
ABSTRACT

Sample Size Determination for Two Sample Binomial and Poisson Data Models
Based on Bayesian Decision Theory

Ryan A. Sides, Ph.D.

Chairpersons: James D. Stamey and David J. Kahle

Sample size determination continues to be an important research area in sta-

tistical analysis due to the cost and time constraints that often exist in areas such

as pharmaceuticals and public health. We begin by outlining the work of a pre-

vious article that attempted to find a minimum necessary sample size in order to

reach a desired expected power for binomial data under the Bayesian paradigm. We

make improvements to their efforts that allow us to specify not only a desired ex-

pected Bayesian power, but also a more generic loss function and a desired expected

Bayesian significance level, the latter having never been considered previously. We

then extend these methodologies to handle Poisson data and discuss challenges in

the methodology. We cover a detailed example in both cases and display various

results of interest.

We conclude by covering a mixed treatment comparisons meta-analysis prob-

lem when analyzing Poisson data. Traditional methods do not allow for the pres-

ence of underreporting. Here, we illustrate how a constant underreporting rate for

all treatments has no effect on relative risk comparisons; however, when this rate

changes per treatment, not accounting for it can lead to serious errors. Our method

allows this to be taken into account so that correct analyses can be made.
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CHAPTER ONE

Introduction

Sample size determination continues to be an important research area in sta-

tistical analysis due to the cost and time constraints that often exist in areas such as

pharmaceuticals and public health. Too small of a sample can lead to under-powered

studies and a waste of time and money, while too large of a sample size, while not

only being a waste of those resources, can also make any difference in observation

seem significant. Because of the numerous advantages to Bayesian sample size de-

termination, we operate under the Bayesian paradigm. The main advantage that

we aim to utilize is that we are able to characterize our uncertainty when assessing

the parameter of interest. In the frequentist domain, a sample size determination

problem requires the researcher to specify what he believes the parameter to be.

Because this prior guess is unlikely to be exact, the degree to which the researcher

is incorrect can create substantial problems with respect to the power of the test.

The ability for the researcher to model his indecision about the parameter through

expert knowledge or previous studies can allow the Bayesian approach to have better

operating characteristics. However, it should always remain prevalent in the reader’s

mind that misspecification in the Bayesian context can prevent desirable operating

characteristics.

One of the more basic sample size determination problems is when we con-

sider the equivalence of two population proportions. We follow the basic framework

outlined by Zhao et al. (2011) when introducing the problem and deriving a general

solution; however, we improve their efforts by introducing the option of a loss func-

tion without equal losses, something that had not previously been done. This loss

function allows us to directly specify the losses associated with Type I and Type

1



II errors, and eventually, the ability to control for expected Bayesian significance

level.1 As we continue with this problem, we introduce a method to control for

both expected Bayesian significance level and expected Bayesian power while letting

components of our loss function vary in order to minimize the necessary sample size

needed if we wish to meet those operating characteristics. We conclude the chapter

by detailing how to fix a loss function and still control for both types of expected

Bayesian errors. For each technique we illustrate by using a detailed example and

include various results of interest.

Next, we extend these methods to determine the sample size needed to prop-

erly assess the equivalence of two Poisson rates. While the construction used in

the binomial case can be applied directly to yield a test in the Poisson case, the

nature of Poisson data introduces unique features in the implementation stage. For

example, whereas in the binomial case we can enumerate the entire possible sample

space to produce exact results, this application is not possible in the Poisson case;

therefore, only approximate solutions are available. We again follow the same basic

framework as the previous chapter, outlining ways to control for various operating

characteristics of interest while still covering a basic example and different interesting

results.

Lastly, we change gears to consider the problem of handling a mixed treatment

comparisons meta-analysis when analyzing underreported Poisson data. In recent

years, mixed treatment comparisons meta-analysis has become a popular methodol-

ogy because of its ability to use separate trials to make comparisons about parame-

ters, even when parameters have not been directly compared. However, traditional

methods do not allow for the presence of misspecified data. Here, we introduce a

Markov chain Monte Carlo (MCMC) model that accounts for constant underreport-

ing among treatments and illustrate how this form of underreporting has no effect

1 Previous methods only allowed for controlling expected Bayesian power.

2



on relative risk comparisons. We then extend this idea to the case where each treat-

ment has a different amount of underreporting present, first showing how neglection

of this form of underreporting can lead to serious errors. Next, we introduce a new

MCMC model that handles treatments that each have a different amount of under-

reporting and provides better results. The robustness of this method to changes

various components is then illustrated by different simulations. Then we continue

by analyzing data with incorrect prior structures in an attempt to show that mis-

specifying an underreporting probability prior is still preferred to analyzing with no

underreporting. We conclude with a discussion about our MCMC assumptions.

3



CHAPTER TWO

Bayesian Sample Size Determination for Two Sample Binomial Experiments

2.1 Introduction

Sample size determination continues to be an important research area of statis-

tics. Cost and time constraints have made finding the appropriate sample size before

conducting a study of the utmost importance. Too small of a sample can lead to

under-powered studies and a waste of time and money. Too large of a sample size,

while not only being a waste of those resources, can also make any difference in

observation seem significant. In this chapter, we aim to find the required sample

size to meet a varying array of operating characteristics when testing the equality

of two binomial rates from a Bayesian perspective.

The advantages to Bayesian sample size determination are plentiful and have

been enumerated by Adcock (1997). Their construction does not depend on asymp-

totic approximations and allow for the characterization of uncertainty when assessing

the parameter of interest. In the frequentist domain, a sample size determination

problem requires the researcher to specify what he believes the parameter to be.

However, as M’Lan et al. (2008) note, the parameter(s) will most likely never be

known with high accuracy at the planning stage, such that the degree to which the

researcher is incorrect can create substantial problems with respect to the power

of the test and create doubt about the sample size estimated. The ability for the

researcher to model his indecision about the parameter through expert knowledge or

previous studies can allow the Bayesian approach to have better operating charac-

teristics (such as a smaller required sample size or better Type I and II error rates)

as noted by Bayarri and Berger (2004) among others. However, it should always

remain prevalent in the reader’s mind that misspecification in the Bayesian con-

4



text can prevent desirable operating characteristics just as it can in the frequentist

context.1

Various Bayesian sample size determination methods have been previously

studied. While there is no way to accurately assess them all, we cover a few specif-

ically here. One of the bigger authorities in Bayesian sample size determination is

Lawrence Joseph; of note, Joseph et al. (1995) looked at single binomial proportions

before Joseph et al. (1997) adapted the methodology to two sample binomial pro-

portions. However, both of these focus on interval based criteria such as coverage

and width. De Santis and Perone Pacifico (2003) and De Santis et al. (2004) ex-

tend those ideas to consider both interval-based and test-based criteria; M’Lan et al.

(2006) and M’Lan et al. (2008) do likewise. However, all of these efforts are limited

in their abilities with respect to test-based criteria; namely, none of them consider

the expected power of the test that will be conducted. Katsis and Toman (1999)

used more decision theoretic test-based criteria for the two sample binomial case, but

only to the the extent that they aim to control the posterior risk with a prespecified

bound. Zhao et al. (2011) extend on those ideas by using computational methods

now available to consider expected Bayesian power of the test. In this chapter, we

extend the results of Zhao et al. (2011) by accounting for both expected Type I and

Type II error rates. This sort of sample size procedure for the comparison of two

binomial rates has not been considered before in a Bayesian context.

Further, it should be noted that, due to the fact that we are in the Bayesian

framework, references to Type I and Type II error rates, significance level, and

power are meant in the Bayesian context. By this we mean that they are to be

understood in an expected sense, as outlined by O’Hagan et al. (2005). For example,

the expected power of a test is the power of the test when averaged over the likelihood

1 Because Type I error rates are not controlled in the Bayesian paradigm as they are in the
frequentist one, misspecification here leads to the possibility of either type of error being quite
large.
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of some other distribution that assesses the perceived likelihood of observing different

possible parameter values.2 However, when the test itself uses Bayesian methods,

we refer to this as the expected Bayesian power (EBP), as is done in Speighelhalter

et al. (2004).3 Thus, we weight the true values of power by the prior distribution

associated with the alternative hypothesis. These ideas, though not considered in

the literature previously, can also apply to significance level.4 In this chapter, we

consider expected Bayesian significance level (EBSL), such that we weight true values

of significance level by the prior distribution associated with the null hypothesis.5

This chapter is arranged as follows. In Section 2.2, we introduce the basic

framework for the two sample binomial problem. Section 2.3 details how we arrive at

the required sample size, introducing some decision theory not previously considered.

Section 2.4 outlines the case of controlling for EBP while fixing a loss function;

Section 2.5 does the same for controlling EBSL. Section 2.6 describes how we can

control for both EBSL and EBP, finding the minimum necessary sample size required

if we are not interested in specifying the loss in our loss function; Section 2.7 discusses

the case where we are interested in controlling all three of these things.

2.2 Framework

We follow the general framework of Zhao et al. (2011) in the development of

this problem. Suppose observations from two independent populations come from

binomial distributions with parameters θ1 and θ2, respectively, and common sample

size, n. Thus, we have Y1 ∼ binomial (n, θ1) and Y2 ∼ binomial (n, θ2). Our interest

2 This has application to the frequentist paradigm, where we could consider this individual value
rather than a power curve.

3 Another common name for this is the probability of a successful test or trial.

4 While frequentist methods typically report one value for significance level, what they are really
doing (in non point null hypotheses) is taking the largest possible significance level; thus, taking
an expectation of a significance level curve could be done as well.

5 Of course this implies that actual Type I and Type II error rates can be greater than or less
than what is indicated when considering expected error rates.

6



is to calculate the necessary sample size required to test the hypotheses

H0 : θ1 = θ2

vs

H1 : θ1 6= θ2.

As a notational convenience, we will refer to the truth about which hypothesis is

correct with ϕ. That is, when the null hypothesis that θ1 = θ2 is true, we will

denote that by saying ϕ = 0; when the alternative hypothesis that θ1 6= θ2 is

true, we will denote that by saying ϕ = 1. In addition, we place prior probabilities

of π0 and π1 = 1 − π0 on H0 and H1, respectively; that is, P (ϕ = 0) = π0 and

P (ϕ = 1) = π1 = 1 − π0. This is to say that, in a practical sense when we are

unsure about which hypothesis is true, we would set π0 = π1 = 0.5.

Also, we assume that the joint prior distribution of θ1 and θ2 is of the form

f (θ1, θ2) = π0p0 (θ) I [ϕ = 0] + π1p1 (θ1, θ2) I [ϕ = 1] ,

where I [ϕ = 0] and I [ϕ = 1] are the indicator functions of H0 and H1, respectively,

p0 (θ) is the prior distribution of θ under the assumption that θ = θ1 = θ2, and

p1 (θ1, θ2) is the joint prior distribution of θ1 and θ2 when θ1 6= θ2. Note that we

will place prior distributions on θ, θ1, and θ2 that summarize our beliefs about them;

this information will allow us to compute an estimate for the necessary sample size.

For simplicity, we will consider conjugate priors for all three θ’s, so that under

H0, θ ∼ beta (α, β) and under H1, θi ∼ beta (αi, βi). Thus, we will model our

beliefs about these parameters such that we think there is a π0 probability of the

null hypothesis being true, and when that is the case it can be summarized by a

beta (α, β) distribution; further, there is a π1 probability of the alternative hypothesis

being true, and when that is the case the two distributions there can be summarized

by beta (αi, βi) distributions.

7



2.3 Sample Size Determination

2.3.1 Decision Theory

Consider the loss function

L (ϕ, δ) =


0, if ϕ = δ,

c1, if ϕ = 0 and δ = 1,

c2, if ϕ = 1 and δ = 0,

where δ = 0 represents choosing H0, while δ = 1 represents a choice of H1. Thus,

c1 represents the loss due to a Type I error (rejecting a true null hypothesis) and c2

represents the loss due to a Type II error (failing to reject a false null hypothesis).

This represents an improvement to the methods of Zhao et al. (2011) who only used

the 0− 1 loss function such that c1 = c2.

Thus, our risk can be expressed as

R (δ) = E [L (ϕ, δ)]

=


c1P (ϕ = 0|Y = y) , if δ = 1,

c2P (ϕ = 1|Y = y) , if δ = 0.

However, we will define c as the ratio of c1 to c2, or rather, c = c1/c2. In other words,

we can think of our loss function constant, c, as how much worse it is to make a

Type I error than a Type II error. Thus, because our objective is to minimize risk,

we can express this in terms of the optimal decision, δ∗, as

δ∗ (y) =


0, if P (ϕ = 1|Y = y) < cP (ϕ = 0|Y = y) ,

1, if P (ϕ = 1|Y = y) ≥ cP (ϕ = 0|Y = y) .

Because the optimal decision is to reject the null hypothesis when the second

inequality holds, this implies that our rejection region, W , for this loss function is

W = {y : P (ϕ = 1|Y = y) ≥ cP (ϕ = 0|Y = y)} . (2.1)

8



Note that this follows the same basic notation used by Zhao et al. (2011) with the

addition of the loss function constant, c.

2.3.2 Bayes Factors

The Bayes factor is defined as the ratio of the odds in favor of one hypothesis to

the other. While this can be reported in both directions, we follow the form of Kass

and Raftery (1995) in defining it as the odds in favor of the alternative hypothesis

such that a large Bayes factor is evidence that we should reject the null hypothesis.

Thus, this is written analytically as

B =
P (ϕ = 1|Y = y) /P (ϕ = 0|Y = y)

π1/π0

=
P (ϕ = 1|Y = y) π0
P (ϕ = 0|Y = y) π1

.

This ratio is useful in Bayesian inference because it is often interpretted as partially

eliminating the influence of the prior on the posterior and, rather, emphasizing the

role of the data. Again following the work of Zhao et al. (2011), it can be shown

that our decision rule is a function of a Bayes factor because

W = {y : P (ϕ = 1|Y = y) ≥ cP (ϕ = 0|Y = y)}

=

{
y : P (ϕ = 1|Y = y)

π0
π1
≥ cP (ϕ = 0|Y = y)

π0
π1

}
=

{
y :

P (ϕ = 1|Y = y) π0
P (ϕ = 0|Y = y) π1

≥ c
π0
π1

}
=

{
y : B ≥ c

π0
π1

}
. (2.2)

This is particularly useful because the Bayes factor, B, will be the test statistic for

this hypothesis test. Further, the right side of Equation 2.2 becomes the decision

rule for when this test statistic should be rejected. This allows us to have a specific

decision rule rather than rely on traditional methods such as rejecting when this

value exceeds some arbitrary number such as three.
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2.3.3 Rejection Region

However, we can use Bayes’ Theorem to show that

P (ϕ = 0|Y = y) =
P (Y = y, ϕ = 0)

P (Y = y)

=
P (Y = y|ϕ = 0)P (ϕ = 0)

P (Y = y|ϕ = 0)P (ϕ = 0) + P (Y = y|ϕ = 1)P (ϕ = 1)

=
P (Y = y|ϕ = 0)π0

P (Y = y|ϕ = 0)π0 + P (Y = y|ϕ = 1)π1
(2.3)

and, using similar logic,

P (ϕ = 1|Y = y) =
P (Y = y|ϕ = 1)π1

P (Y = y|ϕ = 0)π0 + P (Y = y|ϕ = 1)π1
, (2.4)

where y = (y1, y2). Further, it is seen that

P (Y = y|ϕ = 0) = f (y|ϕ = 0)

=

1∫
0

f (y, θ|ϕ = 0) dθ

=

1∫
0

f (y|θ, ϕ = 0) p0 (θ|ϕ = 0) dθ

=

1∫
0

(
n

y1

)
θy1 (1− θ)n−y1

(
n

y2

)
θy2 (1− θ)n−y2 ×

1

B (α, β)
θα−1 (1− θ)β−1 dθ

=

(
n

y1

)(
n

y2

)
1

B (α, β)

1∫
0

θy1+y2+α−1 (1− θ)2n−y1−y2+β−1 dθ

=

(
n

y1

)(
n

y2

)
1

B (α, β)
B (y1 + y2 + α, 2n− y1 − y2 + β)×

1∫
0

1

B (y1 + y2 + α, 2n− y1 − y2 + β)
×

θy1+y2+α−1 (1− θ)2n−y1−y2+β−1 dθ

=

(
n

y1

)(
n

y2

)
B (y1 + y2 + α, 2n− y1 − y2 + β)

B (α, β)
, (2.5)
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where B (α, β) is the beta function, or rather,

B (α, β) =
Γ (α) Γ (β)

Γ (α, β)
.

Extending the same logic to the density of y conditioned on the alternative hypoth-

esis being true,

P (Y = y|ϕ = 1) = f (y|ϕ = 1)

=

1∫
0

f (y,θ|ϕ = 1) dθ

=

1∫
0

f (y|θ, ϕ = 1) p1 (θ|ϕ = 1) dθ

=
2∏
i=1

1∫
0

(
n

yi

)
θyii (1− θi)n−yi

1

B (αi, βi)
θαi−1
i (1− θi)βi−1 dθi

=
2∏
i=1

(
n

yi

)
1

B (αi, βi)

1∫
0

θyi+αi−1
i (1− θi)n−yi+βi−1 dθi

=
2∏
i=1

(
n

yi

)
1

B (αi, βi)
B (yi + αi, n− yi + βi)×

1∫
0

1

B (yi + αi, n− yi + βi)
θyi+αi−1
i (1− θi)n−yi+βi−1 dθi

=
2∏
i=1

(
n

yi

)
B (yi + αi, n− yi + βi)

B (αi, βi)
, (2.6)

where θ = (θ1, θ2).

Thus, with this information we can return to our rejection region found in

Equation 2.1 and, using Equations 2.3 and 2.4, show that

W = {y : P (ϕ = 1|Y = y) ≥ cP (ϕ = 0|Y = y)}

= {y : P (Y = y|ϕ = 1)π1 ≥ cP (Y = y|ϕ = 0)π0} ,

which is again similar to the work of Zhao et al. (2011). Further, we can use Equa-

tions 2.5 and 2.6 to show that our rejection region for this test consists of all the
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points that satisfy Inequality 2.7. Note that the left side of 2.7 is our test statistic

and Bayes factor, B. The right side remains our decision rule.

B (α, β)

B (y1 + y2 + α, 2n− y1 − y2 + β)

2∏
i=1

B (yi + αi, n− yi + βi)

B (αi, βi)
≥ c

π0
π1

(2.7)

Next, we use this rejection region to find the required sample size needed to

meet certain operating characteristics. In Section 2.4, we consider the case where we

want to reach a given EBP for a fixed value of the loss function constant, c. We can

then solve for n and find the EBSL. In Section 2.5, we control the EBSL for a fixed

value of c, allowing us to solve for n and compute the EBP. Despite both of these

cases taken independently seeming impractical in the real world, these applications

are crucial for the development of the last two cases of interest. In Section 2.6, we

consider the case where we are not concerned with the value of c and would like to

reach a given EBP while still controlling the EBSL. We can do this by fixing the two

desired operating characteristics and solving iteratively for both c and n. Lastly, in

Section 2.7, we consider the case where we know our loss function constant, but still

would like to be able to control for both EBSL and EBP while solving for n.

2.4 Finding Sample Size from a Specified EBP and Loss Function

2.4.1 General Algorithm

In this section, we aim to find a solution to the sample size determination

problem when we specify our loss function constant and our desired EBP, 1 − β0.

We define a candidate solution as any value of n such that Inequality 2.8 holds for

n but not n− 1.

P (Y ∈ W |ϕ = 1) =
∑
y∈W

P (Y = y|ϕ = 1)

=
∑
y∈W

2∏
i=1

(
n

yi

)
B (yi + αi, n− yi + βi)

B (αi, βi)

≥ 1− β0. (2.8)
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However, we are really interested in finding the optimal solution, n∗, defined as the

smallest candidate solution such that Inequality 2.8 holds for all values larger than

n∗. This is important because we are not guaranteed a nondecreasing EBP as our

sample size increases due to the discrete nature of the problem.

Despite the lack of a formal proof, it is a very reasonable conjecture to make

that n∗ exists; if this is true, it is unique by definition. Our aim is to find this value;

however, this has proven to be analytically intractable. Thus, we define n∗N to be

the smallest value of n ≤ N such that Inequality 2.8 holds for all values between n∗N

and N . This is clearly a candidate solution that is an approximation of n∗. It should

be obvious that n∗N = n∗ for a sufficiently large N , and further, that for increasing

N , n∗N approaches n∗. However, it should also be noted that there is no guarantee

that n∗N exists. Thus, if it does not, we simply report the first candidate solution

greater than N that we find.6 7

Note that we condition our data on the alternative hypothesis being true.8 For

a fixed sample size, n, we set up a matrix of all the possible data values that we

could observe. Noting that the possible values of y extend from zero to n, we set up

a predictive distribution matrix so that for any values of π0, c and n, this matrix of

all possible values of y looks like Equation 2.9.

P (Y = y|ϕ = 1) =


P (Y = (0, 0) |ϕ = 1) · · · P (Y = (0, n) |ϕ = 1)

...
. . .

...

P (Y = (n, 0) |ϕ = 1) · · · P (Y = (n, n) |ϕ = 1)

 (2.9)

Note that the form of these values is found in Equation 2.6, and that this matrix

provides the probabilities of having y successes; summing all of these values will

equal one. Algorithm 2.1 shows how we use this to find a required sample size.

6 This is not necessarily the smallest candidate solution.

7 This process is detailed in Algorithm 2.1.

8 Hence, we use the prior structures specified such that θi ∼ beta (αi, βi) .
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Algorithm 2.1: When specifying the desired EBP, 1−β0, the loss function constant,
c, and N , this algorithm finds the approximate solution, n∗N , if it exists; if it does
not, it finds a candidate solution greater than N

1: Fix n = N .
2: Enumerate the predictive probabilities of all possible values of y using Equation

2.9; sum the probabilities of the points that are part of the rejection region
(those that satisfy Equation 2.7). This is the EBP for the fixed value of n.

3: If the resulting EBP is greater than 1− β0, n = n− 1; otherwise, skip to step 5.
4: Repeat steps 2 and 3 until the value of n provides an EBP less than 1− β0; n∗N

is the last value of n that did not cause the EBP to fall below 1 − β0, and the
algorithm ends.

5: n∗N does not exist; fix n0 = N and n1 = 2N .
6: Repeat step 2 for n1.
7: If the resulting EBP of n1 is less than 1− β1, n0 = n1 and n1 = 2n1; go to step

6.
8: Fix n = (n0 + n1) /2 and repeat step 2.
9: If the resulting EBP is greater than 1− β0, n1 = n; else, n0 = n.

10: Repeat steps 8 and 9 until n1 − n0 = 1; select n1 as the candidate solution.

It should be noted that it becomes increasingly difficult to find the optimal

solution as N gets large because the predictive matrix becomes exponentially large.

Further, it should be noted that empirical evidence suggests that the likelihood

of a substantial decrease in EBP occurring at larger sample sizes decreases as n

increases. This is because EBP is only decreasing because of the discrete nature of

the problem; namely, a sample size change of one occasionally affects the dimensions

of our rejection region such that we successfully reject a false null hypothesis a smaller

percentage of the time than previously. However, as the sample size increases, the

changes in the rejection region become less extreme. Thus, it becomes improbable

for us to see a large decrease in EBP as n increases. It is for these reasons that we

default the algorithm at N = 100; however, this option can be changed by the user

if desired.

2.4.2 Example

We focus this example on one of the cases in Zhao et al. (2011). The case we

consider is the one where we place a beta(1, 4) prior on θ1, a beta(3, 7) prior on θ2,
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and a beta(1, 1) prior on θ when we assume that the true rates are actually the same.

This is another way of saying that we are putting an uninformative uniform prior

on θ. These prior distributions can be thought of as θ1 having a success rate of 20%

with a standard deviation of 16%, θ2 having a success rate of 30% with a standard

deviation of 14%, and θ having a success rate of 50% with a standard deviation of

29%. Figure 2.1 shows all of these priors graphically.

Figure 2.1: Prior structures used in binomial sample size determination example

We will use the same specifications used in the original article; thus, we place

a prior probability of 0.6 on H0 : θ1 = θ2, set c = 1, and attempt to find the sample

size needed to have an EBP of at least 0.7.

To explain the general method for finding EBP given a fixed sample size, we

first consider the case of a sample size of two. We create a predictive density matrix

of possible number of successes that only extends from zero to two for both y1 and

15



y2. Each of the nine points in this matrix has a prior predictive density assigned

to it, and the sum of this three by three matrix is, of course, one. Then, using the

formulation above, we determine which points are part of the rejection region. The

sum of the predictive probabilities of the points included in the rejection region is

0.667, which is our EBP for a sample size of two.9

Clearly we need to try larger values of n in order to reach our desired EBP

of 0.7. The algorithm continues by finding the EBP for our defaulted value of N ,

100; if we have not found the correct sample size to meet our desired EBP at this

point, it continues by using the bi-sectional approach described in Algorithm 2.1.

For this example, a sample size of 64 provides an EBP of 0.750, so we simply have

to go backwards until we find the first value that does not exceed 0.7. This gives us

n∗N = 48, and it provides an EBP of 0.706 with an EBSL of 0.087.

Figure 2.2 shows the values of EBP for a sample size of up to 98 in our

example, and how EBP generally increases as sample size increases. The ridges

should provide evidence that candidate solutions initially appearing to be optimal

solutions are not guaranteed to be optimal, and that small sample sizes should be

checked for validation due to their erratic behavior. Note that Zhao et al. (2011) did

not consider this phenomenon and declared 43 to be the optimal sample size, but it

should be noted that the EBP for a sample size of 47 actually falls below 0.7.

We can also verify these results via simulation. We generate one million ran-

dom values of θ1 and θ2 from the priors given above. Then using a sample size of

48, we generate a value of y1 and y2 for each random value of θ1 and θ2. Then,

using the rejection region from Equation 2.7, we determine how many of the one

million experiments end in correctly rejecting the null hypothesis. Running this

simulation produces an approximate EBP of 0.706, which is the same value we find

when computing it analytically.

9 While this seems abnormally large, it is explainable given the constructs of the problem.
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Figure 2.2: EBP curve for binomial sample size determination example

2.4.3 Results Using Alternate Priors

Next, Table 2.1 displays various results of the algorithm for different beta

priors where we fix our desired EBP and only consider the 0− 1 loss function such

that c = 1. We show the results and operating characteristics using a desired EBP

of 0.7 with π0 = 0.6. Note that the first two cases are replications from Zhao et al.

(2011). The last column in the table is the time, in minutes, that the algorithm

takes to run.

Note that in the first two cases, the fact that we are specifying a prior distribu-

tion on θ independent of our choices for θ1 and θ2 means switching these priors does

not affect calculations. Also, due to the nature of the beta distribution, switching

both parameters within a distribution does not affect results either. This is because

flipping both parameters within the beta distributions will only mirror them both.
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Table 2.1: Various results for binomial sample size determination when controlling
EBP and setting c = 1

θ θ1 θ2 EBP EBSL n time
α β α1 β1 α2 β2
1 1 1 4 3 7 0.706 0.087 48 <1
1 1 4 1 7 3 0.706 0.087 48 <1
3 1 3 1 1.8 1 0.700 0.038 83 <1
30 10 30 10 18 10 0.700 0.047 288 1
3 1 3 1 1.4 1 0.700 0.039 65 <1
30 10 30 10 14 10 0.703 0.074 70 <1
3 1 3 1 1 1 0.703 0.042 43 <1
30 10 30 10 10 10 0.707 0.116 15 <1

This can be evidenced by the fact that both distributions are centered 0.1 units

apart but have the same variability.

The next three sets of cases provide an interesting discussion. In all three

cases, we consider the case where our first binomial rate, θ1, is already established

as the industry standard, and a “new” process has a rate of θ2. Thus, when we

assume that the null hypothesis is true, we say that θ = θ1 = θ2 has the same prior

as θ1 because it is already established as the standard. Here we are interested in

comparing a “new” process to an established processes having a success rate of 75%.

We then calculate the necessary sample size in order to reach our desired EBP when

the “new” process has a success rate of 64%, 58%, and 50%. However, for each of

these three comparisons we analyze what happens when we increase or decrease the

precision of these priors. When considering the case of comparing to a rate of 64%,

we see that our required sample size for a more precise prior is nearly three and a half

times as large as the more diffuse prior. However, when we decrease our established

success rate to 58%, we see our required sample sizes are nearly the same. But by

the time we look at the case of a 50% established success rate, the more diffuse prior

is actually the one that requires nearly a three times as large sample size.

This phenomenon can be explained by considering the shape of these distri-

butions. While their centers (noted above) and variances (clearly decreasing on the
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more informative priors) tell a large percentage of the story, they do not tell it all.

For the more informative priors, we need larger sample sizes as the priors become

centered closer together; this is exactly what we would expect. However, for the less

informative priors, the shapes of these distributions are not the typical curves that

can be approximated by a normal distribution. Rather, these curves increase as our

rates increase so that our maximum likelihood occurs at 1 instead of closer to their

mean. This, in turn, actually creates less overlap between the priors in line three

of Table 2.1 than in line four, which would be counter intuitive if only considering

their variances. Further, note that a similar effect can be seen with EBSL values

It should also be pointed out that we did not consider other values of our loss

function constant due to space limitations. However, due to the fact that we have

defined c to be the ratio of how much worse a Type I error is in relation to a Type

II error, increasing this value will decrease our EBSL while increasing the necessary

sample size, while decreasing c will have the opposite effect.

2.5 Finding Sample Size from a Specified EBSL and Loss Function

2.5.1 General Algorithm

This algorithm follows similarly to that of the one previously; however, here

we aim to find a solution to the sample size determination problem when we specify

our loss function constant and our desired EBSL, α0. We now define a candidate

solution as any value of n such that Inequality 2.10 holds for n but not n− 1.

P (Y ∈ W |ϕ = 0) =
∑
y∈W

P (Y = y|ϕ = 0)

=
∑
y∈W

(
n

y1

)(
n

y2

)
B (y1 + y2 + α, 2n− y1 − y2 + β)

B (α, β)

≤ α0. (2.10)

However, we are really interested in finding the optimal solution, n∗, defined as the

smallest candidate solution such that Inequality 2.10 holds for all values larger than
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n∗. This is again important because we are not guaranteed a nonincreasing EBSL

as our sample size increases due to the discrete nature of the problem.

Despite the lack of a formal proof, it is again a very reasonable conjecture to

make that n∗ exists; if this is true, it is unique by definition. The aim of our algorithm

is to find this value, but this is again analytically intractable. Thus, we define n∗N to

be the smallest value of n ≤ N such that Inequality 2.10 holds for all values between

n∗N and N . This is clearly a candidate solution that is an approximation of n∗. It

should again be obvious that n∗N = n∗ for a sufficiently large N , and further, that

for increasing N , n∗N approaches n∗. However, it should still be noted that there is

no guarantee that n∗N exists. Thus, if it does not, we again report the first candidate

solution greater than N that we find.10 11

Note that now we condition our data on the null hypothesis being true.12 For

a fixed sample size, n, we again set up a matrix of all the possible data values that

we could observe. Because the possible values of y extend from zero to n, we set up

a predictive distribution matrix sot that for any values of π0, c and n, our predictive

distribution matrix of all possible values of y looks like Equation 2.11.

P (Y = y|ϕ = 0) =


P (Y = (0, 0) |ϕ = 0) · · · P (Y = (0, n) |ϕ = 0)

...
. . .

...

P (Y = (n, 0) |ϕ = 0) · · · P (Y = (n, n) |ϕ = 0)

 (2.11)

Note that the form of these values is found in Equation 2.5, and that this matrix

provides the probabilities of having y successes; summing all of these values will

equal one. Algorithm 2.2 shows how we use this to find a required sample size.

It should again be noted that it becomes increasingly difficult to find the

optimal solution as N gets large because the predictive matrix becomes exponentially

10 This is not necessarily the smallest candidate solution.

11 This process is again detailed in Algorithm 2.2.

12 Hence, we use the prior structure specified such that θ ∼ beta (α, β) .
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Algorithm 2.2: When specifying the desired EBSL, α0, the loss function constant, c,
and N , this algorithm finds the approximate solution n∗N it is exists; if it does not,
it finds a candidate solution greater than N

1: Fix n = N .
2: Enumerate the predictive probabilities of all possible values of y using Equation

2.11; sum the probabilities of the points that are part of the rejection region
(those that satisfy Equation 2.7). This is the EBSL for the fixed value of n.

3: If the resulting EBSL is less than α0, n = n− 1; otherwise, skip to step 5.
4: Repeat steps 2 and 3 until the value of n provides an EBSL greater than α0;
n∗N is the last value of n that did not cause the EBSL to rise above α0, and the
algorithm ends.

5: n∗N does not exist; fix n0 = N and n1 = 2N .
6: Repeat step 2 for n1.
7: If the resulting EBSL of n1 is greater than α0, n0 = n1 and n1 = 2n1; go to step

6.
8: Fix n = (n0 + n1) /2 and repeat step 2.
9: If the resulting EBSL is less than α0, n1 = n; else, n0 = n.

10: Repeat steps 8 and 9 until n1 − n0 = 1; select n1 as the candidate solution.

large. Further, it should be noted that empirical evidence suggests that the likelihood

of a substantial increase in EBSL occurring at larger sample sizes decreases as n

increases. This is because EBSL is only increasing because of the discrete nature of

the problem; namely, a sample size change of one occasionally affects the dimensions

of our rejection region such that we incorrectly reject a true null hypothesis a larger

percentage of the time than previously. However, as the sample size increases, the

changes in the rejection region become less extreme. Thus, it becomes improbable

for us to see a large increase in EBSL as n increases. It is for these reasons that we

again default the algorithm at N = 100; however, this option can be changed by the

user if desired.

2.5.2 Example

As in the previous example, we will continue with the case that we highlight

from Zhao et al. (2011). Recall that this is a beta(1, 4) prior on θ1, a beta(3, 7) prior

on θ2, and a beta(1, 1) prior on θ when we assume that the true rates are the same

under the null hypothesis. These priors can again be seen graphically in Figure 2.1.
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As before, we will use the same specifications used in the original article; thus,

we place a prior probability of 0.6 on H0 : θ1 = θ2, set c = 1, and attempt to

find the sample size needed to have a EBSL no greater than 0.05. We do this by

applying a similar approach as before; however, instead of EBP increasing as our

sample size increases, we are now dealing with decreasing EBSL as n increases. We

again start with our defaulted N of 100, which does not provide a EBSL less than

our threshold of 0.05. However, an n of 200 provides an EBSL 0.038. Using the

bi-sectional approach described in Algorithm 2.2 suggests that the required sample

size is 122, as it provides an EBSL of 0.050 with an EBP of 0.763.

Figure 2.3 shows the values of EBSL for a sample size of up to 172 in our

example, and how EBSL generally decreases as sample size increases. The ridges

should provide clear evidence that candidate solutions initially appearing to be op-

timal solutions are not guaranteed to be optimal, and that small sample sizes should

be checked for validation due to their erratic behavior.

We can also verify these results via simulation. Because under H0 we have

only one distribution for θ1 = θ2 = θ, we generate one million values of θ. We then

use a sample size of 122 to generate values of y1 and y2, and determine how many

times we falsely reject a true null hypothesis. Running this simulation produces an

EBSL of 0.050, which is the same value we find when computing it analytically.

2.5.3 Results Using Alternate Priors

Next, Table 2.2 displays various results of the algorithm for different beta

priors where we fix our desired EBSL and only consider the 0− 1 loss function such

that c = 1. We show the results and operating characteristics using a desired EBSL

of 0.05 with π0 = 0.6. Note again that the first two cases are replications from Zhao

et al. (2011). The last column in the table is the time, in minutes, that the algorithm

takes to run.
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Figure 2.3: EBSL curve for binomial sample size determination example

Note that, as before, the first two cases have the same specifications. Further,

when looking at the last six cases, we see a similar phenomenon we noticed earlier

when controlling for EBP. Clearly the shapes and precisions of these distributions is

creating a similar effect with regard to how much their likelihoods overlap.

As before, even though we did not consider other values of our loss constant,

the same discussion about changing c remains. Due to the fact that we have defined

c to be the ratio of how much worse a Type I error is in relation to a Type II error,

increasing this value will decrease our EBP while increasing the necessary sample

size, while decreasing c will have the opposite effect.
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Table 2.2: Various results for binomial sample size determination when controlling
EBSL and setting c = 1

θ θ1 θ2 EBP EBSL n time
α β α1 β1 α2 β2
1 1 1 4 3 7 0.763 0.050 122 <1
1 1 4 1 7 3 0.763 0.050 122 <1
3 1 3 1 1.8 1 0.641 0.050 49 <1
30 10 30 10 18 10 0.688 0.050 255 1
3 1 3 1 1.4 1 0.639 0.050 38 <1
30 10 30 10 14 10 0.749 0.049 132 <1
3 1 3 1 1 1 0.656 0.047 29 <1
30 10 30 10 10 10 0.823 0.045 61 <1

2.6 Finding Sample Size from a Specified EBSL and EBP

In this section, we aim to find a solution to the sample size determination

problem when we specify our desired EBSL and EBP.13 Here, we define our solution

as the first value of n that satisfies Inequalities 2.8 and 2.10. We are not concerning

ourselves with an optimal solution because of the effect that c has on these values; any

increase in n and subsequent change to c can create a situation where our operating

characteristics are not met to satisfaction. Thus, the result from the algorithm is

simply the smallest solution out of an infinite number to the situation given, which

we notate n∗min.

Further, we force c to be greater than one due to the belief that any practical

use of these methods will require the penalty for a Type I error to be greater than

that of a Type II error. Thus, a situation that would require c to be less than one

is of no consequence to us. Algorithm 2.3 shows how we determine a sample size for

this problem.

For the same prior structure that we have been considering throughout this

chapter, we run this algorithm in order to find the minimum sample size needed in

order to reach an EBP of 0.7 and an EBSL of 0.05. Recall that we are still letting

π0 = 0.6. For example, letting n be any value less than 48 requires c to be less than

13 Note that we are not specifying our loss function constant, c, in this case.
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Algorithm 2.3: When specifying the desired EBSL, α0, and EBP, 1− β0, this algo-
rithm finds n∗min

1: Fix n = 2.
2: Fix c = 1/c = 1.
3: Enumerate the predictive probabilities of all possible values of y using Equation

2.9; sum the probabilities of the points that are part of the rejection region
(those that satisfy Equation 2.7). This is the EBP for the fixed values of n and
1/c.

4: If the resulting EBP is less than 1− β0, n = n+ 1; repeat steps 3 and 4.
5: Fix 1/c0 = 0 and 1/c1 = 1.
6: Fix 1/c = (1/c0 + 1/c1) /2.
7: Repeat step 3 for n and 1/c.
8: If the resulting EBP is less than 1− β0, 1/c0 = 1/c; else 1/c1 = 1/c.
9: Repeat steps 6 and 7 until |EBP− (1− β0) | is less than some threshold.14

10: Enumerate the predictive probabilities of all possible values of y using Equation
2.11; sum the probabilities of the points that are part of the rejection region
(those that satisfy Equation 2.7). This is the EBSL for the fixed values of n and
1/c.

11: If the resulting EBSL is greater than α0, n = n+ 1 and go to step 5; otherwise
n∗min = n.

one; because of this restriction, there is no value of c that will bring our EBP above

0.7. However, when n = 49, the algorithm suggests that c = 1.02 brings down our

EBSL 0.002 from its previous value when c = 1. The solution to this scenario is

to select c = 1.23, where we can reach both of our operating characteristics with

a sample size of 75.15 This will provide us with an EBP of 0.701 and an EBSL of

0.048. We can again verify these results via simulation as illustrated previously.

Next, Table 2.3 displays various results of the algorithm for different beta priors

where we fix our desired EBSL and EBP while letting our loss function constant,

c, vary. We show the results and operating characteristics using a desired EBSL of

0.05, a desired EBP of 0.7, and π0 = 0.6. Note again that the first two cases are

replications from Zhao et al. (2011). The last column in the table is the time, in

minutes, that the algorithm takes to run.

15 This is an improvement to the required sample size of 122 previously required when controlling
for EBSL and using c = 1.
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Table 2.3: Various results for binomial sample size determination when controlling
EBSL and EBP

θ θ1 θ2 EBP EBSL c n time
α β α1 β1 α2 β2
1 1 1 4 3 7 0.701 0.048 1.23 75 1
1 1 4 1 7 3 0.701 0.048 1.23 75 1
3 1 3 1 1.8 1 0.700 0.038 1.01 83 <1
30 10 30 10 18 10 0.700 0.047 1.00 288 12
3 1 3 1 1.4 1 0.700 0.039 1.00 65 <1
30 10 30 10 14 10 0.700 0.049 1.25 91 1
3 1 3 1 1 1 0.700 0.040 1.03 43 <1
30 10 30 10 10 10 0.701 0.049 1.74 28 <1

Note that essentially what we have done is what was previously mentioned

with regards to our loss function constant, c. Because we know that increasing

c will decrease EBSL or EBP while increasing the necessary sample size, we can

compare these results to previous results and see that effect occurring. Note how in

certain cases we could have decreased c to create the opposite effect (decreasing our

necessary sample size to increase EBSL); however, the restriction that c should be

at least one prevents this from occurring.

2.7 Finding Sample Size from a Specified EBSL, EBP, and Loss Function

Discussion from industry statisticians prompted the next discussion. Essen-

tially, what if we only desire one unknown instead of two? This section details how

to find a minimum necessary sample size in the case where we have a fixed loss

function constant and still want to reach a desired EBP and EBSL. Algorithm 2.4

shows how we accomplish this.

Algorithm 2.4: When specifying the desired EBSL, α0, EBP, 1 − β0, loss function
constant, c, and N , this algorithm finds the approximate solution n∗N it is exists; if
it does not, it finds a candidate solution greater than N

1: Run Algorithm 2.1.
2: Run Algorithm 2.2.
3: Choose the larger sample size of the two provided by the two algorithms.
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It seems to reason that the smaller of the two sample sizes would only meet

one of the two operating characteristics. This can be seen in the example using the

same prior structure covered throughout the chapter. If we fix our loss function

constant at c = 1, the first algorithm to control for EBP gives that a sample size

of 48 produces an EBP of 0.706 and an EBSL of 0.087. When running the second

algorithm to control for EBSL, we find that a sample size of 122 produces an EBSL

of 0.050 with an EBP of 0.763. Thus, we need to take the larger of the two values

because it is the one that meets both criteria. This will hold for varying values of c.

Next, Table 2.4 displays various results using this approach for different beta

priors where we fix our desired EBSL, EBP, and loss function constant such that

c = 1. We show the results and operating characteristics using a desired EBSL of

0.05, a desired EBP of 0.7, and π0 = 0.6. Note again that the first two cases are

replications from Zhao et al. (2011). The last column in the table is the time, in

minutes, that the algorithm takes to run.

Table 2.4: Various results for binomial sample size determination when controlling
EBSL, EBP, and setting c = 1

θ θ1 θ2 EBP EBSL n time
α β α1 β1 α2 β2
1 1 1 4 3 7 0.763 0.050 122 <1
1 1 4 1 7 3 0.763 0.050 122 <1
3 1 3 1 1.8 1 0.700 0.038 83 <1
30 10 30 10 18 10 0.700 0.047 288 1
3 1 3 1 1.4 1 0.700 0.039 65 <1
30 10 30 10 14 10 0.749 0.049 132 <1
3 1 3 1 1 1 0.703 0.042 43 <1
30 10 30 10 10 10 0.823 0.045 61 <1

It can be clearly seen that some of the operating characteristics are not only

met, but well exceeded. This is a product of only having one unknown with two

equations; because we have fixed the other three values, there might not be an

intersection where we barely eclipse both operating characteristics.
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2.8 Conclusion

To recap, we have used conjugate prior structures in order to asses our beliefs

about a rate parameter in a two sample binomial trial a priori in order in to find the

minimal sample size needed to reach certain expected operating characteristics. By

the use of a loss function constant, we are able to control for at least two properties

between how much worse a Type I error is in relation to a Type II error, desired

expected Bayesian significance level, and desired expected Bayesian power. This

type of analysis had never been considered previously.

It is of note that we were not able to consider the use of analysis priors in

this research. Ideally, we would be able to adapt this research to account for the

fact that researchers often times use one set of priors when conducting sample size

analyses, but a more vague or non-informative set of priors when actually analyzing

the experiment. This adaptation would provide better sample size and operating

characteristic estimates, though for now we are limited to the case where we use the

same prior structure throughout. Further, this process could be expanded to consider

non-conjugate priors as well. However, the analytical tractability of conjugate priors

made it an ideal use, and modeling prior beliefs of a binomial rate with a beta

distribution is not an unreasonable thing to do.

It also should be noted that time considerations, while already improved

throughout the process, can always continue to improve. One improvement to cur-

rent methods involve replacing the bi-sectional approaches described in Algorithms

2.2 and 2.2 with one that approximates the EBP curve with some logarithmic func-

tion; this improvement should get us in the ballpark of a candidate solution much

quicker. Future work also includes a more in depth look at how expected Bayesian

error rates compare to typical frequentist ones, and potentially an in-depth look at

the different sample size determination and testing methods in order to determine

the relative advantages and disadvantages of each. Further, we could generalize the
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algorithm such that we are not looking at a common sample size n = n1 = n2, but

rather two different sample sizes n1 and n2 such that they do not need to be equal.

Lastly, while the general code used for sample size determination can be found

in the Appendices, the entire package will be made available for download soon in

the software program R. It will be able to not only handle sample size determination

for both the binomial and Poisson cases, but also provide various graphics along with

the actual test that would be conducted after data collection.
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CHAPTER THREE

Bayesian Sample Size Determination for Two Sample Poisson Experiments

3.1 Introduction

Sample size determination continues to be an important research area of statis-

tics. Cost and time constraints have made finding the appropriate sample size before

conducting a study of the utmost importance. Too small of a sample can lead to

under-powered studies and a waste of time and money. Too large of a sample size,

while not only being a waste of those resources, can also make any difference in

observation seem significant. In this chapter, we aim to find the required sample

size to meet a varying array of operating characteristics when testing the equality

of two Poisson rates from a Bayesian perspective.

The advantages to Bayesian sample size determination are plentiful and have

been enumerated by Adcock (1997). Their construction does not depend on asymp-

totic approximations and allow for the characterization of uncertainty when assessing

the parameter of interest. In the frequentist domain, a sample size determination

problem requires the researcher to specify what he believes the parameter to be.

However, as M’Lan et al. (2008) note, the parameter(s) will most likely never be

known with high accuracy at the planning stage, such that the degree to which the

researcher is incorrect can create substantial problems with respect to the power

of the test and create doubt about the sample size estimated. The ability for the

researcher to model his indecision about the parameter through expert knowledge or

previous studies can allow the Bayesian approach to have better operating charac-

teristics (such as a smaller required sample size or better Type I and II error rates)

as noted by Bayarri and Berger (2004) among others. However, it should always

remain prevalent in the reader’s mind that misspecification in the Bayesian con-
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text can prevent desirable operating characteristics just as it can in the frequentist

context.1

Various Bayesian sample size determination methods have been previously

studied. While there is no way to accurately assess them all, we cover a few specifi-

cally here. Stamey et al. (2006) considered one and two sample Poisson rates from

the perspective of interval based criteria such as coverage and width. Hand et al.

(2011) extend those ideas to consider both interval-based and test-based criteria.

However, that effort is limited in its abilities with respect to test-based criteria;

namely, it does not consider the expected power of the test that will be conducted.

Katsis and Toman (1999) used more decision theoretic test-based criteria for the

two sample binomial case, but only to the the extent that they aim to control the

posterior risk with a prespecified bound. Zhao et al. (2011) extend on those ideas by

using computational methods now available to consider expected Bayesian power of

the test. In this chapter, we extend the results of Zhao et al. (2011) by accounting

for both expected Type I and Type II error rates while adapting from the binomial

data model they considered to the Poisson data model. This sort of sample size

procedure for the comparison of two Poisson rates has not been considered before in

a Bayesian context.

Further, it should be noted that, due to the fact that we are in the Bayesian

framework, references to Type I and Type II error rates, significance level, and

power are meant in the Bayesian context. By this we mean that they are to be

understood in an expected sense, as outlined by O’Hagan et al. (2005). For example,

the expected power of a test is the power of the test when averaged over the likelihood

of some other distribution that assesses the perceived likelihood of observing different

1 Because Type I error rates are not controlled in the Bayesian paradigm as they are in the
frequentist one, misspecification here leads to the possibility of either type of error being quite
large.
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possible parameter values.2 However, when the test itself uses Bayesian methods,

we refer to this as the expected Bayesian power (EBP), as is done in Speighelhalter

et al. (2004).3 Thus, we weight the true values of power by the prior distribution

associated with the alternative hypothesis. These ideas, though not considered in

the literature previously, can also apply to significance level.4 In this chapter, we

consider expected Bayesian significance level (EBSL), such that we weight true values

of significance level by the prior distribution associated with the null hypothesis.5

This chapter is arranged as follows. In Section 3.2, we introduce the basic

framework for the two sample Poissonl problem. Section 3.3 details how we arrive at

the required sample size, introducing some decision theory not previously considered.

Section 3.4 outlines the case of controlling for EBP while fixing a loss function;

Section 3.5 does the same for controlling EBSL. Section 3.6 describes how we can

control for both EBSL and EBP, finding the minimum necessary sample size required

if we are not interested in specifying the loss in our loss function; Section 3.7 discusses

the case where we are interested in controlling all three of these things.

3.2 Framework

We follow the general framework of Zhao et al. (2011) in the development of

this problem, adapting the binomial case to fit the Poisson data model. Suppose

observations from two independent populations come from Poisson distributions with

rate parameters λ1 and λ2, respectively, and common sample size, t, which is often

person years. Thus, we have Y1 ∼ Poisson (tλ1) and Y2 ∼ Poisson (tλ2). Our interest

2 This has application to the frequentist paradigm, where we could consider this individual value
rather than a power curve.

3 Another common name for this is the probability of a successful test or trial.

4 While frequentist methods typically report one value for significance level, what they are really
doing (in non point null hypotheses) is taking the largest possible significance level; thus, taking
an expectation of a significance level curve could be done as well.

5 Of course this implies that actual Type I and Type II error rates can be greater than or less
than what is indicated when considering expected error rates.
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is to calculate the necessary sample size required to test the hypotheses

H0 : λ1 = λ2

vs

H1 : λ1 6= λ2.

As a notational convenience, we will refer to the truth about which hypothesis is

correct with ϕ. That is, when the null hypothesis that λ1 = λ2 is true, we will

denote that by saying ϕ = 0; when the alternative hypothesis that λ1 6= λ2 is

true, we will denote that by saying ϕ = 1. In addition, we place prior probabilities

of π0 and π1 = 1 − π0 on H0 and H1, respectively; that is, P (ϕ = 0) = π0 and

P (ϕ = 1) = π1 = 1 − π0. This is to say that, in a practical sense when we are

unsure about which hypothesis is true, we would set π0 = π1 = 0.5.

Also, we assume that the joint prior distribution of λ1 and λ2 is of the form

f (λ1, λ2) = π0p0 (λ) I [ϕ = 0] + π1p1 (λ1, λ2) I [ϕ = 1] ,

where I [ϕ = 0] and I [ϕ = 1] are the indicator functions of H0 and H1, respectively,

p0 (λ) is the prior distribution of λ under the assumption that λ = λ1 = λ2, and

p1 (λ1, λ2) is the joint prior distribution of λ1 and λ2 when λ1 6= λ2. Note that

we will place prior distributions on λ, λ1, and λ2 that summarize our beliefs about

them; this information will allow us to compute an estimate for the necessary sample

size. For simplicity, we will consider conjugate priors for all three λ’s, so that under

H0, λ ∼ gamma (α, β) and under H1, λi ∼ gamma (αi, βi). Thus, we will model

our beliefs about these parameters such that we think there is a π0 probability of

the null hypothesis being true, and when that is the case it can be summarized

by a gamma (α, β) distribution; further, there is a π1 probability of the alternative

hypothesis being true, and when that is the case the two distributions there can be

summarized by gamma (αi, βi) distributions.
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3.3 Sample Size Determination

3.3.1 Decision Theory

Consider the loss function

L (ϕ, δ) =


0, if ϕ = δ,

c1, if ϕ = 0 and δ = 1,

c2, if ϕ = 1 and δ = 0,

where δ = 0 represents choosing H0, while δ = 1 represents a choice of H1. Thus,

c1 represents the loss due to a Type I error (rejecting a true null hypothesis) and c2

represents the loss due to a Type II error (failing to reject a false null hypothesis).

This represents an improvement to the methods of Zhao et al. (2011) who only used

the 0− 1 loss function such that c1 = c2.

Thus, our risk can be expressed as

R (δ) = E [L (ϕ, δ)]

=


c1P (ϕ = 0|Y = y) , if δ = 1,

c2P (ϕ = 1|Y = y) , if δ = 0.

However, we will define c as the ratio of c1 to c2, or rather, c = c1/c2. In other words,

we can think of our loss function constant, c, as how much worse it is to make a

Type I error than a Type II error. Thus, because our objective is to minimize risk,

we can express this in terms of the optimal decision, δ∗, as

δ∗ (y) =


0, if P (ϕ = 1|Y = y) < cP (ϕ = 0|Y = y) ,

1, if P (ϕ = 1|Y = y) ≥ cP (ϕ = 0|Y = y) .

Because the optimal decision is to reject the null hypothesis when the second

inequality holds, this implies that our rejection region, W , for this loss function is

W = {y : P (ϕ = 1|Y = y) ≥ cP (ϕ = 0|Y = y)} . (3.1)
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Note that this follows the same basic notation used by Zhao et al. (2011) with the

addition of the loss function constant, c.

3.3.2 Bayes Factors

The Bayes factor is defined as the ratio of the odds in favor of one hypothesis to

the other. While this can be reported in both directions, we follow the form of Kass

and Raftery (1995) in defining it as the odds in favor of the alternative hypothesis

such that a large Bayes factor is evidence that we should reject the null hypothesis.

Thus, this is written analytically as

B =
P (ϕ = 1|Y = y) /P (ϕ = 0|Y = y)

π1/π0

=
P (ϕ = 1|Y = y) π0
P (ϕ = 0|Y = y) π1

.

This ratio is useful in Bayesian inference because it is often interpretted as partially

eliminating the influence of the prior on the posterior and, rather, emphasizing the

role of the data. Again following the work of Zhao et al. (2011), it can be shown

that our decision rule is a function of a Bayes factor because

W = {y : P (ϕ = 1|Y = y) ≥ cP (ϕ = 0|Y = y)}

=

{
y : P (ϕ = 1|Y = y)

π0
π1
≥ cP (ϕ = 0|Y = y)

π0
π1

}
=

{
y :

P (ϕ = 1|Y = y) π0
P (ϕ = 0|Y = y) π1

≥ c
π0
π1

}
=

{
y : B ≥ c

π0
π1

}
. (3.2)

This is particularly useful because the Bayes factor, B, will be the test statistic for

this hypothesis test. Further, the right side of Equation 3.2 becomes the decision

rule for when this test statistic should be rejected. This allows us to have a specific

decision rule rather than rely on traditional methods such as rejecting when this

value exceeds some arbitrary number such as three.
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3.3.3 Rejection Region

However, we can use Bayes’ Theorem to show that

P (ϕ = 0|Y = y) =
P (Y = y, ϕ = 0)

P (Y = y)

=
P (Y = y|ϕ = 0)P (ϕ = 0)

P (Y = y|ϕ = 0)P (ϕ = 0) + P (Y = y|ϕ = 1)P (ϕ = 1)

=
P (Y = y|ϕ = 0)π0

P (Y = y|ϕ = 0)π0 + P (Y = y|ϕ = 1)π1
(3.3)

and, using similar logic,

P (ϕ = 1|Y = y) =
P (Y = y|ϕ = 1)π1

P (Y = y|ϕ = 0)π0 + P (Y = y|ϕ = 1)π1
, (3.4)

where y = (y1, y2). Further, it is seen that

P (Y = y|ϕ = 0) = f (y|ϕ = 0)

=

∞∫
0

f (y, λ|ϕ = 0) dλ

=

∞∫
0

f (y|λ, ϕ = 0) p0 (λ|ϕ = 0) dλ

=

∞∫
0

(λt)y1 e−λt

y1!

(λt)y2 e−λt

y2!

βα

Γ (α)
λα−1e−βλdλ

=

∞∫
0

(λt)y1+y2 e−2λt

y1!y2!

βα

Γ (α)
λα−1e−βλdλ

=
ty1+y2βα

y1!y2!Γ (α)

∞∫
0

λy1+y2+α−1e−λ(2t+β)dλ

=
ty1+y2βα

y1!y2!Γ (α)

Γ (y1 + y2 + α)

(2t+ β)y1+y2+α
∗

∞∫
0

(2t+ β)y1+y2+α

Γ (y1 + y2 + α)
λy1+y2+α−1e−λ(2t+β)dλ

=
ty1+y2βαΓ (y1 + y2 + α)

y1!y2!Γ (α) (2t+ β)y1+y2+α
, (3.5)
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and, extending the same logic to the density of y conditioned on the alternative

hypothesis being true,

P (Y = y|ϕ = 1) = f (y|ϕ = 1)

=

∞∫
0

f (y,λ|ϕ = 1) dλ

=

∞∫
0

f (y|λ, ϕ = 1) p1 (λ|ϕ = 1) dλ

=
2∏
i=1

∞∫
0

(λit)
yi e−λit

yi!

βαi
i

Γ (αi)
λαi−1
i e−βiλidλi

=
2∏
i=1

tyiβαi
i

yi!Γ (αi)

∞∫
0

λyi+αi−1
i e−λi(t+βi)dλi

=
2∏
i=1

tyiβαi
i

yi!Γ (αi)

Γ (yi + αi)

(t+ βi)
yi+αi

∞∫
0

(t+ βi)
yi+αi

Γ (yi + αi)
λyi+αi−1
i e−λi(t+βi)dλi

=
2∏
i=1

tyiβαi
i Γ (yi + αi)

yi!Γ (αi) (t+ βi)
yi+αi

, (3.6)

where λ = (λ1, λ2). Note that this is the product of two independent negative

binomial distributions.

Thus, with this information we can return to our rejection region found in

Equation 3.1 and, using Equations 3.3 and 3.4, show that

W = {y : P (ϕ = 1|Y = y) ≥ cP (ϕ = 0|Y = y)}

= {y : P (Y = y|ϕ = 1)π1 ≥ cP (Y = y|ϕ = 0)π0} ,

which is again similar to the work of Zhao et al. (2011). Further, we can use Equa-

tions 3.5 and 3.6 to show that our rejection region for this test consists of all the

points that satisfy Inequality 3.7.

Γ (α) (2t+ β)y1+y2+α

βαΓ (y1 + y2 + α)

2∏
i=1

βαi
i Γ (yi + αi)

Γ (αi) (t+ βi)
yi+αi

≥ c
π0
π1

(3.7)

Note that the left side of 3.7 is our test statistic and Bayes factor, B. The right side

remains our decision rule.
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Next, we use this rejection region to find the required sample size needed to

meet certain operating characteristics. In Section 3.4, we consider the case where we

want to reach a given EBP for a fixed value of the loss function constant, c. We can

then solve for t and find the EBSL. In Section 3.5, we control the EBSL for a fixed

value of c, allowing us to solve for t and compute the EBP. Despite both of these

cases taken independently seeming impractical in the real world, these applications

are crucial for the development of the last two cases of interest. In Section 3.6, we

consider the case where we are not concerned with the value of c and would like to

reach a given EBP while still controlling the EBSL. We can do this by fixing the two

desired operating characteristics and solving iteratively for both c and t. Lastly, in

Section 3.7, we consider the case where we know our loss function constant, but still

would like to be able to control for both EBSL and EBP while solving for t. Note

that we are restricting t to be a whole number; however, this does not necessarily

need to be the case.

3.4 Finding Sample Size from a Specified EBP and Loss Function

3.4.1 General Algorithm

In this section, we aim to find a solution to the sample size determination

problem when we specify our loss function constant and our desired EBP, 1 − β0.

We define a candidate solution as any value of t such that Inequality 3.8 holds for t

but not t− 1.

P (Y ∈ W |ϕ = 1) =
∑
y∈W

P (Y = y|ϕ = 1)

=
∑
y∈W

2∏
i=1

tyiβαi
i Γ (yi + αi)

yi!Γ (αi) (t+ βi)
yi+αi

≥ 1− β0. (3.8)

However, we are really interested in finding the optimal solution, t∗, defined as the

smallest candidate solution such that Inequality 3.8 holds for all values larger than

38



t∗. This is important because we are not guaranteed a nondecreasing EBP as our

sample size increases due to the discrete nature of the problem.

Despite the lack of a formal proof, it is a very reasonable conjecture to make

that t∗ exists; if this is true, it is unique by definition. Our aim is to find this value;

however, this has proven to be analytically intractable. Thus, we define t∗T to be the

smallest value of t ≤ T such that Inequality 3.8 holds for all values between t∗T and

T . This is clearly a candidate solution that is an approximation of t∗. It should be

obvious that t∗T = t∗ for a sufficiently large T , and further, that for increasing T ,

t∗T approaches t∗. However, it should also be noted that there is no guarantee that

t∗T exists. Thus, if it does not, we simply report the first candidate solution greater

than T that we find.6 7

Note that we condition our data on the alternative hypothesis being true.8

For a fixed sample size, we could, in theory, set up a matrix of all the possible data

values that we could observe. However, because the infinite support of the Poisson

distribution will not allow this, we must first determine how many values of y to

consider. Noting that the predictive distribution of y is negative binomial under the

alternative hypothesis, we set up a predictive distribution matrix. For any values of

π0, c and t, this matrix of the reasonable values of y (found by using small and large

percentiles of the negative binomial distribution) looks like Equation 3.9.

P (Y = y|ϕ = 1) =


P (Y = (a1, a2) |ϕ = 1) · · · P (Y = (a1, z2) |ϕ = 1)

...
. . .

...

P (Y = (z1, a2) |ϕ = 1) · · · P (Y = (z1, z2) |ϕ = 1)

(3.9)

Note that the form of these values is found in Equation 3.6, and that ai and zi

indicate reasonably small and large possible values, respectively, for yi. Further, this

6 This is not necessarily the smallest candidate solution.

7 This process is detailed in Algorithm 3.1.

8 Hence, we use the prior structures specified such that λi ∼ gamma (αi, βi) .
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Algorithm 3.1: When specifying the desired EBP, 1−β0, the loss function constant,
c, and T , this algorithm finds the approximate solution, t∗T , if it exists; if it does not,
it finds a candidate solution greater than T

1: Fix t = T .
2: Enumerate the predictive probabilities of all reasonable values of y using Equa-

tion 3.9; sum the probabilities of the points that are part of the rejection region
(those that satisfy Equation 3.7) and divide by f (the sum of the probabilities
of all reasonable values). This is the approximate EBP for the fixed value of t.

3: If the resulting EBP is greater than 1− β0, t = t− 1; otherwise, skip to step 5.
4: Repeat steps 2 and 3 until the value of t provides an EBP less than 1 − β0; t∗T

is the last value of t that did not cause the EBP to fall below 1 − β0, and the
algorithm ends.

5: t∗T does not exist; fix t0 = T and t1 = 2T .
6: Repeat step 2 for t1.
7: If the resulting EBP of t1 is less than 1− β1, t0 = t1 and t1 = 2t1; go to step 6.
8: Fix t = (t0 + t1) /2 and repeat step 2.
9: If the resulting EBP is greater than 1− β0, t1 = n; else, t0 = t.

10: Repeat steps 8 and 9 until t1 − t0 = 1; select t1 as the candidate solution.

matrix provides the probabilities of observing the values of y under the alternative

hypothesis, and summing all of these values up should provide a number very close

to one.9 However, denoting this sum f and dividing our approximate EBP by it

accounts for the fact that we do not have a true predictive density. Algorithm 3.1

shows how we use this in order to determine a sample size.

It should be noted that it becomes increasingly difficult to find the optimal

solution as T gets large because the predictive matrix becomes exponentially large.

Further, it should be noted that empirical evidence suggests that the likelihood

of a substantial decrease in EBP occurring at larger sample sizes decreases as t

increases. This is because EBP is only decreasing because of the discrete nature of

the problem; namely, a sample size change of one occasionally affects the dimensions

of our rejection region such that we successfully reject a false null hypothesis a smaller

percentage of the time than previously. However, as the sample size increases, the

changes in the rejection region become less extreme. Thus, it becomes improbable

9 Note that it will not equal exactly one because we do not extend the matrix out indefinitely.
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for us to see a large decrease in EBP as t increases. It is for these reasons that we

default the algorithm at T = 50; however, this option can be changed by the user if

desired.

3.4.2 Example

Due to our belief that this methodology will be mostly implemented in situa-

tions where a Poisson rate, λ1, is already established as the industry standard, we

focus our research on situations where an “old” process produces a rate of λ1 and

a “new” process has a rate of λ2. Thus, we place a gamma(α1, β1) prior on λ1, a

gamma(α2, β2) prior on λ2, and when we assume that the null hypothesis is true, we

say that λ = λ1 = λ2 has the same prior as λ1. Thus, our rejection region is altered

slightly from 3.7 such that it consists of the points that satisfy Inequality 3.10.

βα2
2 (2t+ β1)

y1+y2+α1

Γ (α2) Γ (y1 + y2 + α1)

2∏
i=1

Γ (yi + αi)

(t+ βi)
yi+αi

≥ c
π0
π1

(3.10)

For this example, we place a gamma(8, 4) prior on λ1 and a gamma(4, 4) prior on

λ2. This can be thought of as λ1 having a rate of eight occurrences in four person

years and λ2 having a rate of four occurrences in four person years. Note that the

first process will have a mean of two, a mode of 1.75, and a standard deviation of

0.71; the second process will have a mean of one, a mode of 0.75, and a standard

deviation of 0.5. Figure 3.1 shows both of these priors graphically.

We place a prior probability of 0.5 on both H0 : λ1 = λ2 and H1 : λ1 6= λ2, set

c = 1, and attempt to find the sample size needed to have an EBP of at least 0.8.

To explain the general method for finding EBP given a fixed sample size, we

first consider the case of a sample size of two. We create a predictive density matrix

of reasonable values that extends from 0 to 17 for y1 and 0 to 13 for y2. There are

252 points in this matrix, each of which has a prior predictive density assigned to

it. The sum of this 18 by 14 matrix is 0.9999, indicating that the probability of

observing a value outside of this matrix is very small. Then, using the formulation
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Figure 3.1: Prior structures used in Poisson sample size determination example

above, we determine which points are part of the rejection region. The sum of the

predictive probabilities of the points included in the rejection region is 0.694, and

dividing by the sum of the entire matrix leaves us with an approximate EBP of 0.694

for a sample size of two.10

Clearly we need to try larger values of t in order to reach our desired EBP of

0.8. The algorithm continues by finding the EBP for our defaulted value of T , 50;

if we have not found the correct sample size to meet our desired EBP at this point,

it continues by using the bi-sectional approach described in Algorithm 3.1. For this

example, a sample size of 50 provides an approximate EBP of 0.815, so we simply

have to go backwards until we find the first value that does not exceed 0.8. This

10 While this seems abnormally large, it is explainable given the constructs of the problem.
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gives us T ∗T = 40, and it provides an approximate EBP of 0.801 with an approximate

EBSL of 0.060.

Figure 3.2 shows the values of EBP for a sample size of up to 90 in our

example, and how EBP generally increases as sample size increases. The ridges

should provide evidence that candidate solutions initially appearing to be optimal

solutions are not guaranteed to be optimal, and that small sample sizes should be

checked for validation due to their erratic behavior.

Figure 3.2: EBP curve for Poisson sample size determination example

We can also verify these results via simulation. We generate one million ran-

dom values of λ1 and λ2 from the priors given above. Then using a sample size of

40, we generate a value of y1 and y2 for each random value of λ1 and λ2. Then,

using the rejection region that we created earlier, we determine how many of the

one million experiments end in correctly rejecting the null hypothesis. Running this
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simulation produces an approximate EBP of 0.801, which is the same value we find

when computing it analytically.

3.4.3 Results Using Alternate Priors

Next, Table 3.1 displays various results of the algorithm for different gamma

priors where we fix our desired EBP and only consider the 0− 1 loss function such

that c = 1. We show the results and operating characteristics using a desired EBP

of 0.8 with π0 = 0.5. The last column in the table is the time, in minutes, that the

algorithm takes to run.

Table 3.1: Various results for Poisson sample size determination when controlling
EBP and setting c = 1

λ = λ1 λ2 EBP EBSL t time
α1 β1 α2 β2
8 4 4 4 0.801 0.060 40 1
4 4 8 4 0.801 0.064 37 1
1 1 1.5 1 0.801 0.042 60 5
10 10 15 10 0.800 0.054 164 3
1 1 1.7 1 0.801 0.043 51 7
10 10 17 10 0.800 0.081 49 <1
1 1 1.9 1 0.802 0.045 43 3
10 10 19 10 0.803 0.140 13 1

Notice that the first case listed is the one outlined in the example. For the

second case, we simply flip which set of prior beliefs corresponds to the “old” process

and which one is the “new” process. Notice that we do end up with a slightly different

required sample size due to this change because we have flipped which set of values

belongs to the null hypothesis.

The next three sets of cases provide an interesting discussion. Here we are

interested in comparing a “new” process to an established processes believed to

have a rate of one occurrence per person year. We then calculate the necessary

sample size in order to reach our desired EBP when the “new” process has a mean

of 1.5, 1.7 and 1.9 occurrences per person year. However, for each of these three
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comparisons we analyze what happens when we increase or decrease the precision

of these priors. When considering the case comparing a mean of one and 1.5, we

see that our required sample size for a more precise prior is nearly three times as

large as the more diffuse prior. However, when we increase our prior mean to 1.7, we

see our required sample sizes are nearly the same. But by the time we look at the

case of a prior mean of 1.9, the more diffuse prior is actually the one that requires

a larger sample size by over three fold.

This phenomenon can be explained by considering the shape of these distri-

butions. While their centers (noted above) and variances (clearly decreasing on the

more informative priors) tell a large percentage of the story, they do not tell it all.

For the more informative priors, we need larger sample sizes as the priors become

centered closer together; this is exactly what we would expect. However, for the

less informative priors, the shape of the gamma(1, 1) distribution is not the typical

curve that can be approximated by a normal distribution. Rather, this curve starts

at a vertical height of zero, decreasing constantly as the values of the parameter

increase. This, in turn, actually creates less overlap between the priors in line three

of Table 3.1 than in line four, which would be counter intuitive if only considering

their variances. Further, note that a similar effect can be seen with relation to the

values of our EBSL.

It should also be pointed out that we did not consider other values of our loss

function constant due to space limitations. However, due to the fact that we have

defined c to be the ratio of how much worse a Type I error is in relation to a Type

II error, increasing this value will decrease our EBSL while increasing the necessary

sample size, while decreasing c will have the opposite effect.
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3.5 Finding Sample Size from a Specified EBSL and Loss Function

3.5.1 General Algorithm

This algorithm follows similarly to that of the one previously; however, here

we aim to find a solution to the sample size determination problem when we specify

our loss function constant and our desired EBSL, α0. We now define a candidate

solution as any value of t such that Inequality 3.11 holds for t but not t− 1.

P (Y ∈ W |ϕ = 0) =
∑
y∈W

P (Y = y|ϕ = 0)

=
∑
y∈W

ty1+y2βαΓ (y1 + y2 + α)

y1!y2!Γ (α) (2t+ β)y1+y2+α

≤ α0. (3.11)

However, we are really interested in finding the optimal solution, t∗, defined as the

smallest candidate solution such that Inequality 3.11 holds for all values larger than

t∗. This is again important because we are not guaranteed a nonincreasing EBSL as

our sample size increases due to the discrete nature of the problem.

Despite the lack of a formal proof, it is again a very reasonable conjecture to

make that t∗ exists; if this is true, it is unique by definition. The aim of our algorithm

is to find this value, but this is again analytically intractable. Thus, we define t∗T to

be the smallest value of t ≤ T such that Inequality 3.11 holds for all values between

t∗T and T . This is clearly a candidate solution that is an approximation of t∗. It

should again be obvious that t∗T = t∗ for a sufficiently large T , and further, that for

increasing T , t∗T approaches t∗. However, it should still be noted that there is no

guarantee that t∗T exists. Thus, if it does not, we again report the first candidate

solution greater than T that we find.11 12

11 This is not necessarily the smallest candidate solution.

12 This process is again detailed in Algorithm 3.2.
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Note that now we condition our data on the null hypothesis being true.13

As before, we must first determine how many values of y to consider; thus, for any

values of π0, c and t, this matrix of reasonable values of y looks like equation 3.12.

P (Y = y|ϕ = 0) =


P (Y = (a, a) |ϕ = 0) · · · P (Y = (a, z) |ϕ = 0)

...
. . .

...

P (Y = (z, a) |ϕ = 0) · · · P (Y = (z, z) |ϕ = 0)

(3.12)

Note that the form of these values is found in Equation 3.5, and that a and z indi-

cate reasonably small and large possible values, respectively, for our data. Further,

this matrix provides the probabilities of observing the values of y under the null

hypothesis, and summing all of these values up should provide a number very close

to one.14 Algorithm 3.2 shows how we use this in order to determine a sample size.

Algorithm 3.2: When specifying the desired EBSL, α0, the loss function constant,
c, and T , this algorithm finds the approximate solution t∗T it is exists; if it does not,
it finds a candidate solution greater than T

1: Fix t = T .
2: Enumerate the predictive probabilities of all possible values of y using Equation

3.12; sum the probabilities of the points that are part of the rejection region
(those that satisfy Equation 3.7) and divide by f (the sum of the probabilities
of all reasonable values). This is the approximate EBSL for the fixed value of t.

3: If the resulting EBSL is less than α0, t = t− 1; otherwise, skip to step 5.
4: Repeat steps 2 and 3 until the value of t provides an EBSL greater than α0; t

∗
T

is the last value of t that did not cause the EBSL to rise above α0.
5: t∗T does not exist; fix n0 = T and t1 = 2T .
6: Repeat step 2 for t1.
7: If the resulting EBSL of t1 is greater than α0, t0 = t1 and t1 = 2t1; go to step 6.
8: Fix t = (t0 + t1) /2 and repeat step 2.
9: If the resulting EBSL is less than α0, t1 = t; else, t0 = t.

10: Repeat steps 8 and 9 until t1 − t0 = 1; select t1 as the candidate solution.

It should again be noted that it becomes increasingly difficult to find the

optimal solution as T gets large because the predictive matrix becomes exponentially

13 Hence, we use the prior structure specified such that θ ∼ gamma (α, β) .

14 As before, it will not equal exactly one because we do not extend the matrix out indefinitely.
However, we again denote this sum f and divide our approximate EBSL to account for the fact
that we do not have a true predictive density.
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large. Further, it should be noted that empirical evidence suggests that the likelihood

of a substantial increase in EBSL occurring at larger sample sizes decreases as t

increases. This is because EBSL is only increasing because of the discrete nature of

the problem; namely, a sample size change of one occasionally affects the dimensions

of our rejection region such that we incorrectly reject a true null hypothesis a larger

percentage of the time than previously. However, as the sample size increases, the

changes in the rejection region become less extreme. Thus, it becomes improbable

for us to see a large increase in EBSL as t increases. It is for these reasons that we

again default the algorithm at T = 50; however, this can be changed by the user.

3.5.2 Example

As in the previous example, we will continue with a gamma(8, 4) prior on λ1

and a gamma(4, 4) prior on λ2. These priors can be seen graphically in Figure 3.1.

As before, we will place a prior probability of 0.5 on both H0 : λ1 = λ2 and

H1 : λ1 6= λ2, keep c = 1, and attempt to find the sample size needed to have an

EBSL no greater than 0.05. We do this by applying a similar approach as before;

however, instead of EBP increasing as our sample size increases, we are now dealing

with decreasing EBSL as t increases. We again start with our defaulted T of 50,

which does not provide an EBSL less than our threshold of 0.05. However, a t of 100

provides an approximate EBSL 0.034. Using the bi-sectional approach described

in Algorithm 3.2 suggests that the required sample size is 54, as it provides an

approximate EBSL of 0.050 with an approximate EBP of 0.819.

Figure 3.3 shows the values of EBSL for a sample size of up to 104 in our

example, and how EBSL generally decreases as sample size increases. The ridges

should provide clear evidence that candidate solutions initially appearing to be op-

timal solutions are not guaranteed to be optimal, and that small sample sizes should

be checked for validation due to their erratic behavior.

48



Figure 3.3: EBSL curve for Poisson sample size determination example

We can also verify these results via simulation. Because under H0 we believe

that λ2 will follow the same distribution as λ1, we generate one million values of λ1.

We then use a sample size of 54 to generate values of y1 and y2, and determine how

many times we falsely reject a true null hypothesis. Running this simulation three

times produces an EBSL of 0.050, which is the same value we find when computing

it analytically.

3.5.3 Results Using Alternate Priors

Next, 3.2 displays various results of the algorithm for different gamma priors

where we fix our desired EBSL and only consider the 0 − 1 loss function such that

c = 1. We show the results and operating characteristics using a desired EBSL of

0.05 with π0 = 0.5. The last column in the table is the time, in minutes, that the

algorithm takes to run.
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Table 3.2: Various results for Poisson sample size determination when controlling
EBSL and setting c = 1

λ = λ1 λ2 EBP EBSL t time
α1 β1 α2 β2
8 4 4 4 0.819 0.050 54 1
4 4 8 4 0.823 0.049 57 1
1 1 1.5 1 0.780 0.050 45 2
10 10 15 10 0.807 0.050 183 3
1 1 1.7 1 0.783 0.050 40 3
10 10 17 10 0.839 0.050 104 1
1 1 1.9 1 0.787 0.050 35 4
10 10 19 10 0.874 0.050 61 <1

Notice that the first case listed is the one outlined in the example. For the

second case, we again flip which set of prior beliefs corresponds to the “old” process

and which one is the “new” process. Notice that we again end up with a slightly

different required sample size due to this change because we have flipped which set of

values belongs to the null hypothesis. Further, when looking at the last six cases, we

see a similar phenomenon we noticed earlier when controlling for EBP. Clearly the

shapes and precisions of these distributions is creating a similar effect with regard

to how much their likelihoods overlap.

As before, even though we did not consider other values of our loss constant,

the same discussion about changing c remains. Due to the fact that we have defined

c to be the ratio of how much worse a Type I error is in relation to a Type II error,

increasing this value will decrease our EBP while increasing the necessary sample

size, while decreasing c will have the opposite effect.

3.6 Finding Sample Size from a Specified EBSL and EBP

In this section, we aim to find a solution to the sample size determination

problem when we specify our desired EBSL and EBP.15 Here, we define our solution

as the first value of t that satisfies Inequalities 3.8 and 3.11. We are not concerning

15 Note that we are not specifying our loss function constant, c, in this case.
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ourselves with an optimal solution because of the effect that c has on these values; any

increase in t and subsequent change to c can create a situation where our operating

characteristics are not met to satisfaction. Thus, the result from the algorithm is

simply the smallest solution out of an infinite number to the situation given, which

we notate t∗min.

Further, we force c to be greater than one due to the belief that any practical

use of these methods will require the penalty for a Type I error to be greater than

that of a Type II error. Thus, a situation that would require c to be less than one

is of no consequence to us. Algorithm 3.3 shows how we determine a sample size for

this problem.

Algorithm 3.3: When specifying the desired EBSL, α0, and EBP, 1− β0, this algo-
rithm finds t∗min

1: Fix t = 2.
2: Fix c = 1/c = 1.
3: Enumerate the predictive probabilities of all possible values of y using Equation

3.9; sum the probabilities of the points that are part of the rejection region
(those that satisfy Equation 3.7) and divide by f (the sum of the probabilities
of all reasonable values). This is the approximate EBP for the fixed values of t
and 1/c.

4: If the resulting EBP is less than 1− β0, t = t+ 1; repeat steps 3 and 4.
5: Fix 1/c0 = 0 and 1/c1 = 1.
6: Fix 1/c = (1/c0 + 1/c1) /2.
7: Repeat step 3 for t and 1/c.
8: If the resulting EBP is less than 1− β0, 1/c0 = 1/c; else 1/c1 = 1/c.
9: Repeat steps 6 and 7 until |EBP− (1− β0) | is less than some threshold.16

10: Enumerate the predictive probabilities of all possible values of y using Equation
3.12; sum the probabilities of the points that are part of the rejection region
(those that satisfy Equation 3.7) and divide by f (the sum of the probabilities
of all reasonable values). This is the approximate EBSL for the fixed values of
t and 1/c.

11: If the resulting EBSL is greater than α0, t = t + 1 and go to step 5; otherwise
t∗min = t.

For the same prior structure that we have been considering throughout this

chapter, we run this algorithm in order to find the minimum sample size needed in
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Table 3.3: Various results for Poisson sample size determination when controlling
EBSL and EBP

λ = λ1 λ2 EBP EBSL c t time
α1 β1 α2 β2
8 4 4 4 0.800 0.048 1.13 45 5
4 4 8 4 0.800 0.050 1.15 43 5
1 1 1.5 1 0.800 0.042 1.01 60 24
10 10 15 10 0.800 0.049 1.05 172 56
1 1 1.7 1 0.800 0.043 1.01 51 15
10 10 17 10 0.800 0.049 1.26 69 10
1 1 1.9 1 0.801 0.043 1.02 43 10
10 10 19 10 0.800 0.048 1.65 30 2

order to reach an EBP of 0.8 and an EBSL of 0.05. Recall that we are still letting

π0 = 0.5. For example, letting t be any value less than 40 requires c to be less

than one; because of this restriction, there is no value of c that will bring our EBP

above 0.8. However, when t = 41, the algorithm suggests that c = 1.03 brings down

our approximate EBSL 0.002 from its previous value when c = 1. The solution

to this scenario is to select c = 1.13, where we can reach both of our operating

characteristics with a sample size of 45.17 This will provide us with an approximate

EBP of 0.800 and an approximate EBSL of 0.048. We can again verify these results

via simulation as illustrated in previous sections.

Next, Table 3.3 displays various results of the algorithm for different gamma

priors where we fix our desired EBSL and EBP while letting our loss function con-

stant, c, vary. We show the results and operating characteristics using a desired

EBSL of 0.05, a desired EBP of 0.8, and π0 = 0.5. The last column in the table is

the time, in minutes, that the algorithm takes to run.

Note that essentially what we have done is what was previously mentioned

with regards to our loss function constant, c. Because we know that increasing

c will decrease EBSL or EBP while increasing the necessary sample size, we can

17 This is an improvement to the required sample size of 54 previously required when controlling
for EBSL and using c = 1.
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compare these results to previous results and see that effect occurring. Note how in

certain cases we could have decreased c to create the opposite effect (decreasing our

necessary sample size to increase EBSL); however, the restriction that c should be

at least one prevents this from occurring.

3.7 Finding Sample Size from a Specified EBSL, EBP, and Loss Function

Discussion from industry statisticians prompted the next discussion. Essen-

tially, what if we only desire one unknown instead of two? This section details how

to find a minimum necessary sample size in the case where we have a fixed loss

function constant and still want to reach a desired EBP and EBSL. Algorithm 3.4

shows how we accomplish this.

Algorithm 3.4: When specifying the desired EBSL, α0, EBP, 1 − β0, loss function
constant, c, and T , this algorithm finds the approximate solution t∗T it is exists; if it
does not, it finds a candidate solution greater than T

1: Run Algorithm 3.1.
2: Run Algorithm 3.2.
3: Choose the larger sample size of the two provided by the two algorithms.

It seems to reason that the smaller of the two sample sizes would only meet

one of the two operating characteristics. This can be seen in the example using the

same prior structure covered throughout the chapter. If we fix our loss function

constant at c = 1, the first algorithm to control for EBP gives that a sample size

of 40 produces an approximate EBP of 0.801 and an approximate EBSL of 0.060.

When running the second algorithm to control for EBSL, we find that a sample size

of 54 produces an approximate EBSL of 0.050 with an approximate EBP of 0.819.

Thus, we need to take the larger of the two values because it is the one that meets

both criteria. This will hold for varying values of c.

Next, Table 3.4 displays various results using this approach for different gamma

priors where we fix our desired EBSL, EBP, and loss function constant such that
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Table 3.4: Various results for Poisson sample size determination when controlling
EBSL, EBP, and setting c = 1

λ = λ1 λ2 EBP EBSL t time
α1 β1 α2 β2
8 4 4 4 0.819 0.050 54 1
4 4 8 4 0.823 0.049 57 1
1 1 1.5 1 0.801 0.042 60 5
10 10 15 10 0.807 0.050 183 2
1 1 1.7 1 0.801 0.043 51 7
10 10 17 10 0.839 0.050 104 1
1 1 1.9 1 0.802 0.045 43 3
10 10 19 10 0.874 0.050 61 <1

c = 1. We show the results and operating characteristics using a desired EBSL of

0.05, a desired EBP of 0.7, and π0 = 0.6. The last column in the table is the time,

in minutes, that the algorithm takes to run.

It can be clearly seen that some of the operating characteristics are not only

met, but well exceeded. This is a product of only having one unknown with two

equations; because we have fixed the other three values, there might not be an

intersection where we barely eclipse both operating characteristics.

3.8 Conclusion

To recap, we have used conjugate prior structures in order to assess our beliefs

about a rate parameter in a two sample Poisson trial a priori in order in to find

the minimal sample size needed to reach certain operating characteristics. By the

use of a loss function constant, we are able to control for at least two properties

between how much worse a Type I error is in relation to a Type II error, desired

expected Bayesian significance level, and desired expected Bayesian power. This

type of analysis had never been considered previously.

It is of note that we were not able to consider the use of analysis priors in

this research. Ideally, we would be able to adapt this research to account for the

fact that researchers often times use one set of priors when conducting sample size
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analyses, but a more vague or non-informative set of priors when actually analyzing

the experiment. This adaptation would provide better sample size and operating

characteristic estimates, though for now we are limited to the case where we use the

same prior structure throughout. Further, this process could be expanded to consider

non-conjugate priors as well. However, the analytical tractability of conjugate priors

made it an ideal use, and modeling prior beliefs of a Poisson rate with a gamma

distribution is not an unreasonable thing to do.

It also should be noted that time considerations, while already improved

throughout the process, can always continue to improve. One improvement to cur-

rent methods involve replacing the bi-sectional approaches described in Algorithms

3.2 and 3.2 with one that approximates the EBP curve with some logarithmic func-

tion; this improvement should get us in the ballpark of a candidate solution much

quicker. Future work also includes a more in depth look at how expected Bayesian

error rates compare to typical frequentist ones, and potentially an in-depth look at

the different sample size determination and testing methods in order to determine

the relative advantages and disadvantages of each. Further, we could generalize the

algorithm such that we are not looking at a common sample size t = t1 = t2, but

rather two different sample sizes t1 and t2 such that they do not need to be equal.

Lastly, while the general code used for sample size determination can be found

in the Appendices, the entire package will be made available for download soon in

the software package R. It will be able to not only handle sample size determination

for both the Poisson and binomial cases, but also provide various graphics along

with the actual test that would be conducted after data collection.
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CHAPTER FOUR

Underreporting in Mixed Treatment Comparisons Meta-Analysis for Poisson Data

4.1 Introduction

Meta-analysis has become a popular method in statistics because of its ability

to combine separate trials in order to make comparisons about parameters. This

enables us to take several studies that might have smaller sample sizes and use them

in a way so that we can use all of the relevant data at hand in analyses. Recently,

efforts have been made to extend this to mixed treatment comparisons meta-analysis,

which is also known as indirect comparisons or network meta-analysis. The idea

behind this is that we can make comparisons on drugs that have not actually been

directly compared. For instance, in a traditional meta-analysis setting, all of the

drugs that we want to compare need to have been compared in each study. In

mixed treatment comparisons meta-analysis, we can take several studies that only

compare some of the drugs and, by combining the data, are able to make comparisons

among all the treatments.1 Most methods of meta-analysis use a generalized linear

model, providing data models for normal, binomial, multinomial and Poisson data.

In this chapter, we focus on Poisson data where we use the typical log link function.

We extend the general indirect comparisons problem to the case where there is

underreporting present, considering estimation from the Bayesian perspective.

Whittemore and Gong (1991) accounted for misclassification in classical Pois-

son regression, which was an early look at how to handle data that lacks accuracy.

Stamey et al. (2008) and Powers et al. (2010) extended these efforts to the Bayesian

paradigm. However, none of these considered meta-analysis. Bayesian approaches

1 Example: If we only have studies comparing drugs A to B and A to C, we can use this
methodology to compare B and C despite those two never having been directly compared.
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to meta-analysis and mixed treatment comparisons meta-analysis has been well de-

veloped; see, for instance, Smith et al. (1995), Cooper et al. (2006), Jansen et al.

(2011), and Dias et al. (2012). Though these authors consider several different mod-

els and scenarios, one area that has not been researched as much is the case of

inaccurate data, such as the Poisson model with underreporting of Whittemore and

Gong (1991). Here, we combine both of these ideas in order to create a methodol-

ogy for handling mixed treatment comparisons meta-analysis when underreporting is

present. Even though we only consider this problem for Poisson data, the extension

to other data types should be straightforward.

This chapter is arranged in the following way. First, we outline the typical

Bayesian mixed treatment comparisons meta-analysis model. We then move on to

the case where we add a constant underreporting rate for each treatment. Lastly,

we add a different underreporting rate for each treatment to the model and show

how differing circumstances in data specifications can alter results.

4.2 Traditional Mixed Treatment Comparisons Meta-Analysis

4.2.1 Model

Suppose we have NS two-arm Poisson data studies involving NT treatments.

We define i = 1, ..., N ≡ 2NS as the outcome number2 and ri the observed count

such that

ri ∼ Poisson (λi) .

Following Jansen et al. (2011), we assume the λi can be modeled by

log (λi) = log (yi) + µsi + δiI {ti 6= bi} ,

where yi is the person-year contribution of the subjects, µsi represents the baseline

effect for the sth study, s = 1, ..., NS represents the study number, δi represents

2 Thus, for the first study, i = 1 would represent the first study and first treatment; i = 2 would
represent the first study and second treatment, etc.
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the random treatment effect of outcome i, ti = 1, ..., NT represents the treatment

number, and bi = 1, ..., NT −1 denotes the “base” treatment number for that study.3

For the purposes of this chapter, we focus on the case where the placebo is in every

study; however, this methodology could easily be adapted to when that is not the

case.

We treat the baseline rates, denoted µsi , as independent nuisance parameters.

These are given independent diffuse normal priors,

µsi ∼ N (0, 0.005) ,

where the second term is the precision. For the treatment effect,

δi ∼ N (θi, τ)

where the prior on the precision is induced from that of the standard deviation,

specifically,

1√
τ
∼ U (0, 3) .

We focus on the random effects model here, but the fixed effects model can be

recovered by setting τ = 0. Further,

θi = ϕti − ϕbi ,

where this represents the difference between the ith treatment and the baseline treat-

ment for that study where ϕ[1] = 0. Because we are only concerning ourselves with

the case where each study’s baseline is a placebo (that will be designated as treat-

ment one), this yields the simplification that

θi = ϕti ,

3 It is highly unlikely that a large number of treatments will be considered the baseline, so there
should actually be less than NT − 1 baselines.
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though as we noted, this does not necessarily need to be the case. Thus for this

case, the distribution of the δi is

δi ∼ N (ϕti , τ) .

For the ϕti ’s, we assume that

ϕti ∼ N (0, 0.005) .

4.2.2 Example

To illustrate the problem, we begin with an example. For this first example

we assume we are comparing four active drugs to a placebo so that NT = 5. We

use the program R to generate a data set such that each treatment of the four has

a random number of studies conducted on it. We generate a random value from a

normal distribution centered at ten with a standard deviation of two, and round the

result for each treatment. If any of the values are less than 4, we adjust this value so

that there are four studies for that treatment. We also generate a random number

of person years for each study such that

yi ∼ N (250, 0.0004) ,

where 0.0004 is again the precision. We set an average log placebo effect of −2,

which corresponds to µsi . We also set average log treatment effects of −0.25, −0.5,

−0.75, and −1 for the four treatments, which correspond to the five values for ϕti

where, again, ϕ[1] = 0. This creates relative risks seen in the Table 4.1.

Table 4.1: Relative risks for mixed treatment comparisons meta-analysis example

Treatment 2 Treatment 3 Treatment 4 Treatment 5
Treatment 2 1 0.779 0.607 0.472
Treatment 3 1 0.779 0.607
Treatment 4 1 0.779
Treatment 5 1
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Note that the first treatment is the placebo. We then generate a treatment effect

from the average treatment effects listed above such that

δi ∼ N (ϕti , 100) .

We then compute the true λi for this data set and use that to generate random

Poisson counts.

For example, one randomly generated data set creates 9, 10, 10 and 12 studies

for the four treatments, respectively. The person years for those 41 studies ranges

from 117 to 386 with a median of 260. The randomly generated Poisson counts

range from 5 to 59, with a median of 24.5, a mean of 26.7, and a standard deviation

of 12.8. The R code used to generate this data set is available in Appendix D. The

data is then analyzed in WinBUGS, where the model is available in Appendix E.4

We run a chain of length 60,000 where the first 10,000 iterations are discarded as

the burn-in and we thin by 5 in order to leave us with a chain of 10,000 iterations

used for inference. We can then summarize that chain by finding posterior credible

intervals and summary statistics on all parameters of interest. The results for the

run are listed in Table 4.2.

Table 4.2: Simulation results of one run of the traditional model

Parameter Mean 2.5% Percentile Median 97.5% Percentile Interval Width
RR[2,3] 0.759 0.564 0.750 1.009 0.445
RR[2,4] 0.636 0.468 0.629 0.857 0.389
RR[2,5] 0.569 0.400 0.561 0.784 0.384
RR[3,4] 0.848 0.622 0.836 1.139 0.517
RR[3,5] 0.758 0.530 0.750 1.041 0.511
RR[4,5] 0.905 0.631 0.894 1.238 0.607

σ 0.182 0.016 0.184 0.347 0.331

When comparing the results to the table of relative risks that we are trying

to estimate, it is clear that the procedure has worked well, as every interval has

4 All models used in this chapter are available in this appendix.
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captured the true value of the parameter. However, because we have randomly

generated some values, we run this same procedure 500 times. This allows us to

assess the variability and accuracy of the procedure. Note that each new generated

data set will have a different number of studies and person years per study for each

treatment, but the mean relative risks and the random effects standard deviation

will remain the same. Table 4.3 summarizes the results.

Table 4.3: Simulation results for the traditional model

Parameter Actual RR Median Mean Interval Width Coverage
RR[2,3] 0.779 0.787 0.795 0.452 0.982
RR[2,4] 0.607 0.605 0.612 0.361 0.954
RR[2,5] 0.472 0.475 0.480 0.293 0.956
RR[3,4] 0.779 0.776 0.785 0.476 0.952
RR[3,5] 0.607 0.609 0.616 0.385 0.954
RR[4,5] 0.779 0.794 0.805 0.520 0.954

σ 0.1 0.123 0.128 0.268 0.984

The operating characteristics in the table resemble those that we would hope

to see. This is not a surprising result, but this simulation experiment illustrates that

if no underreporting is present, posterior medians are close to the true parameter

values and coverage of the 95% intervals are close to nominal.

4.3 Constant Underreporting in Mixed Treatment Comparisons Meta-Analysis

4.3.1 Model

Next, we consider how the model is affected by underreporting. For the first

scenario that we consider where we allow for underreporting, we assume the underre-

porting probability is the same for all treatments. We use the same general notation

as before, but add another parameter: the reporting probability, p. We assume a

prior distribution on p such that

p ∼ beta (α, β) .
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Now λi can be modeled by

log (λi) = log (p) + log (yi) + µsi + δiI {ti 6= bi} ,

where everything else remains as notated previously.

4.3.2 Example

We continue with the same specifications from the previous example, but im-

pose underreporting on each treatment; we use a reporting rate of 0.7. In order

to see how analyses with underreporting work, we analyze the underreported data

with the method previously considered and the new method just described where

we place a

p ∼ beta (42, 18)

prior on the reporting rate. Thus our prior has a prior mean of 0.7 and is centered

around the truth, but has a prior 95% interval of (0.58, 0.81). This prior is relatively

informative as it has a prior equivalent sample size of 60 observations where 42 were

reported and 18 were unreported.

We again run chain lengths of 60,000 where we discard the first 10,000 itera-

tions as a burn-in and thin by 5 in order to leave us with a chain of 10,000 iterations,

repeating this for 500 data sets. The summaries of the incorrect analysis of the data

is provided in the Table 4.4, while the summaries from the correctly analyzed data

is displayed in the Table 4.5.

It should be noted that the results are not only similar, but both are accurate.

This is because we are interested in relative risks, which compare two treatments

against each other. If both treatments in the comparison have the same reporting

rate, the fact that we are not receiving all events will cancel out in the comparison.

Thus, we can conclude that if the reporting rates are believed to be similar across

all treatments, analyses can be made using traditional methods.
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Table 4.4: Simulation results for constant underreporting analyzed with none

Parameter Actual RR Median Mean Interval Width Coverage
RR[2,3] 0.779 0.776 0.787 0.528 0.958
RR[2,4] 0.607 0.603 0.612 0.427 0.960
RR[2,5] 0.472 0.472 0.480 0.349 0.966
RR[3,4] 0.779 0.789 0.803 0.577 0.958
RR[3,5] 0.607 0.618 0.629 0.469 0.952
RR[4,5] 0.779 0.793 0.808 0.624 0.966

σ 0.1 0.142 0.150 0.318 0.974

Table 4.5: Simulation results for constant underreporting analyzed correctly

Parameter Actual RR Median Mean Interval Width Coverage
RR[2,3] 0.779 0.788 0.799 0.530 0.958
RR[2,4] 0.607 0.610 0.619 0.426 0.958
RR[2,5] 0.472 0.473 0.481 0.345 0.948
RR[3,4] 0.779 0.785 0.797 0.564 0.960
RR[3,5] 0.607 0.610 0.620 0.459 0.954
RR[4,5] 0.779 0.789 0.804 0.612 0.958

σ 0.1 0.133 0.141 0.309 0.992

4.4 Varying Underreporting in Mixed Treatment Comparisons Meta-Analysis

4.4.1 Model

Next, we allow for varying underreporting across the treatments. We assume

that every treatment (including placebo) has a different level of underreporting in

an attempt to see if this form of misclassification will create innacurate results by

not accounting for it. We use the same general notation as before, but now we say

that each treatment has a reporting probability, pti , with a prior distribution on it

such that

pti ∼ beta (αti , βti) .

Now λi can be modeled by

log (λi) = log (pti) + log (yi) + µsi + δiI {ti 6= bi} .

However, for this case, we require a slightly less diffuse prior structure for a few of

the parameters in order for the simulations to converge each time. Thus, we give
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the baseline rates independent diffuse normal priors of

µsi ∼ N (0, 0.05) ,

the baseline treatment effects priors of

ϕti ∼ N (0, 0.05) ,

and the prior on the standard deviation a prior of

1√
τ
∼ U (0.001, 2) .

This informativeness is expected to have little effect on results, but allows each

MCMC simulation to converge.

4.4.2 Example

We continue with the same basic specifications as before, but change the re-

porting probabilities. For the placebo, we give it a reporting probability of 0.8. For

the remaining four treatments, we place reporting probabilities of 0.75, 0.7, 0.65 and

0.6. For all five priors, we place priors that have an equivalent sample size of 60 that

are centered at the true reporting probability, similar to how we did in the previous

case. However, in an effort to see how the new methods compare, we analyze the

same specifications using both previous methods and the new one. We again run

chain lengths of 60,000 where we discard the first 10,000 iterations as a burn-in and

thin by 5 in order to leave us with a chain of 10,000 iterations, repeating this for

500 data sets. Table 4.6 shows the results when the data was analyzed ignoring the

underreporting.

Notice the considerable bias for a few of the parameter estimates and how

some do not come anywhere close to nominal coverage on a 95% credible interval.

Also, note that the further away the relative risk is from one, the worse the method

performs.5 Next, we analyze the data using the previous method using constant

5 A quick run of relative risks greater than one showed the same phenomenon.
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Table 4.6: Simulation results for split underreporting analyzed traditionally

Parameter Actual RR Median Mean Interval Width Coverage
RR[2,3] 0.779 0.740 0.750 0.485 0.944
RR[2,4] 0.607 0.538 0.545 0.369 0.906
RR[2,5] 0.472 0.379 0.385 0.280 0.762
RR[3,4] 0.779 0.736 0.748 0.524 0.940
RR[3,5] 0.607 0.519 0.528 0.395 0.862
RR[4,5] 0.779 0.717 0.731 0.569 0.934

σ 0.1 0.131 0.139 0.305 0.986

Table 4.7: Simulation results for split underreporting analyzed as if constant

Parameter Actual RR Median Mean Interval Width Coverage
RR[2,3] 0.779 0.739 0.749 0.482 0.930
RR[2,4] 0.607 0.527 0.535 0.364 0.888
RR[2,5] 0.472 0.381 0.387 0.277 0.764
RR[3,4] 0.779 0.722 0.734 0.517 0.940
RR[3,5] 0.607 0.522 0.531 0.393 0.868
RR[4,5] 0.779 0.733 0.748 0.581 0.926

σ 0.1 0.132 0.140 0.305 0.992

underreporting. Thus, even though they have different underreporting values, we

place a beta (42, 18) prior6 on the constant underreporting value.Table 4.7 shows

the results of the analysis across the 500 data sets using the same chain specifications

as before.

Notice the poor results should be expected given that these two methods per-

formed similarly in the constant underreporting case. Table 4.8 show the results

when we analyze the data correctly using the split prior approach.

As can be seen, analyzing with the correct method leads to better results and

operating characteristics. Further, the fact that our 95% credible sets actually have

better than 95% coverage is not only surprising, but should be expected. Because

we have so much uncertainty, our intervals are fairly conservative, allowing us to

capture the true parameters more often. Stamey et al. (2007) provide an example

where this phenomenon was observed.

6 This is the average of all the underreporting values.
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Table 4.8: Simulation results for split underreporting analyzed correctly

Parameter Actual RR Median Mean Interval Width Coverage
RR[2,3] 0.779 0.798 0.814 0.649 0.990
RR[2,4] 0.607 0.609 0.623 0.522 0.990
RR[2,5] 0.472 0.478 0.491 0.439 0.980
RR[3,4] 0.779 0.774 0.793 0.691 0.988
RR[3,5] 0.607 0.607 0.624 0.578 0.990
RR[4,5] 0.779 0.797 0.821 0.791 0.990

σ 0.1 0.138 0.146 0.310 0.976

4.4.3 Various Results

Next, we generate different data sets in order to see how changing certain

characteristics affects results. First, we increase the number of active drugs to eight

so that there are nine total treatments. The reporting probabilities in this case still

range from 0.6 to 0.8, but this time with intervals of 0.025. We again run chain

lengths of 60,000 where we discard the first 10,000 iterations as a burn-in and thin

by 5 in order to leave us with a chain of 10,000 iterations, repeating this for 500

data sets. Table 4.9 shows that changing the number of drugs does not appear to

have a negative effect, as again, the posterior medians are close to the truth and the

coverage is again conservative.

Next, we change the standard deviation on the prior of our random effect from

0.1 to 0.4 and return to the case of only four drugs (plus the placebo). Table 4.10

displays the results of the analysis across the 500 data sets using the same chain

specifications as before. As can be seen, we have slightly wider intervals, and the

posterior medians are slightly farther from the truth, but that is to be expected.

We still have good coverage properties, leading us to believe that increasing the

random effects standard deviation increases the uncertainty, but does not seem to

be detrimental to the estimation procedure.

Next, we change the number of studies that we generate from. Previously, we

were generating data such that each treatment had roughly ten studies and floored
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Table 4.9: Simulation results for split underreporting and increased treatments

Parameter Actual RR Median Mean Interval Width Coverage
RR[2,3] 0.882 0.890 0.905 0.642 0.988
RR[2,4] 0.779 0.786 0.800 0.583 0.990
RR[2,5] 0.687 0.689 0.702 0.528 0.986
RR[2,6] 0.607 0.617 0.629 0.488 0.990
RR[2,7] 0.535 0.537 0.548 0.438 0.988
RR[2,8] 0.472 0.476 0.487 0.401 0.974
RR[2,9] 0.417 0.421 0.432 0.372 0.992
RR[3,4] 0.882 0.891 0.907 0.677 0.986
RR[3,5] 0.779 0.782 0.797 0.613 0.984
RR[3,6] 0.687 0.699 0.713 0.564 0.990
RR[3,7] 0.607 0.609 0.623 0.508 0.992
RR[3,8] 0.535 0.540 0.553 0.464 0.982
RR[3,9] 0.472 0.478 0.490 0.429 0.996
RR[4,5] 0.882 0.870 0.905 0.713 0.988
RR[4,6] 0.779 0.792 0.809 0.654 0.986
RR[4,7] 0.687 0.691 0.706 0.589 0.994
RR[4,8] 0.607 0.612 0.627 0.536 0.990
RR[4,9] 0.535 0.542 0.556 0.496 0.992
RR[5,6] 0.882 0.905 0.925 0.768 0.992
RR[5,7] 0.779 0.790 0.809 0.692 0.990
RR[5,8] 0.687 0.701 0.718 0.627 0.974
RR[5,9] 0.607 0.620 0.637 0.579 0.986
RR[6,7] 0.882 0.884 0.906 0.788 0.988
RR[6,8] 0.779 0.784 0.804 0.718 0.982
RR[6,9] 0.687 0.694 0.713 0.662 0.988
RR[7,8] 0.882 0.902 0.927 0.852 0.974
RR[7,9] 0.779 0.798 0.822 0.784 0.980
RR[8,9] 0.882 0.902 0.930 0.904 0.982

σ 0.1 0.113 0.117 0.234 0.988

Table 4.10: Simulation results for split underreporting and increased random effect
standard deviation

Parameter Actual RR Median Mean Interval Width Coverage
RR[2,3] 0.779 0.805 0.836 0.904 0.976
RR[2,4] 0.607 0.629 0.654 0.730 0.978
RR[2,5] 0.472 0.488 0.509 0.588 0.978
RR[3,4] 0.779 0.804 0.839 0.957 0.980
RR[3,5] 0.607 0.624 0.652 0.769 0.980
RR[4,5] 0.779 0.799 0.838 1.019 0.986

σ 0.4 0.409 0.415 0.372 0.930
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Table 4.11: Simulation results for split underreporting and decreased studies

Parameter Actual RR Median Mean Interval Width Coverage
RR[2,3] 0.779 0.790 0.826 0.971 0.996
RR[2,4] 0.607 0.621 0.652 0.806 0.970
RR[2,5] 0.472 0.473 0.498 0.646 0.988
RR[3,4] 0.779 0.805 0.849 1.084 0.999
RR[3,5] 0.607 0.614 0.649 0.867 0.992
RR[4,5] 0.779 0.789 0.841 1.189 0.986

σ 0.1 0.170 0.188 0.452 0.986

our number of studies at four. Now we generate data such that each treatment has

roughly five studies and floor the number of studies at two.7 Table 4.11 shows the

results of the analysis across the 500 data sets using the same chain specifications

as before. As before, we see a slight increase in interval width here due to the added

uncertainty of small study sizes. However, the method still seems to be fairly robust

against this change.

Next, we change the reporting probabilities for each treatment to be more

spread out. Rather than ranging from 0.6 to 0.8, we spread the probabilities from

0.5 to 0.9 (where, again, the placebo is the highest). Table 4.12 shows how this

change affects the results of the analysis across the 500 data sets using the same

chain specifications as before. As can be seen, this change also does not affect our

results in a negative way.

Table 4.12: Simulation results for split and spead underreporting

Parameter Actual RR Median Mean Interval Width Coverage
RR[2,3] 0.779 0.789 0.804 0.614 0.988
RR[2,4] 0.607 0.610 0.624 0.524 0.998
RR[2,5] 0.472 0.479 0.493 0.466 0.988
RR[3,4] 0.779 0.784 0.804 0.715 0.990
RR[3,5] 0.607 0.614 0.634 0.626 0.990
RR[4,5] 0.779 0.796 0.824 0.866 0.994

σ 0.1 0.133 0.141 0.304 0.986

7 We keep the standard deviation of number of studies generated per treatment at two.
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Table 4.13: Simulation results for split underreporting (smaller prior sample size)

Parameter Actual RR Median Mean Interval Width Coverage
RR[2,3] 0.779 0.791 0.813 0.750 0.996
RR[2,4] 0.607 0.614 0.633 0.619 0.994
RR[2,5] 0.472 0.475 0.493 0.546 0.996
RR[3,4] 0.779 0.786 0.813 0.831 0.996
RR[3,5] 0.607 0.609 0.633 0.688 0.998
RR[4,5] 0.779 0.785 0.819 0.930 1.000

σ 0.1 0.135 0.142 0.308 0.986

Next, we consider a change to our prior structures. Namely, what happens if

we have a different prior sample size for our reporting probabilities, pi? In order to

keep results comparable, we have been using a sample size of 60 throughout, but

next we consider the case where our sample size is only 30. Table 4.13 shows the

results of the analysis across the 500 data sets using the same chain specifications as

before. As can be seen, a less informative prior does have some effect on results; we

see a slight increase in interval width for each relative risk as well as one in coverage.

Because this decrease in prior sample size only appears to affect posterior

variability, we run the analysis again with a prior sample size of 15. Table 4.14

shows the results of the analysis across the 500 data sets using the same chain

specifications as before. We see the same effect happening here, as our intervals

continue to get wider as our coverage increases. This can be explained by the fact

that we are overparameterized. Thus, as we have less and less informativeness in

our prior structures, that indecision creates more conservative estimates. That, in

turn, allows us to capture the truth more often. It is a safe assumption to assume

that the opposite effect would occur as we increase our prior sample size beyond 60.

As our certainty for pi increases, we would see coverage around a nominal level with

an even narrower interval.

Lastly, we consider what happens when reporting probabilities are misspeci-

fied. Obviously, a large amount of misspecification will hurt results; the idea here
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Table 4.14: Simulation results for split underreporting (smallest prior sample size)

Parameter Actual RR Median Mean Interval Width Coverage
RR[2,3] 0.779 0.791 0.827 0.960 1.000
RR[2,4] 0.607 0.616 0.649 0.809 0.996
RR[2,5] 0.472 0.475 0.505 0.678 1.000
RR[3,4] 0.779 0.787 0.831 1.076 1.000
RR[3,5] 0.607 0.607 0.647 0.903 0.998
RR[4,5] 0.779 0.782 0.837 1.212 1.000

σ 0.1 0.136 0.143 0.309 0.984

Table 4.15: Simulation results for split underreporting analyzed with constant
misspecification

Parameter Actual RR Median Mean Interval Width Coverage
RR[2,3] 0.779 0.788 0.803 0.613 0.986
RR[2,4] 0.607 0.604 0.617 0.496 0.980
RR[2,5] 0.472 0.463 0.475 0.411 0.976
RR[3,4] 0.779 0.778 0.795 0.669 0.980
RR[3,5] 0.607 0.596 0.612 0.550 0.980
RR[4,5] 0.779 0.780 0.802 0.748 0.980

σ 0.1 0.137 0.144 0.311 0.988

is to test how robust to minor changes these methods are. For the first change,

we affect the prior probabilities in such a way that the change is constant among

treatments. For example, the five reporting probabilities for the general case we

have been outlining are 0.8, 0.75, 0.7, 0.65, and 0.6. Thus, the prior structures for

these are a beta(48, 12), beta(45, 15), beta(42, 18), beta(39, 21), and beta(36, 24),

respectively.

However, we run a first analyses using prior structures of a beta(51, 9), beta(48, 12),

beta(45, 15), beta(42, 18), and beta(39, 21), respectively. This constant misspecifi-

cation has no tangible effect on results, as can be seen in Table 4.15.8

Next, we use prior structures that affect our reporting probabilities differ-

ently. Namely, we use a beta(51, 9), beta(42, 18), beta(45, 15), beta(36, 24), and

beta(39, 21), respectively. Notice that this change affects treatments in different

8 As before, when the analysis deviated from the truth by a constant rate across all treatments,
this misspecification essentially is wiped out in relative risks because of the division of rates.
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Table 4.16: Simulation results for split underreporting analyzed with varied
misspecification

Parameter Actual RR Median Mean Interval Width Coverage
RR[2,3] 0.779 0.682 0.696 0.546 0.942
RR[2,4] 0.607 0.618 0.634 0.550 0.990
RR[2,5] 0.472 0.408 0.418 0.368 0.956
RR[3,4] 0.779 0.918 0.941 0.821 0.950
RR[3,5] 0.607 0.606 0.621 0.549 0.990
RR[4,5] 0.779 0.671 0.691 0.662 0.942

σ 0.1 0.130 0.138 0.304 0.996

manners, as these priors are centered at 0.85, 0.7, 0.75, 0.6, and 0.65. Thus, the

placebo and two of the treatments are believed to have reporting probabilities that

are 5% higher than the truth; the other two treatments are believed to have reporting

probabilities 5% less than the truth. Table 4.16 summarizes these results.

As can be seen from the table, these methods are still fairly robust to misspec-

ifications of reporting probabilities. However, we can see some shortcomings. The

methods that analyze treatments that are both overspecified (or under, of course)9

still have very good coverage rates. However, in other cases we are seeing a ten

percent difference in reporting probabilities because one treatment is under by five

percent and the one it is compared to is over by five percent. This is hurting our

coverage probability, and it seems reasonable to think that as this gap increases,

coverage will continue to decrease. However, this misspecification is still fairly large

and a much better case than when analyzing without underreporting, leading to the

conclusion that even if an accurate prior cannot be specified in this case, a slightly

inaccurate prior is better than ignoring the underreporting

4.5 Checking MCMC Assumptions

We begin our Markov chain Monte Carlo assumptions check with the first case

highlighted in this chapter; this is the case where there is no underreporting in the

9 When even numbered treatments are compared to even numbered treatments and vice versa.
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data and we analyze using traditional methods. This should serve as a baseline for

what we hope to see in our plots. Recall that when we generate a data set, we had 41

overall studies with studies of 9, 10, 10 and 12 for the four treatments, respectively.

The person years ranged from 117 to 386, while the randomly generated Poisson

counts ranged from 5 to 59. After running the data through WinBUGS using a chain

of length 60,000 where the first 10,000 iterations are discarded as the burn-in and

we thin by 5 in order to leave us with a chain of 10,000 iterations, we arrive at three

different plots that will aid in checking convergence. The first plot is a history plot

that shows each iteration of the chain; here we are hoping to see random variation

about the point where the chain has converged.10 The next plot is a density plot that

shows the rough distribution of the chain; because we are using the percentiles as

cutoffs for a credible interval, we hope to see a fairly smooth distribution here.11 The

last plot is an autocorrelation plot; here we hope to see no evidence of correlation

between future observations.12 All three of these plots can be seen in Appendix G.

Next, we generate data that comes from the split underreporting model such

that we have different reporting probabilities for each treatment. This data set

has the same number of studies as before, along with the same set of person years

attached to each study. However, because of the difference in reporting probabili-

ties, our randomly generated Poisson counts now range from 3 to 48. The median,

mean and standard deviation all decreased as well. Appendix H shows the assump-

tion check plots for this data set analyzed without accounting for underreporting.

Appendix I shows the assumption check plots for this data set analyzed using con-

stant underreporting. Appendix J shows the assumption check plots for this data

set analyzed using the correct split underreporting model. Appendix K shows the

10 Failure here would be evidence that the chain has not yet converged.

11 Failure here would also indicate that the chain has not converged yet.

12 Failure here would be evidence that we did not discard enough observations in the thinning
process.
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assumption check plots for this data set analyzed using the incorrect split underre-

porting model. Note that for every set of plots we have chosen the three relative

risks that have the worst appearance; thus, these should be a good representative

look at the worst these methods can perform, as relative risks not presented looked

better.

It should be noted that the only potential concern with assumptions lie in the

odd shape of the posterior standard deviation; ideally, this would be much smoother.

However, our primary interest is in the relative risks, so we look at how various priors

on σ affects these rates. In an attempt to investigate this, we altered the prior used

on our standard deviation from

1√
τ
∼ U (0.001, 2)

to one of two different priors. The first is

1√
τ
∼ U (0.001, 1) ,

while the second is

1√
τ
∼ U (0.001, 4) .

Tables 4.17 and 4.18 display the results of one run of both cases using the same

simulated data set in tabular form to show that the relative risks are static to this

change.

The effect of prior on the standard deviation can be clearly evidenced in the

difference in the tables; however, the relative risks are virtually identical, indicating

to us that this is not an issue.

Thus, due to the fact that even the worst plots look satisfactory, there is

nothing here that would indicate that our chains have not converged to a stationary

distribution and that analyses are correct.
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Table 4.17: Simulation results of one run for MCMC convergence check for more
informative prior

Parameter Mean 2.5% Percentile Median 97.5% Percentile Interval Width
RR[2,3] 0.657 0.409 0.642 0.979 0.570
RR[2,4] 0.606 0.383 0.588 0.936 0.553
RR[2,5] 0.369 0.229 0.359 0.563 0.334
RR[3,4] 0.944 0.586 0.921 1.436 0.850
RR[3,5] 0.576 0.356 0.562 0.886 0.530
RR[4,5] 0.627 0.381 0.609 0.971 0.590

σ 0.199 0.104 0.202 0.399 0.295

Table 4.18: Simulation results of one run for MCMC convergence check for less
informative prior

Parameter Mean 2.5% Percentile Median 97.5% Percentile Interval Width
RR[2,3] 0.661 0.418 0.647 0.987 0.569
RR[2,4] 0.606 0.388 0.591 0.909 0.521
RR[2,5] 0.368 0.227 0.358 0.563 0.336
RR[3,4] 0.940 0.591 0.916 1.438 0.847
RR[3,5] 0.569 0.353 0.554 0.884 0.531
RR[4,5] 0.623 0.375 0.606 0.978 0.603

σ 0.212 0.022 0.214 0.411 0.389

4.6 Conclusion

To recap, we have adjusted the traditional mixed treatment comparisons meta-

analysis to account for various types of underreporting. We illustrated how constant

underreporting has no effect on relative risk calculations, but failing to account for

it when treatments have different level of underreporting can lead to serious errors.

We showed several cases various parameters were altered in order to demonstrate

the robustness of this method, including analyzing the data with incorrect prior

structures in an attempt to show that misspecifying an underreporting prior is still

preferred to analyzing with no underreporting.

It should be noted that these methods can easily be extended to the case

where not every treatment has a separate underreporting. For instance, if there are

six treatments, but it is believed that there are only three different reporting proba-

bilities attached to those, we can easily pool those together to improve performance.
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Because that is simply a specific case of what we outlined in this chapter, we chose

not to include it. Further, it should be noted that future work includes accounting

for varying types of misspecification with other data models.
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CHAPTER FIVE

Conclusion

In this dissertation we have investigated and contributed to two important

problems in statistical science− sample size determination for select test of statistical

hypothesis and underreporting in mixed treatment comparisons meta-analysis. Here

we recap some of the contributions we provide and include future directions that may

prove useful.

As covered in introductory chapter, sample size determination has become a

central issue in applied statistics. Thus, we began this dissertation by introducing

improvements to methods for sample size determination in situations where both

prior information and knowledge of decision consequences are available. Though

these methods were applied from a Bayesian perspective, we kept traditional meth-

ods of decision quality in mind; namely, those of significance level and power.1

This type of consideration had previously been ignored in Bayesian sample size

determination problems. Additionally, we have provided novel algorithms and im-

plementations that can be used to handle real-world problems. However, it should

be noted that several improvements to these contributions can still be made, includ-

ing optimization of the fundamental algorithms, adjustment of prior structures, and

the extension to other data models besides the binomial and Poisson cases.

We concluded with a look at a mixed treatment comparisons meta-analysis

problem. Previous research lacked a way to handle misspecified data, so we intro-

duced a model that accounts for varying levels of underreporting within Poisson

data. These methods were also applied from a Bayesian perspective and were shown

to have drastic improvements over the current methodology. Several changes were

1 Note that in this dissertation we analyze these from an expected sense.
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made to the general structure of the problem to show that these methods are also

fairly robust to moderate alterations. However, the extension to other data models

that exhibit misspecification would be a valuable extension to the results demon-

strated in this dissertation.
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APPENDIX A

R Code to Find EBP for a Fixed Sample Size

sample_power <- function (type, n, c, a1, b1, a2, b2, a = a1, b = b1,

pi0 = 0.5, pi1 = 1 - pi0) {

stopifnot(pi0 >= 0)

stopifnot(pi1 >= 0)

stopifnot(pi0 + pi1 == 1)

type <- match.arg(type, c("poisson", "binomial"))

if (type == "poisson") {

y1min <- qnbinom(1e-04, size = a1, prob = b1/(n + b1))

y2min <- qnbinom(1e-04, size = a2, prob = b2/(n + b2))

y1max <- qnbinom(0.9999, size = a1, prob = b1/(n + b1))

y2max <- qnbinom(0.9999, size = a2, prob = b2/(n + b2))

df <- expand.grid(y1 = y1min:y1max, y2 = y2min:y2max)

value <- function(y1, y2) {

exp((y1 + y2) * log(n) + a1 * log(b1) + a2 *

log(b2) + lgamma(y1 + a1) + lgamma(y2 + a2) -

lfactorial(y1) - lfactorial(y2) - lgamma(a1) -

lgamma(a2) - (y1 + a1) * log(n + b1) - (y2 +

a2) * log(n + b2))

}

condition <- function(y1, y2) {

a * log(b) + lgamma(y1 + y2 + a) - lgamma(a) - (y1 +
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y2 + a) * log(2 * n + b) + lgamma(a1) + lgamma(a2) +

(y1 + a1) * log(n + b1) + (y2 + a2) * log(n + b2) -

a1 * log(b1) - a2 * log(b2) - lgamma(y1 + a1) - lgamma(y2 +

a2) <= log(c * pi1 / pi0)

}

reject <- function(y1, y2) {

if (condition(y1, y2)) return(value(y1, y2)) else return(0)

}

f <- sum(apply(df, 1, function(v) value(v[1], v[2])))

power <- sum(apply(df, 1, function(v) reject(v[1], v[2])))

p <- power / f

}

if (type == "binomial") {

df <- expand.grid(y1 = 0:n, y2 = 0:n)

value <- function(y1, y2) {

exp(lchoose(n, y1) + lbeta(y1 + a1, n - y1 + b1) -

lbeta(a1, b1) + lchoose(n, y2) + lbeta(y2 + a2,

n - y2 + b2) - lbeta(a2, b2))

}

condition <- function(y1, y2) {

lbeta(y1 + y2 + a, 2 * n - y1 - y2 + b) - lbeta(a, b) -

lbeta(y1 + a1, n - y1 + b1) + lbeta(a1, b1) -

lbeta(y2 + a2, n - y2 + b2) + lbeta(a2, b2) <=

log(c * pi1 / pi0)

}

reject <- function(y1, y2) {
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if (condition(y1, y2)) return(value(y1, y2)) else return(0)

}

p <- sum(apply(df, 1, function(v) reject(v[1], v[2])))

}

p

}
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APPENDIX B

R Code to Find EBSL for a Fixed Sample Size

sample_alpha <- function (type, n, c, a1, b1, a2, b2, a = a1, b = b1,

pi0 = 0.5, pi1 = 1 - pi0) {

stopifnot(pi0 >= 0)

stopifnot(pi1 >= 0)

stopifnot(pi0 + pi1 == 1)

type <- match.arg(type, c("poisson", "binomial"))

if (type == "poisson") {

ymin <- qnbinom(1e-04, size = a, prob = b/(n + b))

ymax <- qnbinom(0.9999, size = a, prob = b/(n + b))

df <- expand.grid(y1 = ymin:ymax, y2 = ymin:ymax)

value <- function(y1, y2) {

exp((y1 + y2) * log(n) + a * log(b) + lgamma(y1 + y2 + a) -

lfactorial(y1) - lfactorial(y2) - lgamma(a) -

(y1 + y2 + a) * log(2 * n + b))

}

condition <- function(y1, y2) {

a * log(b) + lgamma(y1 + y2 + a) - lgamma(a) - (y1 +

y2 + a) * log(2 * n + b) + lgamma(a1) + lgamma(a2) +

(y1 + a1) * log(n + b1) + (y2 + a2) * log(n + b2) -

a1 * log(b1) - a2 * log(b2) - lgamma(y1 + a1) - lgamma(y2 +

a2) <= log(c * pi1 / pi0)
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}

reject <- function(y1, y2) {

if (condition(y1, y2)) return(value(y1, y2)) else return(0)

}

f <- sum(apply(df, 1, function(v) value(v[1], v[2])))

alpha <- sum(apply(df, 1, function(v) reject(v[1], v[2])))

a <- alpha / f

}

if (type == "binomial") {

df <- expand.grid(y1 = 0:n, y2 = 0:n)

value <- function(y1, y2) {

exp(lchoose(n, y1) + lbeta(y1 + y2 + a, 2 * n - y1 - y2 + b) -

lbeta(a, b) + lchoose(n, y2))

}

condition <- function(y1, y2) {

lbeta(y1 + y2 + a, 2 * n - y1 - y2 + b) - lbeta(a, b) -

lbeta(y1 + a1, n - y1 + b1) + lbeta(a1, b1) -

lbeta(y2 + a2, n - y2 + b2) + lbeta(a2, b2) <=

log(c * pi1 / pi0)

}

reject <- function(y1, y2) {

if (condition(y1, y2)) return(value(y1, y2)) else return(0)

}

a <- sum(apply(df, 1, function(v) reject(v[1], v[2])))

}
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}
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APPENDIX C

R Code to Find Desired Sample Size

find_size <- function (type, a1, b1, a2, b2, a = a1, b = b1, pi0 = 0.5,

pi1 = 1 - pi0, alpha = 0, power = 0, c = 0, c_tol = 0, N = 0) {

if(c != 0) c <- 1 / c

stopifnot (pi0 >= 0)

stopifnot (pi1 >= 0)

stopifnot (pi0 + pi1 == 1)

if (alpha > 0 && power > 0 && c > 0) stop(

"Cannot specify EBSL, EBP and c")

if (alpha == 0 && power == 0 & c == 0) stop(

"Must specify two of three between EBSL, EBP and c")

if (alpha == 0 && power == 0) stop(

"Must specify more than just c")

if (alpha == 0 && c == 0) stop(

"Must specify more than just EBP")

if (c == 0 && power == 0) stop(

"Must specify more than just EBSL")

type <- match.arg(type, c("poisson", "binomial"))

if(N == 0 && type == "poisson") check <- 50

if(N == 0 && type == "binomial") check <- 100

if(c_tol == 0) c_tol <- 0.005
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if (alpha == 0) {

n <- check

n_power <- sample_power(type, n, c, a1, b1, a2, b2,

a, b, pi0, pi1)

if (n_power > power) {

i <- 1

while (n_power[i] > power) {

n <- c(n, check - i)

n_power <- c(n_power, sample_power(type, check - i, c,

a1, b1, a2, b2, a, b, pi0, pi1))

i <- i + 1

}

n <- n[i - 1]

power <- n_power[i - 1]

} else {

n <- c(1, n)

n_power <- c(0, n_power)

while (n_power[2] < power) {

n <- c(n[2], 2 * n[2])

n_power <- c(n_power[2], sample_power(type, n[2], c,

a1, b1, a2, b2, a, b, pi0, pi1))

}

while (abs(n[1] - n[2]) > 1) {

n <- c(n, round(mean(n)))

n_p <- sample_power(type, n[3], c, a1, b1, a2, b2,

a, b, pi0, pi1)

if (n_p < power) {
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n <- n[3:2]

n_power <- c(n_p, n_power[2])

} else {

n <- n[-2]

n_power <- c(n_power[1], n_p)

}

}

n <- n[2]

power <- n_power[2]

}

alpha <- sample_alpha(type, n, c, a1, b1, a2, b2,

a, b, pi0, pi1)

}

if (power == 0) {

n <- check

n_alpha <- sample_alpha(type, n, c, a1, b1, a2, b2,

a, b, pi0, pi1)

if (n_alpha < alpha) {

i <- 1

while (n_alpha[i] < alpha) {

n <- c(n, check - i)

n_alpha <- c(n_alpha, sample_alpha(type, check - i, c,

a1, b1, a2, b2, a, b, pi0, pi1))

i <- i + 1

}

n <- n[i - 1]
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alpha <- n_alpha[i - 1]

} else {

n <- c(1, n)

n_alpha <- c(1, n_alpha)

while (n_alpha[2] > alpha) {

n <- c(n[2], 2 * n[2])

n_alpha <- c(n_alpha[2], sample_alpha(type, n[2], c,

a1, b1, a2, b2, a, b, pi0, pi1))

}

while (abs(n[1] - n[2]) > 1) {

n <- c(n, round(mean(n)))

n_a <- sample_alpha(type, n[3], c, a1, b1, a2, b2,

a, b, pi0, pi1)

if (n_a > alpha) {

n <- n[3:2]

n_alpha <- c(n_a, n_alpha[2])

} else {

n <- n[-2]

n_alpha <- c(n_alpha[1], n_a)

}

}

n <- n[2]

alpha <- n_alpha[2]

}

power <- sample_power(type, n, c, a1, b1, a2, b2,

a, b, pi0, pi1)

}
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find_c <- function(type, n, power, a1, b1, a2, b2, a, b, pi0, pi1) {

c <- c(0, 1)

c_power <- c(0, sample_power(type, n, 1, a1, b1, a2, b2,

a, b, pi0, pi1))

if(c_power[2] > power) {

while (abs(c[1] - c[2]) > c_tol) {

c <- c(c, mean(c))

c_p <- sample_power(type, n, c[3], a1, b1, a2, b2,

a, b, pi0, pi1)

if (c_p < power) {

c <- c[3:2]

c_power <- c(c_p, c_power[2])

} else {

c <- c[-2]

c_power <- c(c_power[1], c_p)

}

}

}

list(c = c[2], power = c_power[2])

}

if (c == 0) {

n <- 1

n_power <- 0

n_alpha <- 1

while (n_alpha > alpha || n_power < power) {
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n <- n + 1

new <- find_c(type, n, power, a1, b1, a2, b2,

a, b, pi0, pi1)

c <- new$c

n_power <- new$power

n_alpha <- sample_alpha(type, n, c, a1, b1, a2, b2,

a, b, pi0, pi1)

}

alpha <- n_alpha

power <- n_power

}

c <- 1 / c

list(size = n, c = c, alpha = alpha, power = power)

}
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APPENDIX D

R Code to Generate Study Data for Meta-Analysis

generate <- function(d = 4, sd = 0.1, ns = "large", u = 2) {

if (u != 0 && u != 1 && u != 2 && u != 3) stop(

"u must be 0 (no underreporting), 1 (constant underreporting),

2 (tight split underreporting) or 3 (spread split underreporting)")

ns <- match.arg(ns, c("small", "large"))

if (ns == "small") ns <- 5 else ns <- 10

D <- round(rnorm(d, ns, 2))

for(i in 1:d) if(D[i] < ceiling(ns / 3)) D[i] <- ceiling(ns / 3)

avg_y <- 250

placebo <- -2

d <- seq(0, -1, length = (d + 1))[-1]

D <- D * 2

N <- sum(D)

NS <- N / 2

NT <- length(D) + 1

x <- matrix(0, N, length(D) + 1)

x[,1] <- 1

k <- 1

t <- c()
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for(i in 1:length(D)) {

for(j in k:cumsum(D)[i]) if(j / 2 == round(j / 2))

x[j, i + 1] <- 1

k <- k + D[i]

t <- c(t, rep(c(1, (i + 1)), D[i] / 2))

}

s <- c(rbind(1:NS, 1:NS))

b <- rep(1, N)

if(u == 0) p <- rep(1, NT)

if(u == 1) p <- rep(0.7, NT)

if(u == 2) p <- seq(0.8, 0.6, length = length(d) + 1)

if(u == 3) p <- seq(0.9, 0.5, length = length(d) + 1)

alpha <- 60 * p

beta <- 60 - alpha

d <- c(0, d)

RR <- matrix(0, NT, NT)

for(i in 1:(NT - 1)) for(j in (i + 1):NT)

RR[i, j] <- exp(d[j] - d[i])

RR <- RR[-1,]

rr <- c()

for(i in 1:length(c(RR))) if(c(t(RR))[i] != 0)

rr <- c(rr, c(t(RR))[i])

d <- c(placebo, d[-1])

sd <- rep(sd, NT)

delta <- c()
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for(i in 1:NT) delta <- cbind(delta, rnorm(NS, d[i], sd[i]))

y <- round(rnorm(N, avg_y, round(avg_y / 5)))

for(i in 1:N) if(y[i]<1) y[i] <- 1

r <- numeric(N)

for(i in 1:N) r[i] <- rpois(1, p[t[i]] * y[i] * exp((x[i,] %*%

delta[s[i],])))

list(r = r, y = y, t = t, s = s, b = b, rr = rr, alpha = alpha,

beta = beta, N = N, NS = NS, NT = NT)

}
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APPENDIX E

WinBUGS Models for Meta-Analysis

WinBUGS Code for Model with No Underreporting

model{

for(i in 1:N) {

log(lambda[i]) <- log(y[i]) + mu[s[i]] + delta[i] *

(1 - equals(t[i], b[i]))

r[i] ~ dpois(lambda[i])

delta[i] ~ dnorm(theta[i], tau)

theta[i] <- phi[t[i]] - phi[b[i]]

}

for(j in 1:NS) {

mu[j] ~ dnorm(0, 0.005)

}

phi[1] <- 0

for (k in 2:NT) {

phi[k] ~ dnorm(0, 0.005)

}

sd ~ dunif(0, 3)

tau <- 1 / pow(sd, 2)

for (c in 1:(NT - 1)) for (k in (c + 1):NT)

rr[c, k] <- exp(phi[k] - phi[c])

}
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WinBUGS Code for Model with Constant Underreporting

model{

for(i in 1:N) {

log(lambda[i]) <- log(p) + log(y[i]) + mu[s[i]] + delta[i] *

(1 - equals(t[i], b[i]))

r[i] ~ dpois(lambda[i])

delta[i] ~ dnorm(theta[i], tau)

theta[i] <- phi[t[i]] - phi[b[i]]

}

for(j in 1:NS) {

mu[j] ~ dnorm(0, 0.005)

}

p ~ dbeta(alpha, beta)

phi[1] <- 0

for (k in 2:NT) {

phi[k] ~ dnorm(0, 0.005)

}

sd ~ dunif(0, 3)

tau <- 1 / pow(sd, 2)

for (c in 1:(NT - 1)) for (k in (c + 1):NT)

rr[c, k] <- exp(phi[k] - phi[c])

}
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WinBUGS Code for Model with Split Underreporting

model{

for(i in 1:N) {

log(lambda[i]) <- log(p[t[i]]) + log(y[i]) + mu[s[i]] + delta[i] *

(1 - equals(t[i], b[i]))

r[i] ~ dpois(lambda[i])

delta[i] ~ dnorm(theta[i], tau)

theta[i] <- phi[t[i]] - phi[b[i]]

}

for(j in 1:NS) {

mu[j] ~ dnorm(0, 0.005)

}

for(k in 1:NT) p[k] ~ dbeta(alpha[k], beta[k])

phi[1] <- 0

for (k in 2:NT) {

phi[k] ~ dnorm(0, 0.005)

}

sd ~ dunif(0, 3)

tau <- 1 / pow(sd, 2)

for (c in 1:(NT - 1)) for (k in (c + 1):NT)

rr[c, k] <- exp(phi[k] - phi[c]

}
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APPENDIX F

R Code to Run Simulations for Meta-Analysis

source("Generate.R")

library(R2WinBUGS)

simulation <- function(reps, drugs = 4, sd = 0.1, ns = "large",

u = 2, a = 2) {

if (u != 0 && u != 1 && u != 2 && u != 3) stop(

"Undereporting must be 0 (none), 1 (constant),

2 (tight split) or 3 (spread split)")

if (a != 0 && a != 1 && a != 2) stop(

"Analyzation must be 0 (no underreporting),

1 (constant underreporting), 2 (correct split underreporting),

or 3 (incorrect split underreporting)")

medians <- means <- lowers <- uppers <- c()

success <- numeric(drugs * (drugs + 1) / 2 + 1 - drugs)

for(i in 1:reps) {

generated = generate(d = drugs, sd = sd, ns = ns, u = u)

r <- generated$r

t <- generated$t

s <- generated$s
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b <- generated$b

N <- generated$N

NS <- generated$NS

NT <- generated$NT

y <- generated$y

rr <- generated$rr

Parameters <- c("rr", "sd")

Inits <- list(list(sd = 1))

if(a == 0) {

Data <- list("r", "t", "s", "b", "N", "NS", "NT", "y")

Fit <- bugs(Data, Inits, Parameters, "NoUnder.txt", n.chains = 1,

n.iter = 60000, n.thin = 5, n.burnin = 10000, debug = FALSE)

}

if(a == 1) {

alpha <- mean(generated$alpha)

beta <- mean(generated$beta)

Data <- list("r", "t", "s", "b", "N", "NS", "NT", "y", "alpha",

"beta")

Fit <- bugs(Data, Inits, Parameters, "Under.txt", n.chains = 1,

n.iter = 60000, n.thin = 5, n.burnin = 10000, debug = FALSE)

}

if(a == 2) {

alpha <- generated$alpha

beta <- generated$beta

Data <- list("r", "t", "s", "b", "N", "NS", "NT", "y", "alpha",

"beta")

Fit <- bugs(Data, Inits, Parameters, "SplitUnder.txt",
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n.chains = 1, n.iter = 60000, n.thin = 5, n.burnin = 10000,

debug = FALSE)

}

if(a == 3) {

alpha <- generated$alpha

beta <- generated$beta

alpha <- alpha + rep(c(3, -3), 10000)[1:length(alpha)]

beta <- beta + rep(c(-3, 3), 10000)[1:length(beta)]

Data <- list("r", "t", "s", "b", "N", "NS", "NT", "y", "alpha",

"beta")

Fit <- bugs(Data, Inits, Parameters, "SplitUnder.txt",

n.chains = 1, n.iter = 60000, n.thin = 5, n.burnin = 10000,

debug = FALSE)

}

X <- Fit$summary[1:(drugs * (drugs + 1) / 2 + 1),][-1:-drugs,]

medians <- rbind(medians, X[, 5])

means <- rbind(means, X[, 1])

lowers <- rbind(lowers, X[, 3])

uppers <- rbind(uppers, X[, 7])

for(j in 1:length(rr)) if(rr[j] > lowers[i,j] && rr[j] <

uppers[i,j]) success[j] <- success[j] + 1

if(sd > lowers[i,length(success)] && sd <

uppers[i,length(success)]) success[length(success)] <-

success[length(success)] + 1

}

print(noquote("Actual Relative Risks and Standard Deviation"))
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print(c(round(rr, 3), sd))

print(noquote("Medians"))

print(round(colMeans(medians), 3))

print(noquote("Means"))

print(round(colMeans(means), 3))

print(noquote("Interval Widths"))

print(round(colMeans(uppers - lowers), 3))

print(noquote("Coverage"))

print(round(success / reps * 100, 1))

}
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APPENDIX G

MCMC Assumption Plots for Traditional Model
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APPENDIX H

MCMC Assumption Plots for Split Underreported Data Analyzed with No

Underreporting
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APPENDIX I

MCMC Assumption Plots for Split Underreported Data Analyzed with Constant

Underreporting
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APPENDIX J

MCMC Assumption Plots for Split Underreported Data Analyzed with Correct

Split Underreporting
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APPENDIX K

MCMC Assumption Plots for Split Underreported Data Analyzed with Incorrect

Split Underreporting
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