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Implementation. 
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Described in this work are methodologies for the design and development of 

electric vehicle (EV) powertrains through modeling, simulation and validation on a real-

world systems, with detailed analysis of results. A system for swapping, storing and 

managing EV batteries, including a Deep Neural Network (DNN) based state of health 

estimation model is developed and analyzed. The system is designed to enable advanced 

interface with the electric grid and address challenges in the adoption of EVs which 

include :  Cost, range anxiety, charging time and charging infrastructure, battery state of 

health, and impacts of vehicle to grid (V2G) operations. The EV battery swapping system 

(BSS) consists of the EV powertrain equipped with swapping capability, modular 

swappable battery packs, battery storage apparatus, bidirectional charging system, battery 

and charge management system, and battery swapping equipment. This system provides a 

cost-effective way of adopting electrification, reducing strain on the electricity grid 

during peak periods and extending the life of EV batteries. 
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CHAPTER ONE 

 

Background and Literature Review 

 

 

1.1.Motivation 

 

 According to the U.S. Environmental Protection Agency (EPA), the transportation 

industry is the largest emitters of pollutant gases in the United States with 28% of 

greenhouse gases coming from this sector. Pollutant gas emissions from electricity and 

heat production is close to the second at 27% and has also increased to concerning levels 

as population and urbanization have increased [1]. The sustainability and environmental 

concerns of the pollutant gas emissions produced by these economic sectors have led to 

the research and development of renewable energy generation sources such as solar and 

wind for electricity production and the increased adoption of EV as an alternative to 

internal combustion engines (ICE) in the transportation sector. These alternative forms of 

energy generation and transportation have come with their own challenges, however.  

Production of renewable energy through solar and wind can be described as a 

“feast or famine,” as the production is heavily dependent on the availability of wind or 

solar irradiation from the sun during the day. For example, as a cloud passes over solar 

collectors, power output from the affected collectors could suddenly drop, and once the 

cloud passes, the output could return to normal levels [2]. In practice, the variability of 

these sources of energy often leads to either a surplus of production and a need for 

curtailment or the lack of production required to fulfill base load. For instance, solar 

irradiance and the resulting power output can change as much as 80% within a matter of 
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seconds [2]. To address these issues, renewable energy resources like solar and wind are 

often installed with local energy storage, like batteries, to store surplus energy generation 

and fulfill base load demand when generation is not up to par or is unavailable [2, 3]. 

These hybrid installations result in a significant increase in the installation costs of the 

renewable energy generation plant as battery energy storage resources are still expensive 

by current standards [4].  

Electrified mobility comes with its own challenges that need to be addressed 

challenges which include [5] :  

• Cost 

• Range anxiety  

• Charging infrastructure  

• Battery degradation 

 Modern EVs rely on a battery pack as the energy storage medium needed for 

propulsion power. These battery packs, like the energy storage medium used in hybrid 

renewable energy generation plants previously described, make up one to two thirds the 

cost of the vehicle and are expensive by current standards [5]. Current energy storage for 

the applications described thus far rely on Li-ion based battery chemistries due to their 

higher energy density, long cycle life and higher power density properties. The cost of 

producing Li-ion batteries is relatively expensive due to the low availability of raw 

materials needed, geo-political and ethical concerns in the mining and supply chain of the 

raw materials, the current costs of investments for research and development, tooling and 

expertise, and logistics needed to produce the batteries at scale. Reports discussed in [5] 

imply a cell cost of approximately $150 per kWh at the end of 2016, and an additional 
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cost of roughly $70 - $100 per kWh to convert cells into battery packs that go into the 

vehicle. This puts the cost of the battery pack alone at $13,000 for a 60kWh EV with an 

approximate 238-mile range such as a Chevrolet bolt which retails for around $37,495 

before incentives, tax rebates and subsidies are deducted [5].  These cost constraints are a 

barrier to the increasing adoption rate of electrified transportation despite its efficiency 

and simplicity benefits, as the cost of an EV is significantly higher compared to its ICE 

counterpart.  

 Secondly, despite the energy density benefits of Li-ion based batteries 

(265Wh/kg) compared to other types of batteries, it still pales in comparison to the 

energy density of gasoline and diesel, which are up to 40 times more energy dense than 

Li-ion batteries. Although an EV has an efficiency rating that could be 10 times or more 

than that of gasoline/diesel (Ex. Buggati Veyron sports car has an efficiency of 11 MPG 

while a Tesla Model S sports sedan has an efficiency of 117 MPGe), the limitations of 

weight and volume of battery packs on-board the vehicle lead to a limited amount of 

drivable range on-board the vehicle and thus range anxiety for drivers of EV’s with 

longer range requirements [6]. In addition, the required amount of time needed to 

conventionally charge a depleted battery pack could vary between 1 to 12 hours 

depending on charge type, power or charging speed, battery chemistry, battery size, and 

vehicle environment. Compared to filling up a vehicle at a gas station for 5 to 10 mins, 

these charging requirements further highlight the reason for range anxiety [7].  

Global EV sales to date are currently under 10 million vehicles; however, due to 

government policies, incentives, and rising interest amongst major automakers, global 

EV sales are expected to grow up to 125 million vehicles by 2030 [8]. The future of 
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transportation is also largely expected to become electric and autonomous, and shared 

with autonomous electric (AV) cars, vans, trucks and heavy-duty vehicles delivering 

people, goods and services all across the globe with minimal down time requirements and 

high duty cycles. The levels of EV penetration predicted by market analysts imply that 

the majority of new vehicles sold in the near future will be electric. This in turn, means a 

significant shift in the fuel source distribution for transportation industry from fossil-

based sources to electric. This shift requires reinforcement of electric energy 

infrastructure and generation as there is currently enough generation capacity in the US to 

absorb a few million new EVs [9]. The evolution of the transportation sector also 

presents an opportunity to develop sustainable solutions to the planning of utility grid 

reinforcements and optimal planning and deployment of the downstream charging 

infrastructure that are future proof.  

Charging infrastructure refers to equipment and network systems that replenish 

the depleted reserves of energy in EVs. There are three common methods of EV 

charging: conductive charging (AC and DC); inductive charging (static and dynamic); 

and battery swapping technologies [7]. The large-scale penetration of EVs will impact the 

reliability and safety of the electricity grid due to the randomness and uncertainty of EV 

users’ charging behavior in the spatial and temporal domain [10]. The decision of where 

and when a user is likely to charge or discharge in vehicle to grid (V2G) applications 

becomes increasingly difficult to predict [11]. From the distribution grid operator 

perspective, these decisions are dictated by a number of direct and indirect factors 

including: battery characteristics, power supply, EV size, geographical location, 

quantity/scale of EVs [12], downstream charging infrastructure, policies, incentives and 
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subsidies, traffic conditions, charging price, operational model, environmental impact and 

many more factors [13].  

The challenge of modeling the charging and discharging of EVs is due to the 

temporal and spatial complexity of mobile EVs and the temporal complexity of EVs 

charging at home, office buildings, industries and so on. The future of mobility being 

largely expected to be autonomous and shared, adds further complexity to the charging 

infrastructure modeling and predictability challenge. The possibility of EVs to push 

power back into the grid from their onboard battery also adds further complexity to the 

system. Inaccurate forecasting of EV charging/discharging load, can lead to unforeseen 

load peaks or troughs that could be detrimental to the grid. Therefore, some form of 

flexibility or buffer is needed at the charging station that can accommodate for the 

complexities in the prediction of EV charging/discharging load such as local energy 

storage or generation at, or near, the EV charging station or charging location. 

 Battery degradation is another challenge that electrified transportation faces as it 

is described as one of the top concerns of EV prospective buyers [7]. Due to the inherent 

nature of Li-ion battery chemistries, degradation of the battery components over time is 

inevitable. Moreover, this degradation can be accelerated by several different factors 

[14]. Li-ion batteries have a very finite operating temperature range which, when 

exceeded, could cause temporary or permanent damage to the cells and could lead to 

accelerated degradation when operated at the extremes of the temperature range. Also, 

Li-ion batteries have a strict power density curve which dictates the charge/discharge rate 

and, hence, the charging power and charging speed. Direct Current Fast Charging 

(DCFC), for example, is a means of increasing the charging speed of Li-ion batteries and 
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reducing charging wait times; but repeated use of DCFC to charge Li-ion can lead to 

accelerated degradation of the cells [15, 16]. The configuration of Li-ion cells to form a 

battery pack (parallel or series connections or a combination of both [17]), operating 

temperature, charge/discharge cycling, depth of discharge, overcharging, 

charge/discharge rate, and calendar aging, all degrade Li-ion cells [18].  

Aside from capacity loss (reduced attainable range) and increased internal 

resistance (slower charging and discharging speeds), degradation and improper 

monitoring and control of Li-ion battery packs could be a safety concern as well. A Li-

ion cell could experience a phenomenon known as thermal runaway, which could be 

destructive and sometimes explosive if cells are operated or stored at elevated 

temperatures for too long or when cells are improperly vented [18]. The high costs of 

batteries as well as the safety concerns make battery degradation an imminent issue 

needing to be addressed.  However, thermal runaway and other battery degradation 

mechanisms could be avoided or mitigated through advanced cell monitoring, control of 

charging and discharge and estimation of cell states and parameters using a battery 

management system (BMS) [19]. 

 

1.2.Background 

 

Considering the challenges that exist in the shift towards renewable energy and 

the adoption of electrification, such as variability of wind and solar, energy storage cost, 

charging load modeling, charging infrastructure and battery degradation, this work 

presents a host of research questions, hypotheses, experiments and results as well as 

innovations, analysis, designs and inventions that are aimed at addressing the challenges 
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that have been highlighted thus far. These include methodologies for design and 

validation of EVs, introduction of novel concepts such as modular connected battery 

packs, battery sharing networks and charge management systems, battery swapping 

implementation enabled with V2G technologies, methods of modeling Li-ion cells, 

methods of balancing, monitoring, estimation and optimization of Li-ion modules and 

pack states and parameters. 

Methodologies for designing, testing, simulating, and validating EV powertrains 

are described in Chapter Two of this work. Software simulation models developed in 

MATLAB/Simulink are validated by real-world vehicle test data from an EV chassis 

dynamometer with detailed analysis of the model correlation.  In addition, a novel EV 

powertrain with battery swapping capability is designed and implemented. The 

configuration allows for a single motor to provide power to either the rear wheels or all 

four wheels on the EV through a mechanical transfer case and front and rear differentials. 

The configuration also allows for selection of two different gears through a gear selector 

on the transfer case allowing for higher efficiency and performance. 

Further depicted in Chapter Two, a battery collection frame which serves as a 

structural member of the vehicle chassis and consists of a fifth wheel latch assembly that 

can be adjusted on a rack assembly to accept modular battery packs of different sizes, 

dimensions, and configurations. The battery collection frame may be welded or bolted to 

the ladder frame chassis of the vehicle. The latch assembly contains multiple components 

similar to a standard fifth wheel latch assembly used in on-road heavy duty trucks. Two 

or more fifth wheel latches are placed on the battery collection frame and adjusted via the 

racks to align a battery pack’s  mating kingpin  to the latch slots and adhere the battery 
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pack to the electrical and optional coolant connections on-board the vehicle chassis.  The 

fifth wheel can also be adjusted through the rack assembly to accommodate different 

battery pack dimensions and sizes. The latches can be released either manually by a user 

or automatically through a hydraulic or electrical actuator during swapping. 

Chapter Three introduces the basic principles of EV battery modeling. This 

chapter further details the methods of battery parameterization and validation of 

equivalent circuit models, the degradation mechanisms of Li-ion cells and the cause and 

effects that occur within different components of a Li-ion cell.  

An intelligent wireless battery management system (BMS) is designed and 

simulated that is capable of monitoring cells within a battery pack, active balancing 

individual cells across the battery pack, protecting the battery pack from various fail 

mode conditions such as overcurrent protection, over/under voltage conditions, 

over/under temperature conditions, measurement and estimation of states and parameters 

such as state of charge, state of power, state of health, internal resistance, usable capacity, 

operating temperature, and estimated duty cycle.  Chapter Three describes the 

architectural design of the BMS embedded with communication of telematics of the 

battery pack to the vehicle on-board controller, battery swapping station or cloud 

connected charge management system. The BMS system is capable of actively balancing 

the cells on-board the vehicle during charging or shortly after charging through a 

balancing circuit that measures the voltage across each individual cell and slowly bleeds 

off overcharged cells into cells that are undercharged or released into a bleeding resistor 

as heat. The BMS also includes an on-board computer and wireless module used for 
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estimation and control of the BMS functions, and for sharing of information from the 

BMS to the various systems mentioned above. 

Finally, an enhanced data-based deep neural network model for determination of 

battery state of health using a single charge/discharge curve in real time applications is 

also presented in Chapter Three. This model is based on the transition between constant 

voltage and constant current regions of charging. The algorithm can be implemented on 

the on-board BMS of the battery pack or in the cloud connected Charge Management 

System (CMS). The deep neural network model can also continuously be tuned for better 

accuracy, precision and speed while being updated in the on-board BMS as needed. 

In Chapter Four, the structural and packaging design of a modular battery pack 

intended for mobile and stationary applications is described which consists of  high 

voltage connections, an intelligent wireless on-board BMS, geographic position sensor, 

an on-board cooling system, a DC/DC converter, and an on-board wide-band gap 

bidirectional AC/DC charger. The modular battery pack is optimized for battery 

swapping in EV applications as well as Vehicle to Grid/Stationary applications for 

providing ancillary services to the grid as described in [20] – [26]. The physical enclosure 

of the battery pack is designed with the intent to mate with the battery collection frame 

detailed in Chapter Two. The flexibility of the battery pack designs and the modularity of 

EV powertrain also makes them uniquely suited for military applications, achieving most 

of the requirements while also mitigating some of the challenges aforementioned [27].  

Another variation of the modular battery pack consists of a closed-loop cooling 

system. Instead of having external inlet/outlet, this battery pack variation will contain all 

the components for cooling within the battery pack itself. The closed-loop cooling system 
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in one specific design consists of an electric fan, an electric pump, a chiller plate, a 

radiator, a heater coil, an electric AC compressor, and hoses, all within the battery pack 

itself. The electric components in the pack are powered through the DC/DC converter 

that is on-board the battery pack, eliminating the need for an external power source.  

In another design iteration, the cooling system features an air-cooled heat sink 

that is pressed onto one or more sides of the battery pack, separated by a heat exchange 

material such as aluminum, which will also form part of the structure of the battery pack. 

This novel design allows for ease of battery swapping and opens up the opportunity for 

use in stationary applications as the battery pack can easily be connected to the vehicle 

chassis with fewer connections and does not require complicated liquid coolant 

connections during battery swapping. This design also allows for the battery pack to 

function as an independent power source when used in stationary applications or charged 

off-board the vehicle at a battery swapping station. 

Chapter Four also depicts the design of a swappable EV chassis. The swappable 

chassis allows for a variety of vehicle body platforms to be combined with the same EV 

chassis. The swappable chassis features the electric powertrain, battery collection frame 

and modular battery pack described in this work. It also incorporates a steering rack 

motor that can be controlled wirelessly through a steering wheel sensor, a wireless 

embedded controller for controlling the electric motor and braking system through 

wireless signals from the throttle and brake pedal on-board the interchangeable vehicle 

body. Finally, the described swappable EV chassis allows for wireless selection of drive 

modes and gears from a wireless gear selector on-board an interchangeable vehicle body. 

The swappable EV chassis design is geared towards commercial transportation and future 
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autonomous shared transportation, allowing for the EV powertrain to become agnostic to 

the vehicle body and improving vehicle utilization for various applications. 

Chapter Four also describes a grid-interfaced battery sharing network consisting 

of battery swapping stations that share information amongst each other, a cloud 

connected management system and the distribution grid. A benefit of the battery sharing 

network is its ability to provide a means by which EVs can share the battery, the most 

valuable resource, amongst each other, through the optimization of different duty cycles 

of vehicles within the network. This in turn reduces the overall cost of the EVs, 

maximizing the unit utilization of the scarce battery resource. The charge management 

system optimizes charging and discharging schedules of battery assets across the 

network, allowing for batteries to be charged off-board the vehicle at much slower rates, 

based on electricity demand and price signals [21], and then be swapped into a vehicle 

quickly [23], reducing the need for DCFC and avoiding its degradation effects on the 

battery while unused batteries can provide ancillary services to the grid. The battery 

swapping network is designed in such a way that the charging load is much more 

predictable, as the battery packs are scheduled ahead of time, and it can take advantage of 

the “feast or famine” nature of renewable energy generation with an aggregation of 

battery swapping stations, providing temporary energy storage buffers to store energy 

when there is surplus and returning some of that energy back into the grid when demand 

exceeds generation [28], thereby reducing the cost and overall emissions of the energy 

grid [29]. The design of the battery swapping infrastructure and battery packs also 

provides an added benefit for the second-life use of the batteries as they can be easily 

converted to permanent stationary energy storage. The battery swapping stations within 
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the battery sharing network are connected and communicate through Internet of Things 

(IoT) to optimize the charging costs of the battery packs, maximize utilization of the 

battery packs, and reduce wait times for battery swapping or vehicle chassis swapping 

through scheduling and forecasting of swap demand, grid energy demand and price, and 

optimal routing of mobile battery swapping stations. 

In addition, a mobile EV battery swapping station is briefly described in Chapter 

Four which consists of a battery/vehicle chassis storage rack, rails/rollers for moving 

battery packs within the battery storage unit, a thermal management system for storing 

battery packs at optimal temperature, a mechanism for removal and addition of battery 

packs either manually or automatically, a monitoring apparatus for communicating with 

battery packs, battery chargers and the charge management system communication 

interface. Finally, Chapter Five presents the conclusion of the dissertation and highlights 

future research opportunities. 

 

1.3. Research Contributions 

 The contributions of this research work include the development of a highly 

scalable and robust simulation, prototyping and analytics framework for EV research and 

development. The framework includes vehicle/battery modeling and simulation, battery 

management system development and controls, battery state health estimation through 

the use of deep learning models, and battery aging mechanism analysis. Other 

contributions include novel concepts such as, Modular Swappable Battery Pack design, 

Modular EV Chassis design, Battery Swapping Stations/Networks, and Grid-Interfaced 

Charge Management Systems. 
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CHAPTER TWO 

Electric Vehicle Powertrain Design 

2.1. Introduction 

The design methodology of EV powertrains occurs in different phases, starting 

from the gathering of general requirements, such as initial acceleration, rated and 

maximum vehicle velocity, maximum gradeability, minimum vehicle range, maximum 

charging power and maximum speed. Following the gathering of vehicle general 

requirements, a series of vehicle models are developed and simulated within a design of 

experiments (DOE) context to attain these requirements. These models can be steady-

state, quasi-steady state or dynamic. The simulations could occur on the system level, 

sub-system level or component level depending on the stage of development. The main 

components of the powertrain include the traction motor and inverter, the transmission, 

and the traction battery. EVs are unique in the sense that the powertrain topologies can 

vary significantly for any given requirement. For example, a single electric motor as seen 

in the Chevrolet Bolt [30], dual motors as implemented in performance versions of the 

Tesla Model S [31], or even quad motors could be used at each wheel for traction 

motor/torque requirements.  

A variety of motor topologies such as induction motor, permanent magnet and 

switched reluctance motors can also be used [32]. A unique advantage of electric motors 

is that it provides flexibility of the orientation of the motor mounts within the vehicle 

such as the motor being mounted parallel, axially, or radially to the vehicle chassis. The 
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choice of gearshift such as single or multispeed transmissions also depends on vehicle 

requirements and electric motor choice and configuration. A single speed transmission 

can be used with the choice of an optimal gear ratio that allows for the vehicle to reach its 

maximum speed while still attaining reasonable torque at low speeds as implemented in 

the Chevy Bolt [30] described in Figure 2.1. Multiple motors at each axle with different 

gear ratios can be used in combination to allow for a faster acceleration at lower speeds, 

while switching to a single motor with smaller gear ratio at higher speeds to attain much a 

higher maximum velocity, as implemented in the Tesla Model S [31], described in Figure 

2.2. A multispeed transmission can also be implemented [33], as seen in the Porsche 

Taycan described in Figure 2.3.  

 

 

Figure 2.1. Chevrolet Bolt, Single Speed Direct Drive Unit [31]. 
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Figure 2.2. Tesla Model S Dual Motor, AWD Drive Unit [59]. 

 

 

Figure 2.3. Porsche Taycan Rear Drive Unit with Two-speed Transmission [34]. 
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The energy source of an EV (EV) is typically electrochemical and portable, 

usually in the form of a battery pack. Several types and chemistries of batteries exist. 

However, the most common type in modern EVs is the Li-ion battery. Li-ion batteries are 

further divided into several different types of chemistries. Most Li-ion batteries comprise 

of a Carbon or Lithium Titanate (Li4Ti5O12) negative electrode, a mixture of lithium salts 

and organic solvents as electrolyte and a variety of positive electrode material, such as 

Lithium Cobalt Oxide, Lithium Nickel Oxide, Lithium Manganese Oxide, Lithium 

Nickel Manganese Cobalt Oxide and many more forms of lithium metals [6]. The 

dominance of Li-ion batteries in EV applications is due to its high energy and power 

density compared to other chemistries.  

The choice of positive electrode is further driven by specific properties of each 

chemistry, such as energy density, power density, columbic efficiency, stability and 

sensitivity to temperature [35]. Each chemistry and molecular structure pose different 

benefits and drawbacks, including energy density, power density, safety, cost and 

longevity or life [35]. The choice of battery chemistry or technology is specific to the EV 

application. Figure 2.4 is referred to as a Ragone plot. It provides a graphical comparison 

of several battery chemistries based on their specific energy density, which is an 

indication of energy storage per unit mass, and volumetric energy density, energy storage 

per unit volume. From the plot, it is obvious that Li-based chemistries favor both 

characteristics. However, due to inherent limitations in materials, cell architectures, 

safety and temperature management packaging, commercially available Li-ion batteries 

are limited to specific energy densities of around 250Wh/kg [36]. 
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Figure 2.4. Ragone plot of battery chemistries [6]. 

Another critical component of EVs is an electrical controller commonly referred 

to as the Battery Management System (BMS). The BMS monitors and controls the 

battery charging/discharging to maintain balance in the cells and keep the cells within 

operating temperature range. Another equally important group of components in an EV 

are the power processing units, also commonly referred to as the power electronic 

converters. Figure 2.5 is a diagram highlighting the overall system architecture of an EV. 
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Figure 2.5. EV architectural diagram. 

 

Due to the number of choices for components available in the design phase of an 

EV, a design of experiments (DOE) is typically carried out to validate the vehicle 

component configurations that meet certain design requirements. During the DOE phase, 

several vehicle configurations are modeled, simulated, and documented at various levels 

of complexity – system level, sub-system level and component level. After adequate 

modeling and simulations have been implemented and analyzed and validated to meet the 

proposed vehicle requirements, sometimes involving some Hardware-In-Loop 

simulations, a vehicle validation prototype is then built and driven through various safety, 

efficiency and performance testing phases [37] in order to validate the simulated results. 

This chapter presents a detailed methodology for modeling, simulation, and validation of 

an EV based on given vehicle requirements. Furthermore, the development, 

implementation, and validation of a novel EV powertrain architecture protype is 

described. 
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2.2. Dynamics of Vehicle Motion 

 For equation-based modeling, the dynamics of vehicle motion must be formulated 

and then implemented in the form of subsystems, blocks and signals within Simulink. 

This section summarizes the equations that govern vehicle motion needed for modeling 

implementation. Newton’s second law states that the acceleration of an object is 

proportional to the net force exerted on it. In other words, an object accelerates when the 

net force exerted on it is nonzero. Similarly, a vehicle moves due to the force of the 

propulsion unit (the powertrain) overcoming the gravitational force of the vehicle exerted 

on the roadway, the air resistance and the tire rolling resistance. The acceleration and 

speed at which the vehicle moves are dependent on the power delivered to the wheel by 

the powertrain, the curb mass of the vehicle (including all of the components and 

passengers on-board), the condition of the roadway and the aerodynamics of the vehicle 

on the roadway. When a vehicle is accelerating, the vehicle is subject to the forces 

described below. 

 xT
m TR RL

dv
k m F F

dt
= −          (2.1) 

where TRF  𝑖s the tractive force provided by the electric machine, RLF is the road load 

force, m  is the vehicle mass, xTv  is the velocity in the tangential direction of the 

roadway, mk  is a rotational inertia coefficient that accounts for a vehicle’s onboard 

rotating mass, and the term xT
m

dv
k m

dt
 is the net force acting on the vehicle that propels 

the vehicle forward. The road load force acting on the vehicle consists of a gravitational 
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force gxtF , the rolling resistance of the tires rollF , as well as an aerodynamic drag force  

ADF :  

 RL gxt roll ADF F F F= + +         (2.2) 

 . .singxTF m g =           (2.3) 

2

1. .cos ( )roll o xTF m g C C v= +    for xTv > 0   (2.4) 

2

0

1
( )

2
AD D F xTF C A v v= +    for xTv > 0   (2.5) 

where   is the grade angle, g is the gravitational constant, oC  and 1C  are coefficients of 

rolling resistance,  is the air density, DC  is the aerodynamic drag coefficient, FA is the 

equivalent frontal area of the vehicle, and 0v  is the head wind velocity. The second order 

relationship between aerodynamic drag and speed is described in Equation 2.5. A free-

body diagram showing the forces acting on an EV represented by the black dot is shown 

in Figure 2.6 [37].  

 

Figure 2.6. Free body diagram of forces acting on an EV [37]. 

 

 The tire-road interaction of the vehicle and the traction properties of the tire-road 

interface are fundamental to the dynamics of a vehicle. The traction torque from the 
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propulsion system is converted into a traction force through the interaction between the 

pneumatic tire and the road surface at the tire-road interface [53] illustrated in Figure 2.7. 

The speed of tire and the longitudinal speed of the vehicle vary in magnitude and 

direction and are a function of the forces acting on the tire, including the vertical load 

force that the vehicle body exerts on the wheel, zF , and the longitudinal forces exerted on 

the tire at the tire-road interface, xF  . The rolling speed of the tire is related to the tire 

angular velocity   and wheel radius r   and is given by 

tire wv r = (2.6) 

Figure 2.7. Speed and forces in the tire-road contact patch area [39]. 

The ratio of the longitudinal velocities of the vehicle xv and the tire tirev  , is 

defined as the wheel slip s  given by 
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1 x

tire

v
s

v
= − (2.7) 

During braking, the slip of the vehicle is given by 

1 tire

x

v
s

v
= − (2.8) 

2.3. Electric Vehicle Powertrain Sizing 

Powertrain sizing refers to the calculations needed to aid in the mathematical 

modeling and simulation of EV powertrains. The process begins with the determination 

of certain design specifications which include initial acceleration, rated velocity on a 

given slope, maximum % grade, maximum steady-state velocity and maximum range 

[38]. The two main components that govern the highlighted design specifications are the 

electric motor and battery pack. Sizing of the electric motor involves finding the power 

rating of the motor and the operating speed range of the motor. 

Electric motor rated performance is governed by a graph commonly referred to as 

the torque/speed envelope. Figure 2.8 is an example of a typical torque speed envelope of 

an electric motor. 
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Figure 2.8. Torque speed envelope of an electric motor [38]. 

There are three main distinguishable segments of the torque speed envelope: 

constant torque region, constant power region and natural mode region. Within the 

constant torque region, the motor delivers the maximum rated torque until the base speed, 

r , is reached. The motor rated speed is an indicative of the speed at which the motor 

can deliver the rated torque at rated power. Beyond the rated speed, the motor operates in 

the constant power region where torque steadily falls off at a rate that is inversely 

proportional to the speed of the EV. Electric motors can attain higher speeds beyond the 

rated speed due to a field weakening phenomenon that occurs within the constant power 

region. In the third, natural mode region, the motor torque falls more rapidly, as it falls at 

a rate inversely proportional to the square of the speed. In most cases, the EV motor is 

designed to operate mainly within the constant torque and constant power region; 

however in some cases, the reduced power characteristics of the natural region could be 

useful for efficiency and range [38]. 
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To eliminate the need for multiple gears, the control of the transition between 

constant torque and constant power regions of electric motor, and thus speed control, 

could be achieved solely from a power electronic motor drive component. However, the 

speed range of the electric motor’s constant power region is important to the sizing of 

gear components. The size of the electric motor depends largely on the maximum torque 

requirement of the motor. Increasing maximum torque delivered in the constant torque 

region is a function of the motor’s physical size. The motor is designed for high-speed 

operation for a given rated power and then matched to the speed of the wheels through 

gears to minimize the size and weight of the electric motor. Therefore, there are tradeoffs 

between component size, maximum torque, motor constant power speed range, rated 

speed (speed at which the motor delivers maximum torque at maximum power), gear 

ratios and motor efficiency. These tradeoffs can be addressed through implementation of 

multiple gears and motors when power requirements are prioritized over efficiency, as 

seen in the Porsche Taycan propulsion system design [34] and through advanced 

gearshift control algorithms [33].  The Taycan consists of two electric motors 

transversely mounted to produce an all-wheel drive system. The motor in the rear, 

described in Figure 2.3, is the more powerful motor, with 449 horsepower and 406 lb-ft 

of torque coupled to a two-speed gearbox with roughly 16:1 first gear ratio and second 

gear ratio of 8:05:1. The motor in the front is a single-speed drive module with roughly 

255 horsepower and 325 lb-ft of torque and a final gear ratio of 8:05:1, the same as the 

second gear on the rear motor. The physical description of the front and rear motors of 

the Taycan is described in Figure 2.9. The Taycan’s motors are both rated for a maximum 

speed of 16,000 RPM. As shown in Figure 2.10, during the initial launch, the rear motor 
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in the 1st gear produces a wheel torque at a ratio of 16:1, and the front motor produces 

max torque to the wheel at a gear multiplication of roughly 8:05:1 reaching a combined 

wheel torque of almost 12,000 Nm. At around 100 km/h or roughly 62 mph, the rear 

motor first gear starts to run out of steam and upshifts to the second gear, essentially 

increasing the constant power speed range of the motor.  In this design, the second gear is 

prioritized for range and efficiency while the first gear is prioritized for performance. In 

some use cases where range and efficiency are desired over performance, the rear 

transmission can be decoupled to reduce losses, allowing the vehicle can run completely 

in front-wheel drive. 

Figure 2.9. Porsche Taycan Powertrain Architecture [34]. 
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Figure 2.10. Porsche Taycan AWD dual motor, two-speed shifting strategy [34]. 

 

 The width of the constant torque region or rather the base speed rating of a motor 

and consequentially the peak power rating of a motor is directly proportion to the input 

voltage to the motor. Figures 2.11 and 2.12 are torque speed curves and power speed 

curves of a BorgWarner 250 hp electric motor. It can be observed from the plots, that the 

DC bus voltage from the battery pack changes the torque speed envelope characteristics 

of the motor. Therefore, it is important to make the right trade-offs in power and energy 

specifications that allow for desired maximum power ratings of the electric motor when 

determining the component sizing of the battery pack. 
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Figure 2.11. BorgWarner 250 hp electric motor torque-speed envelope [40]. 

 

Figure 2.12. BorgWarner 250 hp electric motor torque-speed envelope [40]. 
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2.3.1. Initial Acceleration and Rated Velocity 

 Initial acceleration is specified as time ft   it takes for the vehicle speed to reach 

rated speed fv , where f fwhv =   (𝑟𝑎𝑡𝑒𝑑 𝑤ℎ𝑒𝑒𝑙 𝑠𝑝𝑒𝑒𝑑) ∗ whr (𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑤ℎ𝑒𝑒𝑙), the 

vehicle rated speed. For any given initial acceleration specification, the design problem is 

trying to find the minimum tractive force TRF  needed to overcome the road load forces

RLF  which are based on some initial educated guesses and assumptions for rolling 

resistance, aerodynamic drag and so on. The equation below, for acceleration, can be 

used to determine the minimum tractive force needed to accelerate the vehicle to the rated 

velocity from 0 for a given vehicle mass [38]. 

TR RLF Fdv
a

dt m

−
= =                    (2.9) 

 

2.3.2. Maximum Velocity 

 The specified maximum velocity indicates the maximum attainable steady-state 

velocity of the vehicle under inspection. The tractive power, ,maxTRP  , needed to attain and 

maintain the maximum velocity, maxv , during the constant power region is given by  

 
3

,max max 1 max max 0

1
sin ( )

2
TR D FP mgv mgC C A v mgv C = + + +    (2.10) 

 

2.3.3. Maximum Gradeability  

The maximum gradeability is defined as the maximum percentage grade incline 

that the EV can accelerate to the rated speed. The max grade is defined by the tractive 

force, as seen in Equation 2.11, and is typically determined alongside the initial 

acceleration tractive force requirement [53]. 
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−
(2.11) 

2.4. Electric Vehicle Modeling and Simulation 

Understanding the operation of the EV under a variety of driving and 

environmental conditions is critical to optimizing vehicle performance, vehicle health and 

vehicle safety. Some of the conditions that could affect vehicle performance include 

temperature, road conditions, road grade/elevation, aggressive/conservative driving, etc. 

To estimate these metrics and make the critical design and control decisions needed 

during vehicle design and vehicle validation, the EV powertrain must be modeled 

accurately and simulated and analyzed in a scalable fashion. Furthermore, these models 

must be flexible and robust enough to be tuned based on the real-world data to provide 

improved vehicle serviceability once the vehicle is in the field. Vehicle modeling occurs 

in different forms, such as mathematical models, steady-state models, multi-physics 

domain physical modeling, and dynamics and transient modeling. Vehicle modeling can 

also occur at different levels of fidelity and precision, such as system level modeling, 

component modeling or sub-system level modeling. The selection of the model type and 

modeling tools is indicative of the kinds of questions that the model is expected to answer 

or the forms of analysis we intend to perform on the modeling result. However, the 

reliance on simulation-based platforms alone for the validation of vehicle models is 

insufficient, and the development and testing of vehicle prototypes for public road testing 

could be unsafe, impractical and sometimes very costly. Therefore a balance between 

simulation and some level of real-world testing in a scalable fashion is necessary in the 

development of high performance EV powertrains. 
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MATLAB/Simulink software is a tool capable of modeling complete EV 

powertrains of different levels of fidelity and detail. This software features a variety of 

shipped sample models and has been used in literature for simulation of purely electric 

and hybrid EVs of different configurations and types [41, 44].  In this section, we 

describe the modeling and simulation steps for EVs by defining some vehicle 

specifications and then developing an equation-based model of a full Battery EV in 

MATLAB/Simulink software.  

 

2.4.1. MATLAB/Simulink 

Simulink is a quasi-standard for control system design in academia and industry 

[39]. It is the baseline tool that supports many add-ons which can be used in vehicle 

modelling, such as SimPowerSystems and SimDriveline [44], Advisor [43], Simscape, 

Powertrain Blockset, etc. Simulink supports an equation-based modeling approach, data-

driven modeling approach, as well as a physical modeling approach for vehicle modeling. 

Simulink also supports code generation for hardware testing and deployment, testing and 

analysis framework for test case management and report generation. This work employs 

an equation-based model developed by MATLAB/Simulink as a base vehicle model. The 

model was then significantly modified to meet the vehicle specifications of the high 

performance EV which was benchmarked on a chassis dynamometer. The modeling goal 

is to test for the efficiency and performance of the EV as the results of the model are 

validated by real-world tests on the target EV platform. 

2.4.2. Vehicle Specification 

The EV powertrain modeling and simulation begins with the determination of key 

design specifications as detailed in Table 2.1, which is adapted from the spec sheet of a 
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Chevrolet Bolt pure EV. This specific vehicle has been selected intentionally as the 

results of the simulation can be compared to real world vehicle tests later in the chapter. 

Table 2.1. Vehicle Specification for Chevrolet Bolt 

Initial Acceleration (0 – 60mph) 7.5 secs 

Curb weight 1616.15 kg 

Motor power 200hp/150kW 

Motor torque 266 lb.ft/360Nm 

Final Drive ratio 7.05:1 

Energy efficiency 300 Wh/mile 

Battery Capacity 53kWh 

Top speed 93mph 

Aerodynamic Drag coefficient 0.308 

For equation-based modeling, the dynamics of vehicle motion as described in the 

vehicle dynamics section, are formulated and then implemented in the form of 

subsystems, blocks and signals within Simulink. The vehicle model is then initialized 

with the modelling parameters described in Table 2.1, and simulated through what is 

known as a “drive cycle”. The derivation of the modeling parameters typically occurs 

through some initial tests on the target hardware such as no load tests of the motor on an 

electric motor dyno, cycle tests on the battery pack with battery cyclers or this data can 

be retrieved directly from the manufacturer spec sheet. Following the drive cycle 

simulation, the target vehicle platform is prototyped and the same drive cycles and 

conditions can be validated on the real-world vehicle platform with an EV chassis 

dynamometer.  

2.4.3. Drive Cycles 

The EPA sets standards for determining vehicle efficiency and capabilities, such 

as EV range. These tests are carried out in controlled environments and have, historically, 

relied on Single Cycle Test (SCT) methodology for determination of range and 
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efficiency. To better characterize the effects of temperature and accessory loads on range 

for battery EVs and to reduce lab test burden, a new test procedure, known as the Multi-

Cycle Test (MCT), was introduced. The MCT testing procedure reduces the testing time 

of EVs by over 75%, from over 18 hours to just over 4 hours. The degree of fidelity and 

accuracy of the tests are described in [45]. To test the efficiency of the EV modeled in 

this section with a specified maximum torque of 360 Nm, a form of MCT test was used. 

This test included a combination of the aggressive US06 drive cycle and the Highway 

Fuel Economy Test (HWFET). The US06 cycle represents an 8-mile (12.8 km) route 

with average speed of 48.4 mph (77.9 km/h), maximum speed 80.3 mph (129.2 km/h) 

and duration of 596 seconds. The HWFET cycle lasts a duration of 765 seconds, with a 

total distance of 10.26 miles (16.45 km) and average speed of 48.3 mph (77.7 kph). The 

total time and distance for the MCT test (Drive Cycles 1-3 as shown in Figure 13) is ~22 

min and 18.26 miles long (29.3 km), respectively. 
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Figure 2.13. MCT Drive Cycle. 

2.4.4. Equation-based Modeling 

The equation-based modeling approach in Simulink involves the representation of 

each vehicle component or subsystem as a series of equation blocks connected to each 

other through signals that are calculated and updated at each time step. Figure 2.14 is an 

overview of the equation-based model in Simulink to meet the EV specifications 

previously described. 
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Figure 2.14. Simulink Equation Based EV Model [39]. 

 

 

2.4.5. Glider Model 

The glider model represents the point mass model of the vehicle dynamics 

previously described. It sums up the forces acting on vehicle body represented by a point 

mass, as described in Figure 2.15 and Equations 2.1 – 2.5. Table 2.2 is a summary of 

parameters used for the calculation of vehicle dynamics and determining the vehicle 

speed at each timestep. Figure 2.16 is a closer look at the glider model subsystem within 

the Simulink model where the Equations 2.1 – 2.5 are implemented by taking in an input 

of tractive force and subtracting the summation of the road load forces to get the inertial 

force, which is converted into an acceleration based on the vehicle mass and then 

integrated over time to form the output of the model, vehicle speed, which is then fed 

back to the driver control subsystem in Figure 2.18. Figure 2.17 is a block diagram which 

represents the calculations for determining values such as distance, tractive energy 

consumed, tractive power, velocity, braking energy and so on. Note that simulation block 

inputs are indicated with yellow and block outputs are indicated with red. 
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Figure 2.15. Vehicle Body Glider Model [39] 

Table 2.2. Glider Model Parameters [39] 

Parameter Unit Description Value 
 3/kg m Air Density 1.23 

dC - Drag coefficient 0.38 

fA 2m Vehicle frontal Area 2.1 

V /m s Vehicle Speed - 

a 2/m s Vehicle acceleration - 

im kg Vehicle inertial mass 1678.30 

m kg Vehicle Mass 1616.15 

g 2/m s Gravity 9.81 

 Degrees Road angle 0 

rrC - Rolling resistance 

coefficient 

0.01 
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Figure 2.16. Vehicle Glider Model Subsystem [39] 

 

 

Figure 2.17. Energy and Power Analysis of Glider Model Subsystem [39] 

 

2.4.6. Driver Model 

The inputs to the driver control block are the drive cycle reference speed and the 

vehicle speed feedback from the glider model block. The error between the two speeds is 
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fed back into the PID controller and the output is a driver command of either an 

accelerator pedal position (APP%) or a brake pedal position (BPP%). 

Figure 2.18. Driver Control System Block [39] 

The modeling approach of the driver subsystem mimics a real-world driver 

control operation, where the driver is the PID controller in this case and he/she observes 

the vehicle speed at any given time and responds with a force on either the accelerator or 

brake pedal to bring the vehicle to a desired speed. 

2.4.7. Brake System 

The brake system takes an input of vehicle speed and BPP%. The BPP% signal is 

used to determine the amount of breaking force that the driver/PID is intending to apply 

to the vehicle and distributes this force into a regenerative breaking force output and 

frictional brake output, based on limitation of the motor and systems regenerative power. 

The vehicle speed input is used to determine if the vehicle speed is above a certain speed 

threshold needed for regenerative braking to be applied. Figure 2.19 is a detailed 

description of the vehicle braking system block. 
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Figure 2.19. Braking System Block [39] 

 

2.4.8. Motor Model  

The electric motor model is based on the power loss equation for electric motors 

described in Figure 2.20, where the motor output power is defined by the motor input 

power minus the motor losses. Table 2.3 describes the parameters definitions for 

calculating the motor loss model. The motor model receives an acceleration pedal 

position signal APP% input and motor speed feedback, these values are then used in the 

motor torque limiter sub-system described in Figure 2.21 to determine the maximum 

torque output. Similarly, the regenerative limiter subsystem determines the maximum 

allowable regenerative torque which is specified by a factor of the maximum allowable 

torque of the motor.  The net torque is then used to calculate the output power using the 

motor loss model as described by [39]: 

 

Figure 2.20. Motor loss model [39]. 
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 mot mot motP T = (2.12) 

2 3 loss c iP k T k k C = + + + (2.13) 

  .    in lossP P = + (2.14) 

Table 2.3. Motor Model Parameters [39]. 

Parameter Units Description Value 

T Nm Maximum motor torque 450 

 /rad s Motor base speed 834 

ck
2 

s

Kg m

Motor loss constant 0.12 

ik J Motor loss constant 0.01 

wk 2 Kg m Motor loss constant 1.2 05e−
 

C W Motor loss constant 600 

Figure 2.21. Electric Motor Model with motor loss model calculations [39]. 
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2.4.9. Battery Model 

 The battery model is developed based on a constant voltage source,  ocV , in series 

with an internal resistance, intR , as described by Figure 2.22. This model is much more 

simplified compared to the equivalent circuit model described in Chapter Three of this 

work and does not consider battery chemistry. It relies on a power loss calculation to 

determine the battery output current as described by the following equations and Table 

2.4:  

 ideal actual lossP P P= +         (2.15) 

 ideal ocP IV=          (2.16) 

2      actual oc intP IV I R= −         (2.17) 

2 loss intP I R=          (2.18) 

 

Table 2.4. Battery Model Parameters [54] 

 

 

Figure 2.23 describes the battery model and loss model calculation in the 

Simulink EV model [54]. The state of charge (SOC) of the battery is determined by 
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integrating the power over time and comparing to the energy capacity variable set at the 

initialization of the simulation. 

Figure 2.22. Battery Model with Internal Resistance [39]. 

Figure 2.23. Battery Model with SOC and Power Loss Calculations [39]. 
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2.4.10. Driveline Model 

 The driveline model describes the driveline losses that are present in the EV due 

to gear reduction. The electric motor spins at higher speeds than the wheel and, as a 

result, gear reduction is used to reduce the speed at the wheel while multiplying the 

torque at the wheel. This gear reduction is not lossless and is given by lossT  in the 

following equation:  

( )
  

motor loss

tr Br

w

T T G
F F

r

−
= −        (2.19) 

where G  is the gear ratio of the rear reduction assembly, wr  is the radius of the wheel, 

trF  in net tractive force at the wheel and BrF  is the braking force. Figure 2.24 is the 

Simulink model of the driveline and accompanying loss calculations. 

 

 

Figure 2.24. Driveline loss model and calculations [54]. 
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2.5. Electric Vehicle Chassis Dynamometer Testing 

EVs are characterized on a chassis dyno to determine their driving performance. 

The vehicle performance testing typically involves driving the vehicle through an EPA 

drive cycle, such as in Figure 2.13. Prior to dyno testing of an EV, the dyno must be 

calibrated to accurately represent the road load forces that are exerted on a vehicle. This 

involves road load coast down test, where the vehicle is driven on a flat straight road and 

accelerating the vehicle to ~60 mph, then shifting the vehicle to neutral gear to remove 

the regenerative braking capabilities and then letting the vehicle coast down naturally to 

determine the road load forces acting on vehicle, which include aerodynamic drag and 

rolling resistance. One such test was conducted and validated by putting the vehicle 

through a similar drive cycles on the road and the dyno [49], collecting data through the 

vehicle on-board diagnostic (OBD) port and then comparing the power and energy of the 

vehicle over the drive cycles. Figure 2.25 is a speed plot of the road and dyno tests and 

the difference in speed between both tests, showing a close correlation between speed 

over the entire drive cycle. Figure 2.26 is a plot of the power and energy for both the road 

and dynamometer tests. Although the dynamic behavior of the vehicle during the road 

and dyno tests varied, they followed a similar trend over time and the energy 

consumption was comparable. 

Once the dynamometer was calibrated, the modified MCT test described in Figure 

2.13 was conducted on the vehicle on the dynamometer to determine the energy 

efficiency of the vehicle. Three runs of the same MCT test were carried out on the 

vehicle and described in Figure 2.27. The power instantaneous and energy of each cycle 

was recorded during the drive cycles and described in Figure 2.28. Finally, a vehicle 
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acceleration performance, known as the wide-open throttle (WOT) test, was conducted 

on the vehicle to determine the vehicle initial acceleration capability described in Figure 

2.29. The dynamometer tests resulted in an energy efficiency average of 297 Wh/mile 

and an initial acceleration of 7.5 seconds from 0 – 60mph (96.44kph). 

 

 

 

Figure 2.25. Road and dynamometer test vehicle speed and difference [37]. 
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 Figure 2.26. Road and dyno test vehicle power (left axis) and energy (right axis) [37]. 

Figure 2.27. MCT drive cycle vehicle speed on chassis dyno [37]. 
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Figure 2.28. MCT drive cycle vehicle power(left axis) and energy (right axis) on chassis 

dyno [37]. 

 

 

 

(a)                                                             (b) 

Figure 2.29. The WOT Test: (a) Motor torque envelope (b) Vehicle speed [37]. 

 

The vehicle top speed was determined to be software limited to 93 mph (149.66 

km/h), with a 0–60 mph (96.56  km/h) time of 7.5 secs (advertised 0–60 mph of 6.5 for 

vehicle under test), peak current of 452.2 A, peak motor torque of 360 Nm and peak axle 

torque of 2538 Nm. In Summary, the EV chassis dynamometer results serve as a strong 
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basis for validating the results of a vehicle model developed and simulated within a 

software environment through an iterative design process. In the real world, road grade 

plays a significant role on EV motor torque demand, thus small errors in the total load on 

the vehicle when tested on a dyno compared to real world driving may be observed; 

however, it is difficult and sometimes unsafe to perform some of the rigorous vehicle 

driving scenarios needed for testing high performance vehicles on public roads. 

2.6. Electric Vehicle Model Simulation Results and Analysis 

Given the high repeatability of the chassis dynamometer testing, the EV model 

developed above was then validated against the dyno work, with careful comparison of 

the observations, including speed, distance, energy expended and power between 

modeling, chassis dynamometer, and on-road measurements. It is important to note that 

due to the advanced dynamics controls on the real vehicle in comparison to the simplified 

PID controls modeled, the dynamic responses of the modeled vehicle and the real 

vehicle, such as motor torque and power, are expected to vary to a certain degree. 

However, the steady state values, such as speed, distance and energy, do show a strong 

correlation. 

Figure 2.30 is a plot of the vehicle speed during the simulation overlayed on the 

drive cycle speed, which was recorded via the OBD port during dyno testing. From the 

plot in Figure 2.30, we observe that the modeled vehicle can follow the drive cycle input 

closely and meets the speed and torque response requirements. Figure 2.31 is a plot of the 

battery SOC over the drive cycle period. The model was initialized to 95% SOC at the 

beginning of the model and ended at ~85% at the end of the simulation. Recall from the 
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vehicle specification in Table 2.1 that the modeled vehicle battery total capacity 53kWh, 

indicating that ~10% of the battery total capacity was depleted during the drive cycle.  

 Figure 2.32 is a plot comparison of the battery energy over time between the dyno 

test and vehicle simulation, which is derived by integrating the battery power over time, 

as seen in the model calculations in Figure 2.23. Figure 2.33 is plot comparison of the 

vehicle distance over time, which is an integration of the vehicle speed over time.  

 

 

Figure 2.30. Modeled vehicle speed over time compared to dyno speed. 

 



49 

Figure 2.31. Modeled battery State of Charge (SOC) over time. 

2.6.1. Energy Efficiency 

The energy efficiency of the modeled EV can be derived by dividing the battery 

energy output by the vehicle distance covered. The total energy delivered by the battery 

model was 5.299kWh, while the distance travelled was 17.85 miles, having an energy 

efficiency of 292Wh/mile compared to the dynamometer tests results, which had an 

energy efficiency average of 297 Wh/mile.   



50 

 

 

Figure 2.32. Battery energy over time. 

 

 

Figure 2.33. Vehicle distance covered over time. 

 

2.6.2. Motor Torque and Power 

 Figure 2.34 is a plot of the vehicle power over the vehicle speed range, indicating 

the power regions the motor operated over the drive cycle. From the plot, we can 

determine the vehicle model rated speed is around 40 mph, and then, between 40 mph to 

70 mph, the vehicle is in the constant power region, with a concentration of motor 
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operating points in this region. The diagonal dotted line that ramps up from 0kW – 

150kW in the power plot is attributed to the initial acceleration of the vehicle from 0mph 

to ~40mph at the very beginning of the drive cycle and towards the 600 second mark.   

Figure 2.35 is a scatter plot of motor torque over the vehicle speed change from the 

simulated drive cycle and the dyno test. From these plots, we draw similarities between 

the two plots, where the maximum torque (simulation) and the peak torque (dyno) occur 

between 0 and 40mph speed range, the constant torque region, and then the gradual ramp 

down in torque as the speed increases. Similar to the observations in Figure 2.34, there is 

a concentration in operating point between 40mph to 70mph in both plots, which is 

consistent with the drive cycle speeds in Figure 2.30. There is however a significant 

difference in the dynamic behavior of the dyno motor torque compared to the simulation 

that can be attributed to the sophisticated motor control schemes implemented in the real 

vehicle compared to the simple PID controller that is modeled. These sophisticated 

controls are implemented in the real-world vehicle to allow for ease of drivability and 

responsiveness of the vehicle under test. For example, in the dyno torque plots, we 

always observed a continuity in the torque values without sudden jumps or drops in 

torque value as speed changes compared to the simulated torque-speed plots. This is due 

to the effective and careful avoidance of torque ripples by motor controller implemented 

on the real-world vehicle. The simulated vehicle model’s torque controls simply calculate 

the maximum torque based on current vehicle speed and the requested APP% at each 

time step. A more advanced model will take into consideration the dynamic response of 

the vehicle and simulate a smoother transition in torque applied, similar to the dyno 

vehicle response.  The expected torque envelope regions of the torque plots capture the  
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expected torque-speed envelope however, showing an attainment of maximum traction 

and regenerative torque at lower speeds and reduced torque at higher speeds, as indicated 

in the torque over time plots in Figure 2.36 as well. 

 

 

Figure 2.34. Motor power over speed. 
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(a)                                                                (b) 

Figure 2.35. Motor torque over speed: (a) Simulation (b) Dyno Test. 

Figure 2.36. Motor torque over time plot. 
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2.6.3. Loss Model 

 Determining the energy losses in the model provides insight to where energy 

efficiency can be increased within the overall system. The total tractive energy 

consumption of the vehicle over the drive cycle is measured at 3.18 kWh as indicated in 

Figure 2.37, while the motor energy losses are measured at 0.71 kWh as indicated in 

Figure 2.38, and the driveline losses are measured at 0.5 kWh, indicating that the total 

energy used to overcome the road load forces acting on the vehicle, FRL, is 0.839 kWh. 

Although Figure 2.32 validated the total energy consumption correlation of the model to 

the dyno, the figures mentioned above allow us to estimate, experiment and validate the 

efficiency of the real-world vehicle compared to the vehicle model. The vehicle model 

can be optimized iteratively to reduce these losses through either reduction in motor 

losses by adjusting the motors operational limits or modifying the driveline gear 

selection. 

 

 

Figure 2.37. Vehicle tractive energy over time. 
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Figure 2.38. Motor energy losses over time. 

Figure 2.39. Driveline energy losses over time. 

The energy efficiency results of the modeled high performance EV compared to 

the real-world vehicle showed close correlation with a root-mean-square error (RMSE) 
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value of 0.2. The vehicle speed and vehicle distance traveled of the model also resulted in 

negligible error values. The modeled motor control strategies, however, did not capture 

the dynamic and transient behavior of the real-world vehicle adequately. Although the 

equation-based model provided a valuable means of gaining an understanding of the how 

the modeled vehicle will perform under certain driving conditions from an energy 

efficiency standpoint, this modeling approach is not suitable for detailed analysis of 

vehicle dynamics and evaluation of control strategies. 

 

2.7. Battery Swappable Electric Vehicle Powertrain Prototype Design 

 In this section, the details of an EV powertrain design prototype are described. 

The powertrain is designed onboard an existing Chevrolet Tahoe frame which has been 

converted to a fully EV. The battery packs on-board the E-Tahoe are designed to be 

completely swappable. Figure 2.40 shows a computer aided drawing (CAD) of the fully 

electric Tahoe chassis and physical prototype of the vehicle under development. The 

Chevrolet Tahoe chassis frame was selected for the prototype test bed platform, due to its 

ladder frame structure which allows for the implementation of a modular battery pack 

platform. Compared to “unibody” vehicle architecture or the “unified body” architecture 

where the body of the vehicle and the chassis are one and the same, the ladder frame 

architecture separates the body of the vehicle from the chassis of the vehicle that holds 

the powertrain components and suspension. The modularity between the ladder frame and 

body components, complements the accessibility and ease of swap-ability of the desired 

EV powertrain prototype.  
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Figure 2.40. Battery Swappable Electric Vehicle Powertrain Chassis Prototype. 

2.7.1. Mechanical Design 

The mechanical components of the EV consist of rotating parts on the vehicle and 

are responsible for the translational motion of the vehicle body. Figure 2.41 is a 

MATLAB/Simulink Simscape model of the mechanical components of an EV consisting 

of the vehicle body itself, represented by the red block, which is propelled by the left and 

right tires that are mechanically linked to a rear differential through a gearbox. The 

gearbox receives rotational inertia in the form of torque from the electric motor which is 
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used by the differential and ultimately the right and left tires to propel the vehicle 

forward. 

 

 

 

Figure 2.41. MATLAB/Simulink Model of Electric Vehicle Dynamics. 

 

For this research, a novel EV mechanical powertrain is designed consisting of a 

UQM (motor manufacturer) PP220 motor with 250 hp and 500 Nm of torque, a GM 

np246 4WD transfer case with a gear ratio of 2.72:1, and stock front and rear differentials 

with an axle ratio of 3.73:1. This system equates to a 10.14:1 ratio when in direct drive, 

delivering an impressive 5070 Nm of torque to the wheels at 0 rpm. Figure 2.41 is a 

detailed CAD model of electric motor and driveline components. It can be observed that 

the electric motor is mounted to the vehicle with a tripod configuration, given the two 

mounts behind the electric motor and the mount in front of the motor, where the motor 

shaft housing mates with the transfer case. The mounts are supported with rubber 

bushings to allow for absorbing torque vibrations of the motor during operation. The 

motor and transfer case are linked mechanically through a custom shaft with an internal 
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spline on the motor side (female end) and an external spline on the transfer case side 

(male end).  

Figures 2.42 are isometric and top views of the EV powertrain prototype. The 

motor mount weldment 1 cradles the electric motor 2 and is bolted to the motor adapter 3, 

by four bolts, with two bolts on each side. The motor mount assembly is bolted to the 

transfer case 4 through the transfer case adapter 12. Two drive shafts are attached to the 

transfer case pointing in opposite directions and can be linked to a differential in the rear 

and front of the vehicle. The half shaft 5, which links to the front wheel differential, is 

shown in Figure 2.42. A rubber bushing 11 is placed in between the motor mount 

assemble mounting points 7-9 and the vehicle frame 10 to absorb the vibration and noise 

that results from the torque of the motor during operation. Figure 2.43 shows a cross-

section of the motor mount weldment, motor, transfer case, drive shaft, motor adapter, 

transfer case adapter and transfer case. Figure 2.44 shows the locations of the three 

mounting points of the motor mount assemble to the vehicle frame, also called a “tripod” 

mount architecture. Finally, the front and rear differentials are connected to the transfer 

case through the main drive shaft and the half shaft, respectively.    
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Figure 2.42. Isometric and Top view of vehicle powertrain mechanical design. 
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Figure 2.43. Cross section of vehicle powertrain mechanical design. 

Figure 2.44. Electric drivetrain tripod mount locations. 

2.7.2. Structural Design 

An EV’s battery pack integration into the vehicle chassis is critical to the 

structural integrity of the vehicle. In this work, a novel method of integrating a distributed 
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modular battery pack into a vehicle is designed and validated. Individual battery pack 

modules are housed inside of a battery pack assembly described in Figure 2.45 where 3 is 

the battery pack lid, 5 is the electrical connector, 2 is the battery module and 1 is the 

battery pack enclosure. The battery pack assembly also includes the housing for a 

wireless BMS for monitoring, protection and balancing of cells, an aluminum cold plate 

for extracting heat from a battery pack through convection heat transfer, hoses and quick 

disconnect valves for inflow and outflow of coolant to the chill plates, and HV 

connectors for connecting the individual battery modules within the pack and the entire 

pack to other packs in the distributed battery network. The unique design of the battery 

packs in this distributed modular format is a novel approach to battery pack integration 

into a vehicle chassis. It allows the battery pack to still be a structural part of the vehicle 

while allowing for flexibility of the powertrain to still be 4WD with a single motor, and 

for individual modular packs to be swapped from the vehicle easily, one at time during a 

manual swap, or all at once during an automatic swap. A complementary structural 

component of this vehicle design is the battery collection frame, pictured in Figures 2.46 

and 2.47, which is a structural frame that can be welded or bolted to the main vehicle 

chassis. The collection frame contains the battery latches to which the kingpins on the 

battery box attach. The latches on the battery collection frame force the battery pack 

assembly and all its connections to be aligned as the battery packs are inserted into the 

vehicle chassis.  

Figure 2.48 is a detailed description of the battery pack latch assembly with an 

isometric, front and cross-sectional view. It features a spring-loaded cam that locks the 

battery pack in place when upward pressure is applied and a spring-loaded latch release 
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handle. The cross-section 72 is taken along section C-C, 49 represents the latch frame, 58 

represents a handle bar for disengaging the latch, 59 represents the kingpin latch, 52 

represents the latch cam, 51 represent the cam bushing, 70 represents the cam bushing, 57 

represents the lock slide, 64 represents the compression springs for the latch release, 54 

represents the spring pin, 53 represents the compression springs for the spring pin, 71 

represent application of Loctite, 61 represents a flat washer, 56 is an oversized flat 

washer, and 55 is a self-locking hex nut. The following chapter discusses more in the 

design of the modular battery packs, the swapping methodology and novel concepts of 

modular battery packs and battery pack closed-loop cooling systems. 

 

  

 

Figure 2.45. Battery Pack Assembly. 
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Figure 2.46. Battery Pack Collection Frame Detail. 

 

 

 

Figure 2.47. Battery Pack Collection Frame Top View. 
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Figure 2.48. Battery Pack Latch Assembly. 

2.7.3. Electrical Design 

Figure 2.49 is the system overview of the UQM motor and controller system 

which converts HV DC battery voltage into torque as an input [57]. The vehicle input 

block is responsible for providing the control signals to the vehicle control unit (VCU), 

which then commands the UQM inverter controller via CAN controls. For this vehicle 
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prototype, a Thunderstruck Motors Vehicle Control Unit (VCU) was implemented, 

described in Figure 2.50. The complete vehicle control unit system also includes the 

following system components: 

• 12V Power, normally connected to an EV accessory battery through the key 

switch 

• CAN, used to communicate between the VCU and Inverter 

• Throttle, which connects to a Hall or resistive throttle and determines the 

requested 

• Precharge Control to enable a precharge relay 

• Contactor Control to enable the main contactor 

• Forward/Reverse (or Forward/Reverse/Neutral) input, to determine the direction 

of motor rotation 

• Brake Switch, to request regeneration when the brake is applied Brake Pressure 

Transducer, which can request variable amount of regeneration depending on 

brake pedal pressure 

• Brake Light output to turn the brake light on when there is braking regeneration. 

torque 
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Figure 2.49. The UQM motor system block diagram [46]. 

 

 

Figure 2.50. Thunderstruck motors VCU system block diagram [47]. 
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2.7.4. Thermal Management System for Motor and Inverter. 

 The thermal management system for the UQM motor system is described in 

Figure 2.51. The coolant loop consisted of 50/50 water/ethylene glycol mix. Maximum 

temperature for inverter/motor is 60 o C and minimum flow rate is 10 L/min, which met 

the electric pump requirements, detailed in Table 2.5. 

 

 

Figure 2.51. E-Tahoe thermal management system design [46]. 

 

Table 2.5. Drivetrain cooling requirements [46]. 
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CHAPTER THREE 

Battery Management System and Health Estimation 

3.1. Introduction 

This chapter presents technical details of developing a framework for EV battery 

and BMS modeling for a variety of usage conditions and applications. It also presents 

details for the accurate estimation of battery state of health (SOH), a vehicle parameter 

critical to the safety and life of an EV. The EV battery primarily provides propulsion 

power for the vehicle while also providing auxiliary power to other electrical components 

of the vehicle, such as the HVAC, power windows, power seats, interior and exterior 

lights and so on. The safety, performance, and operability of the EV are heavily reliant on 

the health and life of the battery. The cost of replacing the EV battery could also be 

significantly high, sometimes up to 30 – 50% the cost of the entire vehicle. This is 

primarily due to the cost of the batteries themselves ($150/kWh for Li-Ion Batteries) [48], 

but also due to the labor, complexity, logistics and tooling/equipment needed to store, 

ship and replace heavy packs that could weigh up to one-third of the weight of the entire 

vehicle.  

The future of mobility will be autonomous, electric, and shared, with millions of 

EVs on the road as often as possible connecting people, delivering goods and providing 

various services with minimal down time. The e-mobility future will be powered by 

battery technologies that will provide power to EVs while also providing energy storage 

backup support and other ancillary services to the grid. To accomplish this daunting task, 
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it is important to understand and estimate accurately the SOH of batteries in different 

operating conditions. Characterization of the different factors that affect battery health, 

both quantitatively and qualitatively, can help engineers design  battery controls that 

improve powertrain performance, increase customer confidence in EV parameter 

estimations, such as state-of-charge (SOC) and range, and improve fleet management and 

vehicle serviceability through improved diagnostics and prognosis. 

  

3.2. Background 

 During the vehicle design stage, EV design engineers design the vehicle from 

both a performance and durability requirement standpoint. To validate the different 

design requirements, high fidelity models of the vehicle must be developed that 

accurately describe the performance, safety, and quality of the vehicle. High fidelity 

models of the EV battery packs that accurately characterize the battery SOH under 

different operating conditions is a particularly challenging problem. This is mainly due to 

the computational complexity of accounting for the number of dynamic and non-uniform 

physical activities occurring inside of a battery as it is cycled under various duty cycles 

and conditions. 

 Typically, at the initial stage of the vehicle design, engineers are limited to battery 

performance and aging test data that have been retrieved under controlled laboratory 

conditions and make design conditions based on this data. However, in practice, this data 

does not accurately depict real-world operating conditions. Poorly designed battery 

controls and battery state estimations could lead to unexpected battery faults, significant 

loss in capacity/range, high warranty costs, vehicle recalls and customer dissatisfaction.  
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In the following sections of this chapter, a detailed description of Li-ion 

chemistry, an implementation of battery parametrization and modeling techniques, and a 

battery management system and battery state estimation and control framework are all 

described. This framework combines laboratory battery test data with high fidelity data-

driven models to perform state estimation and battery aging/life predictions. This will, in 

turn, improve the vehicle design process by providing vehicle design engineers with more 

accurate models of the battery packs while also improving diagnostics and prognosis of 

field vehicles and potentially reducing vehicle warranty costs and improving customer 

loyalty and satisfaction. 

3.3. Lithium-Ion Battery Chemistry 

Li-ion battery (LIB) are the most common type of battery chemistry used in 

modern EV applications due to their stellar energy and power density characteristics 

compared to other battery types and chemistries. Lithium metal is light weight and has 

the greatest electrochemical potential of all metals [35]. This unique property of lithium 

allows Li-ion batteries to provide the highest specific energy density per weight 

compared to other chemistries such as Lead Acid or Nickel-based batteries. The LIB has 

no memory effect, minimal self-discharge, low maintenance and allow the flexibility of 

being manufactured in different geometries and sizes, which is beneficial for EV 

applications [35]. 

The LIB cell is the smallest unit of the LIB pack. The LIB cell consists of a 

positive electrode, known as the cathode, and a negative electrode, called the anode, 

separated electrically by a permeable solvent, called the electrolyte. The positive 
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electrode (the cathode) is typically a lithium metal oxide of some sort, such as LiCoO2, 

shown in Figure 3.1. The anode consists of porous carbon graphite that accept Li+ during 

charging (Figure 3.1b). This process is referred to as intercalation and the reversible 

nature of this phenomena is what makes Li-ion batteries very practical for EV 

applications. During discharge (Figure 3.1a), the anode material undergoes oxidation and 

Li+ flow back to intercalate with cathode material which experiences reduction or gain of 

electrons in the external circuit, which by convention, is the current experienced by the 

load in the opposite direction. 

 

 

(a)  Lithium Cell Discharging                    (b)   Lithium Cell Charging 

Figure 3.1. Lithium-Ion cell cross section with LiCoO2 Cathode and Li2C Anode [14] 

 

 

Many other types of lithium metal oxides cathode materials are common in LIBs 

and offer different advantages for different applications. For EV applications, the most 

common positive electrode materials are Lithium Manganese Oxide (LiMn2O4), 

shortened to LMO, Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2), shortened 

to NMC, and Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2), shortened to NCA 

[6]. Variations of anode materials also exist, such as Lithium Titanate (Li2TiO3), 
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shortened to LTO, which replaces the carbon graphite material with a more durable 

structure. However, carbon graphite is the dominant anode material in EV applications, 

due to the significantly higher specific energy density per weight. Carbon anode-based 

batteries can have energy densities as high as 250Wh/kg compared to LTO batteries, 

which are 50-80Wh/kg. 

3.3.1. Lithium-Ion Battery Aging 

Battery cell aging implies irreversible reactions that occur in a battery over time 

and have adverse effects on battery performance and dependability [14]. This phenomena 

in batteries are not quite understood fully and the non-uniform occurrence makes it 

difficult to model. It is critical however, for safe operation of EVs, to qualitatively and 

quantitively understand the aging phenomena from a practical sense.  

Cell aging can be quantified by two simple concepts, capacity fade and power 

fade. Capacity fade occurs when the total capacity of a battery or the total amount of 

charge that can be retrieved or put into a battery decreases over time. Capacity fade is 

typically the metric used in determining the end-of-life (EOL) of a battery pack or cell by 

original equipment manufacturers (OEMs), which is typically 70% of the original 

capacity for EV applications. Power fade however, correlates to an increase in the 

equivalent series internal resistance of the cell or pack, which is a major factor in the 

power calculation or state of power (SOP) determination of an EV [50]. These 

characteristics in li-ion batteries occur primarily due to side reactions inside of the battery 

and physical deterioration of battery components under normal and strenuous battery 

operating conditions. 
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3.3.2. Lithium-ion Cell Aging - Qualitative analysis 

 Capacity and power fade in a Li-ion cell could occur from a number of different 

physical and chemical processes that may or may not have a direct correlation. This 

makes understanding Li-ion aging models a rather daunting task. In the following 

sections, a detailed overview of mechanisms that lead to aging in Li-ion batteries are 

presented. Aging phenomena in the positive cathode electrode differ significantly from 

aging in negative electrode materials and is characterized as such. 

 

3.3.3. Lithium Ion Negative Electrode Aging 

 Graphite is the most commonly used material in li-ion cells and is the anode 

material of focus in most aging studies of li-ion cells. Aging effects in the anode of the 

cell can be observed at three different degrees of scale: the surface of the electrode 

particle, inside the electrode particle and more macroscopically within the composite 

anode structure as a whole [14]. 

 When a molecule of the solvent comes in contact with the carbon during the 

intercalation of lithium ions, the electrolyte has a tendency to want to decompose and 

form other compounds with the graphite material. The product of this decomposition is a 

redox reaction that consumes some of the lithium ions, carbon particles and some of the 

electrolyte material [14]. This decomposition forms what is known as the solid-

electrolyte interphase (SEI) film on the electrode surface. The formation of the SEI, 

typically inhibits the solvent from further reaction with the carbon electrode material and 

its porosity is such that lithium ions can still penetrate through its pores to intercalate 

with the carbon, however, some lithium ions are consumed in the process of creating the 

SEI and some capacity is lost initially. 
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Elevated temperature operating conditions of the cell could allow for accelerated 

aging of the cell as high temperatures could result in further decomposition of the SEI 

and increased reaction between the graphite material and the electrolyte to form new SEI 

layers, thereby further increasing the internal resistance of the cell and consuming 

additional lithium ions in the process or displacing carbon particles that would otherwise 

be hosts of lithium ions, forcing the lithium ions to combine with other unwanted 

compounds and form lithium metal. The process of forming lithium metal in the cell is 

called lithium plating and is an irreversible reaction. At lower temperatures lithium 

plating could further decompose into lithium dendrites and puncture the electrolyte 

separator potentially causing an internal short between the anode and cathode, a situation 

which could be dangerous and lead to fires. 

Figure 3.2 is a diagram that describes changes at the anode and electrolyte 

interface. The formation of the SEI as can be observed from Figure 3.2 is accompanied 

by the release of gaseous electrolyte decomposition which must be vented out of the 

battery. The exact amount of lithium ion consumed during the multiple stages of 

irreversible formulation of the SEI layer is not entirely known but is estimated to be 

dependent on the conditions with which they are formed, and the surface area of the 

graphite exposed to the electrolyte solvent. 
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Figure 3.2. The SEI layer formulation between anode and electrolyte material [14]. 

 

 Aging can also occur inside of the carbon particles themselves. Intercalation and 

deintercalation of lithium particles repeatedly over varying operating conditions can 

cause stress on the graphite particles and result in cracking of the particles, thereby 

damaging its structure and reducing potential hosts for lithium ions within the composite 

electrode.  

 Charging and discharging of cells over repeated cycles leads to small volume 

changes in the particles of the electrode which can cause stress and cracking of the 

electrode material, leading to further exposure of the graphite to the solvent and further 

decomposition of the SEI and creation of new SEI layers. 

 The repeated stress and strain within the electrode material can transcend into 

electrical and mechanical failure of other physical components of the electrode material 

such as deterioration or corrosion of the current collector, electrical contact loss between 
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binders and particles, current collector and particles, and so on [6]. Table 3.1 below is a 

summary of the aging attributes of the negative electrode material in lithium-ion cells. 

Table 3.1. Summary of aging at negative electrode [14]. 

3.3.4. Lithium Ion Positive Electrode Aging. 

The most prevalent aging factor observed in positive electrode materials is the 

dissolution of the metals in the positive electrode into the electrolyte, creating high 

resistance films that can cause power fade effect in the cell. This typically occurs during 

low/high SOC operations. An explanation for this can be observed by looking at the 

layered structure of a positive electrode material. In Figure 3.3, it can be observed that the 

structure of material is such that lithium ions are stored in between thin and delicate 

layers of the metal oxide like pillars, as is the case in the Li-cobalt oxide shown in Figure 
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3.3. During charge, as the lithium ions are extracted from the metal oxide, at high SOC, 

there are only a few lithium (pillars) ions left in the cathode to keep the structure intact. 

At high temperatures, this could cause the metal oxide to become unstable and dissolve 

into the electrolyte resulting in capacity loss. These materials could sometimes end up at 

the negative electrode material, poisoning the negative electrode.   

 

 

Figure 3.3. Li-cobalt oxide structure [35]. 

 

Other aging processes that occur in the positive electrode are summarized in Table 3.2. 

 

Table 3.2. Summary of aging at positive electrode [14]. 
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Quantifying these aging processes described above with high fidelity models 

based on measurable data such as currents and voltages is the goal of this research work 

and a framework for doing this is proposed in this chapter. 

 

3.4. Equivalent Circuit Model and Parameter Estimation 

 

 Simulating EV battery packs are important for computing key estimates of several 

battery parameters such as state of charge (SOC), state of health (SOH), state of power 

(SOP), range estimation, etc. Models and simulations of battery packs must provide a 

high degree of fidelity with minimal complexity.  

 Equivalent circuit models (ECM) are analogies that correlates the operation of 

simple circuit elements such as sources, resistors and capacitors to the electrochemical 

phenomena that occur inside of the battery. They have the advantage of being 

computationally simple and highly intuitive descriptions of the electrochemical reactions 

that occur in a cell and are useful for simple and fairly accurate estimations of battery 

state. 

 Figure 3.4 shows a generalized ECM that can be used to represent a single Li-ion 

cell [19], where open circuit voltage OCV(z(t)), R1, C1 and R0 elements are a function of 

SOC and temperature T, and the cell output voltage is described by  

v(t) = OCV(z(t)) − R1iR1(t) − R0i (t)       (3.1) 
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Figure 3.4. Equivalent Circuit Model of a Li-ion Battery [19]. 

  

 The series resistor R0 represents the instantaneous response of the cell voltages, 

while the RC pair represents the delayed response of the cell, as described in Figure 3.5.  

 

 Figure 3.5. Illustration of equivalent circuit elements representation of cell voltage 

[19]. 

 

 

To estimate the equivalent circuit parameters for a given cell, the following 

experiments were carried out and the current and voltage profiles of the cell was 

measured throughout the experiment. 

Keeping the temperature of the cell relatively constant beginning at 25 o C for 

each step, the following steps were carried out: 
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• Using a constant current at 1C rate, starting at 90% SOC (to avoid over-

voltage) the cell is discharged by 10% to 80% SOC. 

• The cell is left to rest for roughly 2 hours until all of the transients have 

settled. 

• The cell is then discharged again by 10% at constant 1C and left to rest. 

This sequence is repeated until the cell is at 10% SOC left. 

• The cell is then charged using the constant current, constant voltage 

(CCCV) method backs up to roughly 90% SOC.  

• A new temperature is selected, the cell can come to the new temperature 

and the entire experiment is repeated again for the new temperature set. 

 

After all experimental data is collected, initial guesses of the ECM parameters 

OCV(z(t)), R1, C1 and R0 are set based on voltage plot observation and MATLAB 

parameter estimation toolbox is used to fit the data measured during the experiment to 

newly estimated parameters iterated over time until a small margin of error for every 

corresponding SOC and temperature. Figure 3.6 shows plots of comparisons between 

simulated data and experimental data after this parameter estimation process has been 

completed. The result is a series of look up tables or matrices for all elements of the ECM 

corresponding to a certain SOC and temperature.  
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Figure 3.6  MATLAB parameter estimation simulated results compared to experimental 

data [19]. 

 

Table 3.3 below is an example of a 10 x 3 look up table (LUT) of ECM 

parameters modeled in MATLAB for a Li-ion cell. This cell model can be used to 

represent an ECM cell model in the Battery Management System (BMS) of an EV and 

aid in the quick estimation of different battery back parameters. The cell mass 

(cell_mass), cell mass density (cell_rho_Cp) and cell heat capacity (cell_Cp_heat) can 

typically be found in the battery specification sheet provided by the battery manufacturer. 

These parameters in addition to the parameters deduced from the parameter estimation 

technique can be used to represent a physical cell model within MATLAB/Simscape. 
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Table 3.3 ECM of Li-ion cell parameter estimation in MATLAB 

Figures 3.7 is a Simscape model of a battery cell, which uses a LUT described in 

Figures 3.8 as variables that represent the cell. The modeled cell also allows for a 

physical thermal port to model the cell thermal conductivity properties with ambient or 

other cells around it. The modeled cell can also be initialized with an initial SOC and 

compute its internal SOC at every timestep during simulation. Figure 3.8 describes the 

parameters we set for the cell modeled. The main tab represents the main parameters of 

the cell which include the SOC, OCV, temperature, series resistance and capacity LUT. 

In the dynamics tab, we describe the delayed response LUT parameters which include the 

polarization resistance and the time constant which is a function of the polarization 

resistance and capacitance which are estimated from the parameter estimation process. 

The thermal tab indicates the parameters needed to calculate the thermal response of the 

cell and the variables tab allows us to set up some initialization properties of the cell such 

as initial SOC and initial cell temperature. 
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Figure 3.7. MATLAB/Simscape cell model with thermal port. 

 

 

 

 

 

Figure 3.8. MATLAB/Simscape cell model parameters. 
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Figure 3.9 is a model of a lithium ion cell that is a thermally insulated and 

subjected to ambient temperature input T. The cell input is a drive cycle current 

measurement and the model is instrumented to measure voltage, temperature, and SOC. 

The model is initialized to a SOC of 50% and temperature of ~293 K. 

Figure 3.9. Model of lithium ion cell with thermal insulation and measurements. 

Figure 3.10. Measurements of Voltage, Current, SOC and Temperature. 
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 The plots in Figure 3.10 show the dynamics of the cell being captured in detail. 

As the cell continues to be discharged and charged, the voltage of the cell responds 

similarly, the voltage plots looks like an inverted version of the current input, due to the 

fact that a negative current represents load/discharge while positive represents charge. 

The SOC plot also responds dynamically, depleted to around 45% at the end of the 

simulation. The temperature of the cell also climbs from ~293 K to ~295 K.  

 

3.5. Battery Management System 

 The battery management system is a critical component within a battery pack and 

is responsible for monitoring, protection, limitation and reporting of measurements from 

the battery pack. Modeling the battery pack with a BMS is important for representing the 

diverse duty cycles and environmental condition that a battery will undergo in the real 

world. The model allows the different testing scenarios to be validated, for example a 

scenario where the battery SOC is low at say 30% and temperature is at 25oC. In this 

scenario, we might want to limit the current output of the pack due to the potential of an 

undervoltage fault if the requested current is too high. The plants being monitored and 

controlled by the BMS includes the cells, cells temperature and voltage sensors shown in 

Figure 3.11, the passive balancing circuit in Figure 3.12 which includes a switch, a 

bleeding resistor and diode, and the pre-charge circuit in Figure 3.13. The pre-charge 

circuit takes input from the BMS and is used to protect the pack from an inrush of current 

when it is first connected to the pack or the inverter when it initially connected to the 

battery. The cell strings in Figure 3.11 are indicative of the thermal asymmetry typically 

found in battery packs, where one end of the string is directly linked to ambient 
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temperature by convection while the other end is thermally insulated. This asymmetry 

can cause significant differences in temperatures across all cells.   

 

 

Figure 3.11. Battery Module with 6 cell strings and measurement sensors. 
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Figure 3.12. Battery passive balancing circuit. 
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Figure 3.13. Battery pre-charge protection circuit. 

 

 

Figure 3.14 is a diagram that describes the circuitry of a typical BMS. The BMS 

cell balancing and sensing module is responsible for sensing voltages of individual cells 

within the pack or module within an accuracy tolerance of 5mV+/- and balancing the 

voltage across all of the cells. The balancing could occur right after charging or during 

charging of the cells. The BMS is also responsible for over-charge/over-discharge 

protection with a delay time of 1000ms and a voltage tolerance of +/- 0.1V the threshold 

voltage, over-discharge current protection with a delay time of 5ms, short circuit 

protection with a delay time of 5ms, temperature sensing and temperature protection with 

a tolerance of +/- 5 degree C. The module also has a low power on-board computer, GPS 

sensor and wireless communication module. The onboard computer can run different 

algorithms online to help the battery pack understand it’s current duty cycle, state of 

charge, state of power, state of health and optimal operational point. It can also 

communicate information such as individual cell voltages, pack temperature, and battery 
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states to main Vehicle Control Unit (VCU). The BMS algorithm is responsible for 

following functions: 

• Computing the minimum cell voltage and maximum allowable current 

threshold based on maximum internal resistance and temperature limits. 

• Defining the battery state which indicates standby, driving, charging and 

fault states. 

• Detection and turning on fault states which include over temperature, over 

voltage, over current, under voltage. 

• Defining and controlling the contactor ON and OFF sequences. 

• Controlling the balancing switching logic during battery stand by mode. 

Figures 3.15 – 3.17 are plots showing the results of a BMS controlled battery pack 

which transitions from driving to charging and then to standby states. From the cell 

temperature plots, the temperature differences in the cells can be seen overtime due to the 

thermal asymmetry of the cells, and the BMS states are noticed indicating the battery 

state transitions through the driving and charging cycles. These state transition concepts 

can be modeled within MATLAB/Simulink using Stateflow Toolbox. From the voltage 

plots, stacked balance can be seen across all cells, which is due to the fact that the cells 

are all modeled with the exact same LUT parameters, hence there is no need for a balance 

command by the BMS as indicated in Figure 3.17. 

During driving the similarities can be noticed between the current and voltage 

curves over time, however the average voltage of the pack decreases over time at the end 

of the driving state. During charging, the charge current starts off at around 30A and 

stays constants until the cell voltage reaches the voltage threshold, at which point the 



91 

 

currents starts to derate until the batter is fully charged. This charge control is performed 

by the BMS maximum allowable charge current algorithm. Once the battery is in standby 

mode, the cell voltages begin to settle to the no load voltage (OCV). 

 

 

Figure 3.14. Battery Management System. 
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Figure 3.15. Battery voltages and currents for driving and charging cycles. 
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Figure 3.16. Battery cell temperatures and BMS states for driving and charging cycles. 
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Figure 3.17. The BMS Balance command. 

 

3.6. Battery State of Health Estimation 

 

 Rapid and accurate determination of the State of Health (SOH) of Li-ion battery-

based energy storage system of an EV is necessary for optimal system operation, safety 

and reliability. Especially considering future Vehicle-to-Grid second life use applications. 

Current SOH estimation approaches either directly measure discharge capacity and 

internal resistance, or derive it from the battery pack’s history, i.e., number of 

charge/discharge cycles and the associated charge- and discharge capacity and rate for 

each cycle [51]. EV batteries are considered to be at their end of life and due for 

replacement at below 80% of usable capacity compared to initial charge capacity. Figure 
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3.18 is a plot of tesla model S and X Tesla EV batteries degradation data aggregated over 

distance traveled; the distribution of SOH degradation could vary between EVs based on 

usage conditions as indicated in the figure. 

Figure 3.18. Tesla Model S/X Battery Capacity Retention over distance traveled. 

Given the importance of SOH of batteries, a method for rapid and accurate 

determination of SOH was investigated and is proposed in this section. The common 

approach to battery charging is the Constant Current, Constant Voltage (CCCV) process 

shown in Figure 3.19, in which the maximum current supplied by the charger is 

maintained during the constant current portion of the charge (highlighted in red), and then 

a controlled constant voltage region kicks off where the voltage is held constant 

(highlighted in blue). At this time in the process, the current is tapered off by the charger 

controls to not cause the maximum voltage to be exceeded [50]. This transitional region 

(highlighted in orange) is of interest in rapid SOH modeling.  
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Figure 3.19. Battery Charging in CCCV. 

  

3.6.1. SOH Estimation Experimental Validation 

Researchers at MIT conducted aging experiments on 124 commercial Li-ion 

batteries cycled to failure under fast-charging conditions [53]. The cells were lithium-ion 
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phosphate (LFP)/graphite cells, manufactured by A123 systems cycled on a 48-channel 

Arbin LBT potentiostat in a forced convection temperature chamber set to 30oC. The 

cells have a nominal capacity of 1.1Ah and nominal voltage of 3.3V. Figures 3.20 and 

3.21 are plots of the voltage and currents recorded during charge and discharge for each 

individual cycle that was run on one individual cell. Figure 3.22 is a plot of the charge 

capacity over all of the cycles. The red squares within the plots highlight region of time 

when the cells were being charged. From the current and voltage plots, it can be observed 

that the dramatic changes in the curves between the transition region from CCCV as the 

cell continues to age. The charging policy was set to start at a constant-current steps of 

4C, 3C and then 1C, however as the cell aged, the voltage of the cell increased to the 

maximum voltage threshold much quicker causing the CV region to be kicked off earlier. 

From the charge capacity curve in Figure 3.22, it can be observed that the initial capacity 

during early cycles goes from 1.1Ah to 0.88Ah in later cycles, a 20% decrease in 

capacity.    

Figure 3.20. A123 Cell voltage over charge and discharge cycles. 
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Figure 3.21. A123 Cell Current over charge and discharge cycles. 

 

Figure 3.22. A123 Cell Charge capacity over charge cycles. 
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Figure 3.23 is a plot of charge capacity (Ah) over cycle indices for one of the 

A123 LFP/graphite cell, indicating the reduction in cell capacity as the cell aged. Figure 

3.24 is a plot of the current in the CV region under the 1C charge policy indicating the 

changes in the curve as the cell ages, while Figure 3.25 is a plot of the voltage in the 

same CV region showing the charge controller keeping the voltage at the desired voltage 

maximum set within a margin of 0.0005V of the maximum voltage of 3.6V. Finally, 

Figure 3.26 is a plot of the gradient of the current curve at time t+1 for each individual 

charge/discharge cycle (cycle indices), showing a trend that correlates to the aging of the 

cell. Another measurable metric that can aid in the rapid estimation of the cell capacity/ 

SOH is the charge time of the CV region for each cycle shown in Figure 3.27, however 

this method is less desirable in practice as the EV user may not complete the charging 

every time they plug in but are more likely to at least go through the transition from CC – 

CV during each charging session. Figure 2.28 is a model of current gradients mapped to 

capacity highlighting the correlation between the charge current gradient and capacity 

loss over the life of the cell. 
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Figure 3.23. A123 Cell Charge capacity over charge cycle indices. 

 

 

Figure 3.24. A123 Cell Current over charge cycle in CV region. 
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Figure 3.25. A123 Cell Voltage over charge cycle in CV region. 

 

 

Figure 3.26. A123 Cell Current gradients in CV region over charge cycle indices. 

 



102 

 

 

Figure 3.27. A123 Cell Charge time for CV region over charge cycle indices. 

 

Figure 3.28. A123 Cell CV charge current gradient against capacity. 
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To further validate this rapid estimation methodology, application and robustness 

for other lithium-ion chemistries and charging policies, an experiment was set up in the 

Baylor Energy and Renewable systems lab.  Nickel-cobalt-manganese (NCM)/graphite 

cells made by Panasonic were cycled (battery spec sheet shown in Figure 3.29) using an 8 

channel, 5V 40A battery analyzer made by MTI corp.  

Figure 3.29. Panasonic NCM cell battery spec sheet. 
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A custom flooded battery enclosure shown in Figure 3.30 was designed and 

fabricated with a 3D printer to allow for coolant flow to extract heat by convection from 

the external surface of the cells so the temperature could be kept constant of 25oC during 

testing, this was monitored using a thermistor and Arduino setup. Figure 3.31 is a 

diagram of the experiment that was conducted. 

 

 

Figure 3.30. CAD 3D Model of flooded cell enclosure.

 

Figure 3.31. Battery aging cycler experimental setup. 
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Although the advertised capacity of the cells was around 3.5Ah, the experimental 

results showed that only 2.5Ah of charge capacity was attainable without compromising 

the safety of the cells. The cells were fast charged similar to previously described 

experiment in [59] at a constant current rate of 2C based on the advertised capacity, and 

the current, voltage and charge capacity were recorded while temperature was held 

constant. Figure 3.32 is a plot of the voltage during charge and discharge, Figures 3.33 is 

a plot of the current over the entire charge and discharge cycles, and Figures 3.34 and 

3.35 describe the current and charge capacity plots for the CV region. In Figure 3.34 an 

exponential decay can be observed in current over time initially, however as the cells 

aged, the current gradient in the CV region became steeper. The cells were cycled for 

around 400 cycles, from Figure 3.35 it can be observed that the cell capacity started off at 

~2500mAh during early cycles and depleted to ~2100mAh during the later cycles, 

similarly the initial exponential curve of the capacity during earlier cycles which then 

becomes a steeper and more linear as the cell ages. 

Figure 3.32. Panasonic Cell Voltage over time for charge and discharge cyles. 
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Figure 3.33. Panasonic Cell Current over time for charge and discharge cyles. 

 

Figure 3.34. Panasonic cell current over time for CV region. 
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Figure 3.35. Panasonic cell capacity over time for CV region. 

The gradients of the current curve in CV region at time t+1 were computed and 

plotted against the cycle indices in Figure 3.36. Similar to the results from the A123 cell 

experiments described in Figure 3.26, an exponential decay in the current gradients can 

be observed in the values of the gradient of the curves as the cells continue to age, further 

validating the robustness of this prediction methodology across multiple cell chemistries 

and duty cycles. 

Figure 2.36. Panasonic cell current gradients against cycle indices. 
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3.6.2. Deep Neural Network SOH Estimation 

 Based on the experimental observation of current gradients as indication of 

battery capacity and SOH, a deep neural network model of the data recorded during the 

aging studies of the A123 battery cells was conducted. The A123 cell data was selected 

due to the volume of data collected given that over 100 cells were cycled, representing a 

decent sample size.  

A deep neural network DNN model was developed and trained using the deep 

learning keras framework. Data recorded from 45 of the A123 cell ageing experiments 

previously described were used as training and test data. The details of the DNN 

development can be found in the Appendix A of this work. Table 3.4 is a description of 

the data inputs for the DNN model, where current gradient and CV time represent the 

gradient of the current curve computed for each cycle at the transition to CV charging 

and the time taken for the CV portion of the charge, respectively. Capacity indicates the 

charge capacity of each individual cell during each charge cycle representing the 

prediction output of the model. Note that the current gradient values are normalized for 

ease of modeling. 

Table 3.4. Description of DNN data and statistics 
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Figure 3.37 is a plot of the resulting predictions for 1000 randomly sampled data 

points from the pool of test data that was excluded from the training dataset of DNN 

model. From the plot we can observe the model’s ability to accurately predict the cell 

SOH/Capacity given any current gradient inputs. 

Figure 3.37. Deep Neural Network Model prediction of SOH. 

The input of the model is the gradient of the CCCV charge curve transition and 

the output of the model is the capacity of the cell at the time of charge, representing the 

cell SOH. This model can be embedded easily into the on-board BMS and be used to 

estimate the battery SOH quickly and accurately during charging operations. 



110 

 

 

 

 

CHAPTER FOUR 

 

Modular Connected Battery Pack, Battery Swapping Station and Vehicle to Grid 

 

 

 Traditional EVs contain a large battery energy storage system (BESS) as the 

source of power for the vehicle propulsion system. The battery pack is typically 50−100 

kWh in capacity, costing thousands of dollars and has an adverse effect on the weight of 

the vehicle. However, studies have shown that the typical daily drive cycle for the 

average consumer is approximately 40 miles (64 km) for 95% of their drive cycles, 

corresponding to about 15 kWh capacity requirement for daily driving. A universal 

battery pack (UBP), referred to in this work, is designed as an alternative to the 

traditional battery pack. It has a highly reduced weight and can charge more quickly than 

conventional packs, it also has the capability of being able to be combined with multiple 

packs within an EV when a longer range is necessary. In addition, the battery packs are 

also connected through internet of things (IoT) to a cloud-based network to constantly 

manage the battery state of health (SOH), state of charge (SOC), and broadcast its various 

data points with the Battery Swapping Station and the Battery Sharing Network. Figure 

4.1 is a diagram of the new battery placement architecture proposed inside of an EV. As 

seen in the figure, the battery pack in the front of the vehicle is designed to be a custom 

battery pack that could be permanently part of the vehicle or also be UBP that is 

swappable depending on the use case/application. This greatly reduces the load demand 

that the EV owner puts on the grid as the battery can be charged over a long stretch of 

time at night when load is minimal, and the electricity is cheaper. The UBP slot in the 
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vehicle is designed to provide the EV owner flexibility to participate in the Battery 

swapping network. The pack and collection frame are standardized to fit any vehicle built 

with a traditional ladder frame and capable of providing a range of 50 - 200 miles or 

more depending on vehicle weight, duty cycle and vehicle dynamics. The battery packs 

are available on demand at a Battery swapping network discussed in this chapter. Figure 

4.2 is a description of the connected UBP. The UBP is modular and consists of high 

voltage (HV) connectors, optional low voltage (LV) connectors, a coolant connectors for 

thermal management (if pack is liquid cooled), and an IoT enabled, embedded device for 

intelligent on-board diagnostics and control of the battery pack also known as the Battery 

Management System (BMS) described in the previous chapter. 

Figure 4.1. Novel Electric Vehicle Architecture with Custom Battery Pack and Universal 

Battery Pack Slot. 

Figure 4.2. Universal Battery Pack Design. 
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Figure 4.3 is a CAD model of the UBP during the modeling and design phase 

of the prototype, Figures 4.4 and 4.5 are pictures of the a UBP during the design and 

fabrication phase. 

Figure 4.3. A CAD Model of UBP. 

Figure 4.4. Fabrication of UBP. 
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Figure 4.5. Two UBPs embedded inside of a battery collection frame. 

4.1. Battery Cooling Systems 

Battery energy management and thermal design is a primary factor with regards to 

performance and life cycle of an EV battery [54]. Li-ion batteries should ideally operate 

between 25 °C and 40 °C for optimal life and performance. Using air as a heat transfer 

medium, as in the validation prototype build described in Figure 4.4, is a cheap and 

simple method for battery cooling; however, it is sometimes inefficient in comparison to 

liquid cooling. Some of the limiting factors of air cooling in EVs are limited flow rate of 

cooling air, noise, inhomogeneous temperature distribution within batteries, flow rate of 

cooling air, and dependence on vehicle cabin air temperature. Due to the strict 

temperature operational range of Li-ion battery packs, Li-ion batteries in EV applications 

are typically liquid cooled, however these systems are more costly and complex to 

implement. The thermal management responsible for cooling of an EV battery pack 
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typically consists of a refrigerant system, a radiator, heater, pump, coolant reservoir, cold 

plates, coolant hoses and valves, temperature sensors and a controller. Figures 4.6 and 4.7 

are block diagrams of a typical EV battery pack and all of its subcomponents modeled in 

MATLAB/Simulink. 

 

 

Figure 4.6. Battery cooling system overview. 

 

Figure 4.7. Heating and cooling unit subsystem detail. 
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The temperature sensors, control system, and cooling plates are typically 

embedded within the battery pack itself while the heating/cooling unit which consists of 

the refrigerant system, radiator and heater are typically outside of the battery pack and 

on-board the vehicle due to packaging complexity and the need for other systems within 

the vehicle to share some of the components such as cabin heating and cooling, motor 

and power electronics heating and cooling. 

In battery swapping and Vehicle-to-Grid (V2G) applications however, it desirable 

for all of the cooling components, needed to keep the battery pack within its optimal 

temperature, to be on-board the battery pack itself. This reduces the complexity of 

dealing with coolant connections and spillage and improves the standardization and 

flexibility of the battery packs. Therefore, a novel battery pack design is proposed which 

integrates a coolant pump, radiator, fans, coolant hose and valves with controller and cold 

plates all within the battery pack as illustrated in Figure 4.8. 

 

 

Figure 4.8. Closed loop Cooled Battery Pack. 
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The battery pack described can function in certain environments and with certain 

chemistries that have a wider range of temperature operations when a refrigerant system 

is not needed.  For heating the battery in extreme cold weather or during a cold start, a 

thermoelectric heater or heat pump may be used inside the battery cooling unit. These 

batteries can be relied on in areas with modest weather and temperature or with 

chemistries such LiFePo or Lithium Titanate Oxide which have a wider temperature 

operating range. 

 

4.2. Onboard Bidirectional Charger 

 

 An onboard bidirectional charger within a battery pack can be very useful in V2G 

applications of EVs both on-board and off-board the vehicle. The bidirectional charger 

on-board the vehicle can assist in providing vehicle to grid when the vehicle is plugged in 

at a Level 1 or 2 charger, when the battery pack is used in standalone stationary 

applications, or when the battery is used out in the field at mobile battery swapping 

stations that are not equipped with chargers or in remote locations for battery to battery 

(B2B) or vehicle to vehicle charging (V2X). These ranges of bidirectional applications 

call for a modular battery charger that is embedded within a battery pack itself. Figure 4.9 

is a block diagram of the on-board bidirectional charger and operation. 
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Figure 4.9. Onboard Bidirectional Charger Block Diagram. 

 

The on-board bidirectional charger within a battery pack consists of a 

bidirectional DC/DC converter, isolating transformer between the DC converter and AC 

converter, a full-bridge AC/DC converter which consists of power semiconductor 

switching devices such as wide band gap switching devices made of SiC or GaN 

material, an EMI filter composed of an inductor and capacitor. It also contains a control 

system responsible for measurements of battery voltage, current, bus voltage, power grid 

voltage and current, and gate drivers for PWM switching of the power electronics 

components. The DC/DC converter is controlled through a duty cycle phase shift while 

the AC/DC converter is controlled through pulse width modulation (PWM) switching. 

The use of wide band gap components allows for high power density and efficiency, 

reducing the physical footprint of the charger within the battery pack and allowing for 

reduced weight and cooling requirements of the charger. 
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4.3. Swappable Electric Vehicle Chassis.  

A modular swappable EV chassis is described in Figure 4.11. The swappable 

chassis allows for a variety of vehicle body platforms to be combined with the same EV 

chassis. The swappable EV chassis features the electric powertrain, battery collection 

frame and modular battery pack described thus far. It also incorporates a steering rack 

motor that can be controlled wirelessly through a steering wheel sensor, a wireless 

embedded controller for controlling the electric motor and braking system through 

wireless signals from the throttle and brake pedal on board the interchangeable vehicle 

body. Finally, the swappable EV chassis described allows for wireless selection of drive 

modes and gears from a wireless gear selector aboard an interchangeable vehicle body. 

The swappable chassis opens up the opportunity for different class and utilities as 

described in Figure 4.10 to be used in conjunction with the same vehicle body. 

 

 

Figure 4.10. Vehicle Body styles and classes for swappable chassis 



119 

 

 

Figure 4.11. Swappable Electric vehicle chassis. 

 

4.4. Battery Swapping Network and V2G System 

 

 The battery swapping station is an integral part of the battery swapping network 

and consists of mechanical, structural, and electrical components. Figure 4.12 is a 

conceptual high-level description of the BSS. 

 

 
Figure 4.12. Conceptual design of a Battery Swapping Station. 
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 The structural components of a mobile BSS include a vehicle platform, battery 

and/or vehicle lift, vehicle alignment guides, electrical alignment guides, battery 

conveyor mechanisms, battery storage racks and battery rails for retrieval of charged 

batteries and addition of depleted batteries. Figure 4.13 highlights the components inside 

of a battery swapping station built to operate battery swapping for the vehicle 

architectures discussed in the previous chapters. 

 

 

Figure 4.13. Mobile Battery Swapping Station Components. 

 

 

When a vehicle arrives at a swapping station for a swap, the vehicle climbs unto a 

ramp, the depleted battery pack is removed from the vehicle by placing the battery pack 

lift underneath the vehicle, raising the height of the lift until it meets the guides on the 

vehicle, releasing the spring loaded latch so that the weight of the pack is now supported 

by the lift, then lowering the lift, and inserting the depleted pack inside an empty slot on 

the battery storage unit. Following the removal, a charged battery pack is rolled out of the 

battery storage unit and placed on the battery pack lift, the battery is then slid underneath 

the vehicle with the battery pack lift and guided into the vehicle again through the guides 
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on the vehicle, finally the battery is raised upwards until the battery pack is latched 

securely onto the vehicle. 

 

4.5. Electrical Design of BSS and V2G Implementation 

 

 In today’s implementation, the BSS is heavily dependent on the distribution grid 

and represents new high-power consumption loads for the distribution system operators. 

The electrical components of the BSS are mainly composed of a distribution transformer, 

AC/DC chargers, battery packs, and a battery energy control module (BECM). Figure 

4.14 is a block diagram of the electrical relationship between the components of the BSS. 

The distribution grid provides the AC power at the distribution voltage level, and because 

of the high-power demand of the BSS [55], this voltage level will be between 33 kV and 

11 kV. Charging power levels for EV battery packs range from Level 1 charging at 120 

V/15 A single-phase; Level 2 Charging at 240 V (up to 80 A, 19.2 kW); and Level 3 

Charging at 50 kW and up [56]. Depending on the size of the BSS and the voltage level 

available at the distribution grid, different charging modes can be implemented [57]. 

 

 

Figure 4.14. Electrical Design of BSS. 

 

 

The current state-of-the-art implementation of BSS possesses several technical 

and economic challenges. Such challenges are the nonstandard battery interface across 
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EV manufacturers and consumer acceptance of not owning their battery or their original 

battery being tampered with and replaced with a lower performance battery during a 

swap. Another critical challenge is the heavy dependency of the BSS on the distribution 

grid, and the high-power demand of the BSS, which could have a negative impact on the 

grid during peak loading periods. In this work, a new design of the EV battery 

architecture has been proposed to achieve a common standardized modular battery 

interface across EV manufacturers. In addition, a renewable energy generation and a 

bidirectional AC/DC charging interface are introduced, which allows the BSS to become 

a service utility that supports the grid in terms of distributed generation and storage. A 

PV system is integrated with the BSS. In addition, a bidirectional AC/DC converter 

topology discussed in [56] is implemented allowing the battery packs in the BSS to 

provide V2G services to the smart grid. Figure 4.15 is a block diagram description of the 

system structure of the proposed BSS. The BSS is also a part of a network of BSS, 

referred to as a Battery Sharing Network (BSN), linked together through the IoT and 

telecommunication interfaces, communicating to optimize the cost of charging, reduces 

the waiting time for battery swaps by forecasting battery swaps and share the UBPs 

amongst each other through participating EVs and EV customers. The EV owners can 

participate in the BSN and transport battery packs from the BSS where they are located to 

the BSS where they are needed for incentives such as free battery swaps or payment. The 

UBPs are transported from BSS to BSS through the embedded UBP slot on optimized 

routes convenient for EV owners. This reduces, or eliminates, the need for dedicated 

vehicles for transportation of EV battery packs from station to station. Figure 4.16 is a 

conceptual illustration of the BSN. The BSN consists of several functional subsystems; 
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the communication between these systems is handled by the BSN Management System. 

This system coordinates the bidirectional flow of power between the BSS and the smart 

grid which is designed for distributed generation and bidirectional power flow. It also 

coordinates the optimized routing of boost packs in the BSN through the EVs that 

participate in the network. This complex system is achieved through a cloud-connected 

intelligent system of sensors across the BSN and an AI/ML framework running on the 

cloud to optimize the system. In addition, the BSN management system controls the 

scheduling of battery swaps as well as forecasting of future swaps and grid loading. The 

BSN management system in this proposed scheme becomes a grid utility, providing 

services to the grid, such as peak shaving and load balancing, and serves as a reserve for 

the grid during contingency situations.  

 

 

Figure 4.15. Battery Swapping Station with local renewable energy generation and 

bidirectional charger. 
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Figure 4.16. Battery Sharing Network (BSN) communication interface between Battery 

Sharing Station (BSS) and smart grid. 

 

 

4.6. Battery Sharing Network Charge Management System 

Coordination of logistics for mobile battery energy storage systems requires careful 

design and state of the art connectivity tools [58]. The cloud connected battery sharing 

network management platform sometimes referred to as the charge management system 

(CMS) is responsible for monitoring batteries, swappable EV chassis, swapping/charging 

infrastructure and the fleet of EV/AV across the network. It is divided up into several 

modules including the scheduling/routing module, charging/discharging module, billing 

and payments modules, control module, data acquisition and monitoring modules, data 

analytics modules and data storage module. It receives inputs such as vehicle/battery 

health, battery state of charge, battery location and size, vehicle telematics data, 
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electricity load and price forecasts, charging/discharging status, equipment alerts and 

many more. From the real-time inputs and analytical models deduced from the analytics 

modules, the management systems can make decisions on battery/vehicle chassis swap 

scheduling and routing, battery charging/discharging, mobile battery swapping station 

assignment and routing and many more optimization and control functions. Figure 4.17 is 

an architectural diagram of the cloud management system.  

 

 

 

Figure 4.17 Architectural diagram of CMS. 
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CHAPTER FIVE 

 

Conclusion and Future Work. 

 

 In this work, an EV modeling approach was described and simulated in 

MATLAB, followed by tuning and validation on an EV chassis dynamometer testbed. 

The design philosophy of EV OEMs with regards to vehicle efficiency drive cycle tests, 

mandated by the EPA, were briefly described. The results of the EV model were 

validated by comparing them to the results of vehicle performance tests of the specified 

EV on a chassis dynamometer. The energy efficiency results of the modeled high-

performance EV compared to the real-world vehicle showed close correlation with a root-

mean-square error (RMSE) value of 0.2. The vehicle speed and vehicle distance traveled 

of the models also resulted in negligible error values.  

 A high-fidelity electrical model with thermal dependence of an EV battery cells 

was parameterized and modeled in MATLAB using the Parameter Estimation Toolbox. 

The cell model was extended into a vehicle pack model and a corresponding BMS was 

modeled. The modeling results highlighted the thermal asymmetry among cells models 

within the battery pack and described how the BMS was able transition between different 

pack operation states with adequate precision. 

This importance of EV modeling, simulation, and validation is critical due to the 

revolutionization of the transportation industry by electric mobility. The topics from this 

work demonstrate the methodologies for developing high performance EV models in a 

software simulation environment and validating the models with real-world hardware in a 
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repeatable and scalable fashion, thereby enabling the rapid development of EV testbeds. 

A brief review of EV modeling techniques and software toolsets were introduced. A 

summary of EV motion dynamics was described mathematically and an equation based 

EV model was implemented based on the mathematical models described. Future work 

will consider a physical modeling approach which enables the development of an 

advanced motor model such as data driven/map based motor models, and advanced motor 

controller schemes such as six-step control or space vector modulation (SVM) controls 

which should result in more detailed and accurate transient and dynamic responses 

compared to the real-world vehicle. A physical modeling approach would also include 

more advanced battery models that consider the thermal relationship between individual 

cells within a pack and ambient temperature conditions, as well as degradation 

mechanisms that affect state of power (SOP) and state of health (SOH) during drive 

cycles simulations. 

An EV powertrain comprising of one motor that can produce rotational power to 

multiple axles and wheels of vehicle independent of each other was designed and 

implemented. Also described is a battery sharing network which is a distributed network 

and comprises of one or more battery swapping stations and electric or autonomous 

vehicles that participate in the network.  A cloud connected battery sharing network 

management system is described, which is capable of monitoring, control, routing and 

dispatch of batteries, vehicles, chargers, EVs, autonomous vehicles, and other assets 

within the network.   

A battery collection frame capable of attaching and detaching an EV battery of 

varied configuration, shape and size was designed and implemented, where a latch frame 
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assembly which forms a part of a battery collection frame, is designed to accept a battery 

pack with kingpins and align the battery pack and it’s connections to the vehicle chassis 

and secure the battery pack to a vehicle chassis during driving was also designed and 

implemented. A closed-loop cooled battery pack which could be comprised of a fan, 

pump, refrigerant cooling system, radiator and condenser, cooling plate, coolant hoses, 

coolant reservoir, heater core or heat pump all embedded within the battery pack without 

a need for external cooling inlet and outlet channels was also described in detail.  

A connected battery management system capable of sensing, balancing, charge 

and discharge protection, state and parameter estimation and wireless communication of 

pack, module or cell states and parameters was modeled and simulated in MATLAB 

where a bidirectional charger topology was described for robust implementation of on-

board modular battery pack. A system and method for rapid determination of battery state 

of health based on a single charge cycle was investigated with experimental results. 

Finally, a deep neural network-based model for training and determining the state of 

health of a battery cell was developed and validated. 

A detailed analysis of battery SOH and battery degradation mechanisms was 

presented. A method for rapid determination of battery SOH based on a single charge 

cycle was investigated and experimental results were validated. A deep neural network-

based model for training and determining the state of health of a battery cell based on 

previously observed data was developed and validated. The data analysis showed a 

correlation between gradient of the current curve during transition between the CC and 

CV region of charge and the charge-discharge cycle count. The resulting deep neural 

network training model loss maximum value was 0.06. Future work will investigate how 
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different charging modes affect the SOH estimation principles. Such charging modes 

include DC Fast Charging (DCFC), Constant Current (CC) and Step charging and other 

optimized charging methods. In addition, the effects of calendar aging on accuracy of this 

method SOH estimation need to be further investigated as well. 

 Future work on the EV prototype testbed developed in this work will include the 

performance and efficiency testing of the developed EV powertrain on a chassis 

dynamometer similar to the Chevrolet Bolt EV tests described in Chapter Two of this 

work. A wireless electric motor steering rack controller and wireless traction motor 

controller on-board the swappable EV chassis capable of wireless connection with the 

wireless throttle, brake and steering onboard an interchangeable vehicle body that can be 

attached to the swappable chassis described in Chapter Four of this work will also be a 

future topic worth investigating.
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APPENDIX A 

 

A Deep Neural Network Model in Jupyter Notebook 

 

 Deep Neural Networks are Artificial Neural Networks with more than one layer 

between the inputs and the outputs of the network. This appendix includes the code 

blocks written in python scripting language inside of a Jupyter notebook (data science 

toolbox) for modeling a deep neural network of battery SOH, with an input of current 

gradient during the CCCV region and output of predicted capacity as a function of SOH. 
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