
 
 
 
 
 
 
 
 

ABSTRACT 
 

Computational Modeling of Fiber Reinforced Composites Melt Flow in Nozzle Extrudate 
for Polymer Deposition Additive Manufacturing 

 
Zhaogui Wang, Ph.D. 

 
Mentor: Douglas E. Smith, Ph.D. 

 
 
 Understanding effects of processing conditions on properties of processed 

composite materials for polymer deposition additive manufacturing is critical, especially 

in the recent-emerging Large Area Additive Manufacturing (LAAM) polymer composite 

deposition technology. This dissertation aims to broaden the knowledge of how 

manufacturing inputs affect LAAM bead output properties (e.g., extrudate swell, fiber 

orientation, and effective elastic constants). The finite element method is applied to solve 

the flow kinematics and free surface shape of the nozzle-extrudate polymer melt that is 

defined by generalized Newtonian and viscoelastic flow models. The Folgar-Tucker 

Isotropic Rotary Diffusion (IRD) model and the Reduced Strain Closure (RSC) model are 

employed to compute the Advani-Tucker second order fiber orientation tensors 

throughout the flow domain of interest. The one-way weakly coupled and two-way fully 

coupled analyses of flow and fiber orientation in the nozzle-extrudate flow domain are 

both implemented separately.  



 The computed results, based on typical LAAM nozzle flow conditions, show that 

the non-Newtonian viscoelastic rheology effect significantly increases the die swell ratio 

of the Acrylonitrile Butadiene Styrene (ABS) melt by 50% as compared to the result 

predicted by using the Newtonian model. The swirling-flow-predicted fiber orientation 

tensor results yields a 25% increase in the predicted flow-direction elastic modulus of a 

13% carbon fiber filled ABS (CF-ABS) as compared to that of a non-swirling simulation. 

It is also found that the bias of ignoring the screw-extrusion-resulted fiber length 

distribution in the prediction of elastic properties can be as large as 12%. Numerically 

predicted elastic properties from above studies exhibit a favorable agreement with related 

experimental measurements in the literature on similar materials and LAAM systems, 

which supports our proposed computational methodologies. Above results are obtained 

based on the weakly coupled formulation. Finally, it is found that the fully coupled 

interactions between the polymer melt flow and the fiber orientation has a pronounced 

impact on the nozzle-extrudate flow domain where the die swell of the free extrudate of 

20% CF-Polyethylenimine reduces by a factor of ~2  as compared to the result of the 

neat polymer alternative. This agrees well with data appearing in prior experimental 

studies on similar filled-polymers.  
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CHAPTER ONE 
 

Introduction 
 
 

1.1 Research Background 
 

 Additive Manufacturing (AM) is a novel method for rapid prototyping of parts 

and tooling with intrinsic geometries that can be practically tailored to end-use structures 

in advanced industries such as automobile or aerospace. A typical AM process is to slice 

a three-dimensional Computer-Aided Design CAD model of a product into multiple two-

dimensional in-plane outlines and then to manufacture the structure additively in a layer-

by-layer fashion.  

 To date, AM technologies are emerging in several major formats, which often are 

categorized by their hardware setup and/or energy source for manufacturing. 

Stereolithography (SLA), Selective Laser Sintering (SLS), and Fused Filament 

Fabrication (FFF) are three of the mainstream techniques (e.g., also see Digital Light 

Processing (DLP) [1], Laminated Object Manufacturing (LOM) [2], etc.), which 

experience widespread applications. Specifically, Stereolithography (SLA) is an AM 

technique based on the photopolymerization phenomenon, where a light source energy 

changes the chains of molecules to be linked, and ultimately makes the liquid polymer 

feedstock in the base bath solidify to form a 3D object [3]. Alternatively, the Selective 

Laser Sintering (SLS) method employs the laser energy to melt material powders 

contained in a base plate. The powdered feedstock is first heated up to a temperature that 

is slightly below its melting temperature and a thin layer of heated powder is spread onto 
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the printing bed. Then, the laser source travels to selected points to increase the 

temperature above the melting point to fuse powder particles together. The dimensions of 

a printed part are defined through the locations of a laser exposure [4]. Both SLA and 

SLS techniques are capable of creating structures with relatively high dimensional 

accuracy, such that the industry average manufacturing tolerance is around 0.05 mm [5]. 

While SLA is limited exclusively to liquid polymer, the SLS technique may include a 

diversity of materials such as plastics, ceramics or metals. Nevertheless, both the 

hardware setup and material feedstock of SLA and SLS technologies are much more 

expansive as compared to other popular AM method, polymer deposition additive 

manufacturing, otherwise known as Fused Filament Fabrication (FFF). A typical process 

of FFF is where polymer filament feedstock is melted, extruded, and then deposited 

through a metal nozzle onto a heated platform, layer-by-layer, to form three-dimensional 

(3D) objects [6]. Compared to SLA and SLS, the FFF method is a relatively low-cost AM 

approach in terms of both hardware and material feedstock, even though the typical 

printing resolution is a little bit higher (i.e., 0.2 mm [5]). In addition, FFF-fabricated parts 

exhibit relatively high material stiffness and strength as compared to those manufactured 

through layer-melting processes, especially when fiber reinforced polymer composites 

are employed as feedstock (e.g., see [7, 8]). However, the dimensional accuracy of FFF 

method is lower as compared to SLS or SLA technique. A brief summary of the 

advantages and disadvantages of SLS, SLA, and FFF appears in Table 1-1. Readers 

interested in further exploring the recent innovations in AM technologies are referred to 

the review papers published to date (e.g., see [9-11]). 
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Table 1-1. Summary of three major additive manufacturing technologies. 
 

Technology name Advantage Disadvantage 
Stereolithography High accuracy, fast printing 

speed 
High cost, low material 
stiffness and strength 

Selective Laser Sintering High accuracy, fast printing 
speed 

High cost, porous structure, 
high material waste 

Fused Filament Fabrication High material elastic 
properties, low cost  

Low accuracy, relatively low 
printing speed 

 
 
 Based on the fundamental concept of the polymer deposition process (i.e., FFF), 

researchers have developed the Large Area Additive Manufacturing (LAAM) polymer 

deposition technology by employing a vertical single screw extruder to melt and deposit 

pelletized thermoplastics rather than using filament feedstocks, which yields a significant 

increment in the material output rate. In addition, the material deposition rate of large-

scale AM machines is also increased as compared to most desktop-size printers, typically 

from 0.04 lbs/hr (i.e., roughly 1 lb per day) for a typical desktop device to upwards of 

100 lbs/hr for today’s LAAM machine [12]. The development of LAAM applications has 

enjoyed a rapid pace. To date, the maximum material output rate per hour of a LAAM 

system is over 200 times higher than that of a conventional desktop FFF printer [12]. 

Researchers from Oak Ridge national Laboratory (ORNL) and their industrial 

collaborators from Cincinnati, Incorporated (Harrison, OH, USA) developed the Big 

Area Additive Manufacturing (BAAM) system which is the first of few LAAM systems. 

The BAAM machine has the ability to print parts in size up to 6-meter length × 2.5-meter 

width × 1.8-meter height with material output rates up to 45 kg/h (dependent on the 

choice of material) [13]. In a similar fashion, Thermwood Incorporated created a Large 

Scale Additive Manufacturing (LSAM) system that offers an even larger print size 

capability (30-meter length × 3-meter width × 1.5-meter height) and higher maximum 
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material output rate (up to 226kg/h) as compared to the BAAM system. The LSAM 

system is also fitted with a Computer Numerical Control (CNC) router such that a printed 

part can be machined following the polymer deposition process [14].  

Unfortunately, the inherent weak meso-structures of LAAM printed parts 

significantly reduce their stiffness and strength when virgin polymer materials are used. 

Prior research has shown that adding fibers into a neat polymer significantly enhances the 

mechanical performance of the polymer composite structure (e.g., see [7, 8]). The 

superior mechanical properties of filled polymers over their neat polymer alternatives 

reduce warpage and enhance dimensional stability and material stiffness of a printed 

structure. Carbon fiber reinforced materials are one of the most commonly used types of 

feedstock in LAAM applications. For example, the BAAM created Strati car is the first 

3D printed car which is made of 13% carbon fiber reinforced Acrylonitrile Butadiene 

Styrene (ABS) [15]. A significant advantage of using of carbon fiber fillers is their low 

Coefficient of Thermal Expansion (CTE) which greatly improves the dimensional 

stability of the printed part. Although filled-polymers enhance the mechanical 

performances of the LAAM-produced parts, the reinforcements also cause severe issues 

during the manufacturing (e.g. severe clogging in FFF-type nozzles in commercial 

printers, especially at high fiber volume fraction [16]). The material anisotropy is also 

found to be even more pronounced in deposited beads, where the material stiffness 

transverse to the print direction is much lower than the enhanced stiffness along the print 

bead axis. Obtaining acceptable bead transverse mechanical properties is one of the vital 

limiting factors in the applicability of the large-scale AM technology [12], which may be 

improved by z-pinning printing (e.g. see [17]) or adding rotational kinematics into the 
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melt deposition flow to change the microstructural fiber orientation within the composite 

extrudate during manufacturing (e.g., see [18]).  

Figure 1-1 shows the microstructure of a LAAM-deposited composite material 

bead which directly affects the mechanical properties of printed structures. The 

microstructure of the short fibrous composites feedstock includes fibers with specific 

alignment, polymer matrix, and voids in between fibers and the matrix, which are all 

sensitive to the LAAM fabrication process, e.g., a small variation in the processing 

condition settings can result in notable different fiber orientation states in the deposited 

composites [19]. Currently, a lack of fundamental understanding of the effect of 

processing conditions on the resulting fiber orientation and associated elastic 

performances of printed composite parts yields a cumbersome and tedious trial-and-error 

approach when setting print parameters for LAAM. More significantly, the unpredictable 

material performances of the manufactured parts greatly reduce the applicability of the 

LAAM deposition technology. This dissertation is designated to extend the fundamental 

knowledge base that explains the effects of polymer flow characters in LAAM 

applications on the resulting microstructure of end-use printed parts made of short fiber 

composites. The gained knowledge is expected to improve the ability to print superior 

material microstructures in LAAM polymer deposition. Additionally, this document will 

not specifically discuss the microstructure-level voids within the composites (which may 

be generated by the tumbling motions of the fibers [20]) as it beyond the main scope of 

this dissertation that mainly aims in quantifying the fiber orientation kinetics in the 

LAAM nozzle extrudate flow scenario. 
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(A) (B) 

Figure 1-1. (A) Polymer deposition manufacturing and (B) microstructure of a deposited 
bead of 13% Carbon Fiber filled Acrylonitrile Butadiene Styrene (CF-ABS): White is 
fiber, black is void and grey is polymer matrix [21]. 
 
 

1.2 Research Objective 
 

It is well understood that the structural and thermal responses of a part made of 

fiber reinforced polymers are greatly influenced by the material’s microstructure 

formations [22-24]. What remains unclear in polymer deposition additive manufacturing 

is how molten polymer flow orients the reinforced particles as the feedstock is extruded 

and deposited. In addition, the mutual effects between the polymer melt and orientation 

of reinforced fibers during deposition also play important role in the contribution of the 

final performances of a printed part. Hence, it is critical to establish a bridge to correlate 

the microstructural formation of the filled polymer to the polymer deposition process 

inputs, especially when large area manufacturing is of interest.  

The objective of this research is to expand the knowledge base on quantifying the 

interactions between the polymer flow and the reinforced fibers’ orientation kinematics 

during a LAAM polymer deposition. The obtained knowledge is expected to help 

researchers identifying the process-structure-property relations between the 

microstructure of short fiber composites feedstock and process conditions of the LAAM 

technology, which avoids otherwise the tedious and costly trial and error process for the 
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technology. We ultimately hope to enrich the potential applicability of this energy-

efficient manufacturing technology, making it more broadly useful in engineering design 

and manufacturing. In particular, to realize the overall goal, several sub-objectives are 

specified as follows: I) Understanding effects of flow rheology modeling on predicted 

outcomes (e.g., flow kinematics and free surface extrudate swell). II) Explaining the 

importance of tooling on resulting fiber orientation and associated elastic properties of 

the overall composite feedstock (e.g., the screw swirling kinematics impacts and the fiber 

length attrition effects). III) Exploring the fully-coupled interactions between the polymer 

flow and fiber orientation kinetics in the post extrudate (e.g., anisotropic material 

behaviors of composites including the shear viscosity and the elastic properties). In 

addition, this research mainly investigates two material systems: the neat Acrylonitrile 

Butadiene Styrene (ABS) and the 13% Carbon Fiber filled Acrylonitrile Butadiene 

Styrene (13% CF-ABS) provided by PolyOne Corp. (Avon Lake, OH, USA). This 

enables us to evaluate the material behaviors of a polymer under both unfilled and filled 

conditions. 

 
1.3 Dissertation Outline 

 
The focus of this PhD research includes the flow-induced fiber orientation and the 

effects of fiber fillers on the polymer suspension rheology and mechanical properties of 

the LAAM-deposited composites. There are numerous factors within a LAAM process 

affecting the flow kinematics of the molten polymer, including but not limited to the 

effects of polymer rheology, influences of tooling components (e.g., screw design, nozzle 

design) of a LAAM system, and flow/fiber-orientation coupling effects. 
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This dissertation models significant polymer composite melt flow features within 

the manufacturing process of the LAAM technology and analyzes the inter-relations 

between the polymer matrix flow and the flow-induced fiber orientation, and ultimately 

predicts the mechanical performance of a deposited composite bead. The rest of the 

document is organized as follows: 

Chapter Two reviews the literature addressing the numerical identifications 

associated with the large-scale polymer deposition additive manufacturing, especially for 

the processes of the single screw extruder material feeding and the melt extrusion of the 

feedstock of fiber reinforced polymer composites.  

Chapter Three provides a fundamental overview of the theories that are applied in 

the modeling work presented in this dissertation, including the governing equations of the 

polymer flow and the associated flow-induced fiber orientation. The constitutive 

equations that couple the interactions between the flow and fiber orientation in a polymer 

composite suspension are reviewed as well. In addition, the orientation homogenization 

method is discussed, which is used to predict the elastic constants of the post-extrudate of 

composites from LAAM applications. 

Chapter Four presents a numerical methodology investigating the effect of non-

Newtonian viscoelastic rheology of polymer materials on the resulting melt extrudate 

swell and fiber orientation for a LAAM nozzle extrudate flow. This chapter is based on 

the paper “Rheology Effects on Predicted Fiber Orientation and Elastic Properties in 

Large Scale Polymer Composite Additive Manufacturing” in the Journal of Composites 

Science. The first author, Zhaogui Wang, carried out the main work of experiments and 

numerical simulations, and wrote the initial draft. The correspondence author, Douglas E. 
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Smith, conceived and designed the experiments and numerical modeling procedure, and 

mentored the first author, Zhaogui Wang, in writing this paper. 

Chapter Five analyzes the impact of screw swirling kinematics in LAAM 

applications on the resulting flow fields and associated fiber orientation state of the 

extruded composites. This chapter is based on the paper “Numerical Analysis of Screw 

Swirling Effects on Fiber Orientation in Large Area Additive Manufacturing Polymer 

Composite Deposition” in the Composites Part B: Engineering. The first author, Zhaogui 

Wang, carried out the main work of experiments and numerical simulations, and wrote 

the initial draft. The correspondence author, Douglas E. Smith, conceived and designed 

the experiments and numerical modeling procedure, and mentored the first author, 

Zhaogui Wang, in writing this paper. 

Chapter Six investigates the fiber length attrition resulting from the aggressive 

screw extruder feeding process and related effects on the predicted elastic properties of 

extruded composite materials.  

Chapter Seven provides a finite-element-based custom MATLAB code 

characterizing the mutually dependent interactions between the polymer melt flow and 

the fiber reinforcements orientation in an open flow of melt extrusion which simulates the 

nozzle-extrudate flow for LAAM applications.  

Chapter Eight summarizes the accomplishments obtained throughout Chapters 

Four to Seven and recommends the future work regarding the achievements obtained 

with above studies. 
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CHAPTER TWO 
 

Literature Review 
 
 

To facilitate the introduction of the LAAM polymer deposition application, a 

custom-designed large area polymer composite deposition system is adopted, which was 

built at Baylor University. As shown in Figure 2-1, the system is mainly composed of a 

Strangpresse (Youngstown, OH, USA) Model-19 large-scale single screw extruder, 

associated gantry system consisting of a 4-feet-by-4-feet printing substrate and 6-inch 

room for vertical-direction manufacturing, and the computer-supervised control system. 

A typical process of LAAM polymer deposition is where pelletized feedstock is 

compounded by a screw extruder and then deposited through a heated nozzle onto a 

preheated print-bed at atmospheric pressure. During this process, a circular extrudate is 

formed into an elliptical deposited bead. Virgin thermoplastics printed parts exhibit 

severe defects such as warpage and low material stiffness and strength. Alternatively, 

short fiber reinforced polymer composites are extensively adopted for LAAM 

applications [12, 13, 25] which significantly improves the performances of end-use 

fabricated parts (e.g., see Figure 2-2, where the bar printed by using 13% CF-ABS 

exhibits less warpage to that printed by using neat ABS [25]). However, the second-phase 

reinforcements also bring up significant issues regarding the LAAM fabricating process 

such that the unpredictable microstructure of the polymer composites processed through 

the LAAM applications requires tedious empirical pre-testing to find proper printing 

condition parameters associated with different composite materials applied.  
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The primary focus of this dissertation is to explain the unclear relationships 

between the feedstock of short fiber reinforced composites and the manufacturing process 

of the LAAM polymer deposition. This ultimately provides insights to design and 

optimize the process of LAAM technologies towards end-used printed-parts with superior 

mechanical performances. Numerical simulations are often regarded as an important way 

to identify the complex physics behind the manufacturing. In this chapter, we review 

preceding articles numerically addressing the physic phenomena that occur during 

polymer deposition processes, including processes of feedstock feeding, nozzle extrusion, 

post-extrusion extrudate swell and material deposition. 

 

 
Figure 2-1. Baylor Large Area Additive Manufacturing (LAAM) system. 

 
 

  
Figure 2-2. Six-feet Long Bars Printed by a LAAM Machine (ABS top, ABS/CF 13% 
bottom) [25]. 
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2.1 Feedstock Feeding 
 

Ramanath, et al., [26, 27] modeled the extrusion liquefier flow of a FFF process in 

a 2D planar model for the bio-polymer Polycaprolactone (PLC). The flow kinematics 

fields, temperature fields and the pressure gradients of the flow within the liquefier were 

studied. Mostafa, et al. [28] developed a liquefier head flow simulation for both 2D and 

3D models for an iron powder reinforced ABS material, and the flow fields along with 

the pressure drop and temperature fields of the composite ABS melt were examined. 

Unfortunately, most of the prior studies focus on the conventional filament-extrusion 

process. Specifically, the single screw extrusion feeding process is different from what 

has been investigated above for traditional FFF processes. For example, the built-up 

pressure for a vertical extruder is pivotal for successfully extruding the composite 

materials while the pinch-roller filament extrusion needs more delicate calibration 

between the liquefier and the nozzle to avoid bending of filaments [29]. In the following, 

we particularly explore the associated literature in screw-involved extrusions of filled 

polymers (not limited to AM applications). 

Single screw extruders are often seen in the material feeding system of LAAM 

applications. Herein, we take the Baylor LAAM system as an example (c.f. Figure 2-1) to 

facilitate our introduction. In detail, the Baylor LAAM system adopts a Strangpresse 

Model 19 single screw extruder provided by Strangpresse Corp. (Youngstown, OH, USA, 

a licensed extruder manufacturer partnership with ORNL). The Model-19 extruder is 

designed for large volume polymer deposition AM application, which has the capability 

to extrude polymeric based material up to 20 lbs. per hour. As can be seen in Figure 2-3, 

the temperature of three zones, including the feeding zone, compression zone and the 
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metering zone of the Model 19 single screw extruder, can be adjusted. The extruder has a 

maximum Motor RPM of 90 rad/s which yields a volumetric flow rate up to 1.5 × 10−6 

m3/s for virgin ABS and 13% CF-ABS [30]. While the internal design of the extruder is 

not available to us, the feeding mechanism of screw extrusion can be easily found in 

existing literature (e.g., see [31]) and is not given in detail here as this is beyond the main 

focus of the dissertation.  

 

 
Figure 2-3. Strangpresse Model 19 Extruder Involved in the Baylor LAAM System. 

 
 

It is important to note that the screw-involved feeding process is different from 

that of a pinch-roller filament extrusion, which is typically employed in the FFF 

technique, especially when short fiber filled polymers are used as the feedstock. For 

instance, the fiber orientation within the filament is predominately parallel to the 

extrusion direction due to the fabrication process of the continuous filament extrusion, 

while the pelletized feedstock may exhibit more diversity in terms of the fiber orientation 
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due to the unique swirling kinematics generated during the screw rotation [18]. 

Additionally, the fiber attrition of a screw extrusion is much more severe than the smooth 

transition in traditional FFF process (e.g., see [32]), which yields a significant reduction 

on the property enhancements of the extrudate composites as the fiber aspect ratio 

reduces greatly. In the following, we review articles discussing the potential effects of the 

screw extrusion process onto the extruded fiber reinforced composites, with a specific 

focus on the property variations of the feedstock due to the screw extrusion process. 

The single screw extruder has a distinctive way of feeding polymeric-based 

feedstock as compared to other methodologies such as the hydraulic piston pression. For 

instance, the interactions between the rotational screw and the pelletized feedstock yields 

intense viscous heating on the polymer materials and ultimately varies the apparent shear 

viscosity of the melt. More importantly, for filled polymers, the screw barrel cuts off the 

reinforced fibers into smaller pieces, which significantly changes the rheological 

behaviors of the molten composite fluid flow. In particular, previous literature 

demonstrated the single screw rotation had a direct effect on the properties of an extruded 

composite material. For example, Ke, et al. [33] used simulation to show that the 

viscosity dropped initially and then tended to recover in single screw extruder flows. This 

trend appeared to be periodic and related to the geometry of the screw. Canevarolo, et al. 

[34] explored the effects of various screw element types on the degradation of 

Polypropylene (PP). Five different screw designs were employed to show that increasing 

the screw number as well as the screw profile aggressiveness yielded a noticeable 

reduction in the average molecular weight of PP. Kelly, et al. [35] experimentally 

measured the melt temperature profiles in single screw extrusion flow using various 
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screw geometries. Ramani, et al. [36] investigated the fiber length degradation in a twin-

screw extruder. The reported data indicated that the injection molding process did not 

benefit from the screw-yielded wet-out and dispersion of fiber reinforcements. More 

recently, Duty, et al. [12] measured the structural performances of fiber reinforced 

polymers printed with Big Area Additive Manufacturing (BAAM). The measured 

stiffness of 13% CF-ABS beads showed that the printed material exhibited a high degree 

of anisotropy owing to the fiber orientation within the extrudate, where the elastic 

modulus in the print direction is much higher than those normal to the axis of the printed 

bead. In addition, their work revealed that screw design (cf. Figure 2-4) significantly 

affected the resulting elastic properties of the printed materials, such as the principal 

modulus (that parallel to the printing direction). Duty showed that the elastic modulus 

20% glass fiber reinforced ABS bead printed with a conventional screw was 5.67 GPa, 

while that using a retrofit screw was 3.33 GPa (cf. Figure 10 in [12] for screw geometric 

designs). 

 

  
(A) (B) 

Figure 2-4. Screw Designs for Big Area Additive Manufacturing Machine: (A) Custom-
designed Retrofit Screw; (B) Original Dohle Extrusion Screw [12]. 

 
 

While improving the efficiency of material feeding, the aggressive screw 

extrusion process also yields negative side-effects on the fibers reinforced in the 

processed composite material. Hausnerova, et al. [37] showed that the high shear force 

yielded by the single screw rotation has a direct effect on degrading the geometry of the 

reinforced fibers. In addition, Aigner, et al. [38] studied the fiber breakage condition of a 
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glass fiber polymer composite using X-ray computed tomography. They found that the 

single screw extruder compounding and extrusion process led to a roughly 50% reduction 

in the maximum fiber length (e.g., reduces from ~2 mm to 1 mm) compared to the 

manufacturer’s specification sheet. Several studies investigated the degradation of fiber 

length for long fiber reinforced composites in injection molding applications, where the 

effects of different processing conditions of the screw extrusion (e.g., melting 

temperature [32], residence time [39], molding pressure [40]) are explored. Jin and Wang 

[41] and Phelps, et al. [42] presented theoretical formulas to predict the fiber length 

reduction of Long Fiber Thermoplastic (FLT) in a injection molding process. Results 

obtained by Phelps’ study showed a good agreement with corresponding experiments on 

glass-fiber/Polypropylene FLT molding. Bereaux, et al. [43] conducted numerical 

simulations that depicted the fiber breakage in a single screw extrusion process. In their 

study, the model sensitivity to different screw processing parameters, such as the material 

viscosity, barrel temperature, and screw geometry, were evaluated. Furthermore, prior 

literature stressed the importance of the geometries of fiber fillers on determining 

material properties of the polymer composite processed through the screw extrusion. 

Bayush, et al. [44] studied the fiber length distribution of a natural fiber reinforced 

polypropylene and concluded that maintaining the critical fiber length and minimizing 

the fiber breakage would enhance the mechanical and dynamic properties of the overall 

compound. In another study of natural fiber filled plastics, Gamon, et al. [45] pointed out 

the longer fibers would benefit the flexural strength of the extruded composite. Inoue, et 

al. [46] also emphasized the vital character of the fiber length in the mechanical 

properties of the mixed composite in their study of the effects of the screw design on the 
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fiber breakage and dispersion. Additionally, Hausnerova, et al. [37] proposed that the 

shear viscosity and die swell of filled polymers would decrease in high shear rates screw 

extrusion owing to the fiber length reduction and the polymer matrix degradation. With 

the above review, it is seen that the geometrical loss of reinforced fibers in the short fiber 

composites may also play a significant role in varying the material properties of LAAM-

extruded composite materials. 

 
2.2 Nozzle Extrusion 

 
 Simulations associated with the thermoplastic feedstock flow in the polymer 

deposition process have been carried out for decades, such as the thermal history in the 

extrusion liquefier [26] and the nozzle region [27]. In addition, a few studies focused on 

the deposition process, which includes the extrudate swell [19, 47], bead-bead 

interactions (i.e., inter-layer bonding [48], crystallization [49], and thermal residual 

stresses [50]). As mentioned above, fiber reinforced polymeric-based composites are 

largely employed for LAAM applications to improve the mechanical performances of 

end-use printed parts from LAAM processes [12, 25]. Unfortunately, once the second 

phase reinforcements are added into the thermoplastics, the melt flow behaviors during 

the deposition process become more complex as compared to those studied for virgin 

polymers [51]. It is important to note that the flow fields within the nozzle orifice induce 

the fiber fillers to orient to a certain alignment, which greatly determines the material 

properties of a deposited bead [19, 52]. On the other hand, the fiber reinforcement alters 

the rheological behaviors of the fluid flow, which in turn affects their own alignment [53, 

54]. In the rest of this section, we mainly focus on the melt extrusion process in the 

nozzle orifice, which is usually the very last component of the extrusion process before 
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the molten composite feedstock is extruded and deposited onto the substrate. At this 

stage, the material flow and the orientation of reinforced fibers interact with each other, 

and the resulting fiber alignment within the extrudate is a major factor in determining the 

mechanical properties of the deposited composite beads. Hereinafter, we explore the 

numerical simulations conducted in previous studies that focus on the fiber suspension 

flow in the extrusion nozzle and nearby extrudates.  

Fiber orientation analysis on the composite material flow for polymer deposition 

AM exhibits a notable increase as short fiber reinforced polymers continue to see 

increased applications in this technology. Nixon, et al. [52] investigated the fiber 

orientation pattern of the polymer composite feedstock in the nozzle of a commercial FFF 

printer using the Moldflow software. The fiber orientation is computed through the 

Folgar-Tucker model [23] implemented in Moldflow. They found that a convergent 

nozzle geometry resulting in a higher fiber reinforcement than a straight nozzle and a 

divergent nozzle. But Nixon did not include the effect of die swell at the nozzle exit in 

the computation of the fiber orientation. Heller, et al. [19, 30, 55] conducted the first few 

studies that assessed the impact of extrudate swell on fiber orientation in FFF-type 

additive manufacturing. Their work simulated the extrudate swell of a carbon fiber filled 

ABS in vertical extrusion [19] and planar deposition [30, 55] scenarios, assuming a 

Newtonian creeping flow for the molten ABS composite. The free surface location was 

identified by minimizing the normal stress over the free surface to a value near zero 

through an optimization formulation. The fiber orientation tensors were computed by the 

Folgar-Tucker model [22, 23]. They found that the die swell decreased the fiber 

alignment along the loading direction and reduced the axial tensile modulus of the 
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extruded composite material by 20% [19]. Russell, et al. [55] reported the Coefficient of 

Thermal Expansion (CTE) of the ABS composite material using the same flow model as 

proposed in Heller, et al [19] with the advanced Reduced Strain Closure (RSC) fiber 

orientation prediction model [56]. A parametric study on different parameters associated 

with the RSC model was conducted and the computed results were compared with their 

experimental data [55]. On the other hand, Lewicki, et al. [57] modeled the flow of an 8% 

vol. carbon fiber filled epoxy in the tip of a printed nozzle, where the fiber inclusions 

were characterized as individual particles and thus the fiber-fiber interaction and fiber-

wall interaction were carefully considered. However, due to the high computational cost 

of modeling every fiber, the fiber orientation of the flow is not calculated but assumed 

based on the flow velocity fields. 

 
2.3 Post-extrusion Die Swell 

 
Extrudate swell occurs not only in the LAAM polymer deposition process but 

many extrusion-based polymer processing applications as well. Heller, et al. [19] 

evaluated the extrudate swell of the LAAM process, where a Newtonian flow model was 

employed. While melt flow of thermoplastics is known to exhibit strongly non-

Newtonian behaviors, which have a direct impact on the die swell. Crochet, et al. [58] 

theoretically analyzed the die swell of an upper-convected Maxwell fluid based on the 

mixed finite element method for fluids with implicit constitutive equations. Luo and 

Tanner [59] applied the Streamline Finite Element Method (SFEM) to the die swell 

problem, which avoided the numerical instability in high Weissenberg number problems. 

Luo and Mitsoulis [60] extended the SFEM by adding in a particle-tracking scheme along 

the streamlines with a Picard iterative scheme. Béraudo, et al. [61] applied a finite-
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element-based method to investigate the extrudate swell of LLDPE and LDPE melts 

using a multi-mode Phan-Thien-Tanner (PTT) model. Their approach provided an 

accurate die swell prediction for die geometries of a 2D slit die and a 2D axisymmetric 

capillary die in low and intermediate shear conditions. Ganvir, et al. [62] applied an 

Arbitrary Lagrangian Eulerian (ALE) algorithm to calculate the extrudate free surface 

which enabled the die swell simulations to be performed in both steady state and transient 

problems. Alternatively, Limtrakarn, et al. [63] employed the Simplified Viscoelastic 

(SV) model implemented in ANSYS-Polyflow to predict die swell of a 3D circular die 

flow of LDPE. A good agreement between the numerical results and the experimental 

data was achieved. Clemeur, et al. [64] found that the SV model was a cost-effective 

approach for evaluating the flow-viscoelasticity as compared to conventional viscoelastic 

fluid flow models including the Oldroyd-B and the PTT models. 

The reviewed works appearing above primarily focused on virgin polymer 

systems mostly, where the effects of fiber reinforcements on the flow fields are ignored. 

As mentioned previously, the presence of fibers and their specific alignments contribute 

to the stress field of the flow (i.e., fully coupled formulation, see, e.g., Equation 3-28 in 

next chapter), which essentially may vary the behavior of the die swell of the melt. 

Papanastasiou and Alexandrou [65] and Rosenberg, et al. [66] investigated the die swell 

phenomenon of an open flow with a fully-coupled flow-fiber scheme, where the flow 

fields were solved through the Galerkin Finite Element Method (GFEM) and the fiber 

orientation equation was solved through flow streamlines with some type of numerical 

integration. While the Newtonian flow model is adopted in both of their works, the 
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quantification of the fiber effects on the free surface extrusion flow stresses the 

importance of the fully-couple formulation in open extrusion applications. 

 
2.4 Material Deposition 

 
Bellini [67] was one of the first few researchers to characterize the shape of a free 

extrudate for a Fused Deposition Modeling (FDM) process assuming a temperature-

dependent non-Newtonian power law viscous flow. Bellini simulated the vertical 

extrudate as well as an extruded and deposited bead using 2D planar models for ceramic 

materials. Recently, Heller, et al. [30] developed a 2D planar model to simulate the 

polymer flow deposition process for LAAM applications, where the planar swell of the 

bead during material deposition with respect to different deposition distance (i.e., 

distance between nozzle end to print-substrate) was investigated through the commercial 

software COMSOL (Burlington, MA, USA). The swelled shape of the free extrudate was 

captured by an optimization MATLAB (Natick, MA, USA) subroutine live-linked with 

the COMSOL simulation.  

It is important to note that designs of the to-be-printed structure and their 

associated printing paths contribute significantly to the mechanical performances of the 

end-use printed parts. Researchers attempted to optimize the material properties of 

printed parts from different perspectives including the interlayer bonding [68], 

crystallization [50], thermal history and residual stress layout [48], etc. Nevertheless, 

physical phenomena that occur after the first-layer bead-deposition are beyond the main 

scope of this dissertation and will be explored much beyond this point. Interested readers 

are referred to a few recent review papers such as Brenken, et al. [51]. 
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CHAPTER THREE 
 

Theoretical Basis 
 
 

 Generally, we explain the co-relations between the LAAM polymer deposition 

process and the fiber reinforced polymers feedstock through the following three steps: I) 

Modeling the flow fields of filled polymer melt in the nozzle region plus a short section 

of post extrudate. II) Solving the fiber orientation along the modelled flow domain with 

the achieved flow kinematics. III) Predicting the elastic constants of the post-extrudate of 

composite materials with an orientation homogenization method. This three-step 

analyzing procedure composes the weakly coupled analysis, which assumes that the flow 

fields induce the fiber orientation but are not affected by the presence of fibers. In 

contrast, the fully coupled formulation solves the flow fields and fiber orientation fields 

simultaneously. This chapter gives an overview of the basic theories associated with the 

proposed two solution schemes as follows. 

 
3.1 Governing Equations for Polymer Melt Flow  

 
One of the first key factors in the polymer composite deposition AM process is 

identifying the features of the flow fields of the filled-polymer melt flow as the molten 

feedstock extrudes through the nozzle and is then deposited onto a substrate. Because the 

flow kinematics around the nozzle orifice induce the reinforced fiber to re-orient, and the 

resulting fiber orientation pattern within the extruded composite greatly determines the 

material properties of solidified deposited beads [22]. Typically, the thermal gradient of 

the polymer composite melt in nozzle extrusion scenarios exhibits trivial variation [69]. 
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In other words, the polymer flow of nozzle extrusions can be regarded as an isothermal 

event. In addition, it is also typical (e.g., see [53, 70, 71]) to assume an incompressible, 

and highly viscous creeping flow (due to that most polymer melt flows exhibit low 

Reynolds numbers, i.e., ~10−5 [72]) for polymer processing of thermoplastics. 

Ultimately, the thermal effects, inertia effect, and the time transient effect are neglected 

for modelling the flow in a nozzle extrusion scenario for LAAM applications. Under 

these assumptions, the mass and momentum conservation equations of the flow field can 

be, respectively, written as [73] 

𝛻𝛻 ∙ 𝒗𝒗 = 0, (3-1) 

and the conservation of momentum as [73] 

𝛻𝛻 ∙ 𝝈𝝈 + 𝜌𝜌𝒇𝒇 = 0, (3-2) 

In the above, “𝛻𝛻 ∙” refers to the divergence operator, 𝑡𝑡 refers to the time. 𝜌𝜌 is the density 

of the fluid, 𝒇𝒇 is the body force vector, and 𝒗𝒗 and 𝝈𝝈 denote separately the velocity vector 

and the Cauchy stress tensor. Among them, the Cauchy stress tensor 𝝈𝝈 can be written as 

𝝈𝝈 = 𝝉𝝉 − 𝑃𝑃𝑰𝑰, (3-3) 

where 𝑃𝑃 is the pressure. 𝑰𝑰 is the identity tensor and 𝝉𝝉 is the stress tensor that relates to the 

shear deformation. For Newtonian viscous fluids, 𝝉𝝉 can be written as 

𝝉𝝉 = 2𝜂𝜂𝑫𝑫, (3-4) 

Here, 𝜂𝜂 is the viscosity of the fluid without considering the effects of the any fibers. In 

other words, the flow governing equations shown here are designated for the weakly 

coupled analysis of the fiber suspension flow applications. In addition, 𝑫𝑫 is the rate-of-

deformation tensor that equates the symmetric part of the velocity gradient tensor as 

𝑫𝑫 = (∇𝒗𝒗 + ∇𝒗𝒗𝑇𝑇)/2, (3-5) 
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where “𝑇𝑇” denotes to the matrix transpose operator. In addition, it is also worth noting 

that the skew-symmetric part of the gradient field forms the vorticity tensor 𝑾𝑾 such that 

𝑾𝑾 = (∇𝒗𝒗 − ∇𝒗𝒗𝑇𝑇)/2, (3-6) 

 
3.1.1 Rheological Models for Molten Polymer  
 
 A specific perspective in modeling the polymer melt flow is to properly define the 

material rheological properties of the fluid flow, which is especially important for molten 

thermoplastics, that exhibit intense non-Newtonian behaviors [73]. Therefore, we review 

several of the most widely used rheological models that characterize the flow behaviors 

of polymer melts in the following.  

The Newtonian fluid model is the most simply form of a rheological model that 

describes the viscosity of a fluid as a constant such that [73] 

𝜂𝜂 = 𝜂𝜂𝑜𝑜, (3-7) 

where 𝜂𝜂𝑜𝑜 is often referred to as the Newtonian viscosity or zero-shear-rate viscosity. 

While the Newtonian model has been seen in the preceding literature for LAAM melt 

flow modeling [19, 55], most thermoplastics exhibit shear-rate-dependent viscosity under 

semi-molten conditions. Moreover, feedstock used in LAAM polymer deposition often 

exhibits the shear thinning behavior, such that the shear viscosity of the melt reduces with 

increased shear rate [73], which can be captured by a few Generalized Newtonian Fluid 

(GNF) models. The Power law model is a widely-used GNF model that experiences 

extensive applications in polymer processes. The equation of the Power law model can be 

written as [73] 

𝜂𝜂 = 𝐾𝐾(𝜆𝜆𝑐𝑐𝛾̇𝛾)𝑛𝑛−1, (3-8) 
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where 𝛾̇𝛾 is the shear rate, 𝜆𝜆𝑐𝑐 is the natural time (equates the reciprocal of a reference shear 

rate [74]), 𝐾𝐾 is the consistency index, and 𝑛𝑛 is the power-law index. The Power law 

model is able to depict the viscous behaviors of polymer materials with shear rates over a 

few decades (the interval of such shear rate is also called the power-law region). 

However, the Power law model fails to represent the Newtonian viscosity at low shear 

rate, which can be characterized by some other models, such as the Carreau-Yasuda 

model or cross law model. In detail, the Carreau-Yasuda model can be written as [73] 

𝜂𝜂 = 𝜂𝜂∞ + (𝜂𝜂𝑜𝑜 − 𝜂𝜂∞)�1 + (𝜆𝜆𝑐𝑐𝛾̇𝛾)𝑎𝑎𝑐𝑐�
𝑛𝑛−1
𝑎𝑎𝑐𝑐  , (3-9) 

Here, 𝜂𝜂∞ refers to the infinite-shear-rate viscosity and 𝑎𝑎𝑐𝑐 is the transition index that 

controls the viscosity transfers from the Newtonian plateau to the power-law region. In 

addition, the Cross law model can be written as [73] 

𝜂𝜂 = 𝜂𝜂𝑜𝑜
1+(𝜆𝜆𝑐𝑐𝛾̇𝛾)𝑚𝑚, (3-10) 

where 𝑚𝑚 denotes the Cross law index. The Cross law is also capable of capturing the 

transition between the Newtonian plateau and the power-law region, while the curvature 

of the viscosity curve in the vicinity of the transition depicted by the cross law model is 

different from  that yielded by applying the Carreau-Yasuda model. The differences of 

applying the above GNF models can be seen from an example of numerical fitted data 

obtained by applying the above models appearing in Figure 3-1. Other GNF models such 

as the Bingham law model and the Herschel-Bulkley law are not given explicitly in the 

thesis as these models are more suitable for concrete and mud rather than the polymer 

materials. More information for the GNF models can be found in [72, 73].Note that the 

shear viscosity property of a polymeric fluid is sensitive to thermal effects, such that, for 

example, the consistency index 𝐾𝐾 will vary due to a thermal gradient. However, as an 
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isothermal assumption is made at the beginning of this section, we do not include the 

thermal effects on the GNF models and readers of interest are referred to [72, 73] for 

further information. 

 

 
Figure 3-1. Fitting the shear viscosity data of neat ABS polymer measured at 210 ℃ with 
different GNF models. Note, the Cox-Merz rule is applied to transfer the complex 
viscosity data measured from the rotational rheometer to the shear viscosity. 

 
 

3.2 Governing Equations for Fiber Orientation Kinetics 
 

Flow-induced fiber orientation is a key element connecting the processing 

condition of a polymer processing approach and the material performances of a processed 

composite material. In general, the dynamic kinetics of particle orientation are considered 

as a result of the flow fields of the underlying suspension. The direction of a single rigid 

fiber within a polymer matrix is commonly described by a unit vector 𝒑𝒑(𝜑𝜑,𝜙𝜙), as shown 

in Figure 3-2, with coordinates [22, 47] 

𝒑𝒑(𝜑𝜑,𝜙𝜙) = �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�, (3-11) 
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Figure 3-2. Coordinates of the Vector 𝒑𝒑(𝜑𝜑,𝜙𝜙) Defining by the Angles 𝜑𝜑 and 𝜙𝜙. 

 
 
3.2.1 Jeffery’s Theory 
 

Numerous common fiber orientation analysis theories are evolved out of the 

foundational work of Jeffery back to the early 1920’s, in which Jeffery first evaluated the 

fiber orientation of a single ellipsoidal particle in an incompressible simple shear viscous 

flow as [75] 

𝐷𝐷𝒑𝒑
𝐷𝐷𝐷𝐷

= 𝒑̇𝒑 = 𝑾𝑾 ∙ 𝒑𝒑 + 𝜆𝜆𝑎𝑎𝑟𝑟(𝑫𝑫 ∙ 𝒑𝒑 − 𝑫𝑫:𝒑𝒑𝒑𝒑𝒑𝒑), (3-12) 

Here, 𝒑̇𝒑 is defined as the time derivative of the hydraulic component of rotational motion 

of the ellipsoid, and t refers the time. 𝑾𝑾 and 𝑫𝑫 are the vorticity and rate-of-deformation 

tensors which are written as a function of the velocity gradient fields of the flow. In 

addition, the fiber geometric factor λ𝑎𝑎𝑟𝑟 depends on the fiber geometry such that  

λ𝑎𝑎𝑟𝑟 = (𝑎𝑎𝑟𝑟2 − 1)/(𝑎𝑎𝑟𝑟2 + 1), (3-13) 

and 𝑎𝑎𝑟𝑟 refers to the aspect ratio of an ellipsoidal fiber. Jeffery’s equation proposed that an 

ellipsoid will experience periodic motion in a shearing flow [75]. When Jeffery’s 

equation is applied to characterizing the fiber suspension kinematics, fiber-fiber and 

fiber-boundary interactions are neglected. 
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3.2.2 Folgar-Tucker Model 
 

Folgar and Tucker extended Jeffery’s theory to evaluate the orientation of 

multiple fibers using a fiber orientation probability density function 𝜓𝜓(𝒑𝒑) which 

quantifies the rate of change in 𝜓𝜓(𝒑𝒑) as [23] 

𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

= −𝛻𝛻𝒑𝒑 ∙ �𝜓𝜓(𝒑𝒑) �𝐷𝐷𝒑𝒑
𝐷𝐷𝐷𝐷
� − 𝐷𝐷𝑟𝑟𝛻𝛻𝒑𝒑𝜓𝜓(𝒑𝒑)�, (3-14) 

Here, 𝐷𝐷𝑟𝑟 refers to the rotary diffusion term that captures the fiber-fiber interaction effects 

depending upon the suspended flow kinematics. Folgar and Tucker [23] defined 𝐷𝐷𝑟𝑟 =

𝐶𝐶𝐼𝐼𝛾̇𝛾, where 𝛾̇𝛾 is the scalar magnitude of the rate-of-deformation tensor 𝑫𝑫 and 𝐶𝐶𝐼𝐼 is the 

empirically fitted coefficient that characterizes the intensity of fiber-fiber interaction. 

Unfortunately, the proposed theory as casted by Folgar and Tucker is computationally 

prohibitive for flow problems such as those in LAAM polymer depositions [19]. Thus, a 

more efficient method is in demand for our proposed research. 

 
3.2.3 Advani-Tucker Tensor Approach 
 

Advani and Tucker re-casted the Folgar-Tucker model and proposed a fiber 

orientation evaluation equation based on moment tensors of 𝜓𝜓(𝒑𝒑) to efficiently describe 

the statistical orientation behaviors in concentrated fiber suspensions as [22] 

𝐷𝐷𝑨𝑨
𝐷𝐷𝐷𝐷

= (𝑨𝑨 ∙ 𝑾𝑾−𝑾𝑾 ∙ 𝑨𝑨) + 𝜆𝜆𝑎𝑎𝑟𝑟(𝑫𝑫 ∙ 𝑨𝑨 + 𝑨𝑨 ∙ 𝑫𝑫 − 2𝔸𝔸:𝑫𝑫) + 𝐶𝐶𝐼𝐼𝛾̇𝛾(2𝑰𝑰 − 6𝑨𝑨), (3-15) 

where 

𝑨𝑨 = ∮ 𝒑𝒑𝒑𝒑𝜓𝜓(𝒑𝒑)𝑑𝑑𝒑𝒑𝕊𝕊  and 𝔸𝔸 = ∮ 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝜓𝜓(𝒑𝒑)𝑑𝑑𝒑𝒑𝕊𝕊 , (3-16) 

are the second and fourth order orientation tensors. The term 𝐶𝐶𝐼𝐼𝛾̇𝛾(2𝑰𝑰 − 6𝑨𝑨) refers to the 

Isotropic Rotary Diffusion (IRD) term that is first proposed in [23]. This method enables 
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an efficient computation for concentrated fiber suspensions such as the fiber-filled 

polymers that are commonly applied in LAAM fabrications [19].  

 
3.2.4 Reduced Strain Closure Model 
 
 More recently, experimental works revealed that the fiber orientation kinetics 

evolved in a slower rate as compared to predictions yielded by the Folgar-Tucker model. 

Wang, et al. provided the Reduced Strain Closure (RSC) model based on the IRD model 

of Folgar and Tucker, which is able to count the experimentally observed slow-kinetics of 

fiber orientation in shear flow applications, such that [56] 

𝐷𝐷𝑨𝑨
𝐷𝐷𝑡𝑡

= (𝑨𝑨 ∙ 𝑾𝑾−𝑾𝑾 ∙ 𝑨𝑨) + 𝜆𝜆𝑎𝑎𝑟𝑟(𝑫𝑫 ∙ 𝑨𝑨 + 𝑨𝑨 ∙ 𝑫𝑫 − 2ℝ:𝑫𝑫) + 𝜅𝜅𝐶𝐶𝐼𝐼𝛾̇𝛾(2𝑰𝑰 − 6𝑨𝑨), (3-17) 

and  

ℝ = [𝔸𝔸 + (1 − 𝜅𝜅)(𝕃𝕃 −𝕄𝕄:𝔸𝔸)], (3-18) 

where 𝕃𝕃 = 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ 𝜆𝜆𝑚𝑚𝑛𝑛𝑖𝑖𝑚𝑚𝑛𝑛𝑗𝑗𝑚𝑚𝑛𝑛𝑘𝑘𝑚𝑚𝑛𝑛𝑙𝑙𝑚𝑚3
𝑚𝑚=1 , 𝕄𝕄 = 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ 𝑛𝑛𝑖𝑖𝑚𝑚𝑛𝑛𝑗𝑗𝑚𝑚𝑛𝑛𝑘𝑘𝑚𝑚𝑛𝑛𝑙𝑙𝑚𝑚3

𝑚𝑚=1 , and 𝜆𝜆𝑚𝑚 

refers to the m-th eigenvalue of 𝑨𝑨, and 𝑛𝑛𝑖𝑖𝑚𝑚 is the i-th component of the m-th eigenvector 

associated with second order orientation tensor. In the above, 𝜅𝜅 serves as a strain 

reduction factor limiting the growth rate of fiber alignment, by which the growth rates of 

eigenvalues of the second-order orientation tensors are reduced while the rotation rate of 

the eigenvectors remains unchanged. Note, 𝜅𝜅 is a scalar between zero and one. 

 
3.2.5 Anisotropic Rotary Diffusion Models  
 
 Regarding to the un-satisfied matching between the experimental orientation 

measurements and existing orientation models (e.g., Advani-Tucker tensor approach with 

Folgar-Tucker IRD model [22], RSC model[56]) for polymer materials reinforced with 
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long discontinuous fibers, Phelps and Tucker proposed an Anisotropic Rotary Diffusion 

(ARD) model as [76] 

𝐷𝐷𝑨𝑨
𝐷𝐷𝐷𝐷

= (𝑨𝑨 ∙ 𝑾𝑾−𝑾𝑾 ∙ 𝑨𝑨) + 𝜆𝜆𝑎𝑎𝑟𝑟(𝑫𝑫 ∙ 𝑨𝑨 + 𝑨𝑨 ∙ 𝑫𝑫 − 2𝔸𝔸:𝑫𝑫) + 𝐷𝐷𝑟𝑟𝐴𝐴𝐴𝐴𝐴𝐴, (3-19) 

and 

𝐷𝐷𝑟𝑟𝐴𝐴𝐴𝐴𝐴𝐴 = 𝛾̇𝛾(2𝑪𝑪 − 2[𝑡𝑡𝑡𝑡(𝑪𝑪)]𝑨𝑨− 5(𝑫𝑫 ∙ 𝑪𝑪 + 𝑪𝑪 ∙ 𝑫𝑫) + 10𝔸𝔸:C), (3-20) 

where 𝑪𝑪 is a rotary diffusion tensor that controls the spatial directionality of any diffusive 

flux. Every objective ARD model is dependent on the choice of 𝑪𝑪. Specifically, Phelps 

and Tucker proposed the format of 𝑪𝑪 as [76] 

𝑪𝑪 = 𝑏𝑏1𝑰𝑰 + 𝑏𝑏2𝑨𝑨 + 𝑏𝑏3𝑨𝑨2 + 𝑏𝑏4
𝛾̇𝛾
𝑫𝑫 + 𝑏𝑏5

(𝛾̇𝛾)2̇
𝑫𝑫2, (3-21) 

Here, 𝑏𝑏𝑖𝑖 are five constant coefficients that are fitted based on a desired steady-state 

orientation in simple shear flow [76, 77]. In addition, different forms of the 𝑪𝑪 tensor are 

presented by Tseng, et al. [78, 79], and Bakharev, et al. [80], and Wang, et al. [80]. These 

advanced ARD models improve the robustness of the ARD-type orientation model [80]. 

 
3.3 Fully Coupled Fiber Suspension Theory 

 
The computationally efficient weakly coupled flow-induced fiber orientation 

analysis experiences widespread implementations in polymer processing studies (e.g., 

[19, 70, 71]), where the effect of the fiber presence is ignored in the flow computation 

and the fiber orientation within the fiber suspension is then determined by the uncoupled 

flow fields. This approach has been proved in shear dominant narrow gap flows 

applications such as injection and compression modelling processes [70, 71]. In contrast, 

Evans, et al. [81] and Lipscomb, et al. [82] considered a fully coupled approach where 

the motion of suspended fibers depends on the flow field, and the fiber orientation 
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influences flow kinematics, typically through the suspension melt viscosity. In particular, 

the traction of the surface of the reinforced fiber is counted to evaluate the particle 

contribution of the stress field of the overall suspension flow, in an averaged sense, such 

that [83] 

𝝉𝝉 = 2𝜂𝜂𝑫𝑫 + 2𝜂𝜂𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓[𝑎𝑎𝑫𝑫:𝔸𝔸 + 𝑏𝑏(𝑫𝑫 ∙ 𝑨𝑨 + 𝑨𝑨 ∙ 𝑫𝑫) + 𝑐𝑐𝑫𝑫 + 𝑓𝑓𝑨𝑨𝐷𝐷𝑟𝑟], (3-22) 

where 𝝉𝝉 refers the stress tensor, 𝜂𝜂 denotes the viscosity of the solvent. In the above 

equation, 𝑨𝑨 and 𝔸𝔸 are the second and fourth order fiber orientation tensors appearing in 

Equation 3-16, respectively, and 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 refers to the volume fraction of the filler. 𝐷𝐷𝑟𝑟 is the 

rotary diffusion due to Brownian motion, and 𝑎𝑎, b, c and f are the four geometrical shape 

factors associated with the fiber fillers. Lipscomb, et al. [82] proposed an expression for 

the materials constants 𝑎𝑎, b, c and f, such that  

𝑎𝑎 = 𝑎𝑎𝑟𝑟/{2[ln(2𝑎𝑎𝑟𝑟) − 1.5]}, (3-23) 

and 

𝑏𝑏 = 6 ln(2𝑎𝑎𝑟𝑟) − 11 /(𝑎𝑎𝑟𝑟)2, (3-24) 

and 

𝑐𝑐 = 2, (3-25) 

and 

𝑓𝑓 = 3(𝑎𝑎𝑟𝑟)2/[ln(2𝑎𝑎𝑟𝑟) − 0.5], (3-26) 

The above equations yield an error of ~15% at 𝑎𝑎𝑟𝑟 = 10 and less than 1% for 𝑎𝑎𝑟𝑟 = 50, as 

compared with the corresponding experimental measurements [83]. 

Dinh and Armstrong [84] proposed a constitutive equation based on the slender-

body theory, which ultimately yields a similar format as appearing Equation 3-22, except 

that the expression for the shape factors varies. As slender-body theory assumes trivial 
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particle thickness which leads the constants b and c being equal to zero. In addition, the 

Brownian motion of relatively large particles (e.g., size of fillers in typical short fiber 

filled thermoplastics) is negligible and thus the constant f and its associated term can also 

be ignored. Eventually, we can recast Equation 3-22 as 

𝝉𝝉 = 2𝜂𝜂𝑫𝑫 + 2𝜂𝜂𝑁𝑁𝑝𝑝𝑫𝑫:𝔸𝔸, (3-27) 

where 𝑁𝑁𝑝𝑝 stands for the particle number that describe the intensity of the fiber effect on 

viscosity, which can be evaluated by 

𝑁𝑁𝑝𝑝 = 𝑎𝑎𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, (3-28) 

and 

𝑎𝑎 = (𝑎𝑎𝑟𝑟)2

3 ln�
2ℎ𝑓𝑓
𝐷𝐷𝑓𝑓

�
, (3-29) 

where 𝐷𝐷𝑓𝑓 is the diameter of a fiber and ℎ𝑓𝑓 refers to a characteristic distance between a 

fiber and its nearest neighbors, which can be expressed as 

2ℎ𝑓𝑓/𝐷𝐷𝑓𝑓 = �𝜋𝜋/𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, for aligned fibers (3-30) 

and 

2ℎ𝑓𝑓/𝐷𝐷𝑓𝑓 = 𝜋𝜋/(2𝑣𝑣𝑓𝑓𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟), for random fibers (3-31) 

Notice that ℎ𝑓𝑓 is a factor depending on the fiber volume fraction, and thus the 

contribution of the fiber filler to the stress field is no longer proportional to the volume 

fraction as appearing in Equation 3-22 [83]. A significant benefit of applying the slender-

body theory is that the hydrodynamic interactions between reinforced fibers can be 

incorporated, in an averaged sense, so that estimations beyond the dilute regime can be 

considered [83]. This is pivotal in the analysis of the polymer composites of interest for 

LAAM applications, where most filled polymers involved are beyond the dilute regime. 
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We note that, in the case of non-Newtonian fluid flow models applied, the 

computation of the viscosity as well as the stress field will become more complex. To our 

best knowledge, flow-fiber coupling effect has been quantified in a Newtonian fluid flow 

(e.g., [53, 85]), while that of the viscoelastic fluid has not been seen. This is an interesting 

yet challenging field for researchers to explore. 

 
3.4 Orientation Homogenization Approach 

 
It is important to quantify the effect of suspended fibers and fiber orientation on 

elastic properties within the extruded bead of the LAAM process. The development of 

micromechanics models provides analytical approximations for the stiffness tensor 

components of a unidirectional aligned fiber reinforced polymer (see e.g., [20,39-41]). 

These unidirectional models serve as a basis for orientation homogenization methods (see 

e.g., Advani and Tucker [19] and Jack and Smith [21]) that yield orientation averaged 

elastic properties for a short fiber polymer composite. The local orientation average 

stiffness tensor 𝐶̃𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 may be written as [19] 

𝐶̃𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑀𝑀1𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑀𝑀2�𝐴𝐴𝑖𝑖𝑗𝑗𝛿𝛿𝑘𝑘𝑘𝑘 + 𝐴𝐴𝑘𝑘𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖� + 𝑀𝑀3�𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝐴𝐴𝑗𝑗𝑗𝑗𝛿𝛿𝑖𝑖𝑖𝑖 +

𝐴𝐴𝑗𝑗𝑗𝑗𝛿𝛿𝑖𝑖𝑖𝑖� + 𝑀𝑀4𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑘𝑘𝑘𝑘 + 𝑀𝑀5�𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗�, 
(3-32) 

where material constants 𝑀𝑀𝐼𝐼, I = 1,…,5 are computed from 

𝑀𝑀𝐼𝐼 =

⎩
⎪
⎨

⎪
⎧
𝐶𝐶11 + 𝐶𝐶22 − 2𝐶𝐶12 − 4𝐶𝐶66, for 𝐼𝐼 = 1
𝐶𝐶12 − 𝐶𝐶23,                             for 𝐼𝐼 = 2
𝐶𝐶66 + (𝐶𝐶23 − 𝐶𝐶22)/2,         for 𝐼𝐼 = 3
𝐶𝐶23,                                         for 𝐼𝐼 = 4
(𝐶𝐶22 − 𝐶𝐶23)/2,                     for 𝐼𝐼 = 5⎭

⎪
⎬

⎪
⎫

, (3-33) 

In the above, δ𝑖𝑖𝑖𝑖 is the Kronecker delta [42], and the A𝒊𝒊𝑗𝑗 are orientation tensor 

components solved previously. It is common to compute the A𝒊𝒊𝑗𝑗𝑗𝑗𝑗𝑗 through some type of 
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closure approximation (e.g., [86]). The 𝐶𝐶𝑖𝑖𝑖𝑖 appearing in Equation 3-33 are components of 

the stiffness tensor for the associated unidirectional fiber filled composite written in 

contracted notation, which we compute using the Tandon-Weng micromechanics model 

[87] (cf. Appendix A for the Tandon-Weng equation [87]). It is shown by Tucker and 

Liang [88], as well as other researchers (e.g., [89]), that the Tandon-Weng equation 

yields one of the most accurate estimates for elastic properties over the range of fiber 

aspect ratios found in the short fiber composites.   
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CHAPTER FOUR 
 

Effects of Polymer Rheology Modeling on Melt Extrusion 
 
 

This chapter has been published as part of the citation [47]: Wang, Zhaogui, and Douglas 
Smith. "Rheology effects on predicted fiber orientation and elastic properties in large 
scale polymer composite additive manufacturing." Journal of Composites Science 2.1 

(2018): 10.  
 
 

 Rheological properties of the polymeric melt greatly determine the flow field of 

the molten composite feedstock in LAAM extrusion and deposition, which ultimately 

affect the fiber alignment within the solidified extrudate. In addition, the extrudate swell 

of the melt determined by the polymer rheology also contributes to the resolution of a 

printed structure, especially in the manufacturing of large parts. This chapter considers 

the effect that various rheological fluid models have on the melt flow extrudate swell, 

kinematics and resulting flow-induced fiber orientation state. The material models 

considered in this section are virgin ABS polymer and 13% CF-ABS, supplied by 

PolyOne Corporation (Avon Lake, OH, USA). 

 
4.1 Flow Domain Modeling 

 
The geometry of the flow domain in our study is based on the large-scale AM 

Strangpresse Model-19 single screw extruder nozzle appearing in Figure 4-1. In addition 

to the nozzle orifice, we include an 1-inch section of free extrudate beyond the nozzle 

exit in the simulation to capture die swell. The length of the free extrudate is much higher 

than that of the deposition distance (i.e., distance between nozzle tip and substrate), and 

thus this length of free extrudate guarantees the flow reaches near steady state. Due to the 
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axisymmetry of the nozzle geometry and assumed flow, we simplify the flow domain to a 

2D axisymmetric model, which saves significant computational expense. Furthermore, 

our axisymmetric assumption ignores any swirling motion in the flow that may result 

from the extruder screw. Since only a short section of the free extrudate material is 

considered, gravitational effects are ignored, which results in the body force 𝒇𝒇 in 

Equation 3-2 being zero as well. 

The boundary conditions of the flow domain appear in Figure 4-2, in which 

• 𝚪𝚪𝟏𝟏: Flow domain inlet, where the prescribed volumetric flow rate Q is specified. 

Also, a fully developed velocity profile is computed and imposed at the inlet by 

ANSYS-Polyflow based on Q and the selected rheology model. 

• 𝚪𝚪𝟐𝟐 and 𝚪𝚪𝟒𝟒: No slip wall boundary, where 𝑣𝑣𝑠𝑠 = 𝑣𝑣𝑛𝑛 = 0. 

• 𝚪𝚪𝟑𝟑: Axis of symmetry, where 𝐹𝐹𝑠𝑠 = 𝑣𝑣𝑛𝑛 = 0. 

• 𝚪𝚪𝟓𝟓: Free surface, where 𝐯𝐯 ∙ 𝒏𝒏��⃑ = 0. 

• 𝚪𝚪𝟔𝟔: Flow domain exit, where 𝐹𝐹𝑛𝑛 = 𝑣𝑣𝑠𝑠 = 0. 

In the above, 𝐹𝐹𝑠𝑠 is the tangential force, 𝐹𝐹𝑛𝑛 is the normal force, 𝑣𝑣𝑠𝑠 is the tangential 

velocity, 𝑣𝑣𝑛𝑛 is the normal velocity, 𝒗𝒗 is the velocity vector at the free surface, and 𝒏𝒏��⃑  is a 

unit vector normal to the free surface [21]. The die swell of the free surface is computed 

using the methods of spines in ANSYS-Polyflow, which is an efficient remeshing rule 

often applied to 2D free surface problem [74].  
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Figure 4-1. Geometric Dimensions of a Strangpresse Model-19 Extruder Nozzle. 

 
 

 
Figure 4-2. Mesh and boundary condition of the flow domain. Note, the flow domain is 
shifted 90° as compared to the layout appearing in Figure 4-1. 
 
 
4.1.1 Flow Kinematics Computation 
 

For the numerical study presented in this chapter, a weakly coupled scheme is 

adapted in characterizing the melt flow and the associated flow-induced fiber orientation 

in the fiber reinforced composite such that the flow fields are solved first neglecting the 

effects of fiber alignment within the melt flow and then the fiber orientation state is 

computed based on the resulting flow kinematics. We use ANSYS-Polyflow [24] to 

evaluate the flow kinematics in the polymer melt flow domain based on conservation of 

momentum and conservation of mass as appearing in Equations 3-1 and 3-2, where an 

isothermal and incompressible Stokes flow is assumed to represent the melt flow. Note 

that the simplified flow solutions neglect thermal effects, time-dependent effects and 
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inertia effects that are usually considered as trivial contributors in related simulations [19, 

55, 69]. Specifically, non-isothermal effects such as temperature gradients within the free 

extrudate or viscous heating in the melt flow may result in nonuniform melt rheology. 

These effects are commonly captured through temperature dependent properties such as 

K in the power law model (c.f. Equation 3-8), which is often addressed with an 

Arrhenius-type temperature dependency (e.g., the Williams–Landel–Ferry equation) [73]. 

Consequently, the isothermal assumption employed here may yield some inaccuracy in 

the predicted numerical data. However, it is expected, as suggested by others (e.g., [19, 

55, 69]), that any temperature-related variation in the rheology properties would be small 

and not have a significant effect on the results presented below.  

 
4.1.2 Viscoelastic Fluid Model 
 

Flow rheological phenomena exhibited by polymeric fluid flows beyond the range 

of validity of the Newtonian or GNF models. Among these are the presence of intense 

normal stresses in viscometric flows, high resistance to extensional deformation, and the 

memory effects related to the elastic component of the fluid. Viscoelastic fluid models 

are designed for characterizing the complex rheology of these non-Newtonian fluids such 

as the molten polymer flows.  

The constitutive equation of the shear stress tensor 𝝉𝝉 for viscoelastic fluids is 

different as compared to a purely viscous fluid (cf. Equation 3-4) 

𝝉𝝉 = 𝝉𝝉𝟏𝟏 + 𝝉𝝉𝟐𝟐, (4-1) 

and the viscosity of the viscoelastic polymeric fluids can be written as 

𝜂𝜂 = 𝜂𝜂1 + 𝜂𝜂2, (4-2) 
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In the above, 𝝉𝝉𝟏𝟏 and 𝜂𝜂1 correspond to the viscous component of the fluid, and 𝝉𝝉𝟐𝟐 and 𝜂𝜂2 

are the contributions from the non-viscous component of the viscoelastic fluid [73].  

 The linear Maxwell model is one of the simplest viscoelastic fluid models, which 

can be written as [73]  

𝝉𝝉𝟐𝟐 + 𝜆𝜆𝑟𝑟 𝐷𝐷𝝉𝝉𝟐𝟐
𝐷𝐷𝐷𝐷

= 2𝜂𝜂2𝑫𝑫, (4-3) 

where 𝜆𝜆𝑟𝑟 refers to the relaxation time of the fluid. In the Maxwell model, the viscous 

parts of 𝝉𝝉 equates zero.  

 Furthermore, nonlinear forms of the viscoelastic fluid model may be more capable 

for advanced characterizations. Among those the Oldroyd-B model is one of the simplest 

which can be written as [73]  

𝝉𝝉𝟐𝟐 + 𝜆𝜆𝑟𝑟 �𝐷𝐷𝝉𝝉𝟐𝟐
𝐷𝐷𝐷𝐷

+ 𝝉𝝉𝟐𝟐�� = 2𝜂𝜂2𝑫𝑫, (4-4) 

and the viscous parts of 𝝉𝝉 and 𝜂𝜂 are evaluated in a regular manner as introduced above. 

𝝉𝝉𝟐𝟐� appearing in Equation 4-4 is known as the upper convective derivative operator which 

can be written as 

𝝉𝝉𝟐𝟐� = (𝒗𝒗 ⋅ ∇)𝝉𝝉𝟐𝟐 − (∇𝒗𝒗)𝝉𝝉𝟐𝟐 − 𝝉𝝉𝟐𝟐(∇𝒗𝒗)𝑇𝑇, (4-5) 

The Oldroyd-B Model behaves better than the Maxwell model, especially for the 

simulation of the polymer melt exhibiting very high elongational viscosity. However, the 

Oldroyd-B Model describes the stress field of the fluid with a linear constitutive equation 

which is not often the case for polymeric materials.  

The limitation of the Oldroyd-B model motivates further derivations for the more 

advanced Giesekus model, which can be written as [73] 

(𝑰𝑰 + 𝛼𝛼𝐺𝐺𝜆𝜆𝑟𝑟

𝜂𝜂2
𝝉𝝉𝟐𝟐) ⋅ 𝝉𝝉𝟐𝟐 + 𝜆𝜆𝑟𝑟𝝉𝝉𝟐𝟐� = 2𝜂𝜂2𝑫𝑫, (4-6) 
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where 𝛼𝛼𝐺𝐺  is a material constant and a non-zero value of 𝛼𝛼𝐺𝐺  yields a bounded steady 

elongational viscosity and a shear-rate dependent shear viscosity. The Giesekus model is 

one of the most realistic differential viscoelastic models that yields rheological behaviors 

of shear thinning and non-quadratic first normal-stress difference at high shear rates.  

 In addition, the widely-used Phan-Thien-Tanner (PTT) model exhibits similar 

rheological features as the Giesekus model did, which can be written as [73] 

𝑒𝑒�
𝜀𝜀𝑃𝑃𝑃𝑃𝜆𝜆

𝑟𝑟

𝜂𝜂2
𝑡𝑡𝑡𝑡(𝝉𝝉𝟐𝟐)�𝝉𝝉𝟐𝟐 + 𝜆𝜆𝑟𝑟[�1 − 𝜉𝜉𝑃𝑃𝑃𝑃

2
� 𝝉𝝉𝟐𝟐� + 𝜉𝜉𝑃𝑃𝑃𝑃

2
𝝉𝝉𝟐𝟐�] = 2𝜂𝜂2𝑫𝑫, (4-7) 

and 𝝉𝝉𝟐𝟐� is the lower convective derivative operator as 

𝝉𝝉𝟐𝟐� = (𝒗𝒗 ⋅ ∇)𝝉𝝉𝟐𝟐 + (∇𝒗𝒗)𝑇𝑇𝝉𝝉𝟐𝟐 + (∇𝒗𝒗), (4-8) 

Note, Equation 4-7 is also referred as the exponential form of the PTT model. In the 

above, 𝜀𝜀𝑃𝑃𝑃𝑃 and 𝜉𝜉𝑃𝑃𝑃𝑃 are two material constants that are used to separately control the shear 

and elongational behaviors. Particularly, a non-zero value of 𝜀𝜀𝑃𝑃𝑃𝑃 leads to a bounded 

steady elongational viscosity. It is important to note that the viscoelastic fluid models 

introduced above can have single relaxation time or multiple relaxation time constants in 

which case the non-viscous stress tensor 𝝉𝝉𝟐𝟐 represents the sum of all viscoelastic 

contributions from sub-modes at each of the relaxation times [73, 74].  

Herein, the advanced PTT model is employed in the flow rheology modeling. 

Nevertheless, viscoelastic models are not limited to the discussed examples. An 

exhausted review on the viscoelastic fluid rheology models can be found in [90] and will 

not be included in the dissertation for conciseness. 

Alternatively, ANSYS-Polyflow includes the Simplified Viscoelastic (SV) model 

that reduces computational expense when predicting die swell in viscoelastic flows. In 

the SV formulation, it is understood that extrudate swell in polymer extrusion is 
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associated with the first normal stress difference in the fluid. Hence, the SV model 

extends the Generalized Newtonian Fluid (GNF) model, where the total stress tensor is 

given as [74] 

𝝉𝝉𝟐𝟐 = �
𝛹𝛹𝑠𝑠𝜇𝜇(𝜒̇𝜒)𝜒̇𝜒 𝜂𝜂(𝛾̇𝛾)𝛾̇𝛾 0
𝜂𝜂(𝛾̇𝛾)𝛾̇𝛾 0 0

0 0 0
�, (4-9) 

where the off-diagonal terms given as 𝜂𝜂(𝛾̇𝛾)𝛾̇𝛾 are the shear stress components. In this 

form, 𝜂𝜂(𝛾̇𝛾) is expressed by a typical generalized Newtonian model, and 𝛾̇𝛾 is the 

magnitude of the strain rate tensor 𝑫𝑫. In the above, 𝛹𝛹𝑠𝑠𝜇𝜇(𝜒̇𝜒)𝜒̇𝜒 represents the first normal 

stress component, in which 𝜇𝜇(𝜒̇𝜒) is described in a similar fashion as is done for the shear 

strain rate. In Equation 4-9, 𝜒̇𝜒 is the specialized viscoelastic variable, which is evaluated 

with the transport equation 

𝜃𝜃𝑠𝑠(𝛾̇𝛾) 𝐷𝐷𝜒̇𝜒
𝐷𝐷𝐷𝐷

+ 𝜒̇𝜒 = 𝛾̇𝛾, (4-10) 

where 𝜃𝜃𝑠𝑠(𝛾̇𝛾) is the relaxation time of the melt which controls the development of the 

extrudate swell diameter once the melt flow exits the nozzle. In addition, 𝛹𝛹𝑠𝑠 appearing in 

Equation 4-9 is an artificial weighting factor, which controls the swelling enhancement 

versus the input flow rate [74].  

 
4.2 Material Rheology 

 
 To obtain data needed for the melt rheology models considered here, we conduct 

the rheometry characterization of our filled and unfilled ABS through a HAAKE MARS 

40 rheometer (Thermo Fisher Scientific, Waltham, MA, USA), where the complex shear 

viscosity and the dynamic shear moduli of the molten material are obtained. The 

measured data are fitted with both purely viscous and viscoelastic rheology models as 

described below, through the assistance of commercial code ANSYS Polymat [91]. 
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4.2.1 Rheometry Data Acquisition 
 
 The rheological properties, including the complex shear viscosity, storage shear 

modulus and loss shear modulus, are measured for virgin ABS polymer using the MARS 

40 rheometer (cf. Figure 4-3). The test temperature of 210 °C is selected since it is typical 

of the LAAM nozzle temperature when manufacturing ABS through LAAM applications. 

An isothermal frequency sweep measurement is conducted, where the applied strain of 

the test is fixed at 0.01%, which is within the linear viscoelastic region of the tested 

polymer. The angular frequency of the test is set between 0.0628 to 628 rad/s, which 

covers the typical range that a polymer melt would experience in the LAAM processes 

[92]. Data obtained through the custom frequency test appears in Figure 4-4. 

 

 
Figure 4-3. Rheometry Measurement Undertaken through HAAKE MARS 40 Rheometer. 
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Figure 4-4. Rheological Properties Measured through Frequency Sweep Test. 

 
 
4.2.2 Rheometry Data Curve Fitting 
 
 Experimental viscosity data shown in Figure 4-4 exhibit obvious shear thinning 

behavior as expected for ABS (i.e., the shear viscosity of the molten polymer reduces 

with increased shear rate). In this study, we acknowledge the effectiveness of the Cox-

Merz rule, where the shear viscosity is the magnitude of the complex viscosity as [73] 

𝜂𝜂(𝛾̇𝛾) = |𝜂𝜂∗(𝜔𝜔)| = �(𝐺𝐺′)2+(𝐺𝐺′′)2

𝜔𝜔
, for 𝛾̇𝛾 = 𝜔𝜔 (4-11) 

where 𝜂𝜂 and 𝜂𝜂∗ denote, respectively, the shear viscosity and the complex viscosity of the 

polymer melt. In Equation 4-11, 𝐺𝐺′ and 𝐺𝐺′′ refer to the storage and loss shear moduli, 

respectively, and 𝜔𝜔 and 𝛾̇𝛾 are angular frequency and shear rate, respectively. Shear 

viscosity obtained using experimental data of 𝐺𝐺′ and 𝐺𝐺′′through Equation 4-11 is plotted 

against the measured magnitude of complex viscosity as shown in Figure 4-5, from where 

a good agreement is seen.  
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Figure 4-5. Curves of Shear Viscosity and Magnitude of Complex Viscosity as a 
Function of Shear rate. Note, Shear Viscosity 𝜂𝜂 Data is Obtained from Measured data of 
𝐺𝐺′ and 𝐺𝐺′′. 
 
 

Shear viscosity of the ABS polymer shown above is also used to obtain 

parameters for a Newtonian fluid model, and Generalized Newtonian fluid (GNF) models 

including the Power law model and the Carreau-Yasuda model. The Carreau-Yasuda 

model characterizes the Newtonian plateau at low shear rates while the power law model 

does not. The governing equations of the models are given through Equations 3-7 to 3-9. 

Here, the fitting process is conducted in the commercial suite ANSYS Polymat (version 

19.1, ANSYS, Inc., Canonsburg, PA, USA), which is a curve-fitting tool for non-

Newtonian rheology models [91]. The fitting interval of shear rate is between 10−2 to 

103 s−1 which includes the angular frequency range used in the rheometer tests described 

above. Data generated from the fitted models are plotted against actual measurements in 

Figure 4-6. Fitted coefficients of the various rheology models appear in Table 4-1. Note 

that the constant shear viscosity of the Newtonian fluid model is estimated at a shear rate 
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of 100 s−1, which is within the typical shear rate range that polymer melt experiences 

during the LAAM extrusion [92].  

In addition, measured shear dynamic moduli are fitted with the differential 

viscoelastic fluid model, Phan-Thien-Tanner (PTT) model (cf. Equation 4-7), and the 

results are given in Figure 4-7. In this fitting process, the shear rate interval shares the 

same standard as that for the GNF models. The fitted coefficients of the PTT model 

appear in Table 4-2. 

 

 
Figure 4-6. Shear Viscosity Curve Fitting using Generalized Newtonian Fluid Models. 

 
 

Table 4-1. Fitted Coefficients of Applied Generalized Newtonian Fluid Models. 
 

Rheology Model 𝜂𝜂𝑜𝑜 or K 𝜂𝜂∞ n a 𝜆𝜆𝑐𝑐 
Newtonian 3200 N/A N/A N/A N/A 
Power law 16761 N/A 0.4503 N/A 1 

Carreau-Yasuda 204064 0 0.000001455 0.2398 0.3333 
Note, units of 𝜂𝜂𝑜𝑜 (and K) are Pa ∙ s, Pa ∙ sn, Pa ∙ s(n−1)/a  for Newtonian, power law and 
Carreau-Yasuda models. Unit of 𝜆𝜆𝑐𝑐 is s−1, and the rest constants are unitless. 
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Figure 4-7. Curve Fitting the Experimental Rheology Data using the PTT Model. 

 
 

Table 4-2. PTT Model Fitted Parameters for ABS Rheological Data. 
 

Mode No. (i) 𝜆𝜆𝑖𝑖𝑟𝑟(s) 𝜂𝜂2𝑖𝑖 (𝑃𝑃𝑃𝑃 ∙ 𝑠𝑠) 
1 0.00022 131.7 
2 0.0022 44.7 
3 0.012 1180.8 
4 0.12 6286.4 
5 1.14 13065.7 
6 13.82 61917.7 

Note, 𝜀𝜀𝑃𝑃𝑃𝑃 and 𝜉𝜉𝑃𝑃𝑃𝑃 (cf. Equation 4-7) are fitted as 0.75 and 
0.18, respectively 

 
 
The Simplified Viscoelastic (SV) model is an empirical construction defined in 

terms of 𝜃𝜃𝑠𝑠 and 𝜓𝜓𝑠𝑠 (cf. Equation 4-9), each of which is typically defined to obtain a 

known flow domain property such as the die swell. As shown in Equation 4-9, the SV 

model requires a description of the shear viscosity which unfortunately cannot be the 

Power law model since it exhibits an unrealistic unbounded viscosity at a near-zero shear 

rate. Since our free surface predictions occur in a region with near-zero shear rates, we 

employ the fitted Carreau–Yasuda law (cf. Table 4-1) to represent the behavior of shear 

viscosity. It has been shown that defining an independent law for the normal stress 
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viscosity increases computational cost, but does not greatly enhance the accuracy of die 

swell calculation [74]. Therefore, we choose to use the same fitted Carreau–Yasuda 

model form as that for shear to describe the first normal stress viscosity term in the SV 

model employed here. 

In our simulations, different sets of parameters 𝜃𝜃𝑠𝑠 and 𝜓𝜓𝑠𝑠 are attempted and 

values are selected to provide a predicted die swell profile that is in good agreement with 

results obtained using the PTT viscoelastic fluid model, which is the most realistic 

rheology model considered in this chapter. Consequently, 𝜃𝜃𝑠𝑠 and 𝜓𝜓𝑠𝑠 are thus defined as 

0.26 and 0.47, respectively. And the predicted results are given in the following results 

section. 

 
4.3 Fiber Orientation Modeling 

 
Recently, fiber orientation measurements in injection molded plaques have 

showed that fiber alignment occurs slower than that simulated using traditional Advani-

Tucker approach IRD model [19, 93]. In response, Wang, et al. [56] modified the 

Advani-Tucker orientation tensor evaluation equation (cf. Equation 3-15) by introducing 

a term that reduces the growth rate of fiber orientation owing to the strain effects. The 

resulting Wang-O’Gara-Tucker model is given through Equation 3-17. Upon comparing 

Equation 3-17 to Equation 3-15, the additional terms in the Wang-O’Gara-Tucker model 

of Equation 3-17 appear as a closure approximation, thus the model is also referred to as 

the Reduced Strain Closure (RSC) model, where 𝜅𝜅 is a slipping factor between zero to 

one that controlling the reduction of interaction between the fiber orientation and the flow 

strain fields. Note that when 𝜅𝜅 = 1, the RSC model in Equation 3-17 reduces to Advani-

Tucker IRD model in Equation 3-15. In flow fields that promote changes in fiber 
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orientation, such as those found in LAAM nozzle flow, computation of 𝑨𝑨 depends on the 

value of 𝜅𝜅 in the RSC model.  

Selection of the RSC modeling parameters is required for its application into our 

nozzle flow problem. Wang, et al. [56] proved that the RSC model was effective in 

computing fiber orientation with 𝐶𝐶𝐼𝐼=0.01,and 𝜅𝜅=0.1, for transient simple shear flows such 

as those seen in the injection molding process and some extrusion scenarios. Our 

computations assume the same values of the RSC parameters. It is noted that the imposed 

values of 𝐶𝐶𝐼𝐼 and 𝜅𝜅 can potentially bring in some bias in the resulting predicted fiber 

orientation. But we expect that the parameter setting of the RSC model does not 

significantly affect our focus in this chapter, which is to show the variations of predicted 

outcomes (e.g., fiber orientation states of the flow domain, elastic properties of composite 

extrudates) by applying different rheological flow models. A corresponding experimental 

work may be needed in the future to further explore effective values for 𝐶𝐶𝐼𝐼 and 𝜅𝜅 in 

predicting fiber orientation of the nozzle extrudate flow of a composite feedstock (e.g., 

13% CF-ABS). 

Under the weakly coupled formulation, we evaluate the tensors 𝑾𝑾 and 𝑫𝑫 in 

Equation 3-17 from velocity gradients computed along streamlines within the polymer 

melt flow field from our ANSYS-Polyflow simulation results. Once velocity gradients 

have been computed, we integrate the RSC equation (cf. Equation 3-17) over time along 

each streamline of the flow domain to compute second-order orientation tensors 𝑨𝑨. 

Herein, the time scale is a time measurement recording a particle traveling along a 

streamline of the flow. The resulting provides computed orientation tensors values along 

flow streamlines. 
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A few clarifications are made as follows regarding the evaluation of the second-

order orientation tensors (i.e., 𝑨𝑨). Due to the normalization condition, the trace of 𝑨𝑨 

equates to unity. It can also be shown that A is symmetric, yielding just 5 independent 

components (see e.g., [22]). In addition, the constant 𝜆𝜆𝑟𝑟 appearing in Equation 3-17 

depends on the fiber aspect ratio 𝑎𝑎𝑟𝑟 (i.e., length to diameter ratio for a cylindrical fiber, 

which is the case considered in this study). We fix 𝑎𝑎𝑟𝑟 = 40, which represents a typical 

value for the 13% CF-ABS composite material based on our measurements which shall 

be seen in Chapter Six. Consequently, 𝜆𝜆𝑎𝑎𝑟𝑟 is highly close to unity (cf. Equation 3-13) and 

we ultimately fix 𝜆𝜆𝑎𝑎𝑟𝑟 equates one as did in Wang, et al [56] (as well as other literature 

discussing the fiber orientation in shear dominate flows [53]). The fourth order fiber 

orientation tensor, 𝔸𝔸 in Equation 3-16, is typically computed with a closure 

approximation in fiber orientation simulations [19, 53, 94]. Prior studies have focused on 

the natural–type closure [95] and the orthotropic-type closure [86]. In this dissertation, 

we employ the Orthotropic Closure (ORT) to compute components of 𝔸𝔸 from A as 

defined in [86]. 

The assignment of the initial fiber orientation state at the nozzle inlet directly 

influences the fiber orientation throughout the flow domain. For example, the initial 

condition of the fiber orientation has been found to have an influence on predicted fiber 

orientation in injection molding processes by Meyer, et al. [96]. We assume the fiber 

orientation state prior to entering the nozzle has attained a fully developed steady state as 

the flow reaches the nozzle inlet. We note that the complexity in the melt flow in the 

LAAM extruder before the flow reaches the nozzle will indeed influence the fiber 

orientation state as the melt enters the nozzle. To better understand the effect of inlet fiber 
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orientation on computed outputs, we performed other simulations using a uniformly 

random fiber orientation at the nozzle inlet. It was found that using the alternate inlet 

fiber orientation condition had little effect on the trends in predicted extrudate fiber 

orientation and mechanical properties shown below. Therefore, in this work, the steady 

state fiber orientation tensor is obtained from an associated prior work [19]. 

 
4.4 Results and Discussion 

 
 Numerical data including the computed flow fields of the nozzle flow domain, die 

swell, and second-order orientation tensors along the flow streamlines and associated 

elastic properties of an extrudate composite are reported in this section. 

 
4.4.1 Flow Fields and Extrudate Swell 
 
 Duty, et al. [92] showed that the typical wall shear rate in Big Area Additive 

Manufacturing systems is between 30 and 40 s−1, and reaches a peak value near 100 

𝑠𝑠−1at the nozzle exit. In our simulations, the average wall shear rate using the PTT model 

with material constants from Table 4-2 and an inlet flow rate of Q = 100 mm3/s is 

calculated to be 36 s−1, with a peak value of 87 s−1 at nozzle exit, which agrees well 

with the literature data [92]. Here, the average wall shear rate 𝛾̅̇𝛾𝑤𝑤 is computed from the 

wall shear rate 𝛾̇𝛾𝑤𝑤 on 𝚪𝚪𝟒𝟒 (cf. Figure 4-2) as 

𝛾̅̇𝛾𝑤𝑤 = 1
𝐿𝐿𝑡𝑡
∫ 𝛾̇𝛾𝑤𝑤 𝚪𝚪𝟒𝟒

𝑑𝑑𝑑𝑑, (4-12) 

where 𝐿𝐿𝑡𝑡 is the length of the nozzle exit tube defined by 𝚪𝚪4 in the 𝑧𝑧-direction.  

 Flow field contours within the LAAM nozzle are computed using Polyflow in this 

work, which also provides values of local shear rate, magnitude of velocity tensor, and 

flow streamlines which appear in Figure 4-8. Here, the flow domain is reflected about the 
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axis of symmetry for a visual aid of the full nozzle, while Polyflow only solves the 

axisymmetric plane as modeled above. It is seen that the magnitude of velocity tensor 

increases significantly one order of magnitude (e.g., ~0.002 m/s to ~0.02 m/s) as the flow 

exiting the convergence zone of the nozzle. Similarly, the shear rate within the flow 

exhibits significant change in the flow as it approaches the nozzle exit, where the shear 

rate near the fix-wall boundary is ~30 s−1, which is much higher than the core of the flow 

(which is at ~ 3 s−1). 
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(A) (B) (C) 

Figure 4-8. Computational Results of Flow Fields using the PTT model: (A) Local Shear Rate; (B) Magnitude of Velocity Vector; (C) 
Flow Streamlines.
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 Predicted die swell profiles for the flow appear Figure 4-9, where results are 

obtained using Newtonian, power law, Carreau-Yasuda, PTT and the SV models. The die 

swell just downstream of the nozzle exit is assessed using the apparent swell ratio 𝐵𝐵 

defined as [47] 

𝐵𝐵 = 𝑑𝑑
𝑑𝑑0

, (4-13) 

where d is the steady state swell flow diameter evaluated along the free surface 

downstream of the die exit (i.e., length of 𝚪𝚪𝟔𝟔 appearing in Figure 4-2), and 𝑑𝑑0 is the 

nozzle exit diameter. The computed data for 𝐵𝐵 at the 𝚪𝚪𝟔𝟔 surface is given in Table 4-3. The 

apparent die swell ratio B = 1.133 computed using the Newtonian fluid model agrees with 

the swell ratio of 1.13 predicted by Reddy and Tanner [97]. The steady state die swell 

ratios calculated using the Power law and Carreau-Yasuda rheology model are nearly 

identical and significantly lower than the swell ratio of B = 1.199 computed using the 

PTT model.  

Moreover, the die swell profile obtained using the SV model converges to that 

computed with the PTT model as the flow reaches steady state. As shown in Table 4-4, 

simulation time using the SV model was 58 s which is similar to the GNF laws but much 

less than the 328 s when using the PTT model with the mesh given in Figure 4-7. 

Therefore, for a larger size of flow domain or a finer mesh quality, the SV model is a 

good alternative to qualitatively solve the flow problem with less computational cost. 
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Figure 4-9. Die Swell Profiles Predicted by Using Different Rheology Models. 

 
 

Table 4-3. Apparent Swell Ratio Values Resulted by Applied Rheology Models. 
 

Model Name B 
Newtonian model 1.133 
Power law model 1.037 

Carreau-Yasuda model 1.035 
PTT model 1.199 
SV model 1.197 

 
 

Table 4-4. CPU Time for Simulations with Applied Rheology Models. 
 

Model Name Simulation Time (s) 
Newtonian model 30 
Power law model 54 

Carreau-Yasuda model 35 
PTT model 328 
SV model 58 

 
 
4.4.2 Fiber Orientation Tensors 
 

As described in Section 4.3, fiber orientation is computed in this research using 

the RSC model (cf. Equation 3-17). Our primary interest is in the direction of extrusion, 



55 
 

i.e., in the direction of the positive 𝑧𝑧 axis in Figure 4-2. A different coordinate system is 

used in the polymer flow equations, which are written in terms of a cylindrical coordinate 

frame, than in the computation of the second order orientation tensor field which are in 

terms of a Cartesian coordinate frame. Hence, the velocity gradients computed in our 

polymer flow calculation are transformed to the Cartesian system for fiber orientation 

computation through (see e.g., [93]) 

𝛻𝛻𝒗𝒗 =

⎣
⎢
⎢
⎢
⎡
𝑑𝑑𝑣𝑣𝑟𝑟
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1
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⎤

, (4-14) 

where we use subscript 1, 2, 3 to represent the coordinate directions in the 3D Cartesian 

frame when computing solutions to Equation 4-14. Spatial locations are transformed 

between (r,θ,z) and (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3,) in the usual manner where we designate 𝑥𝑥3 as the axial 

direction of the nozzle. Herein, our primary focus is on fiber alignment in 𝑥𝑥3, which is 

best represented by the 𝐴𝐴33 component of the second order orientation tensor 𝑨𝑨. 

The solution of 𝐴𝐴33 along various streamlines shown in Figure 4-10 is computed 

based on the flow kinematics solved using the PTT rheology model (as an example) with 

Q = 100 mm3/s. Values of 𝐴𝐴33 computed for each of the rheology models show similar 

trends as that appearing in Figure 4-10, so that these other results are omitted here for 

conciseness. ANSYS suite [74] generates the 2D surface streamlines based on the mesh 

quality. Due to the mesh defined in Figure 4-2, we consider flow velocity fields along 8 

streamlines computed from the finite element results computed with ANSYS-Polyflow. 

Note that 𝐴𝐴33 values near unity indicate fibers are highly aligned along the 𝑥𝑥3 direction. 

It can be seen that the fiber orientation tensor values start at steady state at flow inlet 
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(appearing as FI in Figure 4-10) as assumed. The 𝐴𝐴33 components then separate as the 

flow approaches the nozzle convergent zone (appearing as CZS in Figure 4-10). The peak 

value of the 𝐴𝐴33 component occurs at the convergent zone exit (appearing as CZE in 

Figure 4-10). Then the orientation tensor values along inner region streamlines decrease 

while those located at outer region increase as the flow continues towards the nozzle exit 

(appearing as NE in Figure 4-10). Once the polymer melt passes the nozzle exit at NE, 

values of 𝐴𝐴33 in outer region increase immediately and those more central begin to 

increase also, but more slowly. This change occurs due to the shear rate limitation 

vanishing at the outer boundary just after nozzle exit. The velocity along the outer 

boundary accelerates first, causing fibers nearby to orientate in the flow direction. Also, 

the elongational flow near the center of the nozzle accelerates so that the extrudate attains 

a uniform speed at some point not far from the nozzle exit. The final state of fiber 

orientation is set once variation across the bead ceases and a plug flow develops  

Similar to the results appearing in Figure 4-10, we also compute the fiber 

orientation tensor along streamlines in the flow domain using other rheology models. 

Values of 𝐴𝐴33 at the end of the flow domain (i.e., across 𝚪𝚪𝟔𝟔, in Figure 4-2) for all 

simulations considered here appear in Figure 4-11. Results indicate that the alignment of 

fiber generally increases from the edge of the flow towards the center of the extrudate for 

all applied rheology models. Also, it can be seen that the PTT model yields the lowest 

alignment in 𝑥𝑥3 among the applied models. Alternatively, the Power law and Carreau-

Yasuda law result in a similar steady state fiber orientation, which are the highest among 

these results. Moreover, the orientation result obtained using the SV model shows a good 

agreement with that of the PTT model in the shear dominant flow boundary but varies at 
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other locations within the flow. Finally, the Newtonian model yields an intermediate 

value of the fiber orientation, somewhat positioned between the GNF laws and the 

viscoelastic model results. 

 

 
Figure 4-10. 𝐴𝐴33 component of fiber orientation solution computed using the flow 
kinematics solved by the PTT model at Q equates 100 mm3/s. 
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Figure 4-11. 𝐴𝐴33 component at the flow domain exit solved using employed rheology 
models. 
 
 
4.4.3 Predicted Effective Elastic Constants 
 

Elastic properties for a 13% CF-ABS using the volume-averaged stiffness tensor 

are computed from the steady state fiber orientation tensor (cf. Jack and Smith [89]) and 

the Tandon-Weng analytical equation (cf. Tandon and Weng [87]). In this work, values 

of orientation tensor components A𝒊𝒊𝑗𝑗 are calculated along flow streamlines with Equation 

3-17 (i.e. RSC model) as described above. Then, elasticity tensor components C�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (cf. 

Equation 3-32) are computed at the end of each streamline (i.e., at the flow domain exit 

𝚪𝚪𝟔𝟔) which is considered to be the steady-state orientation state of the extruded bead. 

Extrudate cross-section averaged values form the mean bead stiffness tensor C�𝒊𝒊𝑗𝑗𝑗𝑗𝑗𝑗 

representing the material properties of the bulk composite extrudate, which can be written 

as  
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𝐶𝐶𝑖̅𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1
𝜋𝜋𝑟𝑟𝑒𝑒2

∫ ∫ (𝐶̃𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝑟𝑟)𝑟𝑟𝑒𝑒
0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2𝜋𝜋

0 , (4-15) 

which are obtained through numerical integration using the trapezoidal rule as in [42]. In 

the above, 𝑟𝑟𝑒𝑒 is the radius of the free extrudate at the flow domain exit which is different 

for each rheology model. To present the results with a clear view, we further calculate the 

mean elastic properties of computed results of material stiffness by [98] 

[𝐂𝐂]−1 =
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⎫

, (4-16) 

where [𝐂𝐂] is a 6×6 matrix, which refers to a material stiffness matrix, 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, written in 

contracted notations [98]. Subscripts {1,2,3} refer to coordinate directions of a 3D 

Cartesian coordinate. For our calculations, the elastic properties of the fiber and matrix 

phase materials are given in Table 4-5, where E, G and 𝜈𝜈 refer to the Young’s modulus, 

shear modulus and the Poisson’s ratio, respectively. 

Additionally, the 13% CF-ABS material supplied from PolyOne is 13% fiber 

weight percentage (wt.) while the Tandon-Weng approach requires the fiber volume 

fraction in its computation process. The density values of the ABS and carbon fiber are 

1040 and 1700 kg/m3, respectively [55]. Thus, we translate the weight fraction to the 

volume fraction through the following equation as 

𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑤𝑤𝑡𝑡𝑓𝑓 𝜌𝜌𝑚𝑚/[𝑤𝑤𝑡𝑡𝑓𝑓 𝜌𝜌𝑚𝑚 + �1 − 𝑤𝑤𝑡𝑡𝑓𝑓�𝜌𝜌𝑓𝑓], (4-17) 
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where “𝑣𝑣𝑣𝑣𝑣𝑣” and “𝑤𝑤𝑤𝑤” are the fiber volume percentage and weight percentage, 

respectively, and 𝜌𝜌 refers to the density of the material. The subscripts “𝑓𝑓” and “𝑚𝑚” 

indicate the fiber and matrix phases, respectively. Consequently, the fiber volume 

fraction of the composite system is 8.4%.  

Computed results shown in Table 4-6 indicate that the printed composite exhibit 

quasi transverse isotropic mechanical behavior. Specifically, the Carreau-Yasuda law 

(i.e., appearing as Carreau-Y. in Table 4-6) yields the highest 𝐸𝐸�33 value while the PTT 

model results in the lowest. In contrast, the shear moduli computed using the PTT model 

are higher than those computed with all GNF models. Finally, as we consider more non-

viscous effects of the flow (e.g., see data from the Power law or the Carreau-Yasuda law, 

to the PTT model), it can be seen that the principal (i.e., direction of the flow) mean 

modulus (𝐸𝐸�33) decreases while other moduli increase. Also, the transverse isotropic 

behavior of results predicted by the PTT model is the most obvious one, in which the 𝐸𝐸�33 

and 𝐺̅𝐺23 are unique values and 𝐸𝐸�11, 𝐸𝐸�22 as well as 𝐺̅𝐺12,𝐺̅𝐺13 show highly agreement. Our 

material stiffness predictions show a good agreement generally with test data appearing 

in the literature. For comparison, Duty, et al. [12] measured the Young’s modulus of a 13 

% CF-ABS printed bead, reporting a mean value of 7.24 GPa and standard deviation of 

0.59 GPa. Our predictions of the elastic modulus for the same material system shown as 

𝐸𝐸�33 in Table 4-6 are slightly higher than these previously published experimental results. 

The overestimation of our simulation may be caused by neglecting the effects of 

microstructural voids (cf. Figure 1-1B), macro-level inter-bead voids and material 

distribution variance during bead deposition in the properties prediction. In addition, 

Duty found the stiffness of a BAAM printed tensile test sample to be highly anisotropic, 
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which is also seen in our results. Furthermore, the previously reported test sample 

transvers moduli show some skewness in the transverse plane (i.e., 𝐸𝐸�11 = 2.26 GPa and 

𝐸𝐸�22 = 2.56 GPa). Our results also present the similar trend (e.g., PTT model results: 𝐸𝐸�11 = 

3.14 GPa and 𝐸𝐸�22 = 3.43 GPa). While we are not able to show experimental data specific 

to each rheology model, the overall favorable comparison with previously published 

experimental work supports our computational approach. 

 
Table 4-5. Elastic Properties of the Phase Materials of a 13% wt. CF-ABS. 

 
Material E (GPa) G (GPa) 𝜈𝜈 

ABS matrix 2.25 0.83 0.35 
Carbon fiber 230 96 0.2 

Note, the volume fraction of the material model is 8.4%. 
 
 

Table 4-6. Predicted Mean Elastic Properties of the Printed Extrudate. 
 

Model name 𝐸𝐸�11 (GPa) 𝐸𝐸�22 (GPa) 𝐸𝐸�33 (GPa) 𝐺̅𝐺12 (GPa) 𝐺̅𝐺23 (GPa) 
PTT 3.14 3.43 10.14 1.12 1.61 

Power law 3.13 3.40 11.24 1.10 1.59 
Carreau-Y. 3.13 3.40 11.28 1.10 1.59 
Newtonian 3.14 3.42 10.61 1.11 1.61 
SV model 3.14 3.42 10.83 1.11 1.61 

 
 

Table 4-6. Predicted Mean Elastic Properties of the Printed Extrudate (continued). 
 

Model name 𝐺̅𝐺13 (GPa) 𝜈̅𝜈12 𝜈̅𝜈13 𝜈̅𝜈23 

PTT 1.36 0.45 0.38 0.39 
Power law 1.31 0.46 0.36 0.41 
Carreau-Y. 1.30 0.46 0.36 0.41 
Newtonian 1.34 0.45 0.37 0.40 
SV model 1.33 0.46 0.37 0.40 
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In addition, we note that the finite element domain is discretized into 704 nodes 

and 630 elements using 4-node quadrilateral elements as shown in Figure 4-7. The mesh 

size is reduced near the flow boundary as well as the nozzle exit to avoid potential 

singularity issues. Additionally, results obtained using a coarse mesh (448 nodes, 378 

elements) and a fine mesh (960 nodes, 882 elements) are compared with those obtained 

with the model in Figure 4-2. We found that the elastic moduli predictions appearing in 

Table 4-6 using the model in Figure 4-7 are within 1% absolute relative difference to the 

fine mesh model output. We therefore use the model in Figure 4-2 in this chapter to avoid 

the extra computational expense that would be required for a model having a finer mesh. 
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CHAPTER FIVE 

Impacts of Screw Swirling Effects 

This chapter has been published as part of the citation [99]: Wang, Zhaogui, and Douglas 
E. Smith. "Numerical analysis of screw swirling effects on fiber orientation in large area 
additive manufacturing polymer composite deposition." Composites Part B: Engineering

(2019): 107284. 

Large Area Additive Manufacturing (LAAM) polymer deposition employs a 

single screw extruder to deliver pelletized feedstock (cf. Figure 2-1), which results in 

significantly higher flow rates as compared to conventional filament-based extrusion 

additive processes. Swirling kinematics in LAAM melt flow that result from the screw 

rotation are expected to generate unique particle alignment patterns within the fiber-filled 

polymer during deposition processing.  

This chapter extends the flow domain appearing in last chapter and investigates 

the effect of the single screw swirling motion on the resulting fiber orientation in a short 

fiber polymer composite extrudate. An axisymmetric non-Newtonian viscoelastic flow is 

simulated with the finite element method, where the flow nearby the extruder screw tip, 

within the printing nozzle, and a short section of free extrudate compose the flow domain 

(cf. Figure 5-1). Fiber orientation tensors within the flow domain are evaluated using the 

Wang-O’Gara-Tucker Reduced Strain Closure (RSC) fiber orientation diffusion model 

[56]with the Orthotropic fitted closure [86].
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(A) (B) (C) 
Figure 5-1. Strangpresse Model 19 single screw extruder nozzle: (A) external view of 
nozzle; (B) flow of interest; (C) cylindrical coordinates system. 

5.1 Material Rheometry Input 

In this chapter, the simulation method for fiber suspension flow is the same 

weakly coupled formulation as did in Chapter Four. Even though under the weakly 

coupled formulation, it is still useful to take the effects of the fiber and associated 

orientation into the consideration of flow computation. To this end, we consider 

rheological properties of the 13% CF-ABS (supplied by PolyOne) directly for the 

simulation carried on here while the last chapter only measures the properties of virgin 

ABS polymer. Particularly, modeling the melt flow with measured rheological data of the 

13% CF-ABS is regarded as an indirect approach to count some effect of the fibers and 

associated alignments on the flow fields formulation in the nozzle extrudate flow domain. 

Rheological frequency sweep testing is performed for the 13% CF-ABS using the 

rotational rheometer HAKEE MARS 40 (Thermo Fisher Scientific, Waltham, MA) at 

215 Celsius, which is a common temperature for printing of this material. Dynamic 

viscosity is measured over a frequency range of 0.01–100 Hz which are converted to 

shear rate using the Cox-Merz rule [100], as did in Chapter Four. It should be noted that 

the application of the Cox-Merz rule for filled polymer systems can influence the 
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predicted rheological properties. Prior experimental work [101] has shown that the 

deviation between Cox-Merz-rule-estimated data and the same measured by a capillary 

rheometer can be as high as one order of magnitude (e.g., ~10× ) when fiber filled 

composites are employed. While the presence of fiber reinforcements may introduce error 

into the measured data, it is expected that the swirling kinematics of the relatively low 

fiber content polymer flow would not be greatly affected as compared to other factors, 

such as the inlet flow rate or screw RPM. An alternative approach is to employ a fully-

coupled fiber orientation-flow analysis (e.g., see VerWeyst and Tucker [53] and Chapter 

Seven below) that more directly incorporates the effects of fiber reinforcements into the 

computation of the flow.  

The Phan-Thien-Tanner (PTT) model is used here to simulate the polymer melt 

rheology in LAAM deposition. PTT model parameters are computed for measured 

viscosity values using ANSYS Polymat [91] where curve fit results of the PTT model 

appear in Figure 5-2 and the parameters fitted for the PTT model are given in Table 5-1. 

Note that the length of each error bar appearing in Figure 5-2 is twice of the absolute 

value between the measured data and the fitted data at that shear rate. It can be seen that 

the fitted rheology properties show a good agreement with those obtained from the 

frequency sweep test, except at extreme shear regions (e.g., very small or very large shear 

rates). 
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(A) (B) 

Figure 5-2. Rheological Properties Measured through Frequency Sweep Test: (A) Shear 
Viscosity; (B) Dynamic Shear Moduli. 
 
 

Table 5-1. PTT model fitted parameters for ABS. 
 

Mode No. (i) 𝜆𝜆𝑖𝑖𝑟𝑟(s) 𝜂𝜂2𝑖𝑖 (𝑃𝑃𝑃𝑃 ∙ 𝑠𝑠) 
1 0.0032 719.238 
2 0.024 2009.14 
3 0.17 6812.35 
4 1.37 11716.6 
5 10.00 124392 

Note, 𝜀𝜀𝑃𝑃𝑃𝑃 and 𝜉𝜉𝑃𝑃𝑃𝑃 (cf. Equation 4-7) are fitted as 0.5 and 
0.15, respectively 

 
 

5.2 Flow and Fiber Orientation Modeling 
 

The flow domain considered in this chapter includes the lower section of the 

extruder near the tip of the rotating screw, the nozzle, and a short section of free extrudate 

just outside the nozzle exit as shown in Figure 5-3. Notice, the rotating screw tip 

introduces swirling kinematics into the flow fields and thus the flow model developed in 

this chapter yields non-trivial velocity fields in the θ direction of a 3D cylindrical 

coordinate (cf. Figure 5-1C). 

As did in Chapter Four, an axisymmetry flow domain is assumed which is 

modeled with a 2-D finite element mesh to reduce computational expense. Gravity is not 
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considered in the simulation. In addition, the length of free extrudate in the model is one-

inch which allows for the fiber orientation to reach steady state beyond the nozzle exit. 

As the design of the single screw is not provided by the manufacturer, we have chosen to 

adapt the geometries as referred in Duty, et al. [12], where the investigated large-scale 

polymer deposition system incorporated a 25-mm (~1-inch) diameter screw. In addition, 

Duty has improved the design of a screw in order to achieve higher material feeding rate, 

where a 50-mm (~2-inch) longer screw is used as an alternative design. Based on data in 

Duty, et al. [12], we assume an 1-inch distance between the screw tip to the nozzle 

entrance as shown in Figure 5-3. Additionally, the angle of the screw tip is assumed as 

shown. Moreover, the boundary conditions for the flow domain appear in Figure 5-3, 

where most of the boundaries share the same definition as did in Section 4.1 for the 

nozzle flow, such that 

• 𝚪𝚪𝟏𝟏: Flow inlet with the prescribed volumetric flow rate Q. In this Chapter, Q is

increased to 1000 𝑚𝑚𝑚𝑚3/𝑠𝑠, which is a result computed based on an 80 RPM screw

speed of the Strangpresse Model 19 extruder or approximately 8 lbs./hour of 13%

CF-ABS.

• 𝚪𝚪𝟐𝟐: No slip wall boundary, where 𝑣𝑣𝑠𝑠 = 𝑣𝑣𝑛𝑛 = 0.

• 𝚪𝚪𝟑𝟑: Screw barrel edge, where 𝑣𝑣𝑠𝑠 = 𝑣𝑣𝑛𝑛 = 0, 𝑣𝑣𝜃𝜃 = 2𝜋𝜋𝜋𝜋𝑛𝑛𝑠𝑠
60

= 8.4𝑟𝑟 for a screw RPM of 

𝑛𝑛𝑠𝑠 = 80. Note that r is the radial distance in the axisymmetric model as defined in 

Figure 5-2. 

• 𝚪𝚪𝟒𝟒: Axis of symmetry, where 𝐹𝐹𝑠𝑠 = 𝑣𝑣𝑛𝑛 = 0.

• 𝚪𝚪𝟓𝟓: Free surface, where 𝐯𝐯 ∙ 𝒏𝒏��⃑ = 0.

• 𝚪𝚪𝟔𝟔: Flow domain exit, where 𝐹𝐹𝑛𝑛 = 𝑣𝑣𝑠𝑠 = 0.
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In addition, fiber orientation tensors within the flow domain are evaluated using 

the RSC) model (cf. Equation 3-17) with the Orthotropic fitted closure [86] in the 

common weakly coupled formulation as did in Chapter Four (cf. Section 4.3 for more 

detail). 

 

 
Figure 5-3. The Boundary Conditions of the Swirling Flow Domain (units: inches) 

 
 
5.2.1 Screw Swirling Flow Kinematics 
 

Flow fields within the extrusion orifice induce the suspending fibers to orientate 

and ultimately form the fiber alignment of an extrudate of fiber filled polymers. To 

evaluate fiber orientation in the LAAM process, we focus on the velocity and velocity 

gradients within the polymer melt flow through the extruder nozzle and within the die 

swell just outside the nozzle exit. The flow domain in our work is based on the single 

screw extruder, which is common in LAAM polymer deposition additive manufacturing 
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systems. The flow domain in our model includes the lower section of the extruder near 

the tip of the rotating screw (cf. Figure 5-3 for example). Axisymmetry of the flow 

domain is assumed which is modeled with a 2D finite element mesh to reduce 

computational expense. However, with the consideration of the tip of the single screw, 

the swirling kinematics will be added such that the velocity vectors solved through 

Equations 3-1 and 3-2 will contains non-trivial values for both 𝑣𝑣𝑟𝑟, 𝑣𝑣𝑧𝑧, and 𝑣𝑣𝜃𝜃, whereas a 

typical FFF process flow fields can be depicted with only 𝑣𝑣𝑟𝑟, and 𝑣𝑣𝑧𝑧. To obtain a clear 

view of the flow computation, we extend the continuity and momentum equations (cf. 

Equations 3-1 and 3-2) in a 3D cylindrical coordinate, such that [73]  

1
𝑟𝑟
𝜕𝜕(𝜌𝜌𝜌𝜌𝑣𝑣𝑟𝑟)
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𝜕𝜕𝜕𝜕
= 0, (5-1) 

and, 
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�, (5-4) 

where 𝑃𝑃 is pressure, 𝜌𝜌 is the density of the polymer, 𝜏𝜏 is the component of the shear stress 

tensor, and 𝑟𝑟, 𝑧𝑧,𝜃𝜃 refer to the three major directions in a cylindrical coordinate system as 

shown in Figure 5-1C. Equations 5-1 to 5-4 may be obtained from the more general 

Navier-Stokes equations [73] for steady flows having no inertia or gravity, and setting all 

derivatives with respect to 𝜃𝜃 to zero. Particularly, the non-trivial solution of 𝑣𝑣𝜃𝜃 alters the 
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streamlines of the fluid flow of interest from their surface projections, where the later is 

usually employed in the computation of fiber orientation. 

In addition to the swirling flow defined above, a straight flow model is also 

considered for comparison. The straight flow model shares the same nozzle geometry, 

flow rate and melt flow rheology with the swirling flow, except that no rotational 

kinematics are assigned to 𝚪𝚪𝟑𝟑 (cf. Figure 5-2), i.e., 

𝑣𝑣𝜃𝜃 = 0, (5-5) 

with a no-slip wall boundary condition. Evaluating the polymer melt flow and fiber 

orientation in the straight flow models provides a means to directly assess the effects of 

swirling kinematics on predicted outcomes. Both swirling flow and straight flow models 

are created in 2D, where all partial derivatives with respect to 𝜃𝜃 direction are zero. The 

𝑣𝑣𝜃𝜃 component in the swirling flow is a computed non-zero solution variable. In the 

straight flow model, 𝑣𝑣𝜃𝜃 and all derivative with respect to 𝜃𝜃 are set to zero, such that 

Equation 5-2 reduce to 

𝜌𝜌 �𝑣𝑣𝑟𝑟
𝜕𝜕𝑣𝑣𝑟𝑟
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑧𝑧
𝜕𝜕𝑣𝑣𝑟𝑟
𝜕𝜕𝜕𝜕
� = −𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− �1

𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑟𝑟𝜏𝜏𝑟𝑟𝑟𝑟) + 𝜕𝜕𝜏𝜏𝑧𝑧𝑧𝑧
𝜕𝜕 𝑧𝑧 

�, (5-6) 

In this formulation (i.e., straight flow model), Equation 5-3 no longer applies, such that 

flow domain velocities are computed using Equations 5-1, 5-4, and 5-6 in the usual 

manner. Also, the extrudate swell of the free extrudate boundary surface is evaluated 

using the methods of spines through ANSYS Polyflow, as did in Chapter Four. 

Note, both the swirling flow and straight flow models assume all partial 

derivatives with respect to theta are zero. The swirling flow model imposes the boundary 

condition along the surface of the screw tip to simulate steady rotating motion as 

described above. While the flow simulation for both models is performed within the r-z 
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plane (cf. Figure 5-3), the swirling flow model requires streamlines and fiber orientation 

tensors be computed in three-dimensional space. With the exception of the detail around 

the screw tip, both the swirling flow and straight flow model share the same nozzle 

geometry, flow rate, and polymer melt flow properties. 

5.3 Results and Discussion 

Computed values of flow velocity, fiber orientation tensors, and associated elastic 

properties obtained from the LAAM nozzle simulation approach describe above are given 

in this section.  

5.3.1 Swirling and Straight Flow Models Streamlines 

The weakly coupled formulation adopted in our study solves the fiber orientation 

tensor equation of motion from velocity and velocity gradient values along streamlines in 

the flow domain. Melt flow streamlines computed in our swirling flow and straight flow 

simulations appear in Figures 5-4 and 5-5. Streamlines computed with the swirling flow 

model appear in Figure 5-4 where the out-of-plane coordinates of the 3D streamline are 

obtained by computing the angle of rotation θ from  

𝜃𝜃 = ∫ 𝜃̇𝜃𝑑𝑑𝑑𝑑𝑡𝑡
0 , (5-7) 

where 𝜃̇𝜃 = 𝑣𝑣𝜃𝜃
𝑟𝑟

, and 𝑣𝑣𝜃𝜃 and 𝑟𝑟 are obtained along surface projection streamline (i.e., 

computed results from Polyflow). Equation 5-7 is calculated through a trapezoidal rule 

numerical integration approach [102]. Figure 5-5 shows the surface projection 

streamlines as computed by Polyflow for both the straight flow and swirling flow 

simulations. It can be seen from Figure 5-5 that the swirling flow model yields much 

different path through the flow domain than that of 2D straight flow. Note that the 
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swirling flow streamlines appear closer to the center of the flow than those of straight 

flow in the region between the screw tip and nozzle entrance. In a steady state flow 

problem such as the simulations involved in our study, the streamlines are the same as the 

pathlines that particles would follow throughout the flow domain. We would, therefore, 

expect a distinguishable difference between the straight flow and swirling flow fiber 

orientation tensors near the screw tip, and downstream from the screw tip as well. 

 

 
Figure 5-4. 3D streamlines of the melt flow computed with the swirling flow model 
(length values in meters).



73 

(A) (B) 
Figure 5-5. Surface projections of the flow streamlines: (A) straight flow and (B) swirling flow simulation. 
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5.3.2 Fiber Orientation Tensors 
 

Results of fiber orientation tensors are computed by integrating Equation 3-17 

(i.e., RSC fiber orientation model) along a streamline using an adaptive fourth-order 

Runga-Kutta scheme [102], where a steady-state initial condition is required at the flow 

inlet (i.e., 𝚪𝚪𝟏𝟏 in Figure 5-3). Heller, et al. [19] assumed the fiber orientation state 

upstream of the flow inlet reaches steady state based on the upstream homogeneous flow 

field. We adopt the same assumption by first computing the fiber orientation of a 

sufficiently long extruder tube (not shown here) for the same flow rate Q evaluated above 

starting with a random alignment at its inlet. Computed orientation tensor values at the 

exit of this tubular flow domain are used to define the inlet initial condition in the 

following fiber orientation computations. The inner and outer radii of the tubular 

geometry used to obtain these initial conditions are the same as those appearing in Figure 

5-3 for the nozzle at 𝑧𝑧 = 4.491 inch (i.e., at 𝚪𝚪𝟏𝟏 in Figure 5-3). We set 𝑣𝑣𝜃𝜃 = 0 in the steady 

flow initial conditions simulation for the straight flow, and define 𝑣𝑣𝜃𝜃 based on the 

extruder screw diameter and RPM for the swirling flow in a similar manner as that 

described above for our nozzle flow simulations. Selection of the RSC modeling 

parameters is the same as did in Chapter Four, such that 𝐶𝐶𝐼𝐼=0.01, 𝜅𝜅=0.1, and 𝜆𝜆𝑎𝑎𝑟𝑟=1 [56].  

Results appearing in Figures 5-6 through 5-9 are the 𝐴𝐴11 and 𝐴𝐴33 components of 

computed fiber orientation tensors along the flow domain streamlines of the straight flow 

and swirling flow models. In this section, “Nozzle CZS” and “Nozzle CZE” refer to 

Nozzle Convergent Zone Start and Nozzle Convergent Zone End. Our results show that 

the initial steady orientation state of the straight flow has more fibers that align along the 
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principal flow direction (e.g., 𝑧𝑧 direction), while that of the swirling flow align normal to 

the flow direction due to the swirling effects.
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Figure 5-6. Fiber Orientation Tensor 𝐴𝐴11 Component through the Straight Flow Domain (color indicates streamline as defined in 
Figure 5-5A).
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Figure 5-7. Fiber Orientation Tensor 𝐴𝐴33 Component through the Straight Flow Domain (color indicates streamline as defined in 
Figure 5-5A).
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Figure 5-8. Fiber Orientation Tensor 𝐴𝐴11 Component through the Swirling Flow Domain (color indicates streamline as defined in 
Figure 5-5B).
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Figure 5-9. Fiber Orientation Tensor 𝐴𝐴33 Component through the Swirling Flow Domain (color indicates streamline as defined in 
Figure 5-5B).
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5.3.3 Effects of Swirling Kinematics in Fiber Orientation Solution  
 

It is generally known that shear dominated flows tend to align fibers along flow 

direction while elongational flows promote fiber alignment in the principle stretching 

direction. Heller, et al. [19] illustrates the correlation between the strain rate fields and 

the resulting orientation tensors for 2D axial extrusion nozzle flow, which is similar to 

the straight flow considered in this study (cf. Figure 5-5A). To better illustrate the effect 

of the velocity gradient fields on the fiber orientation kinetics in 3D swirling streamlines 

(cf. Figure 5-4), we rotate computed velocity gradients into a tangential-normal 

coordinate system for each point along swirling streamline, as shown in Figure 5-10.  

 

 
Figure 5-10. Tangential-Normal Coordinates of a Point on Streamline 15 of the Swirling 
Flow Simulation. 

 
 
We define the tangential-normal coordinate system at each point along a 

streamline by first computing the tangential unit vector (𝑒𝑒𝑡𝑡) of the point as 

𝑒𝑒𝑡𝑡 = 𝒗𝒗
||𝒗𝒗||

= [𝑒𝑒𝑡𝑡1, 𝑒𝑒𝑡𝑡2, 𝑒𝑒𝑡𝑡3], (5-8) 
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where 𝒗𝒗 is the velocity vector at the point of interest given in global Cartesian 

coordinates and ||𝒗𝒗|| indicates the magnitude of the velocity vector. In this calculation 

procedure, velocity gradients 𝛻𝛻𝒗𝒗 are first computed in cylindrical coordinates in Polyflow 

which are transformed to global Cartesian coordinates using Equation 4-14 (cf. Chapter 

Four). These transformed velocity gradients are further rotated to the tangential-normal 

coordinates of the streamlines using the rotation matrix 

𝑹𝑹𝒄𝒄 = �
1 0 0
0 cos (𝛽𝛽1) −sin (𝛽𝛽1)
0 sin (𝛽𝛽1) cos (𝛽𝛽1)

� �
cos (𝛽𝛽2) −sin (𝛽𝛽2) 0
sin (𝛽𝛽2) cos (𝛽𝛽2) 0

0 0 1
�, (5-9) 

where 

𝛽𝛽1 = cos−1(𝑒𝑒𝑡𝑡3), 𝛽𝛽2 = 𝜋𝜋/2 − sin−1 � 𝑒𝑒𝑡𝑡2

sin(𝛽𝛽1)�, (5-10) 

Then final rotated 𝛻𝛻𝒗𝒗 is evaluated in the tangential-normal coordinate at each point from 

𝛻𝛻𝒗𝒗𝑒𝑒𝑡𝑡−𝑒𝑒𝑛𝑛1−𝑒𝑒𝑛𝑛2 = (𝑹𝑹𝒄𝒄)𝑇𝑇(𝛻𝛻𝒗𝒗)(𝑹𝑹𝒄𝒄) =
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, (5-11) 

The 𝑥𝑥1 axis in the Cartesian coordinates is rotated to the direction of 𝑒𝑒𝑡𝑡, and then the 𝑥𝑥2, 

𝑥𝑥3 axes represent the directions of 𝑒𝑒𝑛𝑛. Here, 𝑑𝑑𝑣𝑣𝑡𝑡
𝑑𝑑𝑑𝑑𝑡𝑡

 refers to the normal strain rate field. In 

addition, it is important to note that the choice of 𝑒𝑒𝑛𝑛 is not unique but must remain in the 

plane normal to 𝑒𝑒𝑡𝑡. We use the magnitude of 𝑑𝑑𝑣𝑣𝑡𝑡
𝑑𝑑𝑑𝑑𝑛𝑛

 which is computed as 

|| 𝑑𝑑𝑣𝑣𝑡𝑡
𝑑𝑑𝑑𝑑𝑛𝑛

|| = �(𝑑𝑑𝑣𝑣𝑡𝑡
𝑑𝑑𝑑𝑑𝑛𝑛1

)2 + (𝑑𝑑𝑣𝑣𝑡𝑡
𝑑𝑑𝑑𝑑𝑛𝑛2

)2, (5-12) 

to represent the variance of the shear strain field along the flow domain. Following 

Equations 5-8 to 5-12, the strain rate tensors components along streamlines 1, 8 and 15 

(cf. Figure 5-5B) of the swirling flow results are computed and plotted in Figures 5-11 to 
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5-13. These streamlines are chosen as examples since they represent the core (streamline 

1), intermediate (streamline 8) and boundary (streamline 15) regions of the flow domain. 

It is seen that the strain rate fields initially experience variations in the flow upstream of 

the screw tip. At this point, the shear strain rate for all three streamlines is much higher 

than that of the normal strain rate. Hence, the resulting shear-dominate flow directs the 

principle orientation direction near the screw ending position as shown in Figures 5-8 and 

5-9. In addition, it can be seen that the 𝐴𝐴33 component of the swirling flow in Figure 5-9 

decreases considerably and then recovers to a high value as polymer melt passes through 

the shear dominated nozzle convergent zone. Specifically, the larger the shear strain rate 

is, the more significant changes the diagonal components of the orientation tensor 

experiences. For instance, the magnitude of the shear strain rate of streamline 15 is higher 

than that of streamline 8, and thus the change (e.g. decreasing) of 𝐴𝐴33 component along 

streamline 15 is much more significant than that along streamline 8, as shown in Figure 

5-9. Alternatively, the normal strain rate of streamline 1 is higher than its shear strain rate 

magnitude, and thus the relatively higher elongational effects of the flow increases the 

𝐴𝐴33 component of streamline 1. Finally, as the flow exits the nozzle, the normal strain 

rate of streamline 1 and 8 increase significantly while that of streamline 15 decreases. 

The positive elongation flows in streamline 1 and 8 increase the fiber alignment along 

flow direction while the negative elongation decreases the 𝐴𝐴33 component in streamline 

15. As the melt flow exits the nozzle, the shear strain rate fields (e.g., || 𝑑𝑑𝑣𝑣𝑡𝑡
𝑑𝑑𝑑𝑑𝑛𝑛

||) of all three 

selected streamlines experience a significant decrease and then vanish to zero, which 

causes the diagonal components of the orientation tensor become constant. This variation 

causes the 𝐴𝐴33 component of the swirling flow at the nozzle exit decreases greatly and 
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then recovers somewhat. In detail, the change of the 𝐴𝐴33 component along streamline 15 

is most significant among the three selected streamlines due to its relatively high 

magnitude of strain rate as seen through Figures 5-11B, 5-12B, and 5-13B. 
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(A) 

 
(B) 

Figure 5-11. Swirling Flow Strain Rate Fields in Tangential-Normal Frame for 
Streamline 1: (A) Normal Strain Rate; (B) Magnitude of Shear Strain Rate.
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(A) 

(B) 
Figure 5-12. Swirling Flow Strain Rate Fields in Tangential-Normal Frame for 
Streamline 8: (A) Normal Strain Rate; (B) Magnitude of Shear Strain Rate.
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(A) 

 
(B) 

Figure 5-13. Swirling Flow Strain Rate Fields in Tangential-Normal Frame for 
Streamline 15: (A) Normal Strain Rate; (B) Magnitude of Shear Strain Rate.
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5.3.4 Predicted Effective Elastic Constants 

Once fiber orientation values are computed downstream of the nozzle at the flow 

exit, steady state fiber orientation tensors may be computed for both the straight and 

swirling flow models to better understand the effect of swirling kinematics on bead 

elastic properties. Figure 5-14 shows computed values of the orientation tensor diagonal 

components for each streamline at the flow end. It is expected that the fiber orientation 

will attain a steady state orientation prior to reaching the flow end which is, therefore, 

assumed to represent the fiber orientation within the solidified extruded polymer 

composite as in Chapter Four examples. From the data appearing in Figure 5-14, it can be 

seen that the fiber alignment along the flow direction is higher than those along 

transverse directions for both the straight flow and swirling flow. which agrees with 

trends seen in prior experimental [12, 103] and numerical studies [19, 55]. However, the 

fiber orientation pattern differs along the radial direction of the bead when comparing the 

swirling flow and the straight flow results. For the swirling flow results, it is seen that the 

𝐴𝐴33 component increases slowly from the outer boundary toward the core of the flow, 

and the results of the straight flow decreases initially after leaving the outer boundary and 

then increases after the intermediate region of the flow. In addition, the 𝐴𝐴33 component of 

the swirling flow is higher than that of the straight flow, over the entire flow exit. 
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Figure 5-14. Steady State Orientation Tensor Diagonal Components at Streamlines Ends. 

 
 
The effect of the swirling flow on the material properties of an extruded bead may 

be considered by computing elastic properties with the orientation homogenization 

method describe in Section 3.4. The material stiffness of a 13% CF-ABS composite is 

evaluated based on the steady-state orientation tensor components appearing in Figure 5-

14. For the material model of 13 % wt. CF-ABS (supplied by PolyOne Corp.), in which 

the fiber volume faction of the composite is assumed to be 8.4 % and the fiber aspect 

ratio used in the stiffness computation is 40, as did in Chapter Four. The constituents 

material properties of the composite is given in Table 4-5. Ultimately, computed mean 

elastic properties are given through Table 5-2. From the given results, it is seen that the 

mean elastic constant 𝐸𝐸�33 in the flow direction is much higher than those along transverse 

directions for both the swirling flow and the straight flow simulation cases, as expected, 
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which is due to the high principal fiber alignment along the flow direction. Specifically, 

the 𝐸𝐸�33 value predicted by applying a swirling flow exhibits a significant increase of 

24.5% comparing to the same property predicted by using a straight flow, which 

demonstrates that the screw swirling has a considerable effect on fiber alignment pattern 

within an extruded polymer composite bead. 

Table 5-2. Computed Mean Elastic Constants of a 13% CF-ABS Extrudate. 

Flow model 𝐸𝐸�11 (GPa) 𝐸𝐸�22 (GPa) 𝐸𝐸�33 (GPa) 𝐺̅𝐺12 (GPa) 𝐺̅𝐺13 (GPa) 
Swirling Flow 3.10 3.50 9.98 1.11 1.66 
Straight Flow 3.47 3.59 8.02 1.25 1.59 

Table 5-2. Computed Mean Elastic Constants of a 13% CF-ABS Extrudate (continued). 

Flow model 𝐺̅𝐺23 (GPa) 𝜈̅𝜈12 𝜈̅𝜈13 𝜈̅𝜈23 
Swirling Flow 1.29 0.45 0.37 0.40 
Straight Flow 1.62 0.41 0.41 0.40 

In addition, prior literature experimentally reported the tensile modulus of a 13% 

CF-ABS in the print bead direction (e.g., 𝐸𝐸�33 appearing in Table 4-2) is around 7-9 GPa 

[12, 25, 103], and our reported 𝐸𝐸�33 value from the two flow models are 8-9 GPa which 

shows a favorable agreement with the above experimental measurements. Considering 

that our numerical method does not match the entire experimental procedure and sampled 

materials in referred literature [12, 25, 103] exactly, the overall favorable comparison 

with prior corresponding experimental work supports our proposed algorithm. 

Finally, our finite element swirling flow model is meshed in 2100 4-node 

quadrilateral elements with 2217 nodes. Additional models having two different meshes 

of the same flow domain (not shown here) were also studied. These alternate models 

included a finer mesh (4745 nodes and 4567 elements) and a coarser mesh (1347 nodes 
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and 1240 elements) as compared to our intermediate mesh that was used to compute all 

of the results given above. It is found that the computed results of mean elastic constants 

𝐸𝐸�11, 𝐸𝐸�22, and 𝐸𝐸�33 using the flow kinematics solved with the intermediate mesh and the 

fine mesh are within 1% absolute relative difference [42]. Therefore, we consider the 

intermediate mesh, that we are currently using, is computationally efficient and reliable 

for our study, such that a finer mesh will not increase much accuracy but yield 

considerate computational cost and numerical instability.  
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CHAPTER SIX 

Influences of Fiber Attrition 

Properly assessing the material stiffness of polymer composites deposited by the 

LAAM process is a vital component of establishing the process-structure-property 

relations for the LAAM technology. While the unique screw extrusion material feeding 

mechanism of the LAAM yields an uneven distribution of fiber aspect ratio within 

deposited composites, most conventional micromechanical models assume a single value 

of fiber aspect ratio in evaluating the elastic properties of composite materials, as was 

presented in previous chapters of this dissertation. Here, we present a statistics-based 

method which includes the fiber aspect ratio distribution of an extruded polymer 

composite into the prediction of extrudate elastic properties hereinafter.  

This chapter investigates the effect of fiber aspect ratio distribution on the 

prediction of effective elastic properties of a composite extrudate processed through the 

LAAM system. To facilitate the methodology demonstration, we measure the fiber length 

distribution of a printed bead made of 13% CF-ABS feedstock that has been commonly 

used for LAAM applications. By assuming the variation of fiber diameter is negligible 

(e.g. see [104]), the fiber aspect ratio distribution is obtained by diving the measured fiber 

length values by a constant value of fiber diameter. The Weibull probability distribution 

function is applied to model the variability in the experimental aspect ratio data. The fiber 

aspect ratio distribution function is incorporated into a fiber orientation homogenization 

method to calculate the mean elastic properties of an extruded composite material for a 
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given fiber orientation state within the extruded composite material, where the fiber 

orientation state applied in this chapter is the same as that computed in Chapter Five. 

The methodology of predicting the elastic properties of extruded polymer 

composites presented herein is based on the orientation homogenization theory (see e.g., 

[22, 89]) with the addition of unevenly distributed fiber aspect ratio. This differs from 

prior work where micromechanics models typically only consider a single value of the 

fiber aspect ratio as input (e.g., [19, 55]). The following includes the description of the 

flow domain of interest and the method developed here to compute the fiber orientation 

state of the flow, the data acquisition procedure of measuring the fiber length distribution 

of the material samples, and the orientation homogenization method with specific 

modifications. 

 
6.1 Flow Domain of Interest and Fiber Orientation 

 
Chapter Five shows that the unique swirling kinematics generated from a LAAM 

single screw extruder may significantly affect the resulting fiber orientation. This chapter 

includes the screw swirling flow model results of Chapter Five. The geometry of the flow 

domain includes a short section of the extruder that connects the screw tip, the nozzle 

portion, and a short strand of a vertical extrudate downstream of the nozzle exit. Due to 

the axisymmetry of the nozzle geometry and assumed flow, the flow domain is simplified 

with a 2D axisymmetric model, which saves significant computational expense. The 

resulting flow domain appears in Figure 5-3. The polymer melt flow modeled in this 

chapter is simulated using the 5-mode PTT model with parameter values given in Table 

5.1 of Chapter Five. The polymer melt flow velocity fields are computed through the 

finite element suite, ANSYS-Polyflow, where the presence of fibers is not included in the 
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flow simulation. Applying the weakly coupled formulation, the second order fiber 

orientation tensors through the flow domain are computed through the RSC model (cf. 

Equation 3-17) and the orientation tensor values at the flow exit (i.e., orientation tensor 

values appearing in Figure 5-14) are used this chapter for further evaluation of the effect 

of fiber length variation on mean elastic properties of the extruded composites.  

6.2 Fiber Length Attrition 

Previous literature shows that fiber length attrition occurs in LAAM applications 

(e.g., [37, 38]) while related experimental studies on the fiber length attrition are still 

limited. To facilitate our study on the effect of fiber aspect ratio distribution on the 

predicted elastic constants, we quantify the fiber aspect ratio distribution of a 13% CF-

ABS material supplied by PolyOne Corporation (Avon Lake, Ohio, USA) following the 

procedure described below. 

Polymer feedstock having 13% CF-ABS is chosen for this research since it is 

commonly used in large-scale polymer composites deposition additive manufacturing 

(e.g., see [12, 25, 103]). As described above, several studies have considered fiber 

breakage during polymer composite injection molding and other screw extrusion 

processes. Unfortunately, little attention has been given to the material deposition 

additive manufacturing processes. Jiang and Smith [105] measured the fiber length 

distribution within a filament and a deposited part, separately, for several commercial 

feedstock materials of a conventional Fused Filament Fabrication (FFF) printer. Their 

results (cf. Fig. 20 in [105]) indicated that the FFF filament-based material deposition 

process has minor effect on fiber length. However, it has been shown that the single 

screw extrusion process in LAAM reduces fiber length within the reinforced polymers 
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(see e.g., [37, 38]). Therefore, we first measure the fiber length of short carbon fibers 

suspended within the CF-ABS material in the pellet feedstock and also in the deposited 

bead to assess the effect of the single screw extrusion process on fiber length attrition. 

Our polymer composite material deposition system includes a Strangpresse 

(Youngstown, OH, USA) Model 19 large-scale single screw extruder, which has a 

maximum material feed rate up to 20 lbs. per hour. Bead samples in this study are 

obtained by depositing the composite material with the single screw extruder operating at 

80 RPM (which equates to a mass flow rate of ~8-9 lbs./hour for 13% CF-ABS) at 215℃. 

To measure the dimensions of fibers, we remove the ABS resin from samples through a 

TA Instruments (New Castle, DE, USA) Q50 Series Thermogravimetric Analyzer (TGA) 

burn-off procedure, where details appear in Table 6-1. 

 
Table 6-1. Customized TGA burn-off test procedure. 

 
Step Number Procedure 

1 Preparing pellet sample (or deposited bead sample) 
2 Ramp 10.00 °C/min to 600.00 °C 
3 Isothermal for 60.00 min 
4 Finish test and cool down the chamber 

 
 

Following the burn-off process in Table 6-1, each test sample is mixed with 

purified water solvent, and then fibers are dispersed without damage using a Branson 

Ultrasonic (Danbury, CT, USA) 250 Digital Sonifier. The treated fiber suspension 

solution is then dried in a 3 inch diameter by 0.5 inch high petri dish in a Thermo 

Scientific (Waltham, MA, USA) BlueM oven at 60 ℃ for 8 hours. Finally, the dried 

sample contained inside the petri dish is imaged with a Keyence (

https://www.google.com/search?rlz=1C1GCEA_enUS837US837&q=Osaka&stick=H4sIAAAAAAAAAOPgE-LUz9U3MKsyzzNV4gAxUwory7W0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxYtYWf2LE7MTAeNtpBlLAAAA&sa=X&ved=2ahUKEwjykL_I0fjhAhWDsp4KHSbxChMQmxMoATAYegQIChAP
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Prefecture, Japan) VR-3000 digital optical microscope to measure the length of 

individual fibers. The complete experimental procedure flowchart appears in Figure 6-1. 

Figure 6-1. Schematic Fiber Length Measurement Procedure. 

6.3 Statistical Modelling 

Suspended fibers within the thermoplastic polymer composite break during 

extrusion due to shear stresses produced by the extruder screw which reduces the mean 

fiber length. The resulting fiber length distribution has been shown to be asymmetric 

where a tail in the distribution propagates towards high fiber lengths [106]. Ularych, et al. 

[107] described the fiber length distribution for a glass fiber polypropylene using a two-

parameter Weibull probability distribution function (i.e., ℱ(𝑥𝑥), with x as the independent 

variable) which can be written as (also see Fu, et al. [108]) 

ℱ(𝑥𝑥|𝑘𝑘𝑤𝑤, 𝜆𝜆𝑤𝑤) = 𝑘𝑘𝑤𝑤

𝜆𝜆𝑤𝑤
� 𝑥𝑥
𝜆𝜆𝑤𝑤
�
𝑘𝑘𝑤𝑤−1

𝑒𝑒𝑒𝑒𝑒𝑒 �−� 𝑥𝑥
𝜆𝜆𝑤𝑤
�
𝑘𝑘𝑤𝑤
�, (6-1) 

where 𝑘𝑘𝑤𝑤 and 𝜆𝜆𝑤𝑤 are shape and scale parameters for the Weibull distribution function, 

respectively. Fu, et al. [108] proposed a set of formula to calculate the most probable 

https://www.google.com/search?rlz=1C1GCEA_enUS837US837&q=Osaka&stick=H4sIAAAAAAAAAOPgE-LUz9U3MKsyzzNV4gAxUwory7W0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxYtYWf2LE7MTAeNtpBlLAAAA&sa=X&ved=2ahUKEwjykL_I0fjhAhWDsp4KHSbxChMQmxMoATAYegQIChAP
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length (mode length, or 𝑥𝑥�) and the number average fiber length (mean length, or 𝑥̅𝑥) from 

a set of fiber lengths as  

𝑥̅𝑥 = ∫ 𝑥𝑥 ℱ(𝑥𝑥)𝑑𝑑𝑑𝑑 =∞

0 𝜆𝜆𝑤𝑤 𝛤𝛤 � 1
𝑘𝑘𝑤𝑤

 + 1�, (6-2) 

and  

𝑥𝑥� = �(𝜆𝜆𝑤𝑤)𝑘𝑘𝑤𝑤 − 1
(𝜆𝜆𝑤𝑤)−𝑘𝑘𝑤𝑤  (𝑘𝑘𝑤𝑤)

�
1/𝑘𝑘𝑤𝑤

, (6-3) 

where 𝛤𝛤 refers to the gamma function. In this study, we use the “wblpdf” function 

provided by MATLAB 2018a [109] (The Mathworks, Natick, Massachusetts, USA) to 

compute the parameters of a Weibull distribution function for set of measured fiber 

length data obtained through the experimental procedure described above. 

 
6.4 Orientation Homogenization Evaluation of Stiffness of Composite Materials 

 
Numerical predictions of mechanical performances of a composite material have 

been shown to be very useful for researchers and engineers in the design of composite 

structures and tooling. Unfortunately, all prior studies employ a single value of fiber 

aspect ratio when calculating the elastic properties of LAAM-printed composite material 

(e.g., see [19, 55], and our previous studies in Chapter Four and Five). To better 

understand the influence of fibers having variable length, we develop a new approach that 

incorporates the fiber aspect ratio distribution into the orientation homogenization 

approach (e.g., see [22, 89]) to estimate the material stiffness of the extruded polymer 

composite, where the effects of flow-induced fiber orientation and extrusion-influenced 

fiber attrition aspect ratio distribution are both considered. Specifically, the distribution 

of fiber aspect ratio is obtained by dividing measured fiber length distribution by a 
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constant fiber diameter, which assumes the fiber diameter is not significantly affected by 

the fiber length attrition and it is constant prior to extruder processing. 

6.4.1 Unidirectional Aligned Fiber Reinforced Composites 

Micromechanical models of unidirectional fiber reinforced composites have been 

developed over the past few decades as composite materials make up an increasing share 

of engineering material market. Mori and Tanaka [110] proposed a method to evaluate 

the stiffness for non-dilute composite materials and Laws and McLaughlin [111] 

extended the self-consistent method initiated by Hill [112] and Budiansky [113] for 

evaluating aligned short fiber reinforced composite stiffness. The Halpin-Tsai equations 

[114], which are derived from continuous fiber filled composite models [112, 115], have 

seen much application (e.g., [116, 117]) for predicting elastic properties of discontinuous 

short fiber composites. Tandon and Weng [87] extended the Mori-Tanaka method to 

obtain a set of equations for computing the stiffness of unidirectional short fiber 

composites. Tucker and Liang [88] assessed several micromechanics theories with the 

finite element method and concluded that predictions using Mori-Tanaka’s approach are 

most applicable to short perfectly aligned fibers in regular arrangements. In a manner 

similar to earlier related works [89], unidirectional composite stiffness predictions are 

used as a basis in the orientation averaging approach described below. To this end, we 

employ the Tandon-Weng [87] formulas to first evaluate the stiffness of a unidirectional 

aligned fiber filled composite. The detail of the formula is presented in Appendix Part A 

and is not given explicitly here for conciseness. 
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6.4.2 Fiber Reinforced Composite with Specific Fiber Orientation 
 

As shown in Figure 6-2, the orientation homogenization approach (e.g., see [22, 

89, 118]) is used here to predict the mean stiffness of a short fiber polymer composite 

that has a known fiber orientation distribution (e.g., that which has resulted from a 

LAAM process simulation). The homogenization approach decomposes the composite 

into a set of subdomains of uniaxially aligned fibers with the same concentration of fibers 

as the representative volume. Following the Voigt procedure (where the mean strain is 

assumed constant over a subdomain), Jack and Smith [89] write the sample mean 

material stiffness tensor 𝑌𝑌�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 of each subdomain from the corresponding fiber stress field 

as 

𝑌𝑌�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  = 1
𝑁𝑁
∑ �𝑄𝑄𝑞𝑞𝑞𝑞𝑐𝑐 (𝜑𝜑𝑛𝑛,𝜙𝜙𝑛𝑛)𝑄𝑄𝑟𝑟𝑟𝑟𝑐𝑐 (𝜑𝜑𝑛𝑛,𝜙𝜙𝑛𝑛)𝑄𝑄𝑠𝑠𝑠𝑠𝑐𝑐 (𝜑𝜑𝑛𝑛,𝜙𝜙𝑛𝑛)𝑄𝑄𝑡𝑡𝑡𝑡𝑐𝑐 (𝜑𝜑𝑛𝑛,𝜙𝜙𝑛𝑛)𝐶𝐶𝑞̅𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑢𝑢𝑢𝑢𝑢𝑢 𝜓𝜓(𝜑𝜑𝑛𝑛,𝜙𝜙𝑛𝑛)�𝑁𝑁
𝑛𝑛=1 , (6-4) 

In the above, i,j,k,l,q,r,s,t ∈ {1,2,3}. In Equation 6-4, 𝑄𝑄𝑖𝑖𝑖𝑖𝑐𝑐 (𝜑𝜑,𝜙𝜙) is the rotation tensor that 

can be written as 

𝑄𝑄𝑖𝑖𝑖𝑖𝑐𝑐 (𝜑𝜑,𝜙𝜙) = �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 0

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
�, (6-5) 

In the above, the fourth-order tensor 𝐶𝐶𝑞̅𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑢𝑢𝑢𝑢𝑢𝑢  is the material stiffness tensor of a reference 

unidirectional composite computed using the Tandon-Weng equations as described above 

[87] and in Appendix Part A. The 𝑄𝑄𝑖𝑖𝑖𝑖𝑐𝑐  is used to rotate a sample fiber from its local 

coordinates where the 𝐶𝐶𝑞̅𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑢𝑢𝑢𝑢𝑢𝑢  is computed to the global coordinate system (cf. first 

homogenization appears in Figure 6-2). Note, the sample mean material stiffness tensor 

𝑌𝑌�𝑖𝑖𝑗𝑗𝑘𝑘𝑙𝑙 is an unbiased estimator (see, e.g., [119]) of the population mean for a given 

distribution [89]. For a specific set of angles (e.g., {𝜑𝜑,𝜙𝜙}), as 𝑁𝑁 → ∞, the sample mean 
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stiffness tensor approaches to the expected value, or the point-wise mean stiffness tensor 

of a subdomain, 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, such that 

𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ∮ 𝑄𝑄𝑞𝑞𝑞𝑞𝑐𝑐 (𝜑𝜑,𝜙𝜙)𝑄𝑄𝑟𝑟𝑟𝑟𝑐𝑐 (𝜑𝜑,𝜙𝜙)𝑄𝑄𝑠𝑠𝑠𝑠𝑐𝑐 (𝜑𝜑,𝜙𝜙)𝑄𝑄𝑡𝑡𝑡𝑡𝑐𝑐 (𝜑𝜑,𝜙𝜙)𝐶𝐶𝑞̅𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑢𝑢𝑢𝑢𝑢𝑢 𝜓𝜓(𝜑𝜑,𝜙𝜙)𝕊𝕊2 𝑑𝑑𝑑𝑑, (6-6) 

Aside from the above derivation, Jack and Smith [89] showed that the mean 

stiffness 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 appearing in Equation 6-6 can be evaluated using the second and fourth 

order orientation tensor of 𝐴𝐴𝑖𝑖𝑖𝑖 and 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (also given in Advani and Tucker [22]) as  

𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑀𝑀1𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑀𝑀2�𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑘𝑘𝑙𝑙 + 𝐴𝐴𝑘𝑘𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖� + 𝑀𝑀3�𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝐴𝐴𝑗𝑗𝑗𝑗𝛿𝛿𝑖𝑖𝑖𝑖 +

𝐴𝐴𝑗𝑗𝑗𝑗𝛿𝛿𝑖𝑖𝑖𝑖� + 𝑀𝑀4𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑘𝑘𝑘𝑘 + 𝑀𝑀5�𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗�, 
(6-7) 

where material constants 𝑀𝑀𝐼𝐼, I = 1,…,5 are computed from 

𝑀𝑀𝐼𝐼 =

⎩
⎪
⎨

⎪
⎧
𝐶𝐶11 + 𝐶𝐶22 − 2𝐶𝐶12 − 4𝐶𝐶66, for 𝐼𝐼 = 1
𝐶𝐶12 − 𝐶𝐶23,  for 𝐼𝐼 = 2
𝐶𝐶66 + (𝐶𝐶23 − 𝐶𝐶22)/2,  for 𝐼𝐼 = 3
𝐶𝐶23,          for 𝐼𝐼 = 4
(𝐶𝐶22 − 𝐶𝐶23)/2,          for 𝐼𝐼 = 5⎭

⎪
⎬

⎪
⎫

, (6-8) 

In the above, 𝐶𝐶𝑖𝑖𝑖𝑖 are components of the stiffness tensor for the associated unidirectional 

fiber filled composite (i.e., 𝐶𝐶𝑞̅𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑢𝑢𝑢𝑢𝑢𝑢 ) written in contracted notation, which we compute using 

the Tandon-Weng micromechanics model as did in previous chapters [87].  

It is common to assume a constant value for the fiber aspect ratio in the numerical 

evaluation of 𝐶𝐶𝑞̅𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑢𝑢𝑢𝑢𝑢𝑢  when applying the Tandon-Weng model (cf. Appendix A) to short 

fiber composite materials which neglects any variation in geometric fiber aspect ratio. In 

contrast, we include the effect of fiber aspect ratio distribution within the printed 

composite material in the derivation below. 

Notice that given a specific fiber aspect ratio, a material stiffness tensor 𝐶𝐶𝑞̅𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑢𝑢𝑢𝑢𝑢𝑢  may 

be computed. Then, the mean stiffness tensor is evaluated as 
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𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟 = ∮ 𝑄𝑄𝑞𝑞𝑞𝑞𝑐𝑐 (𝜑𝜑,𝜙𝜙)𝑄𝑄𝑟𝑟𝑟𝑟𝑐𝑐 (𝜑𝜑,𝜙𝜙)𝑄𝑄𝑠𝑠𝑠𝑠𝑐𝑐 (𝜑𝜑,𝜙𝜙)𝑄𝑄𝑡𝑡𝑡𝑡𝑐𝑐 (𝜑𝜑,𝜙𝜙)𝐶𝐶𝑞̅𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑢𝑢𝑢𝑢𝑢𝑢 (𝑎𝑎𝑟𝑟)𝜓𝜓(𝜑𝜑,𝜙𝜙)𝕊𝕊2 𝑑𝑑𝑑𝑑, (6-9) 

Recall, in polymer sciences, the number average polymer molecular weight of a polymer 

is computed through [120] 

𝑀𝑀�𝑁𝑁 = ∫ 𝑁𝑁(𝑀𝑀)𝑀𝑀𝑀𝑀𝑀𝑀∞
0
∫ 𝑁𝑁(𝑀𝑀)𝑑𝑑𝑑𝑑∞
0

, (6-10) 

where M is the weight of one molecule, and N(M) stands for the molecular-weight 

distribution function for M. Equation 6-10 indicates an approach to estimate the expected 

mean value of M(M) (e.g., in Equation 6-10, M(M) = M) that has a distribution function 

N(M). Applying the a similar form as appearing in Equation 6-10, we express the number 

average mean stiffness tensor out of 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟  as  

𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟����𝑁𝑁 =

∫ �ℱ(𝑎𝑎𝑟𝑟)𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟 �𝑑𝑑𝑎𝑎𝑟𝑟

∞
0

∫ [ℱ(𝑎𝑎𝑟𝑟)]𝑑𝑑𝑎𝑎𝑟𝑟
∞
0

, (6-11) 

Furthermore, we recast Equation 6-7 as a function of the fiber aspect ratio, such that  

𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟 = 𝑀𝑀1(𝑎𝑎𝑟𝑟)𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑀𝑀2(𝑎𝑎𝑟𝑟)�𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑘𝑘𝑘𝑘 + 𝐴𝐴𝑘𝑘𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖� + 𝑀𝑀3(𝑎𝑎𝑟𝑟)�𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 +

𝐴𝐴𝑗𝑗𝑗𝑗𝛿𝛿𝑖𝑖𝑖𝑖 + 𝐴𝐴𝑗𝑗𝑗𝑗𝛿𝛿𝑖𝑖𝑖𝑖� + 𝑀𝑀4(𝑎𝑎𝑟𝑟)𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑘𝑘𝑘𝑘 + 𝑀𝑀5(𝑎𝑎𝑟𝑟)�𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝐴𝐴𝑖𝑖𝑙𝑙𝛿𝛿𝑗𝑗𝑗𝑗�, 
(6-12) 

where 𝑀𝑀𝑖𝑖(𝑎𝑎𝑟𝑟) are evaluated through Equation 6-8, that depending on the results of 

𝐶𝐶𝑞̅𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑢𝑢𝑢𝑢𝑢𝑢 (𝑎𝑎𝑟𝑟). In other words, given a value of 𝑎𝑎𝑟𝑟, we can compute a set of 𝐶𝐶𝑞̅𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑢𝑢𝑢𝑢𝑢𝑢 (𝑎𝑎𝑟𝑟), i.e., 

𝑀𝑀𝑖𝑖(𝑎𝑎𝑟𝑟) as well. We then evaluate the 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟  appearing in Equation 6-11 through Equation 

6-12. It follows that since the integral of ∫ [ℱ(𝑎𝑎𝑟𝑟)]𝑑𝑑𝑎𝑎𝑟𝑟
∞

0  is one and we finally obtain  

𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟����𝑁𝑁 = ∫ �ℱ(𝑎𝑎𝑟𝑟)[𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑎𝑎𝑟𝑟 (𝑎𝑎𝑟𝑟)]�𝑑𝑑𝑎𝑎𝑟𝑟
∞
0  , (6-13) 

to evaluate the number average mean stiffness tensor at a material point within the 

composite material with known orientation tensor values. In the above, ℱ(𝑎𝑎𝑟𝑟) is the 
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Weibull distribution function that describes the probability of 𝑎𝑎𝑟𝑟 (cf. Equation 6-1) that 

we fit from experimental measures as described above. 

The molecular weight computation in polymer science can be also quantified in a 

sense of weight-average, such that [120] 

𝑀𝑀�𝑁𝑁 = ∫ 𝑁𝑁(𝑀𝑀)𝑀𝑀2 𝑑𝑑𝑑𝑑∞
0

∫ 𝑁𝑁(𝑀𝑀)𝑀𝑀 𝑑𝑑𝑑𝑑∞
0

, (6-14) 

It is reasonable that the longer fibers within a composite material (e.g., the highest 20% 

of the Weibull distribution function) play a more important role in defining the elastic 

properties of the material than those with much shorter dimensions (e.g., the lowest 20% 

of the Weibull distribution function). To this end, we propose an additional expression of 

the mean stiffness tensors, where longer fibers are weighted more than the shorter ones, 

such that 

𝐶̌𝐶𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗
𝑎𝑎𝑟𝑟����𝑊𝑊 =

∫ �ℱ(𝑎𝑎𝑟𝑟)�𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟 (𝑎𝑎𝑟𝑟)�

2� 𝑑𝑑𝑎𝑎𝑟𝑟
∞
0

∫ �ℱ(𝑎𝑎𝑟𝑟) �𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟 (𝑎𝑎𝑟𝑟)�� 𝑑𝑑𝑎𝑎𝑟𝑟

∞
0

(6-15) 

where 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟����𝑊𝑊 refers to a weight average mean stiffness tensor of a material point within

the composite that has a fiber aspect ratio distribution of ℱ(𝑎𝑎𝑟𝑟) and known orientation 

tensor values. This concludes the derivation of our proposed orientation homogenization 

method with a consideration of the fiber aspect ratio distribution. To reduce the 

confusion, we summarize the stiffness tensor related variables that used above in Table 6-

2.
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Figure 6-2. Grain Model Two Step Homogenization Procedure. Notice, the Derivation 
Appearing above Associated with the First Homogenization. The Second 
Homogenization is Applied to where Several Places with Different Orientation States Are 
to Be Integrated (cf. Equation 4-15). 
 
 

Table 6-2. Definitions of Stiffness Tensor Appearing in This Section. 
 

Variable Definition 
𝐶𝐶𝑞̅𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑢𝑢𝑢𝑢𝑢𝑢  Stiffness tensor of a reference unidirectional composite 

𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
Material point mean stiffness tensor of a subdomain inside a composite, that has 
a specific orientation distribution function 

𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟  𝐶̌𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 assuming a single value of 𝑎𝑎𝑟𝑟 

𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟����𝑁𝑁 Number-averaged 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑎𝑎𝑟𝑟  for a distribution function of 𝑎𝑎𝑟𝑟 

𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟����𝑊𝑊 Weight-averaged 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑎𝑎𝑟𝑟  for a distribution function of 𝑎𝑎𝑟𝑟 

𝐶𝐶𝑖̅𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
Bead-wise mean stiffness tensor of a composite with specific orientation 
distribution (see e.g.,  Equation 4-15 for evaluation method) 

 
 

It is important to note that the fiber aspect ratio plays a key role in the 

computation in the second-order orientation tensor through the coefficient 𝜆𝜆𝑎𝑎𝑟𝑟 appearing 

in, e.g., the RSC model (cf. Equation 3-17). Fortunately, as the fiber aspect ratio 

approaches a value of 1, the effect of 𝜆𝜆𝑎𝑎𝑟𝑟 becomes somewhat trivial in determining the 

fiber orientation state. In this study we assume that the effect of the fiber aspect ratio 

distribution on computed fiber orientation with Equation 3-17 is negligible. Therefore, 

we assume that the solution obtained from Chapter Five, where the parameter of 𝜆𝜆𝑎𝑎𝑟𝑟 is 

fixed at unity (as in [56]) may be used here for fiber orientation tensor prediction. 
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Additionally, we assume that the probability of the aspect ratio distribution is 

independent of location within the extrudate and the entire bead shares the same fiber 

length distribution function, which may likely be obtained due to an efficient compound 

mixing from the LAAM single screw extruder feeding mechanism. With this assumption, 

we are to apply same fiber length distribution results on different positions locally over 

the end of the extrudate.  

6.5 Results and Discussion 

Computed values of the mean stiffness tensors for a LAAM-extruded polymer 

composites including the effect of a statistical distribution of fiber aspect ratio are 

presented below. The measured fiber attrition length distribution of our 13% CF-ABS 

carbon fibers appears first. Several statistical models are employed to reflect the 

statistical nature of the measurements. Finally, the elastic properties of a 13% CF-ABS 

extrudate are predicted through the orientation homogenization theory where we employ 

different fitted statistical data. 

6.5.1 Fiber Length Attrition 

The geometric aspect ratio of cylindrical fibers suspended within a thermoplastic 

polymer composite material is the length-to-diameter ratio (i.e., 𝑎𝑎𝑟𝑟 = Lf/Df, where Lf and 

Df are length and diameter of a cylindrical fiber, respectively). For short rigid fibers, prior 

works [37, 38] considered the degradation of fiber length as a pronounced result of 

damage incurred while traveling through the screw-extrusion mechanism. On the other 

hand, we note here the applicability of the non-affected fiber diameter assumption is the 

prerequisite and foundation of our data acquisition for the fiber aspect ratio distribution. 



104 
 

Russell and Jack [104] measured the fiber diameter of 13% CF-ABS processed through a 

single screw extruder and found that the variation on the measured diameter data is 

statistically insignificant. Hence, it is assumed here that the fiber diameter is a constant in 

the feedstock pellets provided by the supplier and does not changed as a fiber travels 

through the LAAM screw extrusion. Therefore, the fiber aspect ratio data can be obtained 

by dividing the measured fiber length distribution of the prepared samples with a constant 

measured mean diameter. Specifically, we set the fiber diameter as 7 𝜇𝜇𝜇𝜇 as given by 

Russell and Jack [104].  

In this work, a Keyence VR-3000 Wide-Area 3D Microscopy Measurement 

System is used to measure fiber length. A typical image of fibers obtained with the VR-

3000 microscope appears in Figure 6-3 for both a pellet sample and a bead sample 

separately. Note, fibers appearing in Figure 6-3 are examples of the fiber residuals that 

have been post-processed in a petri dish (e.g., see procedure 3,4 and 5 shown in Figure 6-

1) under the VR-3000 Microscopy. Upon close inspection of the images in Figure 6-3, it 

is visually possible to identify that fiber length degrades from the pellet to deposited bead 

condition. 

Fiber length distributions are obtained in this study by measuring the length of 

990 fibers in ten separate trials (i.e., 99 fibers are measured in each trial, which is the 

maximum of VR-3000 for counting fibers in one frozen plot) in both the pellet fiber 

sample and the bead fiber sample. Sharma, et al. [121] measured 2000 fibers for a 30% 

wt. carbon fiber filled Polypropylene and validated the reliability of their fiber length 

distribution measurements. Hence, we count roughly 1000 (half of the measurements 

done in [121]) fibers’ length for getting the length distribution of a 13% wt. (which is 
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~1/2 of the weight fraction of material used in [121]) carbon fiber filled ABS. Histograms 

of the measured fiber lengths appear in Figure 6-4, which shows that suspended carbon 

fibers experience significant breakage during processing. Jiang and Smith [105] showed 

that fiber length attrition was minimal in conventional filament-based FFF which implies 

that the FFF material deposition process does not degrade fiber length. Thus, it is 

reasonable to attribute the fiber length reduction appearing in Figure 6-4 as a result of the 

material transport mechanism of the LAAM single screw extruder.  



106 
 

 
(A) 

 
(B) 

Figure 6-3. Images of Fibers Obtained Using a VR-3000 Microscopy for: (A) Pellet 
Sample; (B) the Bead Sample. (Resolution Specification: High Resolution Cam. ×40) 
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(A) 

(B) 
Figure 6-4. Histograms of Fiber Length Data Measured for Fibers from: (A) Pellet 
Sample; (B) Bead Samples.  
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 Note that the size of the view (i.e., picture size appearing in Figure 6-3) for fiber 

length measurements can yield significant bias into the resulting distribution data. As 

shown in Figure 6-5A, if the sampling view is very large, the longer fibers (labelled in 

red) are typically chosen more than the smaller alternatives since the larger pieces are 

easier to be identified by nature. On the contrary, if a small observation region is adopted, 

the short fibers can be easily chosen while longer fibers may be cut off by a significant 

amount and ultimately ignored as shown in Figure 6-5B. Consequently, the final resulting 

length distribution measurement may exhibit a bias as compared to the “true” 

measurement (i.e., unbiased measurement) if size of a sample region is unproperly 

chosen. Admittedly, we acknowledged that the size of sampling images adopted in our 

experimental procedure may yield some bias in measuring the fiber length distribution. 

Nevertheless, as the main scope of this chapter is to quantify the difference in predicting 

elastic properties of the LAAM-deposited composites by using a single fiber aspect ratio 

and a distribution function of fiber aspect ratio values, it can be expected that the data 

trend generated by our proposed approach (cf. Section 6.4) with current fiber length 

distribution data would be similar as compared to the event where a potentially less-

biased fiber length measurement was performed. The appropriate size of observation 

region should be specified in a separate in-depth study of fiber length distribution in our 

future work. 
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(A) (B) 
Figure 6-5. Conceptual Diagram Showing the Bias Generation during Fiber Length 
Measurements: (A) in Large View; (B) in Small View. Note, the blue region indicates 
where all fibers are, the white dash-line block is the sampling region. And the red fibers 
are identified (i.e., counted in a measurement) and the yellow ones are left out. 

6.5.2 Fiber Aspect Ratio Distribution 

Histograms of fiber aspect ratio of both pellet and bead samples appear in Figure 

6-6, where the fiber length data is the same as that given in Figure 6-4 and the fiber

diameter of the pellets and beads samples is assumed constant at 7 𝜇𝜇𝜇𝜇 [104]. Employing 

the Weibull distribution function (cf. Equation 6-1), parameters that define the two sets of 

measurements are obtained through a curve fitting process (cf. function “fitdist” in 

MATLAB [109]), where results appear in Figure 6-7 and parameters fitted for the 

Weibull distribution function are given in Table 6-3. The statistics models appearing in 

Figure 6-7 make it possible to include the effect of the distributed values of the fiber 

aspect ratio into the prediction of elastic properties of an extruded polymer composite 

through the proposed homogenization method in Equations 6-13 and 6-15.  

Furthermore, characteristic values of the distributed measurements (i.e., 𝑎𝑎𝑟𝑟��� and 

𝑎𝑎𝑟𝑟� , which are the mean and mode values of the fiber aspect ratio distributions) are 

evaluated through Equations 6-2 and 6-3 and the results are given in Table 6-4. The 
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Percent Relative Difference (PRD) [55] (i.e., showing a relative error between two data 

without bias on either) is employed to assess differences, such that 

𝑃𝑃𝑃𝑃𝑃𝑃 = |𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑏𝑏|/(|𝑥𝑥𝑎𝑎 + 𝑥𝑥𝑏𝑏|/2)  × 100% (6-16) 

where 𝑥𝑥𝑎𝑎 and 𝑥𝑥𝑏𝑏 are the two data points to be compared. From the measured data, it can 

be seen that the fiber length attrition is pronounced such that the 𝑃𝑃𝑃𝑃𝑃𝑃 between the 

𝑎𝑎𝑟𝑟��� values of the pellet and bead results is 23.7%. Moreover, it is seen that the 𝑃𝑃𝑃𝑃𝑃𝑃 

between 𝑎𝑎𝑟𝑟��� and 𝑎𝑎𝑟𝑟� values of the fiber aspect ratio distribution of pellet-results is 16.4%, 

while that of the bead values is only 4.7%. In other words, the skewness of the fiber 

aspect ratio distributions (i.e., absolute difference between mean and mode values of a 

distribution) in the bead results is much smaller than that of the pellet results.  

In spite of statistical methods, prior studies often employed the direct algebra-

averaging schemes to estimate the mean characters of the measurements such that [122] 

𝑎𝑎𝑟𝑟���𝑁𝑁 = ∑𝑛𝑛𝑖𝑖 𝑎𝑎𝑟𝑟�𝑖𝑖/∑𝑛𝑛𝑖𝑖  , and 𝑎𝑎𝑟𝑟���𝑊𝑊 = ∑𝑛𝑛𝑖𝑖 �𝑎𝑎𝑟𝑟�𝑖𝑖 �
2

/∑𝑛𝑛𝑖𝑖𝑎𝑎𝑟𝑟�𝑖𝑖, (6-17) 

where 𝑛𝑛𝑖𝑖 and 𝑎𝑎𝑟𝑟�𝑖𝑖 denote the number of fibers counted in an individual measurement trial 

(recall that we performed 10 trials in total) and the mean aspect ratio of that measurement 

(i.e., sum of the measured fiber length divided by the number of fibers measured), 

respectively. In the above, 𝑎𝑎𝑟𝑟���𝑁𝑁, and 𝑎𝑎𝑟𝑟���𝑊𝑊 refer to the number weighted average and 

weighted average fiber aspect ratios, respectively. Mean values evaluated through 

Equation 6-17 are also summarized in Table 6-4, from where it can be seen that the two 

discrete sample computed results give characteristic fiber aspect ratio values are similar 

to each other, which fails to provide additional description on the feature of the fiber 

aspect ratio distribution. Alternatively, statistically obtained characteristic values (i.e., 

𝑎𝑎𝑟𝑟��� and 𝑎𝑎𝑟𝑟� ) exhibit a larger difference, especially for the pellet results, which potentially 
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provides differing results in describing the fiber aspect ratio distribution. Additionally, it 

is seen that the mean values evaluated through Equation 6-17 are similar to the 

statistically computed 𝑎𝑎𝑟𝑟��� through Equation 6-2, which indicates that the statistical fitting 

is of good quality, in a sense to provide a similar estimation to the mean of a distributed 

values of fiber aspect ratio. In the following elastic prediction, only the 𝑎𝑎𝑟𝑟��� and 𝑎𝑎𝑟𝑟� will be 

implemented, since the results predicted by 𝑎𝑎𝑟𝑟���𝑁𝑁 , 𝑎𝑎𝑟𝑟���𝑊𝑊 should be very close to those 

predicted by applying 𝑎𝑎𝑟𝑟��� values (cf. Table 6-4). 
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(A) 

 
(B) 

Figure 6-6. Histograms of Fiber Aspect Ratio Data Measured for Fibers from: (A) Pellet 
Sample; (B) Bead Samples.  
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Figure 6-7. Statistical Models of Fiber Aspect Ratio Data for Fibers Obtained from the 
Pellet sample and the Bead Sample. “WPDF” refers to the Weibull distribution density 
function. 

Table 6-3. Parameters Fitted for the Weibull Distribution Functions. 

Sample 𝜆𝜆𝑤𝑤 𝑘𝑘𝑤𝑤 
Pellet 62.47 2.17 
Bead 49.00 2.77 

Table 6-4. Mean and Mode Values of the Fiber Aspect Ratio Distribution Functions. 

Sample 𝑎𝑎𝑟𝑟��� 𝑎𝑎𝑟𝑟���𝑁𝑁 𝑎𝑎𝑟𝑟���𝑊𝑊 𝑎𝑎𝑟𝑟�
Pellet 55.3 55.3 55.3 46.9 
Bead 43.6 43.7 43.7 41.6 

Note, 𝑎𝑎𝑟𝑟��� is the number average mean value of the statistical distribution function results (cf. 
Equation 6-2, which is similar to that appearing in Equation 6-10 and thus the resulting value 
is considered as the number average mean).  

6.5.3 Elastic Properties Estimation 

Prior work in Chapters Four and Five assume a constant value of fiber aspect ratio 

to evaluate the mean material stiffness of extruded composite materials processed with 

LAAM. Alternatively, in this chapter, we employ Equations 6-1 (i.e., the Weibull 

distribution function) to account for the variation in fiber aspect ratio as shown by the 



114 
 

distributions appearing in Figure 6-7. To understand the significance of computing the 

mean elastic properties using the fiber length distribution, additional computations are 

performed using a single value of aspect ratio, which are values of 𝑎𝑎𝑟𝑟��� and 𝑎𝑎𝑟𝑟� as appearing 

in Table 6-4. The fiber orientation state of the free extrudate composite end is taken from 

Figure 5-14 (cf. Chapter Five). The elastic properties of the constitutions for the 13% wt. 

CF-ABS (𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓=8.4%) considered here are given in Table 4-5 (cf. Chapter Four).  

Computed results appearing in Figures 6-8 to 6-10 are mean elastic constants 

across the extrudate bead of the polymer composite. Note that in the plots, “Pellet results” 

and “Bead results” imply that the fiber aspect ratio input is obtained from the pellet fiber 

length distribution results and the bead fiber length attrition distribution results (cf. 

Figure 6-4), respectively. By comparing the elastic properties predicted from the two sets 

of measurements, the effects of geometric change of fiber reinforcement during the single 

screw extrusion process on a printed bead of composite materials can be exposed. In 

particular, the results of 𝑎𝑎𝑟𝑟���𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
 𝑁𝑁  and 𝑎𝑎𝑟𝑟���𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑓𝑓

 𝑊𝑊  are evaluated through Equations 6-13 and 

6-15, respectively. And those labelled with 𝑎𝑎𝑟𝑟��� and 𝑎𝑎𝑟𝑟� are evaluated through Equation 6-

11 in a usual manner as in Chapters Four and Five. From Figures 6-8 to 6-10, it is seen 

that the properties show local variances across the bead. Among the predicted properties, 

the most notable difference is seen in the values of 𝐸𝐸33 (i.e., the tensile modulus along the 

direction of extrusion). Specifically, employing pellet sample measurements and bead 

sample measurements yields a difference of ~1 GPa in the resulting 𝐸𝐸33 (e.g., 𝑎𝑎𝑟𝑟���𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
 𝑊𝑊  

results predicted using pellet and bead samples separately). In addition, implementing a 

single mode value of fiber aspect ratio also yields noticeable bias as compared to that 

predicted using the Weibull distribution function (e.g., bead results of 𝐸𝐸33 between 
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𝑎𝑎𝑟𝑟���𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
 𝑊𝑊  and 𝑎𝑎𝑟𝑟� is in about ~1 GPa difference). This implies the importance of assessing 

the fiber aspect ratio on predicting the elastic properties of a LAAM-processed composite 

bead. It shall be seen more directly in the mean elastic properties estimation in the 

following. 

In addition, we numerically integrate the mean elastic stiffness tensors of an 

extrudate bead over the cross-sectional area of the extrudate through Equation 4-15 to 

obtain the mean elastic tensor of the bulk extruded composites. Herein, we employ the 

trapezoidal rule [102] in a similar manner as in previous chapters. Computed results of 

the mean elastic properties appear in Tables 6-5 and 6-6, where the presented results are 

evaluated by employing a single value of fiber aspect ratio and a Weibull distribution 

function, respectively. Note, the “Source” column indicates from which measurements 

the stiffness tensor (i.e. “Stiffness” as appearing in the second column of the tables) is 

computed, which is similar to the legends “Pellet results” and “Bead results” appearing in 

Figures 6-8 to 6-10. Specifically, 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(~) indicates the tensor is evaluated by 

implementing a single value of fiber aspect ratio (e.g., 𝑎𝑎𝑟𝑟��� and 𝑎𝑎𝑟𝑟�). Additionally, 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟����𝑁𝑁 ,

𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟����𝑊𝑊 are computed separately through Equations 6-13 and 6-15 by implementing the

fiber aspect ratio Weibull distribution function. Then the elastic constants results are 

obtained from the computed mean stiffness tensors as in Equation 4-16. 

From the given data, it is clearly seen that predicted mean elastic properties 

exhibit notable variation by applying different approaches in the evaluation, especially in 

the properties of 𝐸𝐸�33. Firstly, it can be seen that the fiber length attrition does yield a bias 

in the predicted 𝐸𝐸�33, where the results of 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟����𝑊𝑊 evaluated using the pellet and bead
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measurements separately yields a PRD of 6%. Furthermore, the single value fiber aspect 

ratio approach and the distribution function approach also yields a bias in the computed 

𝐸𝐸�33, such that the values predicted by the bead measurements of 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟����𝑁𝑁, and 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑎𝑎𝑟𝑟���) has 

a PRD of 5%. In combination, if the fiber length attrition between the pellet and bead 

samples are ignored and the fiber aspect ratio distribution in the deposited bead is also 

neglected, then the PRD between the predicted 𝐸𝐸�33 can be as high as 12%, i.e., 

comparing predicted 𝐸𝐸�33 values by using {pellet measurement: 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑎𝑎𝑟𝑟���)} and {bead 

measurement: 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟����𝑁𝑁} approaches, respectively. Additionally, the 𝐸𝐸�33 properties computed 

from 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟����𝑁𝑁 and 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑎𝑎𝑟𝑟����𝑊𝑊 using the bead measurements exhibit a PRD of 3%, where the 

weight-averaged property is higher than the number-averaged. It is important to note that 

the probability density distribution of 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟  may not be the Weibull distribution ℱ(𝑥𝑥) for 

𝑎𝑎𝑟𝑟 as we assumed since the elastic constants are a nonlinear function of 𝑎𝑎𝑟𝑟 the Tandon-

Weng theory (cf. Appendix Part A).  

In addition, our numerical estimated equivalent mean property 𝐸𝐸�33 is 

approximately 9 to 11 GPa, which generally matches the experimental reported values 

(e.g., tensile modulus parallel to the printing direction of a printed bead made of 13% CF-

ABS [25, 103] (i.e., 7 to 9 GPa). As mentioned, the difference of our prediction and the 

experimental measurements may be caused by neglecting the voids in the microstructures 

of a deposited bead (cf. Figure 1-1). We note that a further in-depth study should include 

experimental validation using tensile test samples of the same material as that used to 

obtain fiber length data. 
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(A) 

(B) 
Figure 6-8. Predicted Properties across the Printed Extrudate: (A) 𝐸𝐸11; (B) 𝐸𝐸22.
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(A) 

 
(B) 

Figure 6-9. Predicted Elastic Properties across the Printed Extrudate: (A) 𝐸𝐸33; (B) 𝐺𝐺12.
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(A) 

(B) 
Figure 6-10. Predicted Elastic Properties across the Printed Extrudate: (A) 𝐺𝐺23; (B) 𝐺𝐺13. 
Note, 𝑥𝑥3 direction refers to the direction of extrudate bead (cf. Equation 4-14), and 𝑥𝑥1, 
and 𝑥𝑥2 are the transverse directions to the printing direction.
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Table 6-5. Mean Elastic Constants of a CF-ABS Extrudate Evaluated with a Constant Fiber Aspect Ratio. 
 

Distribution Source Stiffness  𝑬𝑬�𝟏𝟏𝟏𝟏 (GPa) 𝑬𝑬�𝟐𝟐𝟐𝟐 (GPa) 𝑬𝑬�𝟑𝟑𝟑𝟑 (GPa) 𝑮𝑮�𝟏𝟏𝟏𝟏 (GPa) 𝑮𝑮�𝟐𝟐𝟐𝟐 (GPa) 𝑮𝑮�𝟏𝟏𝟏𝟏 (GPa) 
Pellet 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑎𝑎𝑟𝑟���) 3.16 3.62 11.06 1.13 1.77 1.34 
Pellet 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑎𝑎𝑟𝑟�) 3.13 3.56 10.55 1.12 1.72 1.31 
Bead 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑎𝑎𝑟𝑟���) 3.10 3.53 10.30 1.11 1.69 1.30 
Bead 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑎𝑎𝑟𝑟�) 3.11 3.51 10.13 1.11 1.67 1.30 

Note, 𝑥𝑥3 direction refers to the direction of extrudate bead (cf. Equation 3-7), and x1, and x2 are the transverse directions to the printing 
direction. 𝐶𝐶𝑖̅𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑎𝑎𝑟𝑟���) is the mean stiffness evaluated by implementing the 𝑎𝑎𝑟𝑟��� resulted from the Weibull distribution function and 𝐶𝐶𝑖̅𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑎𝑎𝑟𝑟�) 
is the mean stiffness computed by using the 𝑎𝑎𝑟𝑟� value. 

 
 

Table 6-6. Mean Elastic Constants of a CF-ABS Extrudate Evaluated through with a Fiber Aspect Ratio Distribution Function. 
 

Distribution Source Stiffness 𝑬𝑬�𝟏𝟏𝟏𝟏 (GPa) 𝑬𝑬�𝟐𝟐𝟐𝟐 (GPa) 𝑬𝑬�𝟑𝟑𝟑𝟑 (GPa) 𝑮𝑮�𝟏𝟏𝟏𝟏 (GPa) 𝑮𝑮�𝟐𝟐𝟐𝟐 (GPa) 𝑮𝑮�𝟏𝟏𝟏𝟏 (GPa) 

Pellet 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟����𝑁𝑁 3.12 3.54 10.37 1.12 1.70 1.31 

Pellet 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟����𝑊𝑊 3.13 3.56 10.68 1.12 1.72 1.30 

Bead 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟����𝑁𝑁 3.10 3.48 9.84 1.10 1.65 1.28 

Bead 𝐶̌𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙
𝑎𝑎𝑟𝑟����𝑊𝑊 3.10 3.49 10.10 1.11 1.66 1.28 

Note, 𝑥𝑥3 direction refers to the direction of extrudate bead (cf. Equation 3-7), and x1, and x2 are the transverse directions to the printing 
direction. 𝐶̃𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑎𝑎𝑟𝑟����𝑁𝑁 and 𝐶̃𝐶𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗
𝑎𝑎𝑟𝑟����𝑊𝑊 are the number average mean stiffness tensor and weight average mean stiffness tensor, respectively, that are 

evaluated with the Weibull distribution function of fiber aspect ratios through Equations 6-14 and 6-16, respectively. 
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CHAPTER SEVEN 

Mutually Dependent Relations between Melt Flow and Fiber Reinforced 

Polymer composite melt flow kinematics evaluated in the prior chapters assumed 

that the presence of fibers is negligible in the flow computation and the fiber orientation 

state is solved through the uncoupled flow fields solution. This approach is also referred 

as the weakly-coupled flow-fiber formulation, which has been proved to be sufficiently 

accurate and computationally economical in shear dominate narrow gap involved flows 

applications such as injection molding thin cavity flows [24, 70]. Recently, Brenken, et 

al. [51] showed that the alignment of fiber reinforcements can significantly alternate the 

flow behavior of the filled polymer feedstock in FFF-type applications, which indicates 

the importance of the coupling effects between the polymer melt flow and the reinforced 

fibers in LAAM polymer deposition applications. Bertevas, et al. [123] simulated the 

flow behavior of extrusion-based AM deposition process through the mesh-free Smooth 

Particle Hydrodynamics (SPH) method, where the flow and fiber orientation results were 

interpolated to five streamlines for further detailed analysis. In contrast, the finite element 

method places no restrictions on the fiber orientation governing equations (e.g., 

Equations 3-15) [53] and can be formulated to provide nodal solutions for the flow fields 

and the second order fiber orientation tensor fields. In addition, nodal values of fiber 

orientation tensor components offer a convenient form for future design sensitivity 

analyses, optimization, and inverse analyses of polymer composite melt flow problems. 

While previous literature (e.g., VerWeyst and Tucker [50] and Dinh and Armstrong [82]) 
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may have addressed the nodal solutions of fiber orientation in polymer processing 

applications, our investigation herein is more tailored for nozzle-extrudate scenarios 

occurring in LAAM applications, which can be further implemented into inverse analysis 

on mechanical properties of extruded materials, inverse die design in terms of the nozzle 

geometries.  

Hereinafter, we present a finite-element-based algorithm to quantify the mutually 

dependent relationship between the polymer melt flow and the reinforced fiber 

orientation in a melt extrusion nozzle flow with a short section of post-nozzle extrudate, 

where the simulation of die swell phenomena is included. There are advantages for 

solving the coupled flow-fiber problem through a commercial code, like ANSYS-

Polyflow used in previous chapters, by which we would be able to take advantages of its 

built-in computational functions to explain in-depth sciences for polymer composite flow. 

Unfortunately, the user-defined functions provided by ANSYS-Polyflow does not enable 

us to incorporate the effects of fiber orientation into the flow computation using 

anisotropic viscosity constitutive laws (cf. Section 3.3). Alternatively, we employ the 

Galerkin Finite Element Method (GFEM) to recast the governing equations of the flow 

fields and the fiber orientation tensor due in part to its concise form and since there are no 

additional restrictions on the parameters of the fiber orientation equation (e.g., see 

Equation 3-15) [53]. To reduce the difficulty of convergence of the coupled algorithm, 

the system is decomposed into separate parts where the flow and fiber orientation are 

computed individually in an iterative manner. The coupling scheme is introduced in a 

separately section after the formulation of the flow and fiber orientation solutions. 
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7.1 Computation of Flow Fields 

The general 2-D domain in Figure 7-1 is considered to facilitate the derivation of 

the finite element formulation for the melt flow and fiber orientation where 𝛺𝛺 is an 

integrable continuum, and 𝛤𝛤𝑣𝑣 and 𝛤𝛤𝜎𝜎 are mutually exclusive boundaries subjected to 

imposed velocity (i.e., 𝒗𝒗) and stress (i.e., 𝝈𝝈), respectively.  

Figure 7-1. Finite Element Domain and Associated Boundaries for Flow Problems. 

Following a standard GFEM approach (e.g., see [124]), the weak forms of the 

mass the momentum conservation equations (cf. Equations 3-1 and 3-2) can be written as 

∫ 𝒘𝒘𝑇𝑇(𝛻𝛻 ∙ 𝒗𝒗)Ω 𝑑𝑑Ω = 0, (7-1) 

and, 

∫ 𝒘𝒘𝑇𝑇(𝛻𝛻 ∙ 𝝈𝝈 + 𝜌𝜌𝒇𝒇)Ω 𝑑𝑑Ω = 0, (7-2) 

where 𝒘𝒘 is an arbitrary weight function and other terms are as defined in Section 3.1 

above. Following the GFEM theory, the arbitrary weight function is set to be the same as 

the interpolation function, such that 𝒘𝒘 = 𝑵𝑵𝒆𝒆. Expanding the term of 𝝈𝝈 as in Equation 3-3, 

and then applying integration by parts, we obtain  

∫ [(𝜵𝜵𝒔𝒔𝒘𝒘)𝑇𝑇𝛺𝛺 𝑽𝑽 𝜵𝜵𝒔𝒔𝒗𝒗]𝑑𝑑𝑑𝑑 − ∫ 𝑃𝑃(𝜵𝜵𝒔𝒔𝑇𝑇𝒘𝒘)𝑇𝑇𝛺𝛺 𝑑𝑑𝑑𝑑 = ∫ 𝒘𝒘𝑇𝑇𝜌𝜌𝒇𝒇𝛺𝛺 𝑑𝑑𝑑𝑑 + ∫ 𝒘𝒘𝑇𝑇
𝛤𝛤𝜎𝜎 𝒕⃑𝒕𝑑𝑑𝑑𝑑, (7-3) 



124 
 

where 𝒕⃑𝒕 is the stress trajectory applied to 𝛤𝛤σ boundary (cf. Figure 7-1). In the above, 𝜵𝜵𝒔𝒔 is 

symmetric gradient operator for a 2-dimensional axisymmetric coordinate system [124] 

which is written as 

𝜵𝜵𝒔𝒔 = �
𝜕𝜕
𝜕𝜕𝜕𝜕

0 𝜕𝜕
𝜕𝜕𝜕𝜕

1
𝑟𝑟

0 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝜕𝜕

0
�

𝑇𝑇

, (7-4) 

and 𝑽𝑽 appearing in Equation 7-3 is an integrated form of viscosity matrix for 

axisymmetric flow written as 

𝑽𝑽 = 𝜂𝜂 �
2 0
0 2

0 0
0 0

0 0
0 0

1 0
0 2

�, (7-5) 

The implementation of 𝜵𝜵𝒔𝒔 and 𝑽𝑽 simplifies the expression appearing Equation 7-2 to the 

more concise format appearing in Equation 7-3, which better facilitates the FEM matrix 

calculations below. Additionally, the fiber orientation is incorporated into the viscosity 

matrix based on Equation 3-27, such that [125] 

𝑽𝑽� = 𝜂𝜂 �
2 0
0 2

0 0
0 0

0 0
0 0

1 0
0 2

� + 2𝜂𝜂𝑁𝑁𝑝𝑝 �

𝒜𝒜1111 𝒜𝒜1133
𝒜𝒜3311 𝒜𝒜3333

𝒜𝒜1113 𝒜𝒜1122
𝒜𝒜3313 𝒜𝒜3322

𝒜𝒜1311 𝒜𝒜1333
𝒜𝒜2211 𝒜𝒜2233

𝒜𝒜1313 𝒜𝒜1322
𝒜𝒜2213 𝒜𝒜2222

�, (7-6) 

where the 𝒜𝒜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 refer to the components of the fourth order orientation tensor 𝔸𝔸. 

Hereinafter, the viscosity matrix 𝑽𝑽 appearing in Equation 7-3 is replaced by 𝑽𝑽�, which is 

an anisotropic viscosity tensor that is a function of the fourth order orientation tensor (cf. 

Equation 3-27). Note, derivations shown above are designated particularly for an 

axisymmetric flow model such as the melt extrusion nozzle flow interested in this study. 

The discretization of the unknown velocity and orientation tensor components 

may be written in terms of nodal values, such that the velocity vector 𝒗𝒗 can be written as 
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𝒗𝒗 = 𝑵𝑵𝒆𝒆𝒅𝒅𝒆𝒆, (7-7) 

where 𝒅𝒅𝒆𝒆 is the nodal velocity vector and 𝑵𝑵𝒆𝒆 is the 2-dimensional Lagrangian bi-linear 

interpolation function [124]. The superscript 𝑒𝑒 shown in here and after refers to the 

elemental terms for a single finite element. 

In this study, the flow domain will be meshed with 2-dimensional quadrilateral 

elements where 𝒅𝒅𝒆𝒆 and 𝑵𝑵𝒆𝒆 are given, respectively, for 4-node quadrilateral element as  

𝒅𝒅𝒆𝒆 = [𝑣𝑣𝑟𝑟1 𝑣𝑣𝑧𝑧1 𝑣𝑣𝑟𝑟2 𝑣𝑣𝑧𝑧2 𝑣𝑣𝑟𝑟3 𝑣𝑣𝑧𝑧3 𝑣𝑣𝑟𝑟4 𝑣𝑣𝑧𝑧4], (7-8) 

and 

𝑵𝑵𝒆𝒆 = �𝑁𝑁1 0 𝑁𝑁2 0 𝑁𝑁3 0 𝑁𝑁4 0
0 𝑁𝑁1 0 𝑁𝑁2 0 𝑁𝑁3 0 𝑁𝑁4

�, (7-9) 

Here, 𝑣𝑣𝑖𝑖
𝑗𝑗 indicate the nodal velocity component, where 𝑗𝑗 refers to the node number (i.e.,

𝑗𝑗 = {1,2,3,4} for 4-node quadrilateral elements), and 𝑖𝑖 refers to the degree of freedom 

(i.e., 𝑖𝑖 = {𝑟𝑟, 𝑧𝑧} for 2D flow models in cylindrical coordinates). In addition, 𝑁𝑁𝑗𝑗 is the 

component of a linear Lagrangian interpolation functions [124]. Other forms of Equations 

7-8 and 7-9 may be employed for higher order interpolations and also for higher spatial

dimension as is common in the Finite Element Method (see e.g., [124]). 

Finite-element-formulated fluid flow problems are often solved by the mixed 

method, where the velocity and pressure are the primary unknowns; or, the penalty 

method, where velocity field of the flow is the primary nodal unknown and the pressure 

field is post-computed based on the achieved flow fields [124]. Herein, the penalty 

method is adopted for simplicity, as implementing the mixed method requires additional 

degrees of freedom for interpolating the pressure field. In the formulation of the penalty 

method, the pressure is written in terms of the primary variable (i.e. velocity) through the 
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incompressibility assumption made in the continuity equation (cf. Equation 3-1). The 

resulting expression of pressure is [124] 

𝑃𝑃 = −𝛾𝛾𝑒𝑒𝟏𝟏��⃑  𝑇𝑇𝑩𝑩𝒔𝒔
𝒆𝒆𝒅𝒅𝒆𝒆, (7-10) 

where 𝛾𝛾𝑒𝑒 is the penalty constant related to the degree of incompressibility of the flow, 

which is often select between 104 to 1012 of the kinematic viscosity of the fluid flow 

(i.e., 𝜈𝜈𝑘𝑘 = 𝜂𝜂/𝜌𝜌 [124]). In the above, 𝟏𝟏��⃑  is a dimension transformation vector, such that 

𝟏𝟏��⃑ = [1 1 0 1]𝑇𝑇 for two-dimensional axisymmetric models. Additionally, 𝑩𝑩𝒔𝒔
𝒆𝒆 is the 

strain displacement matrix, which is defined as [124] 

𝑩𝑩𝒔𝒔
𝒆𝒆 = 𝜵𝜵𝒔𝒔𝑵𝑵𝒆𝒆, (7-11) 

Ultimately, the finite element form of the momentum equation (cf. Equation 3-2) can be 

expressed as 

𝑲𝑲𝒆𝒆𝒅𝒅𝒆𝒆 = 𝑭𝑭𝒆𝒆 (7-12) 

where the stiffness matrix 𝑲𝑲𝒆𝒆 is written as 

𝑲𝑲𝒆𝒆 = ∫ [(𝑩𝑩𝒔𝒔
𝒆𝒆)𝑇𝑇 𝑪𝑪 𝑩𝑩𝒔𝒔

𝒆𝒆]Ω 𝑑𝑑Ω + 𝛾𝛾𝑒𝑒 ∫ [(𝑩𝑩𝒔𝒔
𝒆𝒆)𝑇𝑇 𝟏𝟏 𝟏𝟏𝑇𝑇 𝑩𝑩𝒔𝒔

𝒆𝒆]Ω 𝑑𝑑Ω, (7-13) 

and the nodal force vector 𝑭𝑭𝒆𝒆 is written as 

𝑭𝑭𝒆𝒆 = ∫ [ 𝜌𝜌 (𝑵𝑵𝒆𝒆)𝑇𝑇𝒇𝒇]Ω 𝑑𝑑Ω + ∫ [ (𝑵𝑵𝒆𝒆)𝑇𝑇 𝒕⃑𝒕 ]Γ𝜎𝜎
𝑑𝑑Γ, (7-14) 

The elemental matrices in Equations 7-12 through 7-14 are assembled into the global 

finite element matrix equation in the usual manner, such that 

𝑲𝑲𝑲𝑲 = 𝑭𝑭, (7-15) 

The above concludes the finite element formulation of an incompressible and isothermal 

creeping flow governing equations in 2D cylindrical coordinates (e.g., flow model 

appears in Chapter Four). 
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7.1.1 Newton-Raphson Iteration Method 

When shearing thinning fluid flow models are employed, Equation 7-12 becomes 

nonlinear since the viscosity is a function of shear rate which makes the stiffness matrix 

𝑲𝑲𝒆𝒆 a function of nodal velocity 𝒅𝒅𝒆𝒆. Recall that shear rate also refers to the scalar 

magnitude of the rate-of-deformation tensor 𝑫𝑫, which is the symmetric part of the 

velocity gradient. Herein, the nonlinear solution Newton-Raphson (N-R) iterative method 

is applied to solve the nonlinear system in Equation 7-15. The basic procedure of the N-R 

iteration is abbreviated here for conciseness and readers of interest can find a detailed 

instruction in multiple literatures such as [126, 127]. Implementing the N-R method 

requires the information of the gradient of the system with respective to the primary 

unknown. Herein, we first recast our GFEM-formulated system (i.e., Equation 7-15) in 

the form of residual (𝑯𝑯) as 

𝑯𝑯 = 𝑲𝑲(𝒅𝒅)𝒅𝒅 − 𝑭𝑭, (7-16) 

Note, our goal is to zero the 𝑯𝑯 matrix which is performed in the Newton-Raphson 

method with the tangent stiffness matrix (designated as 𝑼𝑼) of the system which is written 

as 

𝑼𝑼 = 𝑑𝑑[𝑯𝑯(𝒅𝒅)]
𝑑𝑑(𝒅𝒅)

= 𝑑𝑑[𝑲𝑲(𝒅𝒅)𝒅𝒅−𝑭𝑭]
𝑑𝑑(𝒅𝒅) = 𝑑𝑑(𝑲𝑲(𝒅𝒅))

𝑑𝑑(𝒅𝒅) 𝒅𝒅 + 𝑲𝑲𝑑𝑑(𝒅𝒅)
𝑑𝑑(𝒅𝒅) −

𝑑𝑑(𝑭𝑭)
𝑑𝑑(𝒅𝒅), (7-17) 

For consistency, the further extension of Equation 7-17 is given in Appendix Part B. 

Following the N-R method procedure (e.g., see [126]), the nodal solution of the system 

can be update by 

𝒅𝒅𝑝𝑝+1 = 𝒅𝒅𝑝𝑝 − 𝑖𝑖𝑖𝑖𝑖𝑖�𝑼𝑼� 𝒅𝒅𝑝𝑝 �� 𝑯𝑯� 𝒅𝒅𝑝𝑝 �, (7-18) 

In the above, “inv” refers to the inverse of a matrix. The left subscript (i.e., 𝑝𝑝 + 1) of 𝒅𝒅 

counts the iterative steps of the N-R iteration. Prior literature (e.g., [74]) suggests that 
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convergence of the N-R method using Equations 7-17 and 7-18 when solving the shear 

thinning fluid flows is often difficult. We, therefore, use the relaxed form of the N-R 

iteration  

𝒅𝒅𝑝𝑝+1 = 𝒅𝒅𝑝𝑝 − 𝑠𝑠𝑛𝑛𝑛𝑛�𝑖𝑖𝑖𝑖𝑖𝑖�𝑼𝑼� 𝒅𝒅𝑝𝑝 �� 𝑯𝑯� 𝒅𝒅𝑝𝑝 ��, (7-19) 

where 𝑠𝑠𝑛𝑛𝑛𝑛 a relaxation coefficient that is in the interval between 0 to 1. The 

implementation of the scalar factor reduces the convergence speed but the radius of 

convergence of the N-R iteration is enhanced which increases the probability of 

convergence [74]. In the simulations given below, it is found that 𝑠𝑠𝑛𝑛𝑛𝑛 = 0.2 works well 

for solving the coupled flow fields using a power law fluid. Note that the Polyflow user-

guide [74] identifies that the Picard scheme for solving nonlinear equations (e.g., fix-

point iteration method [102]) may be a more effective alternative to the N-R method for 

solving the non-Newtonian shear thinning flow fields. While implementing additional 

numerical methods for faster convergence is beyond our main scope of characterizing the 

coupling effects of flow-fiber in an open flow of polymer composite extrusion.  

 
7.1.2 Mesh Relocation for Free Extrudate 
 

Identifying the location of the free surface boundary location for an external flow 

application requires remeshing the flow domain of the free extrudate. The finite element 

suite ANSYS Polyflow [74] provides powerful remeshing techniques to simulate the 

polymer processing applications involving with free surface boundaries. A few 

publications related to the polymer deposition process modelled the melt extrusion and/or 

material deposition process through the advanced functions provided by Polyflow (e.g., 

see [47, 67, 68, 99]). In other work, Heller, et al. [19, 30] developed a customized 

MATLAB (Natick, MA, USA) code to compute the optimum free surface location by 
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minimizing the integrated normal stress over the free boundary nodes. The code is used 

as a subroutine in conjunction with the commercial finite element suite COMSOL 

(Burlington, MA, USA) to simulate extrudate swell in melt extrusion [19] and material 

deposition [30] for the LAAM technology.  

The ANSYS-Polyflow code is currently not suitable for the flow-fiber coupled 

analysis described above, to the best of our knowledge. Also, the optimization 

methodology proposed by Heller, et al. [19, 30] requires additional iterations to solve for 

the free surface. Alternatively, Tanner, et al. [128] computed the location of the free 

surface boundary for an axisymmetric flow by considering the free surface as a 

streamline such that the position of successive points that define the flow boundary may 

be computed from 

𝑟𝑟𝑖𝑖+1
(𝑗𝑗) = 𝑟𝑟𝑖𝑖

(𝑗𝑗) + ∫ 𝑣𝑣𝑟𝑟
𝑣𝑣𝑧𝑧

𝑧𝑧𝑖𝑖+1
𝑧𝑧𝑖𝑖

𝑑𝑑𝑑𝑑, (7-20) 

where 𝑟𝑟𝑖𝑖 is the radial coordinates of nodes on the free surface, and 𝑧𝑧𝑖𝑖 are coordinates of 

nodes parallel to the flow. This approach is a computationally economic approach for 

flow domain of the interest. Herein, we compute the radii of surface nodes through 

Equation 7-20 as shown in Figure 7-2, where the subscript 𝑖𝑖 indicates successive node 

numbers starting at 0 with a known 𝑟𝑟0 referring to the fixed intersecting node of the no-

slip wall and free extrudate surface. The integration of Equation 7-20 is evaluated 

through the 1/3 Simpson’s rule as in [58, 129]. In this implementation, nodal coordinates 

along z axis are fixed. Once the locations of surface nodes are identified, the internal 

nodes of the free extrudate can be achieved through a linear 1-D interpolation in the r-

direction. 
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It is important to note that the location of the free surface boundary cannot be 

obtained in a single step but instead requires an iterative scheme. We found that four to 

eight iterations are typically sufficient in the problems considered here to yield a 

converged free surface boundary location depending on the quality of the mesh-size of 

the domain. Convergence of free surface iterations is assumed based on the relative 

steady state die swell ratio of the extrudate (e.g., 𝐵𝐵(𝑗𝑗), where j refers to the j-th iteration 

of the flow computation, and 𝐵𝐵 is defined through Equation 4-13). Additionally, it should 

also be noted that this methodology ignores the effect of the surface tension. The 

extrusion distance between the nozzle tip and the print-substrate in the polymer 

deposition manufacturing process is typically small, within a few millimeters, thus 

supporting the assumption that surface tension factor is negligible. 

One computational issue that must be addressed relates to the singularity 

occurring in the identification of the free surface location. The GFEM formulation 

requires stress continuity along the flow boundary while the stress field at the nozzle exit 

corner of an extrusion flow between the no-slip wall boundary and no-limit free surface 

boundary is disconnected [58, 129]. As a result, a too-fine mesh enhances the singularity 

issue and the resulting free surface oscillates significantly while a too-coarse mesh yields 

less reliable prediction. Consequently, a compromise is needed for the mesh quality near 

the extrusion lip such that an ideal moderate size elements reduce the peak values and 

smooth the solution [58, 129] (cf. Section 7.5 for the detail of the finite element mesh for 

the flow domain of interest). 
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Figure 7-2. Schematic Diagram of the Streamline-Wise Remeshing Approach. 

7.2 Computation of Fiber Orientation States 

In this chapter, the fiber orientation state is represented by the second order 

orientation tensor solved through the Advani-Tucker tensor approach Folgar-Tucker IRD 

model [22] rather than the RSC model (cf. Equation 3-17) as applied in Chapters Four 

and Five to reduce the computational complexity. The advanced RSC model may yield 

more accuracy to the predicted orientation results but is beyond our main scope in this 

chapter. 

To simulate fiber orientation, we first consider a simplification made in VerWeyst 

and Tucker [53], where the right-hand side of Advani-Tucker equation (cf. Equation 3-

15) is defined as the vector 𝒎𝒎 where 𝑚𝑚𝑘𝑘, and 𝑘𝑘 refers to the 𝑘𝑘-th component of vector 𝒎𝒎

[53]. It follows that the weak form of Equation 3-15 can be written as 

∫ 𝒘𝒘𝑇𝑇 �𝜕𝜕𝒂𝒂
𝜕𝜕𝑡𝑡

+ 𝒗𝒗 ∙ ∇𝒂𝒂 −𝒎𝒎�𝑑𝑑Ω = 0Ω , (7-21) 

In the above, 𝒂𝒂 is the primary unknown in the fiber orientation problem, which is a vector 

of the five independent components of the 𝑨𝑨 tensor written as 
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𝒂𝒂 = 𝑎𝑎𝑘𝑘 = [𝑎𝑎1 𝑎𝑎2 𝑎𝑎3 𝑎𝑎4 𝑎𝑎5] = [𝐴𝐴11 𝐴𝐴12 𝐴𝐴13 𝐴𝐴22 𝐴𝐴23]. (7-22) 

Similarly, 𝒎𝒎 contains of five components 𝐷𝐷𝐴𝐴𝑖𝑖𝑖𝑖
𝐷𝐷𝐷𝐷

 corresponding to the 𝐴𝐴𝑖𝑖𝑖𝑖 in Equation 7-22.  

We employ a 4-node quadrilateral element to discretize a, in a manner similar to 

that in flow problem shown above to obtain 

𝒂𝒂 = 𝑵𝑵𝒂𝒂
𝒆𝒆𝒅𝒅𝒂𝒂𝒆𝒆 , (7-23) 

Herein and after, the subscript “a” is applied on related variables (e.g., 𝒅𝒅𝒂𝒂𝒆𝒆 , 𝑵𝑵𝒂𝒂
𝒆𝒆) to 

identify their association with the orientation tensor A in a manner similar to that used in 

the flow problem. 

The nodal orientation tensor variable vector and its associated shape function 

matrix can be expressed as 

𝒅𝒅𝒂𝒂𝒆𝒆 = [𝑎𝑎11 𝑎𝑎21 𝑎𝑎31 𝑎𝑎41 𝑎𝑎51 … 𝑎𝑎14 𝑎𝑎24 𝑎𝑎34 𝑎𝑎44 𝑎𝑎54], (7-24) 

and 

𝑵𝑵𝒂𝒂
𝒆𝒆 =

⎣
⎢
⎢
⎢
⎡
𝑁𝑁1 0 0 0 0
0 𝑁𝑁1 0 0 0
0 0 𝑁𝑁1 0 0
0 0 0 𝑁𝑁1 0
0 0 0 0 𝑁𝑁1

…

𝑁𝑁4 0 0 0 0
0 𝑁𝑁4 0 0 0
0 0 𝑁𝑁4 0 0
0 0 0 𝑁𝑁4 0
0 0 0 0 𝑁𝑁4⎦

⎥
⎥
⎥
⎤

, (7-25) 

The notation “…” refers to an abbreviation of expressions associated with two 

intermediate nodes of a 4-node quadrilateral element. Note, the dimensions of 𝒅𝒅𝒂𝒂𝒆𝒆  and 𝑵𝑵𝒂𝒂
𝒆𝒆  

are 20-by-1 and 5-by-20, respectively. Upon substitution of Equations 7-24 and 7-25 into 

Equation 7-21 and also enforcing 𝒘𝒘 = 𝑵𝑵𝒂𝒂
𝒆𝒆  (i.e., based on GFEM theory), we obtain 

∫ (𝑵𝑵𝒂𝒂
𝒆𝒆)𝑇𝑇 �𝑑𝑑(𝑵𝑵𝒂𝒂𝒆𝒆𝒅𝒅𝒂𝒂𝒆𝒆)

𝑑𝑑𝑑𝑑
+ 𝒗𝒗 ∙ ∇(𝑵𝑵𝒂𝒂

𝒆𝒆𝒅𝒅𝒂𝒂𝒆𝒆) −𝒎𝒎�𝑑𝑑Ω = 0Ω , (7-26) 

Herein, we assume that the nodal variable 𝒅𝒅𝒂𝒂𝒆𝒆  is exclusively a spatial-based function and 

thus the partial derivative of the primary variable with respect to time is zero. However, 

VerWeyst and Tucker [53] found that a steady state fiber orientation state for flows in 



133 

relatively complex geometries can seldom be achieved in one step (i.e., ignoring the time 

derivative term appearing in Equation 7-26). Hence, a time-marching frame has to be 

applied to Equation 7-26, where the flow fields is fixed during the fibers orientation 

evaluation and a forward Euler approach [102] is applied in a transient simulation that is 

used to reach the steady state solution. Therefore, the steady state solution is evolved 

from an initial approximation of the isotropic fiber alignment among the entire flow 

domain through delicately managed small perturbations of time steps. Consequently, 

Equation 7-26 can be rewritten as 

∫ (𝑵𝑵𝒂𝒂
𝒆𝒆)𝑇𝑇 �𝑵𝑵𝒂𝒂

𝒆𝒆(𝒅𝒅𝒂𝒂𝒆𝒆 |𝑞𝑞−𝒅𝒅𝒂𝒂𝒆𝒆 |𝑞𝑞−1)
Δ𝑡𝑡

+ 𝒗𝒗 ∙ ∇(𝑵𝑵𝒂𝒂
𝒆𝒆(𝒅𝒅𝒂𝒂𝒆𝒆|𝑞𝑞) −𝒎𝒎𝑞𝑞−1� 𝑑𝑑Ω = 0Ω , (7-27) 

or 

𝑲𝑲𝒂𝒂
𝒆𝒆𝒅𝒅𝒂𝒂𝒆𝒆 = 𝑭𝑭𝒂𝒂𝒆𝒆 , (7-28) 

where the stiffness matrix 𝑲𝑲𝒂𝒂
𝒆𝒆  is 

𝑲𝑲𝒂𝒂
𝒆𝒆 = ∫ �(𝑵𝑵𝒂𝒂𝒆𝒆)𝑇𝑇𝑵𝑵𝒂𝒂𝒆𝒆

Δ𝑡𝑡
+ 𝒗𝒗 ∙ ∇(𝑵𝑵𝒂𝒂

𝒆𝒆)�Ω 𝑑𝑑Ω, (7-29) 

and the nodal force vector 𝑭𝑭𝒂𝒂𝒆𝒆  is 

𝑭𝑭𝒂𝒂𝒆𝒆 = ∫ �(𝑵𝑵𝒂𝒂𝒆𝒆)𝑇𝑇𝑵𝑵𝒂𝒂𝒆𝒆

Δ𝑡𝑡
𝒅𝒅𝒂𝒂𝒆𝒆 |𝑞𝑞−1 + 𝒎𝒎𝑞𝑞−1�Ω 𝑑𝑑Ω, (7-30) 

Ultimately, the elemental equations shown above are assembled in the global format as 

appearing in Equation 7-15. Note, 𝒅𝒅𝒂𝒂𝒆𝒆|𝑞𝑞 and 𝒅𝒅𝒂𝒂𝒆𝒆|𝑞𝑞−1 appearing in Equation 7-30 indicate 

the fiber orientation solution at 𝑡𝑡 = 𝑡𝑡𝑞𝑞 and 𝑡𝑡 = 𝑡𝑡𝑞𝑞−1, where Δ𝑡𝑡 = 𝑡𝑡𝑞𝑞 − 𝑡𝑡𝑞𝑞−1. In addition, 

𝒎𝒎𝑞𝑞−1 is computed from the right-hand side of Equation 3-15 (i.e., Advani-Tucker 

orientation tensor evaluation equation) using the second order orientation tensor solution 

obtained at 𝑡𝑡 = 𝑡𝑡𝑞𝑞−1. In addition, the step size of time-marching scheme (i.e., Δ𝑡𝑡) in 

solving the fiber orientation tensor field is fixed as a constant and the value of the step 
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size is dependent on the dimensions of flow fields. Herein, the time-marching scheme 

utilizes a step size of 0.01, and a steady-state within each fiber orientation computation 

can be achieved within 30 time-steps.  

It should be noted that the GFEM formulated form of the fiber orientation 

governing equation is a nonlinear problem as well and thus the implementation of the N-

R method is required again for solving the nonlinear system. The derivation of the 

tangent stiffness matrix is included in Appendix Part B. Nevertheless, we found that 

𝑠𝑠𝑛𝑛𝑛𝑛 = 1 (cf. Equation 7-19) worked well when iteratively solving the fiber orientation 

problem. 

The GFEM solution was found to yield non-physical results of fiber orientation 

tensors in some simulations such that the diagonal terms of a solved second order 

orientation tensor would exceed unity. Herein, we adopt the strategy proposed by 

VerWeyst and Tucker [53] (e.g., see [53] for more detail). 

 
7.2.1 Streamline Upwind Petrov Galerkin Method for Spatial Instability of the Solution 
 

Fiber orientation solutions obtained through the GFEM formulation described 

above may yield spatially instability (e.g., wiggles appearing in the resulting contours 

over neighbouring nodes) due to the lack of a diffusion term in the Advani-Tucker fiber 

orientation tensor equation (cf. Equation 3-15) [53]. The Streamline Upwind Petrov 

Galerkin (SUPG) method proposed by Brooks and Hughes [130] provided a spatially 

stable yet physically realistic solution alternative to the standard GFEM’s. The SUPG 

method has been implemented to multiple fluid flow studies (e.g., see [131-133]), and 

here we only introduce the explicit form proposed by Smith, et al. [132]. In our SUPG 
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implementation, the arbitrary weight function w is replaced with an augmented weight 

function 𝒘𝒘�  as 

𝒘𝒘�(𝒅𝒅𝒂𝒂𝒆𝒆 ,𝒘𝒘) = 𝒘𝒘 + 𝛼𝛼ℎ𝑒𝑒(𝒗𝒗)
2||𝒗𝒗||

𝛻𝛻 ∙ (𝒘𝒘 𝒗𝒗), (7-31) 

where ℎ𝑒𝑒 is the characteristic element length in the direction of flow velocity in an 

element. An expression for ℎ𝑒𝑒 for isoparametric elements can be found in [132]. Since 

flow incompressibility is assumed, 𝛻𝛻 ∙ 𝒗𝒗 = 0 as appearing in Equation 3-1, and thus 

Equation 7-31 can be written as 

𝒘𝒘�(𝒅𝒅𝒂𝒂𝒆𝒆 ,𝒘𝒘) = 𝑵𝑵𝒂𝒂
𝒆𝒆 + 𝛼𝛼ℎ𝑒𝑒(𝒗𝒗)

2||𝒗𝒗||
𝛻𝛻𝑵𝑵𝒂𝒂

𝒆𝒆 ∙ 𝒗𝒗, (7-32) 

Here, 𝒘𝒘 is the standard arbitrary weight function in GFEM such that 𝒘𝒘 = 𝑵𝑵𝒂𝒂
𝒆𝒆 , and𝛼𝛼 is a 

scale factor controlling the intensity of the streamline upwinding [132].  

When solving the fiber orientation problem, the standard arbitrary weight function 

is replaced by the form of Equation 7-32. Particularly, Smith, et al. [132] suggested that 

the value of 𝛼𝛼 be determined by several trials to make sure that just enough numerical 

diffusion is added through streamline upwinding to smooth the numerical instability 

without yielding unrealistic computed results. Herein, we adopt a similar method as in 

Smith, et al. [132], where gradually increasing values of 𝛼𝛼 (cf. Equation 7-32) are 

attempted. Among these, the ideal value of 𝛼𝛼 is settle down as spatial instabilities in the 

computed contours of fiber orientation tensor fields are minimally seen with additional 

increments. For the flow domain of interest (cf. Figure 7-3C appearing in next section), 

the scale of SUPG is chosen as 𝛼𝛼 = 0.5. For consistency, further detail appears in 

Appendix Part C. 
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7.3 Flow Domain and Material Model 

This study focuses on the melt extrusion process in LAAM applications, where 

the flow-fiber coupling effects are of significant importance. Herein, the flow model is 

created based on the geometrical design of a Strangpresse large-scale additive 

manufacturing Model 19 single screw extruder nozzle (cf. Figure 7-3A). As the main 

scope of this work is to propose an effective numerical scheme for solving the fully 

coupled flow-fiber suspension problem, the domain of flow model is simplified as 

compared to that presented in previous chapters (e.g., see Figure 7-3B), such that only the 

exit tubular region of the nozzle is considered as shown in Figure 7-3C. This geometrical 

simplification saves the computational cost and reduces the difficulty of convergence of 

the proposed algorithm. The diameter of the straight tube that defines our flow domain is 

0.003175m (i.e., 1/8 inch). Due to the symmetry of the nozzle geometry, a 2D 

axisymmetric flow domain is employed (i.e., we assume no flow swirling effect). 

Specifically, the ratio of the internal-nozzle length of to the radius of the nozzle is set to 

5:1. In addition, the length of the free extrudate is set to be equal to the internal-nozzle 

length. The chosen lengths of the internal tube and free extrudate allow a significantly 

adequate distance for the flow-fiber interactions to develop to a steady-state.  

The boundary conditions of the flow domain appearing in Figure 7-3C share the 

same definitions as defined in Chapter Four. Specifically, the fully developed velocity 

profile imposed in the flow inlet is computed based on a volume flow rate Q = 

8 × 10−7m3/s (i.e., similar to the input given in Chapter Five to simulate large volume 

polymer deposition). And the velocity profile is computed in advance through the 

commercial code Polyflow [74], in a traditional uncoupled formulation (i.e., effects of 
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fiber presence are not counted). Note, the inlet condition is fixed as imposed apart from 

the flow iterative computation. 

In addition, the fiber orientation equation is a hyperbolic equation and thus only 

an initial condition at the flow inlet is required. Herein, a fully developed fiber orientation 

state from previous related literature (cf. Heller [19, 93]) is imposed as the fiber 

orientation state at the flow inlet, assuming that the orientation state reaches somewhat a 

steady state at the inlet of the flow. Specifically, the fiber alignment along the no-slip 

wall is assumed to be aligned along the flow direction instantaneously and the fiber-wall 

interaction is then neglected [94]. In our experience, such assumption enhances 

convergence of the overall code while the accuracy of most area of the flow domain 

retains. Notice, the initial and boundary conditions specified for the fiber orientation 

calculation are fixed throughout the iterative process. 

Unlike previous chapters that simulate ABS or 13% CF-ABS, the rheological 

shear viscosity properties of virgin Polyethylenimine (PEI) polymer at 400 °C is adopted 

in this chapter to model the fluid flow of interest since the non-linearity of the power law 

of the PEI polymer is reduced as compared to ABS polymer’s (cf. Table 4-1). The shear 

viscosity data is obtained by curve-fitting data from Ajinjeru, et al. [134], where the 

applicability of the Cox-Merz rule [100] for transferring the experimental data and 

numerical fitting is assumed. The power-law region of the shear rate is assumed to be 

between 101 s−1 and 103 s−1, which is a typical region for LAAM applications (e.g., see 

[92]). Ultimately, the fitted results of K and n (cf. Equation 3-8) are 950 and 0.86, 

respectively. And 𝜆𝜆𝑐𝑐 is set as unity. For the purpose of quantifying the coupling effects, 

we assume 20% weight percentage carbon fiber reinforcements in the PEI polymers (i.e., 
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the polymer composite used in [134]), and by using Equation 4-17 and data from 

Ajinjeru, et al. [134], we define the volume fraction short carbon fibers as 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 15.7%. 

Due to the computational divergence can occur with large fiber aspect ratio values (e.g., 

40 as we used in Chapters Four and Five), we choose to fix the fiber aspect ratio at 𝑎𝑎𝑟𝑟 = 

15 to as the average for the polymer composite material. For this 𝑎𝑎𝑟𝑟 and 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑁𝑁𝑝𝑝 = 7.88 

(cf. Equations 3-28 to 3-31). We note that the fiber aspect ratio we assumed may be lower 

than materials used in [134], while the numerical results obtained from aspect ratio of 15 

are expected to exhibit similar trend as those obtained by applying a higher aspect ratio.  

(A) (B) (C) 
Figure 7-3. (A) Manufacturing Process of a LAAM Application; (B) Extruder Nozzle 
Geometry and Internal Flow Region; (C) Flow domain of Interest with Boundary 
Conditions Specified. 

7.4 Convergence Criteria 

As proposed, the overall coupled system is decomposed into the flow module and 

the fiber orientation module, iteratively computed in an alternating fashion. Both modules 

employ the N-R iteration method as described above. In this approach, the fiber 

orientation tensor field is fixed when the flow module is under computing and vice versa. 

Convergence is assumed when the difference of both flow and fiber orientation from one 
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iteration to the next fall within a predefined limit. Herein, the stopping criterion is set as 

10−5 as in [135], i.e., 

∥ 𝒅𝒅𝒆𝒆ℎ − 𝒅𝒅𝒆𝒆ℎ−1 ∥/∥ 𝒅𝒅𝒆𝒆ℎ ∥ ≤ 10−5, (7-33) 

where “∥ ∥” refers to the Frobenius norm of a vector [102], and h is the iterative index of 

the overall coupling scheme. 

Additionally, the convergence criterion for the N-R iterative trials of solving the 

shear thinning flow fields and fiber orientation fields is set as the magnitude of the 

residual (e.g., ∥ 𝑯𝑯 ∥ in Equation 7-16) of the final step solution is 10−5 of the residual 

solved in first integration. Specifically, the iterative procedure for identifying the free 

surface boundary stops till the error between the steady state die swell ratio values in two 

successive trials equal or less to 10−3 (i.e., 𝐵𝐵(𝑗𝑗) − 𝐵𝐵(𝑗𝑗−1) ≤ 10−3) which should be 

adequate as die swell ratio convergence often only within 0.1 in related literatures (e.g., 

see [19, 97, 128]). 

7.5 Necessary Setup for the Algorithm 

GFEM formulated equations (e.g., integral form of the 𝑲𝑲𝒆𝒆 matrix appearing in 

Equation 7-13) are often evaluated through a numerical integration scheme [124]. As 

known, most of the finite element suites (e.g., ABAQUS, ANSYS-Polyflow [74]) employ 

numerical integration techniques in evaluating the integrals of finite element systems, 

which significantly reduces the cost of integral evaluations as compared to a direct 

integral computation (i.e., evaluating integrals in, for example, MATLAB with the 

corresponding command “int” [109]). Among the numerical integration methods, the 

Gauss-Quadrature (G-Q) approach [102] is one of the most widely used method adopted 

in commercial codes [124], and thus it is also employed in our developed algorithm. In 
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addition, it should be noted that the results of both flow fields and fiber orientation 

tensors shown in this section are computed exclusively by employing isoperimetric 8-

node serendipity quadrilateral elements (e.g., see [124]). This is due to that the 

convergence performance of the flow and fiber orientation computations are much better 

when 8-node elements adopted than 4-node events, though a bit more computational cost 

is needed. Incorporate with which, the 3-point G-Q scheme is applied to yield a relatively 

smoother predicted profile of the free extrudate surface as compared to the fewer points 

involved G-Q evaluations.  

Moreover, the penalty method employed in our code requires a scaling parameter 

𝛾𝛾𝑒𝑒. Herein, we assign 𝛾𝛾𝑒𝑒 = 108 . This value is an intermediate value of the range 

suggested by [124] and has exhibited favorable results as compared to the results 

produced by commercial software, in our previous experiences. 

Finally, through mesh sensitivity studies on the convergence behavior of die swell 

predictions of the flow domain of interest appearing in Figure 7-3C, a mesh size of “21-

by-101-by-50” is identified as a sufficiently accurate yet computational effective quality 

for the modelled flow domain, otherwise meshes yields either less accuracy predicted 

results or non-convergent trials. Herein, “21-by-101-by-50” refers to a mesh design such 

that the nodes along radial direction is 21, and that along flow direction is 101, in which 

the free extrudate composes of 50 nodes longitudinally (i.e., the intersection node of the 

no-slip boundary and the free surface is sorted as a node of the no-slip wall boundary). 

We utilize Polyflow to generate the mesh of flow domain. In other words, the mesh of an 

uncoupled solution is applied to the flow domain in the very first iteration of the flow 

computation.  
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7.6 Results and Discussion 

The developed code is first applied to a central disc thin cavity flow simulating 

the injection moulding scenario, which has been solved in the fully-coupled formulation 

in previous literature (e.g., [53, 94, 136]). Results solved from our code show a good 

agreement with the data published previously [53], through which it is convinced that our 

developed fully coupled scheme works properly. For consistency and conciseness, more 

detail of the verification problem is given in Appendix Part D. 

In this following, computed results of a two-dimensional axisymmetric flow 

model simulating the polymer composite melt extrusion of a LAAM polymer deposition 

system are given. Specifically, to clearly show the coupling effects on the polymer 

composite melt in this scenario, we make two simulation events: 1) the fully-coupled 

simulation, which is solved with our proposed algorithm; and 2) the weakly-coupled 

simulation, which is also carried out through our code without iterative alternations 

between flow and fiber orientation solutions (i.e., solve flow fields firstly assigning the 

coupling factor 𝑝𝑝  as zero, and then solve the fiber orientation with achieved flow 

fields). 

7.6.1 Flow Fields Results 

Flow fields contours computed by the weakly and fully coupled formulations 

appear in Figures 7-4 and 7-5, where results of 𝑟𝑟  and 𝑧𝑧  are given, respectively. 

Herein, 𝑟𝑟  and 𝑧𝑧  refer to the velocity components along 𝑡𝑡  axis and 𝑑𝑑  axis of a 

cylindrical coordinate. Note that in Figures 7-4 and 7-5, the upper plane of the flow 

domain refers to the weakly-coupled solution and the rest refers to the fully coupled 

solution. In addition, the flow domain is shifted 90° clockwise to obtain a relatively 

larger view of 
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demonstration. To facilitate the comparison, the presented results are normalized by a 

factor of the averaged velocity such that [53] 

𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑣𝑣/𝑣̅𝑣, and 𝑣̅𝑣 = 𝑄𝑄/(𝜋𝜋𝑟𝑟𝑜𝑜2), (7-34) 

In the above, 𝑣𝑣 refers to the computed results directly obtained from our code, 𝑄𝑄 is the 

volume flow rate and 𝑟𝑟𝑜𝑜 is the radius of the nozzle tubular region (cf. Figure 7-3C). In 

addition, the flow domain is also normalized by a factor of 𝑟𝑟𝑜𝑜.  

The given computed results exhibit significant differences between the weakly 

coupled and fully coupled solutions. In particular, the 𝑣𝑣𝑟𝑟 contours are in a small 

magnitude (i.e., zero). Except that a large oscillation appears in the outer corner of the 

nozzle exit, where the weakly-coupled result exhibits much higher increment on 𝑣𝑣𝑟𝑟 as 

compared to the fully coupled. The 𝑣𝑣𝑧𝑧 contours appear in a similar trend in the internal 

nozzle tip region, while the results in the free extrudate are in notable difference, where 

the fully-coupled 𝑣𝑣𝑧𝑧 contour developed for a longer distance to reach a steady-state (i.e., 

𝑣𝑣𝑧𝑧 contour in a uniform color) and the absolute magnitude of the steady-state 𝑣𝑣𝑧𝑧 of the 

fully-coupled solution seems higher than that of the weakly-coupled results. 

Moreover, the velocity profiles of the flow domain are specifically plotted at 

some characteristic positions as appearing in Figures 7-6 and 7-7, which provide a 

detailed view of the differences observed in the previous comparisons. Note that, 𝑧𝑧/𝑟𝑟0 =

10, 5, 0 refer to the locations of flow inlet, nozzle exit and flow exit, respectively. In the 

𝑣𝑣𝑟𝑟-versus-r profiles appear in Figure 7-6, it can be seen that the difference within the 

nozzle (i.e., 𝑧𝑧/𝑟𝑟0 = 6.2) is only seen in the middle of the flow domain while that of the 

free extrudate (i.e., 𝑧𝑧/𝑟𝑟0 = 4.4) is notably observed across the radial direction. 

Particularly for the results of free extrudate , the normalized 𝑣𝑣𝑟𝑟 at the nozzle exit outer 
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corner (i.e., 𝑟𝑟/𝑟𝑟0 = 1), solved by the fully coupled formulation, is 0.028, which exhibits a 

reduction of ~ 50% as compared to the same value solved by the weakly coupled scheme 

(which is 0.0576). Furthermore in Figure 7-7, the differences in the profiles of 𝑣𝑣𝑧𝑧-versus-

r are also pronounced in the free extrudate portion of the flow domain, such that at the 

location of 𝑧𝑧/𝑟𝑟0 = 4.4, the 𝑣𝑣𝑧𝑧 at the axis of symmetry (i.e., 𝑟𝑟/𝑟𝑟0 = 0), solved by the 

weakly-coupled formulation, is -1.035, while the same value solved by the fully-coupled 

scheme is -1.314, which is 27% higher of the weakly coupled solution regardless of the 

minus sign (i.e., only indicates the flow direction). In addition, the 𝑣𝑣𝑧𝑧 at flow exit (i.e., 

𝑧𝑧/𝑟𝑟0 = 0) are fully coupled solution of -0.808 and -0.910, solved separately by the 

weakly coupled and fully coupled schemes. In other words, the velocity field along the 

flow direction exhibits an increment of 13% by considering the flow-fiber coupling 

effects. Considering the velocity results are normalized by a factor of the averaged 

velocity (i.e., 𝑄𝑄/(𝜋𝜋𝑟𝑟𝑜𝑜2) = 0.101m/s ,herein), the variation in the material deposition rate 

between the virgin PEI and 20% carbon fiber filled PEI is relatively considerable, which 

implies the importance of quantifying the inter-relations between the polymer flow and 

the reinforced short fillers.  

Additionally, it is seen that the extrudate free surface profiles also exhibit 

significant difference between the weakly coupled and fully coupled solutions. In 

particular, the steady state die swell ratio 𝐵𝐵 (cf. Equation 4-13) of the weakly coupled 

solution is 1.112, while that solved by the fully coupled formulation is 1.049. It can be 

seen that the die swell exhibits a reduction by a factor of ~ 2×, which is in favorable 

agreement of prior literature experimentally investigating the die swell of filled polymer 

systems (e.g., see Figure 4 in [137]). It is also important to note that the reduction of die 
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swell also may yield significant differences in the printing resolutions of LAAM-printed 

parts made of neat polymers and filled polymers. 
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Figure 7-4. Velocity Contours of 𝑣𝑣𝑟𝑟 Solved by Weakly Coupled and Fully Coupled Formulations. 
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Figure 7-5. Velocity Contours of 𝑣𝑣𝑧𝑧 Solved by Weakly Coupled and Fully Coupled Formulations.
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Figure 7-6. Velocity Profiles of 𝑣𝑣𝑟𝑟-versus-r Developing along Direction of Flow. Note, 
Legend Appears in Figure 6-7 Also Works in This Plot. 

Figure 7-7. Velocity Profiles of 𝑣𝑣𝑧𝑧-versus-r Developing along Direction of Flow.
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7.6.2 Fiber Orientation Results 
 

Fiber orientation tensor solutions of weakly coupled and fully coupled schemes 

are shown in Figure 7-8 and 7-9, where results of 𝐴𝐴33 and 𝐴𝐴11 components appear, 

respectively. In addition to the contours, we visualize the solved second order orientation 

tensors through a vector field, in which the length and direction of each vector is 

determined by the largest eigenvalue of the tensor and the associated eigenvector, 

respectively [53]. It is important to note that the value of the diagonal components in a 

second order orientation tensor indicates how well the fibers are expected to align along 

that direction (e.g., 𝐴𝐴33 corresponds to the direction of 𝑥𝑥3 in a 3D Cartesian coordinate 

system, which otherwise refers to the direction of the polymer flow).  

Similar to the previous section, the upper plane of the flow domains appear in 

Figures 7-8 and 7-9 refers to the weakly-coupled solution and the bottom refers to the 

fully-coupled. From the demonstrated results, it is firstly seen that the fibers of the flow 

domain generally tend to align along the direction of flow, which is similar to results 

solved by several weakly coupled studies (e.g., see results in Chapter Four and Chapter 

Five). On the other hand, the fully coupled solution exhibits a higher fiber alignment 

along 𝑥𝑥3 direction (i.e., flow direction) and less alignment along transverse directions 

(e.g., 𝑥𝑥1) as compared to results solved by the weakly coupled scheme. In addition, the 

weakly coupled-solved orientation contours exhibit an obvious oscillation near the nozzle 

exit, which is especially seen in the outer edge of the nozzle exit in the contour of 𝐴𝐴11. 

While this oscillatory trend is reduced by a significant amount in the results of fully-

coupled solution. 
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Further information of the orientation tenor contours is plotted in Figures 7-10 

and 7-11, where profiles of 𝐴𝐴33-versus-r and 𝐴𝐴11-versus-r are given at different locations 

of the flow domain. A first fact observed is that the results within the nozzle tip exhibit 

trivial bias in between the two sets of solutions, which implies the solid applicability of 

the weakly coupled scheme on internal narrow gap flows dominated by shear forces, as 

suggested by previous literature (e.g., see [22, 83]). However, the flow-fiber coupling 

effects cause significant deviation in the results of the free extrudate portion. For 

instance, at the flow exit (i.e., 𝑧𝑧/𝑟𝑟0 = 0, where the fiber orientation is assumed to reach 

somewhat a steady-state that can be used to represent the properties of a deposited bead), 

results of 𝐴𝐴33 component at 𝑟𝑟/𝑟𝑟0 = 0 are 0.47 and 0.55, solved by the weakly and fully 

coupled schemes separately. That is to say, counting the coupling effects between the 

flow and fiber orientation increases the principal fiber alignment (i.e., along direction of 

flow) of this location by 17%. Similarly to Chapters Four to Six, we estimate the elastic 

properties of the CF-PEI composites with our obtained fiber orientation tensor results at 

the flow exit. E and 𝜈𝜈 of PEI matrix material is set at 3 GPa and 0.4 [138], and the 

properties of carbon fiber constituent is the same as appearing in Table 4-5. The predicted 

elastic constants are given through Table 7-1, where the results of 𝐸𝐸�33 component exhibit 

most notable difference. In detail, it is found that the bias between the fully-coupled 

solution and the weakly-coupled solution is about 7%. Note that, our current results does 

not include any upstream flow fields that can be significantly affected by the nozzle 

geometry. It can be expected that the bias between the weakly-coupled analysis and fully-

coupled analysis on understanding the material properties of LAAM-deposited 

composites may be even higher.
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Figure 7-8. Fiber Orientation Contours of 𝐴𝐴33 (i.e., Third Diagonal of the Second Order Orientation Tensor Results) Solved by 
Weakly Coupled and Fully Coupled Formulations. 
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Figure 7-9. Fiber Orientation Contours of 𝐴𝐴11 (i.e., Third Diagonal of the Second Order Orientation Tensor Results) Solved by 
Weakly Coupled and Fully Coupled Formulations. 
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Figure 7-10. Profiles of 𝐴𝐴33-versus-r Developing along Direction of Flow. Note, Legend 
Appears in Figure 6-11 Also Works in This Plot. 

 
 

 
Figure 7-11. Profiles of 𝐴𝐴11-versus-r Developing Along Direction of Flow.  
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Table 7-1. Computed Mean Elastic Constants of a 20% wt. CF-PEI Extrudate. 

Solution 𝐸𝐸�11 (GPa) 𝐸𝐸�22 (GPa) 𝐸𝐸�33 (GPa) 𝐺̅𝐺12 (GPa) 𝐺̅𝐺13 (GPa) 
Weakly-coupled 4.89 5.69 10.31 1.66 1.83 
Fully-coupled 4.84 5.51 11.01 1.62 1.79 

Table 7-1. Computed Mean Elastic Constants of a 20% wt. CF-PEI Extrudate (continued). 

Flow model 𝐺̅𝐺23 (GPa) 𝜈̅𝜈12 𝜈̅𝜈13 𝜈̅𝜈23 
Weakly-coupled 2.42 0.51 0.46 0.45 

Fully-coupled 2.36 0.52 0.46 0.46 
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CHAPTER EIGHT 
 

Summary and Future Works 
 
 

Recent advancements of Large Area Additive Manufacturing (LAAM) polymer 

deposition combining the applications of fiber-filled polymers show the great potential of 

this energy-efficient manufacturing portfolio in fabricating light-weight large-scale 

composite structures and tooling for advanced engineering applications such as 

automobiles or aircrafts. Although promising future being seen (e.g., see [25, 103], where 

large-dimension parts and composite tooling are manufactured through the LAAM 

systems), the unclear relationships between manufacturing process parameters and the 

resulting properties of manufactured fiber filled polymer composite parts need to be 

addressed in order to enrich the applicability of the LAAM polymer deposition 

technology. This dissertation numerically models the complex flow physics and their 

inter-relations with the reinforced fibers including the non-Newtonian viscoelastic effects 

of the polymer melt, screw swirling kinematics effects and the fully-coupled fiber-flow 

effects on the fiber orientation and associated elastic properties of extruded composite 

materials as well as the fiber length attrition effects on the prediction of elastic properties 

in LAAM applications (cf. Figure 8-1), which contributes in bridging the knowledge gap 

of the unclear relationships between manufacturing process parameters and the resulting 

properties of manufactured fiber filled polymer composite parts.  
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Figure 8-1. Explored Physics Associated with a LAAM Process of Polymer Composites. 
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Accomplishments through Chapters Four to Seven are particularly summarized as 

follows: 

• Chapter Four: different categories of fluid flow models are applied to simulate the 

effects of polymer rheology in the nozzle orifice on the induced fiber orientation 

and associated elastic properties of composite feedstock processed, where the 

Newtonian model, Power law model, Carreau-Yasuda model, as well as a multi-

mode PTT viscoelastic model and a Simplified Viscoelastic (SV) rheology model 

are investigated. Rheometry characterization of a virgin ABS polymer is carried 

out, from where the rheology properties obtained are implemented for the 

modeling. It was found that characterizing the melt flow by different rheology 

models yielded noticeable variation in predicted die swell, fiber orientation 

distribution and the ultimate elastic behavior of the extruded composites. The 

predicted die swell yielded by the PTT model was 50% higher than that of a 

Newtonian model result and over 100% higher those resulted by the generalized 

Newtonian Fluid (GNF) models (i.e., Power law and Carreau-Yasuda models). 

The SV model yielded die swell results that agreed well with those from the PTT 

model by careful adjustments of the rheology model parameters. Through the 

weakly couple formulation, the fiber orientation distribution within the extrudate 

was calculated from the melt flow velocity field with the Advani-Tucker equation. 

High fiber alignment in the direction of extrusion occurred near the high-shear 

flow edge region of the extrudate as well as the near-center region, which was due 

to the elongational effects of the free flow. Among the applied rheology models, 

the PTT model yielded the lowest principal fiber alignment while the Power law 



157 

model resulted in the highest fiber orientation in polymer extrusion direction. By 

employing the orientation homogenization method, the elastic properties of a 

printed extrudate of 13% CF-ABS were evaluated based on the predicted fiber 

orientation distributions, in which the estimated elastic modulus along extrusion 

direction showed noticeable variance across the extrudate. The numerically-

integration-averaged elastic moduli generally match the published experimental 

work from preceding literature. The estimation indicated the composite extrudate 

exhibited quasi transverse isotropic behavior. In detail, the GNF models yielded 

higher Young’s modulus along the principal direction while the PTT model 

resulted in a lower principal Young’s modulus but higher values of shear moduli. 

This indicates that by considering the non-viscous rheology effects, the elastic 

properties of extrudate through AM systems reduced at longitudinal direction but 

increased at shear directions. In addition, the SV model yielded relatively similar 

data of fiber orientation distribution as well as elastic properties in comparison 

with the PTT model, especially in the shear dominant flow boundary, yet cost less 

computational time than the PTT model. In the future study of 3D deposition 

modelling of large-scale AM, the computationally cost-effective SV model is a 

reasonable alternative for conventional viscoelastic fluid models (e.g., PTT 

model). 

• Chapter Five: the flow domain in a single screw extruder is simplified such that

any hardware lying in the intersection region between the extruder and nozzle

(e.g., valve or other structural components) is ignore, and essentially the screw

tip, nozzle, and a strand of material beyond the nozzle exit where die swell occurs
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are included to form a swirling flow model. With the created model, the screw 

swirling effects on the predicted fiber orientation and associated mean elastic 

properties of a polymer composite extrudate in a LAAM polymer deposition 

process are investigated. The weakly coupled analysis is performed to simulate 

the polymer melt flow and fiber orientation through a typical LAAM extrusion 

nozzle. The rheology properties of a molten 13% CF-ABS melt is fitted with a 5-

mode viscoelastic PTT fluid model. The Wang-O’Gara-Tucker RSC fiber 

orientation model is applied to solve the fiber orientation state with computed 

kinematics of the uncoupled flows (i.e., flow fields are solved without any fiber 

effects counted). It is found that the swirling motion of the flow yields rotational 

streamlines and elongational flows that align fiber particles traveling along 

pathlines through the flow domain which differ from results computed for non-

swirling flows. Additionally, the evolution of the second order orientation tensors 

through the flow domain exhibits significantly different trends if the consideration 

of swirling kinematics is included. In addition, the final orientation pattern of the 

extruded composite at the flow domain exit is different locally over the diameter 

of the bead when comparing swirling flow and straight flow models. Based on the 

computed steady-state orientation tensors with a prescribed orientation modelling 

parameter set, the effective elastic constants of a 13% CF-ABS are computed. The 

predicted principal tensile modulus from the swirling flow is 24.5% higher than 

that yielded by a straight flow. Moreover, the predicted data show more favorable 

agreement with previously published experimental data on a similar material 

system which supports our proposed methodology. 
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• Chapter Six: a statistics-based integration scheme is incorporated into the

orientation homogenization method in estimating the effective elastic constants of

a 13% wt. CF-ABS feedstock for LAAM systems, by which the screw-feeding-

mechanism-resulted fiber aspect ratio distribution of the composite extruded can

be included into consideration. The length of fibers in pellet feedstock and

LAAM-deposited bead are measured. The fiber diameter is assumed to be non-

affected through the single screw extrusion process and an average fiber diameter

is estimated as 7 𝜇𝜇𝜇𝜇 based on a related experimental work. The fiber aspect ratio

of pellets and deposited beads are obtained by dividing the fiber length

distribution measurements with the assumed constant diameter. A two-parameter

Weibull probability distribution function is employed to characterize the

statistical trends of measure fiber length data. The fiber aspect ratio distribution is

then integrated into the orientation homogenization method to obtain the

orientation-averaged elastic properties of a composite material extruded from

LAAM applications. The fiber orientation of the extrudate is obtained from results

of Chapter Four. The measured fiber length results show that the single screw

extrusion degrades the length of fibers by a significant amount by comparing the

measurements of the beads and pellets, such that the PRD of 𝑎𝑎𝑟𝑟��� in the pellet and

bead results is 23.7%, indicating ~ 1/4 reduction on the fiber length geometry

during the single screw extrusion process. On the other hand, the skewness of the

fiber aspect ratio distribution in the bead results is smaller than that of the pellet

results, such that the PRD between the mean and mode fiber aspect ratio of the

pellet results is 16% which is more than three time larger of the PRD in the bead
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results. Predicted mean elastic moduli of the 13% CF-ABS material vary locally 

across an extrudate bead, where the most intense variation of the properties is 

seen in property 𝐸𝐸33, which is considered as a result of the fiber orientation of the 

extruded composites (i.e., fibers are highly aligned along the direction of the flow, 

which is the 𝑥𝑥3 direction. Computed results of mean elastic constant 𝐸𝐸�33 show 

significant differences when different sets of estimated fiber aspect ratio are 

implemented into the homogenization computation. If ignoring the fiber length 

attrition as well as the resulted distributed values of fiber aspect ratio, it is seen 

that the PRD of predicted 𝐸𝐸�33 can be as high as 12%, i.e., comparing predicted 

𝐸𝐸�33 values by using {pellet measurement: 𝐶𝐶𝑖̅𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑎𝑎𝑟𝑟���)} and {bead measurement: 

𝐶̃𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑟𝑟����𝑁𝑁} methods, respectively. In other words, it is of great importance to 

incorporate the fiber geometrical loss as well as the fiber aspect ratio distribution 

into the consideration of evaluating elastic properties of extruded composites in 

LAAM applications.  

• Chapter Seven: to quantify the mutually dependent relations between the polymer 

melt flow and reinforced fiber kinetics, the governing equations of the isothermal 

creep flow and Advani-Tucker fiber orientation tensor approach are formulated by 

the Galerkin Finite Element Method and resulting systems of equations are solved 

through a customized MATLAB code. The GNF power law model is employed to 

characterize the shear thinning viscosity of the polymer melt of chosen material 

model, PEI. A one-dimensional streamline-wise remeshing technique is applied to 

identify the location of free extrudate die swell surface. The Streamline-Upwind 

Petrov Galerkin (SUPG) method is utilized to address the numerical instability. 
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Parameters of each mentioned numerical approaches are discussed delicately 

toward the convergence performance of the constructed program. Developed code 

is tested and validated through a thin-cavity-moulding central disc flow, where 

favourable agreement is seen between our computed results and those from prior 

literature. The algorithm is then tailored to characterize the coupled effects of 

flow/fiber-orientation solutions in a 2D axisymmetric nozzle tip flow with a short 

section of free extrudate, which represents the extrusion process of a LAAM 

application involved with the chose polymer feedstock, PEI, reinforced with 20% 

weight percentage discontinuous carbon fiber. The fully coupled solutions of flow 

fields exhibit notable differences as compared to the weakly-coupled simulation. 

In particular, the flow fields of 𝑣𝑣𝑟𝑟  and 𝑣𝑣𝑧𝑧 vary significantly due to the flow-fiber 

coupling effects, where the largest error between the weakly coupled and fully 

coupled results can be as high as 50% and 27% for 𝑣𝑣𝑟𝑟 and 𝑣𝑣𝑧𝑧 contours, 

respectively. The fully coupled solution of steady-state 𝑣𝑣𝑧𝑧 component (i.e., at the 

flow exit) exhibits an increment of 13% as compared to the weakly coupled. In 

addition, the die swell ratio of the fully coupled solution exhibits a more than ~2× 

reduction as compared to the weakly-coupled-solved value, which generally 

matches the experimental reports on investigating die swell ratios of similar fill-

polymers. Moreover, computed results of second orientation tensors also show 

great differences between the two sets of solutions, where the fiber alignment 

along the flow direction increases 17% by counting the flow-fiber coupling 

impacts. The mean elastic properties of 𝐸𝐸�33 predicted using the weakly and fully 

coupled schemes exhibits a difference of 7%. 
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 Regarding to the current achievements, future work is recommended as follows. 

Extending the MATLAB-customized fully coupled code presented in Chapter Seven to 

two and a half dimension flows, which otherwise may refer to the swirling flow studied 

in Chapter Five. This allows to count the interaction between the swirling kinematics 

included flow fields and the fiber orientation tensor fields. Another important 

improvement the proposed code may be to update the Advani-Tucker fiber orientation 

tensor of the flow domain with an advanced fiber orientation model, such as the RSC 

model that has been used in Chapters Four and Five. However, the scale parameter 𝜅𝜅 

appearing in the RCS model governing equation (cf. Equation 3-17) as well as the 

coupling parameter 𝑁𝑁𝑝𝑝 shown in Equation 3-28 require an in-depth investigation both 

numerically and experimentally to find proper values for these coefficients. Alternatively, 

recent publications of [79, 80] proposed another integrated form for counting the fiber 

orientation effects into the viscosity of the flow, where the above mentioned parameter 

fitting process is avoided. Hence, it is recommended to implement the anisotropic 

viscosity tensor approach given in [79, 80] to substitute Equation 3-28 for the coupling 

analysis.  

In addition, experiments tailored toward validating the proposed simulations are 

needed as well. The geometry of the presented swirling flow model appearing in Chapter 

Five is a simplified version of the Model-19 extruder we refer to. A modified extruder is 

needed for further experimental validation, where the structural components in between 

the nozzle and upstream single screw extruder may be simplified. The simplified extruder 

can be used to generate samples of extrudate beads, from where fiber orientation tensor 

values can be measured experimentally and then used to compare with numerical 
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predicted values from swirling flow models. Moreover, we are also able to investigate the 

physical meaning of the scale factor 𝜅𝜅 (cf. Equation 3-17) and to explore the effective 

values of 𝜅𝜅 in quantifying the interactions between the screw swirling kinematics and the 

fiber orientation kinetics through the experimental-numerical combined analyses. 

Besides, a more rigorous investigation scheme is need for further validate the proposed 

homogenization approach appearing in Chapter Six. The procedure of fiber length 

measurements should be delicately designed to eliminate reading biases. Additionally, the 

elastic moduli of the deposited beads from where fiber attrition data are measure, should 

be quantified experimentally. Then the numerical predicted equivalent mean moduli can 

be directly verified with the experimental data. 
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APPENDIX A 

Tandon-Weng Equation 

Tandon and Weng [87] developed a micromechanical model for predicting the 

elastic constants of aligned short fiber composites, which has been shown as a reliable 

numerical tool in numerical evaluations of the material properties of composite materials 

[88, 89]. The model can be written as [87] 

𝐸𝐸11 = 𝐸𝐸𝑚𝑚
1+𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝐴𝐴1+2𝜈𝜈𝑚𝑚𝐴𝐴2)/𝐴𝐴

, (A-1)

and 

𝐸𝐸22 = 𝐸𝐸𝑚𝑚
1+𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓[−2𝜈𝜈𝑚𝑚𝐴𝐴3+(1−𝜈𝜈𝑚𝑚)𝐴𝐴4+(1+𝜈𝜈𝑚𝑚)𝐴𝐴5𝐴𝐴]/(2𝐴𝐴)

, (A-2) 

and 

𝐺𝐺12 = 𝐺𝐺𝑚𝑚 �1 + 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐺𝐺𝑚𝑚

𝐺𝐺𝑓𝑓−𝐺𝐺𝑚𝑚
+2�1−𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝑆𝑆1212

�, (A-3) 

and 

𝐺𝐺23 = 𝐺𝐺𝑚𝑚 �1 + 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐺𝐺𝑚𝑚

𝐺𝐺𝑓𝑓−𝐺𝐺𝑚𝑚
+2�1−𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝑆𝑆2323

�, (A-4) 

and 

𝜈𝜈12 = 𝜈𝜈𝑚𝑚𝐴𝐴−𝜈𝜈𝑓𝑓(𝐴𝐴3−𝜈𝜈𝑚𝑚𝐴𝐴4)
𝐴𝐴+𝜈𝜈𝑓𝑓(𝐴𝐴1+2𝜈𝜈𝑚𝑚𝐴𝐴2)

, (A-5) 

and 

𝜈𝜈23 = −1 + 𝐸𝐸22
2𝐺𝐺23

, (A-6) 



166 
 

For the above, fibers are aligned along 𝑥𝑥1 direction. 𝐸𝐸, 𝐺𝐺, 𝜈𝜈 are tensile modulus, shear 

modulus and Poisson’s ratio, respectively. 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 refers to the fiber volume fraction and 

subscripts m and f denote the matrix and fiber, respectively. In addition, the material 

constants 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3, 𝐴𝐴4, 𝐴𝐴5, and 𝐴𝐴,are 

 𝐴𝐴1 = 𝐷𝐷1(𝐵𝐵4 + 𝐵𝐵5) − 2𝐵𝐵2, (A-7) 

and 

 𝐴𝐴2 = (1 + 𝐷𝐷1)𝐵𝐵2 − (𝐵𝐵4 + 𝐵𝐵5), (A-8) 

and 

 𝐴𝐴3 = 𝐵𝐵1 − 𝐷𝐷1𝐵𝐵3, (A-9) 

and 

 𝐴𝐴4 = (1 + 𝐷𝐷1)𝐵𝐵1 − 2𝐵𝐵3, (A-10) 

and 

 𝐴𝐴5 = (1 − 𝐷𝐷1)/(𝐵𝐵4 − 𝐵𝐵5), (A-11) 

and 

 𝐴𝐴 = 2𝐵𝐵2𝐵𝐵3 − 𝐵𝐵1(𝐵𝐵4 + 𝐵𝐵5), (A-12) 

and constants 𝐵𝐵𝑖𝑖 are 

 𝐵𝐵1 = 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐷𝐷1 + 𝐷𝐷2 + (1 − 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)(𝐷𝐷1𝑆𝑆1111 + 2𝑆𝑆2211), (A-13) 

and 

 𝐵𝐵2 = 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝐷𝐷3 + (1 − 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)(𝐷𝐷1𝑆𝑆1122 + 𝑆𝑆2222 + 𝑆𝑆2233), (A-14) 

and 

 𝐵𝐵3 = 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝐷𝐷3 + (1 − 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)(𝑆𝑆1111 + 𝑆𝑆2211 + 𝐷𝐷1𝑆𝑆2211), (A-15) 

and 
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𝐵𝐵4 = 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐷𝐷1 + 𝐷𝐷2 + (1 − 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)(𝑆𝑆1122 + 𝐷𝐷1𝑆𝑆2222 + 𝑆𝑆2233), (A-16) 

and 

𝐵𝐵5 = 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝐷𝐷3 + (1 − 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)(𝑆𝑆1122 + 𝑆𝑆2222 + 𝐷𝐷1𝑆𝑆2233), (A-17) 

and constants 𝐷𝐷𝑗𝑗  are written as 

𝐷𝐷1 = 1 +
2(𝐺𝐺𝑓𝑓 − 𝐺𝐺𝑚𝑚)
ℒ𝑓𝑓 − ℒ𝑚𝑚

(A-18) 

and 

𝐷𝐷2 = ℒ𝑚𝑚−2𝐺𝐺𝑚𝑚
ℒ𝑓𝑓−ℒ𝑚𝑚

, (A-19) 

and 

𝐷𝐷3 = ℒ𝑚𝑚
ℒ𝑓𝑓−ℒ𝑚𝑚

, (A-20) 

where ℒ𝑓𝑓, and ℒ𝑚𝑚 are Lame’s constants that are expressed as 

ℒ𝑓𝑓 = 𝐸𝐸𝑓𝑓𝜈𝜈𝑓𝑓
(1+𝜈𝜈𝑓𝑓)(1−2𝜈𝜈𝑓𝑓)

, (A-21) 

and 

ℒ𝑚𝑚 = 𝐸𝐸𝑚𝑚𝜈𝜈𝑚𝑚
(1+𝜈𝜈𝑚𝑚)(1−2𝜈𝜈𝑚𝑚)

, (A-22) 

In addition, the non-zero components of the Eshelby tensor (𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) are [87] 

𝑆𝑆1111 = 1
2(1−𝜈𝜈𝑚𝑚)

�1 − 2𝜈𝜈𝑚𝑚 + 3(𝑎𝑎𝑟𝑟)2−1
(𝑎𝑎𝑟𝑟)2−1

− �1 − 2𝜈𝜈𝑚𝑚 + 3(𝑎𝑎𝑟𝑟)2

(𝑎𝑎𝑟𝑟)2−1
� 𝑔𝑔�, (A-23) 

and 

𝑆𝑆2222 = 3
8(1−𝜈𝜈𝑚𝑚)

(𝑎𝑎𝑟𝑟)2

(𝑎𝑎𝑟𝑟)2−1
+ 1

4(1−𝜈𝜈𝑚𝑚)
�1 − 2𝜈𝜈𝑚𝑚 − 9/4

(𝑎𝑎𝑟𝑟)2−1
� 𝑔𝑔, (A-24) 

and 

𝑆𝑆3333 = 𝑆𝑆2222, (A-25) 

and 
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 𝑆𝑆2233 = 1
4(1−𝜈𝜈𝑚𝑚)

�(𝑎𝑎𝑟𝑟)2/2
(𝑎𝑎𝑟𝑟)2−1

− �1 − 2𝜈𝜈𝑚𝑚 + 3/4
(𝑎𝑎𝑟𝑟)2−1

� 𝑔𝑔�, (A-26) 

and 

 𝑆𝑆3322 = 𝑆𝑆2233, (A-27) 

and 

 𝑆𝑆2211 = −1
2(1−𝜈𝜈𝑚𝑚)

(𝑎𝑎𝑟𝑟)2

(𝑎𝑎𝑟𝑟)2−1
− 1

4(1−𝜈𝜈𝑚𝑚)
�1 − 2𝜈𝜈𝑚𝑚 − 3(𝑎𝑎𝑟𝑟)2

(𝑎𝑎𝑟𝑟)2−1
� 𝑔𝑔, (A-28) 

and 

 𝑆𝑆3311 = 𝑆𝑆2211, (A-29) 

and 

 𝑆𝑆1122 = −1
2(1−𝜈𝜈𝑚𝑚)

�1 − 2𝜈𝜈𝑚𝑚 − 1
(𝑎𝑎𝑟𝑟)2−1

� + 1
2(1−𝜈𝜈𝑚𝑚)

�1 − 2𝜈𝜈𝑚𝑚 + 3/2
(𝑎𝑎𝑟𝑟)2−1

� 𝑔𝑔, (A-30) 

and 

 𝑆𝑆1133 = 𝑆𝑆1122, (A-31) 

and 

 𝑆𝑆2323 = 1
4(1−𝜈𝜈𝑚𝑚)

�(𝑎𝑎𝑟𝑟)2/2
(𝑎𝑎𝑟𝑟)2−1

+ �1 − 2𝜈𝜈𝑚𝑚 − 3/4
(𝑎𝑎𝑟𝑟)2−1

� 𝑔𝑔�, (A-32) 

and 

 𝑆𝑆3232 = 𝑆𝑆2323, (A-33) 

and 

 𝑆𝑆1212 = 1
4(1−𝜈𝜈𝑚𝑚)

�1 − 2𝜈𝜈𝑚𝑚 − (𝑎𝑎𝑟𝑟)2+1
(𝑎𝑎𝑟𝑟)2−1

− 2
𝑔𝑔
�1 − 2𝜈𝜈𝑚𝑚 − 3 (𝑎𝑎𝑟𝑟)2+1

(𝑎𝑎𝑟𝑟)2−1
��, (A-34) 

and additionally 

 𝑔𝑔 =
𝑎𝑎𝑟𝑟

[(𝑎𝑎𝑟𝑟)2 − 1]3/2  �𝑎𝑎𝑟𝑟[(𝑎𝑎𝑟𝑟)2 − 1]
1
2 − acosh(𝑎𝑎𝑟𝑟)� (A-35) 

The above concludes the equations of Tandon-Weng model. 
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APPENDIX B 

Tangent Stiffness Matrices 

The implementation of the N-R method for solving the shear thinning fluid flow 

as well as the second order orientation tensor fields requires the corresponding tangent 

stiffness matrices with respect to their finite element systems, respectively. In the 

following, the derivations of these tangent stiffness matrices are given sequentially. 

Firstly, for the non-linear flow system of a power law fluid, the tangent stiffness matrix is 

derived from a first order forward finite difference assumption such that  

𝑼𝑼𝒆𝒆 = 𝑑𝑑[𝑯𝑯𝒆𝒆(𝒗𝒗)]
𝑑𝑑(𝒗𝒗)

= 𝑯𝑯𝒆𝒆(𝒗𝒗+∆𝒗𝒗)−𝑯𝑯𝒆𝒆(𝒗𝒗)
∆𝒗𝒗

, (B-1) 

where ∆𝒗𝒗 is a small increment with respect to the primary unknown 𝑣⃗𝑣. Plugging in the 

expression of 𝑯𝑯𝒆𝒆(𝒗𝒗), in which Equations 7-12 to 7-14 are combined, we obtain that 

𝑼𝑼𝒆𝒆 = ∫ [(𝑩𝑩𝒔𝒔
𝒆𝒆)𝑇𝑇 𝑽𝑽� 𝑩𝑩𝒔𝒔

𝒆𝒆]Ω 𝑑𝑑Ω + ∫ [(𝑩𝑩𝒔𝒔
𝒆𝒆)𝑇𝑇 𝑽𝑽� 𝑩𝑩𝒔𝒔

𝒆𝒆𝒅𝒅𝒆𝒆  𝜕𝜕𝜕𝜕(𝑵𝑵𝒆𝒆𝒅𝒅𝒆𝒆)
𝜕𝜕𝒅𝒅𝒆𝒆

]Ω 𝑑𝑑Ω +

𝛾𝛾𝑒𝑒 ∫ [(𝑩𝑩𝒔𝒔
𝒆𝒆)𝑇𝑇 𝟏𝟏��⃑  𝟏𝟏��⃑ 𝑇𝑇 𝑩𝑩𝒔𝒔

𝒆𝒆]𝑑𝑑ΩΩ , 
(B-2) 

𝜕𝜕𝜕𝜕(𝑵𝑵𝒆𝒆𝒅𝒅𝒆𝒆)
𝜕𝜕𝒅𝒅𝒆𝒆

 is unknown in the above. Applying the forward Euler assumption (e.g., see 

[102]), we obtain that 

𝜕𝜕𝜕𝜕(𝑵𝑵𝒆𝒆𝒅𝒅𝒆𝒆)
𝜕𝜕𝒅𝒅𝒆𝒆

= 𝑛𝑛−1
(𝛾̇𝛾)2 𝜂𝜂( 𝛁𝛁𝒔𝒔𝑵𝑵𝒆𝒆𝒅𝒅𝒆𝒆)𝑇𝑇𝑽𝑽� 𝛁𝛁𝒔𝒔, (B-3) 

Ultimately, the tangent stiffness matrix with applying the power law can be finalized as 
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 𝑼𝑼𝒆𝒆 = ∫ (𝑩𝑩𝒔𝒔
𝒆𝒆)𝑇𝑇{𝜂𝜂[𝛾̇𝛾]𝑽𝑽� + 𝜂𝜂[𝛾̇𝛾] 𝑛𝑛−1(𝛾̇𝛾)2 𝑽𝑽�𝑩𝑩𝒔𝒔

𝒆𝒆𝒅𝒅𝒆𝒆(𝒅𝒅𝒆𝒆)𝑇𝑇(𝑩𝑩𝒔𝒔
𝒆𝒆)𝑇𝑇 𝑽𝑽�𝑇𝑇}𝑩𝑩𝒔𝒔

𝒆𝒆
Ω 𝑑𝑑Ω +

𝛾𝛾𝑒𝑒 ∫ [(𝑩𝑩𝒔𝒔
𝒆𝒆)𝑇𝑇 𝟏𝟏��⃑  𝟏𝟏��⃑ 𝑇𝑇 𝑩𝑩𝒔𝒔

𝒆𝒆]𝑑𝑑ΩΩ , 
(B-4) 

where 𝜂𝜂[𝛾̇𝛾] refers to the function appearing in Equation 3-8, and 𝛾̇𝛾 is the scalar magnitude 

of the rate-of-deformation tensor that is formed with the velocity tensor obtained in the 

previous step. 

Note, a reduced numerical integration scheme is applied to evaluate the integral 

form appearing in Equation B-4, such that, e.g., if the first integral of Equation B-4 is 

computed through 3-point G-Q integration then the second part of Equation B-4 (i.e., 

“𝛾𝛾𝑒𝑒 ∫ [(𝑩𝑩𝒔𝒔
𝒆𝒆)𝑇𝑇 𝟏𝟏��⃑  𝟏𝟏��⃑ 𝑇𝑇 𝑩𝑩𝒔𝒔

𝒆𝒆]𝑑𝑑ΩΩ ”) need to be evaluated through the 2-point G-Q integration 

(c.f. Reddy [124]). 

Similarly, the tangent stiffness matrix of the GFEM-formulated fiber orientation 

tensor system can be obtained by expanding the corresponding residual of the system as  

 

𝑯𝑯𝒂𝒂
𝒆𝒆 = ∫ ���𝑵𝑵

�𝒂𝒂𝒆𝒆�
𝑇𝑇
𝑵𝑵𝒆𝒆

∆𝑡𝑡
+ �𝑵𝑵�𝒂𝒂𝒆𝒆�

𝑇𝑇
𝒗𝒗 ∙ ∇𝑵𝑵𝒂𝒂

𝒆𝒆� 𝒅𝒅𝒂𝒂𝒆𝒆|𝑝𝑝 + ��𝑵𝑵�𝒂𝒂𝒆𝒆�
𝑇𝑇
𝒎𝒎 +Ω

�𝑵𝑵�𝒂𝒂𝒆𝒆�
𝑇𝑇
𝑵𝑵𝒂𝒂𝒆𝒆𝒅𝒅𝒂𝒂𝒆𝒆 |𝑝𝑝−1

∆𝑡𝑡
�� 𝑑𝑑Ω. 

(B-5) 

Note, 𝑵𝑵�𝒂𝒂𝒆𝒆  is a revised form of the weight function based on the SUPG method (e.g., see 

Equation 7-31). Then, the tangent stiffness matric of the fiber orientation problem is 

obtained by taking the derivative of Equation B-6 with respect to 𝒅𝒅𝒂𝒂𝒆𝒆  such that 

 𝑼𝑼𝒂𝒂
𝒆𝒆 = ∫ ���𝑵𝑵

�𝒂𝒂𝒆𝒆�
𝑇𝑇
𝑵𝑵𝒆𝒆

∆𝑡𝑡
+ �𝑵𝑵�𝒂𝒂𝒆𝒆�

𝑇𝑇
𝒗𝒗 ∙ ∇𝑵𝑵𝒂𝒂

𝒆𝒆� + ��𝑵𝑵�𝒂𝒂𝒆𝒆�
𝑇𝑇 𝑑𝑑(𝒎𝒎)
𝑑𝑑(𝒅𝒅𝒂𝒂𝒆𝒆)

��Ω 𝑑𝑑Ω, (B-6) 

In the above, the expression of 𝑑𝑑(𝒎𝒎)
𝑑𝑑(𝒅𝒅𝒂𝒂𝒆𝒆)

 is implicit, whose analytical form was derived by 

VerWeyst [135] through the orthotropic closure approximation. The final expression of 
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𝑑𝑑(𝒎𝒎)
𝑑𝑑(𝒅𝒅𝒂𝒂𝒆𝒆)

 is computationally expensive to be implemented. A similar problem adopted the 

forward Euler approach on 𝑑𝑑(𝒎𝒎)
𝑑𝑑(𝒅𝒅𝒂𝒂𝒆𝒆)

 and the results exhibited subtle difference as compared 

to the analytical solution, while the accuracy of the results retained. Thus, we herein 

employ this finite difference assumption for 𝑑𝑑(𝒎𝒎)
𝑑𝑑(𝒅𝒅𝒂𝒂𝒆𝒆)

 with a small perturbation of 10−5. 

More detail on expanding the finite difference form of 𝑑𝑑(𝒎𝒎)
𝑑𝑑(𝒅𝒅𝒂𝒂𝒆𝒆)

 can be found in [139]. 
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APPENDIX C 
 

Determination of the Scale for SUPG 
 
 

 Prior literature stressed the scale of the SUPG implementation, where an over-

scaled SUPG may distort the results by a significant amount as compared to the “true” 

solution (e.g., Smith, et al. [132] and VerWeyst and Tucker [53]). Herein, three values of 

SUPG scale, i.e., 𝛼𝛼 = 0, 0.5, 1, are investigated in solving an uncoupled a shear thinning 

power law fluid flow assuming the coupling effects and the numerical stability in the 

fiber orientation solution are independent. Through the results given in Figures C-1 to C-

3, it is clearly seen that the no-SUPG-involved orientation tensor contour exhibits 

significant wiggles. In addition, the contour stops showing notable difference as the scale 

increasing from 0.5 to 1. Consequently, we end up choosing 𝛼𝛼 = 0.5 as the scale of SUPG 

for the power law fluid simulations. Admittedly, there still exists some wiggles near the 

shear boundary of the flow domain, while it is considered to yield no significance 

variation to the data comparison between the weakly-coupled and full-coupled solved 

results, which is the main scope of this research. In addition, 0.5 is also a suggested scale 

of SUPG for a GFEM-formulated fiber orientation problem in VerWeyst and Tucker 

[53]. Hence, it is convinced that the value of 0.5 is a proper value for the scale of SUPG 

implementation in this study.  
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Figure C-1. 𝐴𝐴33 Component Contours Resulted from the SUPG Scaling Analysis at 𝛼𝛼=0. 

Figure C-2. 𝐴𝐴33 Component Contours Resulted from the SUPG Scaling Analysis at 𝛼𝛼=0.5. 

Figure C-3. 𝐴𝐴33 Component Contours Resulted from the SUPG Scaling Analysis at 𝛼𝛼=1. 
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APPENDIX D 
 

Code Verification: Central Disc Flow 
 
 

 VerWeyst and Tucker [53] performed the coupled flow-fiber analysis on a central 

disc flow for injection moulding application. Herein, we employ the same conditions 

reported and compare our results with the published data. The flow domain and 

corresponding boundary conditions are shown in Figure D-1. A fully developed velocity 

profile is imposed at flow inlet based on the volume flow rate of 22.5 cm3/s [53]. The 

flow solvent is Newtonian, and the viscosity is 1000 Pa s. 𝑁𝑁𝑝𝑝 is set as 7.75 and flow 

domain is meshed with 4-node quadrilateral elements as did in one of VerWeyst’s paper 

[53]. The time step is set as 10−4 initially, and after 68 times of coupling iterations 

(which is running for a sufficiently long period of time), the code is manually terminated 

and a large time step of 5× 10−4 is imposed for another 10 and 50 times, respectively.  

The results obtained from the three runs are given through Figures D-2 and D-3. 

Notice, the velocity components appearing in Figure D-2 are normalized using the same 

approach as proposed by VerWeyst and Tucker [53] (e.g., see Equation 7-34). The ‘soln. 

#1’ appearing in the legends of Figures D-2 and D-3 refers to the results obtained after 

the first 68 times coupling iterations with step size of 10−4, and then ‘soln. #2’ and ‘soln. 

#3’ refer to separately the results obtained with additional 10 and 50 coupling iterations 

with step size of 5× 10−4.  

The major deviation between our results and the reported is in Figure D-3A, 

where results of the fiber orientation tensor component 𝐴𝐴11 at the initial portion of the 
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mold thin cavity are compared. The error is main contributed by that a fully alignment 

along flow direction is imposed in our code (as suggested by [94] to ensure the 

convergence behavior of the code, while VerWeyst and Tucker [53] did not apply such 

assumption, as assuming their commercial software involved algorithm is more stable 

than ours. In exception to that, it is seen that the results yielded by the proposed code is 

approaching the published data closely, as the coupling iteration marching forward in the 

pseudo time domain. With a flow domain in large aspect ratio (as the one shown in 

Figure D-1), we note that the steady state of the coupled solution is seldom achieved 

numerically. However, the trends appearing in Figures D-2 and D-3 exhibit favourable 

agreement and thus the code is believed to yield reasonable estimations on the flow-fiber 

coupling effects in axial flow domains. 

We notice that the later two cases (e.g., soln. #2, #3 appearing in Figures D-2 and 

D-3) consume much less time as compared to the first run with a step size of 10−4. Due

to the high degree of nonlinearity, the iterative coupling scheme has to start with a 

sufficiently small value of step size to ensure the convergence. While as the simulation 

runs to a much more stable condition after a significant amount of iterations, larger time 

steps can be applied and the convergence still retains (e.g., see [53]). In other words, an 

adaptive time step size can reduce the time consumption of the coupling code. This 

though beyond the scope of this research but is interesting to be investigated for 

optimizing the performance of proposed code in another in-depth study. 
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Figure D-1. 2D Axisymmetric Flow Domain Modelling of a Central Disc Injection Mold 
Internal Geometry. 

 
 

  
(A) (B) 

Figure D-2. Normalized Radial Velocity Profiles along Gap-Wise Direction (z-direction) 
Computed by the Proposed Code and VerWeyst and Tucker [53]: (A) at z = 0.5 cm; (B) 
at z = 5 cm.  
 
 

  
(A) (B) 

Figure D-3. Fiber Orientation Tensor Component 𝐴𝐴11 Computed by the Proposed Code 
and VerWeyst and Tucker [53]: (A) at z = 0.5 cm; (B) at z = 5 cm.  
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