models. The

authors find that the bootstrap method out performs the other two methods for

non-linear forecasting and performs well for forecasting a linear process.

1.4 Spline-Backfitted Kernel Smoothing

The nonparametric and semiparametric methods discussed so far either suffer

from the curse of dimensionality, are not computationally expedient, or are not the-

oretically reliable. The spline-backfitted kernel (SBK) estimation method is both

computationally expedient and theoretically reliable. These estimators are also reli-

able for handling high-dimensional data, thus overcoming the curse of dimensionality.

The SBK method was first proposed by Wang and Yang (2007). They developed the

method for estimating NAAR models. The method finds “pilot estimates” f̂j (Xt−j)

for each fi (Xt−i), i = 1, . . . , p, in (1.4) through an under-smoothed centered stan-

dard spline procedure. These estimates are then used to find pseudo-responses Ŷt,α

through a backfitting procedure given by

Ŷt,α = Yt − ĉ −
∑

1≤j≤p,j 6=α

f̂j (Xt−j) ,

where

ĉ =
1

n

n∑

t=1

Yt.

This procedure is similar to a dimension reduction method since now we can estimate

fα (Xt−α) by its Nadaraya-Watson estimator

f̃SBK,α (Xt−α) =

∑n
t=1 Kh (Xt−α − xα) Ŷt,α∑n

t=1 Kh (Xt−α − xα)
,

where Kh (∙) is defined as in (1.2).

The SBK method is adapted for i.i.d. data in Wang and Yang (2009), to gen-

eralized additive models in Liu, Yang, and Härdle (2011), and to partially linear ad-

ditive models in Ma and Yang (2011). In Song and Yang (2010), a spline-backfitted

spline (SBS) procedure is proposed. The SBS procedure is similar to the SBK pro-

cedure except that it uses splines to estimate fα (Xt−α) with the pseudo-responses
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Ŷt,α instead of kernels. This method is even more computationally expedient but

lacks point-wise confidence bands. Liu and Yang (2010) propose the SBK method

for additive coefficient models which are generalized forms of FCAR models.

1.4.1 Asymptotic Results

The most appealing aspect of SBK estimators is that they overcome the curse

of dimensionality while having reliable asymptotic results. Wang and Yang (2007)

first present the convergence and asymptotic results of the oracle estimator and then

develop the results for the SBK estimator for NAAR models. The oracle estimator

assumes the f (Xt−j), 1 ≤ j ≤ p, j 6= α, are known by “oracle” and derives the

pseudo-responses

Yt,α = Yt − c −
p∑

1≤j≤p,j 6=α

fj (Xt−j) .

Using the Nadaraya-Watson kernel smoother with these pseudo-responses gives the

oracle estimate f̂oracle,α (Xt−α). The convergence and asymptotic results for the oracle

estimator were first found by Bosq (1998) to be

sup
x∈[h,1−h]

∣
∣
∣f̂oracle,α (x) − fα (x)

∣
∣
∣ = op

(
n−2/5 log n

)

and
√

nh
{

f̃oracle,α (x) − fα (x) − bα (x) h2
}

D
→ N

{
0, v2

α (x)
}

,

where X has density function fX,α (x), −1 ≤ x ≤ 1,

bα (x) =

∫
u2K (u) du

{
f ′′

α (x) fX,α (x) /2 + f ′
α (x) f ′

X,α (x)
}

f−1
X,α (x) ,

and

v2
α (x) =

∫
K2 (u) duE

[
σ2 (X1, . . . , Xd) |Xα = x

]
f−1

X,α (x) .

Wang and Yang (2007) found the difference between f̂SBK,α and f̂oracle,α is of order

op

(
n−2/5

)
and that f̂SBK,α has the same asymptotic distribution as f̂oracle,α. Liu and

Yang (2010) extend these results for additive coefficient models and found similar

results for using local linear smoothing instead of Nadaraya-Watson smoothing.
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1.5 Overview of Dissertation

This dissertation is organized as follows. In Chapter Two, we will adapt the

SBK estimation method to FCAR models and compare the fit to the local linear es-

timation method. The SBK method has been adapted to additive coefficient models

in Liu and Yang (2010) but the method has not been adapted to the specific case

of FCAR models. We provide the convergence and asymptotic results for the SBK

method for the FCAR model. The comparison of the two methods is shown through

simulation results.

In Chapter Three, we will adapt the naive, multistage, and bootstrap forecast-

ing methods to the SBK method and examine prediction intervals for the forecasts.

Forecasting performance of the SBK method has not been explored in the litera-

ture yet for any type of model. We compare the three forecasting methods through

simulation results.

Chapter Four presents a data set consisting of solar irradiance measurements

obtained at the La Ola photovoltaic plant in Lanai, Hawaii. Spatio-temporal models

are explored for this data set with the SBK method used to model the time structure.

This analysis of the Lanai data set is part of an ongoing project aimed at forecasting

the irradiance measurements of photovoltaic systems of different sizes and designs.
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CHAPTER TWO

Spline-Backfitted Kernel Estimation for FCAR Models

2.1 Introduction

In this chapter, we present the spline-backfitted kernel (SBK) estimators for

functional-coefficient autoregressive (FCAR) models. Using notation similar to Liu

and Yang (2010), define the FCAR model as

Xt = c +

p∑

l=1

ml (Ut) Xt−l + εt. (2.1)

This notation is analogous to (1.1) with Ut = Xt−d is the delay variable, and {εt}
n
t=1

is a sequence of i.i.d. random variables with mean 0 and variance σ2. We denote a

model taking the form of (2.1) as FCAR(p, d) where p is the order of the model and

d is the delay.

The SBK estimation method was first developed by Wang and Yang (2007)

for nonlinear additive autoregressive (NAAR) models. The NAAR model is defined

as

Xt = c +

p∑

l=1

fl (Xt−l) + εt.

In this model, we are interested in estimating fl (Xt−l), whereas in the FCAR model,

we are interested in estimating ml (Ut). The SBK method is loosely based on the

backfitting algorithm of Hastie and Tibshirani (1990) and uses the idea of oracle

smoothing with pre-estimated component functions. The SBK method combines

the computational speed of spline estimators and the asymptotic properties of ker-

nel smoothing. Wang and Yang (2007) developed the method using a constant

spline procedure to pre-estimate the component functions and a Nadaraya-Watson

estimator to estimate the function of interest. Wang and Yang (2009) adapted the

SBK method for additive regression models but used local linear kernel smoothing

instead of the Nadaraya-Watson estimator. Ma and Yang (2011) used linear splines

and Nadaraya-Watson estimators for partially linear additive models and Liu, Yang,

and Härdle (2011) used the same for generalized linear models. The choice of the
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degree of the spline and the kernel procedures does not make a difference in the

performance of the method but does play a role in the number of knots used in the

spline procedure. In this dissertation, we will use a linear spline with a local linear

kernel fit in both the theoretical and simulation results.

The remainder of this chapter is organized as follows. We describe the oracle

estimator in Section 2.2 and adapt the SBK method to FCAR models in Section 2.4.

We present the asymptotic results in Section 2.4 and simulation results in Section

2.5. We conclude this chapter in Section 2.6.

2.2 The Oracle Estimator

As a benchmark for evaluating the SBK estimator, we introduce the oracle

estimator of Wang and Yang (2007). Define U = (U1, . . . , Un)T ,

Xj =
(
Xmax{p,d}−j , . . . , Xn−j

)T
,

and X = (X1, . . . , Xp). Suppose we are estimating m1 (U) in (2.1). If we know

mα (U), α = 2, . . . , p, by “oracle,” then we can construct pseudo-responses Yt,1 as

Yt,1 = Xt − c −
p∑

l=2

ml (Ut) Xt−l. (2.2)

Denote the vector of pseudo-responses Y1 = (Y1,1, ∙ ∙ ∙ , Yn,1)
T . We can use these

pseudo-responses to estimate m1 (U) by solving a kernel weighted least squares prob-

lem

m̃1 (u) = argmin
λ =(λl)1≤l≤p

Lm1 (λ, u) ,

in which

Lm1 (λ, u) =
n∑

t=1

(

Yt,1 −
p∑

l=2

λlXtl

)2

Kh (Ut − u) ,

where Kh (u) = K (u/h) /h for a kernel function K and bandwidth h that satisfy

Assumption (vi) in Appendix A. We can rewrite the oracle smoother in matrix form

as

m̃1 (u) = (Ip×p, 0p×p)

(
1

n
CT

1 W1C1

)−1
1

n
C1W1Y1,

where

C1 = (X1, ∙ ∙ ∙ ,Xp,X1 (U − u) , ∙ ∙ ∙ ,Xp (U − u)) , (2.3)
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and

W1 = diag {Kh (U1 − u) , . . . , Kh (Un − u)} .

Clearly, these oracle estimators are not useful since they are computed based on

the knowledge of the unknown functions mα (U), α = 2, . . . , p. However, they do

provide motivation for the SBK estimators.

2.3 Spline-Backfitted Kernel Estimators

In this section, we describe how the unknown coefficient functions {ml (∙)}
p
l=2

can be pre-estimated by linear splines and then substituted into (2.2). Suppose that

U is distributed on a compact interval [a, b], and without loss of generality, suppose

[a, b] = [0, 1]. We preselect an integer N ∼ Nn = n1/4 log n and define H = (N + 1)−1

(see Assumption (vii) in Appendix A). Let 0 = κ0 < κ1 < ∙ ∙ ∙ < κN < κN+1 = 1

denote a sequence of equally spaced points, called interior knots, and denote the

degenerate knots κ−1 = 0, κN+2 = 1. We define the linear B-spline basis as

bJ (u) = (1 − |u − κJ | /H)+ =






(N + 1) u − J + 1, κJ−1 ≤ u < κJ ,

J + 1 − (N + 1) u, κJ ≤ u ≤ κJ+1,

0, otherwise.

The spline estimator of ml (u), l = 2, . . . , p, is

m̂s,l (u) = λ̂0 +
N+1∑

J=0

λ̂JbJ (u) ,

where the coefficients
(
λ̂0, λ̂1, . . . , λ̂N

)
are solutions of the least squares problem

{
λ̂0, λ̂1, . . . , λ̂N

}T

= argmin
<N+1

n∑

t=1

{

Xt −

(

λ0 −
N+1∑

J=0

λJbJ (u)

)

xt−l

}2

.

The estimated oracle pseudo-responses are defined as

Ŷt,1 = Xt − ĉ −
p∑

l=1

m̂s,l (Ut) Xt−l,

where ĉ = 1/n
∑n

t=1 Xt. Denote the vector of pseudo-responses as

Ŷ1 =
(
Ŷ1,1, ∙ ∙ ∙ , Ŷn,1

)T

. The spline-backfitted kernel (SBK) estimator is defined as

m̂1 (u) = (Ip×p, 0p×p)

(
1

n
CT

1 W1C1

)−1
1

n
C1W1Ŷ1. (2.4)
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The SBK estimator mimics the oracle estimator but requires an extra estima-

tion step. The marginal integration technique of Linton (1997) is similar to the SBK

method but uses kernel-based integration to find the pre-estimates of the functions.

Linton establishes that the error caused by this “cheating” is negligible. The idea

behind SBK estimation is to under-smooth in the pre-estimates in order to reduce

the bias. This under-smoothing leads to a larger variance which is reduced in the

kernel estimation step.

2.4 Asymptotic Results

We present the asymptotic results for the oracle estimator m̃1 (u) in Theorem

2.1. This theorem follows directly from Theorem 1 in Liu and Yang (2010) and the

proof below is adapted from the proof of Theorem 1 found in the Appendix of that

paper.

Let μ2 (K) =
∫

u2K (u) du, ‖K‖2
2 =

∫
K (u)2 du, and Q (u) = {q (u)}p

l,l′=1 =

E
(
XXT |U = u

)
. Define the bias coefficient as

bl,l′ (u) =
1

2
μ2 (K) m′′

l (u) f (u) qll′ (u) ,

where f (u) is defined in Assumption (i) in Appendix A, and the variance coefficient

as

{vl,l′ (u)}p
l,l′=1 = Q (u)−1 Σ (u)Q (u)−1 ,

where

Σ (u) = ‖K‖2
2 f (u) E

(
XXT σ2|U = u

)
.

Theorem 2.1. Under Assumptions (i) - (vi) in Appendix A, for any u ∈ [h, 1 − h], as
n → ∞, the oracle local linear smoother m̃1 (u) satisfies

√
nh

[

m̃1 (u) − m1 (u) −

{
p∑

l=1

bl,l′ (u)

}p

l′=1

h2

]

→ N
(
0, {vl,l′ (u)}p

l,l′=1

)
.

Proof. Define

ξi,n,l′ = ξi,n,l′ (u,u,xi) = Xil′σεiKh (Ui − u)

(
Ui − u

h

)

,

and let

Vl′ (u) =
1

n

n∑

i=1

ξi,n,l′ .

14



For any λ = (λ1, . . . , λp)
T ∈ <p,

λT {Vl′ (u)}p
l′=1 =

p∑

l′=1

λl′Vl′ (u) =
1

n

n∑

i=1

p∑

l′=1

λl′ξi,n,l′ .

Define ξi,n =
∑p

l′=1 λl′ξi,n,l′ and Sn = Sn (u) =
∑n

i=1 ξi,n = nλT {Vl′ (u)}p
l′=1, then we

have E [Sn] = 0. Let

γ (k) = γ (k, u) = cov (ξi,n, ξi+k,n) = cov

(
p∑

l′=1

λl′ξi,n,l′ ,

p∑

l′=1

λl′ξi+k,n,l′

)

and

σ2
n = E

[
S2

n

]
= var (Sn) = var

(
n∑

i=1

ξi,n

)

=
n∑

i=1

var (ξi,n) +
n∑

i 6=j

cov (ξi,n, ξj,n)

= nvar (ξi,n) + n
∑

1≤|k|≤qn−1

(

1 −
|k|
n

)

γ (k) = nvar (ξi,n) + nAn.

In the above, var (ξi,n) = var (
∑p

l′=1 λl′ξi,n,l′) = h−1λT Σλ where

Σ = h {cov (ξi,n,l′ , ξi,n,l′′)}
p
l′,l′′=1 = hE {ξi,n,l′ , ξi,n,l′′}

p
l′,l′′=1

= f (u) ‖K‖2
2 E
{
XTXσ|U = u

}

by Lemma A.15 in Liu and Yang (2010). While according to Lemma A.16 in Liu

and Yang, we have

|γ (k)| ≤ p2 max
1≤l′≤p

|cov (ξi,n,l′ , ξi+k,n,l′′)| ≤ Ch− 1+η
2+η α (k)

η
2+η ,

where η is defined in Assumption (v) in Appendix A. Hence,

|An| =

∣
∣
∣
∣
∣
∣

∑

1≤|l|≤n−1

γ (k)

∣
∣
∣
∣
∣
∣
≤

∑

1≤|l|≤n−1

(

1 −
|k|
n

)

h− 1+η
2+δ {K0 exp (−λ0k)}

η
2+η

≤ K0h
− 1+η

2+δ

∑

1≤|l|≤n−1

exp {−λ0kη/ (2 + η)} ,

so there exists a constant C1 such that An ≤ C1h
− 1+η

2+δ . So An/var (ξi,n) → 0 as

n → ∞. Then σ2
n ∼ nvar (ξi,n) ≥ c0n where n is large, so according to Lemma A.17

in Liu and Yang, there exist constants c1 and c2 such that for some 0 < η ≤ 1

Δn = sup
z

∣
∣P
{
σ−1

n Sn < z
}
− Φ (z)

∣
∣ ≤ c1

dη

c0σ
η
n

{

log

(
σn

c
1/2
0

)

/λ

}1+η

,

for any λ with λ1 ≤ λ ≤ λ2, where

λ1 = c2

{

log

(
σn

c
1/2
0

)}b

/n, b >
2 (1 + η)

η
; λ2 =

4 (2 + η)

η
log

(
σn

c
1/2
0

)

.
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For η, set λ = 4 (2 + η) η−1 log
(
σn/c

1/2
0

)
, then we have

dη = max
1≤i≤n





E

∣
∣
∣
∣
∣

p∑

l′=1

λl′ξi,n,l′

∣
∣
∣
∣
∣

2+η





= max
1≤i≤n





E

∣
∣
∣
∣
∣

p∑

l′=1

λl′Xil′σεiKh (Ui − u)

(
Ui − u

h

)∣∣
∣
∣
∣

2+η





≤ CCδCη





E

∣
∣
∣
∣
∣

p∑

l′=1

Kh (Ui − u)

(
Ui − u

h

)∣∣
∣
∣
∣

2+η




= O

{
h−(1+η)

}
,

i.e., Δn = O
{
h−(1+η)/ση

n

}
= O

{
n(1+η/2)/5−η/2

}
= O

(
n1/5−2η/5

)
→ 0 when 1/2 <

η < 1. So Sn/σn → N (0, 1), then
√

nhλT {Vl′ (u)}p
l′=1 → N

(
0, λT Σλ

)
. By Cramér-

Wold device, we have
√

n {Vl′ (u)}p
l′=1 → N (0, Σ). Then according to Slutsky’s

theorem, we have

√
nhE

(
XTX|U = u

)
{

m̃1 (u) − m1 (u) −
p∑

l=1

bl,l′ (u) h2

}p

l′=1

→ N (0, Σ)

i.e.,

√
nh

{

m̃1 (u) − m1 (u) −
p∑

l=1

bl,l′ (u) h2

}p

l′=1

→ N
(
0,Q (u)−1 ΣQ (u)−1) .

The convergence result for m̃1 (u) is provided in Theorem 2.2 and the conver-

gence results for m̂1 (u) is provided in Theorems 2.3. These theorems follow directly

from Theorems 2 and 3 in Liu and Yang (2010) and their proofs can be adapted

from the proofs found in the Appendix of that paper similar to the proof of Theorem

2.1.

Theorem 2.2. Under Assumptions (i) - (vi) in Appendix A, as n → ∞, the oracle
local linear smoother m̃1 (u) satisfies

sup
u∈[h,1−h]

|m̃1 (u) − m1 (u)| = Op

(
log n
√

nh

)

.

Theorem 2.3. Under Assumptions (i) - (vii) in Appendix A, as n → ∞, the SBK
estimator m̂1 (u) satisfies

sup
u∈[0,1]

|m̂1 (u) − m̃1 (u)| = op

(
n−2/5

)
.
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Note that in Theorem 2.3, the asymptotic uniform magnitude of the difference

between m̂1 (u) and m̃1 (u) is dominated by the asymptotic size of m̃1 (u) − m1 (u).

As a result, m̂1 (u) will have the same asymptotic distribution as m̃1 (u). This result

leads to the following corollary which follows Corollary 1 in Liu and Yang (2010).

Corollary 2.1. Under Assumptions (i) - (vii) in Appendix A, for any u ∈ [h, 1 − h],
as n → ∞, the SBK estimator m̂1 (u) satisfies

√
nh

[

m̂1 (u) − m1 (u) −

{
p∑

l=1

bl,l′ (u)

}p

l′=1

h2

]

→ N
(
0, {vl,l′ (u)}p

l,l′=1

)
.

Note that the above theorems and corollary hold for m̂α (u) and m̃α (u) similarly

constructed for any α = 2, . . . , p.

2.5 Simulation Results

We ran simulations to test the performance of the SBK estimators and to com-

pare them to the local linear (LL) method of Cai, Fan, and Yao (2000) (see Section

1.2.1). Realizations from four models were generated of lengths n = 75, 150, 250, 500.

The realizations were from a exponential autoregressive (EXPAR) model and a self-

exciting threshold autoregressive (SETAR) model each with order p = 2, 4. We ran

S = 500 iterations for each model and computed the relative efficiency. For the jth

sample, j = 1, 2, . . . , S, the relative efficiency of m̂α with respect to m̃α is defined as

effα,j =
1
n

∑n
t=1 {m̂α (Xtα,j) − mα (Xtα,j)}

2

1
n

∑n
t=1 {m̃α (Xtα,j) − mα (Xtα,j)}

2

effα =
1

S

S∑

j=1

effα,j , = 1, 2, . . . , p.

Theorems 2.1, 2.2, 2.3, and Corollary 2.1 indicate that the efficiency should be close

to 1. For comparisons of total fit, we calculate the root mean square error (RMSE)

for both the LL and the SBK methods. For the SBK method, the RMSE is defined

as

RMSE =

[
1

n

n∑

t=1

(x̂SBK,t − xt)
2

]1/2

(2.5)

where

x̂SBK,t = ĉ +

p∑

l=1

m̂l (ut) xt−l.
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Similarly, we can calculate the RMSE of the LL method with x̂LL,t substituted into

(2.5) for x̂SBK,t where

x̂LL,t = ĉ +

p∑

l=1

m̃l (ut) xt−l.

The EXPAR model was introduced by Haggan and Ozaki (1981) to model

time series of non-linear random vibrations. The EXPAR model takes the form of

(2.1) with ml (u) = al + (bl + clu) exp {−δu2} where al, bl, cl, and δ are constants.

The SETAR model (Tong and Lim, 1980) takes the form

Xt = φ
(j)
1 Xt−1 + ∙ ∙ ∙ + φ(j)

p Xt−p + εt if Xt−d ∈ Ωj, j = 1, . . . , k,

where {Ωj} form a partition of <. We chose to use the EXPAR model because the

coefficient functions are continuous and the SETAR model to gauge the performance

of the method when the coefficients were not continuous at all points.

Example 2.1. We first consider an EXPAR(2) model with

m1 (u) = 0.138 + (0.316 + 0.982u) exp
{
−3.89u2

}
,

m2 (u) = −0.437 − (0.659 + 1.260u) exp
{
−3.89u2

}
,

Ut = Xt−2, and εt ∼ N (0, 1). The densities of the empirical relative efficiencies

were computed and can be found in Figure 2.1 (a) and (b). All of the series lengths

had relative efficiencies close to 1 with the relative efficiencies for the larger series

lengths centering closer to 1. We can also see that the variability of the densities

is decreasing as the series lengths increase. These results are what we expect to

see in terms of efficiency. For a comparison of the SBK method to the LL method,

Figure 2.1 (c) shows the fits of both methods to an realization of this model for

l = 1. We can see boxplots of the RMSE’s for n = 150 for both methods in (d).

These boxplots show that the SBK method has, on average, a lower RMSE but with

slightly larger variability. The same results can be seen for the remaining series

lengths (see Appendix B for remaining plots).
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(a) (b)

(c) (d)

Figure 2.1: Empirical relative efficiencies for (a) l = 1 and (b) l = 2, the (c) fit of
the coefficient function for l = 1, and (d) boxplots of the RMSE’s for n = 150 for
Example 2.1.
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Example 2.2. We now consider an EXPAR(4) model with

m1 (u) = 0.138 + (0.316 + 0.982u) exp
{
−3.89u2

}
,

m2 (u) = −0.437 − (0.346 + 1.260u) exp
{
−3.89u2

}
,

m3 (u) = 0.138 + (0.659 + 0.982u) exp
{
−3.89u2

}
,

m4 (u) = −0.437 − (0.659 + 1.260u) exp
{
−3.89u2

}
,

Ut = Xt−2, and εt ∼ N (0, 1). The empirical relative efficiencies for l = 2 and l = 3

can be seen in Figure 2.2 (a) and (b). The results for this example are similar to

the results of Example 2.1 in that the efficiencies are close to one and the variability

becomes smaller as the series length increases. With a degree of four, we would

expect the SBK method to perform better in RMSE than the LL method for smaller

series lengths since the SBK method does not suffer from the curse of dimensionality

as much as the LL method. Figure 2.2 (c) and (d) show the boxplots of the RMSE’s

for n = 75 and n = 150. We see for n = 75 that the RMSE of the SBK method is,

on average, lower than that of the LL method. For n = 150, the average RMSE’s for

the two methods become closer together. As the series length increases, the boxplots

of the RMSE’s for the two methods are approximately identical (see Appendix B for

remaining plots).

Example 2.3. To test the SBK method for when the coefficient function is not con-

tinuous at all points, we consider a SETAR(2) model with

m1 (u) = 0.4I[u≤1] − 0.8I[u>1],

m2 (u) = −0.6I[u≤1] + 0.2I[u>1],

Ut = Xt−2, and εt ∼ N (0, 1). The empirical relative efficiencies for l = 1 and l = 2

are shown in Figure 2.3 (a) and (b). The coefficient function and the fits of the SBK

and LL methods can be seen in (c). We can see that both methods are biased around

the point of discontinuity although, for the iteration shown, the SBK method is not

as biased. The efficiencies seem to be effected by this bias since the efficiencies for

l = 1 seem to be centered just above 1. For l = 2, we see that the efficiencies are

severely off from what we expect. Although the efficiencies for all series lengths are

20



(a) (b)

(c) (d)

Figure 2.2: Empirical relative efficiencies for (a) l = 2 and (b) l = 3, the boxplots of
the RMSE’s for (c) n = 75 and (d) n = 150 for Example 2.2.
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(a) (b)

(c) (d)

Figure 2.3: Empirical relative efficiencies for (a) l = 1 and (b) l = 2, the (c) fit of
the coefficient function for l = 1, and (d) boxplots of the RMSE’s for n = 150 for
Example 2.3.

centered close to 1, the larger series lengths appear to be more likely to have very

large efficiency values. In terms of RMSE, the SBK method performed better than

the LL method for the smaller series lengths. The two methods seem to have more

similar RMSE as the series lengths increase (see Appendix B for remaining plots).

These RMSE results are similar to the results of Examples 2.1.
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Example 2.4. Like Example 2.2, we would like to compare the SBK and LL methods

for larger orders. To do this, we consider a SETAR(4) model with

m1 (u) = 0.84I[u≤1.5] + 1.44I[u>1.5],

m2 (u) = 0.07I[u≤1.5] − 0.84I[u>1.5],

m3 (u) = −0.32I[u≤1.5] + 0.06I[u>1.5],

m4 (u) = 0.15I[u≤1.5] + 0I[u>1.5],

Ut = Xt−1, and εt ∼ N (0, 4). The empirical relative efficiencies for l = 1 and l = 2

are shown in Figure 2.3 (a) and (b). Similar to Example 2.3, the SBK and LL

methods both were biased when estimating the coefficient function at the point of

discontinuity. We can see the effect of this bias in the relative efficiencies for l = 1

and l = 2 in Figure 2.4 (a) and (b). In terms of RMSE, the SBK method is on

average smaller than the LL method. However, the variability of the SBK method

appears much greater. The boxplots of the RMSE’s for n = 75 and n = 150 can be

seen in Figure 2.4 (c) and (d). We see similar results for n = 250 and n = 500 (see

Appendix B for remaining plots).

2.6 Conclusion

We have introduced the SBK method as a better alternative to the LL method

for estimating FCAR models, particularly for higher orders. We have shown that the

SBK method is as asymptotically efficient as the oracle estimator through theoret-

ical and simulation results. This method assumes that the coefficient functions are

continuous at all points. For Examples 2.1 and 2.2 which had continuous coefficient

functions, the empirical relative efficiencies were as we expected based on the the-

oretical results. Also, for these examples, the SBK method had lower RMSE than

the LL method. For Examples 2.3 and 2.4, which did not have coefficient functions

continuous at all points, the empirical relative efficiencies were not as we expected.

When compared to the LL method, the SBK method had a smaller average RMSE

for all series lengths. However, the variability of the SBK method was much greater

than the LL method when the model was of order four. It is difficult to recommend
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(a) (b)

(c) (d)

Figure 2.4: Empirical relative efficiencies for (a) l = 1 and (b) l = 2, the boxplots of
the RMSE’s for (c) n = 75 and (d) n = 150 for Example 2.4.

24



the SBK method over the LL method with this large variability for the case of coef-

ficient functions not continuous at all points. In all other cases, we have shown the

SBK method is a better method for estimating FCAR models.
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CHAPTER THREE

Forecasting Using the Spline-Backfitted Kernel Method

3.1 Introduction

The spline-backfitted kernel estimation (SBK) method has been shown in the

literature to be effective in estimating high-dimensional time series models (see, e.g.,

Wang and Yang, 2007). In Chapter Two, we showed the SBK method is effective in

modeling functional-coefficient autoregressive (FCAR) models through theoretical

and simulation results. The forecasting performance of the SBK method has not

been addressed in the literature. In this chapter, we adapt three forecasting methods

for FCAR models to be used with the SBK method.

This chapter is organized as follows. In Section 3.2, we discuss how the three

forecasting methods can be used after the FCAR model is fitted by the SBK method.

In Section 3.3, we discuss prediction intervals for these forecasting methods. We

present simulation results in Section 3.4 and state a conclusion in Section 3.5.

3.2 Forecasting Methods

For convenience, we restate (1.1) here: the FCAR model is defined as

Xt = m1 (Ut) Xt−1 + ∙ ∙ ∙ + mp (Ut) Xt−p + εt, t = 1, . . . , n, (3.1)

where p is a positive integer, mj (Ut) is a measurable function of the variable Ut

for j = 1, . . . , p, and {εt} is a sequence of i.i.d. random variables with mean 0 and

variance σ2. As we discussed in Section 1.3, Harvill and Ray (2005) adapted two

forecasting methods for FCAR models and compared them to the direct and iterative

methods of Fan and Yao (2003). These methods are the bootstrap and the multi-

stage forecasting methods. The authors estimated the FCAR model using local

linear smoothing. Similar to Harvill and Ray (2005), we will use SBK estimation

for the FCAR model and compare the three forecasting methods.
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Assuming ml (∙) is known and U is exogenous in (3.1), we want to find an

estimator of the conditional expectation

E [Xn+M |Xn, . . . , Xn−p] = E

[
p∑

l=1

ml (Un+M ) Xn+M−l|Xn, . . . , Xn−p

]

(3.2)

=

p∑

l=1

ml (Un+M ) E [Xn+M−l|Xn, . . . , Xn−p]

=

p∑

l=1

ml (Un+M ) X̂n+M−l.

The expectation in (3.2) is no longer a simple linear operation when Ut = Xt−d for

some positive constant d. The three forecasting methods described below deal with

this expectation in a different way.

3.2.1 Naive Predictor

The naive approach simply ignores the fact the expectation in (3.2) is not a

linear function of Xt+M−l and substitutes X̂t+M−l into the forecast equation. We

estimate the coefficient function only using the within-sample series values. The

naive predictor is defined as

X̂n+M =

p∑

l=1

m̂l

(
X̂n+M−d

)
X̂n+M−l,

where X̂t = Xt, t ≤ n. For the SBK estimator, X̂n+M−d is substituted for u in (2.2)

and m̂l (∙) is the value obtained by the general form of (2.4). Thus, the spline pre-

estimate is not computed for each value of X̂n+M−d but the local linear estimation

is computed.

3.2.2 Bootstrap Predictor

The bootstrap predictor is like the naive predictor in that it estimates the

functional coefficients using only the within-sample values. However, we bootstrap

the within-sample residuals from the estimated model and find the predicted value

as

X̂n+M =

p∑

l=1

m̂l

(
X̂n+M−d

)
X̂n+M−l + εb,

where εb is the bootstrapped residual. We obtain bootstrapped forecasts for b =

1, . . . , B, and use the average of these values as the M -step ahead forecast. For the
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SBK method, we estimate m̂l (∙) as with the naive predictor. An advantage of using

the bootstrap values is that the set of all values allows us to estimate the predictive

density of Xt+M . A disadvantage is that the estimated functional coefficients may

become unreliable when X̂t+M−d is outside or near the boundary of the range of the

original Xt−d. This disadvantage was first noted by Huang and Yang (2004) and

reiterated by Harvill and Ray (2005).

3.2.3 Multistage Predictor

Another way to handle the expectation in (3.2) is to incorporate the informa-

tion from Xt encoded in the predicted response at time n+j, j = 1, . . . ,M −1. This

is accomplished by updating the functional coefficients at each step and obtaining

the forecasted value by

X̂n+M =

p∑

l=1

m̂M
l

(
X̂n+M−d

)
X̂n+M−l,

where X̂t = Xt, t ≤ n. The functional coefficient m̂M
l (∙) is estimated by the SBK

method at each step. That is, we include the predicted values X̂t, t = n+1, . . . ,M −

1, with the original values Xt, t = 1, . . . , n, and then re-estimate the functional

coefficient with the SBK method using the new set of data.

3.3 Prediction Intervals

A number of approaches exist for computing prediction intervals. Chatfield

(1993) states that, in practice, most 100 (1 − α) % prediction intervals for Xn+M

follow the form

X̂n+M ± zα/2

√
var (en+M ), (3.3)

where zα/2 denotes the upper α/2 critical value for the standard normal distribu-

tion and en+M = Xn+M − X̂n+M is the forecast error for X̂n+M . When we estimate

var (en+M), then zα/2 should be replaced in (3.3) by a critical value from the t-

distribution with an appropriate degrees of freedom, but this makes little difference

except for short series.
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Another approach for finding prediction intervals is to use the bootstrap pre-

dictor and find the 100(α/2)% and the 100(1 − α/2)% sample quantiles of all of

the bootstrapped values. Clearly, using this approach with the bootstrap predic-

tor requires little additional computations. However, using the naive or multistage

predictors would require us to bootstrap the residuals in addition to finding the

forecasted values.

Chatfield (1993) discusses an “approximate” formula substituted into (3.3)

that uses

var [en+M ] = Mσ2
e , (3.4)

where σ2
e = var [en+1] denotes the variance of the one-step-ahead forecast errors.

Chatfield describes how this approximate formula is only valid for a random walk

model but is frequently used for other models.

3.4 Simulation Results

In this section, we run simulations from the models presented in the examples

in Chapter Two and compare the root mean squared errors (RMSE) for the three

forecasting methods described in Section 3.2. We generate 500 realizations for each

model with lengths n = 75, 150, 250, and 500. We also obtain empirical coverages

of the 95% prediction intervals for the three forecasting methods. We obtain the

prediction intervals by the z interval in (3.3), by the bootstrapped quantiles, and

by the approximate formula in (3.4). We ran 500 iterations for each model, 400

replications for the bootstrap forecasting method, and found forecasts for M =

1, . . . , 10.

Example 3.1. (Continuation of Example 2.1) For the EXPAR(2) model defined in

Example 2.1, we show the RMSE for the four series lengths in Figure 3.1. For any

of the series lengths, we don’t see any method with significantly lower RMSE. For

n = 250, we see the multistage method with lower RMSE for smaller values of M

and the bootstrap method with the lower RMSE for larger values of M . However,

these results do not hold for the other series lengths.
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(a) (b)

(c) (d)

Figure 3.1: Plots of the RMSE’s of the three forecasting methods for M = 1, . . . , 10
for Example 3.1 with (a) n = 75, (b) n = 150, (c) n = 250, and (d) n = 500.
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(a) (b) (c)

Figure 3.2: Plots of the empirical coverages of the 95% prediction intervals for the
three approaches for n = 150 with predictions using (a) the naive approach, (b) the
bootstrap approach, and (c) the multistage approach for Example 3.1.

The empirical coverages of the 95% prediction intervals for the three forecast-

ing methods for n = 150 can be seen in Figure 3.2. As expected, we see that the

approximate approach for prediction intervals provides invalid results. The plots

show that the z-interval approach provides more accurate prediction intervals than

the bootstrap approach. These results are more evident in the naive and the boot-

strap forecasting methods (See Appendix D for additional plots).

Example 3.2. (Continuation of Example 2.2) For a higher order model, we used the

same EXPAR(4) model from Example 2.2. We show the RMSE for the four series

lengths in Figure 3.3. For this model, we see that the bootstrap forecasting method

has slightly smaller RMSE for series lengths n = 150, 250, 500. For n = 75, the

bootstrap method has the smallest RMSE for M = 2, 3, and the multistage method

had the smallest for the larger steps.

Figure 3.4 shows the empirical coverages of the 95% prediction intervals for the

three forecasting methods for n = 150. Similar to Example 3.1, the plots show that

the z-interval approach provides more accurate prediction intervals than the boot-

strap approach. For this example, these results are more evident in the bootstrap

and the multistage forecasting methods. For the other series lengths, the coverages

are approximately the same for the bootstrap and z approaches (See Appendix D

for additional plots).
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(a) (b)

(c) (d)

Figure 3.3: Plots of the RMSE’s of the three forecasting methods for M = 1, . . . , 10
for Example 3.2 with (a) n = 75, (b) n = 150, (c) n = 250, and (d) n = 500.

(a) (b) (c)

Figure 3.4: Plots of the empirical coverages of the 95% prediction intervals for the
three approaches for n = 150 with predictions using (a) the naive forecast, (b) the
bootstrap forecast, and (c) the multistage forecast for Example 3.2.
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(a) (b)

(c) (d)

Figure 3.5: Plots of the RMSE’s of the three forecasting methods for M = 1, . . . , 10
for Example 3.3 with (a) n = 75, (b) n = 150, (c) n = 250, and (d) n = 500.

Example 3.3. (Continuation of Example 2.3) For the SETAR(2) model defined in

Example 2.3, the RMSE for the four series lengths are shown in Figure 3.5. For this

model, we do not see any of the three methods with significantly smaller RMSE.

For n = 150, we see that the multistage method has slightly lower RMSE for M =

5, . . . , 10. For n = 250, the bootstrap method has slightly lower RMSE for M =

5, . . . , 8. For n = 75 and 500, we don’t see any of the methods outperforming the

other two consistently.

Figure 3.6 shows the empirical coverages of the 95% prediction intervals for the

three forecasting methods for n = 150. For this model, it appears that the z-interval
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(a) (b) (c)

Figure 3.6: Plots of the empirical coverages of the 95% prediction intervals for the
three approaches for n = 150 with predictions using (a) the naive forecast, (b) the
bootstrap forecast, and (c) the multistage forecast for Example 3.3.

approach has better coverage for all three forecasting methods. The same results

can be seen in the plots for the other series lengths (See Appendix D for additional

plots).

Example 3.4. (Continuation of Example 2.4) For the SETAR(4) model defined in

Example 2.4, the RMSE for the four series lengths are shown in Figure 3.5. From

these plots, we can see the multistage method having lower RMSE for smaller values

of M for n = 75 and n = 150 and for larger values of M for n = 500. For n = 250,

we see little difference in the three methods.

Plots of the empirical coverages of the 95% prediction intervals for the three

forecasting methods for n = 150 can be seen in Figure 3.8. Overall, the empirical

coverages of the prediction intervals are lower for this model than for the models in

the previous examples. The z-interval approach still has higher coverage than the

bootstrap approach. The plots for the other series lengths show the same results

(See Appendix D for additional plots).

3.5 Conclusion

In this chapter, we have presented three forecasting methods to be used with

the SBK estimator. Through simulation results, we showed that none of the methods

were consistently better than the other methods in terms of RMSE. The bootstrap
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(a) (b)

(c) (d)

Figure 3.7: Plots of the RMSE’s of the three forecasting methods for M = 1, . . . , 10
for Example 3.4 with (a) n = 75, (b) n = 150, (c) n = 250, and (d) n = 500.

(a) (b) (c)

Figure 3.8: Plots of the empirical coverages of the 95% prediction intervals for the
three approaches for n = 150 with predictions using (a) the naive forecast, (b) the
bootstrap forecast, and (c) the multistage forecast for Example 3.4.

35



and multistage methods had smaller RMSE for some cases but the results did not

show enough evidence to make one method the preferred choice.

We also explored three prediction interval approaches and found the approxi-

mate interval approach in (3.4) does not give accurate coverage. For the EXPAR(2)

model, the bootstrap and z-interval approaches had empirical coverages around 0.95

for 95% prediction intervals for M = 1. The coverages began to decline to between

0.85 and 0.90 for larger values of M . For the EXPAR(4) model, the two approaches

declined to between 0.80 and 0.90 for larger values of M . For SETAR models, the

coverages declines to around 0.70. Overall, the z-interval approach had higher cov-

erage than the bootstrap approach and is the preferred prediction interval for use

with the SBK estimator.
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CHAPTER FOUR

Application: Lanai Irradiance Data Set

4.1 Introduction

The Lanai irradiance data set contains irradiance measurements (in W/m2)

for 16 sensors recorded at one second intervals from January 1, 2010 to December

31, 2010 (Kuszamaul, Ellis, Stein, and Johnson, 2010). The 16 sensors are located

within the 1.2 MW La Ola photovoltaic (PV) plant on the island of Lanai, Hawaii.

The La Ola PV plant contains a grid of 12 solar panel tracking arrays arranged

in three columns and four rows. Each tracking array is approximately 2,600 m 2 in

size. Sandia National Laboratories and SunPower Corporation designed this system

to study the effect of the movement of cloud shadows across the PV arrays on the

power output of the plant. The power output is highly correlated with the measured

irradiance so the goal is to model the irradiance measurements in this grid. In this

chapter, we explore methods to achieve this goal through spatio-temporal models.

We use the spline-backfitted kernel (SBK) method to explore the time series model.

The remainder of this chapter is organized as follows. In Section 4.2, we

discuss how the diurnal time trend is removed from the data. We explore the data

set through a preliminary analysis in Section 4.3. This preliminary analysis includes

fitting the data with basic spatial models and time series models. In Section 4.4, we

apply the SBK method to the data set to determine any patterns in the estimated

coefficient functions. We explore spatio-temporal models in Section 4.5 and give a

conclusion in Section 4.6.

4.2 Removing the Diurnal Trend

Before we analyze the data, we remove the diurnal trend. For irradiance

data, several clear sky models can be found in the literature that can be helpful

in removing this trend. These clear models are classified as very simple, simple,

and complex. A review of some of these models can be found in Reno, Hansen, and
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Stein (2012). Unfortunately, the clear sky models are for global horizontal irradiance

(GHI) measurements. The GHI measurements are obtained by a sensor that is

stationary. When the sensor moves and follows the sun across the sky, then the

measurements are called plan-of-array (POA). The Lanai data set consists of POA

measurements that were transformed to approximate GHI. This transformation is

not exact and thus the clear sky models will not work for this data set. Instead, we

use local polynomial kernel regression to model and remove the trend and then fit a

time series model to the residuals.

For the observed irradiance Yt at time t, and for kernel K with bandwidth h,

the local polynomial kernel regression estimate is

Ŷ =
[
X (x)′ K (x)X (x)

]−1
X (x)′ K (x)Y

where Y = [y1, . . . , yn]′, K (x) = diag {Kh (x1 − x) , . . . , Kh (xn − x)}, and

X (x) =









1 (x1 − x) (x1 − x)2 (x1 − x)3

...
...

...
...

1 (xn − x) (xn − x)2 (xn − x)3









.

Here, the predictor variable is the time index, xj = tj . This procedure is obtained

using the KernSmooth package (Wand, 2012) in R. The local polynomial estimate

for March 10 is found in Figure 4.1 along with a plot of the residuals. This method

is able to remove the trend fairly well. However, we see from the plot of the residuals

that the time series has non-constant variance. This heteroscedasticity will need to

be addressed in a proper analysis of the data.

4.3 Preliminary Analysis

We first examine this data set through a preliminary analysis. This analysis

includes some basic spatial and time series models fitted to the data. Using these

basic models requires assumptions such as a separable covariance structure. That

is, for a spatio-temporal field Z (s, t), where s represents space and t time, the

covariance structure can be expressed as Cov {Z (s, t) , Z (s′, t′)} = C1 (s, s′) C2 (t, t′)

for some spatial covariance C1 and temporal covariance C2. For the Lanai data, a

separable covariance assumption may not hold. Intuitively, we expect the irradiance
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Figure 4.1: Plots of (a) irradiance measurements for March 10 and the local polyno-
mial kernel estimate (dashed line) and (b) the residuals after removing the trend.

measurements to be fairly constant among all 16 sensors on clear and overcast days.

However, on days that are partially cloudy we expect the clouds to move across the

16 sensors which will cause a spatial lag in the irradiance measurements. An example

of this lag can be seen in Figure 4.2. At 8:00, the sensors are fairly uniform in the

measurements except for one sensor on the right side which has a lower measurement.

Ten minutes later, clouds move over the sensors at the top which cause measurements

to fall. At 8:20, the measurements for the entire grid have fallen due to the clouds.

Clearly, covariance separability will be an issue that will need to be addressed. For

now, we assume a separable covariance structure.

4.3.1 Spatial Model

For the initial analysis of the Lanai data, for a fixed time t, the spatial struc-

ture is analyzed as lattice data. We fit the spatial structure using a conditional

autoregressive (CAR) model. For a CAR model, we model the conditional mean

and variance as

E
[
Y (si) |Y (s)−i

]
= X (si)

′ β +
n∑

j=1

cijej (si)

Var
[
Y (si) |Y (s)−i

]
= σ2

i ,
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(a) (b) (c)

Figure 4.2: Spatial bubble plots for the 16 sensors on March 7, at (a) 8:00, (b) 8:10,
and (c) 8:20.

where

ej (si) = Y (sj) − X (si) β,

Y (s)−1 is the vector of observations with the ith observation removed, and cij are

spatial dependence parameters with cii = 0. For the Lanai data set, there are no

covariates so X (si) = 1 and a two nearest neighbors structure is used.

The CAR model is fitted to data on March 10 at three different times using

the spautolm function in the R package spdep (Bivand et al., 2013). To test the

hypothesis of no spatial autocorrelation, the likelihood ratio test gives p-values of

0.0098, 0.0175, and 0.0205 for times 8:00, 12:00, and 14:00 respectively. All three

tests give a significant p-value indicating the presence of spatial autocorrelation.

The studentized residuals of the fit can be seen in Figure 4.3. For 8:00 and 12:00,

there are no obvious patterns in the studentized residuals to indicate non-normality.

However, it is difficult to conclude non-normality with only 16 sensors. For 14:00,

two outliers are evident which indicates that a more complex model may be needed

for this data. The CAR model was fit to other time periods with similar results.

4.3.2 Time Series Model

As seen in Figure 4.1 (b), the residuals after the trend is removed indicate

non-constant variance in the time series. One solution to this problem is to remove

from the measurements a set number of time after sunrise and before sunset. This
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(a) (b) (c)

Figure 4.3: Studentized residuals of irradiance data for March 10, at (a) 8:00, (b)
12:00, and (c) 14:00 for all 16 sensors after fit of a CAR model.

solution may work for some days, but not for days with more variable weather. One

type of model that may work for this type of data is the self-exciting threshold

autoregressive (SETAR) model. For a univariate time series yt with a k × 1 vector

Yt−1 = (1, yt−1, yt−2, ∙ ∙ ∙ , yt−p)
T , the SETAR model takes the form

Yi = φ
(j)
1 Xi−1 + ∙ ∙ ∙ + φ(j)

p Xi−p + εi if Xi−d ∈ Ωj, j = 1, . . . , k,

where {Ωi} form a non-overlapping partition of <. The SETAR model is flexible for

modeling nonlinear time series and it will be the first model used in the preliminary

analysis of the Lanai data.

First, we examined data on March 10 for sensor one but for observations only

between 8:40 and 16:40. These times represent two hours after sunrise and before

sunset, respectively. The time series plot of the data can be seen in Figure 4.4. The

parameters of the SETAR model can be found using the tsDyn package (Antonio

et al., 2009) in R and the model fit using the setar function. For this data, the

number of regimes found was m = 2 and the delay parameter was d = 2. Just from

examining the time series plot, we can see the problem of heteroscedasticity still

exists which can also be seen in the plot of the residuals.

A second model that we can fit is the generalized autoregressive conditional

heteroscedasticity (GARCH) model. A GARCH(q, p) model is useful when the

variance is believed to be dependent on time. For these models, it is assumed that

the error variance follows an autoregressive moving average (ARMA) model. This
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(a) (b)

Figure 4.4: (a) Time series plot of March 10 form 8:40 to 4:40 and (b) the plot of
the residuals after fit of SETAR(2,2) model.

model is expressed as

σ2
t = α0 +

q∑

i=1

αiε
2
t−1 +

p∑

i=1

βiσ
2
t−i,

where αi is the autoregressive coefficient, εt is the error term, and βi is the moving

average coefficient.

We can fit the GARCH model in R using the garch function in the tseries

package (Trapletti and Hornik, 2012). This function uses maximum likelihood to

estimate the parameters. To determine the values of q and p, we run the function

for a number of combinations of q and p and chose the values that correspond to

the lowest root mean squared error (RMSE). Using the same data as in the SETAR

model above, we find the lowest RMSE was with q = 3 and p = 1. The plot of the

residuals can be found in Figure 4.5. The residuals appear to have non-constant

variance with the residuals on the ends being less variant. We also fit the GARCH

model to all the data on March 10 from sunrise to sunset. The residual plot for

this data shows non-constant variance more clearly. To explore the data on multiple

days, we fit the model to three days of data (March 10 - 12). The residual plot for

this fit shows a definite pattern that needs to be addressed. It appears the GARCH

model is a better fit than SETAR model but more improvement is needed for this

data.
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(a) (b) (c)

Figure 4.5: Plots of the residuals after fitting (a) a GARCH(3, 1) model to March
10, 8:40 to 16:40, (b) a GARCH(1, 4) model to March 10, sunrise to sunset, and (c)
a GARCH(1, 1) model to March 10 - 12.

4.3.3 Preliminary Conclusion

The assumption of separable covariance structure will need to be addressed

for this data set. The use of CAR spatial models seems to work well for some time

periods but not for all. For the time series aspect, the problem of heteroscedasticity

will be a major obstacle for fitting and forecasting for each sensor. This problem may

be compounded once the spatial covariance is also taken into account. The SETAR

model was not able to fit the data well due to heteroscedasticity. The GARCH model

did a better job at fitting the data but still had issues. We believe a better model

to use for this data will be a functional-coefficient autoregressive model fitted using

spline-backfitted kernel estimation. These models are flexible for modeling non-linear

time series and the estimators perform well even with non-constant variance.

4.4 Applying the SBK Method

We introduced the SBK method for estimating FCAR models in Section 2.4.

We fit a FCAR model to the Lanai data set using the SBK method and examine the

estimated coefficient functions. Before we fit the model, we examine the data and

see that the weather conditions play a major role in the behavior of the irradiance.

For instance, January 30 was cloudy for most of the day while March 8 was clear.

In Figure 4.6, we see the two days have much different irradiance measurements.

We group days based on weather conditions, fit an FCAR model using the SBK
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(a) (b)

(c) (d)

Figure 4.6: Irradiance measurements for January 30 (a) original data and (b) with
trend removed. Irradiance measurements for March 8 (a) original data and (b) with
trend removed.

method, and then examine the plots of the estimated coefficient functions. If these

coefficient functions show a pattern among days with the same weather conditions,

then we may be able to use a parametric model based on the shape of the estimated

coefficient functions.

We begin by examining clear days. For each day, we fit a FCAR model with

dimension p and delay d to the data using the SBK method. For this section, we will

only be using the measurements from sensor one. Different values for p and d were

fitted with the values resulting in the smallest root mean squared error (RMSE)

being chosen. Of the eight clear days examined, five days had p = 5 and three days
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had p = 3. The value for d ranged from two to five for these clear days. Although,

the values of p and q differ from day to day, we compare the coefficient functions

for l = 1 among six of the clear days. We see the estimated coefficient functions in

Figure 4.7. From these plots, we see that the coefficient functions have a ‘v’ shape

close to zero. It appears that the ‘v’ moves further to the right for days later in the

year. We also examine the coefficient functions for l = 2 which can be seen in Figure

4.8. The same ‘v’ shape pattern can be seen in these estimated coefficient functions

although it is not as evident for March 18 and December 16. The pattern we see in

these coefficient functions may lead us to a FCAR model with a parametric form for

the coefficient functions. For the ‘v’ shape seen in Figures 4.7 and 4.8, a threshold

autoregressive model may be appropriate.

For non-clear days, the weather conditions may vary between partly cloudy,

mostly cloudy, and overcast. We examine days which are classified as mostly cloudy,

of which we select six days. Similar to the clear days, we fit a FCAR model to these

days with a p and d value selected by RMSE. We see the estimated functions for

l = 1 in Figure 4.9. From these plots, we do not see any patterns in the functions,

thus it would be difficult to use a parametric form for the functions. We do not see

any patterns in the estimated coefficient functions for l = 2 either (see Appendix D

for additional plots).

We also examine days where the weather is classified as rainy, of which we

select six days. We see the fit of the estimated coefficient functions l = 1 in Figure

4.10. Similar to the cloudy days, we see no discernable pattern in the coefficient

functions. We also see no patterns in l = 2 (see Appendix D for additional plots).

The overall fit of the FCAR model also varies based on the weather conditions.

We show the RMSE and the corresponding values of p and d for all three weather

conditions in Table 4.1. We see that the RMSE for the clear days are much smaller

than for the cloudy and rainy days. This difference is due to the variability of the

irradiance measurements being much greater when rain and clouds are present. A

model with a covariate for weather condition may be useful for this data set. One
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Estimated coefficient functions for l = 1 for clear days: (a) February 3,
(b) February 16, (c) March 18, (d) March 19, (e) October 21, and (f) December 16.

46



(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Estimated coefficient functions for l = 2 for clear days: (a) February 3,
(b) February 16, (c) March 18, (d) March 19, (e) October 21, and (f) December 16.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Estimated coefficient functions for l = 1 for cloudy days: (a) March 7,
(b) April 1, (c) May 10, (d) June 4, (e) June 28, and (f) November 15.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Estimated coefficient functions for l = 1 for rainy days: (a) February 1,
(b) March 15, (c)April 6, (d) May 31, (e) August 3, and (f) October 27.
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Table 4.1: The RMSE of the days with clear, cloudy, and rainy conditions
and the corresponding values of p and d.

Condition Date p d RMSE
clear Feb. 3 3 3 1.1763

Feb. 16 5 2 0.6486
Mar. 18 3 4 1.0094
Mar. 19 5 3 1.3852
Oct. 21 3 4 1.3214
Dec. 16 5 2 2.7418

cloudy Mar. 7 5 2 73.9713
Apr. 1 4 5 80.7983
May 10 5 1 46.4456
Jun. 4 5 2 51.7008
Jun. 28 4 2 57.9384
Nov. 15 5 3 33.6671

rain Feb. 1 5 5 62.9553
Mar. 15 4 2 106.4262
Apr. 6 3 5 55.5763
May 31 5 3 54.6207
Aug. 3 5 5 87.2082
Oct. 27 3 3 74.5524

drawback to using a covariate for weather condition is the reliability of weather

forecasts one day in advance and beyond. When we forecast the irradiance measure-

ments, we will need the forecasted weather conditions which may be unavailable or

inaccurate.

4.5 Spatio-Temporal Models

We now attempt to model the data in space and time through a spatio-

temporal model. We do this in two different ways. One way is to first fit a spatial

CAR model to the 16 sensors for each time t. This fit will give us a residual for

each t at each sensor. We then fit the times series model to the residuals for each

sensor. The other way to fit a spatio-temporal model is to first fit the time series

for each sensor and then fit the CAR model to each time t of the residuals of the

time series fit. For the first method, we model the spatial correlation first and then

model the time series correlation. For the second method, we model the time se-

ries correlation and then the spatial correlation. We can compare the overall fit of
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the spatio-temporal model by the total root mean squared error (TRMSE). For the

RMSEi of the residuals at sensor i, the TRMSE is defined as

TRMSE =
1

16

16∑

i=1

RMSEi.

The TRMSE’s for the 18 days analyzed in Section 4.4 are found in Table 4.2. We

see that for each day, the TRMSE of the model fit to space then to time is lower

than with the model fit to time then to space. This difference in TRMSE is another

argument for the need of a spatio-temporal model with a nonseparable covariance

structure.

4.6 Conclusion

For the Lanai data set, we have shown that a CAR model performs fairly well

in fitting the spatial structure for some time periods but not for all. For modeling the

time structure, we have seen that the SETAR model was inadequate for modeling

the heteroscedasticity of the data. The GARCH model performed better than the

SETAR model although it did not completely model the heteroscedasticity. After

fitting a FCAR model to the data by the SBK method, we see that a parametric

form of the coefficient functions may be used for modeling clear days. For cloudy

and rainy days, we do not see patterns in the coefficient functions. We believe a data

driven approach to estimating the functions, such as the SBK method, is the best

estimation method to use. We have also seen evidence for a nonseparable covariance

structure for a spatio-temporal model through spatial plots and TRMSE. For the

Lanai data set, future research will be conducted to model the spatial and temporal

structures using a nonseparable covariance structure. The SBK method will be

adapted to this spatio-temporal model for modeling the time structure. Future

goals of this project is to forecast irradiance measurements both in time and space.

The research conducted in this dissertation will be usefully in achieving these goals.
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Table 4.2: The TRMSE for the space-time model and the time-space model
of the days with clear, cloudy, and rainy conditions.

Condition Date Space-Time Time-Space
clear Feb. 3 0.28 0.67

Feb. 16 2.97 3.30
Mar. 18 0.30 0.60
Mar. 19 0.14 3.57
Oct. 21 0.63 0.92
Dec. 16 0.80 1.84

cloudy Mar. 7 11.09 36.33
Apr. 1 8.43 38.38
May 10 4.99 19.77
Jun. 4 14.30 34.46
Jun. 28 5.30 22.34
Nov. 15 8.37 28.55

rain Feb. 1 9.65 32.60
Mar. 15 12.31 46.94
Apr. 6 11.24 22.01
May 31 10.14 25.98
Aug. 3 7.78 42.65
Oct. 27 4.82 34.41
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APPENDIX A

Assumptions for Theorems in Chapter Two

The necessary assumptions for Theorems 2.1, 2.2, and 2.3 which are taken

from the Appendix of Liu and Yang (2010):

(i) The delay variable U has a continuous probability density function f (u)

that satisfies 0 < cf ≤ minu∈X f (u) ≤ maxu∈X f (u) ≤ Cf < ∞ for some

constants cf and Cf and f (u) = 0, u /∈ U = [0, 1].

(ii) There exist constants 0 < cQ ≤ CQ < ∞ and 0 < cδ ≤ Cδ < ∞ and some

δ > 1/2 such that cQIp×p ≤ Q (u) = {q (u)}p
l,l′ = E (XX′|U = u) ≤ CQIp×p

and cδ ≤ E
{

(XlXl′)
2+δ |U = u

}
≤ Cδ for all u ∈ U and l, l′ = 1, . . . , p.

(iii) The vector process {ς t}
∞
t=−∞ = {(Ut,Xt)}

∞
t=−∞ is strictly stationary and

geometrically strongly mixing.

(iv) The coefficient functions, ml ∈ C1 [0, 1], m′
l ∈ Lip ([0, 1] , C∞), ∀1 ≤ l ≤ p.

(v) The conditional variance function σ2 (u,x) is measurable and bounded.

The errors {εi}
n
i=1 satisfy E (εi|Fi) = 0, E (ε2

i |Fi) = 1, E
(
|εi|

2+η |Fi

)
≤

Cη for some η ∈ (1/2, 1] and the sequence of σ-fields Fi = σ {(Uj ,Xj) ,

j ≤ i; εj , j ≤ i − 1} for i = 1, . . . , n.

(vi) The function K is a symmetric probability density function supported on

[−1, 1], and K ∈ Lip ([−1, 1] , CK) for some CK > 0, while the bandwidth

h > 0, h ∼ n−1/5.

(vii) The number of interior knots N = Nn ∼ n1/4 log n and hence H = (N + 1)−1 ∼

n−1/4 (log n)−1 .
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APPENDIX B

Chapter Two Simulation Results

The following plots are additional boxplots referenced in Section 2.5.

Example 2.1: n = 75 Example 2.1: n = 250

Example 2.1: n = 500 Example 2.2: n = 250
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Example 2.2: n = 500 Example 2.3: n = 75

Example 2.3: n = 250 Example 2.3: n = 500

Example 2.4: n = 250 Example 2.4: n = 500
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APPENDIX C

Chapter Three Simulation Results

The following plots are additional results referenced in Section 3.4.

Example 3.1: n = 75, naive method Example 3.1: n = 75, bootstrap method

Example 3.1: n = 75, multistage method Example 3.1: n = 250, naive method

57



Example 3.1: n = 250, bootstrap method Example 3.1: n = 250, multistage method

Example 3.1: n = 500, naive method Example 3.1: n = 500, bootstrap method

Example 3.1: n = 500, multistage method Example 3.2: n = 75, naive method
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Example 3.2: n = 75, bootstrap method Example 3.2: n = 75, multistage method

Example 3.2: n = 250, naive method Example 3.2: n = 250, bootstrap method

Example 3.2: n = 250, multistage method Example 3.2: n = 500, naive method
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Example 3.2: n = 500, bootstrap method Example 3.2: n = 500, multistage method

Example 3.3: n = 75, naive method Example 3.3: n = 75, bootstrap method

Example 3.3: n = 75, multistage method Example 3.3: n = 250, naive method
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Example 3.3: n = 250, bootstrap method Example 3.3: n = 250, multistage method

Example 3.3: n = 500, naive method Example 3.3: n = 500, bootstrap method

Example 3.3: n = 500, multistage method Example 3.4: n = 75, naive method
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Example 3.4: n = 75, bootstrap method Example 3.4: n = 75, multistage method

Example 3.4: n = 250, naive method Example 3.4: n = 250, bootstrap method

Example 3.4: n = 250, multistage method Example 3.4: n = 500, naive method
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Example 3.4: n = 500, bootstrap method Example 3.4: n = 500, multistage method
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APPENDIX D

Chapter Four Additional Figures

The following figures are additional plots referenced in Section 4.4.

March 7: l = 2 April 1: l = 2

May 10: l = 2 June 9: l = 2
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June 28: l = 2 November 15: l = 2

February 1: l = 2 March 15: l = 2

April 6: l = 2 May 31: l = 2
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August 3: l = 2 October 27: l = 2
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