
ABSTRACT

Topics in Multivariate Covariance Estimation
and Time Series Analysis

John D. Beeson, Ph.D.

Chairperson: Jane L. Harvill, Ph.D.

In this dissertation we will discuss two topics relevant to statistical analysis.

The first is a new test of linearity for a stationary time series, that extends the

bootstrap methods of Berg et al. (2010) to goodness-of-fit (GoF) statistics specified

in Harvill (1999) and Jahan and Harvill (2008). Berg’s bootstrap method utilizes the

statistics specified in Hinich (1982) in the framework of an autoregressive bootstrap

procedure, however we show that by utilizing GoF methods, we can increase the

power of the test.

In Chapter three we discuss an alternative way of approaching the Friedman

(1989) regularized discriminant method. Regularized discriminant analysis (RDA) is

a well-known method of covariance regularization for the multivariate-normal based

discriminant function. RDA generalizes the ideas of linear (LDA), quadratic (QDA),

and mean-eigenvalue covariance regularization methods into one framework. The

original idea and known extensions involve cross-validating in potentially high di-

mensions, and can be highly computational. We propose using the Kullback-Leibler

divergence as an optimization method to estimate a linear combination of class co-

variance structures, which increases the accuracy of the RDA method, an limits the

use of leave one out cross validation.
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CHAPTER ONE

Introduction

1.1 Bootstrap-Based Goodness-of-Fit Test for Linearity of a
Stationary Time Series

Time series are prevalent in many areas of investigation. In biology, time series

data are collected in the observance of predator-prey interactions, or population

studies. Financial data is inherently time-dependent – the realization of the closing

prices of a stock being a common place example of a time series. Meteorological data,

such as daily high temperatures, are time series. Speech recognition technology uses

time series analysis methods. EEG records are a time series, as are seismographic

records. One would be hard-pressed to find an area of investigation that does not

record data across time.

Two primary objectives in time series analysis are modeling and forecasting.

To successfully model a series – and thus forecast well – an understanding of the

underlying process for model determination is essential. However, it is usually the

case that partial or little such knowledge exists. Consequently, data-based methods

for making such determinations are extremely useful. Most approaches for doing so

rely on the basic presumption that there are two extremely broad classes of models:

the class of linear models and the class of nonlinear models. The theory of linear

models is well-established and rich in history. An excellent, classic monograph is that

of Priestley (1981), or more recently Schumway and Stoffer (2011). Linear models

are simple to understand. Thus, if a linear model is appropriate for modeling the

data, then one should be used.

However, it is often the case that linear models fail to adequately describe the

observed behavior. Tong (1990) is a well-known source for presenting many such
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series and dynamic systems. Over the course of recent years, great strides have been

made in parametric and nonparametric methods for analyzing nonlinear time series.

Some classic nonlinear models include the bilinear model (Subba Rao and Gabr,

1980), the exponential autoregressive model of Haggan and Ozaki (1980), or the

self-exciting threshold autoregressive model of Tong (1983). If a class of nonlinear

models is unknown, then a nonparametric model might be used, as in Chen and Liu

(1993), Cai et al. (2000), or Harvill and Ray (2005).

One set of distinguishing probabilistic properties of nonlinear models are the

existence of non-constant higher-order moments, and the corresponding higher-order

spectrum. More specifically, if a process is a Gaussian linear process, then all of

the information is contained in the second-order moments and the spectral density

function. Higher-order moments are zero, or are constant, and contain no additional

information about the series. On the other hand, it is rarely the case that the

higher-order moments of a nonlinear process are zero, or constant. Thus for a given

time series, methods for determining whether the underlying process is linear or

nonlinear can be based on higher-order moments, or correspondingly the higher-order

spectra. Hinich (1982) devised a two stage test for the Gaussianity and linearity of

a stationary time series based on properties of the bispectral density function. The

first stage tests the Gaussianity of the series, and the second stage tests time series

linearity, but for non-Gaussian errors. The linearity test statistic is the interquartile

range (IQR) of the square modulus of the estimated normalized bispectrum. P -

values are computed using the asymptotic normality of the IQR.

Although Hinich’s test is widely used, it suffers from two issues related to

the power of the test. First of all it has low power in detecting many forms of

nonlinearity. And secondly, the power of Hinich’s test is dependent upon the choice

of smoothing parameters used in estimating the normalized bispectrum Chan and

Tong (1986). Moreover, the using the normal distribution to compute p-values for the
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normality stage is suspect, as shown in Harvill and Newton (1995). To address this,

Harvill (1999) first suggested using a goodness-of-fit (GoF) statistic in the linearity

stage of the test. In that paper, Harvill illustrated via simulation that the GoF

approach had the potential to outperform the IQR test. Jahan and Harvill (2008)

developed the approach in Harvill (1999), and illustrated for a most of nonlinear

forms that the GoF approach outperformed Hinich’s approach, especially for series

of small to moderate lengths. However, like Hinich’s approach, the power of the

GoF approach is dependent upon the choice of smoothing parameter.

Most recently, Berg et al. (2010) developed a bootstrap approach applied to

Hinich’s test, and used flattop estimator for the bispectrum. The coupling of these

ideas addressed the problems with the power of Hinich’s test. In Chapter Two, we

extend Berg’s bootstrap algorithm to use the GoF-based statistics of Jahan and

Harvill (2008).

1.2 Regularized Discriminant Analysis

Regularized discriminant analysis (RDA), first proposed by Friedman (1989),

is a well-known method of covariance estimation for the multivariate-normal based

discriminant function. RDA attempts to generalize the ideas of linear discriminant

analysis (LDA), quadratic discriminant analysis (QDA), and mean-eigenvalue co-

variance methods into one framework. This is achieved using a two dimensional

grid consisting of the weighted average of the LDA and QDA covariance estimators,

with weight parameter λ, and then averaging the mean-eigenvalue estimate, with

weight parameter γ. Most extensions of this idea involve increasing the parameter

space of pooling/shrinking weight-variables to allow increased flexibility of the final

model. However, this flexibility comes at the cost of a large space of plausible values

after cross validations are completed. In problems where the sample size is approx-

imately equal to the parameter space, these new methods often yield poor results
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and drastically increase the computation time. We propose using the Kullback-

Leibler divergence as an optimization method to estimate a linear combination of

class covariance structures that are similar enough to where pooling them increases

the precision of the estimator for the population covariance matrix.

There are various interpretations of the KL divergence. In the engineering

literature, KL divergence is a measure of the information lost using N2 to estimate

N1. The KL divergence has also been interpreted by Eguchi and Copas (2006)

as an optimal property of likelihood ratios in connection to the Neyman-Pearson

lemma. The KL divergence can also be generalized as a special case of the Bregman

divergence

DF (λ1, λ2) = F (λ1)− F (λ2)− 〈∇F (λ2), λ1 − λ2〉, (1.1)

where F : Ω → R is a continuously-differentiable real-valued and strictly convex

function defined on a convex closed set Ω, 〈·〉 is the inner-product, and (1.1) is the

first order Taylor series expansion of F evaluated around point p at point q. The KL

divergence uses entropy for the function F . For further details see Bregman (1967).

Vemuri et al. (2011) has used the KL divergence as a clustering criterion between

two multivariate normal distributions.

In Chapter Three we will show that using the KL divergence as an optimiza-

tion criterion increases the accuracy of the RDA method and alleviates the high

dimensional cross-validation present in more recent adaptations.
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CHAPTER TWO

Test for Linearity of a Stationary Time Series Using Goodness-Of-Fit Statistics
and the Autoregressive Bootstrap

2.1 Introduction

Understanding the properties of a time series is an important step to any tem-

poral analysis. Linear models are common place in practice because they are often

capable of offering parsimonious solutions with reasonable accuracy. Consequently

methods for analyzing a time series based on linear model theory are offered in a

wide array of statistical packages, and the literature guiding the use of linear models

is vast. Although linear models are very effective when they are appropriate, many

temporal processes have more complicated generating processes that cannot be well

explained using a linear model. Tong (1993) provides several limitations of linear

phenomena: (1) a linear model cannot allow for stable periodic solutions indepen-

dent of the starting value; (2) the Gaussian assumption for the errors are ill-suited

for asymmetric random processes; (3) linear models cannot easily explain irregu-

lar bursts in amplitude; (4) higher-order moment information is left unexplained;

and (5) linear models are insufficient for modeling time irreversible data, which is

common in thermodynamics.

There are two broad sets of approaches for testing time series linearity. The

first set consists of methods based in the time domain. As discussed in Jahan

and Harvill (2008), most time domain approaches make use of a specific nonlin-

ear alternative. These methods have high power when the alternative is true, but

the performance of the test suffers if the generating process is not as specified in

the alternative. Cai et al. (2000) developed a non-parametric bootstrap-based test

of linearity for a univariate time series using functional coefficient autoregressive
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(FCAR) models. This FCAR method was later extended to a vector time series by

Harvill and Ray (2006). The FCAR method compared favorably to the parametric

tests, but was somewhat sensitive to the correct selection of the functional variable.

The other set of approaches for testing time series linearity are based in the

frequency domain. Generally speaking, tests in the frequency domain have two

stages. The first stage is a test for Gaussianity. If the null is rejected, the test

proceeds to the second stage, which is a test of time series linearity, but with non-

symmetric errors. The use of the bispectrum for testing Gaussianity and linearity

was originally proposed by Subba Rao and Gabr (1980). Their test statistic is

a complex analogue of the Hotelling T 2 statistic, and is based on a finite sample

estimator of standard error of the bispectrum. Later Hinich (1982) modified the

approach by Subba Rao and Gabr (1980) by using an asymptotic standard error,

and the standardized interquartile range (IQR) as a test statistic in the second stage

of the test. Computation of p-values for the Hinich IQR statistic were refined using

a saddlepoint approximation by (Harvill and Newton, 1995). Goodness-of-fit (GoF)

tests were proposed by Harvill (1999) and Jahan and Harvill (2008). Bootstrap tests

based on Hinich’s IQR approach have been proposed by Hinich et al. (2005), and Berg

et al. (2010). The fundamental contribution in this chapter is the extension of the

work in Berg et al. (2010) to a goodness of fit (GoF) approach. Specifically, in place of

the IQR used in Berg’s method, we use the empirical cumulative distribution function

(EDF) GoF statistics to test Gaussianity and linearity properties of a stationary time

series.
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2.2 The Bispectral Density Function

Let {Xt : t ∈ Z}, where Z is the set of integers, be a zero mean third-order

stationary process. Then the autocovariance and third-order moment functions are

defined as

γu = E[XtXt+u] and γu,v = E[XtXt+uXt+v],

respectively. Then if {Xt} is second-order stationary and
∑∞

u=−∞|γu| <∞, then the

spectral density function is defined as

I(ω) =
∞∑

u=−∞

γue
−2πiuω, for ω ∈ [0, 1]. (2.1)

Because of symmetries, we can restrict our consideration of I(ω) to ω ∈ [0, 0.5]. If

{Xt} is sixth-order stationary and the third-moment function is absolutely summable,

then the bispectral density function is defined as

I(ω1, ω2) =
∞∑

u=−∞

∞∑
v=−∞

γu,ve
−2πi(uω1+vω2) for (ω1, ω2) ∈ [0, 1]× [0, 1]. (2.2)

The principle domain of the bispectrum is the region defined by D = {(ω1, ω2) : 0 ≤

ω2 ≤ ω1 ≤ 1/2, ω1 ≤ (1− ω2)/2}. The normalized bispectral density is defined as

Z(ω1, ω2) =
|I(ω1, ω2)|2

I(ω1)I(ω2)I(ω1 + ω2)
, for (ω1, ω2) ∈ [0, 1]× [0, 1]. (2.3)

The principle domain of Z(ω1, ω2) is D.

If {Xt} is linear, then it admits the representation

Xt =
∞∑
j=0

βjεt−j, (2.4)

where {εt} is an independent and identically distributed (iid) sequence with finite

variance σ2
ε . Under linearity, the spectral and bispectral density functions defined

in (2.1) and (2.2) reduce to

I(ω) = σ2
ε |H(ω)|2 and (2.5)

I(ω1, ω2) = µ3H(ω1)H(ω2)H∗(ω1 + ω2), (2.6)

7



where H(ω) =
∑∞

j=0 βje
−2πijω is the linear transfer function, µ3 is the third moment

of {εt}, and the asterisk (*) denotes complex conjugate. Therefore if {Xt} is linear

the normalized bispectrum in (2.3) simplifies to

Z(ω1, ω2) =
µ3

σ6
ε

for all (ω1, ω2) ∈ D. (2.7)

The tests developed by Subba Rao and Gabr (1980), Hinich (1982), Harvill

(1999), and Berg et al. (2010) all make use of the constancy of Z(ω1, ω2) under

linearity as expressed in (2.7). As previously mentioned, these tests have two stages.

The first stage makes use of the property that, if the series is a Gaussian linear

series, the bispectrum will be identically zero. The second stage tests linear but

non-Gaussian errors, where the bispectrum is constant but non-zero.

The differences of these methods lie in how estimators of Z(ω1, ω2) are used to

construct the test statistic in the linearity stage. Subba Rao and Gabr (1980) use

the estimates of Z(ω1, ω2) to generate a data matrix, and make use of a complex

analog of the Hotelling T 2 statistic to compute p-values. The Hinich (1982) test

uses the interquartile range (IQR) of the estimates of Z(ω1, ω2), computing p-values

using the asymptotic normality of the IQR with an asymptotic approximation of

the standard errors of the estimators of Z(ω1, ω2). Harvill (1999) first proposed

a GoF approach and illustrates via simulation that GoF tests have the potential

to be more powerful. Jahan and Harvill (2008) used a robust transformation of

estimators of Z(ω1, ω2) to normality and applied GoF statistics to the transformed

estimates, which proved to have higher power when compared to Hinich’s test. Berg

et al. (2010) used a modified version of Hinich’s test that estimated the sampling

distribution of the interquartile range using an autoregressive bootstrap.

2.3 Goodness-of-Fit Tests

Let Y = {Y1, . . . , YN} denote a sequence of N independent and identically dis-

tributed (iid) random variables. When testing whether Y are distributed according

8



to a proposed distribution F (y|θ), we use a class of quadratic discrepancy measures

known as empirical distribution function (EDF) statistics. This class of measures

has the form

Q (y|F ) = N

∫ ∞
−∞

[FN(y)− F (y)]2 ψ(x)dF (y), (2.8)

where ψ(y) is a weight function and FN(y) is the empirical distribution function

defined by

FN(y) =
Number of Yi ≤ y

N
, −∞ < y <∞.

Different expressions for the weight function ψ(y) yield different distance mea-

sures. For instance, when ψ(y) = 1, the discrepancy measure Q is called the Cramér-

von Mises (CvM) statistic. If ψ(y) = [{F (y)}{1− F (y)}]−1 then Q is known as the

Anderson Darling (AD) statistic. While the CvM statistic is an average of the dis-

tance of the EDF from the expected cumulative distribution function (CDF) under

H0, the AD statistic penalizes outlying observations, and in general has the higher

power of the two. For a detailed look at these statistics and others see D’Agostino

and Stephens (1986).

Figure 2.1 below contains a plot of ψ(y) of the AD statistic for three distri-

butions: the standard normal, exponential with mean two, and the χ2
2(1). From the

plots in Figure 2.1, the effect of the selection of F on the weight function of the AD

statistic can be easily seen. For all three distributions, ψ(·) places greater weight on

values in the tail(s); that is, on values with low probability. Consequently, the pres-

ence of such values in the sample results in a greater increase of the AD discrepancy

measure compared to the CvM statistic, which places equal weight on all observa-

tions. Skewed distributions such as the exponential and noncentral chi-square have

asymmetric weight functions, and the rate of increase of the weight of the function is

related to the skewness of F . For right-skewed (left-skewed) distributions, since the

median is always less than (greater than) the mean, less weight is placed on values
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Figure 2.1: ψ(y) for the standard normal (top), exponential with mean two (center), and
χ2

2(1) (bottom) distributions.

closer to the median (more weight is placed in the tail). This property of the AD

weight function makes the AD test statistic somewhat median invariant.

Sample versions of the CvM and AD statistics are based on the Probability

Integral Transform. Let y(i) denote the i-th order statistic of the sample, and Gi =

F (y(i)). Then

C =
1

12N
+

N∑
i=1

{
Gi −

(2i− 1)

2N

}2

(2.9)

A = −N − 1

N

N∑
i=1

{2i− 1} {logGi + log(1−GN+1−i)} . (2.10)
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2.4 Estimating the Bispectrum

Let X1, . . . , Xn be a realization from a zero mean, sixth-order stationary pro-

cess {Xt}. Then the estimators of the autocovariance and third moment functions

are

γ̂v =
1

n

n−|v|∑
t=1

XtXt+v and γ̂u,v =
1

n

n−s∑
t=1

XtXt+uXt+v, (2.11)

where s = max{0, u, v}. Define the natural frequencies ωj = (j − 1)/n, for j =

1, . . . , [n/2] + 1, where [·] is the greatest integer value. Then an estimator of the

spectral density function is

Ĩ(ωj) =

M1∑
u=−M1

γ̂ue
−2πiuωj , (2.12)

where the truncation point M1 is chosen such that M1 →∞, n→∞, M1/n→ 0.

To estimate the bispectrum, construct the lattice L of natural frequency pairs

in D where

L =

{(
(2j − 1)M2

2n
,
(2k − 1)M2

2n

)
: j = 1, . . . , k; k <

n

2M2

− k

2
+

3

4

}
,

and the truncation point M2 is chosen so that M2 → ∞, n → ∞ and M2/n → ∞.

The estimator of the bispectrum in (2.2) is then given by

Ĩ(ωj, ωk) =

M2∑
u=−M2

M2∑
v=−M2

γ̂u,ve
−2πi(uωj+vωk) for (ωj, ωk) ∈ L. (2.13)

The estimators in equations (2.12) and (2.13) are not consistent estimators

of the spectral density and bispectral density. The kernel approach that yields

consistent estimators of the spectral density was developed in a series of seminal pa-

pers by Parzen (Parzen, 1957, 1961a,b). Then consistent kernel density estimators

for higher-order spectra were developed in Brillinger (1965); Rosenblatt and Ness

(1965); Van Ness (1966); Brillinger and Rosenblatt (1967); Brillinger (1969). Sum-

marizing, let Λ(τ) be a one-dimensional symmetric lag window such that Λ(0) = 1,
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and Λ(τ1, τ2) a two-dimensional lag window satisfying

Λ(τ1, τ2) = Λ(τ2, τ1) = Λ(−τ1, τ2 − τ1) = Λ(τ1 − τ2,−τ2) = Λ(τ1)Λ(τ2)Λ(τ1 − τ2).

Then consistent kernel estimators of the spectral and bispectral densities are

Î(ωj) =

M1∑
u=−M1

Λ

(
u

M1

)
γ̂ue
−2πiuωj for ωj =

j − 1

n
, j = 1, 2, . . .

[n
2

]
+ 1,

(2.14)

Î(ωj, ωk) =

M2∑
u=−M2

M2∑
v=−M2

Λ

(
u

M2

,
v

M2

)
γ̂u,ve

−2πi(uωj+vωk) for (ωj, ωk) ∈ L. (2.15)

It is common to let M1 = M2 = M , with M = nc, 1/2 ≤ c ≤ 1, where c controls the

trade-off between bias (larger values of c) and variance (smaller values of c). The

normalized bispectrum in (2.3) is estimated by

Ẑ(ωj, ωk) =

∣∣∣Î(ωj, ωk)
∣∣∣2

(M2/n)Î(ωj)Î(ωk)Î∗(ωj + ωk)
, for (ωj, ωk) ∈ L. (2.16)

Hinich (1982) estimates the spectral and bispectral density using a rectangular win-

dow. For a fixed (j, k), a square of dimension M is used to average the Ĩ, omitting

from the average any points with a square that falls outside of D.

2.5 Asymptotic Properties of Spectral Estimators

As was shown in Van Ness (1966), the bispectral estimator in (2.15) is approx-

imately complex normal. If {Xt} satisfies the regularity conditions of Theorem 1 of

Van Ness (1966), then for fixed j and k,

n1/2M
{
Î(ωj, ωk)− E

[
Î(ωk, ωk)

]}
(2.17)

converges in distribution to a complex normal variable V + IW , say, where V and

W have zero mean, are jointly normal, are independent. The variances of V and W

are as follows.
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Define

h1 =

[∫ ∞
−∞

Λ(0, v) dv

]2

and h2 =
1

2

∫ ∞
−∞

∫ ∞
−∞

Λ2(v1, v2) dv1 dv2,

and

δ(x) =

 1, if x = 0,

0, if x 6= 0.

If (ωj, ωk) lies inside D and not on the boundaries, then

σ2
V = σ2

W = h2I(ωj)I(ωk)I(ωj + ωk).

If the boundaries are included, then the variances are

σ2
V = h1I(ωj)I(ωk)I(ωj + ωk) {8δ(ωj) + δ(ωk)}+ A+B,

σ2
W = A−B,

where

A = h2I(ωj)I(ωk)I(ωj + ωk) [{1 + δ(ωj − ωk)} {1 + δ(ωj + 2ωk − 1)

+δ(2ωj + ωk − 1)}+ 4δ(ω1)]

B = h2I(ωj)I(ωk)I(ωj + ωk) [5δ(ωj) + δ(ωk) {1 + δ(ωj − 0.5)}] .

For appropriate choice of M , the estimators Î(ωj, ωk) are asymptotically indepen-

dent. (See Theorem 4 of Brillinger and Rosenblatt (1967).) Thus, if the estimators

of I(ω1, ω2) are restricted to those having frequencies that lie in the principle do-

main, and not on the boundaries, then Ẑ(ωj, ωk) is asymptotically non-central χ2

with two degrees of freedom, and noncentrality parameter

λj,k ∝ 2n−(1−4c)Z(ωj, ωk),

where the proportionality depends in a nontrivial way upon the choice of M . Hinich

(1982) explains how to compute the constant of proportionality for the rectangular

window, when all points in each average are given equal weight.

13



Under linearity, the noncentrality parameter λj,k is constant. If there are nl

bispectral estimates, then under linearity, they can be considered approximately

independent noncentral χ2
ν(λ), where ν = 2 represents the degrees of freedom. An

estimator of the (constant) noncentrality parameter due to Saxena and Alam (1982)

is

λ̂ = max
{

0, Z̄ − ν
}
, where Z̄ =

1

nl

nl∑
i=1

Zi. (2.18)

2.6 Frequency Domain Tests

Generally speaking, tests in the frequency domain have two stages. The first

stage is a test for Gaussianity. If the null is rejected, the test proceeds to the second

stage, which is a test of time series linearity, but with non-symmetric errors. The

use of the bispectrum for testing Gaussianity and linearity was originally proposed

by Subba Rao and Gabr (1980). Their test statistic is a complex analogue of the

Hotelling T 2 statistic, and is based on a finite sample estimator of standard error

of the bispectrum. Later Hinich (1982) modified the approach by Subba Rao and

Gabr (1980) by using an asymptotic standard error, and the standardized interquar-

tile range (IQR) as a test statistic in the second stage of the test. Computation

of p-values for the Hinich IQR statistic were refined using a saddlepoint approxi-

mation by (Harvill and Newton, 1995). Goodness-of-fit (GoF) tests were proposed

by Harvill (1999) and Jahan and Harvill (2008). Bootstrap tests based on Hinich’s

IQR approach have been proposed by Hinich et al. (2005), and Berg et al. (2010).

The fundamental contribution in this chapter is the extension of the work in Berg

et al. (2010) to a GoF approach. Specifically, in place of the IQR used in Berg’s

method, we use the EDF GoF statistics to test Gaussianity and linearity proper-

ties of a stationary time series. Both Hinich (1982) and Jahan and Harvill (2008)

made use of this fact to construct their respective test using (2.16), which has an
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asymptotic noncentral chi-square distribution, where as explained in Section 2.5, the

noncentrality parameter is a function of the bispectrum.

2.6.1 Hinich (1982) Bispectral-Based Test

Hinich (1982) proposed using the asymptotic properties of the bispectrum to

construct his test of Gaussianity and of linearity with non-Gaussian errors. The test

is performed in two stages. The first stage tests the Gaussianity of the time series.

Under Gaussianity, the bispectrum Z (ω1, ω2) is zero for all (ω1, ω2) in the domain

of D.

Let nl denote the number of frequency pairs in L. The value of nl is ap-

proximately n2/(12M2). Reindex the frequency pairs, letting ωi = (ωj, ωk) , i =

1, 2, . . . , nl. Then the test statistic for Gaussianity is

TG =

nl∑
i=1

Ẑ(ωi) ∼̇ χ2
2nl
. (2.19)

The p-value is computed using the upper-tail probability of a central χ2 with 2nl

degrees of freedom.

The second stage of Hinich’s procedure tests the linearity of the series, but with

non-Gaussian errors. Under the linear hypothesis, the sampling distribution of the

bispectrum is asymptotically a noncentral chi-square χ2
2nl

(λ), with the noncentrality

parameter λ, estimated by (2.18). The interquartile range (IQR) of the bispectral

estimates is used as the test statistic. The approximate p-value is based on the

N(ξ3− ξ1, σ
2
ξ3−ξ1), where ξ1 and ξ3 are the first and third quartiles of the noncentral

χ2
2nl

distribution, fν,λ(·) denotes the probability density function of a noncentral χ2

distribution with ν degrees of freedom and noncentrality parameter λ, and

σ2
ξ3−ξ1 =

1

16nl

[
3

f 2
2nl,λ

(ξ1)
− 2

f 2
2nl,λ

(ξ1) f 2
2nl,λ

(ξ3)
+

3

f 2
2nl,λ

(ξ3)

]
.

Hinich’s test has been considered the standard bispectral-based test for the Gaus-

sianity and linearity of a stationary time series. However, it has been shown that

15



the second stage has a number of issues. Three of the main problems with Hinich’s

test are that (1) it suffers from an inflated Type I error rate as shown in Jahan and

Harvill (2008) and Berg et al. (2010) (2) the power of the test is low (again, see

Jahan and Harvill (2008)), and (3) the power of the test is highly dependent upon

the choice of smoothing parameters (Chang and Tong, 1986).

2.6.2 Goodness-of-Fit Test for Gaussianity and Linearity

Jahan and Harvill (2008) used GoF theory to construct a two stage test of

the Gaussianity and linearity of a stationary time series. As with Hinich (1982), the

first stage tests Gaussianity, and the second stage tests linearity with non-Gaussian

errors. In stage one, the Jahan and Harvill test uses a GoF approach to compare the

estimated normalized bispectrum to an exponential(2). The second stage is designed

to test the fit of the Ẑ to the χ2
2(λ) distribution. Since the GoF test statistics and

corresponding critical values are functions of the unknown λ, Jahan and Harvill

use a robust transformation due to Abdel-Aty (1954) of the estimated normalized

bispectrum to standard normal. The transformed bispectral estimates are compared

to a standard normal via the GoF statistics in (2.9) or (2.10). The algorithm is

Stage 1: Testing Gaussianity.

(1) Compute the normalized bispectral estimates as given in (2.16).

(2) Apply GoF test of exponential(2) to normalized bispectral estimates from

step 1.

(3) If the null is not rejected, then stop. Otherwise proceed to Stage 2.

Stage 2: Testing linearity with non-Gaussian errors.

(1) Apply transformation of Abdel-Aty (1954) to the normalized bispectral es-

timates from step 1 of Stage 1.

(2) Compute GoF statistic for standard normality.
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(3) Compare GoF statistic to appropriate upper-tail critical value.

Jahan and Harvill (2008) conducted a numerical investigation of the size and

power of Stage 1 of the test, and the power of the second stage of the test. However,

there was no investigation of the size of the second stage of the test. Consequently,

we ran a small simulation study to fill in that missing information. Four series

lengths of n = 100, 250, 500, and 1000, were considered for each of three models.

The first model (AR) was an AR(2) given by

Xt − 0.4Xt−1 + 0.3Xt−2 = εt, t = 1, 2, . . . , n,

where εt is standard normal white noise. The second model was asymmetric zero-

mean white noise generated from a central χ2
2, and centered around 2 (iid Chisq);

that is, for t = 1, 2, . . . , n,

Xt = εt − 2, where εt ∼ χ2
2(0).

To investigate the power, the third model, was a bilinear model given by

Xt − 0.4Xt−1 + 0.3Xt−2 = 0.8εt−1 + 0.5Xt−1εt−1 + εt, t = 1, 2, . . . , n,

with εt being standard normal white noise. For each model and each value of n,

5,000 replications were generated.

Table 2.1 contains empirical rejection rates for a level 0.05 linearity tests. Rows

without an asterisk contain empirical rejection rates of the Jahan-Harvill test, and

rows with an asterisk contain empirical rejection rates for a modified version of the

test, described in Section 2.6.3. Note that for the non-modified version the empirical

sizes of the test are slightly greater than the nominal 0.05, and increase as the series

lengthens. Consequently, the power study for the original versions of the tests are

brought into question, given that the Type I error rate is so large. The behavior is

more pronounced for the iid Chisq case. On the other hand, the modified test has

much improved empirical Type I error rates. Not surprisingly, the power of the
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modified test is less than the original tests. But since the original tests’ powers are

now suspect, then the modified test must be the preferred test.

Table 2.1: Empirical Type I error rates and powers based on 5,000 replications of each
model for conventional tests and the modified test using a Monte Carlo estimate of the
noncentrality parameter in a goodness of fit test for time series Gaussianity and linearity.

Model n = 100 n = 250 n = 500 n = 1000
AR: CvM 0.07 0.14 0.32 0.76
AR: CvM* 0.11 0.07 0.06 0.07
AR: AD 0.08 0.17 0.42 0.90
AR: AD* 0.12 0.07 0.07 0.07

iid Chisq: CvM 0.12 0.21 0.48 0.90
iid Chisq: CvM* 0.19 0.24 0.21 0.21
iid Chisq: AD 0.13 0.26 0.61 0.98
iid Chisq: AD* 0.18 0.23 0.21 0.21

Bilinear: CvM 0.11 0.24 0.54 0.92
Bilinear: CvM* 0.15 0.20 0.26 0.36
Bilinear: AD 0.12 0.29 0.66 0.98
Bilinear: AD* 0.14 0.20 0.26 0.36

2.6.3 Modification of the Jahan-Harvill Test

One solution for correcting the inflated Type I error would be estimate λ

via simulation. Then, instead of transforming the estimated normalized bispectral

points to normality, estimate the GoF critical values of a χ2
2(λ̂) distribution. The

algorithm for the modified stage two test is as follows.

Stage 2: Testing linearity with non-Gaussian errors.

(1) Using (2.18), estimate λ based on the nl values of Ẑ. Call the estimate λ̂.

(2) Compute GoF statistic for comparing the original Ẑ to the χ2
2(λ̂).

(3) For ` = 1, 2, . . . ,m, generate nl independent observations from χ2
2(λ̂). De-

note one replication of nl observations by Z∗` = {Z∗`,1, . . . , Z∗`,nl
}, ` = 1, . . . ,m.
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(4) For each Z∗` , ` = 1, . . . ,m,

(a) estimate λ from Z∗` using (2.18). Call the estimate λ̂`, and

(b) calculate GoF statistic for comparing the observations in Z∗` to a χ2
2(λ̂`).

(5) Compare the GoF statistic from Step 2 to the (1 − α)th quantile of the

empirical GoF statistics computed in Step 4(b). If the GoF statistic exceeds

the quantile, reject H0.

Using this method we can estimate the sampling distribution of the CvM and AD

statistics under the hypothesis of a χ2
2(λ) distribution. These critical values will

account for the error in estimating λ and produce lower Type I error rates.

2.6.4 Criticisms of Existing Bispectral-Based Tests

Hinich’s test can be viewed as a goodness-of-fit test, as the IQR is a measure

of fit between the distance of quantiles compared to the appropriate chi-square dis-

tribution function. On the other hand, Jahan and Harvill (2008) showed that by

using the EDF via a goodness-of-fit approach, the power of the linear stage of the

test can be increased significantly. However, as illustrated in Table 2.1, that power

may be suspect, since it appears the Type I error rate of the second stage of the test

is largely inflated.

The drawbacks of both methods stem from the way they employ asymptotic

theory to calculate the p-values for the test statistics. For small, finite, series lengths,

the noncentral chi-square is a poor fit to the bispectral estimates, and the resulting

in an inflated Type I error rate, but a low power. Moreover, theory in Brillinger

and Rosenblatt (1967) requires the series be strictly stationary for the estimated

bispectrum to be approximately independent and asymptotically complex normal.

Moreover, the variance of the bispectral estimates differ on the boundary. It is highly
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likely that the violation of these properties could lead to any of the problems noted

above.

Berg et al. (2010) showed that by using an autoregressive bootstrap to estimate

the sampling distribution, Hinich’s test is improved significantly. We extend this idea

using GoF statistics in place of TG an TL.

2.7 Bootstrap Methods

Although adding in a simulation step to the second stage, which computed the

GoF critical values with respect to the uncertainty of estimating λ, to the asymptotic

GoF test yielded empirical Type I errors closer to the nominal α, the computation

complexity increased dramatically. Therefore, if a simulation is necessary to compute

critical points, we could use a bootstrap simulation to approximate the sampling dis-

tribution of the GoF statistics under the null hypothesis of Gaussianity and linearity

respectively.

Bootstrapping a sequence of stationary time series data, involves slightly differ-

ent methods than those of Efron and Tibshirani (1993), which deal with data that

are iid. There are several ways to bootstrap a time series, the two most popular

being the block bootstrap proposed by Künsch (1989), and the sieve bootstrap pro-

posed by Bühlmann (1997). For a detailed review of these procedures see Bühlmann

(2002).

2.7.1 AR(p) Bootstrap

The autoregressive order p (AR(p)) bootstrap stems from the idea that a zero-

mean covariance stationary process {Xt} can be written as an infinite order moving

average process given by

Xt = β +
∞∑
v=0

βvεt−v, (2.20)
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where εt is a white noise process with finite variance, and
∑∞

v=0 β
2
v <∞ (Anderson,

1971). Moreover, if {Xt} is invertible, then it can be written as an one-sided infinite-

order autoregressive process

∞∑
j=0

φjXt−j = εt, (2.21)

with
∑∞

j=0 φ
2
j < ∞. Moreover, any non-linear covariance stationary process can be

arbitrarily well-approximated a large, possibly infinite, order autoregressive model.

This is the motivating idea behind using an autoregressive model to estimate the

sampling distributions under the Gaussian and linear hypothesis.

2.7.2 Bootstrap Adaptation of Hinich’s Test

An adaptation of Hinich’s linearity test using an AR(p) bootstrap was pro-

posed by Berg et al. (2010). If X1, . . . , Xn is a time series of length n, then the Berg

bootstrap algorithm is as follows:

(1) Fit an AR(p) model to X1, . . . , Xn and obtain estimated coefficients(
φ̂1, φ̂2, . . . , φ̂p

)
.

(2) For ` = 1, . . . , nb, generate a series of pseudo-observations, X∗1 , X
∗
2 , . . . , X

∗
n,

using

X∗t =

p∑
j=1

φ̂jX
∗
t−j + u∗t , t = 1, . . . , n (2.22)

where X∗t = 0 for t ≤ 0 and u∗t ∼ Fn. The form of Fn will depend upon the

null hypothesis, and may be data dependent. For example, if H0 is testing

the Gaussianity of the series

Fn ∼ N(0, σ̂2
p),

where

σ̂2
p =

1

n− p

n∑
t=p+1

(ût − ūn)2 .
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As another example, when the null hypothesis is testing time series linearity

with non-Gaussian errors, then Fn is the EDF of the centered residuals,

ût − ūn, where

ût = Xt −
p∑
j=1

φ̂jXt−j t = p, p+ 1, . . . , n,

and

ūn =
1

n− p

n∑
t=p+1

ût.

(3) For each pseudo-series, compute the estimates of the normalized bispectrum

for each pseudo-series. For ` = 1, . . . , nb, let Ẑ†` denote the nl-length vector

of these estimates. For each series, compute the statistics

T †G =

nl∑
i=1

Ẑ†i

T †L = IQR(Ẑ†)

and store them in vectors

TbG =
{
T †G,1, . . . , T

†
G,nb

}
TbL =

{
T †L,1, . . . , T

†
L,nb

}
,

where nb is the number of bootstrap replications.

The empirical distribution functions of the bootstrap replications, denoted

FnG = Fn(TbG) (2.23)

FnL = Fn(TbL), (2.24)

are used to approximate the Gaussian and linear null sampling distributions respec-

tively. The bootstrap p-values, pG and pL say, are found by calculating TL and TG

from the bispectral estimates of the original data, and computing

pG = 1− FnG(TG)

pL = 1− FnL(TL).
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2.8 Goodness-of-Fit Bootstrap Test for Gaussianity
and Linearity of a Time Series

The test for Gaussianity and linearity of a stationary time series proposed in

this section combines theory from Jahan and Harvill (2008) and Berg et al. (2010).

The first two steps are identical to Berg’s method, so they will not be repeated

here. However, like the GoF asymptotic test detailed in Section 2.6.2, estimation

of λ greatly affects the performance of the test. The bootstrap algorithm for using

the GoF statistics specified in (2.9) and (2.10) to test time series Gaussianity and

linearity is as follows.

(1) As outlined in Section 2.7.2, generate a sequence of pseudo-observations via

the residuals of a fitted AR(p) model.

(2) For each pseudo-series calculate the normalized bispectrum. Under linearity,

each of the normalized bispectral estimates will be approximately indepen-

dent, and are approximately χ2
2nl

(λ).

(3) To test the Gaussian hypothesis, use Ẑ† to calculate the Cramér von Mises

statistics C†G or Anderson-Darling statistics A†G from (2.9) and (2.10), using

F ∼ exponential(2), and store in vectors

AG =
{
A†G,1, . . . , A

†
G,nb

}
CG =

{
C†G,1, . . . , C

†
G,nb

}
.

(4) Calculate the p-value in manner analogous to the p-value for Hinich’s boot-

strap test. If the null hypothesis is rejected, proceed to the next step. If

not, then end.

(5) To test the hypothesis of non-Gaussian independent errors, use Ẑ† to cal-

culate C†L and A†L from (2.9) and (2.10), using F ∼ χ2
2(0), and store into
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vectors

AL =
{
A†L,1, . . . , A

†
L,nb

}
CL =

{
C†L,1, . . . , C

†
L,nb

}
.

(6) Calculate the p-value in manner analogous to the p-value for Hinich’s boot-

strap test.

Berg et al. (2010) showed that the AR(p) algorithm yields a consistent estimator for

any almost everywhere continuous function. The EDF statistics in (2.9) and (2.10)

meet this criterion. Therefore our GoF algorithm is consistent.

2.8.1 Estimation of λ

As mentioned in the introduction of this section, estimation for λ has a defini-

tive effect on the size and power of the test. In our simulation studies, we considered

three methods for estimating the noncentrality parameter in the linearity step of the

test.

(1) Estimate a global λ̂ using (2.18) from the bispectral estimates of the original

series. Then for each replication, use λ̂ for λ.

(2) For each bootstrap replication, use the estimates of the normalized bispec-

trum (for that replication) to get a bootstrap estimate λ̂`.

(3) Use a naive constant estimator λ̃ for all estimates of λ.

In a simulation study (see Appendix A), method 3 performed best. A possible

explanation is that for method (1), λ̂ would be the best estimator for λ with respect

to mean squared error discussed in Saxena and Alam (1982), for the bispectral

estimates from the original series. But for each pseudo-series, λ̂ is not best, since the

pseudo-series is not the same data. This leads to method (2), which presupposes that

estimating the noncentrality parameter separately for each pseudo-series would yield

24



a better estimate of λ with respect to a particular bootstrap replication. Therefore,

λ̂ will yield a GoF statistic in the lower tail of the sampling distribution, and the

hypothesis of linearity will rarely be rejected. However, for method (2), estimation

of λ for each pseudo-series increases the variability, and consequently decreases the

overall power of the test. The empirical evidence provided in the simulation study

suggests that, in most cases the power improved asymptotically, but was still less

than both the Berg bootstrap and the method (3) GoF bootstrap.

The choice of the constant λ̃ is a crucial part of our GoF bootstrap method.

In our simulations λ̃ = 0 yielded the best performance. This can be explained by

noting that for the null models considered the simulation study on Stage 2 of the

linearity tests, most values of the estimated normalized bispectrum were close to

zero. This idea can be generalized by utilizing the same AR bootstrap engine to

estimated the sampling distribution of λ. If we let λ = {λ1, . . . , λnb
}, then choose

λ̃ = min {λ}. Other possibilities are to choose λ̃ as some lower percentile of the

λ1, . . . , λnb
.

2.9 Simulation

In order to evaluate the performance proposed GoF bootstrap, we examines

the size and power of both the Gaussianity test and the linearity test. To examine if

the proposed GoF Gaussian bootstrap behaves as a level α test, we considered three

null models.

(1) White Noise [WN(1)]:

Xt = εt

(2) Autoregressive [AR(2)]:

Xt − 0.4Xt−1 + 0.3Xt−2 = εt, and
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(3) AR Moving Average [ARMA(2,2)]:

Xt − 0.8897Xt−1 + 0.4858Xt−2 = εt − 0.2279εt−1 + 0.2488εt−2,

where {εt} is Gaussian white noise with unit variance. To examine the size of the

linearity test, we use

Centered Chisquare : Xt = χ2
2(0)− 2,

which should be rejected by the Gaussian test for a large percentage of the replica-

tions. On the other hand, the level α test for time series linearity with non-Gaussian

errors should reject for approximately 100α% of the replications. To examine the

power of the linearity test we use several non-linear models from Jahan and Harvill

(2008), and Berg et al. (2010).

(1) Bilinear:

Xt = 0.4Xt−1 − 0.3Xt−2 + 0.8εt−1 + 0.5Xt−1εt−1 + εt

(2) AR Conditional Heteroscedasticity [ARCH]:

Xt = εt

√
1.5 + 0.9X2

t−1

(3) Nonlinear Moving Average [NLMA]:

Xt = 0.5εt−1 − 0.6ε2t−1 + εt

(4) Self Exciting Threshold AR (SETAR):

Xt =


1− 0.5Xt−1 + εt if Xt−1 < 0,

−1− 0.5Xt−1 + εt if Xt−1 ≥ 0.
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(5) Smoothed TAR [STAR]:

Xt = 1− 0.5Xt−1 − 0.5F (Xt−1) + εt,

where F (x) = 1 + exp(−x/2)

(6) Exponential AR [EXPAR]:

Xt =
[
0.3 + 100 exp

(
−X2

t−1

)]
Xt−1 + εt

(7) Nonlinear AR [NLAR]:

Xt = −0.25Xt−1 + 0.2Xt−2 + 0.15X2
t−2 − 0.1X2

t−2 + εt

(8) Generalized ARCH [GARCH]:

Xt = σtεt,

where

σ2
t = 0.015 + 0.112X2

t−1 + 0.492σ2
t−1 − 0.034σ2

t−2 + 0.420σ2
t−3

The GARCH model specifically tests the behavior of the linearity and Gaussian test

when the stationary assumption is violated.

For each model, 5000 replications were run, which bounded the simulation

error by 0.0071. To examine the asymptotic behavior we used series lengths of

n = 100, 250, 500 and 1000. The level of the test was α = 0.05. The results of the

simulation are listed in Tables 2.3 and 2.4. The acronyms for the results tables are

listed in Table 2.2. For the three linear series, all Type I errors for the first stage

of the test were within the simulation error when compared to Berg’s Hinich-based

bootstrap. The difference between the CvM and AD were negligible. Both of the

bootstrap methods performed better than the asymptotic methods with respect to

level α test.
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Table 2.2. Acronyms for Tables 2.3 and 2.4
GCBG GoF CvM Bootstrap Gaussian GCBL GoF Bootstrap CvM Linear
GABG GoF AD Bootstrap Gaussian GABL GoF Bootstrap AD Linear
HBG Hinich Bootstrap Gaussian HBL Hinich Bootstrap Linear
JCG Jahan CvM Gaussian JCG Jahan CvM Linear
JAG Jahan AD Gaussian JAL Jahan AD Linear
HG Hinich Gaussian HL Hinich Linear

Table 2.3. Test of Gaussian Errors
Model n GCBG GABG HBG JCG JAG HG
WN(1) 100 0.0522 0.0514 0.0580 0.0888 0.0878 0.0802
WN(1) 250 0.0554 0.0528 0.0512 0.0976 0.0980 0.0794
WN(1) 500 0.0498 0.0514 0.0530 0.0934 0.0946 0.0828
WN(1) 1000 0.0522 0.0524 0.0560 0.0820 0.0830 0.0800

AR(2) 250 0.0562 0.0570 0.0606 0.1470 0.1468 0.1450
AR(2) 500 0.0572 0.0548 0.0578 0.0964 0.0942 0.0906
AR(2) 1000 0.0538 0.0520 0.0602 0.0878 0.0878 0.0842

ARMA(2,2) 100 0.0524 0.0498 0.0592 0.0962 0.0962 0.0912
ARMA(2,2) 250 0.0482 0.0462 0.0518 0.0866 0.0854 0.0704
ARMA(2,2) 500 0.0500 0.0512 0.0518 0.0938 0.0924 0.0852
ARMA(2,2) 1000 0.0500 0.0488 0.0566 0.0780 0.0770 0.0792

For the second stage test of non-Gaussian but linear errors, the GoF bootstrap

outperformed the Hinich bootstrap for the non-linear models considered. The Type

I error of the second stage of the test yielded slightly higher rates for the GoF

bootstrap compared to the Hinich bootstrap, however the difference was small, and

improved asymptotically. The GoF bootstrap had the best performance with respect

to the ARCH, bilinear, and SETAR models. And had a negligible gain on the other

models considered. All methods performed poorly on the EXPAR and STAR models.

2.10 Conclusion

In this work we have extended the idea of using the AR(p) bootstrap to esti-

mate the null sampling distribution used for the bispectral-based two stage linearity
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test. We have added the use of EDF GoF statistics in place of the IQR in the second

stage of the test. Although the performance of the first stage was not improved using

GoF statistics, this is in line with the general idea that the sum of the bispectral

estimates is sufficient for estimating the null distribution under the assumption of

Gaussian errors.

There is clearly an advantage to using the GoF bootstrap to test the linearity

properties of a time series in the second stage of the test. The GoF bootstrap

performed better than the Hinich in almost all cases tested, and, in the cases of the

ARCH, bilinear, and SETAR, did so by a large margin.

For example, the power of the GoF bootstrap for the bilinear model was greater

by 0.083, at n = 100, but still had advantages at n = 1000. The TAR had sim-

ilar performance gains. The cases that the GoF bootstrap was outperformed by

the Hinich, as in the NLAR model with n = 100, the GoF test performed better

asymptotically.

The Anderson-Darling statistic, generally performed better than the Cramer-

Von-Misés statistic. This is likely due to the median invariance property of the AnD

statistic, and thus has less sensitivity to misspecification of the parent distribution

F . A natural extension of the GoF method described here would be to examine the

effect of different weight functions in (2.10).

In addition, the idea of using GoF statistics in the bootstrap test should be

extended to infinite order flat top window functions to estimate the bispectrum as

done in Berg and Politis (2009). This was initially examined by the authors in

simulation, however the GoF bootstrap test showed a large sensitivity to bandwidth

selection. This is due to the fact that the GoF statistics are more sensitive to

variation of the data than the IQR is in the Hinich based test.
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Table 2.4. Test of Linear Errors
model n GCBL GABL HBL JCL JAL HL
χ2 100 0.1092 0.1098 0.0988 0.0002 0.0004 0.1970
χ2 250 0.0908 0.0910 0.0884 0.0004 0.0010 0.2256
χ2 500 0.0750 0.0762 0.0768 0.0090 0.0154 0.2286
χ2 1000 0.0774 0.0782 0.0820 0.0776 0.1708 0.2224

Bilinear 100 0.4082 0.4156 0.3326 0.0016 0.0022 0.2114
Bilinear 250 0.6046 0.6164 0.5498 0.0038 0.0056 0.2246
Bilinear 500 0.8146 0.8256 0.7658 0.0354 0.0554 0.2504
Bilinear 1000 0.9510 0.9538 0.9172 0.1898 0.3144 0.2246
ARCH 100 0.4754 0.4842 0.4170 0.0132 0.0168 0.2056
ARCH 250 0.6354 0.6508 0.6028 0.0542 0.0670 0.2940
ARCH 500 0.7294 0.7490 0.7212 0.1748 0.2296 0.3760
ARCH 1000 0.8102 0.8378 0.8226 0.5376 0.6536 0.4206
NLMA 100 0.1614 0.1646 0.1434 0.0000 0.0000 0.1864
NLMA 250 0.2058 0.2078 0.1762 0.0002 0.0002 0.1848
NLMA 500 0.2340 0.2424 0.2124 0.0016 0.0040 0.1956
NLMA 1000 0.3106 0.3174 0.2688 0.0268 0.0758 0.1826
SETAR 100 0.2642 0.2680 0.1984 0.0000 0.0000 0.2014
SETAR 250 0.4392 0.4496 0.3480 0.0000 0.0002 0.2110
SETAR 500 0.6602 0.6722 0.5598 0.0016 0.0038 0.2222
SETAR 1000 0.9046 0.9154 0.8170 0.0194 0.0616 0.1994
STAR 100 0.0428 0.0420 0.0484 0.0634 0.684 0.1284
STAR 250 0.0562 0.0550 0.0492 0.1268 0.1538 0.1440
STAR 500 0.0576 0.0564 0.0558 0.3244 0.4286 0.1468
STAR 1000 0.0564 0.0550 0.0550 0.7404 0.8934 0.1372

EXPAR 100 0.0522 0.0444 0.0640 0.0000 0.0000 0.1950
EXPAR 250 0.0672 0.0646 0.0602 0.0000 0.0000 0.1784
EXPAR 500 0.0556 0.0574 0.0488 0.0012 0.0028 0.1570
EXPAR 1000 0.0248 0.0248 0.0250 0.0222 0.0754 0.1400
NLAR 100 0.0712 0.0714 0.0808 0.0000 0.0000 0.1446
NLAR 250 0.1206 0.1238 0.1048 0.0000 0.0000 0.1656
NLAR 500 0.1310 0.1378 0.1262 0.0004 0.0012 0.1660
NLAR 1000 0.1716 0.1798 0.1704 0.0208 0.0594 0.1674

GARCH 100 0.1488 0.1486 0.1366 0.0000 0.0000 0.1626
GARCH 250 0.5022 0.5146 0.4798 0.0004 0.0006 0.2104
GARCH 500 0.8346 0.8470 0.8202 0.0562 0.0972 0.2562
GARCH 1000 0.9732 0.9760 0.9694 0.4914 0.6192 0.3262
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CHAPTER THREE

Regularized Discriminant Analysis: Regularized Covariance Estimation Using a
Modified Kullback-Leibler Divergence Criterion

3.1 Discriminant Analysis

In statistical discriminant analysis we wish to accurately assign a new, unla-

beled observation xi ∈ RP , where RP is a p-dimensional real valued vector, into one

of K known classes by using a training set L of labeled observations to construct a

decision rule D0(x). Let L = {(xi, yi) : i = 1, . . . , N} ∈ R[N×(p+1)], where (xi, yi) is

a realization from a probability density function. The density function fk(x|Ck) is

the class conditional probability density function of the kth class, yi ∈ {C1, . . . , CK}

denotes the actual, unique membership of xi, and nk is the number of observations

in L from class Ck, so that N =
∑K

k=1 nk.

The Bayes decision rule D0(x) that assigns an unlabeled observation x to one

of K distinct classes is chosen with respect to the optimization of a loss function

criterion. Notice that if gk(Ck) is the prior probability of class membership of the

kth class then

P (Ck|x) =
fk(x|Ck)gk(Ck)∑K
j=1 fk(x|Cj)gk(Cj)

. (3.1)

is the posterior of Ck given x. Therefore, the risk for classifying the unlabeled

observation x into class Ck is

R(Ĉ|x) =

∑K
k=1 L(Ck, Ĉ)fk(x|Ck)gk(Ck)∑K

j=1 f(x|Ck)gk(Ck)
, (3.2)

where L(Ck, Ĉ) is the loss incurred for misclassifying an observation. Under 0/1

loss,

L(C, Ĉ) = 1− δ(C, Ĉ),
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where δ(C, Ĉ) = 1 if the observation was correctly classified, and zero otherwise.

We define the Bayes rule classifier as

D0(x) ≡ max
k∈K
{fk (x|Ck) gk(Ck)} . (3.3)

If the K distributions can be assumed to be approximately multivariate nor-

mal, then the class conditional density is modeled as

fk(x|Ck) = MVNp(x|µk,Σk) = (2π)−p/2 |Σk|−1/2 exp

[
−1

2
(x− µk)TΣ−1

k (x− µk)
]
,

(3.4)

where µk ∈ Rp is the p-dimensional mean vector and Σk ∈ R+
p×p is a positive

definite symmetric p × p matrix. We estimate µk and Σk, k = 1, 2, . . . , K, using

their maximum likelihood estimators

µ̂k =
1

nk

nk∑
j=1

xj

and

Σ̂k =
1

nk

nk∑
j=1

(xj − µ̂k)T (xj − µ̂k) .

One can readily determine two MVN-based discriminant functions defined by

the homogeneity or heterogeneity of the class covariance matrices. For the linear

discriminant analysis (LDA) classifier we assume Σk = Σ for k = 1 . . . , K, so that

D0(x) = max
k∈K

{
MVNp

(
x|µ̂k, Σ̂pooled

)
gk(Ck)

}
, (3.5)

where

Σ̂pooled =
1

N

K∑
k=1

nkΣ̂k. (3.6)

If some subset of the K covariance matrices are not equal, then we have the quadratic

discriminant analysis (QDA) classifier given by

D0(x) = max
k∈K

{
MVNp

(
x|µ̂k, Σ̂k

)
gk(Ck)

}
. (3.7)
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Estimation of the covariance matrices can be problematic if the parameter

space p is large relative to nk. Let vj, j = 1, . . . , p represent the p eigenvectors of

Σ̂−1
k and ej the jth largest eigenvalue of Σ̂−1

k corresponding to vj. Then the spectral

decomposition of Σ̂−1
k is

Σ̂−1
k =

p∑
j=1

vjv
′
j

ej
.

Examination of the decomposition reveals that small values of ej inflate the influence

of vj on the estimator Σ̂−1
k . The smallest eigenvalues of Σ̂−1

k are underestimated,

having a bias that is inversely proportional to nk/p. The biased estimates of ej cause

highly variable and unstable estimators of Σ̂−1
k and, thus can cause poor classifier

performance. For high-dimensional data, the number of training observations needed

to sufficiently estimate the covariance matrices increases exponentially, so some form

of covariance regularization is often needed. One common approach to covariance

regularization akin to those used in ridge, Bayesian, and semi-parametric regression,

is shrinkage regularization of the form

Σ̂k(γ) = Σ̂k + γIp, (3.8)

where Ip ∈ Rp×p is the p× p identity matrix, and γ is a positive scalar. Expression

(3.8), known as a shrinkage estimator, shrinks Σ̂k towards the identity matrix, and

thus the eigenvalues of Σ̂−1
k away from zero.

3.2 Regularized Discriminant Analysis

The regularized discriminant analysis (RDA) supervised classification method

in Friedman (1989) proposes a generalization of the covariance estimation and reg-

ularization methods discussed in Section 3.1. Instead of imposing equality assump-

tions on the Σk, Friedman proposed first computing a weighted average of the sample

class covariance matrices and the pooled sample covariance matrix defined in (3.6).

A weight parameter λ ∈ [0, 1] dictates the amount of information shared between Σ̂k

33



and Σ̂pooled. Friedman’s regularized covariance matrix estimator Σ̂k(λ) is computed

using

nk(λ) = (1− λ)nk + λN,

Sk = nkΣ̂k,

S =
K∑
k=1

Sk,

Sk(λ) = (1− λ)Sk + λS,

Σ̂k(λ) =
Sk(λ)

nk(λ)
. (3.9)

If we examine MVN classifers of the form

D0(x) = max
k∈K

{
MVNp

(
x|µ̂k, Σ̂k(λ)

)
gk(Ck)

}
, (3.10)

then when λ = 0, (3.10) reduces to the QDA classifier given in (3.7), and when λ = 1

(3.10) reduces to the LDA classifier given in (3.5). When Σ̂k(λ) is singular, further

regularization is needed. Friedman (1989) proposed using a shrinkage regularization

method similar to (3.8) in the form of

Σ̂k(λ, γ) = (1− γ)Σ̂k(λ) + γ
tr
[
Σ̂(λ)

]
p

Ip. (3.11)

For a given value of λ, the parameter γ ∈ [0, 1] controls shrinkage toward a multiple

of the identity matrix. The multiplier tr
[
Σ̂(λ)

]
/p is simply the average eigenvalue

of Σ̂k(λ). This shrinkage has the effect of decreasing the larger eigenvalues and

increasing the smaller eigenvalues. Thus the RDA classifier can be defined as

D0(x) = max
k∈K

{
MVNp

(
x|µ̂k, Σ̂k(λ, γ)

)
gk(Ck)

}
, (3.12)

where gk(Ck) is the prior probability of class membership of the kth class.

3.3 Estimation of the RDA Classifier

As there are no known closed form estimators for the regularization parameters

λ and γ, Friedman (1989) proposed a leave one out (LOO) cross validation procedure
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to select the optimal values of λ, γ, denoted λ̂, γ̂, from a model selection lattice

of dimensions L × G. Specifically the model selection lattice is constructed using

the Cartesian product of λ = (λ1, λ2, . . . , λL)′ and γ = (γ1, γ2, . . . , γG)′, where

λl, γg ∈ [0, 1] for l = 1, . . . , L, and g = 1, . . . , G.

The following definition for the LOO error estimator follows from Hastie et al.

(2009). Let f̂ (i)(xi) denote the trained classifier computed with the ith observation

removed. If we consider the 0/1 loss function, then the LOO misclassification error

for each pair (λl, γg) is

êrr(λl, γg) =
1

N

N∑
i=1

δ
(
yi, f

(i)(xi)
)
. (3.13)

The optimal regularization parameters are chosen to be the (λl, γg) lattice pair with

the smallest LOO error rate; that is

(
λ̂, γ̂
)

= arg min
l,g

{êrr (λl, λg)} . (3.14)

3.4 Alternative Covariance Matrix Regularization Methods

There have been several alternative covariance regularization methods for su-

pervised classification in the literature that extend Friedman’s RDA classifier. Most

of the alternative regularization techniques involve increasing the covariance esti-

mation flexibility by allowing for pooling and shrinking parameters (λk, γk), k =

1, 2, . . . , K, for each class. Covariance estimation flexibility is most desirable when

there are varying combinations of similarity between the covariance structures among

the K classes.

One covariance regularization method, called mixed leave one out covariance

(LOOC-1), was proposed by Kuo and Landgrebe (2002). For their covariance reg-

ularization technique the covariance estimator is chosen to be a linear combination
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of six different components of Σ̂k and Σ̂pooled so that

Σ̂LOOC−1
k = α

(1)
k

tr[Σ̂k]

p
Ip + α

(2)
k diag[Σ̂k] + α

(3)
k Σ̂k + α

(4)
k

tr[Σ̂pooled]

p
Ip

+ α
(5)
k diag[Σ̂pooled] + α

(6)
k Σ̂pooled, k = 1, 2, . . . , K. (3.15)

The weights α
(1)
k , . . . , α

(6)
k are selected for each class through a LOO procedure de-

tailed in Section 3.3, using a 6K-dimensional hyper-grid. The estimation of Σk

from this covariance regularization method is slightly biased, but has much smaller

variability than the standard RDA procedure. However the computation cost is

considerable if K is large.

To address the high computational load, Kuo and Landgrebe (2002) proposed

a simpler covariance regularization method (LOOC-2) that use combinations of the

covariance components in (3.15) above, and then selects among them using a LOO

procedure. A weakness of this modification is that it assumes Σ can be best esti-

mated using only two of the six covariance components.

Robinson (2009) proposed a covariance regularization method, known as cross

validated covariance mixing (CVCM) that allows for individual weights to be used in

a linear combination of estimated covariance structures. For CVCM the researcher

selects the number and type of covariance structures to combine for estimating Σk,

k = 1, 2, . . . , K. For example, if we select M covariance estimators, denoted by

W1, . . . ,WM , for estimating Σ then

Σ̂CV CM
k (γk,λk) = γk

[
λ1W1 + λ2W2 + · · ·+

(
1−

p−1∑
j=1

λj

)
WM

]
. (3.16)

The CVCM covariance regularization method has the benefit of drastically decreas-

ing the estimator variability but has two major drawbacks. The first problem is

that, like the LOOC-1 estimator in (3.15), each proposed covariance matrix esti-

mator must be obtained by using a LOO procedure. In particular if K is large,

then this process can be highly computationally expensive. Second, the number of
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terms in the proposed covariance estimator can be limited by the researcher, but the

algorithmic automation of the RDA method will be lost.

3.5 Kullback Leibler Divergence: Kullback and Leibler (1951)

Let N1 (µ1,Σ1) and N2 (µ2,Σ2) represent two multivariate normal distribu-

tions. The Kullback Leibler (KL) divergence from N1 to N2 is

DKL (N1||N2) ≡ 1

2

{
tr
[
Σ−1

2 Σ1

]
+ (µ2 − µ1)T Σ−1

2 (µ2 − µ1)− p− log
|Σ1|
|Σ2|

}
(3.17)

(Vemuri et al., 2011). Let Nk (µk,Σk) represent the multivariate normal distribu-

tion for group Ck, k = 1, 2, . . . , K, and N(k)

(
µk,Σ(k) [λk]

)
represent a proposed

multivariate normal distribution with

Σ(k) [λk] = λ1Σ1 + · · ·+ λk−1Σk−1 + λk+1Σk+1 + · · ·+ λKΣK ; (3.18)

that is, Σ(k) [λk] is a linear combination of all but the kth covariance matrix. Then

the KL divergence from N(k) to Nk is

D∗KL
(
N(k)||Nk

)
∝ 1

2

{
tr
[
Σ−1
k Σ(k)

]
− p− log

∣∣Σ(k)

∣∣
|Σk|

}
. (3.19)

Because Σk is constant with respect to each new proposed covariance estimator Σ(k),

the modified KL divergence can be written

D∗KL
(
N(k)||Nk

)
≡

{
tr
[
Σ−1
k Σ(k)

]
− log

∣∣Σ(k)

∣∣
|Σk|

}
. (3.20)

3.6 Covariance Matrix Regularization using the Kullback Leibler Divergence

The one essential requirement of the modified KL divergence is that both Σ(k)

and Σk must be nonsingular. Since singularity of any of the covariance matrices is

not unusual, an algorithm that addresses nonsingularity when it exists is desirable.

Theorem 1 below details both a new KL divergence computation that can adapt to

the possible singularity of one of the covariance structures, and states the properties
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of the algorithm. Moreover, if the covariance matrices are nonsingular, the new

divergence measure is equivalent to the KL criterion in (3.20).

Theorem 1. Let Σk and Σ(k) represent two symmetric, nonnegative-definite matrices,

and let ΦT
kΞkΦk and ΦT

(k)Ξ(k)Φ(k) be the eigenvalue decomposition of Σk and Σ(k),

respectively. Then D∗KL is a function of the generalized eigenvalues of Σk and Σ(k).

Proof. Select ν such that

ν = min
{
nΞk

, nΞ(k)

}
, (3.21)

where nΞ is the number of non-zero eigenvalues. We can define Φ∗k ∈ Rp×ν to be a

basis for the space spanned by the columns of Σk, and corresponding to the non-zero

eigenvalues of Σk. Then,

Φ∗kΦ
T
kΞkΦkΦ

∗T
k = Ξ∗k

and

Φ∗kΦ
T
(k)Ξ

∗
(k)Φ(k)Φ

∗T
k = Ω,

where Ω is a symmetric positive-definite matrix, and Ξ∗k is a diagonal matrix of the

non-zero eigenvalues of Σk. Notice that

[Ξ∗k]
−1/2 Ξ∗k [Ξ∗k]

−1/2 = Iν , (3.22)

and

[Ξ∗k]
−1/2 Ω [Ξ∗k]

−1/2 = Ω∗, (3.23)

where Ω∗ ∈ R+
ν×ν . Because both matrices (3.22) and (3.23) are nonsingular and

symmetric, there exists a matrix D = ΦΩ∗ that simultaneously diagonalizes (3.22)

and (3.23) . The modified KL divergence in (3.20) is therefore,

D∗KL
(
Ξ(k)||Ξk

)
=

{
tr
[
I−1
ν Ξ∗Ω

]
− log

|Ξ∗Ω|
|Iν |

}
,

= {tr [Ξ∗Ω]− log |Ξ∗Ω|} , (3.24)

where Ξ∗Ω are the generalized eigenvalues of [Ξ∗k]
−1 Ω.
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To understand the computational gain of our proposed KL optimization reg-

ularization method, consider the case of K = 4 and suppose we wish to evaluate

each regularization parameter from 0 to 1 using five equally spaced values. Then

the LOOC-1 regularization method would involve cross validation in 24 dimensions

resulting in 5.96e+16 LOO computations. Although the number of computation rou-

tines was not available for the simulation results, preliminary investigation yielded

a worst case of 30 KL evaluations for each class. Therefore a reasonable expec-

tation for the number of computations would be 120 KL evaluations and 25 LOO

computations.

3.7 Optimization Algorithm

We now outline our proposed covariance regularization algorithm based upon

optimizing (3.24). By using optimization, we can reduce the reliance of cross val-

idation in a high-dimensional space, while retaining the flexibility of the Robinson

(2009) and Kuo and Landgrebe (2002) covariance regularization methods.

(1) Estimate Σk for k = 1, 2, . . . , K using

Σ̂k =
1

nk

nk∑
j=1

(xj − µ̂k)T (xj − µ̂k) . (3.25)

(2) For each k = 1, 2, . . . K

(a) Let Λ ∈ RK−1 represent the parameter space for a vector of weights

representing a linear combination of covariance structures that com-

prise Σ̂(k). We wish to select an optimal weighting vector λk to satisfy

min
λk∈Λ

{
D∗KL

(
N(k)||Nk

)}
, (3.26)

subject to
∑K−1

j=1 λj = 1, where λj = (λ1, λ2, . . . , λK−1)′.

(b) Let Σ(k) [λk] ≡ Σpk , where Σpk represents the proposed pooled covari-

ance matrix corresponding to the population Ck.
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(3) Run an appropriate LOO cross validation to estimate the weights (λ̂k, γ̂k)

for each class in L.

The gradient vector for D∗KL is intractable, so numerical derivatives must be used

with a constrained optimization function in the R computational package. We expect

our KL-based RDA classifier to result in a lower misclassification rate compared to

the standard RDA classifier.

3.8 Simulation

To examine the properties of our proposed regularized covariance estimation

algorithm, we designed a simulation study to compare the error rate of the RDA

classifier using the KL optimization routine to estimate Σk and the error rate of the

Friedman’s RDA classifier. We generated data from K = 4 classes according to the

models

xjk ∼ MVN(µk,Σk),

where nk = 20, k = 1, . . . , 4, and j = 1, 2, . . . , nk. The four mean vectors, each of

length 20, are µ1 = 020, µ2 = 0.5120, µ3 = 120, and µ4 = 1.5120, where 0κ and

1κ are length κ vectors of zeros and ones respectively. We remark that the mean

vectors contain a minimal amount of classification information.

We examined two general covariance structures. The first is an intra-class

structure, where the covariance between the covariates is constant. For notational

simplicity, we let Σκ[σ
2, ρ] denote an κ×κ intra-class covariance matrix with variance

σ2 and constant covariance ρ.

We consider the following three cases.

(1) Case I-1: All four population covariance matrices are 20 × 20 identity ma-

trices; that is Σ1 = Σ2 = Σ3 = Σ4 = I20

(2) Case I-2: Σ1 = Σ2 = Σ20[5, 0.25], and Σ3 = Σ4 = I20.
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(3) Case I-3:

Σ1 = Σ20[5, 0.25],

Σ2 = Σ20[4.9, 0.24],

Σ3 = I20,

and

Σ4 = Σ20[1.0, 0.10].

In case I-1 we use the most basic covariance structure the identity matrix for all

four classes. In case I-2 the classes C1 and C2 have the identity covariance, and

C3 and C4 have an equal non-identity intra-class covariance matrix. Case I-3 is the

most complex of the three cases. In case I-3, the covariance matrices for classes one

and two are not equal. However, the differences in the variances between cases one

and two is very small (0.01); likewise for the difference in the covariances (0.01).

The third class covariance matrix is the identity. The fourth class covariance has a

variance of one (like class three), but a covariance of 0.1. Summarily, the covariance

matrices of classes one and two differ only slightly; the covariance matrices for classes

three and four differ very slightly. But the covariances between pairs of classes one

and two, and classes three and four, are quite different.

The second set of cases considered in our simulation uses a Toeplitz matrix for

defining the covariance matrix. Because a symmetric Toeplitz matrix is indexed by

its first row, we use the notation

Toeplitz [a, b, c] =


a b c

b a b

c b a


to indicate a Toeplitz matrix with first row having elements a, b, and c.

We investigate three Toeplitz covariance structures that model diminishing

covariance between covariates. Specifically we have the following three cases.
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(1) Case T-1: For k = 1, 2, 3, 4,

Σk = Toeplitz[ 1 0.55 0.10 017 ].

(2) Case T-2:

Σ1 = Σ2 = Toeplitz[ 5 2.55 0.10 017 ]

and

Σ3 = Σ4 = Toeplitz[ 1 0.55 0.10 017 ].

(3) Case T-3:

Σ1 = Toeplitz[ 5.0 2.55 0.10 017 ],

Σ2 = Toeplitz[ 4.9 2.50 0.10 017 ],

Σ3 = Toeplitz[ 4.8 2.45 0.10 017 ],

and

Σ4 = Toeplitz[ 1.0 0.55 0.10 017 ].

Case T-1 is similar to case I-1 in that the Toeplitz covariance matrices across all

classes are equal. In case T-2, class C1 and C2 have equal Toeplitz covariance

matrices, and C3 and C4 have equal covariance matrices which are not equal to the

covariance matrix of classes C1 and C2.

The estimated expected misclassification rate and its corresponding estimated

standard error for each parameter configuration considered in our simulation are

given in Table 3.1. The standard error of the error rate is estimated by

ŝ.e(ε) =

√√√√ 500∑
i=1

(εi − ε̄)2

499
,
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where εi is the misclassification rate for the ith replication, and ε̄ = 1/500
∑500

i=1 εi. For

each parameter configuration, there are two different figures shown in Appendix B.

The first figure is a 2 × 2 grid of box plots, displaying the output of the KL op-

timization routine for each covariance matrix. On these figures (as in Table 3.1)

RDA represents Friedman’s method, and RDA-KL represents our new optimization

method. To illustrate, refer to Figure B.1 on page 60. The box plot in the upper left

corner displays the output of λ1 from the KL optimization routine for case I-1. The

plot in the upper right hand corner corresponds to λ2 for each replication, and so

on. On the following page, Figure B.2 is a box plot of the estimated misclassification

rates for the RDA and RDA-KL regularization methods.

Table 3.1. Misclassification Rates and Standard Errors
Case RDA RDA-KL
I-1 0.3822 (0.0660) 0.3680 (0.0617)
I-2 0.3689 (0.0695) 0.3613 (0.0572)
I-3 0.3867 (0.0706) 0.3766 (0.0590)

T-1 0.4719 (0.0573) 0.4757 (0.0587)
T-2 0.4334 (0.0802) 0.4234 (0.0612)
T-3 0.4844 (0.0707) 0.5398 (0.0534)

3.9 Simulation Results

The simulation results indicate both the potential for our regularized covari-

ance estimation method as well as some of its current limitations. The most promis-

ing aspect of the RDA-KL regularization method is the decreased standard error

of the misclassification rate. This aspect allows for a more predictable and stable

performance of the classifier compared to the standard RDA. The new RDA-KL

regularization algorithm performed well for cases where each class had an equal or

very similar pair of covariance matrices, specifically I-2, I-3, and T-2. However, as
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the differences in misclassification rates are not large enough to be attributed to any

factor except noise, a simulation with more replication is warranted.

We will first discuss the cases for which the KL optimization algorithm per-

formed best. From Figures B.3, B.5, and B.9 containing the plots of λk in Ap-

pendix B, we can see that cases I-2, I-3, and T-2 have similar patterns for λ. The

estimated covariance matrices Σ̂1 and Σ̂2 had similar assigned weight and Σ̂3 and Σ̂4

were also weighted similarity. For each of these cases, classes C1 and C2 had either

identical or very similar population covariance structures, and C3 and C4 shared a

structure. The KL algorithm behaved as expected by pairing each sample class co-

variance matrix with its closest match in terms of their shared eigenvalue structure,

and did so consistently across replications.

We will now examine the cases where the KL optimization algorithm failed to

perform as expected. For cases I-1 and T-1, the selected weights were highly variable,

giving rise to the conjecture that the KL algorithm has a tendency to heavily weight

the one covariance matrix that is most similar in eigenvalue structure, while putting

little weight on the others. However for I-1, the RDA-KL method had a smaller

misclassification rate compared to RDA, as the parameter space was smaller relative

to the sample size. In I-1 there were two parameters for the covariance matrix, and

for case T-3 there were three, so the ratio nk/p was 10 for I-1 and 6.67 for T-1.

The RDA-KL regularization routine performed the worst for case T-3. This

fact is explainable through closer examination of the selected weight coefficients

for each iteration. Similar to cases I-1 and T-1, the RDA-KL method had a ten-

dency to place large weight on the one covariance matrix covariance matrix that was

most similar in eigenvalue structure, and placed little to no weight on the remaining

estimated covariance structures. It should be noted that this is advantageous in

configurations such as I-2, I-3, and T-2 where pairs of classes share a similar co-

variance structure. This fact gives rise to an algorithm extension that would use a
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forward model selection procedure, similar to variable selection algorithms in linear

regression, where components are added until the difference between the remaining

structures cannot be well established.
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APPENDIX A

Appendix: Simulation Results and Code for Chapter Two

A.1 Estimation of λ

Table A.1. Test for Gaussianity
model n GCBG.3 GABG.3 GCBG.1 GABG.1 GCBG.2 GABG.2

ARMA(2,2) 100 0.0524 0.0498 0.0524 0.0498 0.0524 0.0498
ARMA(2,2) 250 0.0482 0.0462 0.0482 0.0462 0.0482 0.0462
ARMA(2,2) 500 0.0500 0.0512 0.0500 0.0512 0.0500 0.0512
ARMA(2,2) 1000 0.0500 0.0488 0.0500 0.0488 0.0500 0.0488

WN(1) 100 0.0522 0.0514 0.0522 0.0514 0.0522 0.0514
WN(1) 250 0.0554 0.0528 0.0554 0.0528 0.0554 0.0528
WN(1) 500 0.0498 0.0514 0.0498 0.0514 0.0498 0.0514
WN(1) 1000 0.0522 0.0524 0.0522 0.0524 0.0522 0.0524

AR(2) 100 0.0446 0.0418 0.0446 0.0418 0.0446 0.0418
AR(2) 250 0.0562 0.0570 0.0562 0.0570 0.0562 0.0570
AR(2) 500 0.0572 0.0548 0.0572 0.0548 0.0572 0.0548
AR(2) 1000 0.0538 0.0520 0.0538 0.0520 0.0538 0.0520

Table A.2. Test for Linearity
Model n GCBL.3 GABL.3 GCBL.1 GABL.1 GCBL.2 GABL.2
ARCH 100 0.4754 0.4842 0.0020 0.0020 0.1102 0.1142
ARCH 250 0.6354 0.6508 0.0000 0.0000 0.2054 0.2184
ARCH 500 0.7294 0.7490 0.0000 0.0000 0.3836 0.4038
ARCH 1000 0.8102 0.8378 0.0000 0.0000 0.5698 0.5854
Bilinear 100 0.4082 0.4156 0.0006 0.0002 0.0804 0.0792
Bilinear 250 0.6046 0.6164 0.0002 0.0002 0.0914 0.0934
Bilinear 500 0.8146 0.8256 0.0000 0.0000 0.1628 0.1672
Bilinear 1000 0.9510 0.9538 0.0000 0.0000 0.2590 0.2598

Continued on Next Page...
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Model n GCBL.3 GABL.3 GCBL.1 GABL.1 GCBL.2 GABL.2
χ2 100 0.1092 0.1098 0.0004 0.0004 0.0666 0.0628
χ2 250 0.0908 0.0910 0.0000 0.0000 0.0572 0.0576
χ2 500 0.0750 0.0762 0.0002 0.0002 0.0604 0.0624
χ2 1000 0.0774 0.0782 0.0000 0.0000 0.0596 0.0598

NLAR 100 0.0712 0.0714 0.0100 0.0112 0.0338 0.0312
NLAR 250 0.1206 0.1238 0.0042 0.0044 0.0438 0.0436
NLAR 500 0.1310 0.1378 0.0024 0.0036 0.0284 0.0268
NLAR 1000 0.1716 0.1798 0.0020 0.0026 0.0168 0.0160
NLMA 100 0.1614 0.1646 0.0022 0.0024 0.0382 0.0336
NLMA 250 0.2058 0.2078 0.0010 0.0010 0.0420 0.0412
NLMA 500 0.2340 0.2424 0.0002 0.0002 0.0482 0.0480
NLMA 1000 0.3106 0.3174 0.0002 0.0002 0.0432 0.0440
SETAR 100 0.2642 0.2680 0.0002 0.0004 0.0526 0.0486
SETAR 250 0.4392 0.4496 0.0002 0.0002 0.0610 0.0558
SETAR 500 0.6602 0.6722 0.0002 0.0000 0.0542 0.0520
SETAR 1000 0.9046 0.9154 0.0000 0.0000 0.0480 0.0458
GARCH 100 0.1488 0.1486 0.0070 0.0076 0.0310 0.0288
GARCH 250 0.5022 0.5146 0.0010 0.0020 0.0482 0.0538
GARCH 500 0.8346 0.8470 0.0002 0.0004 0.2396 0.2424
GARCH 1000 0.9732 0.9760 0.0000 0.0000 0.5620 0.5656
EXPAR 100 0.0522 0.0444 0.0020 0.0020 0.0734 0.0734
EXPAR 250 0.0672 0.0646 0.0002 0.0002 0.0638 0.0646
EXPAR 500 0.0556 0.0574 0.0000 0.0002 0.0694 0.0708
EXPAR 1000 0.0248 0.0248 0.0000 0.0000 0.0684 0.0692
STAR 100 0.0428 0.0420 0.0092 0.0104 0.0414 0.0360
STAR 250 0.0562 0.0550 0.0048 0.0052 0.0414 0.0440
STAR 500 0.0576 0.0564 0.0082 0.0074 0.0464 0.0452
STAR 1000 0.0564 0.0550 0.0126 0.0126 0.0398 0.0394

A.2 Code

dyn.load("allfortran.dll")

source("allrcode.R")

source("functions4.R")

hinich <- function(y)

{

n <- length(y)
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m <- trunc(n^0.625)

zz <- bispec(y)

z <- zz$z[which(zz$z > 0)]

sz <- sum(z)

pvalsg <- 1 - pchisq(sz, df = 2*zz$nsq)

b.iqr <- IQR(z)

ncp.est <- max(0,mean(z)-2)

eta1 <- qchisq(0.25, df = 2, ncp = ncp.est)

eta3 <- qchisq(0.75, df = 2, ncp = ncp.est)

d1 <- dchisq(0.25, df = 2, ncp = ncp.est)

d3 <- dchisq(0.75, df = 2, ncp = ncp.est)

viqr <- (3/d1**2 + 3/d3**2 - 2/(d1*d3))/(16*zz$nsq)

l.ts <- (b.iqr - (eta3 - eta1))/sqrt(viqr)

pvalsl <- 1 - pnorm(l.ts)

rej <- c(as.numeric(pvalsg < 0.05),as.numeric(pvalsl < 0.05))

return(rej)

}

boot.linear.gof <- function(n,res,ar.coef)

{

s <-sample(res,size=n,replace=TRUE)

bootL <-filter(s,ar.coef,method="recursive")

return(bootL)

}
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boot.normal.gof <- function(n,sd.res,ar.coef)

{

s <-rnorm(n,0,sd.res)

bootG <-filter(s,ar.coef,method="recursive")

return(bootG)

}

boot.symmetric <- function(res,ar.coef)

{

s <-abs(sample(res,replace=T))*rbinom(length(res),1,.5)

bootS <-filter(s,ar.coef,method="recursive")

return(bootS)

}

##

##############################################################

## BEGIN: Sim Code

norm.trans <- function(z,df,lam)

{

s <- df + 2*lam

r <- lam + df

h <- 1-(2*r*(df+3*lam)/(3*s^2))

Y <- (z/r)^h

return((Y-mean(Y))/sd(Y))

}
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##

##############################################################

## Calc of CvM and AD statistics

GOF.stat <- function(z,k,fun=NULL,param=NULL,stat=c(1,2))

{

k <- length(z)

CvM <- 0.0

AnD <- 0.0

i <- 1:k

tol <- .0001

if(fun == "exp")

{

Q <- sort(pexp(z,param))

}

if(fun == "chisq") {

Q <- sort(pchisq(z,df=2,ncp=param))

#Q <- sort(pnorm(z))

#Q <- sort(pgamma(z,2,6))

#print(mean(Q))

}

if(fun == "norm")

{

z.t <- (z-mean(z))/sd(z)

Q <- sort(pnorm(z.t))

}
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Q[Q >= (1-tol)] <- 1-tol

Q[Q <= tol] <- tol

CvM <- 1/(12*k) + sum((Q - (2*i-1)/(2*k))^2)

AnD <- -k - mean((2*i-1)*log(Q*(1-rev(Q))))

#result <- c(CvM,AnD)

#return(result[stat])

return(T.adjust(c(CvM,AnD),n=k,fun=fun))

}

T.adjust <- function(T,n,fun=NULL)

{

if(fun == "norm"){

T[1] <- T[1]*(1 + 0.5/n)

T[2] <- T[2]*(1 + 0.75/n + 2.25/(n^2))

}

if(fun == "exp"){

T[1] <- (T[1]- 0.4/n + 0.6/(n^2))*(1+1/n)

}

return(T)

}

##

##############################################################

## GoF test as specified in Jahan & Harvill 2008
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gof.jahan <- function (x,cv=NULL)

{

n <- length(x)

m <- trunc(n^0.625)

z <- as.vector(bispec(x)$z)

z <- z[z>0]

k <- length(z)

T.g <- GOF.stat(z=z,fun="exp",param=1/2)

T.g <- T.adjust(T.g,k,fun="exp")

g.rej <- c(as.numeric(T.g[1] > 0.461),

as.numeric(T.g[2] > 2.492))

ncp <- max(0,mean(z)-2)

if(is.null(cv))

{

Y <- norm.trans(z,df=2,lam=ncp)

T.l <- GOF.stat(z=Y,k=k,fun="norm")

l.rej <- c(as.numeric(T.l[1] > 0.126),

as.numeric(T.l[2] > 0.752))

}else

{

T.l <- GOF.stat(z=z,k=k,fun="chisq",param=ncp)

l.rej <- c(as.numeric(T.l[1] > cv[1]),

as.numeric(T.l[2] > cv[2]))

}
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#from simulation of iid variables: 0.3942588 2.5487131

#l.rej <- c(as.numeric(T.l[1] >0.3942588),

as.numeric(T.l[2] > 2.5487131))

return(c(g.rej,l.rej))

#return(c(T.g,T.l))

}

##

##############################################################

## Get initial value of ncp for GoF test

lam.burnin <- function(Data,param,NITER = 1000,

ar_order=10,fun=NULL)

{

n <- length(Data)

fit <- ar(Data,FALSE,ar_order)

ar.coef <- fit$ar

res <- fit$resid[-(1:ar_order)]

centered.res<- res-mean(res)

A <- vector(length=NITER)

for(i in 1:NITER){

bootL <- boot.linear.gof(n,centered.res,ar.coef)

z.L <- bispec(bootL)$z

z.L <- as.vector(z.L[z.L > 0])

A[i] <- GOF.stat(z=z.L,k=length(z.L),

fun=fun,param=param,stat=2)
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}

plot(ecdf(A))

return(quantile(sort(A),.95))

}

##

##############################################################

## Various ways of estimating the ncp

get.lam <- function(x,type=NULL,M_b=NULL)

{

n <- length(x)

if(type == "berg"){

lambda <- n*Cfun(0,0,x)^2/(M_b^2*1.375*R(0,x)^3)

}else if(type == "standard"){

lambda <- max(0,mean(x)-2)

}else if(type == "opt")

{

lambda <- optimize(

f=function(ncp){sum(dchisq(x,df=2,ncp=ncp,log=TRUE))},

interval=c(min(x),max(x)),maximum=TRUE)$maximum

}

return(lambda)

}

##

##############################################################
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## Bootstrap Test

boot.gof.test <- function(bootnum,Data,ar_order=NULL,

alpha=NULL,method=3)

{

n <- length(Data)

#calculate centered residuals

fit <- ar(Data,FALSE,ar_order)

ar.coef <- fit$ar

ar_order <- length(ar.coef)

res <- fit$resid[-(1:ar_order)]

centered.res<- res-mean(res)

sd.res <- sd(res)

# Calculate Bispectrum for RAW data

z <- bispec(Data)$z

z <- as.vector(z[z>0])

#Hinich gauss and lin test stat

T_Hg <- sum(z)

T_Hl <- IQR(z)

# Test Statistic for Gaussian hypothesis

T_g <- GOF.stat(z,k,fun="exp",param=1/2)

#Test statistic for linear hypothesis
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if(method==1){ #use global ncp

lam <- get.lam(z,type="standard")

T_l <- GOF.stat(z,fun="chisq",param=lam)

}

if(method==2){ #unique ncp for each iteration

lam <- get.lam(z,type="standard")

T_l <- GOF.stat(z,fun="chisq",param=lam)

}

if(method==3){ #use ncp=0

T_l <- GOF.stat(z,fun="chisq",param=0)

}

if(method==4){ #use F=pnorm

z.m <- mean(z)

sd.m <- sd(z)

T_l <- GOF.stat(z,fun="norm",param=c(z.m,sd.m))

}

#test statistics for CvM and AnD

GOF_g <- cbind(double(bootnum),double(bootnum))

GOF_l <- cbind(double(bootnum),double(bootnum))

Hin_g <- vector(length=bootnum)

Hin_l <- vector(length=bootnum)

#lambda.L<- vector(length=bootnum)

for(i in 1:bootnum)
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{

#####################################################

#gaussian test bootstrap

bootG <- boot.normal.gof(n,sd.res,ar.coef)

z.G <- bispec(bootG)$z

z.G <- as.vector(z.G[z.G > 0])

#Hinich gauss est.

Hin_g[i] <- sum(z.G)

#GOF gauss est.

GOF_g[i,] <- GOF.stat(z.G,fun="exp",param=1/2)

#####################################################

# linear test bootstrap

bootL <- boot.linear.gof(n,centered.res,ar.coef)

z.L <- bispec(bootL)$z

z.L <- as.vector(z.L[z.L > 0])

#Hinich lin est.

Hin_l[i] <- IQR(z.L)

#GOF lin est.

if(method==1){ #use global ncp

GOF_l[i,] <- GOF.stat(z.L,fun="chisq",param=lam)

58



}

if(method==2){

lam <- get.lam(z.L,type="standard")

GOF_l[i,] <- GOF.stat(z.L,fun="chisq",param=lam)

}

if(method==3){

GOF_l[i,] <- GOF.stat(z.L,fun="chisq",param=0)

}

if(method==4){

GOF_l[i,] <- GOF.stat(z,fun="norm",

param=c(z.m,sd.m))

}

}

# Calculate p-values

C_pval_g <- 1-ecdf(GOF_g[,1])(T_g[1])

C_pval_l <- 1-ecdf(GOF_l[,1])(T_l[1])

A_pval_g <- 1-ecdf(GOF_g[,2])(T_g[2])

A_pval_l <- 1-ecdf(GOF_l[,2])(T_l[2])

H_pval_g <- 1-ecdf(Hin_g)(T_Hg)

H_pval_l <- 1-ecdf(Hin_l)(T_Hl)

return(c(C_pval_g,A_pval_g,H_pval_g,C_pval_l,A_pval_l,H_pval_l))

}
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APPENDIX B

Appendix: Output of the KL Algorithm & Misclassification Rate

Figure B.1. Case I-1: KL Similarity Performance
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Figure B.2. Case I-1: Misclassification Rate
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Figure B.3. Case I-2: KL Similarity Performance
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Figure B.4. Case I-2: Misclassification Rate

63



Figure B.5. Case I-3: KL Similarity Performance
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Figure B.6. Case I-3: Misclassification Rate
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Figure B.7. Case T-1: KL Similarity Performance
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Figure B.8. Case T-1: Misclassification Rate
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Figure B.9. Case T-2: KL Similarity Performance
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Figure B.10. Case T-2: Misclassification Rate
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Figure B.11. Case T-3: KL Similarity Performance
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Figure B.12. Case T-3: Misclassification Rate
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